]>
Commit | Line | Data |
---|---|---|
9fdf0c29 DG |
1 | /* |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
27 | #include "sysemu.h" | |
9fdf0c29 DG |
28 | #include "hw.h" |
29 | #include "elf.h" | |
8d90ad90 | 30 | #include "net.h" |
6e270446 | 31 | #include "blockdev.h" |
e97c3636 DG |
32 | #include "cpus.h" |
33 | #include "kvm.h" | |
34 | #include "kvm_ppc.h" | |
9fdf0c29 DG |
35 | |
36 | #include "hw/boards.h" | |
37 | #include "hw/ppc.h" | |
38 | #include "hw/loader.h" | |
39 | ||
40 | #include "hw/spapr.h" | |
4040ab72 | 41 | #include "hw/spapr_vio.h" |
3384f95c | 42 | #include "hw/spapr_pci.h" |
b5cec4c5 | 43 | #include "hw/xics.h" |
9fdf0c29 | 44 | |
f61b4bed AG |
45 | #include "kvm.h" |
46 | #include "kvm_ppc.h" | |
3384f95c | 47 | #include "pci.h" |
f61b4bed | 48 | |
890c2b77 AK |
49 | #include "exec-memory.h" |
50 | ||
9fdf0c29 DG |
51 | #include <libfdt.h> |
52 | ||
4d8d5467 BH |
53 | /* SLOF memory layout: |
54 | * | |
55 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
56 | * device-tree, then position SLOF itself 31M below that | |
57 | * | |
58 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
59 | * and more | |
60 | * | |
61 | * We load our kernel at 4M, leaving space for SLOF initial image | |
62 | */ | |
9fdf0c29 | 63 | #define FDT_MAX_SIZE 0x10000 |
39ac8455 | 64 | #define RTAS_MAX_SIZE 0x10000 |
a9f8ad8f DG |
65 | #define FW_MAX_SIZE 0x400000 |
66 | #define FW_FILE_NAME "slof.bin" | |
4d8d5467 BH |
67 | #define FW_OVERHEAD 0x2800000 |
68 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
a9f8ad8f | 69 | |
4d8d5467 | 70 | #define MIN_RMA_SLOF 128UL |
9fdf0c29 DG |
71 | |
72 | #define TIMEBASE_FREQ 512000000ULL | |
73 | ||
41019fec | 74 | #define MAX_CPUS 256 |
4d8d5467 | 75 | #define XICS_IRQS 1024 |
9fdf0c29 | 76 | |
3384f95c DG |
77 | #define SPAPR_PCI_BUID 0x800000020000001ULL |
78 | #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000) | |
79 | #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000 | |
80 | #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000) | |
81 | ||
0c103f8e DG |
82 | #define PHANDLE_XICP 0x00001111 |
83 | ||
9fdf0c29 DG |
84 | sPAPREnvironment *spapr; |
85 | ||
d07fee7e DG |
86 | qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num, |
87 | enum xics_irq_type type) | |
e6c866d4 DG |
88 | { |
89 | uint32_t irq; | |
90 | qemu_irq qirq; | |
91 | ||
92 | if (hint) { | |
93 | irq = hint; | |
94 | /* FIXME: we should probably check for collisions somehow */ | |
95 | } else { | |
96 | irq = spapr->next_irq++; | |
97 | } | |
98 | ||
d07fee7e | 99 | qirq = xics_assign_irq(spapr->icp, irq, type); |
e6c866d4 DG |
100 | if (!qirq) { |
101 | return NULL; | |
102 | } | |
103 | ||
104 | if (irq_num) { | |
105 | *irq_num = irq; | |
106 | } | |
107 | ||
108 | return qirq; | |
109 | } | |
110 | ||
6e806cc3 BR |
111 | static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr) |
112 | { | |
113 | int ret = 0, offset; | |
e2684c0b | 114 | CPUPPCState *env; |
6e806cc3 BR |
115 | char cpu_model[32]; |
116 | int smt = kvmppc_smt_threads(); | |
117 | ||
118 | assert(spapr->cpu_model); | |
119 | ||
120 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
121 | uint32_t associativity[] = {cpu_to_be32(0x5), | |
122 | cpu_to_be32(0x0), | |
123 | cpu_to_be32(0x0), | |
124 | cpu_to_be32(0x0), | |
125 | cpu_to_be32(env->numa_node), | |
126 | cpu_to_be32(env->cpu_index)}; | |
127 | ||
128 | if ((env->cpu_index % smt) != 0) { | |
129 | continue; | |
130 | } | |
131 | ||
132 | snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model, | |
133 | env->cpu_index); | |
134 | ||
135 | offset = fdt_path_offset(fdt, cpu_model); | |
136 | if (offset < 0) { | |
137 | return offset; | |
138 | } | |
139 | ||
140 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
141 | sizeof(associativity)); | |
142 | if (ret < 0) { | |
143 | return ret; | |
144 | } | |
145 | } | |
146 | return ret; | |
147 | } | |
148 | ||
a3467baa | 149 | static void *spapr_create_fdt_skel(const char *cpu_model, |
354ac20a | 150 | target_phys_addr_t rma_size, |
a3467baa DG |
151 | target_phys_addr_t initrd_base, |
152 | target_phys_addr_t initrd_size, | |
4d8d5467 | 153 | target_phys_addr_t kernel_size, |
a3467baa DG |
154 | const char *boot_device, |
155 | const char *kernel_cmdline, | |
156 | long hash_shift) | |
9fdf0c29 DG |
157 | { |
158 | void *fdt; | |
e2684c0b | 159 | CPUPPCState *env; |
6e806cc3 | 160 | uint64_t mem_reg_property[2]; |
9fdf0c29 DG |
161 | uint32_t start_prop = cpu_to_be32(initrd_base); |
162 | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | |
f43e3525 | 163 | uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)}; |
ee86dfee | 164 | char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
a3d0abae | 165 | "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; |
b5cec4c5 | 166 | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
9fdf0c29 DG |
167 | int i; |
168 | char *modelname; | |
e97c3636 | 169 | int smt = kvmppc_smt_threads(); |
6e806cc3 BR |
170 | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
171 | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; | |
172 | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | |
173 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
174 | cpu_to_be32(0x0)}; | |
175 | char mem_name[32]; | |
176 | target_phys_addr_t node0_size, mem_start; | |
9fdf0c29 DG |
177 | |
178 | #define _FDT(exp) \ | |
179 | do { \ | |
180 | int ret = (exp); \ | |
181 | if (ret < 0) { \ | |
182 | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | |
183 | #exp, fdt_strerror(ret)); \ | |
184 | exit(1); \ | |
185 | } \ | |
186 | } while (0) | |
187 | ||
7267c094 | 188 | fdt = g_malloc0(FDT_MAX_SIZE); |
9fdf0c29 DG |
189 | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
190 | ||
4d8d5467 BH |
191 | if (kernel_size) { |
192 | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | |
193 | } | |
194 | if (initrd_size) { | |
195 | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | |
196 | } | |
9fdf0c29 DG |
197 | _FDT((fdt_finish_reservemap(fdt))); |
198 | ||
199 | /* Root node */ | |
200 | _FDT((fdt_begin_node(fdt, ""))); | |
201 | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | |
5d73dd66 | 202 | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
9fdf0c29 DG |
203 | |
204 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | |
205 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | |
206 | ||
207 | /* /chosen */ | |
208 | _FDT((fdt_begin_node(fdt, "chosen"))); | |
209 | ||
6e806cc3 BR |
210 | /* Set Form1_affinity */ |
211 | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | |
212 | ||
9fdf0c29 DG |
213 | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
214 | _FDT((fdt_property(fdt, "linux,initrd-start", | |
215 | &start_prop, sizeof(start_prop)))); | |
216 | _FDT((fdt_property(fdt, "linux,initrd-end", | |
217 | &end_prop, sizeof(end_prop)))); | |
4d8d5467 BH |
218 | if (kernel_size) { |
219 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
220 | cpu_to_be64(kernel_size) }; | |
9fdf0c29 | 221 | |
4d8d5467 BH |
222 | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
223 | } | |
224 | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | |
3384f95c | 225 | |
9fdf0c29 DG |
226 | _FDT((fdt_end_node(fdt))); |
227 | ||
354ac20a | 228 | /* memory node(s) */ |
6e806cc3 BR |
229 | node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
230 | if (rma_size > node0_size) { | |
231 | rma_size = node0_size; | |
232 | } | |
9fdf0c29 | 233 | |
6e806cc3 BR |
234 | /* RMA */ |
235 | mem_reg_property[0] = 0; | |
236 | mem_reg_property[1] = cpu_to_be64(rma_size); | |
237 | _FDT((fdt_begin_node(fdt, "memory@0"))); | |
9fdf0c29 | 238 | _FDT((fdt_property_string(fdt, "device_type", "memory"))); |
6e806cc3 BR |
239 | _FDT((fdt_property(fdt, "reg", mem_reg_property, |
240 | sizeof(mem_reg_property)))); | |
241 | _FDT((fdt_property(fdt, "ibm,associativity", associativity, | |
242 | sizeof(associativity)))); | |
9fdf0c29 DG |
243 | _FDT((fdt_end_node(fdt))); |
244 | ||
6e806cc3 BR |
245 | /* RAM: Node 0 */ |
246 | if (node0_size > rma_size) { | |
247 | mem_reg_property[0] = cpu_to_be64(rma_size); | |
248 | mem_reg_property[1] = cpu_to_be64(node0_size - rma_size); | |
354ac20a | 249 | |
6e806cc3 | 250 | sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size); |
354ac20a DG |
251 | _FDT((fdt_begin_node(fdt, mem_name))); |
252 | _FDT((fdt_property_string(fdt, "device_type", "memory"))); | |
6e806cc3 BR |
253 | _FDT((fdt_property(fdt, "reg", mem_reg_property, |
254 | sizeof(mem_reg_property)))); | |
255 | _FDT((fdt_property(fdt, "ibm,associativity", associativity, | |
256 | sizeof(associativity)))); | |
354ac20a DG |
257 | _FDT((fdt_end_node(fdt))); |
258 | } | |
259 | ||
6e806cc3 BR |
260 | /* RAM: Node 1 and beyond */ |
261 | mem_start = node0_size; | |
262 | for (i = 1; i < nb_numa_nodes; i++) { | |
263 | mem_reg_property[0] = cpu_to_be64(mem_start); | |
264 | mem_reg_property[1] = cpu_to_be64(node_mem[i]); | |
265 | associativity[3] = associativity[4] = cpu_to_be32(i); | |
266 | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | |
267 | _FDT((fdt_begin_node(fdt, mem_name))); | |
268 | _FDT((fdt_property_string(fdt, "device_type", "memory"))); | |
269 | _FDT((fdt_property(fdt, "reg", mem_reg_property, | |
270 | sizeof(mem_reg_property)))); | |
271 | _FDT((fdt_property(fdt, "ibm,associativity", associativity, | |
272 | sizeof(associativity)))); | |
273 | _FDT((fdt_end_node(fdt))); | |
274 | mem_start += node_mem[i]; | |
275 | } | |
276 | ||
9fdf0c29 DG |
277 | /* cpus */ |
278 | _FDT((fdt_begin_node(fdt, "cpus"))); | |
279 | ||
280 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
281 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
282 | ||
7267c094 | 283 | modelname = g_strdup(cpu_model); |
9fdf0c29 DG |
284 | |
285 | for (i = 0; i < strlen(modelname); i++) { | |
286 | modelname[i] = toupper(modelname[i]); | |
287 | } | |
288 | ||
6e806cc3 BR |
289 | /* This is needed during FDT finalization */ |
290 | spapr->cpu_model = g_strdup(modelname); | |
291 | ||
c7a5c0c9 DG |
292 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
293 | int index = env->cpu_index; | |
e97c3636 DG |
294 | uint32_t servers_prop[smp_threads]; |
295 | uint32_t gservers_prop[smp_threads * 2]; | |
9fdf0c29 DG |
296 | char *nodename; |
297 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
298 | 0xffffffff, 0xffffffff}; | |
0a8b2938 AG |
299 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
300 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
9fdf0c29 | 301 | |
e97c3636 DG |
302 | if ((index % smt) != 0) { |
303 | continue; | |
304 | } | |
305 | ||
c7a5c0c9 | 306 | if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { |
9fdf0c29 DG |
307 | fprintf(stderr, "Allocation failure\n"); |
308 | exit(1); | |
309 | } | |
310 | ||
311 | _FDT((fdt_begin_node(fdt, nodename))); | |
312 | ||
313 | free(nodename); | |
314 | ||
c7a5c0c9 | 315 | _FDT((fdt_property_cell(fdt, "reg", index))); |
9fdf0c29 DG |
316 | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
317 | ||
318 | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | |
319 | _FDT((fdt_property_cell(fdt, "dcache-block-size", | |
320 | env->dcache_line_size))); | |
321 | _FDT((fdt_property_cell(fdt, "icache-block-size", | |
322 | env->icache_line_size))); | |
0a8b2938 AG |
323 | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
324 | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | |
9fdf0c29 | 325 | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
f43e3525 DG |
326 | _FDT((fdt_property(fdt, "ibm,pft-size", |
327 | pft_size_prop, sizeof(pft_size_prop)))); | |
9fdf0c29 DG |
328 | _FDT((fdt_property_string(fdt, "status", "okay"))); |
329 | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | |
e97c3636 DG |
330 | |
331 | /* Build interrupt servers and gservers properties */ | |
332 | for (i = 0; i < smp_threads; i++) { | |
333 | servers_prop[i] = cpu_to_be32(index + i); | |
334 | /* Hack, direct the group queues back to cpu 0 */ | |
335 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
336 | gservers_prop[i*2 + 1] = 0; | |
337 | } | |
338 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", | |
339 | servers_prop, sizeof(servers_prop)))); | |
b5cec4c5 | 340 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", |
e97c3636 | 341 | gservers_prop, sizeof(gservers_prop)))); |
9fdf0c29 | 342 | |
c7a5c0c9 | 343 | if (env->mmu_model & POWERPC_MMU_1TSEG) { |
9fdf0c29 DG |
344 | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
345 | segs, sizeof(segs)))); | |
346 | } | |
347 | ||
6659394f DG |
348 | /* Advertise VMX/VSX (vector extensions) if available |
349 | * 0 / no property == no vector extensions | |
350 | * 1 == VMX / Altivec available | |
351 | * 2 == VSX available */ | |
a7342588 DG |
352 | if (env->insns_flags & PPC_ALTIVEC) { |
353 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
354 | ||
6659394f DG |
355 | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
356 | } | |
357 | ||
358 | /* Advertise DFP (Decimal Floating Point) if available | |
359 | * 0 / no property == no DFP | |
360 | * 1 == DFP available */ | |
a7342588 DG |
361 | if (env->insns_flags2 & PPC2_DFP) { |
362 | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | |
6659394f DG |
363 | } |
364 | ||
9fdf0c29 DG |
365 | _FDT((fdt_end_node(fdt))); |
366 | } | |
367 | ||
7267c094 | 368 | g_free(modelname); |
9fdf0c29 DG |
369 | |
370 | _FDT((fdt_end_node(fdt))); | |
371 | ||
f43e3525 DG |
372 | /* RTAS */ |
373 | _FDT((fdt_begin_node(fdt, "rtas"))); | |
374 | ||
375 | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, | |
376 | sizeof(hypertas_prop)))); | |
377 | ||
6e806cc3 BR |
378 | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
379 | refpoints, sizeof(refpoints)))); | |
380 | ||
f43e3525 DG |
381 | _FDT((fdt_end_node(fdt))); |
382 | ||
b5cec4c5 | 383 | /* interrupt controller */ |
9dfef5aa | 384 | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
b5cec4c5 DG |
385 | |
386 | _FDT((fdt_property_string(fdt, "device_type", | |
387 | "PowerPC-External-Interrupt-Presentation"))); | |
388 | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | |
b5cec4c5 DG |
389 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
390 | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | |
391 | interrupt_server_ranges_prop, | |
392 | sizeof(interrupt_server_ranges_prop)))); | |
0c103f8e DG |
393 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
394 | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | |
395 | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | |
b5cec4c5 DG |
396 | |
397 | _FDT((fdt_end_node(fdt))); | |
398 | ||
4040ab72 DG |
399 | /* vdevice */ |
400 | _FDT((fdt_begin_node(fdt, "vdevice"))); | |
401 | ||
402 | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | |
403 | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | |
404 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
405 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
b5cec4c5 DG |
406 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
407 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
4040ab72 DG |
408 | |
409 | _FDT((fdt_end_node(fdt))); | |
410 | ||
9fdf0c29 DG |
411 | _FDT((fdt_end_node(fdt))); /* close root node */ |
412 | _FDT((fdt_finish(fdt))); | |
413 | ||
a3467baa DG |
414 | return fdt; |
415 | } | |
416 | ||
417 | static void spapr_finalize_fdt(sPAPREnvironment *spapr, | |
418 | target_phys_addr_t fdt_addr, | |
419 | target_phys_addr_t rtas_addr, | |
420 | target_phys_addr_t rtas_size) | |
421 | { | |
422 | int ret; | |
423 | void *fdt; | |
3384f95c | 424 | sPAPRPHBState *phb; |
a3467baa | 425 | |
7267c094 | 426 | fdt = g_malloc(FDT_MAX_SIZE); |
a3467baa DG |
427 | |
428 | /* open out the base tree into a temp buffer for the final tweaks */ | |
429 | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | |
4040ab72 DG |
430 | |
431 | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); | |
432 | if (ret < 0) { | |
433 | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | |
434 | exit(1); | |
435 | } | |
436 | ||
3384f95c DG |
437 | QLIST_FOREACH(phb, &spapr->phbs, list) { |
438 | ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt); | |
439 | } | |
440 | ||
441 | if (ret < 0) { | |
442 | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | |
443 | exit(1); | |
444 | } | |
445 | ||
39ac8455 DG |
446 | /* RTAS */ |
447 | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | |
448 | if (ret < 0) { | |
449 | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | |
450 | } | |
451 | ||
6e806cc3 BR |
452 | /* Advertise NUMA via ibm,associativity */ |
453 | if (nb_numa_nodes > 1) { | |
454 | ret = spapr_set_associativity(fdt, spapr); | |
455 | if (ret < 0) { | |
456 | fprintf(stderr, "Couldn't set up NUMA device tree properties\n"); | |
457 | } | |
458 | } | |
459 | ||
68f3a94c DG |
460 | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
461 | ||
4040ab72 DG |
462 | _FDT((fdt_pack(fdt))); |
463 | ||
4d8d5467 BH |
464 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
465 | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | |
466 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
467 | exit(1); | |
468 | } | |
469 | ||
a3467baa | 470 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
9fdf0c29 | 471 | |
7267c094 | 472 | g_free(fdt); |
9fdf0c29 DG |
473 | } |
474 | ||
475 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
476 | { | |
477 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
478 | } | |
479 | ||
e2684c0b | 480 | static void emulate_spapr_hypercall(CPUPPCState *env) |
9fdf0c29 DG |
481 | { |
482 | env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); | |
483 | } | |
484 | ||
a3467baa DG |
485 | static void spapr_reset(void *opaque) |
486 | { | |
487 | sPAPREnvironment *spapr = (sPAPREnvironment *)opaque; | |
488 | ||
489 | fprintf(stderr, "sPAPR reset\n"); | |
490 | ||
491 | /* flush out the hash table */ | |
492 | memset(spapr->htab, 0, spapr->htab_size); | |
493 | ||
494 | /* Load the fdt */ | |
495 | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | |
496 | spapr->rtas_size); | |
497 | ||
498 | /* Set up the entry state */ | |
499 | first_cpu->gpr[3] = spapr->fdt_addr; | |
500 | first_cpu->gpr[5] = 0; | |
501 | first_cpu->halted = 0; | |
502 | first_cpu->nip = spapr->entry_point; | |
503 | ||
504 | } | |
505 | ||
1bba0dc9 AF |
506 | static void spapr_cpu_reset(void *opaque) |
507 | { | |
e2684c0b | 508 | CPUPPCState *env = opaque; |
1bba0dc9 AF |
509 | |
510 | cpu_state_reset(env); | |
511 | } | |
512 | ||
9fdf0c29 DG |
513 | /* pSeries LPAR / sPAPR hardware init */ |
514 | static void ppc_spapr_init(ram_addr_t ram_size, | |
515 | const char *boot_device, | |
516 | const char *kernel_filename, | |
517 | const char *kernel_cmdline, | |
518 | const char *initrd_filename, | |
519 | const char *cpu_model) | |
520 | { | |
05769733 | 521 | PowerPCCPU *cpu; |
e2684c0b | 522 | CPUPPCState *env; |
9fdf0c29 | 523 | int i; |
890c2b77 AK |
524 | MemoryRegion *sysmem = get_system_memory(); |
525 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
354ac20a | 526 | target_phys_addr_t rma_alloc_size, rma_size; |
4d8d5467 BH |
527 | uint32_t initrd_base = 0; |
528 | long kernel_size = 0, initrd_size = 0; | |
529 | long load_limit, rtas_limit, fw_size; | |
f43e3525 | 530 | long pteg_shift = 17; |
39ac8455 | 531 | char *filename; |
9fdf0c29 | 532 | |
d43b45e2 DG |
533 | spapr = g_malloc0(sizeof(*spapr)); |
534 | QLIST_INIT(&spapr->phbs); | |
535 | ||
9fdf0c29 DG |
536 | cpu_ppc_hypercall = emulate_spapr_hypercall; |
537 | ||
354ac20a DG |
538 | /* Allocate RMA if necessary */ |
539 | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | |
540 | ||
541 | if (rma_alloc_size == -1) { | |
542 | hw_error("qemu: Unable to create RMA\n"); | |
543 | exit(1); | |
544 | } | |
545 | if (rma_alloc_size && (rma_alloc_size < ram_size)) { | |
546 | rma_size = rma_alloc_size; | |
547 | } else { | |
548 | rma_size = ram_size; | |
549 | } | |
550 | ||
4d8d5467 | 551 | /* We place the device tree and RTAS just below either the top of the RMA, |
354ac20a DG |
552 | * or just below 2GB, whichever is lowere, so that it can be |
553 | * processed with 32-bit real mode code if necessary */ | |
4d8d5467 BH |
554 | rtas_limit = MIN(rma_size, 0x80000000); |
555 | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; | |
556 | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | |
557 | load_limit = spapr->fdt_addr - FW_OVERHEAD; | |
9fdf0c29 DG |
558 | |
559 | /* init CPUs */ | |
560 | if (cpu_model == NULL) { | |
6b7a2cf6 | 561 | cpu_model = kvm_enabled() ? "host" : "POWER7"; |
9fdf0c29 DG |
562 | } |
563 | for (i = 0; i < smp_cpus; i++) { | |
05769733 AF |
564 | cpu = cpu_ppc_init(cpu_model); |
565 | if (cpu == NULL) { | |
9fdf0c29 DG |
566 | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
567 | exit(1); | |
568 | } | |
05769733 AF |
569 | env = &cpu->env; |
570 | ||
9fdf0c29 DG |
571 | /* Set time-base frequency to 512 MHz */ |
572 | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | |
1bba0dc9 | 573 | qemu_register_reset(spapr_cpu_reset, env); |
9fdf0c29 DG |
574 | |
575 | env->hreset_vector = 0x60; | |
576 | env->hreset_excp_prefix = 0; | |
c7a5c0c9 | 577 | env->gpr[3] = env->cpu_index; |
9fdf0c29 DG |
578 | } |
579 | ||
580 | /* allocate RAM */ | |
f73a2575 | 581 | spapr->ram_limit = ram_size; |
354ac20a DG |
582 | if (spapr->ram_limit > rma_alloc_size) { |
583 | ram_addr_t nonrma_base = rma_alloc_size; | |
584 | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | |
585 | ||
c5705a77 AK |
586 | memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size); |
587 | vmstate_register_ram_global(ram); | |
354ac20a DG |
588 | memory_region_add_subregion(sysmem, nonrma_base, ram); |
589 | } | |
9fdf0c29 | 590 | |
f43e3525 DG |
591 | /* allocate hash page table. For now we always make this 16mb, |
592 | * later we should probably make it scale to the size of guest | |
593 | * RAM */ | |
a3467baa | 594 | spapr->htab_size = 1ULL << (pteg_shift + 7); |
f61b4bed | 595 | spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size); |
f43e3525 | 596 | |
c7a5c0c9 | 597 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
a3467baa | 598 | env->external_htab = spapr->htab; |
c7a5c0c9 | 599 | env->htab_base = -1; |
a3467baa | 600 | env->htab_mask = spapr->htab_size - 1; |
f61b4bed AG |
601 | |
602 | /* Tell KVM that we're in PAPR mode */ | |
603 | env->spr[SPR_SDR1] = (unsigned long)spapr->htab | | |
604 | ((pteg_shift + 7) - 18); | |
605 | env->spr[SPR_HIOR] = 0; | |
606 | ||
607 | if (kvm_enabled()) { | |
608 | kvmppc_set_papr(env); | |
609 | } | |
f43e3525 DG |
610 | } |
611 | ||
39ac8455 | 612 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
a3467baa | 613 | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
4d8d5467 | 614 | rtas_limit - spapr->rtas_addr); |
a3467baa | 615 | if (spapr->rtas_size < 0) { |
39ac8455 DG |
616 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
617 | exit(1); | |
618 | } | |
4d8d5467 BH |
619 | if (spapr->rtas_size > RTAS_MAX_SIZE) { |
620 | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | |
621 | spapr->rtas_size, RTAS_MAX_SIZE); | |
622 | exit(1); | |
623 | } | |
7267c094 | 624 | g_free(filename); |
39ac8455 | 625 | |
4d8d5467 | 626 | |
b5cec4c5 | 627 | /* Set up Interrupt Controller */ |
c7a5c0c9 | 628 | spapr->icp = xics_system_init(XICS_IRQS); |
e6c866d4 | 629 | spapr->next_irq = 16; |
b5cec4c5 DG |
630 | |
631 | /* Set up VIO bus */ | |
4040ab72 DG |
632 | spapr->vio_bus = spapr_vio_bus_init(); |
633 | ||
277f9acf | 634 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
4040ab72 | 635 | if (serial_hds[i]) { |
d601fac4 | 636 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); |
4040ab72 DG |
637 | } |
638 | } | |
9fdf0c29 | 639 | |
3384f95c DG |
640 | /* Set up PCI */ |
641 | spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID, | |
642 | SPAPR_PCI_MEM_WIN_ADDR, | |
643 | SPAPR_PCI_MEM_WIN_SIZE, | |
644 | SPAPR_PCI_IO_WIN_ADDR); | |
645 | ||
277f9acf | 646 | for (i = 0; i < nb_nics; i++) { |
8d90ad90 DG |
647 | NICInfo *nd = &nd_table[i]; |
648 | ||
649 | if (!nd->model) { | |
7267c094 | 650 | nd->model = g_strdup("ibmveth"); |
8d90ad90 DG |
651 | } |
652 | ||
653 | if (strcmp(nd->model, "ibmveth") == 0) { | |
d601fac4 | 654 | spapr_vlan_create(spapr->vio_bus, nd); |
8d90ad90 | 655 | } else { |
3384f95c | 656 | pci_nic_init_nofail(&nd_table[i], nd->model, NULL); |
8d90ad90 DG |
657 | } |
658 | } | |
659 | ||
6e270446 | 660 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
d601fac4 | 661 | spapr_vscsi_create(spapr->vio_bus); |
6e270446 BH |
662 | } |
663 | ||
4d8d5467 BH |
664 | if (rma_size < (MIN_RMA_SLOF << 20)) { |
665 | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " | |
666 | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | |
667 | exit(1); | |
668 | } | |
669 | ||
670 | fprintf(stderr, "sPAPR memory map:\n"); | |
671 | fprintf(stderr, "RTAS : 0x%08lx..%08lx\n", | |
672 | (unsigned long)spapr->rtas_addr, | |
673 | (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1)); | |
674 | fprintf(stderr, "FDT : 0x%08lx..%08lx\n", | |
675 | (unsigned long)spapr->fdt_addr, | |
676 | (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1)); | |
677 | ||
9fdf0c29 DG |
678 | if (kernel_filename) { |
679 | uint64_t lowaddr = 0; | |
680 | ||
9fdf0c29 DG |
681 | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
682 | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | |
683 | if (kernel_size < 0) { | |
a3467baa DG |
684 | kernel_size = load_image_targphys(kernel_filename, |
685 | KERNEL_LOAD_ADDR, | |
4d8d5467 | 686 | load_limit - KERNEL_LOAD_ADDR); |
9fdf0c29 DG |
687 | } |
688 | if (kernel_size < 0) { | |
689 | fprintf(stderr, "qemu: could not load kernel '%s'\n", | |
690 | kernel_filename); | |
691 | exit(1); | |
692 | } | |
4d8d5467 BH |
693 | fprintf(stderr, "Kernel : 0x%08x..%08lx\n", |
694 | KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1); | |
9fdf0c29 DG |
695 | |
696 | /* load initrd */ | |
697 | if (initrd_filename) { | |
4d8d5467 BH |
698 | /* Try to locate the initrd in the gap between the kernel |
699 | * and the firmware. Add a bit of space just in case | |
700 | */ | |
701 | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | |
9fdf0c29 | 702 | initrd_size = load_image_targphys(initrd_filename, initrd_base, |
4d8d5467 | 703 | load_limit - initrd_base); |
9fdf0c29 DG |
704 | if (initrd_size < 0) { |
705 | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | |
706 | initrd_filename); | |
707 | exit(1); | |
708 | } | |
4d8d5467 BH |
709 | fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n", |
710 | (long)initrd_base, (long)(initrd_base + initrd_size - 1)); | |
9fdf0c29 DG |
711 | } else { |
712 | initrd_base = 0; | |
713 | initrd_size = 0; | |
714 | } | |
4d8d5467 | 715 | } |
a3467baa | 716 | |
4d8d5467 BH |
717 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME); |
718 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | |
719 | if (fw_size < 0) { | |
720 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
721 | exit(1); | |
722 | } | |
723 | g_free(filename); | |
724 | fprintf(stderr, "Firmware load : 0x%08x..%08lx\n", | |
725 | 0, fw_size); | |
726 | fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n", | |
727 | load_limit, (unsigned long)spapr->fdt_addr); | |
728 | ||
729 | spapr->entry_point = 0x100; | |
730 | ||
731 | /* SLOF will startup the secondary CPUs using RTAS */ | |
732 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
733 | env->halted = 1; | |
9fdf0c29 DG |
734 | } |
735 | ||
736 | /* Prepare the device tree */ | |
354ac20a | 737 | spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size, |
a3467baa | 738 | initrd_base, initrd_size, |
4d8d5467 | 739 | kernel_size, |
a3467baa DG |
740 | boot_device, kernel_cmdline, |
741 | pteg_shift + 7); | |
742 | assert(spapr->fdt_skel != NULL); | |
9fdf0c29 | 743 | |
a3467baa | 744 | qemu_register_reset(spapr_reset, spapr); |
9fdf0c29 DG |
745 | } |
746 | ||
747 | static QEMUMachine spapr_machine = { | |
748 | .name = "pseries", | |
749 | .desc = "pSeries Logical Partition (PAPR compliant)", | |
750 | .init = ppc_spapr_init, | |
751 | .max_cpus = MAX_CPUS, | |
9fdf0c29 | 752 | .no_parallel = 1, |
6e270446 | 753 | .use_scsi = 1, |
9fdf0c29 DG |
754 | }; |
755 | ||
756 | static void spapr_machine_init(void) | |
757 | { | |
758 | qemu_register_machine(&spapr_machine); | |
759 | } | |
760 | ||
761 | machine_init(spapr_machine_init); |