]>
Commit | Line | Data |
---|---|---|
5fafdf24 | 1 | /* |
16406950 PB |
2 | * ARM kernel loader. |
3 | * | |
9ee6e8bb | 4 | * Copyright (c) 2006-2007 CodeSourcery. |
16406950 PB |
5 | * Written by Paul Brook |
6 | * | |
8e31bf38 | 7 | * This code is licensed under the GPL. |
16406950 PB |
8 | */ |
9 | ||
12b16722 | 10 | #include "qemu/osdep.h" |
a8d25326 | 11 | #include "qemu-common.h" |
c0dbca36 | 12 | #include "qemu/error-report.h" |
da34e65c | 13 | #include "qapi/error.h" |
b77257d7 | 14 | #include <libfdt.h> |
83c9f4ca | 15 | #include "hw/hw.h" |
12ec8bd5 | 16 | #include "hw/arm/boot.h" |
d8b1ae42 | 17 | #include "hw/arm/linux-boot-if.h" |
baf6b681 | 18 | #include "sysemu/kvm.h" |
9c17d615 | 19 | #include "sysemu/sysemu.h" |
9695200a | 20 | #include "sysemu/numa.h" |
83c9f4ca PB |
21 | #include "hw/boards.h" |
22 | #include "hw/loader.h" | |
ca20cf32 | 23 | #include "elf.h" |
9c17d615 | 24 | #include "sysemu/device_tree.h" |
1de7afc9 | 25 | #include "qemu/config-file.h" |
922a01a0 | 26 | #include "qemu/option.h" |
2198a121 | 27 | #include "exec/address-spaces.h" |
ea358872 | 28 | #include "qemu/units.h" |
16406950 | 29 | |
4d9ebf75 MH |
30 | /* Kernel boot protocol is specified in the kernel docs |
31 | * Documentation/arm/Booting and Documentation/arm64/booting.txt | |
32 | * They have different preferred image load offsets from system RAM base. | |
33 | */ | |
f831f955 NH |
34 | #define KERNEL_ARGS_ADDR 0x100 |
35 | #define KERNEL_NOLOAD_ADDR 0x02000000 | |
36 | #define KERNEL_LOAD_ADDR 0x00010000 | |
4d9ebf75 | 37 | #define KERNEL64_LOAD_ADDR 0x00080000 |
16406950 | 38 | |
68115ed5 AB |
39 | #define ARM64_TEXT_OFFSET_OFFSET 8 |
40 | #define ARM64_MAGIC_OFFSET 56 | |
41 | ||
ea358872 SH |
42 | #define BOOTLOADER_MAX_SIZE (4 * KiB) |
43 | ||
3b77f6c3 IM |
44 | AddressSpace *arm_boot_address_space(ARMCPU *cpu, |
45 | const struct arm_boot_info *info) | |
9f43d4c3 PM |
46 | { |
47 | /* Return the address space to use for bootloader reads and writes. | |
48 | * We prefer the secure address space if the CPU has it and we're | |
49 | * going to boot the guest into it. | |
50 | */ | |
51 | int asidx; | |
52 | CPUState *cs = CPU(cpu); | |
53 | ||
54 | if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { | |
55 | asidx = ARMASIdx_S; | |
56 | } else { | |
57 | asidx = ARMASIdx_NS; | |
58 | } | |
59 | ||
60 | return cpu_get_address_space(cs, asidx); | |
61 | } | |
62 | ||
47b1da81 | 63 | typedef enum { |
84e59397 PC |
64 | FIXUP_NONE = 0, /* do nothing */ |
65 | FIXUP_TERMINATOR, /* end of insns */ | |
66 | FIXUP_BOARDID, /* overwrite with board ID number */ | |
10b8ec73 | 67 | FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ |
751ebc13 RPB |
68 | FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */ |
69 | FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */ | |
70 | FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */ | |
71 | FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */ | |
84e59397 PC |
72 | FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ |
73 | FIXUP_BOOTREG, /* overwrite with boot register address */ | |
74 | FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ | |
47b1da81 PM |
75 | FIXUP_MAX, |
76 | } FixupType; | |
77 | ||
78 | typedef struct ARMInsnFixup { | |
79 | uint32_t insn; | |
80 | FixupType fixup; | |
81 | } ARMInsnFixup; | |
82 | ||
4d9ebf75 MH |
83 | static const ARMInsnFixup bootloader_aarch64[] = { |
84 | { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ | |
85 | { 0xaa1f03e1 }, /* mov x1, xzr */ | |
86 | { 0xaa1f03e2 }, /* mov x2, xzr */ | |
87 | { 0xaa1f03e3 }, /* mov x3, xzr */ | |
88 | { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ | |
89 | { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ | |
751ebc13 RPB |
90 | { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */ |
91 | { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */ | |
92 | { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */ | |
93 | { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */ | |
4d9ebf75 MH |
94 | { 0, FIXUP_TERMINATOR } |
95 | }; | |
96 | ||
10b8ec73 PC |
97 | /* A very small bootloader: call the board-setup code (if needed), |
98 | * set r0-r2, then jump to the kernel. | |
99 | * If we're not calling boot setup code then we don't copy across | |
100 | * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. | |
101 | */ | |
102 | ||
47b1da81 | 103 | static const ARMInsnFixup bootloader[] = { |
b4850e5a | 104 | { 0xe28fe004 }, /* add lr, pc, #4 */ |
10b8ec73 PC |
105 | { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ |
106 | { 0, FIXUP_BOARD_SETUP }, | |
107 | #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 | |
47b1da81 PM |
108 | { 0xe3a00000 }, /* mov r0, #0 */ |
109 | { 0xe59f1004 }, /* ldr r1, [pc, #4] */ | |
110 | { 0xe59f2004 }, /* ldr r2, [pc, #4] */ | |
111 | { 0xe59ff004 }, /* ldr pc, [pc, #4] */ | |
112 | { 0, FIXUP_BOARDID }, | |
751ebc13 RPB |
113 | { 0, FIXUP_ARGPTR_LO }, |
114 | { 0, FIXUP_ENTRYPOINT_LO }, | |
47b1da81 | 115 | { 0, FIXUP_TERMINATOR } |
16406950 PB |
116 | }; |
117 | ||
9d5ba9bf ML |
118 | /* Handling for secondary CPU boot in a multicore system. |
119 | * Unlike the uniprocessor/primary CPU boot, this is platform | |
120 | * dependent. The default code here is based on the secondary | |
121 | * CPU boot protocol used on realview/vexpress boards, with | |
122 | * some parameterisation to increase its flexibility. | |
123 | * QEMU platform models for which this code is not appropriate | |
124 | * should override write_secondary_boot and secondary_cpu_reset_hook | |
125 | * instead. | |
126 | * | |
127 | * This code enables the interrupt controllers for the secondary | |
128 | * CPUs and then puts all the secondary CPUs into a loop waiting | |
129 | * for an interprocessor interrupt and polling a configurable | |
130 | * location for the kernel secondary CPU entry point. | |
131 | */ | |
bf471f79 PM |
132 | #define DSB_INSN 0xf57ff04f |
133 | #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ | |
134 | ||
47b1da81 PM |
135 | static const ARMInsnFixup smpboot[] = { |
136 | { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ | |
137 | { 0xe59f0028 }, /* ldr r0, bootreg_addr */ | |
138 | { 0xe3a01001 }, /* mov r1, #1 */ | |
139 | { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ | |
140 | { 0xe3a010ff }, /* mov r1, #0xff */ | |
141 | { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ | |
142 | { 0, FIXUP_DSB }, /* dsb */ | |
143 | { 0xe320f003 }, /* wfi */ | |
144 | { 0xe5901000 }, /* ldr r1, [r0] */ | |
145 | { 0xe1110001 }, /* tst r1, r1 */ | |
146 | { 0x0afffffb }, /* beq <wfi> */ | |
147 | { 0xe12fff11 }, /* bx r1 */ | |
148 | { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ | |
149 | { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ | |
150 | { 0, FIXUP_TERMINATOR } | |
9ee6e8bb PB |
151 | }; |
152 | ||
47b1da81 | 153 | static void write_bootloader(const char *name, hwaddr addr, |
9f43d4c3 PM |
154 | const ARMInsnFixup *insns, uint32_t *fixupcontext, |
155 | AddressSpace *as) | |
47b1da81 PM |
156 | { |
157 | /* Fix up the specified bootloader fragment and write it into | |
158 | * guest memory using rom_add_blob_fixed(). fixupcontext is | |
159 | * an array giving the values to write in for the fixup types | |
160 | * which write a value into the code array. | |
161 | */ | |
162 | int i, len; | |
163 | uint32_t *code; | |
164 | ||
165 | len = 0; | |
166 | while (insns[len].fixup != FIXUP_TERMINATOR) { | |
167 | len++; | |
168 | } | |
169 | ||
170 | code = g_new0(uint32_t, len); | |
171 | ||
172 | for (i = 0; i < len; i++) { | |
173 | uint32_t insn = insns[i].insn; | |
174 | FixupType fixup = insns[i].fixup; | |
175 | ||
176 | switch (fixup) { | |
177 | case FIXUP_NONE: | |
178 | break; | |
179 | case FIXUP_BOARDID: | |
10b8ec73 | 180 | case FIXUP_BOARD_SETUP: |
751ebc13 RPB |
181 | case FIXUP_ARGPTR_LO: |
182 | case FIXUP_ARGPTR_HI: | |
183 | case FIXUP_ENTRYPOINT_LO: | |
184 | case FIXUP_ENTRYPOINT_HI: | |
47b1da81 PM |
185 | case FIXUP_GIC_CPU_IF: |
186 | case FIXUP_BOOTREG: | |
187 | case FIXUP_DSB: | |
188 | insn = fixupcontext[fixup]; | |
189 | break; | |
190 | default: | |
191 | abort(); | |
192 | } | |
193 | code[i] = tswap32(insn); | |
194 | } | |
195 | ||
ea358872 SH |
196 | assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE); |
197 | ||
9f43d4c3 | 198 | rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); |
47b1da81 PM |
199 | |
200 | g_free(code); | |
201 | } | |
202 | ||
9543b0cd | 203 | static void default_write_secondary(ARMCPU *cpu, |
9d5ba9bf ML |
204 | const struct arm_boot_info *info) |
205 | { | |
47b1da81 | 206 | uint32_t fixupcontext[FIXUP_MAX]; |
9f43d4c3 | 207 | AddressSpace *as = arm_boot_address_space(cpu, info); |
47b1da81 PM |
208 | |
209 | fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; | |
210 | fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; | |
211 | if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { | |
212 | fixupcontext[FIXUP_DSB] = DSB_INSN; | |
213 | } else { | |
214 | fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; | |
9d5ba9bf | 215 | } |
47b1da81 PM |
216 | |
217 | write_bootloader("smpboot", info->smp_loader_start, | |
9f43d4c3 | 218 | smpboot, fixupcontext, as); |
9d5ba9bf ML |
219 | } |
220 | ||
716536a9 AB |
221 | void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, |
222 | const struct arm_boot_info *info, | |
223 | hwaddr mvbar_addr) | |
224 | { | |
9f43d4c3 | 225 | AddressSpace *as = arm_boot_address_space(cpu, info); |
716536a9 AB |
226 | int n; |
227 | uint32_t mvbar_blob[] = { | |
228 | /* mvbar_addr: secure monitor vectors | |
229 | * Default unimplemented and unused vectors to spin. Makes it | |
230 | * easier to debug (as opposed to the CPU running away). | |
231 | */ | |
232 | 0xeafffffe, /* (spin) */ | |
233 | 0xeafffffe, /* (spin) */ | |
234 | 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ | |
235 | 0xeafffffe, /* (spin) */ | |
236 | 0xeafffffe, /* (spin) */ | |
237 | 0xeafffffe, /* (spin) */ | |
238 | 0xeafffffe, /* (spin) */ | |
239 | 0xeafffffe, /* (spin) */ | |
240 | }; | |
241 | uint32_t board_setup_blob[] = { | |
242 | /* board setup addr */ | |
243 | 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ | |
244 | 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ | |
245 | 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ | |
246 | 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ | |
247 | 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ | |
248 | 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ | |
249 | 0xe1600070, /* smc #0 ;call monitor to flush SCR */ | |
250 | 0xe1a0f001, /* mov pc, r1 ;return */ | |
251 | }; | |
252 | ||
253 | /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ | |
254 | assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); | |
255 | ||
256 | /* check that these blobs don't overlap */ | |
257 | assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) | |
258 | || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); | |
259 | ||
260 | for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { | |
261 | mvbar_blob[n] = tswap32(mvbar_blob[n]); | |
262 | } | |
9f43d4c3 PM |
263 | rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), |
264 | mvbar_addr, as); | |
716536a9 AB |
265 | |
266 | for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { | |
267 | board_setup_blob[n] = tswap32(board_setup_blob[n]); | |
268 | } | |
9f43d4c3 PM |
269 | rom_add_blob_fixed_as("board-setup", board_setup_blob, |
270 | sizeof(board_setup_blob), info->board_setup_addr, as); | |
716536a9 AB |
271 | } |
272 | ||
5d309320 | 273 | static void default_reset_secondary(ARMCPU *cpu, |
9d5ba9bf ML |
274 | const struct arm_boot_info *info) |
275 | { | |
9f43d4c3 | 276 | AddressSpace *as = arm_boot_address_space(cpu, info); |
4df81c6e | 277 | CPUState *cs = CPU(cpu); |
5d309320 | 278 | |
9f43d4c3 | 279 | address_space_stl_notdirty(as, info->smp_bootreg_addr, |
42874d3a | 280 | 0, MEMTXATTRS_UNSPECIFIED, NULL); |
4df81c6e | 281 | cpu_set_pc(cs, info->smp_loader_start); |
9d5ba9bf ML |
282 | } |
283 | ||
83bfffec PM |
284 | static inline bool have_dtb(const struct arm_boot_info *info) |
285 | { | |
286 | return info->dtb_filename || info->get_dtb; | |
287 | } | |
288 | ||
52b43737 | 289 | #define WRITE_WORD(p, value) do { \ |
9f43d4c3 | 290 | address_space_stl_notdirty(as, p, value, \ |
42874d3a | 291 | MEMTXATTRS_UNSPECIFIED, NULL); \ |
52b43737 PB |
292 | p += 4; \ |
293 | } while (0) | |
294 | ||
9f43d4c3 | 295 | static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) |
16406950 | 296 | { |
761c9eb0 | 297 | int initrd_size = info->initrd_size; |
a8170e5e AK |
298 | hwaddr base = info->loader_start; |
299 | hwaddr p; | |
16406950 | 300 | |
52b43737 | 301 | p = base + KERNEL_ARGS_ADDR; |
16406950 | 302 | /* ATAG_CORE */ |
52b43737 PB |
303 | WRITE_WORD(p, 5); |
304 | WRITE_WORD(p, 0x54410001); | |
305 | WRITE_WORD(p, 1); | |
306 | WRITE_WORD(p, 0x1000); | |
307 | WRITE_WORD(p, 0); | |
16406950 | 308 | /* ATAG_MEM */ |
f93eb9ff | 309 | /* TODO: handle multiple chips on one ATAG list */ |
52b43737 PB |
310 | WRITE_WORD(p, 4); |
311 | WRITE_WORD(p, 0x54410002); | |
312 | WRITE_WORD(p, info->ram_size); | |
313 | WRITE_WORD(p, info->loader_start); | |
16406950 PB |
314 | if (initrd_size) { |
315 | /* ATAG_INITRD2 */ | |
52b43737 PB |
316 | WRITE_WORD(p, 4); |
317 | WRITE_WORD(p, 0x54420005); | |
fc53b7d4 | 318 | WRITE_WORD(p, info->initrd_start); |
52b43737 | 319 | WRITE_WORD(p, initrd_size); |
16406950 | 320 | } |
f93eb9ff | 321 | if (info->kernel_cmdline && *info->kernel_cmdline) { |
16406950 PB |
322 | /* ATAG_CMDLINE */ |
323 | int cmdline_size; | |
324 | ||
f93eb9ff | 325 | cmdline_size = strlen(info->kernel_cmdline); |
9f43d4c3 PM |
326 | address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, |
327 | (const uint8_t *)info->kernel_cmdline, | |
328 | cmdline_size + 1); | |
16406950 | 329 | cmdline_size = (cmdline_size >> 2) + 1; |
52b43737 PB |
330 | WRITE_WORD(p, cmdline_size + 2); |
331 | WRITE_WORD(p, 0x54410009); | |
332 | p += cmdline_size * 4; | |
16406950 | 333 | } |
f93eb9ff AZ |
334 | if (info->atag_board) { |
335 | /* ATAG_BOARD */ | |
336 | int atag_board_len; | |
52b43737 | 337 | uint8_t atag_board_buf[0x1000]; |
f93eb9ff | 338 | |
52b43737 PB |
339 | atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; |
340 | WRITE_WORD(p, (atag_board_len + 8) >> 2); | |
341 | WRITE_WORD(p, 0x414f4d50); | |
9f43d4c3 PM |
342 | address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, |
343 | atag_board_buf, atag_board_len); | |
f93eb9ff AZ |
344 | p += atag_board_len; |
345 | } | |
16406950 | 346 | /* ATAG_END */ |
52b43737 PB |
347 | WRITE_WORD(p, 0); |
348 | WRITE_WORD(p, 0); | |
16406950 PB |
349 | } |
350 | ||
9f43d4c3 PM |
351 | static void set_kernel_args_old(const struct arm_boot_info *info, |
352 | AddressSpace *as) | |
2b8f2d41 | 353 | { |
a8170e5e | 354 | hwaddr p; |
52b43737 | 355 | const char *s; |
761c9eb0 | 356 | int initrd_size = info->initrd_size; |
a8170e5e | 357 | hwaddr base = info->loader_start; |
2b8f2d41 AZ |
358 | |
359 | /* see linux/include/asm-arm/setup.h */ | |
52b43737 | 360 | p = base + KERNEL_ARGS_ADDR; |
2b8f2d41 | 361 | /* page_size */ |
52b43737 | 362 | WRITE_WORD(p, 4096); |
2b8f2d41 | 363 | /* nr_pages */ |
52b43737 | 364 | WRITE_WORD(p, info->ram_size / 4096); |
2b8f2d41 | 365 | /* ramdisk_size */ |
52b43737 | 366 | WRITE_WORD(p, 0); |
2b8f2d41 AZ |
367 | #define FLAG_READONLY 1 |
368 | #define FLAG_RDLOAD 4 | |
369 | #define FLAG_RDPROMPT 8 | |
370 | /* flags */ | |
52b43737 | 371 | WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); |
2b8f2d41 | 372 | /* rootdev */ |
52b43737 | 373 | WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ |
2b8f2d41 | 374 | /* video_num_cols */ |
52b43737 | 375 | WRITE_WORD(p, 0); |
2b8f2d41 | 376 | /* video_num_rows */ |
52b43737 | 377 | WRITE_WORD(p, 0); |
2b8f2d41 | 378 | /* video_x */ |
52b43737 | 379 | WRITE_WORD(p, 0); |
2b8f2d41 | 380 | /* video_y */ |
52b43737 | 381 | WRITE_WORD(p, 0); |
2b8f2d41 | 382 | /* memc_control_reg */ |
52b43737 | 383 | WRITE_WORD(p, 0); |
2b8f2d41 AZ |
384 | /* unsigned char sounddefault */ |
385 | /* unsigned char adfsdrives */ | |
386 | /* unsigned char bytes_per_char_h */ | |
387 | /* unsigned char bytes_per_char_v */ | |
52b43737 | 388 | WRITE_WORD(p, 0); |
2b8f2d41 | 389 | /* pages_in_bank[4] */ |
52b43737 PB |
390 | WRITE_WORD(p, 0); |
391 | WRITE_WORD(p, 0); | |
392 | WRITE_WORD(p, 0); | |
393 | WRITE_WORD(p, 0); | |
2b8f2d41 | 394 | /* pages_in_vram */ |
52b43737 | 395 | WRITE_WORD(p, 0); |
2b8f2d41 | 396 | /* initrd_start */ |
fc53b7d4 PM |
397 | if (initrd_size) { |
398 | WRITE_WORD(p, info->initrd_start); | |
399 | } else { | |
52b43737 | 400 | WRITE_WORD(p, 0); |
fc53b7d4 | 401 | } |
2b8f2d41 | 402 | /* initrd_size */ |
52b43737 | 403 | WRITE_WORD(p, initrd_size); |
2b8f2d41 | 404 | /* rd_start */ |
52b43737 | 405 | WRITE_WORD(p, 0); |
2b8f2d41 | 406 | /* system_rev */ |
52b43737 | 407 | WRITE_WORD(p, 0); |
2b8f2d41 | 408 | /* system_serial_low */ |
52b43737 | 409 | WRITE_WORD(p, 0); |
2b8f2d41 | 410 | /* system_serial_high */ |
52b43737 | 411 | WRITE_WORD(p, 0); |
2b8f2d41 | 412 | /* mem_fclk_21285 */ |
52b43737 | 413 | WRITE_WORD(p, 0); |
2b8f2d41 | 414 | /* zero unused fields */ |
52b43737 PB |
415 | while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { |
416 | WRITE_WORD(p, 0); | |
417 | } | |
418 | s = info->kernel_cmdline; | |
419 | if (s) { | |
9f43d4c3 PM |
420 | address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, |
421 | (const uint8_t *)s, strlen(s) + 1); | |
52b43737 PB |
422 | } else { |
423 | WRITE_WORD(p, 0); | |
424 | } | |
2b8f2d41 AZ |
425 | } |
426 | ||
f08ced69 SK |
427 | static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base, |
428 | uint32_t scells, hwaddr mem_len, | |
429 | int numa_node_id) | |
430 | { | |
431 | char *nodename; | |
432 | int ret; | |
433 | ||
434 | nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); | |
435 | qemu_fdt_add_subnode(fdt, nodename); | |
436 | qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); | |
437 | ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base, | |
438 | scells, mem_len); | |
439 | if (ret < 0) { | |
440 | goto out; | |
441 | } | |
442 | ||
443 | /* only set the NUMA ID if it is specified */ | |
444 | if (numa_node_id >= 0) { | |
445 | ret = qemu_fdt_setprop_cell(fdt, nodename, | |
446 | "numa-node-id", numa_node_id); | |
447 | } | |
448 | out: | |
449 | g_free(nodename); | |
450 | return ret; | |
451 | } | |
452 | ||
4cbca7d9 AS |
453 | static void fdt_add_psci_node(void *fdt) |
454 | { | |
455 | uint32_t cpu_suspend_fn; | |
456 | uint32_t cpu_off_fn; | |
457 | uint32_t cpu_on_fn; | |
458 | uint32_t migrate_fn; | |
459 | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); | |
460 | const char *psci_method; | |
461 | int64_t psci_conduit; | |
c39770cd | 462 | int rc; |
4cbca7d9 AS |
463 | |
464 | psci_conduit = object_property_get_int(OBJECT(armcpu), | |
465 | "psci-conduit", | |
466 | &error_abort); | |
467 | switch (psci_conduit) { | |
468 | case QEMU_PSCI_CONDUIT_DISABLED: | |
469 | return; | |
470 | case QEMU_PSCI_CONDUIT_HVC: | |
471 | psci_method = "hvc"; | |
472 | break; | |
473 | case QEMU_PSCI_CONDUIT_SMC: | |
474 | psci_method = "smc"; | |
475 | break; | |
476 | default: | |
477 | g_assert_not_reached(); | |
478 | } | |
479 | ||
c39770cd AS |
480 | /* |
481 | * If /psci node is present in provided DTB, assume that no fixup | |
482 | * is necessary and all PSCI configuration should be taken as-is | |
483 | */ | |
484 | rc = fdt_path_offset(fdt, "/psci"); | |
485 | if (rc >= 0) { | |
486 | return; | |
487 | } | |
488 | ||
4cbca7d9 AS |
489 | qemu_fdt_add_subnode(fdt, "/psci"); |
490 | if (armcpu->psci_version == 2) { | |
491 | const char comp[] = "arm,psci-0.2\0arm,psci"; | |
492 | qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); | |
493 | ||
494 | cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; | |
495 | if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { | |
496 | cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; | |
497 | cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; | |
498 | migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; | |
499 | } else { | |
500 | cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; | |
501 | cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; | |
502 | migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; | |
503 | } | |
504 | } else { | |
505 | qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); | |
506 | ||
507 | cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; | |
508 | cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; | |
509 | cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; | |
510 | migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; | |
511 | } | |
512 | ||
513 | /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer | |
514 | * to the instruction that should be used to invoke PSCI functions. | |
515 | * However, the device tree binding uses 'method' instead, so that is | |
516 | * what we should use here. | |
517 | */ | |
518 | qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); | |
519 | ||
520 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); | |
521 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); | |
522 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); | |
523 | qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); | |
524 | } | |
525 | ||
3b77f6c3 IM |
526 | int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo, |
527 | hwaddr addr_limit, AddressSpace *as) | |
412beee6 | 528 | { |
412beee6 | 529 | void *fdt = NULL; |
e2eb3d29 | 530 | int size, rc, n = 0; |
70976c41 | 531 | uint32_t acells, scells; |
9695200a SZ |
532 | unsigned int i; |
533 | hwaddr mem_base, mem_len; | |
e2eb3d29 EA |
534 | char **node_path; |
535 | Error *err = NULL; | |
412beee6 | 536 | |
0fb79851 JR |
537 | if (binfo->dtb_filename) { |
538 | char *filename; | |
539 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); | |
540 | if (!filename) { | |
541 | fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); | |
542 | goto fail; | |
543 | } | |
412beee6 | 544 | |
0fb79851 JR |
545 | fdt = load_device_tree(filename, &size); |
546 | if (!fdt) { | |
547 | fprintf(stderr, "Couldn't open dtb file %s\n", filename); | |
548 | g_free(filename); | |
549 | goto fail; | |
550 | } | |
412beee6 | 551 | g_free(filename); |
a554ecb4 | 552 | } else { |
0fb79851 JR |
553 | fdt = binfo->get_dtb(binfo, &size); |
554 | if (!fdt) { | |
555 | fprintf(stderr, "Board was unable to create a dtb blob\n"); | |
556 | goto fail; | |
557 | } | |
412beee6 | 558 | } |
412beee6 | 559 | |
fee8ea12 AB |
560 | if (addr_limit > addr && size > (addr_limit - addr)) { |
561 | /* Installing the device tree blob at addr would exceed addr_limit. | |
562 | * Whether this constitutes failure is up to the caller to decide, | |
563 | * so just return 0 as size, i.e., no error. | |
564 | */ | |
565 | g_free(fdt); | |
566 | return 0; | |
567 | } | |
568 | ||
58e71097 EA |
569 | acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", |
570 | NULL, &error_fatal); | |
571 | scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", | |
572 | NULL, &error_fatal); | |
9bfa659e PM |
573 | if (acells == 0 || scells == 0) { |
574 | fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); | |
c23045de | 575 | goto fail; |
9bfa659e PM |
576 | } |
577 | ||
70976c41 PM |
578 | if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { |
579 | /* This is user error so deserves a friendlier error message | |
580 | * than the failure of setprop_sized_cells would provide | |
581 | */ | |
9bfa659e PM |
582 | fprintf(stderr, "qemu: dtb file not compatible with " |
583 | "RAM size > 4GB\n"); | |
c23045de | 584 | goto fail; |
9bfa659e PM |
585 | } |
586 | ||
e2eb3d29 EA |
587 | /* nop all root nodes matching /memory or /memory@unit-address */ |
588 | node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); | |
589 | if (err) { | |
590 | error_report_err(err); | |
591 | goto fail; | |
592 | } | |
593 | while (node_path[n]) { | |
594 | if (g_str_has_prefix(node_path[n], "/memory")) { | |
595 | qemu_fdt_nop_node(fdt, node_path[n]); | |
596 | } | |
597 | n++; | |
598 | } | |
599 | g_strfreev(node_path); | |
600 | ||
9695200a | 601 | if (nb_numa_nodes > 0) { |
9695200a SZ |
602 | mem_base = binfo->loader_start; |
603 | for (i = 0; i < nb_numa_nodes; i++) { | |
604 | mem_len = numa_info[i].node_mem; | |
f08ced69 SK |
605 | rc = fdt_add_memory_node(fdt, acells, mem_base, |
606 | scells, mem_len, i); | |
9695200a | 607 | if (rc < 0) { |
f08ced69 SK |
608 | fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", |
609 | mem_base); | |
9695200a SZ |
610 | goto fail; |
611 | } | |
612 | ||
9695200a | 613 | mem_base += mem_len; |
9695200a SZ |
614 | } |
615 | } else { | |
f08ced69 SK |
616 | rc = fdt_add_memory_node(fdt, acells, binfo->loader_start, |
617 | scells, binfo->ram_size, -1); | |
9695200a | 618 | if (rc < 0) { |
f08ced69 SK |
619 | fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n", |
620 | binfo->loader_start); | |
9695200a SZ |
621 | goto fail; |
622 | } | |
412beee6 GL |
623 | } |
624 | ||
b77257d7 GR |
625 | rc = fdt_path_offset(fdt, "/chosen"); |
626 | if (rc < 0) { | |
627 | qemu_fdt_add_subnode(fdt, "/chosen"); | |
628 | } | |
629 | ||
5e87975c | 630 | if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { |
5a4348d1 PC |
631 | rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", |
632 | binfo->kernel_cmdline); | |
5e87975c PC |
633 | if (rc < 0) { |
634 | fprintf(stderr, "couldn't set /chosen/bootargs\n"); | |
c23045de | 635 | goto fail; |
5e87975c | 636 | } |
412beee6 GL |
637 | } |
638 | ||
639 | if (binfo->initrd_size) { | |
5a4348d1 PC |
640 | rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", |
641 | binfo->initrd_start); | |
412beee6 GL |
642 | if (rc < 0) { |
643 | fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); | |
c23045de | 644 | goto fail; |
412beee6 GL |
645 | } |
646 | ||
5a4348d1 PC |
647 | rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", |
648 | binfo->initrd_start + binfo->initrd_size); | |
412beee6 GL |
649 | if (rc < 0) { |
650 | fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); | |
c23045de | 651 | goto fail; |
412beee6 GL |
652 | } |
653 | } | |
3b1cceb8 | 654 | |
4cbca7d9 AS |
655 | fdt_add_psci_node(fdt); |
656 | ||
3b1cceb8 PM |
657 | if (binfo->modify_dtb) { |
658 | binfo->modify_dtb(binfo, fdt); | |
659 | } | |
660 | ||
5a4348d1 | 661 | qemu_fdt_dumpdtb(fdt, size); |
412beee6 | 662 | |
4c4bf654 AB |
663 | /* Put the DTB into the memory map as a ROM image: this will ensure |
664 | * the DTB is copied again upon reset, even if addr points into RAM. | |
665 | */ | |
9f43d4c3 | 666 | rom_add_blob_fixed_as("dtb", fdt, size, addr, as); |
412beee6 | 667 | |
c23045de PM |
668 | g_free(fdt); |
669 | ||
fee8ea12 | 670 | return size; |
c23045de PM |
671 | |
672 | fail: | |
673 | g_free(fdt); | |
674 | return -1; | |
412beee6 GL |
675 | } |
676 | ||
6ed221b6 | 677 | static void do_cpu_reset(void *opaque) |
f2d74978 | 678 | { |
351d5666 | 679 | ARMCPU *cpu = opaque; |
4df81c6e | 680 | CPUState *cs = CPU(cpu); |
351d5666 | 681 | CPUARMState *env = &cpu->env; |
462a8bc6 | 682 | const struct arm_boot_info *info = env->boot_info; |
f2d74978 | 683 | |
4df81c6e | 684 | cpu_reset(cs); |
f2d74978 PB |
685 | if (info) { |
686 | if (!info->is_linux) { | |
9776f636 | 687 | int i; |
f2d74978 | 688 | /* Jump to the entry point. */ |
4df81c6e PC |
689 | uint64_t entry = info->entry; |
690 | ||
9776f636 PC |
691 | switch (info->endianness) { |
692 | case ARM_ENDIANNESS_LE: | |
693 | env->cp15.sctlr_el[1] &= ~SCTLR_E0E; | |
694 | for (i = 1; i < 4; ++i) { | |
695 | env->cp15.sctlr_el[i] &= ~SCTLR_EE; | |
696 | } | |
697 | env->uncached_cpsr &= ~CPSR_E; | |
698 | break; | |
699 | case ARM_ENDIANNESS_BE8: | |
700 | env->cp15.sctlr_el[1] |= SCTLR_E0E; | |
701 | for (i = 1; i < 4; ++i) { | |
702 | env->cp15.sctlr_el[i] |= SCTLR_EE; | |
703 | } | |
704 | env->uncached_cpsr |= CPSR_E; | |
705 | break; | |
706 | case ARM_ENDIANNESS_BE32: | |
707 | env->cp15.sctlr_el[1] |= SCTLR_B; | |
708 | break; | |
709 | case ARM_ENDIANNESS_UNKNOWN: | |
710 | break; /* Board's decision */ | |
711 | default: | |
712 | g_assert_not_reached(); | |
713 | } | |
714 | ||
4df81c6e | 715 | cpu_set_pc(cs, entry); |
f2d74978 | 716 | } else { |
c8e829b7 GB |
717 | /* If we are booting Linux then we need to check whether we are |
718 | * booting into secure or non-secure state and adjust the state | |
719 | * accordingly. Out of reset, ARM is defined to be in secure state | |
720 | * (SCR.NS = 0), we change that here if non-secure boot has been | |
721 | * requested. | |
722 | */ | |
5097227c GB |
723 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
724 | /* AArch64 is defined to come out of reset into EL3 if enabled. | |
725 | * If we are booting Linux then we need to adjust our EL as | |
726 | * Linux expects us to be in EL2 or EL1. AArch32 resets into | |
727 | * SVC, which Linux expects, so no privilege/exception level to | |
728 | * adjust. | |
729 | */ | |
730 | if (env->aarch64) { | |
48d21a57 | 731 | env->cp15.scr_el3 |= SCR_RW; |
5097227c | 732 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
48d21a57 | 733 | env->cp15.hcr_el2 |= HCR_RW; |
5097227c GB |
734 | env->pstate = PSTATE_MODE_EL2h; |
735 | } else { | |
736 | env->pstate = PSTATE_MODE_EL1h; | |
737 | } | |
43118f43 PM |
738 | /* AArch64 kernels never boot in secure mode */ |
739 | assert(!info->secure_boot); | |
740 | /* This hook is only supported for AArch32 currently: | |
741 | * bootloader_aarch64[] will not call the hook, and | |
742 | * the code above has already dropped us into EL2 or EL1. | |
743 | */ | |
744 | assert(!info->secure_board_setup); | |
5097227c GB |
745 | } |
746 | ||
bda816f0 PM |
747 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
748 | /* If we have EL2 then Linux expects the HVC insn to work */ | |
749 | env->cp15.scr_el3 |= SCR_HCE; | |
750 | } | |
751 | ||
5097227c | 752 | /* Set to non-secure if not a secure boot */ |
baf6b681 PC |
753 | if (!info->secure_boot && |
754 | (cs != first_cpu || !info->secure_board_setup)) { | |
5097227c GB |
755 | /* Linux expects non-secure state */ |
756 | env->cp15.scr_el3 |= SCR_NS; | |
757 | } | |
c8e829b7 GB |
758 | } |
759 | ||
299953b9 PM |
760 | if (!env->aarch64 && !info->secure_boot && |
761 | arm_feature(env, ARM_FEATURE_EL2)) { | |
762 | /* | |
763 | * This is an AArch32 boot not to Secure state, and | |
764 | * we have Hyp mode available, so boot the kernel into | |
765 | * Hyp mode. This is not how the CPU comes out of reset, | |
766 | * so we need to manually put it there. | |
767 | */ | |
768 | cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw); | |
769 | } | |
770 | ||
4df81c6e | 771 | if (cs == first_cpu) { |
9f43d4c3 PM |
772 | AddressSpace *as = arm_boot_address_space(cpu, info); |
773 | ||
4df81c6e | 774 | cpu_set_pc(cs, info->loader_start); |
4d9ebf75 | 775 | |
83bfffec | 776 | if (!have_dtb(info)) { |
412beee6 | 777 | if (old_param) { |
9f43d4c3 | 778 | set_kernel_args_old(info, as); |
412beee6 | 779 | } else { |
9f43d4c3 | 780 | set_kernel_args(info, as); |
412beee6 | 781 | } |
6ed221b6 | 782 | } |
f2d74978 | 783 | } else { |
5d309320 | 784 | info->secondary_cpu_reset_hook(cpu, info); |
f2d74978 PB |
785 | } |
786 | } | |
787 | } | |
f2d74978 PB |
788 | } |
789 | ||
07abe45c LE |
790 | /** |
791 | * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified | |
792 | * by key. | |
793 | * @fw_cfg: The firmware config instance to store the data in. | |
794 | * @size_key: The firmware config key to store the size of the loaded | |
795 | * data under, with fw_cfg_add_i32(). | |
796 | * @data_key: The firmware config key to store the loaded data under, | |
797 | * with fw_cfg_add_bytes(). | |
798 | * @image_name: The name of the image file to load. If it is NULL, the | |
799 | * function returns without doing anything. | |
800 | * @try_decompress: Whether the image should be decompressed (gunzipped) before | |
801 | * adding it to fw_cfg. If decompression fails, the image is | |
802 | * loaded as-is. | |
803 | * | |
804 | * In case of failure, the function prints an error message to stderr and the | |
805 | * process exits with status 1. | |
806 | */ | |
807 | static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, | |
808 | uint16_t data_key, const char *image_name, | |
809 | bool try_decompress) | |
810 | { | |
811 | size_t size = -1; | |
812 | uint8_t *data; | |
813 | ||
814 | if (image_name == NULL) { | |
815 | return; | |
816 | } | |
817 | ||
818 | if (try_decompress) { | |
819 | size = load_image_gzipped_buffer(image_name, | |
820 | LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); | |
821 | } | |
822 | ||
823 | if (size == (size_t)-1) { | |
824 | gchar *contents; | |
825 | gsize length; | |
826 | ||
827 | if (!g_file_get_contents(image_name, &contents, &length, NULL)) { | |
c0dbca36 | 828 | error_report("failed to load \"%s\"", image_name); |
07abe45c LE |
829 | exit(1); |
830 | } | |
831 | size = length; | |
832 | data = (uint8_t *)contents; | |
833 | } | |
834 | ||
835 | fw_cfg_add_i32(fw_cfg, size_key, size); | |
836 | fw_cfg_add_bytes(fw_cfg, data_key, data, size); | |
837 | } | |
838 | ||
d8b1ae42 PM |
839 | static int do_arm_linux_init(Object *obj, void *opaque) |
840 | { | |
841 | if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { | |
842 | ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); | |
843 | ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); | |
844 | struct arm_boot_info *info = opaque; | |
845 | ||
846 | if (albifc->arm_linux_init) { | |
847 | albifc->arm_linux_init(albif, info->secure_boot); | |
848 | } | |
849 | } | |
850 | return 0; | |
851 | } | |
852 | ||
a3f0ecfd AL |
853 | static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, |
854 | uint64_t *lowaddr, uint64_t *highaddr, | |
855 | int elf_machine, AddressSpace *as) | |
9776f636 PC |
856 | { |
857 | bool elf_is64; | |
858 | union { | |
859 | Elf32_Ehdr h32; | |
860 | Elf64_Ehdr h64; | |
861 | } elf_header; | |
862 | int data_swab = 0; | |
863 | bool big_endian; | |
a3f0ecfd | 864 | int64_t ret = -1; |
9776f636 PC |
865 | Error *err = NULL; |
866 | ||
867 | ||
868 | load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); | |
869 | if (err) { | |
36f876ce | 870 | error_free(err); |
9776f636 PC |
871 | return ret; |
872 | } | |
873 | ||
874 | if (elf_is64) { | |
875 | big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; | |
876 | info->endianness = big_endian ? ARM_ENDIANNESS_BE8 | |
877 | : ARM_ENDIANNESS_LE; | |
878 | } else { | |
879 | big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; | |
880 | if (big_endian) { | |
881 | if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { | |
882 | info->endianness = ARM_ENDIANNESS_BE8; | |
883 | } else { | |
884 | info->endianness = ARM_ENDIANNESS_BE32; | |
885 | /* In BE32, the CPU has a different view of the per-byte | |
886 | * address map than the rest of the system. BE32 ELF files | |
887 | * are organised such that they can be programmed through | |
888 | * the CPU's per-word byte-reversed view of the world. QEMU | |
889 | * however loads ELF files independently of the CPU. So | |
890 | * tell the ELF loader to byte reverse the data for us. | |
891 | */ | |
892 | data_swab = 2; | |
893 | } | |
894 | } else { | |
895 | info->endianness = ARM_ENDIANNESS_LE; | |
896 | } | |
897 | } | |
898 | ||
4366e1db | 899 | ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL, |
9f43d4c3 PM |
900 | pentry, lowaddr, highaddr, big_endian, elf_machine, |
901 | 1, data_swab, as); | |
9776f636 PC |
902 | if (ret <= 0) { |
903 | /* The header loaded but the image didn't */ | |
904 | exit(1); | |
905 | } | |
906 | ||
907 | return ret; | |
908 | } | |
909 | ||
68115ed5 | 910 | static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, |
9f43d4c3 | 911 | hwaddr *entry, AddressSpace *as) |
68115ed5 AB |
912 | { |
913 | hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; | |
5e6dbe1e | 914 | uint64_t kernel_size = 0; |
68115ed5 AB |
915 | uint8_t *buffer; |
916 | int size; | |
917 | ||
918 | /* On aarch64, it's the bootloader's job to uncompress the kernel. */ | |
919 | size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, | |
920 | &buffer); | |
921 | ||
922 | if (size < 0) { | |
923 | gsize len; | |
924 | ||
925 | /* Load as raw file otherwise */ | |
926 | if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { | |
927 | return -1; | |
928 | } | |
929 | size = len; | |
930 | } | |
931 | ||
932 | /* check the arm64 magic header value -- very old kernels may not have it */ | |
27640407 MAL |
933 | if (size > ARM64_MAGIC_OFFSET + 4 && |
934 | memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { | |
68115ed5 AB |
935 | uint64_t hdrvals[2]; |
936 | ||
937 | /* The arm64 Image header has text_offset and image_size fields at 8 and | |
938 | * 16 bytes into the Image header, respectively. The text_offset field | |
939 | * is only valid if the image_size is non-zero. | |
940 | */ | |
941 | memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); | |
5e6dbe1e PM |
942 | |
943 | kernel_size = le64_to_cpu(hdrvals[1]); | |
944 | ||
945 | if (kernel_size != 0) { | |
68115ed5 | 946 | kernel_load_offset = le64_to_cpu(hdrvals[0]); |
ea358872 SH |
947 | |
948 | /* | |
949 | * We write our startup "bootloader" at the very bottom of RAM, | |
950 | * so that bit can't be used for the image. Luckily the Image | |
951 | * format specification is that the image requests only an offset | |
952 | * from a 2MB boundary, not an absolute load address. So if the | |
953 | * image requests an offset that might mean it overlaps with the | |
954 | * bootloader, we can just load it starting at 2MB+offset rather | |
955 | * than 0MB + offset. | |
956 | */ | |
957 | if (kernel_load_offset < BOOTLOADER_MAX_SIZE) { | |
958 | kernel_load_offset += 2 * MiB; | |
959 | } | |
68115ed5 AB |
960 | } |
961 | } | |
962 | ||
5e6dbe1e PM |
963 | /* |
964 | * Kernels before v3.17 don't populate the image_size field, and | |
965 | * raw images have no header. For those our best guess at the size | |
966 | * is the size of the Image file itself. | |
967 | */ | |
968 | if (kernel_size == 0) { | |
969 | kernel_size = size; | |
970 | } | |
971 | ||
68115ed5 | 972 | *entry = mem_base + kernel_load_offset; |
9f43d4c3 | 973 | rom_add_blob_fixed_as(filename, buffer, size, *entry, as); |
68115ed5 AB |
974 | |
975 | g_free(buffer); | |
976 | ||
5e6dbe1e | 977 | return kernel_size; |
68115ed5 AB |
978 | } |
979 | ||
d33774ee PM |
980 | static void arm_setup_direct_kernel_boot(ARMCPU *cpu, |
981 | struct arm_boot_info *info) | |
16406950 | 982 | { |
d33774ee | 983 | /* Set up for a direct boot of a kernel image file. */ |
c6faa758 | 984 | CPUState *cs; |
d33774ee | 985 | AddressSpace *as = arm_boot_address_space(cpu, info); |
16406950 PB |
986 | int kernel_size; |
987 | int initrd_size; | |
1c7b3754 | 988 | int is_linux = 0; |
92df8450 | 989 | uint64_t elf_entry, elf_low_addr, elf_high_addr; |
da0af40d | 990 | int elf_machine; |
68115ed5 | 991 | hwaddr entry; |
4d9ebf75 | 992 | static const ARMInsnFixup *primary_loader; |
e70af24b | 993 | uint64_t ram_end = info->loader_start + info->ram_size; |
daf90626 | 994 | |
4d9ebf75 MH |
995 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
996 | primary_loader = bootloader_aarch64; | |
da0af40d | 997 | elf_machine = EM_AARCH64; |
4d9ebf75 MH |
998 | } else { |
999 | primary_loader = bootloader; | |
10b8ec73 PC |
1000 | if (!info->write_board_setup) { |
1001 | primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; | |
1002 | } | |
da0af40d | 1003 | elf_machine = EM_ARM; |
4d9ebf75 MH |
1004 | } |
1005 | ||
9d5ba9bf ML |
1006 | if (!info->secondary_cpu_reset_hook) { |
1007 | info->secondary_cpu_reset_hook = default_reset_secondary; | |
1008 | } | |
1009 | if (!info->write_secondary_boot) { | |
1010 | info->write_secondary_boot = default_write_secondary; | |
1011 | } | |
1012 | ||
f2d74978 PB |
1013 | if (info->nb_cpus == 0) |
1014 | info->nb_cpus = 1; | |
f93eb9ff | 1015 | |
1c7b3754 | 1016 | /* Assume that raw images are linux kernels, and ELF images are not. */ |
9776f636 | 1017 | kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr, |
9f43d4c3 | 1018 | &elf_high_addr, elf_machine, as); |
92df8450 | 1019 | if (kernel_size > 0 && have_dtb(info)) { |
c3a42358 PM |
1020 | /* |
1021 | * If there is still some room left at the base of RAM, try and put | |
92df8450 AB |
1022 | * the DTB there like we do for images loaded with -bios or -pflash. |
1023 | */ | |
1024 | if (elf_low_addr > info->loader_start | |
1025 | || elf_high_addr < info->loader_start) { | |
c3a42358 PM |
1026 | /* |
1027 | * Set elf_low_addr as address limit for arm_load_dtb if it may be | |
92df8450 AB |
1028 | * pointing into RAM, otherwise pass '0' (no limit) |
1029 | */ | |
1030 | if (elf_low_addr < info->loader_start) { | |
1031 | elf_low_addr = 0; | |
1032 | } | |
3b77f6c3 IM |
1033 | info->dtb_start = info->loader_start; |
1034 | info->dtb_limit = elf_low_addr; | |
92df8450 AB |
1035 | } |
1036 | } | |
1c7b3754 PB |
1037 | entry = elf_entry; |
1038 | if (kernel_size < 0) { | |
f831f955 NH |
1039 | uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR; |
1040 | kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr, | |
9f43d4c3 | 1041 | &is_linux, NULL, NULL, as); |
1c7b3754 | 1042 | } |
6f5d3cbe | 1043 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { |
68115ed5 | 1044 | kernel_size = load_aarch64_image(info->kernel_filename, |
9f43d4c3 | 1045 | info->loader_start, &entry, as); |
6f5d3cbe | 1046 | is_linux = 1; |
68115ed5 AB |
1047 | } else if (kernel_size < 0) { |
1048 | /* 32-bit ARM */ | |
1049 | entry = info->loader_start + KERNEL_LOAD_ADDR; | |
9f43d4c3 | 1050 | kernel_size = load_image_targphys_as(info->kernel_filename, entry, |
e70af24b | 1051 | ram_end - KERNEL_LOAD_ADDR, as); |
1c7b3754 PB |
1052 | is_linux = 1; |
1053 | } | |
1054 | if (kernel_size < 0) { | |
c0dbca36 | 1055 | error_report("could not load kernel '%s'", info->kernel_filename); |
1c7b3754 PB |
1056 | exit(1); |
1057 | } | |
852dc64d PM |
1058 | |
1059 | if (kernel_size > info->ram_size) { | |
1060 | error_report("kernel '%s' is too large to fit in RAM " | |
1061 | "(kernel size %d, RAM size %" PRId64 ")", | |
1062 | info->kernel_filename, kernel_size, info->ram_size); | |
1063 | exit(1); | |
1064 | } | |
1065 | ||
f2d74978 | 1066 | info->entry = entry; |
e6b2b20d PM |
1067 | |
1068 | /* | |
1069 | * We want to put the initrd far enough into RAM that when the | |
1070 | * kernel is uncompressed it will not clobber the initrd. However | |
1071 | * on boards without much RAM we must ensure that we still leave | |
1072 | * enough room for a decent sized initrd, and on boards with large | |
1073 | * amounts of RAM we must avoid the initrd being so far up in RAM | |
1074 | * that it is outside lowmem and inaccessible to the kernel. | |
1075 | * So for boards with less than 256MB of RAM we put the initrd | |
1076 | * halfway into RAM, and for boards with 256MB of RAM or more we put | |
1077 | * the initrd at 128MB. | |
1078 | * We also refuse to put the initrd somewhere that will definitely | |
1079 | * overlay the kernel we just loaded, though for kernel formats which | |
1080 | * don't tell us their exact size (eg self-decompressing 32-bit kernels) | |
1081 | * we might still make a bad choice here. | |
1082 | */ | |
1083 | info->initrd_start = info->loader_start + | |
1084 | MAX(MIN(info->ram_size / 2, 128 * 1024 * 1024), kernel_size); | |
1085 | info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start); | |
1086 | ||
f2d74978 | 1087 | if (is_linux) { |
47b1da81 PM |
1088 | uint32_t fixupcontext[FIXUP_MAX]; |
1089 | ||
f93eb9ff | 1090 | if (info->initrd_filename) { |
852dc64d PM |
1091 | |
1092 | if (info->initrd_start >= ram_end) { | |
1093 | error_report("not enough space after kernel to load initrd"); | |
1094 | exit(1); | |
1095 | } | |
1096 | ||
9f43d4c3 PM |
1097 | initrd_size = load_ramdisk_as(info->initrd_filename, |
1098 | info->initrd_start, | |
e70af24b | 1099 | ram_end - info->initrd_start, as); |
fd76663e | 1100 | if (initrd_size < 0) { |
9f43d4c3 PM |
1101 | initrd_size = load_image_targphys_as(info->initrd_filename, |
1102 | info->initrd_start, | |
e70af24b | 1103 | ram_end - |
9f43d4c3 PM |
1104 | info->initrd_start, |
1105 | as); | |
fd76663e | 1106 | } |
daf90626 | 1107 | if (initrd_size < 0) { |
c0dbca36 AF |
1108 | error_report("could not load initrd '%s'", |
1109 | info->initrd_filename); | |
daf90626 PB |
1110 | exit(1); |
1111 | } | |
b48b0640 | 1112 | if (info->initrd_start + initrd_size > ram_end) { |
852dc64d PM |
1113 | error_report("could not load initrd '%s': " |
1114 | "too big to fit into RAM after the kernel", | |
1115 | info->initrd_filename); | |
b48b0640 | 1116 | exit(1); |
852dc64d | 1117 | } |
daf90626 PB |
1118 | } else { |
1119 | initrd_size = 0; | |
1120 | } | |
412beee6 GL |
1121 | info->initrd_size = initrd_size; |
1122 | ||
47b1da81 | 1123 | fixupcontext[FIXUP_BOARDID] = info->board_id; |
10b8ec73 | 1124 | fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; |
412beee6 | 1125 | |
c3a42358 PM |
1126 | /* |
1127 | * for device tree boot, we pass the DTB directly in r2. Otherwise | |
412beee6 GL |
1128 | * we point to the kernel args. |
1129 | */ | |
83bfffec | 1130 | if (have_dtb(info)) { |
76e2aef3 | 1131 | hwaddr align; |
76e2aef3 AG |
1132 | |
1133 | if (elf_machine == EM_AARCH64) { | |
1134 | /* | |
1135 | * Some AArch64 kernels on early bootup map the fdt region as | |
1136 | * | |
1137 | * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] | |
1138 | * | |
1139 | * Let's play safe and prealign it to 2MB to give us some space. | |
1140 | */ | |
1141 | align = 2 * 1024 * 1024; | |
1142 | } else { | |
1143 | /* | |
1144 | * Some 32bit kernels will trash anything in the 4K page the | |
1145 | * initrd ends in, so make sure the DTB isn't caught up in that. | |
1146 | */ | |
1147 | align = 4096; | |
1148 | } | |
1149 | ||
1150 | /* Place the DTB after the initrd in memory with alignment. */ | |
3b77f6c3 IM |
1151 | info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, |
1152 | align); | |
852dc64d PM |
1153 | if (info->dtb_start >= ram_end) { |
1154 | error_report("Not enough space for DTB after kernel/initrd"); | |
1155 | exit(1); | |
1156 | } | |
751ebc13 RPB |
1157 | fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start; |
1158 | fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32; | |
412beee6 | 1159 | } else { |
751ebc13 RPB |
1160 | fixupcontext[FIXUP_ARGPTR_LO] = |
1161 | info->loader_start + KERNEL_ARGS_ADDR; | |
1162 | fixupcontext[FIXUP_ARGPTR_HI] = | |
1163 | (info->loader_start + KERNEL_ARGS_ADDR) >> 32; | |
3871481c | 1164 | if (info->ram_size >= (1ULL << 32)) { |
c0dbca36 AF |
1165 | error_report("RAM size must be less than 4GB to boot" |
1166 | " Linux kernel using ATAGS (try passing a device tree" | |
1167 | " using -dtb)"); | |
3871481c PM |
1168 | exit(1); |
1169 | } | |
412beee6 | 1170 | } |
751ebc13 RPB |
1171 | fixupcontext[FIXUP_ENTRYPOINT_LO] = entry; |
1172 | fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32; | |
47b1da81 PM |
1173 | |
1174 | write_bootloader("bootloader", info->loader_start, | |
9f43d4c3 | 1175 | primary_loader, fixupcontext, as); |
47b1da81 | 1176 | |
52b43737 | 1177 | if (info->nb_cpus > 1) { |
9543b0cd | 1178 | info->write_secondary_boot(cpu, info); |
52b43737 | 1179 | } |
10b8ec73 PC |
1180 | if (info->write_board_setup) { |
1181 | info->write_board_setup(cpu, info); | |
1182 | } | |
d8b1ae42 | 1183 | |
c3a42358 PM |
1184 | /* |
1185 | * Notify devices which need to fake up firmware initialization | |
d8b1ae42 PM |
1186 | * that we're doing a direct kernel boot. |
1187 | */ | |
1188 | object_child_foreach_recursive(object_get_root(), | |
1189 | do_arm_linux_init, info); | |
16406950 | 1190 | } |
f2d74978 | 1191 | info->is_linux = is_linux; |
6ed221b6 | 1192 | |
0c949276 | 1193 | for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { |
c6faa758 | 1194 | ARM_CPU(cs)->env.boot_info = info; |
6ed221b6 | 1195 | } |
d33774ee PM |
1196 | } |
1197 | ||
4c0f2687 PM |
1198 | static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info) |
1199 | { | |
1200 | /* Set up for booting firmware (which might load a kernel via fw_cfg) */ | |
1201 | ||
1202 | if (have_dtb(info)) { | |
1203 | /* | |
1204 | * If we have a device tree blob, but no kernel to supply it to (or | |
1205 | * the kernel is supposed to be loaded by the bootloader), copy the | |
1206 | * DTB to the base of RAM for the bootloader to pick up. | |
1207 | */ | |
1208 | info->dtb_start = info->loader_start; | |
1209 | } | |
1210 | ||
1211 | if (info->kernel_filename) { | |
1212 | FWCfgState *fw_cfg; | |
1213 | bool try_decompressing_kernel; | |
1214 | ||
1215 | fw_cfg = fw_cfg_find(); | |
1216 | try_decompressing_kernel = arm_feature(&cpu->env, | |
1217 | ARM_FEATURE_AARCH64); | |
1218 | ||
1219 | /* | |
1220 | * Expose the kernel, the command line, and the initrd in fw_cfg. | |
1221 | * We don't process them here at all, it's all left to the | |
1222 | * firmware. | |
1223 | */ | |
1224 | load_image_to_fw_cfg(fw_cfg, | |
1225 | FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, | |
1226 | info->kernel_filename, | |
1227 | try_decompressing_kernel); | |
1228 | load_image_to_fw_cfg(fw_cfg, | |
1229 | FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, | |
1230 | info->initrd_filename, false); | |
1231 | ||
1232 | if (info->kernel_cmdline) { | |
1233 | fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, | |
1234 | strlen(info->kernel_cmdline) + 1); | |
1235 | fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, | |
1236 | info->kernel_cmdline); | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | /* | |
1241 | * We will start from address 0 (typically a boot ROM image) in the | |
2a5bdfc8 PM |
1242 | * same way as hardware. Leave env->boot_info NULL, so that |
1243 | * do_cpu_reset() knows it does not need to alter the PC on reset. | |
4c0f2687 PM |
1244 | */ |
1245 | } | |
1246 | ||
d33774ee PM |
1247 | void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) |
1248 | { | |
1249 | CPUState *cs; | |
1250 | AddressSpace *as = arm_boot_address_space(cpu, info); | |
1251 | ||
1252 | /* | |
1253 | * CPU objects (unlike devices) are not automatically reset on system | |
1254 | * reset, so we must always register a handler to do so. If we're | |
1255 | * actually loading a kernel, the handler is also responsible for | |
1256 | * arranging that we start it correctly. | |
1257 | */ | |
1258 | for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { | |
1259 | qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); | |
1260 | } | |
1261 | ||
1262 | /* | |
1263 | * The board code is not supposed to set secure_board_setup unless | |
1264 | * running its code in secure mode is actually possible, and KVM | |
1265 | * doesn't support secure. | |
1266 | */ | |
1267 | assert(!(info->secure_board_setup && kvm_enabled())); | |
1268 | ||
1269 | info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); | |
1270 | info->dtb_limit = 0; | |
1271 | ||
1272 | /* Load the kernel. */ | |
1273 | if (!info->kernel_filename || info->firmware_loaded) { | |
4c0f2687 | 1274 | arm_setup_firmware_boot(cpu, info); |
d33774ee PM |
1275 | } else { |
1276 | arm_setup_direct_kernel_boot(cpu, info); | |
1277 | } | |
63a183ed | 1278 | |
3b77f6c3 IM |
1279 | if (!info->skip_dtb_autoload && have_dtb(info)) { |
1280 | if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { | |
1281 | exit(1); | |
1282 | } | |
1283 | } | |
ac9d32e3 | 1284 | } |
d8b1ae42 PM |
1285 | |
1286 | static const TypeInfo arm_linux_boot_if_info = { | |
1287 | .name = TYPE_ARM_LINUX_BOOT_IF, | |
1288 | .parent = TYPE_INTERFACE, | |
1289 | .class_size = sizeof(ARMLinuxBootIfClass), | |
1290 | }; | |
1291 | ||
1292 | static void arm_linux_boot_register_types(void) | |
1293 | { | |
1294 | type_register_static(&arm_linux_boot_if_info); | |
1295 | } | |
1296 | ||
1297 | type_init(arm_linux_boot_register_types) |