]> Git Repo - qemu.git/blame - hw/arm/boot.c
arm: fix load ELF error leak
[qemu.git] / hw / arm / boot.c
CommitLineData
5fafdf24 1/*
16406950
PB
2 * ARM kernel loader.
3 *
9ee6e8bb 4 * Copyright (c) 2006-2007 CodeSourcery.
16406950
PB
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
16406950
PB
8 */
9
12b16722 10#include "qemu/osdep.h"
c0dbca36 11#include "qemu/error-report.h"
da34e65c 12#include "qapi/error.h"
b77257d7 13#include <libfdt.h>
83c9f4ca 14#include "hw/hw.h"
bd2be150 15#include "hw/arm/arm.h"
d8b1ae42 16#include "hw/arm/linux-boot-if.h"
baf6b681 17#include "sysemu/kvm.h"
9c17d615 18#include "sysemu/sysemu.h"
9695200a 19#include "sysemu/numa.h"
83c9f4ca
PB
20#include "hw/boards.h"
21#include "hw/loader.h"
ca20cf32 22#include "elf.h"
9c17d615 23#include "sysemu/device_tree.h"
1de7afc9 24#include "qemu/config-file.h"
922a01a0 25#include "qemu/option.h"
2198a121 26#include "exec/address-spaces.h"
16406950 27
4d9ebf75
MH
28/* Kernel boot protocol is specified in the kernel docs
29 * Documentation/arm/Booting and Documentation/arm64/booting.txt
30 * They have different preferred image load offsets from system RAM base.
31 */
16406950
PB
32#define KERNEL_ARGS_ADDR 0x100
33#define KERNEL_LOAD_ADDR 0x00010000
4d9ebf75 34#define KERNEL64_LOAD_ADDR 0x00080000
16406950 35
68115ed5
AB
36#define ARM64_TEXT_OFFSET_OFFSET 8
37#define ARM64_MAGIC_OFFSET 56
38
9f43d4c3
PM
39static AddressSpace *arm_boot_address_space(ARMCPU *cpu,
40 const struct arm_boot_info *info)
41{
42 /* Return the address space to use for bootloader reads and writes.
43 * We prefer the secure address space if the CPU has it and we're
44 * going to boot the guest into it.
45 */
46 int asidx;
47 CPUState *cs = CPU(cpu);
48
49 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
50 asidx = ARMASIdx_S;
51 } else {
52 asidx = ARMASIdx_NS;
53 }
54
55 return cpu_get_address_space(cs, asidx);
56}
57
47b1da81 58typedef enum {
84e59397
PC
59 FIXUP_NONE = 0, /* do nothing */
60 FIXUP_TERMINATOR, /* end of insns */
61 FIXUP_BOARDID, /* overwrite with board ID number */
10b8ec73 62 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
84e59397
PC
63 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
64 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
65 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
66 FIXUP_BOOTREG, /* overwrite with boot register address */
67 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
47b1da81
PM
68 FIXUP_MAX,
69} FixupType;
70
71typedef struct ARMInsnFixup {
72 uint32_t insn;
73 FixupType fixup;
74} ARMInsnFixup;
75
4d9ebf75
MH
76static const ARMInsnFixup bootloader_aarch64[] = {
77 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
78 { 0xaa1f03e1 }, /* mov x1, xzr */
79 { 0xaa1f03e2 }, /* mov x2, xzr */
80 { 0xaa1f03e3 }, /* mov x3, xzr */
81 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
82 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
83 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
84 { 0 }, /* .word @DTB Higher 32-bits */
85 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
86 { 0 }, /* .word @Kernel Entry Higher 32-bits */
87 { 0, FIXUP_TERMINATOR }
88};
89
10b8ec73
PC
90/* A very small bootloader: call the board-setup code (if needed),
91 * set r0-r2, then jump to the kernel.
92 * If we're not calling boot setup code then we don't copy across
93 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
94 */
95
47b1da81 96static const ARMInsnFixup bootloader[] = {
b4850e5a 97 { 0xe28fe004 }, /* add lr, pc, #4 */
10b8ec73
PC
98 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
99 { 0, FIXUP_BOARD_SETUP },
100#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
47b1da81
PM
101 { 0xe3a00000 }, /* mov r0, #0 */
102 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
103 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
104 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
105 { 0, FIXUP_BOARDID },
106 { 0, FIXUP_ARGPTR },
107 { 0, FIXUP_ENTRYPOINT },
108 { 0, FIXUP_TERMINATOR }
16406950
PB
109};
110
9d5ba9bf
ML
111/* Handling for secondary CPU boot in a multicore system.
112 * Unlike the uniprocessor/primary CPU boot, this is platform
113 * dependent. The default code here is based on the secondary
114 * CPU boot protocol used on realview/vexpress boards, with
115 * some parameterisation to increase its flexibility.
116 * QEMU platform models for which this code is not appropriate
117 * should override write_secondary_boot and secondary_cpu_reset_hook
118 * instead.
119 *
120 * This code enables the interrupt controllers for the secondary
121 * CPUs and then puts all the secondary CPUs into a loop waiting
122 * for an interprocessor interrupt and polling a configurable
123 * location for the kernel secondary CPU entry point.
124 */
bf471f79
PM
125#define DSB_INSN 0xf57ff04f
126#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
127
47b1da81
PM
128static const ARMInsnFixup smpboot[] = {
129 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
130 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
131 { 0xe3a01001 }, /* mov r1, #1 */
132 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
133 { 0xe3a010ff }, /* mov r1, #0xff */
134 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
135 { 0, FIXUP_DSB }, /* dsb */
136 { 0xe320f003 }, /* wfi */
137 { 0xe5901000 }, /* ldr r1, [r0] */
138 { 0xe1110001 }, /* tst r1, r1 */
139 { 0x0afffffb }, /* beq <wfi> */
140 { 0xe12fff11 }, /* bx r1 */
141 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
142 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
143 { 0, FIXUP_TERMINATOR }
9ee6e8bb
PB
144};
145
47b1da81 146static void write_bootloader(const char *name, hwaddr addr,
9f43d4c3
PM
147 const ARMInsnFixup *insns, uint32_t *fixupcontext,
148 AddressSpace *as)
47b1da81
PM
149{
150 /* Fix up the specified bootloader fragment and write it into
151 * guest memory using rom_add_blob_fixed(). fixupcontext is
152 * an array giving the values to write in for the fixup types
153 * which write a value into the code array.
154 */
155 int i, len;
156 uint32_t *code;
157
158 len = 0;
159 while (insns[len].fixup != FIXUP_TERMINATOR) {
160 len++;
161 }
162
163 code = g_new0(uint32_t, len);
164
165 for (i = 0; i < len; i++) {
166 uint32_t insn = insns[i].insn;
167 FixupType fixup = insns[i].fixup;
168
169 switch (fixup) {
170 case FIXUP_NONE:
171 break;
172 case FIXUP_BOARDID:
10b8ec73 173 case FIXUP_BOARD_SETUP:
47b1da81
PM
174 case FIXUP_ARGPTR:
175 case FIXUP_ENTRYPOINT:
176 case FIXUP_GIC_CPU_IF:
177 case FIXUP_BOOTREG:
178 case FIXUP_DSB:
179 insn = fixupcontext[fixup];
180 break;
181 default:
182 abort();
183 }
184 code[i] = tswap32(insn);
185 }
186
9f43d4c3 187 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
47b1da81
PM
188
189 g_free(code);
190}
191
9543b0cd 192static void default_write_secondary(ARMCPU *cpu,
9d5ba9bf
ML
193 const struct arm_boot_info *info)
194{
47b1da81 195 uint32_t fixupcontext[FIXUP_MAX];
9f43d4c3 196 AddressSpace *as = arm_boot_address_space(cpu, info);
47b1da81
PM
197
198 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
199 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
200 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
201 fixupcontext[FIXUP_DSB] = DSB_INSN;
202 } else {
203 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
9d5ba9bf 204 }
47b1da81
PM
205
206 write_bootloader("smpboot", info->smp_loader_start,
9f43d4c3 207 smpboot, fixupcontext, as);
9d5ba9bf
ML
208}
209
716536a9
AB
210void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
211 const struct arm_boot_info *info,
212 hwaddr mvbar_addr)
213{
9f43d4c3 214 AddressSpace *as = arm_boot_address_space(cpu, info);
716536a9
AB
215 int n;
216 uint32_t mvbar_blob[] = {
217 /* mvbar_addr: secure monitor vectors
218 * Default unimplemented and unused vectors to spin. Makes it
219 * easier to debug (as opposed to the CPU running away).
220 */
221 0xeafffffe, /* (spin) */
222 0xeafffffe, /* (spin) */
223 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
224 0xeafffffe, /* (spin) */
225 0xeafffffe, /* (spin) */
226 0xeafffffe, /* (spin) */
227 0xeafffffe, /* (spin) */
228 0xeafffffe, /* (spin) */
229 };
230 uint32_t board_setup_blob[] = {
231 /* board setup addr */
232 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
233 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
234 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
235 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
236 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
237 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
238 0xe1600070, /* smc #0 ;call monitor to flush SCR */
239 0xe1a0f001, /* mov pc, r1 ;return */
240 };
241
242 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
243 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
244
245 /* check that these blobs don't overlap */
246 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
247 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
248
249 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
250 mvbar_blob[n] = tswap32(mvbar_blob[n]);
251 }
9f43d4c3
PM
252 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
253 mvbar_addr, as);
716536a9
AB
254
255 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
256 board_setup_blob[n] = tswap32(board_setup_blob[n]);
257 }
9f43d4c3
PM
258 rom_add_blob_fixed_as("board-setup", board_setup_blob,
259 sizeof(board_setup_blob), info->board_setup_addr, as);
716536a9
AB
260}
261
5d309320 262static void default_reset_secondary(ARMCPU *cpu,
9d5ba9bf
ML
263 const struct arm_boot_info *info)
264{
9f43d4c3 265 AddressSpace *as = arm_boot_address_space(cpu, info);
4df81c6e 266 CPUState *cs = CPU(cpu);
5d309320 267
9f43d4c3 268 address_space_stl_notdirty(as, info->smp_bootreg_addr,
42874d3a 269 0, MEMTXATTRS_UNSPECIFIED, NULL);
4df81c6e 270 cpu_set_pc(cs, info->smp_loader_start);
9d5ba9bf
ML
271}
272
83bfffec
PM
273static inline bool have_dtb(const struct arm_boot_info *info)
274{
275 return info->dtb_filename || info->get_dtb;
276}
277
52b43737 278#define WRITE_WORD(p, value) do { \
9f43d4c3 279 address_space_stl_notdirty(as, p, value, \
42874d3a 280 MEMTXATTRS_UNSPECIFIED, NULL); \
52b43737
PB
281 p += 4; \
282} while (0)
283
9f43d4c3 284static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
16406950 285{
761c9eb0 286 int initrd_size = info->initrd_size;
a8170e5e
AK
287 hwaddr base = info->loader_start;
288 hwaddr p;
16406950 289
52b43737 290 p = base + KERNEL_ARGS_ADDR;
16406950 291 /* ATAG_CORE */
52b43737
PB
292 WRITE_WORD(p, 5);
293 WRITE_WORD(p, 0x54410001);
294 WRITE_WORD(p, 1);
295 WRITE_WORD(p, 0x1000);
296 WRITE_WORD(p, 0);
16406950 297 /* ATAG_MEM */
f93eb9ff 298 /* TODO: handle multiple chips on one ATAG list */
52b43737
PB
299 WRITE_WORD(p, 4);
300 WRITE_WORD(p, 0x54410002);
301 WRITE_WORD(p, info->ram_size);
302 WRITE_WORD(p, info->loader_start);
16406950
PB
303 if (initrd_size) {
304 /* ATAG_INITRD2 */
52b43737
PB
305 WRITE_WORD(p, 4);
306 WRITE_WORD(p, 0x54420005);
fc53b7d4 307 WRITE_WORD(p, info->initrd_start);
52b43737 308 WRITE_WORD(p, initrd_size);
16406950 309 }
f93eb9ff 310 if (info->kernel_cmdline && *info->kernel_cmdline) {
16406950
PB
311 /* ATAG_CMDLINE */
312 int cmdline_size;
313
f93eb9ff 314 cmdline_size = strlen(info->kernel_cmdline);
9f43d4c3
PM
315 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
316 (const uint8_t *)info->kernel_cmdline,
317 cmdline_size + 1);
16406950 318 cmdline_size = (cmdline_size >> 2) + 1;
52b43737
PB
319 WRITE_WORD(p, cmdline_size + 2);
320 WRITE_WORD(p, 0x54410009);
321 p += cmdline_size * 4;
16406950 322 }
f93eb9ff
AZ
323 if (info->atag_board) {
324 /* ATAG_BOARD */
325 int atag_board_len;
52b43737 326 uint8_t atag_board_buf[0x1000];
f93eb9ff 327
52b43737
PB
328 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
329 WRITE_WORD(p, (atag_board_len + 8) >> 2);
330 WRITE_WORD(p, 0x414f4d50);
9f43d4c3
PM
331 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
332 atag_board_buf, atag_board_len);
f93eb9ff
AZ
333 p += atag_board_len;
334 }
16406950 335 /* ATAG_END */
52b43737
PB
336 WRITE_WORD(p, 0);
337 WRITE_WORD(p, 0);
16406950
PB
338}
339
9f43d4c3
PM
340static void set_kernel_args_old(const struct arm_boot_info *info,
341 AddressSpace *as)
2b8f2d41 342{
a8170e5e 343 hwaddr p;
52b43737 344 const char *s;
761c9eb0 345 int initrd_size = info->initrd_size;
a8170e5e 346 hwaddr base = info->loader_start;
2b8f2d41
AZ
347
348 /* see linux/include/asm-arm/setup.h */
52b43737 349 p = base + KERNEL_ARGS_ADDR;
2b8f2d41 350 /* page_size */
52b43737 351 WRITE_WORD(p, 4096);
2b8f2d41 352 /* nr_pages */
52b43737 353 WRITE_WORD(p, info->ram_size / 4096);
2b8f2d41 354 /* ramdisk_size */
52b43737 355 WRITE_WORD(p, 0);
2b8f2d41
AZ
356#define FLAG_READONLY 1
357#define FLAG_RDLOAD 4
358#define FLAG_RDPROMPT 8
359 /* flags */
52b43737 360 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
2b8f2d41 361 /* rootdev */
52b43737 362 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
2b8f2d41 363 /* video_num_cols */
52b43737 364 WRITE_WORD(p, 0);
2b8f2d41 365 /* video_num_rows */
52b43737 366 WRITE_WORD(p, 0);
2b8f2d41 367 /* video_x */
52b43737 368 WRITE_WORD(p, 0);
2b8f2d41 369 /* video_y */
52b43737 370 WRITE_WORD(p, 0);
2b8f2d41 371 /* memc_control_reg */
52b43737 372 WRITE_WORD(p, 0);
2b8f2d41
AZ
373 /* unsigned char sounddefault */
374 /* unsigned char adfsdrives */
375 /* unsigned char bytes_per_char_h */
376 /* unsigned char bytes_per_char_v */
52b43737 377 WRITE_WORD(p, 0);
2b8f2d41 378 /* pages_in_bank[4] */
52b43737
PB
379 WRITE_WORD(p, 0);
380 WRITE_WORD(p, 0);
381 WRITE_WORD(p, 0);
382 WRITE_WORD(p, 0);
2b8f2d41 383 /* pages_in_vram */
52b43737 384 WRITE_WORD(p, 0);
2b8f2d41 385 /* initrd_start */
fc53b7d4
PM
386 if (initrd_size) {
387 WRITE_WORD(p, info->initrd_start);
388 } else {
52b43737 389 WRITE_WORD(p, 0);
fc53b7d4 390 }
2b8f2d41 391 /* initrd_size */
52b43737 392 WRITE_WORD(p, initrd_size);
2b8f2d41 393 /* rd_start */
52b43737 394 WRITE_WORD(p, 0);
2b8f2d41 395 /* system_rev */
52b43737 396 WRITE_WORD(p, 0);
2b8f2d41 397 /* system_serial_low */
52b43737 398 WRITE_WORD(p, 0);
2b8f2d41 399 /* system_serial_high */
52b43737 400 WRITE_WORD(p, 0);
2b8f2d41 401 /* mem_fclk_21285 */
52b43737 402 WRITE_WORD(p, 0);
2b8f2d41 403 /* zero unused fields */
52b43737
PB
404 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
405 WRITE_WORD(p, 0);
406 }
407 s = info->kernel_cmdline;
408 if (s) {
9f43d4c3
PM
409 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
410 (const uint8_t *)s, strlen(s) + 1);
52b43737
PB
411 } else {
412 WRITE_WORD(p, 0);
413 }
2b8f2d41
AZ
414}
415
4cbca7d9
AS
416static void fdt_add_psci_node(void *fdt)
417{
418 uint32_t cpu_suspend_fn;
419 uint32_t cpu_off_fn;
420 uint32_t cpu_on_fn;
421 uint32_t migrate_fn;
422 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
423 const char *psci_method;
424 int64_t psci_conduit;
425
426 psci_conduit = object_property_get_int(OBJECT(armcpu),
427 "psci-conduit",
428 &error_abort);
429 switch (psci_conduit) {
430 case QEMU_PSCI_CONDUIT_DISABLED:
431 return;
432 case QEMU_PSCI_CONDUIT_HVC:
433 psci_method = "hvc";
434 break;
435 case QEMU_PSCI_CONDUIT_SMC:
436 psci_method = "smc";
437 break;
438 default:
439 g_assert_not_reached();
440 }
441
442 qemu_fdt_add_subnode(fdt, "/psci");
443 if (armcpu->psci_version == 2) {
444 const char comp[] = "arm,psci-0.2\0arm,psci";
445 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
446
447 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
448 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
449 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
450 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
451 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
452 } else {
453 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
454 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
455 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
456 }
457 } else {
458 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
459
460 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
461 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
462 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
463 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
464 }
465
466 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
467 * to the instruction that should be used to invoke PSCI functions.
468 * However, the device tree binding uses 'method' instead, so that is
469 * what we should use here.
470 */
471 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
472
473 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
474 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
475 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
476 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
477}
478
fee8ea12
AB
479/**
480 * load_dtb() - load a device tree binary image into memory
481 * @addr: the address to load the image at
482 * @binfo: struct describing the boot environment
483 * @addr_limit: upper limit of the available memory area at @addr
9f43d4c3 484 * @as: address space to load image to
fee8ea12
AB
485 *
486 * Load a device tree supplied by the machine or by the user with the
487 * '-dtb' command line option, and put it at offset @addr in target
488 * memory.
489 *
490 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
491 * than @addr), the device tree is only loaded if its size does not exceed
492 * the limit.
493 *
494 * Returns: the size of the device tree image on success,
495 * 0 if the image size exceeds the limit,
496 * -1 on errors.
a554ecb4
HZ
497 *
498 * Note: Must not be called unless have_dtb(binfo) is true.
fee8ea12
AB
499 */
500static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
9f43d4c3 501 hwaddr addr_limit, AddressSpace *as)
412beee6 502{
412beee6 503 void *fdt = NULL;
412beee6 504 int size, rc;
70976c41 505 uint32_t acells, scells;
9695200a
SZ
506 char *nodename;
507 unsigned int i;
508 hwaddr mem_base, mem_len;
412beee6 509
0fb79851
JR
510 if (binfo->dtb_filename) {
511 char *filename;
512 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
513 if (!filename) {
514 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
515 goto fail;
516 }
412beee6 517
0fb79851
JR
518 fdt = load_device_tree(filename, &size);
519 if (!fdt) {
520 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
521 g_free(filename);
522 goto fail;
523 }
412beee6 524 g_free(filename);
a554ecb4 525 } else {
0fb79851
JR
526 fdt = binfo->get_dtb(binfo, &size);
527 if (!fdt) {
528 fprintf(stderr, "Board was unable to create a dtb blob\n");
529 goto fail;
530 }
412beee6 531 }
412beee6 532
fee8ea12
AB
533 if (addr_limit > addr && size > (addr_limit - addr)) {
534 /* Installing the device tree blob at addr would exceed addr_limit.
535 * Whether this constitutes failure is up to the caller to decide,
536 * so just return 0 as size, i.e., no error.
537 */
538 g_free(fdt);
539 return 0;
540 }
541
58e71097
EA
542 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
543 NULL, &error_fatal);
544 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
545 NULL, &error_fatal);
9bfa659e
PM
546 if (acells == 0 || scells == 0) {
547 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
c23045de 548 goto fail;
9bfa659e
PM
549 }
550
70976c41
PM
551 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
552 /* This is user error so deserves a friendlier error message
553 * than the failure of setprop_sized_cells would provide
554 */
9bfa659e
PM
555 fprintf(stderr, "qemu: dtb file not compatible with "
556 "RAM size > 4GB\n");
c23045de 557 goto fail;
9bfa659e
PM
558 }
559
9695200a
SZ
560 if (nb_numa_nodes > 0) {
561 /*
562 * Turn the /memory node created before into a NOP node, then create
563 * /memory@addr nodes for all numa nodes respectively.
564 */
565 qemu_fdt_nop_node(fdt, "/memory");
566 mem_base = binfo->loader_start;
567 for (i = 0; i < nb_numa_nodes; i++) {
568 mem_len = numa_info[i].node_mem;
569 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
570 qemu_fdt_add_subnode(fdt, nodename);
571 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
572 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
573 acells, mem_base,
574 scells, mem_len);
575 if (rc < 0) {
576 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
577 i);
578 goto fail;
579 }
580
581 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
582 mem_base += mem_len;
583 g_free(nodename);
584 }
585 } else {
b77257d7
GR
586 Error *err = NULL;
587
588 rc = fdt_path_offset(fdt, "/memory");
589 if (rc < 0) {
590 qemu_fdt_add_subnode(fdt, "/memory");
591 }
592
593 if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
594 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
595 }
596
9695200a
SZ
597 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
598 acells, binfo->loader_start,
599 scells, binfo->ram_size);
600 if (rc < 0) {
601 fprintf(stderr, "couldn't set /memory/reg\n");
602 goto fail;
603 }
412beee6
GL
604 }
605
b77257d7
GR
606 rc = fdt_path_offset(fdt, "/chosen");
607 if (rc < 0) {
608 qemu_fdt_add_subnode(fdt, "/chosen");
609 }
610
5e87975c 611 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
5a4348d1
PC
612 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
613 binfo->kernel_cmdline);
5e87975c
PC
614 if (rc < 0) {
615 fprintf(stderr, "couldn't set /chosen/bootargs\n");
c23045de 616 goto fail;
5e87975c 617 }
412beee6
GL
618 }
619
620 if (binfo->initrd_size) {
5a4348d1
PC
621 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
622 binfo->initrd_start);
412beee6
GL
623 if (rc < 0) {
624 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
c23045de 625 goto fail;
412beee6
GL
626 }
627
5a4348d1
PC
628 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
629 binfo->initrd_start + binfo->initrd_size);
412beee6
GL
630 if (rc < 0) {
631 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
c23045de 632 goto fail;
412beee6
GL
633 }
634 }
3b1cceb8 635
4cbca7d9
AS
636 fdt_add_psci_node(fdt);
637
3b1cceb8
PM
638 if (binfo->modify_dtb) {
639 binfo->modify_dtb(binfo, fdt);
640 }
641
5a4348d1 642 qemu_fdt_dumpdtb(fdt, size);
412beee6 643
4c4bf654
AB
644 /* Put the DTB into the memory map as a ROM image: this will ensure
645 * the DTB is copied again upon reset, even if addr points into RAM.
646 */
9f43d4c3 647 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
412beee6 648
c23045de
PM
649 g_free(fdt);
650
fee8ea12 651 return size;
c23045de
PM
652
653fail:
654 g_free(fdt);
655 return -1;
412beee6
GL
656}
657
6ed221b6 658static void do_cpu_reset(void *opaque)
f2d74978 659{
351d5666 660 ARMCPU *cpu = opaque;
4df81c6e 661 CPUState *cs = CPU(cpu);
351d5666 662 CPUARMState *env = &cpu->env;
462a8bc6 663 const struct arm_boot_info *info = env->boot_info;
f2d74978 664
4df81c6e 665 cpu_reset(cs);
f2d74978
PB
666 if (info) {
667 if (!info->is_linux) {
9776f636 668 int i;
f2d74978 669 /* Jump to the entry point. */
4df81c6e
PC
670 uint64_t entry = info->entry;
671
9776f636
PC
672 switch (info->endianness) {
673 case ARM_ENDIANNESS_LE:
674 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
675 for (i = 1; i < 4; ++i) {
676 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
677 }
678 env->uncached_cpsr &= ~CPSR_E;
679 break;
680 case ARM_ENDIANNESS_BE8:
681 env->cp15.sctlr_el[1] |= SCTLR_E0E;
682 for (i = 1; i < 4; ++i) {
683 env->cp15.sctlr_el[i] |= SCTLR_EE;
684 }
685 env->uncached_cpsr |= CPSR_E;
686 break;
687 case ARM_ENDIANNESS_BE32:
688 env->cp15.sctlr_el[1] |= SCTLR_B;
689 break;
690 case ARM_ENDIANNESS_UNKNOWN:
691 break; /* Board's decision */
692 default:
693 g_assert_not_reached();
694 }
695
4df81c6e 696 if (!env->aarch64) {
a9047ec3 697 env->thumb = info->entry & 1;
4df81c6e 698 entry &= 0xfffffffe;
a9047ec3 699 }
4df81c6e 700 cpu_set_pc(cs, entry);
f2d74978 701 } else {
c8e829b7
GB
702 /* If we are booting Linux then we need to check whether we are
703 * booting into secure or non-secure state and adjust the state
704 * accordingly. Out of reset, ARM is defined to be in secure state
705 * (SCR.NS = 0), we change that here if non-secure boot has been
706 * requested.
707 */
5097227c
GB
708 if (arm_feature(env, ARM_FEATURE_EL3)) {
709 /* AArch64 is defined to come out of reset into EL3 if enabled.
710 * If we are booting Linux then we need to adjust our EL as
711 * Linux expects us to be in EL2 or EL1. AArch32 resets into
712 * SVC, which Linux expects, so no privilege/exception level to
713 * adjust.
714 */
715 if (env->aarch64) {
48d21a57 716 env->cp15.scr_el3 |= SCR_RW;
5097227c 717 if (arm_feature(env, ARM_FEATURE_EL2)) {
48d21a57 718 env->cp15.hcr_el2 |= HCR_RW;
5097227c
GB
719 env->pstate = PSTATE_MODE_EL2h;
720 } else {
721 env->pstate = PSTATE_MODE_EL1h;
722 }
723 }
724
725 /* Set to non-secure if not a secure boot */
baf6b681
PC
726 if (!info->secure_boot &&
727 (cs != first_cpu || !info->secure_board_setup)) {
5097227c
GB
728 /* Linux expects non-secure state */
729 env->cp15.scr_el3 |= SCR_NS;
730 }
c8e829b7
GB
731 }
732
4df81c6e 733 if (cs == first_cpu) {
9f43d4c3
PM
734 AddressSpace *as = arm_boot_address_space(cpu, info);
735
4df81c6e 736 cpu_set_pc(cs, info->loader_start);
4d9ebf75 737
83bfffec 738 if (!have_dtb(info)) {
412beee6 739 if (old_param) {
9f43d4c3 740 set_kernel_args_old(info, as);
412beee6 741 } else {
9f43d4c3 742 set_kernel_args(info, as);
412beee6 743 }
6ed221b6 744 }
f2d74978 745 } else {
5d309320 746 info->secondary_cpu_reset_hook(cpu, info);
f2d74978
PB
747 }
748 }
749 }
f2d74978
PB
750}
751
07abe45c
LE
752/**
753 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
754 * by key.
755 * @fw_cfg: The firmware config instance to store the data in.
756 * @size_key: The firmware config key to store the size of the loaded
757 * data under, with fw_cfg_add_i32().
758 * @data_key: The firmware config key to store the loaded data under,
759 * with fw_cfg_add_bytes().
760 * @image_name: The name of the image file to load. If it is NULL, the
761 * function returns without doing anything.
762 * @try_decompress: Whether the image should be decompressed (gunzipped) before
763 * adding it to fw_cfg. If decompression fails, the image is
764 * loaded as-is.
765 *
766 * In case of failure, the function prints an error message to stderr and the
767 * process exits with status 1.
768 */
769static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
770 uint16_t data_key, const char *image_name,
771 bool try_decompress)
772{
773 size_t size = -1;
774 uint8_t *data;
775
776 if (image_name == NULL) {
777 return;
778 }
779
780 if (try_decompress) {
781 size = load_image_gzipped_buffer(image_name,
782 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
783 }
784
785 if (size == (size_t)-1) {
786 gchar *contents;
787 gsize length;
788
789 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
c0dbca36 790 error_report("failed to load \"%s\"", image_name);
07abe45c
LE
791 exit(1);
792 }
793 size = length;
794 data = (uint8_t *)contents;
795 }
796
797 fw_cfg_add_i32(fw_cfg, size_key, size);
798 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
799}
800
d8b1ae42
PM
801static int do_arm_linux_init(Object *obj, void *opaque)
802{
803 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
804 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
805 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
806 struct arm_boot_info *info = opaque;
807
808 if (albifc->arm_linux_init) {
809 albifc->arm_linux_init(albif, info->secure_boot);
810 }
811 }
812 return 0;
813}
814
9776f636
PC
815static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
816 uint64_t *lowaddr, uint64_t *highaddr,
9f43d4c3 817 int elf_machine, AddressSpace *as)
9776f636
PC
818{
819 bool elf_is64;
820 union {
821 Elf32_Ehdr h32;
822 Elf64_Ehdr h64;
823 } elf_header;
824 int data_swab = 0;
825 bool big_endian;
826 uint64_t ret = -1;
827 Error *err = NULL;
828
829
830 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
831 if (err) {
36f876ce 832 error_free(err);
9776f636
PC
833 return ret;
834 }
835
836 if (elf_is64) {
837 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
838 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
839 : ARM_ENDIANNESS_LE;
840 } else {
841 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
842 if (big_endian) {
843 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
844 info->endianness = ARM_ENDIANNESS_BE8;
845 } else {
846 info->endianness = ARM_ENDIANNESS_BE32;
847 /* In BE32, the CPU has a different view of the per-byte
848 * address map than the rest of the system. BE32 ELF files
849 * are organised such that they can be programmed through
850 * the CPU's per-word byte-reversed view of the world. QEMU
851 * however loads ELF files independently of the CPU. So
852 * tell the ELF loader to byte reverse the data for us.
853 */
854 data_swab = 2;
855 }
856 } else {
857 info->endianness = ARM_ENDIANNESS_LE;
858 }
859 }
860
9f43d4c3
PM
861 ret = load_elf_as(info->kernel_filename, NULL, NULL,
862 pentry, lowaddr, highaddr, big_endian, elf_machine,
863 1, data_swab, as);
9776f636
PC
864 if (ret <= 0) {
865 /* The header loaded but the image didn't */
866 exit(1);
867 }
868
869 return ret;
870}
871
68115ed5 872static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
9f43d4c3 873 hwaddr *entry, AddressSpace *as)
68115ed5
AB
874{
875 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
876 uint8_t *buffer;
877 int size;
878
879 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
880 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
881 &buffer);
882
883 if (size < 0) {
884 gsize len;
885
886 /* Load as raw file otherwise */
887 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
888 return -1;
889 }
890 size = len;
891 }
892
893 /* check the arm64 magic header value -- very old kernels may not have it */
894 if (memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
895 uint64_t hdrvals[2];
896
897 /* The arm64 Image header has text_offset and image_size fields at 8 and
898 * 16 bytes into the Image header, respectively. The text_offset field
899 * is only valid if the image_size is non-zero.
900 */
901 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
902 if (hdrvals[1] != 0) {
903 kernel_load_offset = le64_to_cpu(hdrvals[0]);
904 }
905 }
906
907 *entry = mem_base + kernel_load_offset;
9f43d4c3 908 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
68115ed5
AB
909
910 g_free(buffer);
911
912 return size;
913}
914
ac9d32e3 915static void arm_load_kernel_notify(Notifier *notifier, void *data)
16406950 916{
c6faa758 917 CPUState *cs;
16406950
PB
918 int kernel_size;
919 int initrd_size;
1c7b3754 920 int is_linux = 0;
92df8450 921 uint64_t elf_entry, elf_low_addr, elf_high_addr;
da0af40d 922 int elf_machine;
68115ed5 923 hwaddr entry;
4d9ebf75 924 static const ARMInsnFixup *primary_loader;
ac9d32e3
EA
925 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
926 notifier, notifier);
927 ARMCPU *cpu = n->cpu;
928 struct arm_boot_info *info =
929 container_of(n, struct arm_boot_info, load_kernel_notifier);
9f43d4c3 930 AddressSpace *as = arm_boot_address_space(cpu, info);
16406950 931
baf6b681
PC
932 /* The board code is not supposed to set secure_board_setup unless
933 * running its code in secure mode is actually possible, and KVM
934 * doesn't support secure.
935 */
936 assert(!(info->secure_board_setup && kvm_enabled()));
937
4c8afda7
MO
938 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
939
16406950 940 /* Load the kernel. */
07abe45c 941 if (!info->kernel_filename || info->firmware_loaded) {
69e7f76f
AB
942
943 if (have_dtb(info)) {
07abe45c
LE
944 /* If we have a device tree blob, but no kernel to supply it to (or
945 * the kernel is supposed to be loaded by the bootloader), copy the
946 * DTB to the base of RAM for the bootloader to pick up.
69e7f76f 947 */
9f43d4c3 948 if (load_dtb(info->loader_start, info, 0, as) < 0) {
69e7f76f
AB
949 exit(1);
950 }
951 }
952
07abe45c
LE
953 if (info->kernel_filename) {
954 FWCfgState *fw_cfg;
955 bool try_decompressing_kernel;
956
957 fw_cfg = fw_cfg_find();
958 try_decompressing_kernel = arm_feature(&cpu->env,
959 ARM_FEATURE_AARCH64);
960
961 /* Expose the kernel, the command line, and the initrd in fw_cfg.
962 * We don't process them here at all, it's all left to the
963 * firmware.
964 */
965 load_image_to_fw_cfg(fw_cfg,
966 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
967 info->kernel_filename,
968 try_decompressing_kernel);
969 load_image_to_fw_cfg(fw_cfg,
970 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
971 info->initrd_filename, false);
972
973 if (info->kernel_cmdline) {
974 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
975 strlen(info->kernel_cmdline) + 1);
976 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
977 info->kernel_cmdline);
978 }
979 }
980
981 /* We will start from address 0 (typically a boot ROM image) in the
982 * same way as hardware.
9546dbab
PM
983 */
984 return;
16406950 985 }
daf90626 986
4d9ebf75
MH
987 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
988 primary_loader = bootloader_aarch64;
da0af40d 989 elf_machine = EM_AARCH64;
4d9ebf75
MH
990 } else {
991 primary_loader = bootloader;
10b8ec73
PC
992 if (!info->write_board_setup) {
993 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
994 }
da0af40d 995 elf_machine = EM_ARM;
4d9ebf75
MH
996 }
997
9d5ba9bf
ML
998 if (!info->secondary_cpu_reset_hook) {
999 info->secondary_cpu_reset_hook = default_reset_secondary;
1000 }
1001 if (!info->write_secondary_boot) {
1002 info->write_secondary_boot = default_write_secondary;
1003 }
1004
f2d74978
PB
1005 if (info->nb_cpus == 0)
1006 info->nb_cpus = 1;
f93eb9ff 1007
fc53b7d4
PM
1008 /* We want to put the initrd far enough into RAM that when the
1009 * kernel is uncompressed it will not clobber the initrd. However
1010 * on boards without much RAM we must ensure that we still leave
1011 * enough room for a decent sized initrd, and on boards with large
1012 * amounts of RAM we must avoid the initrd being so far up in RAM
1013 * that it is outside lowmem and inaccessible to the kernel.
1014 * So for boards with less than 256MB of RAM we put the initrd
1015 * halfway into RAM, and for boards with 256MB of RAM or more we put
1016 * the initrd at 128MB.
1017 */
1018 info->initrd_start = info->loader_start +
1019 MIN(info->ram_size / 2, 128 * 1024 * 1024);
1020
1c7b3754 1021 /* Assume that raw images are linux kernels, and ELF images are not. */
9776f636 1022 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
9f43d4c3 1023 &elf_high_addr, elf_machine, as);
92df8450
AB
1024 if (kernel_size > 0 && have_dtb(info)) {
1025 /* If there is still some room left at the base of RAM, try and put
1026 * the DTB there like we do for images loaded with -bios or -pflash.
1027 */
1028 if (elf_low_addr > info->loader_start
1029 || elf_high_addr < info->loader_start) {
1030 /* Pass elf_low_addr as address limit to load_dtb if it may be
1031 * pointing into RAM, otherwise pass '0' (no limit)
1032 */
1033 if (elf_low_addr < info->loader_start) {
1034 elf_low_addr = 0;
1035 }
9f43d4c3 1036 if (load_dtb(info->loader_start, info, elf_low_addr, as) < 0) {
92df8450
AB
1037 exit(1);
1038 }
1039 }
1040 }
1c7b3754
PB
1041 entry = elf_entry;
1042 if (kernel_size < 0) {
9f43d4c3
PM
1043 kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1044 &is_linux, NULL, NULL, as);
1c7b3754 1045 }
6f5d3cbe 1046 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
68115ed5 1047 kernel_size = load_aarch64_image(info->kernel_filename,
9f43d4c3 1048 info->loader_start, &entry, as);
6f5d3cbe 1049 is_linux = 1;
68115ed5
AB
1050 } else if (kernel_size < 0) {
1051 /* 32-bit ARM */
1052 entry = info->loader_start + KERNEL_LOAD_ADDR;
9f43d4c3
PM
1053 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1054 info->ram_size - KERNEL_LOAD_ADDR,
1055 as);
1c7b3754
PB
1056 is_linux = 1;
1057 }
1058 if (kernel_size < 0) {
c0dbca36 1059 error_report("could not load kernel '%s'", info->kernel_filename);
1c7b3754
PB
1060 exit(1);
1061 }
f2d74978
PB
1062 info->entry = entry;
1063 if (is_linux) {
47b1da81
PM
1064 uint32_t fixupcontext[FIXUP_MAX];
1065
f93eb9ff 1066 if (info->initrd_filename) {
9f43d4c3
PM
1067 initrd_size = load_ramdisk_as(info->initrd_filename,
1068 info->initrd_start,
1069 info->ram_size - info->initrd_start,
1070 as);
fd76663e 1071 if (initrd_size < 0) {
9f43d4c3
PM
1072 initrd_size = load_image_targphys_as(info->initrd_filename,
1073 info->initrd_start,
1074 info->ram_size -
1075 info->initrd_start,
1076 as);
fd76663e 1077 }
daf90626 1078 if (initrd_size < 0) {
c0dbca36
AF
1079 error_report("could not load initrd '%s'",
1080 info->initrd_filename);
daf90626
PB
1081 exit(1);
1082 }
1083 } else {
1084 initrd_size = 0;
1085 }
412beee6
GL
1086 info->initrd_size = initrd_size;
1087
47b1da81 1088 fixupcontext[FIXUP_BOARDID] = info->board_id;
10b8ec73 1089 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
412beee6
GL
1090
1091 /* for device tree boot, we pass the DTB directly in r2. Otherwise
1092 * we point to the kernel args.
1093 */
83bfffec 1094 if (have_dtb(info)) {
76e2aef3
AG
1095 hwaddr align;
1096 hwaddr dtb_start;
1097
1098 if (elf_machine == EM_AARCH64) {
1099 /*
1100 * Some AArch64 kernels on early bootup map the fdt region as
1101 *
1102 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1103 *
1104 * Let's play safe and prealign it to 2MB to give us some space.
1105 */
1106 align = 2 * 1024 * 1024;
1107 } else {
1108 /*
1109 * Some 32bit kernels will trash anything in the 4K page the
1110 * initrd ends in, so make sure the DTB isn't caught up in that.
1111 */
1112 align = 4096;
1113 }
1114
1115 /* Place the DTB after the initrd in memory with alignment. */
1116 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
9f43d4c3 1117 if (load_dtb(dtb_start, info, 0, as) < 0) {
412beee6
GL
1118 exit(1);
1119 }
47b1da81 1120 fixupcontext[FIXUP_ARGPTR] = dtb_start;
412beee6 1121 } else {
47b1da81 1122 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
3871481c 1123 if (info->ram_size >= (1ULL << 32)) {
c0dbca36
AF
1124 error_report("RAM size must be less than 4GB to boot"
1125 " Linux kernel using ATAGS (try passing a device tree"
1126 " using -dtb)");
3871481c
PM
1127 exit(1);
1128 }
412beee6 1129 }
47b1da81
PM
1130 fixupcontext[FIXUP_ENTRYPOINT] = entry;
1131
1132 write_bootloader("bootloader", info->loader_start,
9f43d4c3 1133 primary_loader, fixupcontext, as);
47b1da81 1134
52b43737 1135 if (info->nb_cpus > 1) {
9543b0cd 1136 info->write_secondary_boot(cpu, info);
52b43737 1137 }
10b8ec73
PC
1138 if (info->write_board_setup) {
1139 info->write_board_setup(cpu, info);
1140 }
d8b1ae42
PM
1141
1142 /* Notify devices which need to fake up firmware initialization
1143 * that we're doing a direct kernel boot.
1144 */
1145 object_child_foreach_recursive(object_get_root(),
1146 do_arm_linux_init, info);
16406950 1147 }
f2d74978 1148 info->is_linux = is_linux;
6ed221b6 1149
c6faa758
AB
1150 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1151 ARM_CPU(cs)->env.boot_info = info;
6ed221b6 1152 }
16406950 1153}
ac9d32e3
EA
1154
1155void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1156{
63a183ed
EA
1157 CPUState *cs;
1158
ac9d32e3
EA
1159 info->load_kernel_notifier.cpu = cpu;
1160 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1161 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
63a183ed
EA
1162
1163 /* CPU objects (unlike devices) are not automatically reset on system
1164 * reset, so we must always register a handler to do so. If we're
1165 * actually loading a kernel, the handler is also responsible for
1166 * arranging that we start it correctly.
1167 */
1168 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1169 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1170 }
ac9d32e3 1171}
d8b1ae42
PM
1172
1173static const TypeInfo arm_linux_boot_if_info = {
1174 .name = TYPE_ARM_LINUX_BOOT_IF,
1175 .parent = TYPE_INTERFACE,
1176 .class_size = sizeof(ARMLinuxBootIfClass),
1177};
1178
1179static void arm_linux_boot_register_types(void)
1180{
1181 type_register_static(&arm_linux_boot_if_info);
1182}
1183
1184type_init(arm_linux_boot_register_types)
This page took 0.951581 seconds and 4 git commands to generate.