]> Git Repo - qemu.git/blame - hw/net/ne2000.c
hw/net/ne2000: Add trace events
[qemu.git] / hw / net / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
e8d40465 24#include "qemu/osdep.h"
83c9f4ca 25#include "hw/pci/pci.h"
084e2b11 26#include "net/eth.h"
47b43a1f 27#include "ne2000.h"
9c17d615 28#include "sysemu/sysemu.h"
cd4479a9 29#include "trace.h"
80cabfad
FB
30
31/* debug NE2000 card */
32//#define DEBUG_NE2000
33
b41a2cd1 34#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
35
36#define E8390_CMD 0x00 /* The command register (for all pages) */
37/* Page 0 register offsets. */
38#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43#define EN0_TSR 0x04 /* Transmit status reg RD */
44#define EN0_TPSR 0x04 /* Transmit starting page WR */
45#define EN0_NCR 0x05 /* Number of collision reg RD */
46#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47#define EN0_FIFO 0x06 /* FIFO RD */
48#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 55#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 56#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 57#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
58#define EN0_RSR 0x0c /* rx status reg RD */
59#define EN0_RXCR 0x0c /* RX configuration reg WR */
60#define EN0_TXCR 0x0d /* TX configuration reg WR */
61#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62#define EN0_DCFG 0x0e /* Data configuration reg WR */
63#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64#define EN0_IMR 0x0f /* Interrupt mask reg WR */
65#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
66
67#define EN1_PHYS 0x11
68#define EN1_CURPAG 0x17
69#define EN1_MULT 0x18
70
a343df16
FB
71#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
73
089af991
FB
74#define EN3_CONFIG0 0x33
75#define EN3_CONFIG1 0x34
76#define EN3_CONFIG2 0x35
77#define EN3_CONFIG3 0x36
78
80cabfad
FB
79/* Register accessed at EN_CMD, the 8390 base addr. */
80#define E8390_STOP 0x01 /* Stop and reset the chip */
81#define E8390_START 0x02 /* Start the chip, clear reset */
82#define E8390_TRANS 0x04 /* Transmit a frame */
83#define E8390_RREAD 0x08 /* Remote read */
84#define E8390_RWRITE 0x10 /* Remote write */
85#define E8390_NODMA 0x20 /* Remote DMA */
86#define E8390_PAGE0 0x00 /* Select page chip registers */
87#define E8390_PAGE1 0x40 /* using the two high-order bits */
88#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
89
90/* Bits in EN0_ISR - Interrupt status register */
91#define ENISR_RX 0x01 /* Receiver, no error */
92#define ENISR_TX 0x02 /* Transmitter, no error */
93#define ENISR_RX_ERR 0x04 /* Receiver, with error */
94#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96#define ENISR_COUNTERS 0x20 /* Counters need emptying */
97#define ENISR_RDC 0x40 /* remote dma complete */
98#define ENISR_RESET 0x80 /* Reset completed */
99#define ENISR_ALL 0x3f /* Interrupts we will enable */
100
101/* Bits in received packet status byte and EN0_RSR*/
102#define ENRSR_RXOK 0x01 /* Received a good packet */
103#define ENRSR_CRC 0x02 /* CRC error */
104#define ENRSR_FAE 0x04 /* frame alignment error */
105#define ENRSR_FO 0x08 /* FIFO overrun */
106#define ENRSR_MPA 0x10 /* missed pkt */
107#define ENRSR_PHY 0x20 /* physical/multicast address */
108#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109#define ENRSR_DEF 0x80 /* deferring */
110
111/* Transmitted packet status, EN0_TSR. */
112#define ENTSR_PTX 0x01 /* Packet transmitted without error */
113#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114#define ENTSR_COL 0x04 /* The transmit collided at least once. */
115#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
120
2b7a050a
JQ
121typedef struct PCINE2000State {
122 PCIDevice dev;
123 NE2000State ne2000;
124} PCINE2000State;
125
9453c5bc 126void ne2000_reset(NE2000State *s)
80cabfad
FB
127{
128 int i;
129
130 s->isr = ENISR_RESET;
93db6685 131 memcpy(s->mem, &s->c.macaddr, 6);
80cabfad
FB
132 s->mem[14] = 0x57;
133 s->mem[15] = 0x57;
134
135 /* duplicate prom data */
136 for(i = 15;i >= 0; i--) {
137 s->mem[2 * i] = s->mem[i];
138 s->mem[2 * i + 1] = s->mem[i];
139 }
140}
141
142static void ne2000_update_irq(NE2000State *s)
143{
144 int isr;
a343df16 145 isr = (s->isr & s->imr) & 0x7f;
a541f297 146#if defined(DEBUG_NE2000)
d537cf6c
PB
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr ? 1 : 0, s->isr, s->imr);
a541f297 149#endif
d537cf6c 150 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
151}
152
d861b05e 153static int ne2000_buffer_full(NE2000State *s)
80cabfad 154{
80cabfad 155 int avail, index, boundary;
d861b05e 156
415ab35a
PP
157 if (s->stop <= s->start) {
158 return 1;
159 }
160
80cabfad
FB
161 index = s->curpag << 8;
162 boundary = s->boundary << 8;
28c1c656 163 if (index < boundary)
80cabfad
FB
164 avail = boundary - index;
165 else
166 avail = (s->stop - s->start) - (index - boundary);
167 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
168 return 1;
169 return 0;
170}
171
b41a2cd1
FB
172#define MIN_BUF_SIZE 60
173
4e68f7a0 174ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
80cabfad 175{
cc1f0f45 176 NE2000State *s = qemu_get_nic_opaque(nc);
4f1c942b 177 int size = size_;
80cabfad 178 uint8_t *p;
0ae045ae 179 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 180 uint8_t buf1[60];
5fafdf24 181 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 182 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 183
80cabfad
FB
184#if defined(DEBUG_NE2000)
185 printf("NE2000: received len=%d\n", size);
186#endif
187
d861b05e 188 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
4f1c942b 189 return -1;
3b46e624 190
7c9d8e07
FB
191 /* XXX: check this */
192 if (s->rxcr & 0x10) {
193 /* promiscuous: receive all */
194 } else {
195 if (!memcmp(buf, broadcast_macaddr, 6)) {
196 /* broadcast address */
197 if (!(s->rxcr & 0x04))
4f1c942b 198 return size;
7c9d8e07
FB
199 } else if (buf[0] & 0x01) {
200 /* multicast */
201 if (!(s->rxcr & 0x08))
4f1c942b 202 return size;
084e2b11 203 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
7c9d8e07 204 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
4f1c942b 205 return size;
7c9d8e07 206 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
207 s->mem[2] == buf[1] &&
208 s->mem[4] == buf[2] &&
209 s->mem[6] == buf[3] &&
210 s->mem[8] == buf[4] &&
7c9d8e07
FB
211 s->mem[10] == buf[5]) {
212 /* match */
213 } else {
4f1c942b 214 return size;
7c9d8e07
FB
215 }
216 }
217
218
b41a2cd1
FB
219 /* if too small buffer, then expand it */
220 if (size < MIN_BUF_SIZE) {
221 memcpy(buf1, buf, size);
222 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
223 buf = buf1;
224 size = MIN_BUF_SIZE;
225 }
226
80cabfad 227 index = s->curpag << 8;
9bbdbc66
PP
228 if (index >= NE2000_PMEM_END) {
229 index = s->start;
230 }
80cabfad
FB
231 /* 4 bytes for header */
232 total_len = size + 4;
233 /* address for next packet (4 bytes for CRC) */
234 next = index + ((total_len + 4 + 255) & ~0xff);
235 if (next >= s->stop)
236 next -= (s->stop - s->start);
237 /* prepare packet header */
238 p = s->mem + index;
8d6c7eb8
FB
239 s->rsr = ENRSR_RXOK; /* receive status */
240 /* XXX: check this */
241 if (buf[0] & 0x01)
242 s->rsr |= ENRSR_PHY;
243 p[0] = s->rsr;
80cabfad
FB
244 p[1] = next >> 8;
245 p[2] = total_len;
246 p[3] = total_len >> 8;
247 index += 4;
248
249 /* write packet data */
250 while (size > 0) {
0ae045ae
TS
251 if (index <= s->stop)
252 avail = s->stop - index;
253 else
737d2b3c 254 break;
80cabfad
FB
255 len = size;
256 if (len > avail)
257 len = avail;
258 memcpy(s->mem + index, buf, len);
259 buf += len;
260 index += len;
261 if (index == s->stop)
262 index = s->start;
263 size -= len;
264 }
265 s->curpag = next >> 8;
8d6c7eb8 266
9f083493 267 /* now we can signal we have received something */
80cabfad
FB
268 s->isr |= ENISR_RX;
269 ne2000_update_irq(s);
4f1c942b
MM
270
271 return size_;
80cabfad
FB
272}
273
1ec4e1dd 274static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 275{
b41a2cd1 276 NE2000State *s = opaque;
40545f84 277 int offset, page, index;
80cabfad
FB
278
279 addr &= 0xf;
280#ifdef DEBUG_NE2000
281 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
282#endif
283 if (addr == E8390_CMD) {
284 /* control register */
285 s->cmd = val;
a343df16 286 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 287 s->isr &= ~ENISR_RESET;
e91c8a77 288 /* test specific case: zero length transfer */
80cabfad
FB
289 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
290 s->rcnt == 0) {
291 s->isr |= ENISR_RDC;
292 ne2000_update_irq(s);
293 }
294 if (val & E8390_TRANS) {
40545f84 295 index = (s->tpsr << 8);
5fafdf24 296 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
297 if (index >= NE2000_PMEM_END)
298 index -= NE2000_PMEM_SIZE;
299 /* fail safe: check range on the transmitted length */
300 if (index + s->tcnt <= NE2000_PMEM_END) {
b356f76d
JW
301 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
302 s->tcnt);
40545f84 303 }
e91c8a77 304 /* signal end of transfer */
80cabfad
FB
305 s->tsr = ENTSR_PTX;
306 s->isr |= ENISR_TX;
5fafdf24 307 s->cmd &= ~E8390_TRANS;
80cabfad
FB
308 ne2000_update_irq(s);
309 }
310 }
311 } else {
312 page = s->cmd >> 6;
313 offset = addr | (page << 4);
314 switch(offset) {
315 case EN0_STARTPG:
9bbdbc66
PP
316 if (val << 8 <= NE2000_PMEM_END) {
317 s->start = val << 8;
318 }
80cabfad
FB
319 break;
320 case EN0_STOPPG:
9bbdbc66
PP
321 if (val << 8 <= NE2000_PMEM_END) {
322 s->stop = val << 8;
323 }
80cabfad
FB
324 break;
325 case EN0_BOUNDARY:
9bbdbc66
PP
326 if (val << 8 < NE2000_PMEM_END) {
327 s->boundary = val;
328 }
80cabfad
FB
329 break;
330 case EN0_IMR:
331 s->imr = val;
332 ne2000_update_irq(s);
333 break;
334 case EN0_TPSR:
335 s->tpsr = val;
336 break;
337 case EN0_TCNTLO:
338 s->tcnt = (s->tcnt & 0xff00) | val;
339 break;
340 case EN0_TCNTHI:
341 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
342 break;
343 case EN0_RSARLO:
344 s->rsar = (s->rsar & 0xff00) | val;
345 break;
346 case EN0_RSARHI:
347 s->rsar = (s->rsar & 0x00ff) | (val << 8);
348 break;
349 case EN0_RCNTLO:
350 s->rcnt = (s->rcnt & 0xff00) | val;
351 break;
352 case EN0_RCNTHI:
353 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
354 break;
7c9d8e07
FB
355 case EN0_RXCR:
356 s->rxcr = val;
357 break;
80cabfad
FB
358 case EN0_DCFG:
359 s->dcfg = val;
360 break;
361 case EN0_ISR:
ee9dbb29 362 s->isr &= ~(val & 0x7f);
80cabfad
FB
363 ne2000_update_irq(s);
364 break;
365 case EN1_PHYS ... EN1_PHYS + 5:
366 s->phys[offset - EN1_PHYS] = val;
367 break;
368 case EN1_CURPAG:
9bbdbc66
PP
369 if (val << 8 < NE2000_PMEM_END) {
370 s->curpag = val;
371 }
80cabfad
FB
372 break;
373 case EN1_MULT ... EN1_MULT + 7:
374 s->mult[offset - EN1_MULT] = val;
375 break;
376 }
377 }
378}
379
1ec4e1dd 380static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 381{
b41a2cd1 382 NE2000State *s = opaque;
80cabfad
FB
383 int offset, page, ret;
384
385 addr &= 0xf;
386 if (addr == E8390_CMD) {
387 ret = s->cmd;
388 } else {
389 page = s->cmd >> 6;
390 offset = addr | (page << 4);
391 switch(offset) {
392 case EN0_TSR:
393 ret = s->tsr;
394 break;
395 case EN0_BOUNDARY:
396 ret = s->boundary;
397 break;
398 case EN0_ISR:
399 ret = s->isr;
400 break;
ee9dbb29
FB
401 case EN0_RSARLO:
402 ret = s->rsar & 0x00ff;
403 break;
404 case EN0_RSARHI:
405 ret = s->rsar >> 8;
406 break;
80cabfad
FB
407 case EN1_PHYS ... EN1_PHYS + 5:
408 ret = s->phys[offset - EN1_PHYS];
409 break;
410 case EN1_CURPAG:
411 ret = s->curpag;
412 break;
413 case EN1_MULT ... EN1_MULT + 7:
414 ret = s->mult[offset - EN1_MULT];
415 break;
8d6c7eb8
FB
416 case EN0_RSR:
417 ret = s->rsr;
418 break;
a343df16
FB
419 case EN2_STARTPG:
420 ret = s->start >> 8;
421 break;
422 case EN2_STOPPG:
423 ret = s->stop >> 8;
424 break;
089af991
FB
425 case EN0_RTL8029ID0:
426 ret = 0x50;
427 break;
428 case EN0_RTL8029ID1:
429 ret = 0x43;
430 break;
431 case EN3_CONFIG0:
432 ret = 0; /* 10baseT media */
433 break;
434 case EN3_CONFIG2:
435 ret = 0x40; /* 10baseT active */
436 break;
437 case EN3_CONFIG3:
438 ret = 0x40; /* Full duplex */
439 break;
80cabfad
FB
440 default:
441 ret = 0x00;
442 break;
443 }
444 }
445#ifdef DEBUG_NE2000
446 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
447#endif
448 return ret;
449}
450
5fafdf24 451static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 452 uint32_t val)
ee9dbb29 453{
5fafdf24 454 if (addr < 32 ||
ee9dbb29
FB
455 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
456 s->mem[addr] = val;
457 }
458}
459
5fafdf24 460static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
461 uint32_t val)
462{
463 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 464 if (addr < 32 ||
ee9dbb29 465 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
466 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
467 }
468}
469
5fafdf24 470static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
471 uint32_t val)
472{
57ccbabe 473 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
474 if (addr < 32
475 || (addr >= NE2000_PMEM_START
476 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
6e931878 477 stl_le_p(s->mem + addr, val);
ee9dbb29
FB
478 }
479}
480
481static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
482{
5fafdf24 483 if (addr < 32 ||
ee9dbb29
FB
484 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
485 return s->mem[addr];
486 } else {
487 return 0xff;
488 }
489}
490
491static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
492{
493 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 494 if (addr < 32 ||
ee9dbb29 495 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 496 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
497 } else {
498 return 0xffff;
499 }
500}
501
69b91039
FB
502static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
503{
57ccbabe 504 addr &= ~1; /* XXX: check exact behaviour if not even */
aa7f9966
PP
505 if (addr < 32
506 || (addr >= NE2000_PMEM_START
507 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
f567656a 508 return ldl_le_p(s->mem + addr);
69b91039
FB
509 } else {
510 return 0xffffffff;
511 }
512}
513
3df3f6fd
FB
514static inline void ne2000_dma_update(NE2000State *s, int len)
515{
516 s->rsar += len;
517 /* wrap */
518 /* XXX: check what to do if rsar > stop */
519 if (s->rsar == s->stop)
520 s->rsar = s->start;
521
522 if (s->rcnt <= len) {
523 s->rcnt = 0;
e91c8a77 524 /* signal end of transfer */
3df3f6fd
FB
525 s->isr |= ENISR_RDC;
526 ne2000_update_irq(s);
527 } else {
528 s->rcnt -= len;
529 }
530}
531
1ec4e1dd 532static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 533{
b41a2cd1 534 NE2000State *s = opaque;
80cabfad
FB
535
536#ifdef DEBUG_NE2000
537 printf("NE2000: asic write val=0x%04x\n", val);
538#endif
ee9dbb29 539 if (s->rcnt == 0)
3df3f6fd 540 return;
80cabfad
FB
541 if (s->dcfg & 0x01) {
542 /* 16 bit access */
ee9dbb29 543 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 544 ne2000_dma_update(s, 2);
80cabfad
FB
545 } else {
546 /* 8 bit access */
ee9dbb29 547 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 548 ne2000_dma_update(s, 1);
80cabfad
FB
549 }
550}
551
1ec4e1dd 552static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 553{
b41a2cd1 554 NE2000State *s = opaque;
80cabfad
FB
555 int ret;
556
80cabfad
FB
557 if (s->dcfg & 0x01) {
558 /* 16 bit access */
ee9dbb29 559 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 560 ne2000_dma_update(s, 2);
80cabfad
FB
561 } else {
562 /* 8 bit access */
ee9dbb29 563 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 564 ne2000_dma_update(s, 1);
80cabfad
FB
565 }
566#ifdef DEBUG_NE2000
567 printf("NE2000: asic read val=0x%04x\n", ret);
568#endif
569 return ret;
570}
571
69b91039
FB
572static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
573{
574 NE2000State *s = opaque;
575
576#ifdef DEBUG_NE2000
577 printf("NE2000: asic writel val=0x%04x\n", val);
578#endif
579 if (s->rcnt == 0)
3df3f6fd 580 return;
69b91039
FB
581 /* 32 bit access */
582 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 583 ne2000_dma_update(s, 4);
69b91039
FB
584}
585
586static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
587{
588 NE2000State *s = opaque;
589 int ret;
590
591 /* 32 bit access */
592 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 593 ne2000_dma_update(s, 4);
69b91039
FB
594#ifdef DEBUG_NE2000
595 printf("NE2000: asic readl val=0x%04x\n", ret);
596#endif
597 return ret;
598}
599
1ec4e1dd 600static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
601{
602 /* nothing to do (end of reset pulse) */
603}
604
1ec4e1dd 605static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 606{
b41a2cd1 607 NE2000State *s = opaque;
80cabfad
FB
608 ne2000_reset(s);
609 return 0;
610}
611
7c131dd5 612static int ne2000_post_load(void* opaque, int version_id)
30ca2aab 613{
7c131dd5 614 NE2000State* s = opaque;
a60380a5 615
7c131dd5
JQ
616 if (version_id < 2) {
617 s->rxcr = 0x0c;
618 }
619 return 0;
a60380a5
JQ
620}
621
7c131dd5
JQ
622const VMStateDescription vmstate_ne2000 = {
623 .name = "ne2000",
624 .version_id = 2,
625 .minimum_version_id = 0,
7c131dd5 626 .post_load = ne2000_post_load,
d49805ae 627 .fields = (VMStateField[]) {
7c131dd5
JQ
628 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
629 VMSTATE_UINT8(cmd, NE2000State),
630 VMSTATE_UINT32(start, NE2000State),
631 VMSTATE_UINT32(stop, NE2000State),
632 VMSTATE_UINT8(boundary, NE2000State),
633 VMSTATE_UINT8(tsr, NE2000State),
634 VMSTATE_UINT8(tpsr, NE2000State),
635 VMSTATE_UINT16(tcnt, NE2000State),
636 VMSTATE_UINT16(rcnt, NE2000State),
637 VMSTATE_UINT32(rsar, NE2000State),
638 VMSTATE_UINT8(rsr, NE2000State),
639 VMSTATE_UINT8(isr, NE2000State),
640 VMSTATE_UINT8(dcfg, NE2000State),
641 VMSTATE_UINT8(imr, NE2000State),
642 VMSTATE_BUFFER(phys, NE2000State),
643 VMSTATE_UINT8(curpag, NE2000State),
644 VMSTATE_BUFFER(mult, NE2000State),
645 VMSTATE_UNUSED(4), /* was irq */
646 VMSTATE_BUFFER(mem, NE2000State),
647 VMSTATE_END_OF_LIST()
648 }
649};
a60380a5 650
d05ac8fa 651static const VMStateDescription vmstate_pci_ne2000 = {
7c131dd5
JQ
652 .name = "ne2000",
653 .version_id = 3,
654 .minimum_version_id = 3,
d49805ae 655 .fields = (VMStateField[]) {
7c131dd5
JQ
656 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
657 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
658 VMSTATE_END_OF_LIST()
659 }
660};
a60380a5 661
a8170e5e 662static uint64_t ne2000_read(void *opaque, hwaddr addr,
1ec4e1dd
AK
663 unsigned size)
664{
665 NE2000State *s = opaque;
cd4479a9 666 uint64_t val;
69b91039 667
1ec4e1dd 668 if (addr < 0x10 && size == 1) {
cd4479a9 669 val = ne2000_ioport_read(s, addr);
1ec4e1dd
AK
670 } else if (addr == 0x10) {
671 if (size <= 2) {
cd4479a9 672 val = ne2000_asic_ioport_read(s, addr);
1ec4e1dd 673 } else {
cd4479a9 674 val = ne2000_asic_ioport_readl(s, addr);
1ec4e1dd
AK
675 }
676 } else if (addr == 0x1f && size == 1) {
cd4479a9
PMD
677 val = ne2000_reset_ioport_read(s, addr);
678 } else {
679 val = ((uint64_t)1 << (size * 8)) - 1;
1ec4e1dd 680 }
cd4479a9
PMD
681 trace_ne2000_read(addr, val);
682
683 return val;
1ec4e1dd
AK
684}
685
a8170e5e 686static void ne2000_write(void *opaque, hwaddr addr,
1ec4e1dd 687 uint64_t data, unsigned size)
69b91039 688{
1ec4e1dd
AK
689 NE2000State *s = opaque;
690
cd4479a9 691 trace_ne2000_write(addr, data);
1ec4e1dd 692 if (addr < 0x10 && size == 1) {
0ed8b6f6 693 ne2000_ioport_write(s, addr, data);
1ec4e1dd
AK
694 } else if (addr == 0x10) {
695 if (size <= 2) {
0ed8b6f6 696 ne2000_asic_ioport_write(s, addr, data);
1ec4e1dd 697 } else {
0ed8b6f6 698 ne2000_asic_ioport_writel(s, addr, data);
1ec4e1dd
AK
699 }
700 } else if (addr == 0x1f && size == 1) {
0ed8b6f6 701 ne2000_reset_ioport_write(s, addr, data);
1ec4e1dd
AK
702 }
703}
69b91039 704
1ec4e1dd
AK
705static const MemoryRegionOps ne2000_ops = {
706 .read = ne2000_read,
707 .write = ne2000_write,
45d883dc 708 .endianness = DEVICE_LITTLE_ENDIAN,
1ec4e1dd 709};
69b91039 710
1ec4e1dd
AK
711/***********************************************************/
712/* PCI NE2000 definitions */
69b91039 713
dcb117bf 714void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
1ec4e1dd 715{
dcb117bf 716 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
69b91039
FB
717}
718
1c2045b5 719static NetClientInfo net_ne2000_info = {
f394b2e2 720 .type = NET_CLIENT_DRIVER_NIC,
1c2045b5 721 .size = sizeof(NICState),
1c2045b5 722 .receive = ne2000_receive,
1c2045b5
MM
723};
724
9af21dbe 725static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
69b91039 726{
377a7f06 727 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
69b91039
FB
728 NE2000State *s;
729 uint8_t *pci_conf;
3b46e624 730
69b91039 731 pci_conf = d->dev.config;
817e0b6f 732 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3b46e624 733
69b91039 734 s = &d->ne2000;
dcb117bf 735 ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
e824b2cc 736 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
9e64f8a3 737 s->irq = pci_allocate_irq(&d->dev);
a783cc3e
GH
738
739 qemu_macaddr_default_if_unset(&s->c.macaddr);
69b91039 740 ne2000_reset(s);
1c2045b5
MM
741
742 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
f79f2bfc 743 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
b356f76d 744 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
9d07d757 745}
72da4208 746
f90c2bcd 747static void pci_ne2000_exit(PCIDevice *pci_dev)
a783cc3e
GH
748{
749 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
750 NE2000State *s = &d->ne2000;
751
948ecf21 752 qemu_del_nic(s->nic);
9e64f8a3 753 qemu_free_irq(s->irq);
a783cc3e
GH
754}
755
6cb0851d
GA
756static void ne2000_instance_init(Object *obj)
757{
758 PCIDevice *pci_dev = PCI_DEVICE(obj);
759 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
760 NE2000State *s = &d->ne2000;
761
762 device_add_bootindex_property(obj, &s->c.bootindex,
763 "bootindex", "/ethernet-phy@0",
764 &pci_dev->qdev, NULL);
765}
766
40021f08
AL
767static Property ne2000_properties[] = {
768 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
769 DEFINE_PROP_END_OF_LIST(),
770};
771
772static void ne2000_class_init(ObjectClass *klass, void *data)
773{
39bffca2 774 DeviceClass *dc = DEVICE_CLASS(klass);
40021f08
AL
775 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
776
9af21dbe 777 k->realize = pci_ne2000_realize;
40021f08 778 k->exit = pci_ne2000_exit;
c45e5b5b 779 k->romfile = "efi-ne2k_pci.rom",
40021f08
AL
780 k->vendor_id = PCI_VENDOR_ID_REALTEK;
781 k->device_id = PCI_DEVICE_ID_REALTEK_8029;
782 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
39bffca2
AL
783 dc->vmsd = &vmstate_pci_ne2000;
784 dc->props = ne2000_properties;
125ee0ed 785 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
40021f08
AL
786}
787
8c43a6f0 788static const TypeInfo ne2000_info = {
39bffca2
AL
789 .name = "ne2k_pci",
790 .parent = TYPE_PCI_DEVICE,
791 .instance_size = sizeof(PCINE2000State),
792 .class_init = ne2000_class_init,
6cb0851d 793 .instance_init = ne2000_instance_init,
fd3b02c8
EH
794 .interfaces = (InterfaceInfo[]) {
795 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
796 { },
797 },
0aab0d3a
GH
798};
799
83f7d43a 800static void ne2000_register_types(void)
9d07d757 801{
39bffca2 802 type_register_static(&ne2000_info);
69b91039 803}
9d07d757 804
83f7d43a 805type_init(ne2000_register_types)
This page took 1.024377 seconds and 4 git commands to generate.