]> Git Repo - qemu.git/blame - hw/net/ne2000.c
9pfs: Clean up includes
[qemu.git] / hw / net / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
83c9f4ca
PB
24#include "hw/hw.h"
25#include "hw/pci/pci.h"
1422e32d 26#include "net/net.h"
47b43a1f 27#include "ne2000.h"
83c9f4ca 28#include "hw/loader.h"
9c17d615 29#include "sysemu/sysemu.h"
80cabfad
FB
30
31/* debug NE2000 card */
32//#define DEBUG_NE2000
33
b41a2cd1 34#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
35
36#define E8390_CMD 0x00 /* The command register (for all pages) */
37/* Page 0 register offsets. */
38#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43#define EN0_TSR 0x04 /* Transmit status reg RD */
44#define EN0_TPSR 0x04 /* Transmit starting page WR */
45#define EN0_NCR 0x05 /* Number of collision reg RD */
46#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47#define EN0_FIFO 0x06 /* FIFO RD */
48#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 55#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 56#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 57#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
58#define EN0_RSR 0x0c /* rx status reg RD */
59#define EN0_RXCR 0x0c /* RX configuration reg WR */
60#define EN0_TXCR 0x0d /* TX configuration reg WR */
61#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62#define EN0_DCFG 0x0e /* Data configuration reg WR */
63#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64#define EN0_IMR 0x0f /* Interrupt mask reg WR */
65#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
66
67#define EN1_PHYS 0x11
68#define EN1_CURPAG 0x17
69#define EN1_MULT 0x18
70
a343df16
FB
71#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
73
089af991
FB
74#define EN3_CONFIG0 0x33
75#define EN3_CONFIG1 0x34
76#define EN3_CONFIG2 0x35
77#define EN3_CONFIG3 0x36
78
80cabfad
FB
79/* Register accessed at EN_CMD, the 8390 base addr. */
80#define E8390_STOP 0x01 /* Stop and reset the chip */
81#define E8390_START 0x02 /* Start the chip, clear reset */
82#define E8390_TRANS 0x04 /* Transmit a frame */
83#define E8390_RREAD 0x08 /* Remote read */
84#define E8390_RWRITE 0x10 /* Remote write */
85#define E8390_NODMA 0x20 /* Remote DMA */
86#define E8390_PAGE0 0x00 /* Select page chip registers */
87#define E8390_PAGE1 0x40 /* using the two high-order bits */
88#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
89
90/* Bits in EN0_ISR - Interrupt status register */
91#define ENISR_RX 0x01 /* Receiver, no error */
92#define ENISR_TX 0x02 /* Transmitter, no error */
93#define ENISR_RX_ERR 0x04 /* Receiver, with error */
94#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96#define ENISR_COUNTERS 0x20 /* Counters need emptying */
97#define ENISR_RDC 0x40 /* remote dma complete */
98#define ENISR_RESET 0x80 /* Reset completed */
99#define ENISR_ALL 0x3f /* Interrupts we will enable */
100
101/* Bits in received packet status byte and EN0_RSR*/
102#define ENRSR_RXOK 0x01 /* Received a good packet */
103#define ENRSR_CRC 0x02 /* CRC error */
104#define ENRSR_FAE 0x04 /* frame alignment error */
105#define ENRSR_FO 0x08 /* FIFO overrun */
106#define ENRSR_MPA 0x10 /* missed pkt */
107#define ENRSR_PHY 0x20 /* physical/multicast address */
108#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109#define ENRSR_DEF 0x80 /* deferring */
110
111/* Transmitted packet status, EN0_TSR. */
112#define ENTSR_PTX 0x01 /* Packet transmitted without error */
113#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114#define ENTSR_COL 0x04 /* The transmit collided at least once. */
115#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
120
2b7a050a
JQ
121typedef struct PCINE2000State {
122 PCIDevice dev;
123 NE2000State ne2000;
124} PCINE2000State;
125
9453c5bc 126void ne2000_reset(NE2000State *s)
80cabfad
FB
127{
128 int i;
129
130 s->isr = ENISR_RESET;
93db6685 131 memcpy(s->mem, &s->c.macaddr, 6);
80cabfad
FB
132 s->mem[14] = 0x57;
133 s->mem[15] = 0x57;
134
135 /* duplicate prom data */
136 for(i = 15;i >= 0; i--) {
137 s->mem[2 * i] = s->mem[i];
138 s->mem[2 * i + 1] = s->mem[i];
139 }
140}
141
142static void ne2000_update_irq(NE2000State *s)
143{
144 int isr;
a343df16 145 isr = (s->isr & s->imr) & 0x7f;
a541f297 146#if defined(DEBUG_NE2000)
d537cf6c
PB
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr ? 1 : 0, s->isr, s->imr);
a541f297 149#endif
d537cf6c 150 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
151}
152
d861b05e 153static int ne2000_buffer_full(NE2000State *s)
80cabfad 154{
80cabfad 155 int avail, index, boundary;
d861b05e 156
80cabfad
FB
157 index = s->curpag << 8;
158 boundary = s->boundary << 8;
28c1c656 159 if (index < boundary)
80cabfad
FB
160 avail = boundary - index;
161 else
162 avail = (s->stop - s->start) - (index - boundary);
163 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
164 return 1;
165 return 0;
166}
167
b41a2cd1
FB
168#define MIN_BUF_SIZE 60
169
4e68f7a0 170ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
80cabfad 171{
cc1f0f45 172 NE2000State *s = qemu_get_nic_opaque(nc);
4f1c942b 173 int size = size_;
80cabfad 174 uint8_t *p;
0ae045ae 175 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 176 uint8_t buf1[60];
5fafdf24 177 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 179
80cabfad
FB
180#if defined(DEBUG_NE2000)
181 printf("NE2000: received len=%d\n", size);
182#endif
183
d861b05e 184 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
4f1c942b 185 return -1;
3b46e624 186
7c9d8e07
FB
187 /* XXX: check this */
188 if (s->rxcr & 0x10) {
189 /* promiscuous: receive all */
190 } else {
191 if (!memcmp(buf, broadcast_macaddr, 6)) {
192 /* broadcast address */
193 if (!(s->rxcr & 0x04))
4f1c942b 194 return size;
7c9d8e07
FB
195 } else if (buf[0] & 0x01) {
196 /* multicast */
197 if (!(s->rxcr & 0x08))
4f1c942b 198 return size;
7c9d8e07
FB
199 mcast_idx = compute_mcast_idx(buf);
200 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
4f1c942b 201 return size;
7c9d8e07 202 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
203 s->mem[2] == buf[1] &&
204 s->mem[4] == buf[2] &&
205 s->mem[6] == buf[3] &&
206 s->mem[8] == buf[4] &&
7c9d8e07
FB
207 s->mem[10] == buf[5]) {
208 /* match */
209 } else {
4f1c942b 210 return size;
7c9d8e07
FB
211 }
212 }
213
214
b41a2cd1
FB
215 /* if too small buffer, then expand it */
216 if (size < MIN_BUF_SIZE) {
217 memcpy(buf1, buf, size);
218 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
219 buf = buf1;
220 size = MIN_BUF_SIZE;
221 }
222
80cabfad 223 index = s->curpag << 8;
9bbdbc66
PP
224 if (index >= NE2000_PMEM_END) {
225 index = s->start;
226 }
80cabfad
FB
227 /* 4 bytes for header */
228 total_len = size + 4;
229 /* address for next packet (4 bytes for CRC) */
230 next = index + ((total_len + 4 + 255) & ~0xff);
231 if (next >= s->stop)
232 next -= (s->stop - s->start);
233 /* prepare packet header */
234 p = s->mem + index;
8d6c7eb8
FB
235 s->rsr = ENRSR_RXOK; /* receive status */
236 /* XXX: check this */
237 if (buf[0] & 0x01)
238 s->rsr |= ENRSR_PHY;
239 p[0] = s->rsr;
80cabfad
FB
240 p[1] = next >> 8;
241 p[2] = total_len;
242 p[3] = total_len >> 8;
243 index += 4;
244
245 /* write packet data */
246 while (size > 0) {
0ae045ae
TS
247 if (index <= s->stop)
248 avail = s->stop - index;
249 else
737d2b3c 250 break;
80cabfad
FB
251 len = size;
252 if (len > avail)
253 len = avail;
254 memcpy(s->mem + index, buf, len);
255 buf += len;
256 index += len;
257 if (index == s->stop)
258 index = s->start;
259 size -= len;
260 }
261 s->curpag = next >> 8;
8d6c7eb8 262
9f083493 263 /* now we can signal we have received something */
80cabfad
FB
264 s->isr |= ENISR_RX;
265 ne2000_update_irq(s);
4f1c942b
MM
266
267 return size_;
80cabfad
FB
268}
269
1ec4e1dd 270static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 271{
b41a2cd1 272 NE2000State *s = opaque;
40545f84 273 int offset, page, index;
80cabfad
FB
274
275 addr &= 0xf;
276#ifdef DEBUG_NE2000
277 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
278#endif
279 if (addr == E8390_CMD) {
280 /* control register */
281 s->cmd = val;
a343df16 282 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 283 s->isr &= ~ENISR_RESET;
e91c8a77 284 /* test specific case: zero length transfer */
80cabfad
FB
285 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
286 s->rcnt == 0) {
287 s->isr |= ENISR_RDC;
288 ne2000_update_irq(s);
289 }
290 if (val & E8390_TRANS) {
40545f84 291 index = (s->tpsr << 8);
5fafdf24 292 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
293 if (index >= NE2000_PMEM_END)
294 index -= NE2000_PMEM_SIZE;
295 /* fail safe: check range on the transmitted length */
296 if (index + s->tcnt <= NE2000_PMEM_END) {
b356f76d
JW
297 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
298 s->tcnt);
40545f84 299 }
e91c8a77 300 /* signal end of transfer */
80cabfad
FB
301 s->tsr = ENTSR_PTX;
302 s->isr |= ENISR_TX;
5fafdf24 303 s->cmd &= ~E8390_TRANS;
80cabfad
FB
304 ne2000_update_irq(s);
305 }
306 }
307 } else {
308 page = s->cmd >> 6;
309 offset = addr | (page << 4);
310 switch(offset) {
311 case EN0_STARTPG:
9bbdbc66
PP
312 if (val << 8 <= NE2000_PMEM_END) {
313 s->start = val << 8;
314 }
80cabfad
FB
315 break;
316 case EN0_STOPPG:
9bbdbc66
PP
317 if (val << 8 <= NE2000_PMEM_END) {
318 s->stop = val << 8;
319 }
80cabfad
FB
320 break;
321 case EN0_BOUNDARY:
9bbdbc66
PP
322 if (val << 8 < NE2000_PMEM_END) {
323 s->boundary = val;
324 }
80cabfad
FB
325 break;
326 case EN0_IMR:
327 s->imr = val;
328 ne2000_update_irq(s);
329 break;
330 case EN0_TPSR:
331 s->tpsr = val;
332 break;
333 case EN0_TCNTLO:
334 s->tcnt = (s->tcnt & 0xff00) | val;
335 break;
336 case EN0_TCNTHI:
337 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
338 break;
339 case EN0_RSARLO:
340 s->rsar = (s->rsar & 0xff00) | val;
341 break;
342 case EN0_RSARHI:
343 s->rsar = (s->rsar & 0x00ff) | (val << 8);
344 break;
345 case EN0_RCNTLO:
346 s->rcnt = (s->rcnt & 0xff00) | val;
347 break;
348 case EN0_RCNTHI:
349 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
350 break;
7c9d8e07
FB
351 case EN0_RXCR:
352 s->rxcr = val;
353 break;
80cabfad
FB
354 case EN0_DCFG:
355 s->dcfg = val;
356 break;
357 case EN0_ISR:
ee9dbb29 358 s->isr &= ~(val & 0x7f);
80cabfad
FB
359 ne2000_update_irq(s);
360 break;
361 case EN1_PHYS ... EN1_PHYS + 5:
362 s->phys[offset - EN1_PHYS] = val;
363 break;
364 case EN1_CURPAG:
9bbdbc66
PP
365 if (val << 8 < NE2000_PMEM_END) {
366 s->curpag = val;
367 }
80cabfad
FB
368 break;
369 case EN1_MULT ... EN1_MULT + 7:
370 s->mult[offset - EN1_MULT] = val;
371 break;
372 }
373 }
374}
375
1ec4e1dd 376static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 377{
b41a2cd1 378 NE2000State *s = opaque;
80cabfad
FB
379 int offset, page, ret;
380
381 addr &= 0xf;
382 if (addr == E8390_CMD) {
383 ret = s->cmd;
384 } else {
385 page = s->cmd >> 6;
386 offset = addr | (page << 4);
387 switch(offset) {
388 case EN0_TSR:
389 ret = s->tsr;
390 break;
391 case EN0_BOUNDARY:
392 ret = s->boundary;
393 break;
394 case EN0_ISR:
395 ret = s->isr;
396 break;
ee9dbb29
FB
397 case EN0_RSARLO:
398 ret = s->rsar & 0x00ff;
399 break;
400 case EN0_RSARHI:
401 ret = s->rsar >> 8;
402 break;
80cabfad
FB
403 case EN1_PHYS ... EN1_PHYS + 5:
404 ret = s->phys[offset - EN1_PHYS];
405 break;
406 case EN1_CURPAG:
407 ret = s->curpag;
408 break;
409 case EN1_MULT ... EN1_MULT + 7:
410 ret = s->mult[offset - EN1_MULT];
411 break;
8d6c7eb8
FB
412 case EN0_RSR:
413 ret = s->rsr;
414 break;
a343df16
FB
415 case EN2_STARTPG:
416 ret = s->start >> 8;
417 break;
418 case EN2_STOPPG:
419 ret = s->stop >> 8;
420 break;
089af991
FB
421 case EN0_RTL8029ID0:
422 ret = 0x50;
423 break;
424 case EN0_RTL8029ID1:
425 ret = 0x43;
426 break;
427 case EN3_CONFIG0:
428 ret = 0; /* 10baseT media */
429 break;
430 case EN3_CONFIG2:
431 ret = 0x40; /* 10baseT active */
432 break;
433 case EN3_CONFIG3:
434 ret = 0x40; /* Full duplex */
435 break;
80cabfad
FB
436 default:
437 ret = 0x00;
438 break;
439 }
440 }
441#ifdef DEBUG_NE2000
442 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
443#endif
444 return ret;
445}
446
5fafdf24 447static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 448 uint32_t val)
ee9dbb29 449{
5fafdf24 450 if (addr < 32 ||
ee9dbb29
FB
451 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
452 s->mem[addr] = val;
453 }
454}
455
5fafdf24 456static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
457 uint32_t val)
458{
459 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 460 if (addr < 32 ||
ee9dbb29 461 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
462 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
463 }
464}
465
5fafdf24 466static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
467 uint32_t val)
468{
57ccbabe 469 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
470 if (addr < 32
471 || (addr >= NE2000_PMEM_START
472 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
6e931878 473 stl_le_p(s->mem + addr, val);
ee9dbb29
FB
474 }
475}
476
477static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
478{
5fafdf24 479 if (addr < 32 ||
ee9dbb29
FB
480 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
481 return s->mem[addr];
482 } else {
483 return 0xff;
484 }
485}
486
487static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
488{
489 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 490 if (addr < 32 ||
ee9dbb29 491 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 492 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
493 } else {
494 return 0xffff;
495 }
496}
497
69b91039
FB
498static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
499{
57ccbabe 500 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
501 if (addr < 32
502 || (addr >= NE2000_PMEM_START
503 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
f567656a 504 return ldl_le_p(s->mem + addr);
69b91039
FB
505 } else {
506 return 0xffffffff;
507 }
508}
509
3df3f6fd
FB
510static inline void ne2000_dma_update(NE2000State *s, int len)
511{
512 s->rsar += len;
513 /* wrap */
514 /* XXX: check what to do if rsar > stop */
515 if (s->rsar == s->stop)
516 s->rsar = s->start;
517
518 if (s->rcnt <= len) {
519 s->rcnt = 0;
e91c8a77 520 /* signal end of transfer */
3df3f6fd
FB
521 s->isr |= ENISR_RDC;
522 ne2000_update_irq(s);
523 } else {
524 s->rcnt -= len;
525 }
526}
527
1ec4e1dd 528static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 529{
b41a2cd1 530 NE2000State *s = opaque;
80cabfad
FB
531
532#ifdef DEBUG_NE2000
533 printf("NE2000: asic write val=0x%04x\n", val);
534#endif
ee9dbb29 535 if (s->rcnt == 0)
3df3f6fd 536 return;
80cabfad
FB
537 if (s->dcfg & 0x01) {
538 /* 16 bit access */
ee9dbb29 539 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 540 ne2000_dma_update(s, 2);
80cabfad
FB
541 } else {
542 /* 8 bit access */
ee9dbb29 543 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 544 ne2000_dma_update(s, 1);
80cabfad
FB
545 }
546}
547
1ec4e1dd 548static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 549{
b41a2cd1 550 NE2000State *s = opaque;
80cabfad
FB
551 int ret;
552
80cabfad
FB
553 if (s->dcfg & 0x01) {
554 /* 16 bit access */
ee9dbb29 555 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 556 ne2000_dma_update(s, 2);
80cabfad
FB
557 } else {
558 /* 8 bit access */
ee9dbb29 559 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 560 ne2000_dma_update(s, 1);
80cabfad
FB
561 }
562#ifdef DEBUG_NE2000
563 printf("NE2000: asic read val=0x%04x\n", ret);
564#endif
565 return ret;
566}
567
69b91039
FB
568static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
569{
570 NE2000State *s = opaque;
571
572#ifdef DEBUG_NE2000
573 printf("NE2000: asic writel val=0x%04x\n", val);
574#endif
575 if (s->rcnt == 0)
3df3f6fd 576 return;
69b91039
FB
577 /* 32 bit access */
578 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 579 ne2000_dma_update(s, 4);
69b91039
FB
580}
581
582static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
583{
584 NE2000State *s = opaque;
585 int ret;
586
587 /* 32 bit access */
588 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 589 ne2000_dma_update(s, 4);
69b91039
FB
590#ifdef DEBUG_NE2000
591 printf("NE2000: asic readl val=0x%04x\n", ret);
592#endif
593 return ret;
594}
595
1ec4e1dd 596static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
597{
598 /* nothing to do (end of reset pulse) */
599}
600
1ec4e1dd 601static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 602{
b41a2cd1 603 NE2000State *s = opaque;
80cabfad
FB
604 ne2000_reset(s);
605 return 0;
606}
607
7c131dd5 608static int ne2000_post_load(void* opaque, int version_id)
30ca2aab 609{
7c131dd5 610 NE2000State* s = opaque;
a60380a5 611
7c131dd5
JQ
612 if (version_id < 2) {
613 s->rxcr = 0x0c;
614 }
615 return 0;
a60380a5
JQ
616}
617
7c131dd5
JQ
618const VMStateDescription vmstate_ne2000 = {
619 .name = "ne2000",
620 .version_id = 2,
621 .minimum_version_id = 0,
7c131dd5 622 .post_load = ne2000_post_load,
d49805ae 623 .fields = (VMStateField[]) {
7c131dd5
JQ
624 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
625 VMSTATE_UINT8(cmd, NE2000State),
626 VMSTATE_UINT32(start, NE2000State),
627 VMSTATE_UINT32(stop, NE2000State),
628 VMSTATE_UINT8(boundary, NE2000State),
629 VMSTATE_UINT8(tsr, NE2000State),
630 VMSTATE_UINT8(tpsr, NE2000State),
631 VMSTATE_UINT16(tcnt, NE2000State),
632 VMSTATE_UINT16(rcnt, NE2000State),
633 VMSTATE_UINT32(rsar, NE2000State),
634 VMSTATE_UINT8(rsr, NE2000State),
635 VMSTATE_UINT8(isr, NE2000State),
636 VMSTATE_UINT8(dcfg, NE2000State),
637 VMSTATE_UINT8(imr, NE2000State),
638 VMSTATE_BUFFER(phys, NE2000State),
639 VMSTATE_UINT8(curpag, NE2000State),
640 VMSTATE_BUFFER(mult, NE2000State),
641 VMSTATE_UNUSED(4), /* was irq */
642 VMSTATE_BUFFER(mem, NE2000State),
643 VMSTATE_END_OF_LIST()
644 }
645};
a60380a5 646
d05ac8fa 647static const VMStateDescription vmstate_pci_ne2000 = {
7c131dd5
JQ
648 .name = "ne2000",
649 .version_id = 3,
650 .minimum_version_id = 3,
d49805ae 651 .fields = (VMStateField[]) {
7c131dd5
JQ
652 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
653 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
654 VMSTATE_END_OF_LIST()
655 }
656};
a60380a5 657
a8170e5e 658static uint64_t ne2000_read(void *opaque, hwaddr addr,
1ec4e1dd
AK
659 unsigned size)
660{
661 NE2000State *s = opaque;
69b91039 662
1ec4e1dd
AK
663 if (addr < 0x10 && size == 1) {
664 return ne2000_ioport_read(s, addr);
665 } else if (addr == 0x10) {
666 if (size <= 2) {
667 return ne2000_asic_ioport_read(s, addr);
668 } else {
669 return ne2000_asic_ioport_readl(s, addr);
670 }
671 } else if (addr == 0x1f && size == 1) {
672 return ne2000_reset_ioport_read(s, addr);
673 }
674 return ((uint64_t)1 << (size * 8)) - 1;
675}
676
a8170e5e 677static void ne2000_write(void *opaque, hwaddr addr,
1ec4e1dd 678 uint64_t data, unsigned size)
69b91039 679{
1ec4e1dd
AK
680 NE2000State *s = opaque;
681
682 if (addr < 0x10 && size == 1) {
0ed8b6f6 683 ne2000_ioport_write(s, addr, data);
1ec4e1dd
AK
684 } else if (addr == 0x10) {
685 if (size <= 2) {
0ed8b6f6 686 ne2000_asic_ioport_write(s, addr, data);
1ec4e1dd 687 } else {
0ed8b6f6 688 ne2000_asic_ioport_writel(s, addr, data);
1ec4e1dd
AK
689 }
690 } else if (addr == 0x1f && size == 1) {
0ed8b6f6 691 ne2000_reset_ioport_write(s, addr, data);
1ec4e1dd
AK
692 }
693}
69b91039 694
1ec4e1dd
AK
695static const MemoryRegionOps ne2000_ops = {
696 .read = ne2000_read,
697 .write = ne2000_write,
45d883dc 698 .endianness = DEVICE_LITTLE_ENDIAN,
1ec4e1dd 699};
69b91039 700
1ec4e1dd
AK
701/***********************************************************/
702/* PCI NE2000 definitions */
69b91039 703
dcb117bf 704void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
1ec4e1dd 705{
dcb117bf 706 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
69b91039
FB
707}
708
1c2045b5 709static NetClientInfo net_ne2000_info = {
2be64a68 710 .type = NET_CLIENT_OPTIONS_KIND_NIC,
1c2045b5 711 .size = sizeof(NICState),
1c2045b5 712 .receive = ne2000_receive,
1c2045b5
MM
713};
714
9af21dbe 715static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
69b91039 716{
377a7f06 717 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
69b91039
FB
718 NE2000State *s;
719 uint8_t *pci_conf;
3b46e624 720
69b91039 721 pci_conf = d->dev.config;
817e0b6f 722 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3b46e624 723
69b91039 724 s = &d->ne2000;
dcb117bf 725 ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
e824b2cc 726 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
9e64f8a3 727 s->irq = pci_allocate_irq(&d->dev);
a783cc3e
GH
728
729 qemu_macaddr_default_if_unset(&s->c.macaddr);
69b91039 730 ne2000_reset(s);
1c2045b5
MM
731
732 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
f79f2bfc 733 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
b356f76d 734 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
9d07d757 735}
72da4208 736
f90c2bcd 737static void pci_ne2000_exit(PCIDevice *pci_dev)
a783cc3e
GH
738{
739 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
740 NE2000State *s = &d->ne2000;
741
948ecf21 742 qemu_del_nic(s->nic);
9e64f8a3 743 qemu_free_irq(s->irq);
a783cc3e
GH
744}
745
6cb0851d
GA
746static void ne2000_instance_init(Object *obj)
747{
748 PCIDevice *pci_dev = PCI_DEVICE(obj);
749 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
750 NE2000State *s = &d->ne2000;
751
752 device_add_bootindex_property(obj, &s->c.bootindex,
753 "bootindex", "/ethernet-phy@0",
754 &pci_dev->qdev, NULL);
755}
756
40021f08
AL
757static Property ne2000_properties[] = {
758 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
759 DEFINE_PROP_END_OF_LIST(),
760};
761
762static void ne2000_class_init(ObjectClass *klass, void *data)
763{
39bffca2 764 DeviceClass *dc = DEVICE_CLASS(klass);
40021f08
AL
765 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
766
9af21dbe 767 k->realize = pci_ne2000_realize;
40021f08 768 k->exit = pci_ne2000_exit;
c45e5b5b 769 k->romfile = "efi-ne2k_pci.rom",
40021f08
AL
770 k->vendor_id = PCI_VENDOR_ID_REALTEK;
771 k->device_id = PCI_DEVICE_ID_REALTEK_8029;
772 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
39bffca2
AL
773 dc->vmsd = &vmstate_pci_ne2000;
774 dc->props = ne2000_properties;
125ee0ed 775 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
40021f08
AL
776}
777
8c43a6f0 778static const TypeInfo ne2000_info = {
39bffca2
AL
779 .name = "ne2k_pci",
780 .parent = TYPE_PCI_DEVICE,
781 .instance_size = sizeof(PCINE2000State),
782 .class_init = ne2000_class_init,
6cb0851d 783 .instance_init = ne2000_instance_init,
0aab0d3a
GH
784};
785
83f7d43a 786static void ne2000_register_types(void)
9d07d757 787{
39bffca2 788 type_register_static(&ne2000_info);
69b91039 789}
9d07d757 790
83f7d43a 791type_init(ne2000_register_types)
This page took 0.923763 seconds and 4 git commands to generate.