]> Git Repo - qemu.git/blame - linux-user/elfload.c
block: Make bdrv_{copy_on_read,crypto_luks,replication} static
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
461
462#define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
24682654
PM
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
483
484 return hwcaps;
485}
afce2927 486
ad6919dc
PM
487static uint32_t get_elf_hwcap2(void)
488{
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
962fcbf2
RH
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
497 return hwcaps;
498}
499
500#undef GET_FEATURE
962fcbf2 501#undef GET_FEATURE_ID
ad6919dc 502
13ec4ec3
RH
503#define ELF_PLATFORM get_elf_platform()
504
505static const char *get_elf_platform(void)
506{
507 CPUARMState *env = thread_cpu->env_ptr;
508
509#ifdef TARGET_WORDS_BIGENDIAN
510# define END "b"
511#else
512# define END "l"
513#endif
514
515 if (arm_feature(env, ARM_FEATURE_V8)) {
516 return "v8" END;
517 } else if (arm_feature(env, ARM_FEATURE_V7)) {
518 if (arm_feature(env, ARM_FEATURE_M)) {
519 return "v7m" END;
520 } else {
521 return "v7" END;
522 }
523 } else if (arm_feature(env, ARM_FEATURE_V6)) {
524 return "v6" END;
525 } else if (arm_feature(env, ARM_FEATURE_V5)) {
526 return "v5" END;
527 } else {
528 return "v4" END;
529 }
530
531#undef END
532}
533
24e76ff0
PM
534#else
535/* 64 bit ARM definitions */
536#define ELF_START_MMAP 0x80000000
537
b597c3f7 538#define ELF_ARCH EM_AARCH64
24e76ff0 539#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
540#ifdef TARGET_WORDS_BIGENDIAN
541# define ELF_PLATFORM "aarch64_be"
542#else
543# define ELF_PLATFORM "aarch64"
544#endif
24e76ff0
PM
545
546static inline void init_thread(struct target_pt_regs *regs,
547 struct image_info *infop)
548{
549 abi_long stack = infop->start_stack;
550 memset(regs, 0, sizeof(*regs));
551
552 regs->pc = infop->entry & ~0x3ULL;
553 regs->sp = stack;
554}
555
556#define ELF_NREG 34
557typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
558
559static void elf_core_copy_regs(target_elf_gregset_t *regs,
560 const CPUARMState *env)
561{
562 int i;
563
564 for (i = 0; i < 32; i++) {
565 (*regs)[i] = tswapreg(env->xregs[i]);
566 }
567 (*regs)[32] = tswapreg(env->pc);
568 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
569}
570
571#define USE_ELF_CORE_DUMP
572#define ELF_EXEC_PAGESIZE 4096
573
574enum {
575 ARM_HWCAP_A64_FP = 1 << 0,
576 ARM_HWCAP_A64_ASIMD = 1 << 1,
577 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
578 ARM_HWCAP_A64_AES = 1 << 3,
579 ARM_HWCAP_A64_PMULL = 1 << 4,
580 ARM_HWCAP_A64_SHA1 = 1 << 5,
581 ARM_HWCAP_A64_SHA2 = 1 << 6,
582 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
583 ARM_HWCAP_A64_ATOMICS = 1 << 8,
584 ARM_HWCAP_A64_FPHP = 1 << 9,
585 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
586 ARM_HWCAP_A64_CPUID = 1 << 11,
587 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
588 ARM_HWCAP_A64_JSCVT = 1 << 13,
589 ARM_HWCAP_A64_FCMA = 1 << 14,
590 ARM_HWCAP_A64_LRCPC = 1 << 15,
591 ARM_HWCAP_A64_DCPOP = 1 << 16,
592 ARM_HWCAP_A64_SHA3 = 1 << 17,
593 ARM_HWCAP_A64_SM3 = 1 << 18,
594 ARM_HWCAP_A64_SM4 = 1 << 19,
595 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
596 ARM_HWCAP_A64_SHA512 = 1 << 21,
597 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
598 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
599 ARM_HWCAP_A64_DIT = 1 << 24,
600 ARM_HWCAP_A64_USCAT = 1 << 25,
601 ARM_HWCAP_A64_ILRCPC = 1 << 26,
602 ARM_HWCAP_A64_FLAGM = 1 << 27,
603 ARM_HWCAP_A64_SSBS = 1 << 28,
604 ARM_HWCAP_A64_SB = 1 << 29,
605 ARM_HWCAP_A64_PACA = 1 << 30,
606 ARM_HWCAP_A64_PACG = 1UL << 31,
24e76ff0
PM
607};
608
609#define ELF_HWCAP get_elf_hwcap()
610
611static uint32_t get_elf_hwcap(void)
612{
613 ARMCPU *cpu = ARM_CPU(thread_cpu);
614 uint32_t hwcaps = 0;
615
616 hwcaps |= ARM_HWCAP_A64_FP;
617 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 618 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
619
620 /* probe for the extra features */
962fcbf2
RH
621#define GET_FEATURE_ID(feat, hwcap) \
622 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
623
624 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
625 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
626 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
627 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
628 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
629 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
630 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
631 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
632 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 633 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
634 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
635 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
636 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
637 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 638 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 639 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
640 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
641 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 642 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 643 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
962fcbf2 644
962fcbf2 645#undef GET_FEATURE_ID
24e76ff0
PM
646
647 return hwcaps;
648}
649
650#endif /* not TARGET_AARCH64 */
651#endif /* TARGET_ARM */
30ac07d4 652
853d6f7a 653#ifdef TARGET_SPARC
a315a145 654#ifdef TARGET_SPARC64
853d6f7a
FB
655
656#define ELF_START_MMAP 0x80000000
cf973e46
AT
657#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
658 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 659#ifndef TARGET_ABI32
cb33da57 660#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
661#else
662#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
663#endif
853d6f7a 664
a315a145 665#define ELF_CLASS ELFCLASS64
5ef54116
FB
666#define ELF_ARCH EM_SPARCV9
667
d97ef72e 668#define STACK_BIAS 2047
a315a145 669
d97ef72e
RH
670static inline void init_thread(struct target_pt_regs *regs,
671 struct image_info *infop)
a315a145 672{
992f48a0 673#ifndef TARGET_ABI32
a315a145 674 regs->tstate = 0;
992f48a0 675#endif
a315a145
FB
676 regs->pc = infop->entry;
677 regs->npc = regs->pc + 4;
678 regs->y = 0;
992f48a0
BS
679#ifdef TARGET_ABI32
680 regs->u_regs[14] = infop->start_stack - 16 * 4;
681#else
cb33da57
BS
682 if (personality(infop->personality) == PER_LINUX32)
683 regs->u_regs[14] = infop->start_stack - 16 * 4;
684 else
685 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 686#endif
a315a145
FB
687}
688
689#else
690#define ELF_START_MMAP 0x80000000
cf973e46
AT
691#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
692 | HWCAP_SPARC_MULDIV)
a315a145 693
853d6f7a 694#define ELF_CLASS ELFCLASS32
853d6f7a
FB
695#define ELF_ARCH EM_SPARC
696
d97ef72e
RH
697static inline void init_thread(struct target_pt_regs *regs,
698 struct image_info *infop)
853d6f7a 699{
f5155289
FB
700 regs->psr = 0;
701 regs->pc = infop->entry;
702 regs->npc = regs->pc + 4;
703 regs->y = 0;
704 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
705}
706
a315a145 707#endif
853d6f7a
FB
708#endif
709
67867308
FB
710#ifdef TARGET_PPC
711
4ecd4d16 712#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
713#define ELF_START_MMAP 0x80000000
714
e85e7c6e 715#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
716
717#define elf_check_arch(x) ( (x) == EM_PPC64 )
718
d97ef72e 719#define ELF_CLASS ELFCLASS64
84409ddb
JM
720
721#else
722
d97ef72e 723#define ELF_CLASS ELFCLASS32
84409ddb
JM
724
725#endif
726
d97ef72e 727#define ELF_ARCH EM_PPC
67867308 728
df84e4f3
NF
729/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
730 See arch/powerpc/include/asm/cputable.h. */
731enum {
3efa9a67 732 QEMU_PPC_FEATURE_32 = 0x80000000,
733 QEMU_PPC_FEATURE_64 = 0x40000000,
734 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
735 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
736 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
737 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
738 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
739 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
740 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
741 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
742 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
743 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
744 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
745 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
746 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
747 QEMU_PPC_FEATURE_CELL = 0x00010000,
748 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
749 QEMU_PPC_FEATURE_SMT = 0x00004000,
750 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
751 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
752 QEMU_PPC_FEATURE_PA6T = 0x00000800,
753 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
754 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
755 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
756 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
757 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
758
759 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
760 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
761
762 /* Feature definitions in AT_HWCAP2. */
763 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
764 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
765 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
766 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
767 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
768 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
be0c46d4 769 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
df84e4f3
NF
770};
771
772#define ELF_HWCAP get_elf_hwcap()
773
774static uint32_t get_elf_hwcap(void)
775{
a2247f8e 776 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
777 uint32_t features = 0;
778
779 /* We don't have to be terribly complete here; the high points are
780 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 781#define GET_FEATURE(flag, feature) \
a2247f8e 782 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
783#define GET_FEATURE2(flags, feature) \
784 do { \
785 if ((cpu->env.insns_flags2 & flags) == flags) { \
786 features |= feature; \
787 } \
788 } while (0)
3efa9a67 789 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
790 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
791 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
792 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
793 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
794 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
795 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
796 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
797 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
798 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
799 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
800 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
801 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 802#undef GET_FEATURE
0e019746 803#undef GET_FEATURE2
df84e4f3
NF
804
805 return features;
806}
807
a60438dd
TM
808#define ELF_HWCAP2 get_elf_hwcap2()
809
810static uint32_t get_elf_hwcap2(void)
811{
812 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
813 uint32_t features = 0;
814
815#define GET_FEATURE(flag, feature) \
816 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
817#define GET_FEATURE2(flag, feature) \
818 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
819
820 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
821 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
822 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
823 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
be0c46d4 824 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
a60438dd
TM
825
826#undef GET_FEATURE
827#undef GET_FEATURE2
828
829 return features;
830}
831
f5155289
FB
832/*
833 * The requirements here are:
834 * - keep the final alignment of sp (sp & 0xf)
835 * - make sure the 32-bit value at the first 16 byte aligned position of
836 * AUXV is greater than 16 for glibc compatibility.
837 * AT_IGNOREPPC is used for that.
838 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
839 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
840 */
0bccf03d 841#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
842#define ARCH_DLINFO \
843 do { \
623e250a 844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 845 /* \
82991bed
PM
846 * Handle glibc compatibility: these magic entries must \
847 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
848 */ \
849 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
850 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
851 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
852 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
853 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 854 } while (0)
f5155289 855
67867308
FB
856static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
857{
67867308 858 _regs->gpr[1] = infop->start_stack;
e85e7c6e 859#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 860 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
861 uint64_t val;
862 get_user_u64(val, infop->entry + 8);
863 _regs->gpr[2] = val + infop->load_bias;
864 get_user_u64(val, infop->entry);
865 infop->entry = val + infop->load_bias;
d90b94cd
DK
866 } else {
867 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
868 }
84409ddb 869#endif
67867308
FB
870 _regs->nip = infop->entry;
871}
872
e2f3e741
NF
873/* See linux kernel: arch/powerpc/include/asm/elf.h. */
874#define ELF_NREG 48
875typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
876
05390248 877static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
878{
879 int i;
880 target_ulong ccr = 0;
881
882 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 883 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
884 }
885
86cd7b2d
PB
886 (*regs)[32] = tswapreg(env->nip);
887 (*regs)[33] = tswapreg(env->msr);
888 (*regs)[35] = tswapreg(env->ctr);
889 (*regs)[36] = tswapreg(env->lr);
890 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
891
892 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
893 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
894 }
86cd7b2d 895 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
896}
897
898#define USE_ELF_CORE_DUMP
d97ef72e 899#define ELF_EXEC_PAGESIZE 4096
67867308
FB
900
901#endif
902
048f6b4d
FB
903#ifdef TARGET_MIPS
904
905#define ELF_START_MMAP 0x80000000
906
388bb21a
TS
907#ifdef TARGET_MIPS64
908#define ELF_CLASS ELFCLASS64
909#else
048f6b4d 910#define ELF_CLASS ELFCLASS32
388bb21a 911#endif
048f6b4d
FB
912#define ELF_ARCH EM_MIPS
913
f72541f3
AM
914#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
915
d97ef72e
RH
916static inline void init_thread(struct target_pt_regs *regs,
917 struct image_info *infop)
048f6b4d 918{
623a930e 919 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
920 regs->cp0_epc = infop->entry;
921 regs->regs[29] = infop->start_stack;
922}
923
51e52606
NF
924/* See linux kernel: arch/mips/include/asm/elf.h. */
925#define ELF_NREG 45
926typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
927
928/* See linux kernel: arch/mips/include/asm/reg.h. */
929enum {
930#ifdef TARGET_MIPS64
931 TARGET_EF_R0 = 0,
932#else
933 TARGET_EF_R0 = 6,
934#endif
935 TARGET_EF_R26 = TARGET_EF_R0 + 26,
936 TARGET_EF_R27 = TARGET_EF_R0 + 27,
937 TARGET_EF_LO = TARGET_EF_R0 + 32,
938 TARGET_EF_HI = TARGET_EF_R0 + 33,
939 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
940 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
941 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
942 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
943};
944
945/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 946static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
947{
948 int i;
949
950 for (i = 0; i < TARGET_EF_R0; i++) {
951 (*regs)[i] = 0;
952 }
953 (*regs)[TARGET_EF_R0] = 0;
954
955 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 956 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
957 }
958
959 (*regs)[TARGET_EF_R26] = 0;
960 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
961 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
962 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
963 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
964 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
965 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
966 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
967}
968
969#define USE_ELF_CORE_DUMP
388bb21a
TS
970#define ELF_EXEC_PAGESIZE 4096
971
46a1ee4f
JC
972/* See arch/mips/include/uapi/asm/hwcap.h. */
973enum {
974 HWCAP_MIPS_R6 = (1 << 0),
975 HWCAP_MIPS_MSA = (1 << 1),
976};
977
978#define ELF_HWCAP get_elf_hwcap()
979
980static uint32_t get_elf_hwcap(void)
981{
982 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
983 uint32_t hwcaps = 0;
984
985#define GET_FEATURE(flag, hwcap) \
986 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
987
988 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
989 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
990
991#undef GET_FEATURE
992
993 return hwcaps;
994}
995
048f6b4d
FB
996#endif /* TARGET_MIPS */
997
b779e29e
EI
998#ifdef TARGET_MICROBLAZE
999
1000#define ELF_START_MMAP 0x80000000
1001
0d5d4699 1002#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1003
1004#define ELF_CLASS ELFCLASS32
0d5d4699 1005#define ELF_ARCH EM_MICROBLAZE
b779e29e 1006
d97ef72e
RH
1007static inline void init_thread(struct target_pt_regs *regs,
1008 struct image_info *infop)
b779e29e
EI
1009{
1010 regs->pc = infop->entry;
1011 regs->r1 = infop->start_stack;
1012
1013}
1014
b779e29e
EI
1015#define ELF_EXEC_PAGESIZE 4096
1016
e4cbd44d
EI
1017#define USE_ELF_CORE_DUMP
1018#define ELF_NREG 38
1019typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1020
1021/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1022static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1023{
1024 int i, pos = 0;
1025
1026 for (i = 0; i < 32; i++) {
86cd7b2d 1027 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1028 }
1029
1030 for (i = 0; i < 6; i++) {
86cd7b2d 1031 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1032 }
1033}
1034
b779e29e
EI
1035#endif /* TARGET_MICROBLAZE */
1036
a0a839b6
MV
1037#ifdef TARGET_NIOS2
1038
1039#define ELF_START_MMAP 0x80000000
1040
1041#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1042
1043#define ELF_CLASS ELFCLASS32
1044#define ELF_ARCH EM_ALTERA_NIOS2
1045
1046static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1047{
1048 regs->ea = infop->entry;
1049 regs->sp = infop->start_stack;
1050 regs->estatus = 0x3;
1051}
1052
1053#define ELF_EXEC_PAGESIZE 4096
1054
1055#define USE_ELF_CORE_DUMP
1056#define ELF_NREG 49
1057typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1058
1059/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1060static void elf_core_copy_regs(target_elf_gregset_t *regs,
1061 const CPUNios2State *env)
1062{
1063 int i;
1064
1065 (*regs)[0] = -1;
1066 for (i = 1; i < 8; i++) /* r0-r7 */
1067 (*regs)[i] = tswapreg(env->regs[i + 7]);
1068
1069 for (i = 8; i < 16; i++) /* r8-r15 */
1070 (*regs)[i] = tswapreg(env->regs[i - 8]);
1071
1072 for (i = 16; i < 24; i++) /* r16-r23 */
1073 (*regs)[i] = tswapreg(env->regs[i + 7]);
1074 (*regs)[24] = -1; /* R_ET */
1075 (*regs)[25] = -1; /* R_BT */
1076 (*regs)[26] = tswapreg(env->regs[R_GP]);
1077 (*regs)[27] = tswapreg(env->regs[R_SP]);
1078 (*regs)[28] = tswapreg(env->regs[R_FP]);
1079 (*regs)[29] = tswapreg(env->regs[R_EA]);
1080 (*regs)[30] = -1; /* R_SSTATUS */
1081 (*regs)[31] = tswapreg(env->regs[R_RA]);
1082
1083 (*regs)[32] = tswapreg(env->regs[R_PC]);
1084
1085 (*regs)[33] = -1; /* R_STATUS */
1086 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1087
1088 for (i = 35; i < 49; i++) /* ... */
1089 (*regs)[i] = -1;
1090}
1091
1092#endif /* TARGET_NIOS2 */
1093
d962783e
JL
1094#ifdef TARGET_OPENRISC
1095
1096#define ELF_START_MMAP 0x08000000
1097
d962783e
JL
1098#define ELF_ARCH EM_OPENRISC
1099#define ELF_CLASS ELFCLASS32
1100#define ELF_DATA ELFDATA2MSB
1101
1102static inline void init_thread(struct target_pt_regs *regs,
1103 struct image_info *infop)
1104{
1105 regs->pc = infop->entry;
1106 regs->gpr[1] = infop->start_stack;
1107}
1108
1109#define USE_ELF_CORE_DUMP
1110#define ELF_EXEC_PAGESIZE 8192
1111
1112/* See linux kernel arch/openrisc/include/asm/elf.h. */
1113#define ELF_NREG 34 /* gprs and pc, sr */
1114typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1115
1116static void elf_core_copy_regs(target_elf_gregset_t *regs,
1117 const CPUOpenRISCState *env)
1118{
1119 int i;
1120
1121 for (i = 0; i < 32; i++) {
d89e71e8 1122 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1123 }
86cd7b2d 1124 (*regs)[32] = tswapreg(env->pc);
84775c43 1125 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1126}
1127#define ELF_HWCAP 0
1128#define ELF_PLATFORM NULL
1129
1130#endif /* TARGET_OPENRISC */
1131
fdf9b3e8
FB
1132#ifdef TARGET_SH4
1133
1134#define ELF_START_MMAP 0x80000000
1135
fdf9b3e8 1136#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1137#define ELF_ARCH EM_SH
1138
d97ef72e
RH
1139static inline void init_thread(struct target_pt_regs *regs,
1140 struct image_info *infop)
fdf9b3e8 1141{
d97ef72e
RH
1142 /* Check other registers XXXXX */
1143 regs->pc = infop->entry;
1144 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1145}
1146
7631c97e
NF
1147/* See linux kernel: arch/sh/include/asm/elf.h. */
1148#define ELF_NREG 23
1149typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1150
1151/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1152enum {
1153 TARGET_REG_PC = 16,
1154 TARGET_REG_PR = 17,
1155 TARGET_REG_SR = 18,
1156 TARGET_REG_GBR = 19,
1157 TARGET_REG_MACH = 20,
1158 TARGET_REG_MACL = 21,
1159 TARGET_REG_SYSCALL = 22
1160};
1161
d97ef72e 1162static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1163 const CPUSH4State *env)
7631c97e
NF
1164{
1165 int i;
1166
1167 for (i = 0; i < 16; i++) {
72cd500b 1168 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1169 }
1170
86cd7b2d
PB
1171 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1172 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1173 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1174 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1175 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1176 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1177 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1178}
1179
1180#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1181#define ELF_EXEC_PAGESIZE 4096
1182
e42fd944
RH
1183enum {
1184 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1185 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1186 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1187 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1188 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1189 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1190 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1191 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1192 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1193 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1194};
1195
1196#define ELF_HWCAP get_elf_hwcap()
1197
1198static uint32_t get_elf_hwcap(void)
1199{
1200 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1201 uint32_t hwcap = 0;
1202
1203 hwcap |= SH_CPU_HAS_FPU;
1204
1205 if (cpu->env.features & SH_FEATURE_SH4A) {
1206 hwcap |= SH_CPU_HAS_LLSC;
1207 }
1208
1209 return hwcap;
1210}
1211
fdf9b3e8
FB
1212#endif
1213
48733d19
TS
1214#ifdef TARGET_CRIS
1215
1216#define ELF_START_MMAP 0x80000000
1217
48733d19 1218#define ELF_CLASS ELFCLASS32
48733d19
TS
1219#define ELF_ARCH EM_CRIS
1220
d97ef72e
RH
1221static inline void init_thread(struct target_pt_regs *regs,
1222 struct image_info *infop)
48733d19 1223{
d97ef72e 1224 regs->erp = infop->entry;
48733d19
TS
1225}
1226
48733d19
TS
1227#define ELF_EXEC_PAGESIZE 8192
1228
1229#endif
1230
e6e5906b
PB
1231#ifdef TARGET_M68K
1232
1233#define ELF_START_MMAP 0x80000000
1234
d97ef72e 1235#define ELF_CLASS ELFCLASS32
d97ef72e 1236#define ELF_ARCH EM_68K
e6e5906b
PB
1237
1238/* ??? Does this need to do anything?
d97ef72e 1239 #define ELF_PLAT_INIT(_r) */
e6e5906b 1240
d97ef72e
RH
1241static inline void init_thread(struct target_pt_regs *regs,
1242 struct image_info *infop)
e6e5906b
PB
1243{
1244 regs->usp = infop->start_stack;
1245 regs->sr = 0;
1246 regs->pc = infop->entry;
1247}
1248
7a93cc55
NF
1249/* See linux kernel: arch/m68k/include/asm/elf.h. */
1250#define ELF_NREG 20
1251typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1252
05390248 1253static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1254{
86cd7b2d
PB
1255 (*regs)[0] = tswapreg(env->dregs[1]);
1256 (*regs)[1] = tswapreg(env->dregs[2]);
1257 (*regs)[2] = tswapreg(env->dregs[3]);
1258 (*regs)[3] = tswapreg(env->dregs[4]);
1259 (*regs)[4] = tswapreg(env->dregs[5]);
1260 (*regs)[5] = tswapreg(env->dregs[6]);
1261 (*regs)[6] = tswapreg(env->dregs[7]);
1262 (*regs)[7] = tswapreg(env->aregs[0]);
1263 (*regs)[8] = tswapreg(env->aregs[1]);
1264 (*regs)[9] = tswapreg(env->aregs[2]);
1265 (*regs)[10] = tswapreg(env->aregs[3]);
1266 (*regs)[11] = tswapreg(env->aregs[4]);
1267 (*regs)[12] = tswapreg(env->aregs[5]);
1268 (*regs)[13] = tswapreg(env->aregs[6]);
1269 (*regs)[14] = tswapreg(env->dregs[0]);
1270 (*regs)[15] = tswapreg(env->aregs[7]);
1271 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1272 (*regs)[17] = tswapreg(env->sr);
1273 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1274 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1275}
1276
1277#define USE_ELF_CORE_DUMP
d97ef72e 1278#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1279
1280#endif
1281
7a3148a9
JM
1282#ifdef TARGET_ALPHA
1283
1284#define ELF_START_MMAP (0x30000000000ULL)
1285
7a3148a9 1286#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1287#define ELF_ARCH EM_ALPHA
1288
d97ef72e
RH
1289static inline void init_thread(struct target_pt_regs *regs,
1290 struct image_info *infop)
7a3148a9
JM
1291{
1292 regs->pc = infop->entry;
1293 regs->ps = 8;
1294 regs->usp = infop->start_stack;
7a3148a9
JM
1295}
1296
7a3148a9
JM
1297#define ELF_EXEC_PAGESIZE 8192
1298
1299#endif /* TARGET_ALPHA */
1300
a4c075f1
UH
1301#ifdef TARGET_S390X
1302
1303#define ELF_START_MMAP (0x20000000000ULL)
1304
a4c075f1
UH
1305#define ELF_CLASS ELFCLASS64
1306#define ELF_DATA ELFDATA2MSB
1307#define ELF_ARCH EM_S390
1308
1309static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1310{
1311 regs->psw.addr = infop->entry;
1312 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1313 regs->gprs[15] = infop->start_stack;
1314}
1315
1316#endif /* TARGET_S390X */
1317
b16189b2
CG
1318#ifdef TARGET_TILEGX
1319
1320/* 42 bits real used address, a half for user mode */
1321#define ELF_START_MMAP (0x00000020000000000ULL)
1322
1323#define elf_check_arch(x) ((x) == EM_TILEGX)
1324
1325#define ELF_CLASS ELFCLASS64
1326#define ELF_DATA ELFDATA2LSB
1327#define ELF_ARCH EM_TILEGX
1328
1329static inline void init_thread(struct target_pt_regs *regs,
1330 struct image_info *infop)
1331{
1332 regs->pc = infop->entry;
1333 regs->sp = infop->start_stack;
1334
1335}
1336
1337#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1338
1339#endif /* TARGET_TILEGX */
1340
47ae93cd
MC
1341#ifdef TARGET_RISCV
1342
1343#define ELF_START_MMAP 0x80000000
1344#define ELF_ARCH EM_RISCV
1345
1346#ifdef TARGET_RISCV32
1347#define ELF_CLASS ELFCLASS32
1348#else
1349#define ELF_CLASS ELFCLASS64
1350#endif
1351
1352static inline void init_thread(struct target_pt_regs *regs,
1353 struct image_info *infop)
1354{
1355 regs->sepc = infop->entry;
1356 regs->sp = infop->start_stack;
1357}
1358
1359#define ELF_EXEC_PAGESIZE 4096
1360
1361#endif /* TARGET_RISCV */
1362
7c248bcd
RH
1363#ifdef TARGET_HPPA
1364
1365#define ELF_START_MMAP 0x80000000
1366#define ELF_CLASS ELFCLASS32
1367#define ELF_ARCH EM_PARISC
1368#define ELF_PLATFORM "PARISC"
1369#define STACK_GROWS_DOWN 0
1370#define STACK_ALIGNMENT 64
1371
1372static inline void init_thread(struct target_pt_regs *regs,
1373 struct image_info *infop)
1374{
1375 regs->iaoq[0] = infop->entry;
1376 regs->iaoq[1] = infop->entry + 4;
1377 regs->gr[23] = 0;
1378 regs->gr[24] = infop->arg_start;
1379 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1380 /* The top-of-stack contains a linkage buffer. */
1381 regs->gr[30] = infop->start_stack + 64;
1382 regs->gr[31] = infop->entry;
1383}
1384
1385#endif /* TARGET_HPPA */
1386
ba7651fb
MF
1387#ifdef TARGET_XTENSA
1388
1389#define ELF_START_MMAP 0x20000000
1390
1391#define ELF_CLASS ELFCLASS32
1392#define ELF_ARCH EM_XTENSA
1393
1394static inline void init_thread(struct target_pt_regs *regs,
1395 struct image_info *infop)
1396{
1397 regs->windowbase = 0;
1398 regs->windowstart = 1;
1399 regs->areg[1] = infop->start_stack;
1400 regs->pc = infop->entry;
1401}
1402
1403/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1404#define ELF_NREG 128
1405typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1406
1407enum {
1408 TARGET_REG_PC,
1409 TARGET_REG_PS,
1410 TARGET_REG_LBEG,
1411 TARGET_REG_LEND,
1412 TARGET_REG_LCOUNT,
1413 TARGET_REG_SAR,
1414 TARGET_REG_WINDOWSTART,
1415 TARGET_REG_WINDOWBASE,
1416 TARGET_REG_THREADPTR,
1417 TARGET_REG_AR0 = 64,
1418};
1419
1420static void elf_core_copy_regs(target_elf_gregset_t *regs,
1421 const CPUXtensaState *env)
1422{
1423 unsigned i;
1424
1425 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1426 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1427 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1428 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1429 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1430 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1431 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1432 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1433 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1434 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1435 for (i = 0; i < env->config->nareg; ++i) {
1436 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1437 }
1438}
1439
1440#define USE_ELF_CORE_DUMP
1441#define ELF_EXEC_PAGESIZE 4096
1442
1443#endif /* TARGET_XTENSA */
1444
15338fd7
FB
1445#ifndef ELF_PLATFORM
1446#define ELF_PLATFORM (NULL)
1447#endif
1448
75be901c
PC
1449#ifndef ELF_MACHINE
1450#define ELF_MACHINE ELF_ARCH
1451#endif
1452
d276a604
PC
1453#ifndef elf_check_arch
1454#define elf_check_arch(x) ((x) == ELF_ARCH)
1455#endif
1456
15338fd7
FB
1457#ifndef ELF_HWCAP
1458#define ELF_HWCAP 0
1459#endif
1460
7c4ee5bc
RH
1461#ifndef STACK_GROWS_DOWN
1462#define STACK_GROWS_DOWN 1
1463#endif
1464
1465#ifndef STACK_ALIGNMENT
1466#define STACK_ALIGNMENT 16
1467#endif
1468
992f48a0 1469#ifdef TARGET_ABI32
cb33da57 1470#undef ELF_CLASS
992f48a0 1471#define ELF_CLASS ELFCLASS32
cb33da57
BS
1472#undef bswaptls
1473#define bswaptls(ptr) bswap32s(ptr)
1474#endif
1475
31e31b8a 1476#include "elf.h"
09bfb054 1477
09bfb054
FB
1478struct exec
1479{
d97ef72e
RH
1480 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1481 unsigned int a_text; /* length of text, in bytes */
1482 unsigned int a_data; /* length of data, in bytes */
1483 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1484 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1485 unsigned int a_entry; /* start address */
1486 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1487 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1488};
1489
1490
1491#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1492#define OMAGIC 0407
1493#define NMAGIC 0410
1494#define ZMAGIC 0413
1495#define QMAGIC 0314
1496
31e31b8a 1497/* Necessary parameters */
94894ff2
SB
1498#define TARGET_ELF_EXEC_PAGESIZE \
1499 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1500 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1501#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1502#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1503 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1504#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1505
444cd5c3 1506#define DLINFO_ITEMS 15
31e31b8a 1507
09bfb054
FB
1508static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1509{
d97ef72e 1510 memcpy(to, from, n);
09bfb054 1511}
d691f669 1512
31e31b8a 1513#ifdef BSWAP_NEEDED
92a31b1f 1514static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1515{
d97ef72e
RH
1516 bswap16s(&ehdr->e_type); /* Object file type */
1517 bswap16s(&ehdr->e_machine); /* Architecture */
1518 bswap32s(&ehdr->e_version); /* Object file version */
1519 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1520 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1521 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1522 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1523 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1524 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1525 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1526 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1527 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1528 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1529}
1530
991f8f0c 1531static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1532{
991f8f0c
RH
1533 int i;
1534 for (i = 0; i < phnum; ++i, ++phdr) {
1535 bswap32s(&phdr->p_type); /* Segment type */
1536 bswap32s(&phdr->p_flags); /* Segment flags */
1537 bswaptls(&phdr->p_offset); /* Segment file offset */
1538 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1539 bswaptls(&phdr->p_paddr); /* Segment physical address */
1540 bswaptls(&phdr->p_filesz); /* Segment size in file */
1541 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1542 bswaptls(&phdr->p_align); /* Segment alignment */
1543 }
31e31b8a 1544}
689f936f 1545
991f8f0c 1546static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1547{
991f8f0c
RH
1548 int i;
1549 for (i = 0; i < shnum; ++i, ++shdr) {
1550 bswap32s(&shdr->sh_name);
1551 bswap32s(&shdr->sh_type);
1552 bswaptls(&shdr->sh_flags);
1553 bswaptls(&shdr->sh_addr);
1554 bswaptls(&shdr->sh_offset);
1555 bswaptls(&shdr->sh_size);
1556 bswap32s(&shdr->sh_link);
1557 bswap32s(&shdr->sh_info);
1558 bswaptls(&shdr->sh_addralign);
1559 bswaptls(&shdr->sh_entsize);
1560 }
689f936f
FB
1561}
1562
7a3148a9 1563static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1564{
1565 bswap32s(&sym->st_name);
7a3148a9
JM
1566 bswaptls(&sym->st_value);
1567 bswaptls(&sym->st_size);
689f936f
FB
1568 bswap16s(&sym->st_shndx);
1569}
5dd0db52
SM
1570
1571#ifdef TARGET_MIPS
1572static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1573{
1574 bswap16s(&abiflags->version);
1575 bswap32s(&abiflags->ases);
1576 bswap32s(&abiflags->isa_ext);
1577 bswap32s(&abiflags->flags1);
1578 bswap32s(&abiflags->flags2);
1579}
1580#endif
991f8f0c
RH
1581#else
1582static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1583static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1584static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1585static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1586#ifdef TARGET_MIPS
1587static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1588#endif
31e31b8a
FB
1589#endif
1590
edf8e2af 1591#ifdef USE_ELF_CORE_DUMP
9349b4f9 1592static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1593#endif /* USE_ELF_CORE_DUMP */
682674b8 1594static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1595
9058abdd
RH
1596/* Verify the portions of EHDR within E_IDENT for the target.
1597 This can be performed before bswapping the entire header. */
1598static bool elf_check_ident(struct elfhdr *ehdr)
1599{
1600 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1601 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1602 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1603 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1604 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1605 && ehdr->e_ident[EI_DATA] == ELF_DATA
1606 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1607}
1608
1609/* Verify the portions of EHDR outside of E_IDENT for the target.
1610 This has to wait until after bswapping the header. */
1611static bool elf_check_ehdr(struct elfhdr *ehdr)
1612{
1613 return (elf_check_arch(ehdr->e_machine)
1614 && ehdr->e_ehsize == sizeof(struct elfhdr)
1615 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1616 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1617}
1618
31e31b8a 1619/*
e5fe0c52 1620 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1621 * memory to free pages in kernel mem. These are in a format ready
1622 * to be put directly into the top of new user memory.
1623 *
1624 */
59baae9a
SB
1625static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1626 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1627{
59baae9a 1628 char *tmp;
7c4ee5bc 1629 int len, i;
59baae9a 1630 abi_ulong top = p;
31e31b8a
FB
1631
1632 if (!p) {
d97ef72e 1633 return 0; /* bullet-proofing */
31e31b8a 1634 }
59baae9a 1635
7c4ee5bc
RH
1636 if (STACK_GROWS_DOWN) {
1637 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1638 for (i = argc - 1; i >= 0; --i) {
1639 tmp = argv[i];
1640 if (!tmp) {
1641 fprintf(stderr, "VFS: argc is wrong");
1642 exit(-1);
1643 }
1644 len = strlen(tmp) + 1;
1645 tmp += len;
59baae9a 1646
7c4ee5bc
RH
1647 if (len > (p - stack_limit)) {
1648 return 0;
1649 }
1650 while (len) {
1651 int bytes_to_copy = (len > offset) ? offset : len;
1652 tmp -= bytes_to_copy;
1653 p -= bytes_to_copy;
1654 offset -= bytes_to_copy;
1655 len -= bytes_to_copy;
1656
1657 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1658
1659 if (offset == 0) {
1660 memcpy_to_target(p, scratch, top - p);
1661 top = p;
1662 offset = TARGET_PAGE_SIZE;
1663 }
1664 }
d97ef72e 1665 }
7c4ee5bc
RH
1666 if (p != top) {
1667 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1668 }
7c4ee5bc
RH
1669 } else {
1670 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1671 for (i = 0; i < argc; ++i) {
1672 tmp = argv[i];
1673 if (!tmp) {
1674 fprintf(stderr, "VFS: argc is wrong");
1675 exit(-1);
1676 }
1677 len = strlen(tmp) + 1;
1678 if (len > (stack_limit - p)) {
1679 return 0;
1680 }
1681 while (len) {
1682 int bytes_to_copy = (len > remaining) ? remaining : len;
1683
1684 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1685
1686 tmp += bytes_to_copy;
1687 remaining -= bytes_to_copy;
1688 p += bytes_to_copy;
1689 len -= bytes_to_copy;
1690
1691 if (remaining == 0) {
1692 memcpy_to_target(top, scratch, p - top);
1693 top = p;
1694 remaining = TARGET_PAGE_SIZE;
1695 }
d97ef72e
RH
1696 }
1697 }
7c4ee5bc
RH
1698 if (p != top) {
1699 memcpy_to_target(top, scratch, p - top);
1700 }
59baae9a
SB
1701 }
1702
31e31b8a
FB
1703 return p;
1704}
1705
59baae9a
SB
1706/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1707 * argument/environment space. Newer kernels (>2.6.33) allow more,
1708 * dependent on stack size, but guarantee at least 32 pages for
1709 * backwards compatibility.
1710 */
1711#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1712
1713static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1714 struct image_info *info)
53a5960a 1715{
59baae9a 1716 abi_ulong size, error, guard;
31e31b8a 1717
703e0e89 1718 size = guest_stack_size;
59baae9a
SB
1719 if (size < STACK_LOWER_LIMIT) {
1720 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1721 }
1722 guard = TARGET_PAGE_SIZE;
1723 if (guard < qemu_real_host_page_size) {
1724 guard = qemu_real_host_page_size;
1725 }
1726
1727 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1728 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1729 if (error == -1) {
60dcbcb5 1730 perror("mmap stack");
09bfb054
FB
1731 exit(-1);
1732 }
31e31b8a 1733
60dcbcb5 1734 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1735 if (STACK_GROWS_DOWN) {
1736 target_mprotect(error, guard, PROT_NONE);
1737 info->stack_limit = error + guard;
1738 return info->stack_limit + size - sizeof(void *);
1739 } else {
1740 target_mprotect(error + size, guard, PROT_NONE);
1741 info->stack_limit = error + size;
1742 return error;
1743 }
31e31b8a
FB
1744}
1745
cf129f3a
RH
1746/* Map and zero the bss. We need to explicitly zero any fractional pages
1747 after the data section (i.e. bss). */
1748static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1749{
cf129f3a
RH
1750 uintptr_t host_start, host_map_start, host_end;
1751
1752 last_bss = TARGET_PAGE_ALIGN(last_bss);
1753
1754 /* ??? There is confusion between qemu_real_host_page_size and
1755 qemu_host_page_size here and elsewhere in target_mmap, which
1756 may lead to the end of the data section mapping from the file
1757 not being mapped. At least there was an explicit test and
1758 comment for that here, suggesting that "the file size must
1759 be known". The comment probably pre-dates the introduction
1760 of the fstat system call in target_mmap which does in fact
1761 find out the size. What isn't clear is if the workaround
1762 here is still actually needed. For now, continue with it,
1763 but merge it with the "normal" mmap that would allocate the bss. */
1764
1765 host_start = (uintptr_t) g2h(elf_bss);
1766 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1767 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1768
1769 if (host_map_start < host_end) {
1770 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1771 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1772 if (p == MAP_FAILED) {
1773 perror("cannot mmap brk");
1774 exit(-1);
853d6f7a 1775 }
f46e9a0b 1776 }
853d6f7a 1777
f46e9a0b
TM
1778 /* Ensure that the bss page(s) are valid */
1779 if ((page_get_flags(last_bss-1) & prot) != prot) {
1780 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1781 }
31e31b8a 1782
cf129f3a
RH
1783 if (host_start < host_map_start) {
1784 memset((void *)host_start, 0, host_map_start - host_start);
1785 }
1786}
53a5960a 1787
cf58affe
CL
1788#ifdef TARGET_ARM
1789static int elf_is_fdpic(struct elfhdr *exec)
1790{
1791 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1792}
1793#else
a99856cd
CL
1794/* Default implementation, always false. */
1795static int elf_is_fdpic(struct elfhdr *exec)
1796{
1797 return 0;
1798}
cf58affe 1799#endif
a99856cd 1800
1af02e83
MF
1801static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1802{
1803 uint16_t n;
1804 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1805
1806 /* elf32_fdpic_loadseg */
1807 n = info->nsegs;
1808 while (n--) {
1809 sp -= 12;
1810 put_user_u32(loadsegs[n].addr, sp+0);
1811 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1812 put_user_u32(loadsegs[n].p_memsz, sp+8);
1813 }
1814
1815 /* elf32_fdpic_loadmap */
1816 sp -= 4;
1817 put_user_u16(0, sp+0); /* version */
1818 put_user_u16(info->nsegs, sp+2); /* nsegs */
1819
1820 info->personality = PER_LINUX_FDPIC;
1821 info->loadmap_addr = sp;
1822
1823 return sp;
1824}
1af02e83 1825
992f48a0 1826static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1827 struct elfhdr *exec,
1828 struct image_info *info,
1829 struct image_info *interp_info)
31e31b8a 1830{
d97ef72e 1831 abi_ulong sp;
7c4ee5bc 1832 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1833 int size;
14322bad
LA
1834 int i;
1835 abi_ulong u_rand_bytes;
1836 uint8_t k_rand_bytes[16];
d97ef72e
RH
1837 abi_ulong u_platform;
1838 const char *k_platform;
1839 const int n = sizeof(elf_addr_t);
1840
1841 sp = p;
1af02e83 1842
1af02e83
MF
1843 /* Needs to be before we load the env/argc/... */
1844 if (elf_is_fdpic(exec)) {
1845 /* Need 4 byte alignment for these structs */
1846 sp &= ~3;
1847 sp = loader_build_fdpic_loadmap(info, sp);
1848 info->other_info = interp_info;
1849 if (interp_info) {
1850 interp_info->other_info = info;
1851 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1852 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1853 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1854 } else {
1855 info->interpreter_loadmap_addr = 0;
1856 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1857 }
1858 }
1af02e83 1859
d97ef72e
RH
1860 u_platform = 0;
1861 k_platform = ELF_PLATFORM;
1862 if (k_platform) {
1863 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1864 if (STACK_GROWS_DOWN) {
1865 sp -= (len + n - 1) & ~(n - 1);
1866 u_platform = sp;
1867 /* FIXME - check return value of memcpy_to_target() for failure */
1868 memcpy_to_target(sp, k_platform, len);
1869 } else {
1870 memcpy_to_target(sp, k_platform, len);
1871 u_platform = sp;
1872 sp += len + 1;
1873 }
1874 }
1875
1876 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1877 * the argv and envp pointers.
1878 */
1879 if (STACK_GROWS_DOWN) {
1880 sp = QEMU_ALIGN_DOWN(sp, 16);
1881 } else {
1882 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1883 }
14322bad
LA
1884
1885 /*
1886 * Generate 16 random bytes for userspace PRNG seeding (not
1887 * cryptically secure but it's not the aim of QEMU).
1888 */
14322bad
LA
1889 for (i = 0; i < 16; i++) {
1890 k_rand_bytes[i] = rand();
1891 }
7c4ee5bc
RH
1892 if (STACK_GROWS_DOWN) {
1893 sp -= 16;
1894 u_rand_bytes = sp;
1895 /* FIXME - check return value of memcpy_to_target() for failure */
1896 memcpy_to_target(sp, k_rand_bytes, 16);
1897 } else {
1898 memcpy_to_target(sp, k_rand_bytes, 16);
1899 u_rand_bytes = sp;
1900 sp += 16;
1901 }
14322bad 1902
d97ef72e
RH
1903 size = (DLINFO_ITEMS + 1) * 2;
1904 if (k_platform)
1905 size += 2;
f5155289 1906#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1907 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1908#endif
1909#ifdef ELF_HWCAP2
1910 size += 2;
f5155289 1911#endif
f516511e
PM
1912 info->auxv_len = size * n;
1913
d97ef72e 1914 size += envc + argc + 2;
b9329d4b 1915 size += 1; /* argc itself */
d97ef72e 1916 size *= n;
7c4ee5bc
RH
1917
1918 /* Allocate space and finalize stack alignment for entry now. */
1919 if (STACK_GROWS_DOWN) {
1920 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1921 sp = u_argc;
1922 } else {
1923 u_argc = sp;
1924 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1925 }
1926
1927 u_argv = u_argc + n;
1928 u_envp = u_argv + (argc + 1) * n;
1929 u_auxv = u_envp + (envc + 1) * n;
1930 info->saved_auxv = u_auxv;
1931 info->arg_start = u_argv;
1932 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1933
1934 /* This is correct because Linux defines
1935 * elf_addr_t as Elf32_Off / Elf64_Off
1936 */
1937#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1938 put_user_ual(id, u_auxv); u_auxv += n; \
1939 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1940 } while(0)
1941
82991bed
PM
1942#ifdef ARCH_DLINFO
1943 /*
1944 * ARCH_DLINFO must come first so platform specific code can enforce
1945 * special alignment requirements on the AUXV if necessary (eg. PPC).
1946 */
1947 ARCH_DLINFO;
1948#endif
f516511e
PM
1949 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1950 * on info->auxv_len will trigger.
1951 */
8e62a717 1952 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1953 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1954 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1955 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1956 /* Target doesn't support host page size alignment */
1957 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1958 } else {
1959 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1960 qemu_host_page_size)));
1961 }
8e62a717 1962 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1963 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1964 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1965 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1966 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1967 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1968 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1969 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1970 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1971 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1972 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1973
ad6919dc
PM
1974#ifdef ELF_HWCAP2
1975 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1976#endif
1977
7c4ee5bc 1978 if (u_platform) {
d97ef72e 1979 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1980 }
7c4ee5bc 1981 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1982#undef NEW_AUX_ENT
1983
f516511e
PM
1984 /* Check that our initial calculation of the auxv length matches how much
1985 * we actually put into it.
1986 */
1987 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1988
1989 put_user_ual(argc, u_argc);
1990
1991 p = info->arg_strings;
1992 for (i = 0; i < argc; ++i) {
1993 put_user_ual(p, u_argv);
1994 u_argv += n;
1995 p += target_strlen(p) + 1;
1996 }
1997 put_user_ual(0, u_argv);
1998
1999 p = info->env_strings;
2000 for (i = 0; i < envc; ++i) {
2001 put_user_ual(p, u_envp);
2002 u_envp += n;
2003 p += target_strlen(p) + 1;
2004 }
2005 put_user_ual(0, u_envp);
edf8e2af 2006
d97ef72e 2007 return sp;
31e31b8a
FB
2008}
2009
dce10401
MI
2010unsigned long init_guest_space(unsigned long host_start,
2011 unsigned long host_size,
2012 unsigned long guest_start,
2013 bool fixed)
2014{
293f2060 2015 unsigned long current_start, aligned_start;
dce10401
MI
2016 int flags;
2017
2018 assert(host_start || host_size);
2019
2020 /* If just a starting address is given, then just verify that
2021 * address. */
2022 if (host_start && !host_size) {
8756e136 2023#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2024 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2025 return (unsigned long)-1;
2026 }
8756e136
LS
2027#endif
2028 return host_start;
dce10401
MI
2029 }
2030
2031 /* Setup the initial flags and start address. */
2032 current_start = host_start & qemu_host_page_mask;
2033 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2034 if (fixed) {
2035 flags |= MAP_FIXED;
2036 }
2037
2038 /* Otherwise, a non-zero size region of memory needs to be mapped
2039 * and validated. */
2a53535a
LS
2040
2041#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2042 /* On 32-bit ARM, we need to map not just the usable memory, but
2043 * also the commpage. Try to find a suitable place by allocating
2044 * a big chunk for all of it. If host_start, then the naive
2045 * strategy probably does good enough.
2046 */
2047 if (!host_start) {
2048 unsigned long guest_full_size, host_full_size, real_start;
2049
2050 guest_full_size =
2051 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2052 host_full_size = guest_full_size - guest_start;
2053 real_start = (unsigned long)
2054 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2055 if (real_start == (unsigned long)-1) {
2056 if (host_size < host_full_size - qemu_host_page_size) {
2057 /* We failed to map a continous segment, but we're
2058 * allowed to have a gap between the usable memory and
2059 * the commpage where other things can be mapped.
2060 * This sparseness gives us more flexibility to find
2061 * an address range.
2062 */
2063 goto naive;
2064 }
2065 return (unsigned long)-1;
2066 }
2067 munmap((void *)real_start, host_full_size);
2068 if (real_start & ~qemu_host_page_mask) {
2069 /* The same thing again, but with an extra qemu_host_page_size
2070 * so that we can shift around alignment.
2071 */
2072 unsigned long real_size = host_full_size + qemu_host_page_size;
2073 real_start = (unsigned long)
2074 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2075 if (real_start == (unsigned long)-1) {
2076 if (host_size < host_full_size - qemu_host_page_size) {
2077 goto naive;
2078 }
2079 return (unsigned long)-1;
2080 }
2081 munmap((void *)real_start, real_size);
2082 real_start = HOST_PAGE_ALIGN(real_start);
2083 }
2084 current_start = real_start;
2085 }
2086 naive:
2087#endif
2088
dce10401 2089 while (1) {
293f2060
LS
2090 unsigned long real_start, real_size, aligned_size;
2091 aligned_size = real_size = host_size;
806d1021 2092
dce10401
MI
2093 /* Do not use mmap_find_vma here because that is limited to the
2094 * guest address space. We are going to make the
2095 * guest address space fit whatever we're given.
2096 */
2097 real_start = (unsigned long)
2098 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2099 if (real_start == (unsigned long)-1) {
2100 return (unsigned long)-1;
2101 }
2102
aac362e4
LS
2103 /* Check to see if the address is valid. */
2104 if (host_start && real_start != current_start) {
2105 goto try_again;
2106 }
2107
806d1021
MI
2108 /* Ensure the address is properly aligned. */
2109 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2110 /* Ideally, we adjust like
2111 *
2112 * pages: [ ][ ][ ][ ][ ]
2113 * old: [ real ]
2114 * [ aligned ]
2115 * new: [ real ]
2116 * [ aligned ]
2117 *
2118 * But if there is something else mapped right after it,
2119 * then obviously it won't have room to grow, and the
2120 * kernel will put the new larger real someplace else with
2121 * unknown alignment (if we made it to here, then
2122 * fixed=false). Which is why we grow real by a full page
2123 * size, instead of by part of one; so that even if we get
2124 * moved, we can still guarantee alignment. But this does
2125 * mean that there is a padding of < 1 page both before
2126 * and after the aligned range; the "after" could could
2127 * cause problems for ARM emulation where it could butt in
2128 * to where we need to put the commpage.
2129 */
806d1021 2130 munmap((void *)real_start, host_size);
293f2060 2131 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2132 real_start = (unsigned long)
2133 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2134 if (real_start == (unsigned long)-1) {
2135 return (unsigned long)-1;
2136 }
293f2060
LS
2137 aligned_start = HOST_PAGE_ALIGN(real_start);
2138 } else {
2139 aligned_start = real_start;
806d1021
MI
2140 }
2141
8756e136 2142#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2143 /* On 32-bit ARM, we need to also be able to map the commpage. */
2144 int valid = init_guest_commpage(aligned_start - guest_start,
2145 aligned_size + guest_start);
2146 if (valid == -1) {
2147 munmap((void *)real_start, real_size);
2148 return (unsigned long)-1;
2149 } else if (valid == 0) {
2150 goto try_again;
dce10401 2151 }
7ad75eea
LS
2152#endif
2153
2154 /* If nothing has said `return -1` or `goto try_again` yet,
2155 * then the address we have is good.
2156 */
2157 break;
dce10401 2158
7ad75eea 2159 try_again:
dce10401
MI
2160 /* That address didn't work. Unmap and try a different one.
2161 * The address the host picked because is typically right at
2162 * the top of the host address space and leaves the guest with
2163 * no usable address space. Resort to a linear search. We
2164 * already compensated for mmap_min_addr, so this should not
2165 * happen often. Probably means we got unlucky and host
2166 * address space randomization put a shared library somewhere
2167 * inconvenient.
8c17d862
LS
2168 *
2169 * This is probably a good strategy if host_start, but is
2170 * probably a bad strategy if not, which means we got here
2171 * because of trouble with ARM commpage setup.
dce10401 2172 */
293f2060 2173 munmap((void *)real_start, real_size);
dce10401
MI
2174 current_start += qemu_host_page_size;
2175 if (host_start == current_start) {
2176 /* Theoretically possible if host doesn't have any suitably
2177 * aligned areas. Normally the first mmap will fail.
2178 */
2179 return (unsigned long)-1;
2180 }
2181 }
2182
13829020 2183 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2184
293f2060 2185 return aligned_start;
dce10401
MI
2186}
2187
f3ed1f5d
PM
2188static void probe_guest_base(const char *image_name,
2189 abi_ulong loaddr, abi_ulong hiaddr)
2190{
2191 /* Probe for a suitable guest base address, if the user has not set
2192 * it explicitly, and set guest_base appropriately.
2193 * In case of error we will print a suitable message and exit.
2194 */
f3ed1f5d
PM
2195 const char *errmsg;
2196 if (!have_guest_base && !reserved_va) {
2197 unsigned long host_start, real_start, host_size;
2198
2199 /* Round addresses to page boundaries. */
2200 loaddr &= qemu_host_page_mask;
2201 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2202
2203 if (loaddr < mmap_min_addr) {
2204 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2205 } else {
2206 host_start = loaddr;
2207 if (host_start != loaddr) {
2208 errmsg = "Address overflow loading ELF binary";
2209 goto exit_errmsg;
2210 }
2211 }
2212 host_size = hiaddr - loaddr;
dce10401
MI
2213
2214 /* Setup the initial guest memory space with ranges gleaned from
2215 * the ELF image that is being loaded.
2216 */
2217 real_start = init_guest_space(host_start, host_size, loaddr, false);
2218 if (real_start == (unsigned long)-1) {
2219 errmsg = "Unable to find space for application";
2220 goto exit_errmsg;
f3ed1f5d 2221 }
dce10401
MI
2222 guest_base = real_start - loaddr;
2223
13829020
PB
2224 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2225 TARGET_ABI_FMT_lx " to 0x%lx\n",
2226 loaddr, real_start);
f3ed1f5d
PM
2227 }
2228 return;
2229
f3ed1f5d
PM
2230exit_errmsg:
2231 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2232 exit(-1);
f3ed1f5d
PM
2233}
2234
2235
8e62a717 2236/* Load an ELF image into the address space.
31e31b8a 2237
8e62a717
RH
2238 IMAGE_NAME is the filename of the image, to use in error messages.
2239 IMAGE_FD is the open file descriptor for the image.
2240
2241 BPRM_BUF is a copy of the beginning of the file; this of course
2242 contains the elf file header at offset 0. It is assumed that this
2243 buffer is sufficiently aligned to present no problems to the host
2244 in accessing data at aligned offsets within the buffer.
2245
2246 On return: INFO values will be filled in, as necessary or available. */
2247
2248static void load_elf_image(const char *image_name, int image_fd,
bf858897 2249 struct image_info *info, char **pinterp_name,
8e62a717 2250 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2251{
8e62a717
RH
2252 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2253 struct elf_phdr *phdr;
2254 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2255 int i, retval;
2256 const char *errmsg;
5fafdf24 2257
8e62a717
RH
2258 /* First of all, some simple consistency checks */
2259 errmsg = "Invalid ELF image for this architecture";
2260 if (!elf_check_ident(ehdr)) {
2261 goto exit_errmsg;
2262 }
2263 bswap_ehdr(ehdr);
2264 if (!elf_check_ehdr(ehdr)) {
2265 goto exit_errmsg;
d97ef72e 2266 }
5fafdf24 2267
8e62a717
RH
2268 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2269 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2270 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2271 } else {
8e62a717
RH
2272 phdr = (struct elf_phdr *) alloca(i);
2273 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2274 if (retval != i) {
8e62a717 2275 goto exit_read;
9955ffac 2276 }
d97ef72e 2277 }
8e62a717 2278 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2279
1af02e83
MF
2280 info->nsegs = 0;
2281 info->pt_dynamic_addr = 0;
1af02e83 2282
98c1076c
AB
2283 mmap_lock();
2284
682674b8
RH
2285 /* Find the maximum size of the image and allocate an appropriate
2286 amount of memory to handle that. */
2287 loaddr = -1, hiaddr = 0;
33143c44 2288 info->alignment = 0;
8e62a717
RH
2289 for (i = 0; i < ehdr->e_phnum; ++i) {
2290 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2291 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2292 if (a < loaddr) {
2293 loaddr = a;
2294 }
ccf661f8 2295 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2296 if (a > hiaddr) {
2297 hiaddr = a;
2298 }
1af02e83 2299 ++info->nsegs;
33143c44 2300 info->alignment |= phdr[i].p_align;
682674b8
RH
2301 }
2302 }
2303
2304 load_addr = loaddr;
8e62a717 2305 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2306 /* The image indicates that it can be loaded anywhere. Find a
2307 location that can hold the memory space required. If the
2308 image is pre-linked, LOADDR will be non-zero. Since we do
2309 not supply MAP_FIXED here we'll use that address if and
2310 only if it remains available. */
2311 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2312 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2313 -1, 0);
2314 if (load_addr == -1) {
8e62a717 2315 goto exit_perror;
d97ef72e 2316 }
bf858897
RH
2317 } else if (pinterp_name != NULL) {
2318 /* This is the main executable. Make sure that the low
2319 address does not conflict with MMAP_MIN_ADDR or the
2320 QEMU application itself. */
f3ed1f5d 2321 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2322 }
682674b8 2323 load_bias = load_addr - loaddr;
d97ef72e 2324
a99856cd 2325 if (elf_is_fdpic(ehdr)) {
1af02e83 2326 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2327 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2328
2329 for (i = 0; i < ehdr->e_phnum; ++i) {
2330 switch (phdr[i].p_type) {
2331 case PT_DYNAMIC:
2332 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2333 break;
2334 case PT_LOAD:
2335 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2336 loadsegs->p_vaddr = phdr[i].p_vaddr;
2337 loadsegs->p_memsz = phdr[i].p_memsz;
2338 ++loadsegs;
2339 break;
2340 }
2341 }
2342 }
1af02e83 2343
8e62a717
RH
2344 info->load_bias = load_bias;
2345 info->load_addr = load_addr;
2346 info->entry = ehdr->e_entry + load_bias;
2347 info->start_code = -1;
2348 info->end_code = 0;
2349 info->start_data = -1;
2350 info->end_data = 0;
2351 info->brk = 0;
d8fd2954 2352 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2353
2354 for (i = 0; i < ehdr->e_phnum; i++) {
2355 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2356 if (eppnt->p_type == PT_LOAD) {
94894ff2 2357 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2358 int elf_prot = 0;
d97ef72e
RH
2359
2360 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2361 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2362 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2363
682674b8
RH
2364 vaddr = load_bias + eppnt->p_vaddr;
2365 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2366 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2367 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2368
94894ff2 2369 error = target_mmap(vaddr_ps, vaddr_len,
682674b8 2370 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2371 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2372 if (error == -1) {
8e62a717 2373 goto exit_perror;
09bfb054 2374 }
09bfb054 2375
682674b8
RH
2376 vaddr_ef = vaddr + eppnt->p_filesz;
2377 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2378
cf129f3a 2379 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2380 if (vaddr_ef < vaddr_em) {
2381 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2382 }
8e62a717
RH
2383
2384 /* Find the full program boundaries. */
2385 if (elf_prot & PROT_EXEC) {
2386 if (vaddr < info->start_code) {
2387 info->start_code = vaddr;
2388 }
2389 if (vaddr_ef > info->end_code) {
2390 info->end_code = vaddr_ef;
2391 }
2392 }
2393 if (elf_prot & PROT_WRITE) {
2394 if (vaddr < info->start_data) {
2395 info->start_data = vaddr;
2396 }
2397 if (vaddr_ef > info->end_data) {
2398 info->end_data = vaddr_ef;
2399 }
2400 if (vaddr_em > info->brk) {
2401 info->brk = vaddr_em;
2402 }
2403 }
bf858897
RH
2404 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2405 char *interp_name;
2406
2407 if (*pinterp_name) {
2408 errmsg = "Multiple PT_INTERP entries";
2409 goto exit_errmsg;
2410 }
2411 interp_name = malloc(eppnt->p_filesz);
2412 if (!interp_name) {
2413 goto exit_perror;
2414 }
2415
2416 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2417 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2418 eppnt->p_filesz);
2419 } else {
2420 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2421 eppnt->p_offset);
2422 if (retval != eppnt->p_filesz) {
2423 goto exit_perror;
2424 }
2425 }
2426 if (interp_name[eppnt->p_filesz - 1] != 0) {
2427 errmsg = "Invalid PT_INTERP entry";
2428 goto exit_errmsg;
2429 }
2430 *pinterp_name = interp_name;
5dd0db52
SM
2431#ifdef TARGET_MIPS
2432 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2433 Mips_elf_abiflags_v0 abiflags;
2434 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2435 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2436 goto exit_errmsg;
2437 }
2438 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2439 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2440 sizeof(Mips_elf_abiflags_v0));
2441 } else {
2442 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2443 eppnt->p_offset);
2444 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2445 goto exit_perror;
2446 }
2447 }
2448 bswap_mips_abiflags(&abiflags);
c94cb6c9 2449 info->fp_abi = abiflags.fp_abi;
5dd0db52 2450#endif
d97ef72e 2451 }
682674b8 2452 }
5fafdf24 2453
8e62a717
RH
2454 if (info->end_data == 0) {
2455 info->start_data = info->end_code;
2456 info->end_data = info->end_code;
2457 info->brk = info->end_code;
2458 }
2459
682674b8 2460 if (qemu_log_enabled()) {
8e62a717 2461 load_symbols(ehdr, image_fd, load_bias);
682674b8 2462 }
31e31b8a 2463
98c1076c
AB
2464 mmap_unlock();
2465
8e62a717
RH
2466 close(image_fd);
2467 return;
2468
2469 exit_read:
2470 if (retval >= 0) {
2471 errmsg = "Incomplete read of file header";
2472 goto exit_errmsg;
2473 }
2474 exit_perror:
2475 errmsg = strerror(errno);
2476 exit_errmsg:
2477 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2478 exit(-1);
2479}
2480
2481static void load_elf_interp(const char *filename, struct image_info *info,
2482 char bprm_buf[BPRM_BUF_SIZE])
2483{
2484 int fd, retval;
2485
2486 fd = open(path(filename), O_RDONLY);
2487 if (fd < 0) {
2488 goto exit_perror;
2489 }
31e31b8a 2490
8e62a717
RH
2491 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2492 if (retval < 0) {
2493 goto exit_perror;
2494 }
2495 if (retval < BPRM_BUF_SIZE) {
2496 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2497 }
2498
bf858897 2499 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2500 return;
2501
2502 exit_perror:
2503 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2504 exit(-1);
31e31b8a
FB
2505}
2506
49918a75
PB
2507static int symfind(const void *s0, const void *s1)
2508{
c7c530cd 2509 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2510 struct elf_sym *sym = (struct elf_sym *)s1;
2511 int result = 0;
c7c530cd 2512 if (addr < sym->st_value) {
49918a75 2513 result = -1;
c7c530cd 2514 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2515 result = 1;
2516 }
2517 return result;
2518}
2519
2520static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2521{
2522#if ELF_CLASS == ELFCLASS32
2523 struct elf_sym *syms = s->disas_symtab.elf32;
2524#else
2525 struct elf_sym *syms = s->disas_symtab.elf64;
2526#endif
2527
2528 // binary search
49918a75
PB
2529 struct elf_sym *sym;
2530
c7c530cd 2531 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2532 if (sym != NULL) {
49918a75
PB
2533 return s->disas_strtab + sym->st_name;
2534 }
2535
2536 return "";
2537}
2538
2539/* FIXME: This should use elf_ops.h */
2540static int symcmp(const void *s0, const void *s1)
2541{
2542 struct elf_sym *sym0 = (struct elf_sym *)s0;
2543 struct elf_sym *sym1 = (struct elf_sym *)s1;
2544 return (sym0->st_value < sym1->st_value)
2545 ? -1
2546 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2547}
2548
689f936f 2549/* Best attempt to load symbols from this ELF object. */
682674b8 2550static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2551{
682674b8 2552 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2553 uint64_t segsz;
682674b8 2554 struct elf_shdr *shdr;
b9475279
CV
2555 char *strings = NULL;
2556 struct syminfo *s = NULL;
2557 struct elf_sym *new_syms, *syms = NULL;
689f936f 2558
682674b8
RH
2559 shnum = hdr->e_shnum;
2560 i = shnum * sizeof(struct elf_shdr);
2561 shdr = (struct elf_shdr *)alloca(i);
2562 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2563 return;
2564 }
2565
2566 bswap_shdr(shdr, shnum);
2567 for (i = 0; i < shnum; ++i) {
2568 if (shdr[i].sh_type == SHT_SYMTAB) {
2569 sym_idx = i;
2570 str_idx = shdr[i].sh_link;
49918a75
PB
2571 goto found;
2572 }
689f936f 2573 }
682674b8
RH
2574
2575 /* There will be no symbol table if the file was stripped. */
2576 return;
689f936f
FB
2577
2578 found:
682674b8 2579 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2580 s = g_try_new(struct syminfo, 1);
682674b8 2581 if (!s) {
b9475279 2582 goto give_up;
682674b8 2583 }
5fafdf24 2584
1e06262d
PM
2585 segsz = shdr[str_idx].sh_size;
2586 s->disas_strtab = strings = g_try_malloc(segsz);
2587 if (!strings ||
2588 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2589 goto give_up;
682674b8 2590 }
49918a75 2591
1e06262d
PM
2592 segsz = shdr[sym_idx].sh_size;
2593 syms = g_try_malloc(segsz);
2594 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2595 goto give_up;
682674b8 2596 }
31e31b8a 2597
1e06262d
PM
2598 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2599 /* Implausibly large symbol table: give up rather than ploughing
2600 * on with the number of symbols calculation overflowing
2601 */
2602 goto give_up;
2603 }
2604 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2605 for (i = 0; i < nsyms; ) {
49918a75 2606 bswap_sym(syms + i);
682674b8
RH
2607 /* Throw away entries which we do not need. */
2608 if (syms[i].st_shndx == SHN_UNDEF
2609 || syms[i].st_shndx >= SHN_LORESERVE
2610 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2611 if (i < --nsyms) {
49918a75
PB
2612 syms[i] = syms[nsyms];
2613 }
682674b8 2614 } else {
49918a75 2615#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2616 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2617 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2618#endif
682674b8
RH
2619 syms[i].st_value += load_bias;
2620 i++;
2621 }
0774bed1 2622 }
49918a75 2623
b9475279
CV
2624 /* No "useful" symbol. */
2625 if (nsyms == 0) {
2626 goto give_up;
2627 }
2628
5d5c9930
RH
2629 /* Attempt to free the storage associated with the local symbols
2630 that we threw away. Whether or not this has any effect on the
2631 memory allocation depends on the malloc implementation and how
2632 many symbols we managed to discard. */
0ef9ea29 2633 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2634 if (new_syms == NULL) {
b9475279 2635 goto give_up;
5d5c9930 2636 }
8d79de6e 2637 syms = new_syms;
5d5c9930 2638
49918a75 2639 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2640
49918a75
PB
2641 s->disas_num_syms = nsyms;
2642#if ELF_CLASS == ELFCLASS32
2643 s->disas_symtab.elf32 = syms;
49918a75
PB
2644#else
2645 s->disas_symtab.elf64 = syms;
49918a75 2646#endif
682674b8 2647 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2648 s->next = syminfos;
2649 syminfos = s;
b9475279
CV
2650
2651 return;
2652
2653give_up:
0ef9ea29
PM
2654 g_free(s);
2655 g_free(strings);
2656 g_free(syms);
689f936f 2657}
31e31b8a 2658
768fe76e
YS
2659uint32_t get_elf_eflags(int fd)
2660{
2661 struct elfhdr ehdr;
2662 off_t offset;
2663 int ret;
2664
2665 /* Read ELF header */
2666 offset = lseek(fd, 0, SEEK_SET);
2667 if (offset == (off_t) -1) {
2668 return 0;
2669 }
2670 ret = read(fd, &ehdr, sizeof(ehdr));
2671 if (ret < sizeof(ehdr)) {
2672 return 0;
2673 }
2674 offset = lseek(fd, offset, SEEK_SET);
2675 if (offset == (off_t) -1) {
2676 return 0;
2677 }
2678
2679 /* Check ELF signature */
2680 if (!elf_check_ident(&ehdr)) {
2681 return 0;
2682 }
2683
2684 /* check header */
2685 bswap_ehdr(&ehdr);
2686 if (!elf_check_ehdr(&ehdr)) {
2687 return 0;
2688 }
2689
2690 /* return architecture id */
2691 return ehdr.e_flags;
2692}
2693
f0116c54 2694int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2695{
8e62a717 2696 struct image_info interp_info;
31e31b8a 2697 struct elfhdr elf_ex;
8e62a717 2698 char *elf_interpreter = NULL;
59baae9a 2699 char *scratch;
31e31b8a 2700
bf858897 2701 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2702
2703 load_elf_image(bprm->filename, bprm->fd, info,
2704 &elf_interpreter, bprm->buf);
31e31b8a 2705
bf858897
RH
2706 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2707 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2708 when we load the interpreter. */
2709 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2710
59baae9a
SB
2711 /* Do this so that we can load the interpreter, if need be. We will
2712 change some of these later */
2713 bprm->p = setup_arg_pages(bprm, info);
2714
2715 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2716 if (STACK_GROWS_DOWN) {
2717 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2718 bprm->p, info->stack_limit);
2719 info->file_string = bprm->p;
2720 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2721 bprm->p, info->stack_limit);
2722 info->env_strings = bprm->p;
2723 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2724 bprm->p, info->stack_limit);
2725 info->arg_strings = bprm->p;
2726 } else {
2727 info->arg_strings = bprm->p;
2728 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2729 bprm->p, info->stack_limit);
2730 info->env_strings = bprm->p;
2731 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2732 bprm->p, info->stack_limit);
2733 info->file_string = bprm->p;
2734 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2735 bprm->p, info->stack_limit);
2736 }
2737
59baae9a
SB
2738 g_free(scratch);
2739
e5fe0c52 2740 if (!bprm->p) {
bf858897
RH
2741 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2742 exit(-1);
379f6698 2743 }
379f6698 2744
8e62a717
RH
2745 if (elf_interpreter) {
2746 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2747
8e62a717
RH
2748 /* If the program interpreter is one of these two, then assume
2749 an iBCS2 image. Otherwise assume a native linux image. */
2750
2751 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2752 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2753 info->personality = PER_SVR4;
31e31b8a 2754
8e62a717
RH
2755 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2756 and some applications "depend" upon this behavior. Since
2757 we do not have the power to recompile these, we emulate
2758 the SVr4 behavior. Sigh. */
2759 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2760 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2761 }
c94cb6c9
SM
2762#ifdef TARGET_MIPS
2763 info->interp_fp_abi = interp_info.fp_abi;
2764#endif
31e31b8a
FB
2765 }
2766
8e62a717
RH
2767 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2768 info, (elf_interpreter ? &interp_info : NULL));
2769 info->start_stack = bprm->p;
2770
2771 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2772 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2773 point as a function descriptor. Do this after creating elf tables
2774 so that we copy the original program entry point into the AUXV. */
2775 if (elf_interpreter) {
8e78064e 2776 info->load_bias = interp_info.load_bias;
8e62a717 2777 info->entry = interp_info.entry;
bf858897 2778 free(elf_interpreter);
8e62a717 2779 }
31e31b8a 2780
edf8e2af
MW
2781#ifdef USE_ELF_CORE_DUMP
2782 bprm->core_dump = &elf_core_dump;
2783#endif
2784
31e31b8a
FB
2785 return 0;
2786}
2787
edf8e2af 2788#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2789/*
2790 * Definitions to generate Intel SVR4-like core files.
a2547a13 2791 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2792 * tacked on the front to prevent clashes with linux definitions,
2793 * and the typedef forms have been avoided. This is mostly like
2794 * the SVR4 structure, but more Linuxy, with things that Linux does
2795 * not support and which gdb doesn't really use excluded.
2796 *
2797 * Fields we don't dump (their contents is zero) in linux-user qemu
2798 * are marked with XXX.
2799 *
2800 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2801 *
2802 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2803 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2804 * the target resides):
2805 *
2806 * #define USE_ELF_CORE_DUMP
2807 *
2808 * Next you define type of register set used for dumping. ELF specification
2809 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2810 *
c227f099 2811 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2812 * #define ELF_NREG <number of registers>
c227f099 2813 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2814 *
edf8e2af
MW
2815 * Last step is to implement target specific function that copies registers
2816 * from given cpu into just specified register set. Prototype is:
2817 *
c227f099 2818 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2819 * const CPUArchState *env);
edf8e2af
MW
2820 *
2821 * Parameters:
2822 * regs - copy register values into here (allocated and zeroed by caller)
2823 * env - copy registers from here
2824 *
2825 * Example for ARM target is provided in this file.
2826 */
2827
2828/* An ELF note in memory */
2829struct memelfnote {
2830 const char *name;
2831 size_t namesz;
2832 size_t namesz_rounded;
2833 int type;
2834 size_t datasz;
80f5ce75 2835 size_t datasz_rounded;
edf8e2af
MW
2836 void *data;
2837 size_t notesz;
2838};
2839
a2547a13 2840struct target_elf_siginfo {
f8fd4fc4
PB
2841 abi_int si_signo; /* signal number */
2842 abi_int si_code; /* extra code */
2843 abi_int si_errno; /* errno */
edf8e2af
MW
2844};
2845
a2547a13
LD
2846struct target_elf_prstatus {
2847 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2848 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2849 abi_ulong pr_sigpend; /* XXX */
2850 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2851 target_pid_t pr_pid;
2852 target_pid_t pr_ppid;
2853 target_pid_t pr_pgrp;
2854 target_pid_t pr_sid;
edf8e2af
MW
2855 struct target_timeval pr_utime; /* XXX User time */
2856 struct target_timeval pr_stime; /* XXX System time */
2857 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2858 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2859 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2860 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2861};
2862
2863#define ELF_PRARGSZ (80) /* Number of chars for args */
2864
a2547a13 2865struct target_elf_prpsinfo {
edf8e2af
MW
2866 char pr_state; /* numeric process state */
2867 char pr_sname; /* char for pr_state */
2868 char pr_zomb; /* zombie */
2869 char pr_nice; /* nice val */
ca98ac83 2870 abi_ulong pr_flag; /* flags */
c227f099
AL
2871 target_uid_t pr_uid;
2872 target_gid_t pr_gid;
2873 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2874 /* Lots missing */
2875 char pr_fname[16]; /* filename of executable */
2876 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2877};
2878
2879/* Here is the structure in which status of each thread is captured. */
2880struct elf_thread_status {
72cf2d4f 2881 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2882 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2883#if 0
2884 elf_fpregset_t fpu; /* NT_PRFPREG */
2885 struct task_struct *thread;
2886 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2887#endif
2888 struct memelfnote notes[1];
2889 int num_notes;
2890};
2891
2892struct elf_note_info {
2893 struct memelfnote *notes;
a2547a13
LD
2894 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2895 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2896
b58deb34 2897 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
2898#if 0
2899 /*
2900 * Current version of ELF coredump doesn't support
2901 * dumping fp regs etc.
2902 */
2903 elf_fpregset_t *fpu;
2904 elf_fpxregset_t *xfpu;
2905 int thread_status_size;
2906#endif
2907 int notes_size;
2908 int numnote;
2909};
2910
2911struct vm_area_struct {
1a1c4db9
MI
2912 target_ulong vma_start; /* start vaddr of memory region */
2913 target_ulong vma_end; /* end vaddr of memory region */
2914 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2915 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2916};
2917
2918struct mm_struct {
72cf2d4f 2919 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2920 int mm_count; /* number of mappings */
2921};
2922
2923static struct mm_struct *vma_init(void);
2924static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2925static int vma_add_mapping(struct mm_struct *, target_ulong,
2926 target_ulong, abi_ulong);
edf8e2af
MW
2927static int vma_get_mapping_count(const struct mm_struct *);
2928static struct vm_area_struct *vma_first(const struct mm_struct *);
2929static struct vm_area_struct *vma_next(struct vm_area_struct *);
2930static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2931static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2932 unsigned long flags);
edf8e2af
MW
2933
2934static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2935static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2936 unsigned int, void *);
a2547a13
LD
2937static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2938static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2939static void fill_auxv_note(struct memelfnote *, const TaskState *);
2940static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2941static size_t note_size(const struct memelfnote *);
2942static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2943static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2944static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2945static int core_dump_filename(const TaskState *, char *, size_t);
2946
2947static int dump_write(int, const void *, size_t);
2948static int write_note(struct memelfnote *, int);
2949static int write_note_info(struct elf_note_info *, int);
2950
2951#ifdef BSWAP_NEEDED
a2547a13 2952static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2953{
ca98ac83
PB
2954 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2955 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2956 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2957 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2958 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2959 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2960 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2961 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2962 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2963 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2964 /* cpu times are not filled, so we skip them */
2965 /* regs should be in correct format already */
2966 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2967}
2968
a2547a13 2969static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2970{
ca98ac83 2971 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2972 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2973 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2974 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2975 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2976 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2977 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2978}
991f8f0c
RH
2979
2980static void bswap_note(struct elf_note *en)
2981{
2982 bswap32s(&en->n_namesz);
2983 bswap32s(&en->n_descsz);
2984 bswap32s(&en->n_type);
2985}
2986#else
2987static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2988static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2989static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2990#endif /* BSWAP_NEEDED */
2991
2992/*
2993 * Minimal support for linux memory regions. These are needed
2994 * when we are finding out what memory exactly belongs to
2995 * emulated process. No locks needed here, as long as
2996 * thread that received the signal is stopped.
2997 */
2998
2999static struct mm_struct *vma_init(void)
3000{
3001 struct mm_struct *mm;
3002
7267c094 3003 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3004 return (NULL);
3005
3006 mm->mm_count = 0;
72cf2d4f 3007 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3008
3009 return (mm);
3010}
3011
3012static void vma_delete(struct mm_struct *mm)
3013{
3014 struct vm_area_struct *vma;
3015
3016 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3017 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3018 g_free(vma);
edf8e2af 3019 }
7267c094 3020 g_free(mm);
edf8e2af
MW
3021}
3022
1a1c4db9
MI
3023static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3024 target_ulong end, abi_ulong flags)
edf8e2af
MW
3025{
3026 struct vm_area_struct *vma;
3027
7267c094 3028 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3029 return (-1);
3030
3031 vma->vma_start = start;
3032 vma->vma_end = end;
3033 vma->vma_flags = flags;
3034
72cf2d4f 3035 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3036 mm->mm_count++;
3037
3038 return (0);
3039}
3040
3041static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3042{
72cf2d4f 3043 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3044}
3045
3046static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3047{
72cf2d4f 3048 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3049}
3050
3051static int vma_get_mapping_count(const struct mm_struct *mm)
3052{
3053 return (mm->mm_count);
3054}
3055
3056/*
3057 * Calculate file (dump) size of given memory region.
3058 */
3059static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3060{
3061 /* if we cannot even read the first page, skip it */
3062 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3063 return (0);
3064
3065 /*
3066 * Usually we don't dump executable pages as they contain
3067 * non-writable code that debugger can read directly from
3068 * target library etc. However, thread stacks are marked
3069 * also executable so we read in first page of given region
3070 * and check whether it contains elf header. If there is
3071 * no elf header, we dump it.
3072 */
3073 if (vma->vma_flags & PROT_EXEC) {
3074 char page[TARGET_PAGE_SIZE];
3075
3076 copy_from_user(page, vma->vma_start, sizeof (page));
3077 if ((page[EI_MAG0] == ELFMAG0) &&
3078 (page[EI_MAG1] == ELFMAG1) &&
3079 (page[EI_MAG2] == ELFMAG2) &&
3080 (page[EI_MAG3] == ELFMAG3)) {
3081 /*
3082 * Mappings are possibly from ELF binary. Don't dump
3083 * them.
3084 */
3085 return (0);
3086 }
3087 }
3088
3089 return (vma->vma_end - vma->vma_start);
3090}
3091
1a1c4db9 3092static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3093 unsigned long flags)
edf8e2af
MW
3094{
3095 struct mm_struct *mm = (struct mm_struct *)priv;
3096
edf8e2af
MW
3097 vma_add_mapping(mm, start, end, flags);
3098 return (0);
3099}
3100
3101static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3102 unsigned int sz, void *data)
edf8e2af
MW
3103{
3104 unsigned int namesz;
3105
3106 namesz = strlen(name) + 1;
3107 note->name = name;
3108 note->namesz = namesz;
3109 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3110 note->type = type;
80f5ce75
LV
3111 note->datasz = sz;
3112 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3113
edf8e2af
MW
3114 note->data = data;
3115
3116 /*
3117 * We calculate rounded up note size here as specified by
3118 * ELF document.
3119 */
3120 note->notesz = sizeof (struct elf_note) +
80f5ce75 3121 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3122}
3123
3124static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3125 uint32_t flags)
edf8e2af
MW
3126{
3127 (void) memset(elf, 0, sizeof(*elf));
3128
3129 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3130 elf->e_ident[EI_CLASS] = ELF_CLASS;
3131 elf->e_ident[EI_DATA] = ELF_DATA;
3132 elf->e_ident[EI_VERSION] = EV_CURRENT;
3133 elf->e_ident[EI_OSABI] = ELF_OSABI;
3134
3135 elf->e_type = ET_CORE;
3136 elf->e_machine = machine;
3137 elf->e_version = EV_CURRENT;
3138 elf->e_phoff = sizeof(struct elfhdr);
3139 elf->e_flags = flags;
3140 elf->e_ehsize = sizeof(struct elfhdr);
3141 elf->e_phentsize = sizeof(struct elf_phdr);
3142 elf->e_phnum = segs;
3143
edf8e2af 3144 bswap_ehdr(elf);
edf8e2af
MW
3145}
3146
3147static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3148{
3149 phdr->p_type = PT_NOTE;
3150 phdr->p_offset = offset;
3151 phdr->p_vaddr = 0;
3152 phdr->p_paddr = 0;
3153 phdr->p_filesz = sz;
3154 phdr->p_memsz = 0;
3155 phdr->p_flags = 0;
3156 phdr->p_align = 0;
3157
991f8f0c 3158 bswap_phdr(phdr, 1);
edf8e2af
MW
3159}
3160
3161static size_t note_size(const struct memelfnote *note)
3162{
3163 return (note->notesz);
3164}
3165
a2547a13 3166static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3167 const TaskState *ts, int signr)
edf8e2af
MW
3168{
3169 (void) memset(prstatus, 0, sizeof (*prstatus));
3170 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3171 prstatus->pr_pid = ts->ts_tid;
3172 prstatus->pr_ppid = getppid();
3173 prstatus->pr_pgrp = getpgrp();
3174 prstatus->pr_sid = getsid(0);
3175
edf8e2af 3176 bswap_prstatus(prstatus);
edf8e2af
MW
3177}
3178
a2547a13 3179static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3180{
900cfbca 3181 char *base_filename;
edf8e2af
MW
3182 unsigned int i, len;
3183
3184 (void) memset(psinfo, 0, sizeof (*psinfo));
3185
3186 len = ts->info->arg_end - ts->info->arg_start;
3187 if (len >= ELF_PRARGSZ)
3188 len = ELF_PRARGSZ - 1;
3189 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3190 return -EFAULT;
3191 for (i = 0; i < len; i++)
3192 if (psinfo->pr_psargs[i] == 0)
3193 psinfo->pr_psargs[i] = ' ';
3194 psinfo->pr_psargs[len] = 0;
3195
3196 psinfo->pr_pid = getpid();
3197 psinfo->pr_ppid = getppid();
3198 psinfo->pr_pgrp = getpgrp();
3199 psinfo->pr_sid = getsid(0);
3200 psinfo->pr_uid = getuid();
3201 psinfo->pr_gid = getgid();
3202
900cfbca
JM
3203 base_filename = g_path_get_basename(ts->bprm->filename);
3204 /*
3205 * Using strncpy here is fine: at max-length,
3206 * this field is not NUL-terminated.
3207 */
edf8e2af 3208 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3209 sizeof(psinfo->pr_fname));
edf8e2af 3210
900cfbca 3211 g_free(base_filename);
edf8e2af 3212 bswap_psinfo(psinfo);
edf8e2af
MW
3213 return (0);
3214}
3215
3216static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3217{
3218 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3219 elf_addr_t orig_auxv = auxv;
edf8e2af 3220 void *ptr;
125b0f55 3221 int len = ts->info->auxv_len;
edf8e2af
MW
3222
3223 /*
3224 * Auxiliary vector is stored in target process stack. It contains
3225 * {type, value} pairs that we need to dump into note. This is not
3226 * strictly necessary but we do it here for sake of completeness.
3227 */
3228
edf8e2af
MW
3229 /* read in whole auxv vector and copy it to memelfnote */
3230 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3231 if (ptr != NULL) {
3232 fill_note(note, "CORE", NT_AUXV, len, ptr);
3233 unlock_user(ptr, auxv, len);
3234 }
3235}
3236
3237/*
3238 * Constructs name of coredump file. We have following convention
3239 * for the name:
3240 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3241 *
3242 * Returns 0 in case of success, -1 otherwise (errno is set).
3243 */
3244static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3245 size_t bufsize)
edf8e2af
MW
3246{
3247 char timestamp[64];
edf8e2af
MW
3248 char *base_filename = NULL;
3249 struct timeval tv;
3250 struct tm tm;
3251
3252 assert(bufsize >= PATH_MAX);
3253
3254 if (gettimeofday(&tv, NULL) < 0) {
3255 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3256 strerror(errno));
edf8e2af
MW
3257 return (-1);
3258 }
3259
b8da57fa 3260 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3261 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3262 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3263 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3264 base_filename, timestamp, (int)getpid());
b8da57fa 3265 g_free(base_filename);
edf8e2af
MW
3266
3267 return (0);
3268}
3269
3270static int dump_write(int fd, const void *ptr, size_t size)
3271{
3272 const char *bufp = (const char *)ptr;
3273 ssize_t bytes_written, bytes_left;
3274 struct rlimit dumpsize;
3275 off_t pos;
3276
3277 bytes_written = 0;
3278 getrlimit(RLIMIT_CORE, &dumpsize);
3279 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3280 if (errno == ESPIPE) { /* not a seekable stream */
3281 bytes_left = size;
3282 } else {
3283 return pos;
3284 }
3285 } else {
3286 if (dumpsize.rlim_cur <= pos) {
3287 return -1;
3288 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3289 bytes_left = size;
3290 } else {
3291 size_t limit_left=dumpsize.rlim_cur - pos;
3292 bytes_left = limit_left >= size ? size : limit_left ;
3293 }
3294 }
3295
3296 /*
3297 * In normal conditions, single write(2) should do but
3298 * in case of socket etc. this mechanism is more portable.
3299 */
3300 do {
3301 bytes_written = write(fd, bufp, bytes_left);
3302 if (bytes_written < 0) {
3303 if (errno == EINTR)
3304 continue;
3305 return (-1);
3306 } else if (bytes_written == 0) { /* eof */
3307 return (-1);
3308 }
3309 bufp += bytes_written;
3310 bytes_left -= bytes_written;
3311 } while (bytes_left > 0);
3312
3313 return (0);
3314}
3315
3316static int write_note(struct memelfnote *men, int fd)
3317{
3318 struct elf_note en;
3319
3320 en.n_namesz = men->namesz;
3321 en.n_type = men->type;
3322 en.n_descsz = men->datasz;
3323
edf8e2af 3324 bswap_note(&en);
edf8e2af
MW
3325
3326 if (dump_write(fd, &en, sizeof(en)) != 0)
3327 return (-1);
3328 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3329 return (-1);
80f5ce75 3330 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3331 return (-1);
3332
3333 return (0);
3334}
3335
9349b4f9 3336static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3337{
0429a971
AF
3338 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3339 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3340 struct elf_thread_status *ets;
3341
7267c094 3342 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3343 ets->num_notes = 1; /* only prstatus is dumped */
3344 fill_prstatus(&ets->prstatus, ts, 0);
3345 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3346 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3347 &ets->prstatus);
edf8e2af 3348
72cf2d4f 3349 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3350
3351 info->notes_size += note_size(&ets->notes[0]);
3352}
3353
6afafa86
PM
3354static void init_note_info(struct elf_note_info *info)
3355{
3356 /* Initialize the elf_note_info structure so that it is at
3357 * least safe to call free_note_info() on it. Must be
3358 * called before calling fill_note_info().
3359 */
3360 memset(info, 0, sizeof (*info));
3361 QTAILQ_INIT(&info->thread_list);
3362}
3363
edf8e2af 3364static int fill_note_info(struct elf_note_info *info,
9349b4f9 3365 long signr, const CPUArchState *env)
edf8e2af
MW
3366{
3367#define NUMNOTES 3
0429a971
AF
3368 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3369 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3370 int i;
3371
c78d65e8 3372 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3373 if (info->notes == NULL)
3374 return (-ENOMEM);
7267c094 3375 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3376 if (info->prstatus == NULL)
3377 return (-ENOMEM);
7267c094 3378 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3379 if (info->prstatus == NULL)
3380 return (-ENOMEM);
3381
3382 /*
3383 * First fill in status (and registers) of current thread
3384 * including process info & aux vector.
3385 */
3386 fill_prstatus(info->prstatus, ts, signr);
3387 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3388 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3389 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3390 fill_psinfo(info->psinfo, ts);
3391 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3392 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3393 fill_auxv_note(&info->notes[2], ts);
3394 info->numnote = 3;
3395
3396 info->notes_size = 0;
3397 for (i = 0; i < info->numnote; i++)
3398 info->notes_size += note_size(&info->notes[i]);
3399
3400 /* read and fill status of all threads */
3401 cpu_list_lock();
bdc44640 3402 CPU_FOREACH(cpu) {
a2247f8e 3403 if (cpu == thread_cpu) {
edf8e2af 3404 continue;
182735ef
AF
3405 }
3406 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3407 }
3408 cpu_list_unlock();
3409
3410 return (0);
3411}
3412
3413static void free_note_info(struct elf_note_info *info)
3414{
3415 struct elf_thread_status *ets;
3416
72cf2d4f
BS
3417 while (!QTAILQ_EMPTY(&info->thread_list)) {
3418 ets = QTAILQ_FIRST(&info->thread_list);
3419 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3420 g_free(ets);
edf8e2af
MW
3421 }
3422
7267c094
AL
3423 g_free(info->prstatus);
3424 g_free(info->psinfo);
3425 g_free(info->notes);
edf8e2af
MW
3426}
3427
3428static int write_note_info(struct elf_note_info *info, int fd)
3429{
3430 struct elf_thread_status *ets;
3431 int i, error = 0;
3432
3433 /* write prstatus, psinfo and auxv for current thread */
3434 for (i = 0; i < info->numnote; i++)
3435 if ((error = write_note(&info->notes[i], fd)) != 0)
3436 return (error);
3437
3438 /* write prstatus for each thread */
52a53afe 3439 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3440 if ((error = write_note(&ets->notes[0], fd)) != 0)
3441 return (error);
3442 }
3443
3444 return (0);
3445}
3446
3447/*
3448 * Write out ELF coredump.
3449 *
3450 * See documentation of ELF object file format in:
3451 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3452 *
3453 * Coredump format in linux is following:
3454 *
3455 * 0 +----------------------+ \
3456 * | ELF header | ET_CORE |
3457 * +----------------------+ |
3458 * | ELF program headers | |--- headers
3459 * | - NOTE section | |
3460 * | - PT_LOAD sections | |
3461 * +----------------------+ /
3462 * | NOTEs: |
3463 * | - NT_PRSTATUS |
3464 * | - NT_PRSINFO |
3465 * | - NT_AUXV |
3466 * +----------------------+ <-- aligned to target page
3467 * | Process memory dump |
3468 * : :
3469 * . .
3470 * : :
3471 * | |
3472 * +----------------------+
3473 *
3474 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3475 * NT_PRSINFO -> struct elf_prpsinfo
3476 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3477 *
3478 * Format follows System V format as close as possible. Current
3479 * version limitations are as follows:
3480 * - no floating point registers are dumped
3481 *
3482 * Function returns 0 in case of success, negative errno otherwise.
3483 *
3484 * TODO: make this work also during runtime: it should be
3485 * possible to force coredump from running process and then
3486 * continue processing. For example qemu could set up SIGUSR2
3487 * handler (provided that target process haven't registered
3488 * handler for that) that does the dump when signal is received.
3489 */
9349b4f9 3490static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3491{
0429a971
AF
3492 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3493 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3494 struct vm_area_struct *vma = NULL;
3495 char corefile[PATH_MAX];
3496 struct elf_note_info info;
3497 struct elfhdr elf;
3498 struct elf_phdr phdr;
3499 struct rlimit dumpsize;
3500 struct mm_struct *mm = NULL;
3501 off_t offset = 0, data_offset = 0;
3502 int segs = 0;
3503 int fd = -1;
3504
6afafa86
PM
3505 init_note_info(&info);
3506
edf8e2af
MW
3507 errno = 0;
3508 getrlimit(RLIMIT_CORE, &dumpsize);
3509 if (dumpsize.rlim_cur == 0)
d97ef72e 3510 return 0;
edf8e2af
MW
3511
3512 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3513 return (-errno);
3514
3515 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3516 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3517 return (-errno);
3518
3519 /*
3520 * Walk through target process memory mappings and
3521 * set up structure containing this information. After
3522 * this point vma_xxx functions can be used.
3523 */
3524 if ((mm = vma_init()) == NULL)
3525 goto out;
3526
3527 walk_memory_regions(mm, vma_walker);
3528 segs = vma_get_mapping_count(mm);
3529
3530 /*
3531 * Construct valid coredump ELF header. We also
3532 * add one more segment for notes.
3533 */
3534 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3535 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3536 goto out;
3537
b6af0975 3538 /* fill in the in-memory version of notes */
edf8e2af
MW
3539 if (fill_note_info(&info, signr, env) < 0)
3540 goto out;
3541
3542 offset += sizeof (elf); /* elf header */
3543 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3544
3545 /* write out notes program header */
3546 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3547
3548 offset += info.notes_size;
3549 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3550 goto out;
3551
3552 /*
3553 * ELF specification wants data to start at page boundary so
3554 * we align it here.
3555 */
80f5ce75 3556 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3557
3558 /*
3559 * Write program headers for memory regions mapped in
3560 * the target process.
3561 */
3562 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3563 (void) memset(&phdr, 0, sizeof (phdr));
3564
3565 phdr.p_type = PT_LOAD;
3566 phdr.p_offset = offset;
3567 phdr.p_vaddr = vma->vma_start;
3568 phdr.p_paddr = 0;
3569 phdr.p_filesz = vma_dump_size(vma);
3570 offset += phdr.p_filesz;
3571 phdr.p_memsz = vma->vma_end - vma->vma_start;
3572 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3573 if (vma->vma_flags & PROT_WRITE)
3574 phdr.p_flags |= PF_W;
3575 if (vma->vma_flags & PROT_EXEC)
3576 phdr.p_flags |= PF_X;
3577 phdr.p_align = ELF_EXEC_PAGESIZE;
3578
80f5ce75 3579 bswap_phdr(&phdr, 1);
772034b6
PM
3580 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3581 goto out;
3582 }
edf8e2af
MW
3583 }
3584
3585 /*
3586 * Next we write notes just after program headers. No
3587 * alignment needed here.
3588 */
3589 if (write_note_info(&info, fd) < 0)
3590 goto out;
3591
3592 /* align data to page boundary */
edf8e2af
MW
3593 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3594 goto out;
3595
3596 /*
3597 * Finally we can dump process memory into corefile as well.
3598 */
3599 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3600 abi_ulong addr;
3601 abi_ulong end;
3602
3603 end = vma->vma_start + vma_dump_size(vma);
3604
3605 for (addr = vma->vma_start; addr < end;
d97ef72e 3606 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3607 char page[TARGET_PAGE_SIZE];
3608 int error;
3609
3610 /*
3611 * Read in page from target process memory and
3612 * write it to coredump file.
3613 */
3614 error = copy_from_user(page, addr, sizeof (page));
3615 if (error != 0) {
49995e17 3616 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3617 addr);
edf8e2af
MW
3618 errno = -error;
3619 goto out;
3620 }
3621 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3622 goto out;
3623 }
3624 }
3625
d97ef72e 3626 out:
edf8e2af
MW
3627 free_note_info(&info);
3628 if (mm != NULL)
3629 vma_delete(mm);
3630 (void) close(fd);
3631
3632 if (errno != 0)
3633 return (-errno);
3634 return (0);
3635}
edf8e2af
MW
3636#endif /* USE_ELF_CORE_DUMP */
3637
e5fe0c52
PB
3638void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3639{
3640 init_thread(regs, infop);
3641}
This page took 1.486726 seconds and 4 git commands to generate.