]>
Commit | Line | Data |
---|---|---|
9fdf0c29 DG |
1 | /* |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
83c9f4ca | 28 | #include "hw/hw.h" |
9fdf0c29 | 29 | #include "elf.h" |
1422e32d | 30 | #include "net/net.h" |
9c17d615 PB |
31 | #include "sysemu/blockdev.h" |
32 | #include "sysemu/cpus.h" | |
33 | #include "sysemu/kvm.h" | |
e97c3636 | 34 | #include "kvm_ppc.h" |
4be21d56 | 35 | #include "mmu-hash64.h" |
9fdf0c29 DG |
36 | |
37 | #include "hw/boards.h" | |
0d09e41a | 38 | #include "hw/ppc/ppc.h" |
9fdf0c29 DG |
39 | #include "hw/loader.h" |
40 | ||
0d09e41a PB |
41 | #include "hw/ppc/spapr.h" |
42 | #include "hw/ppc/spapr_vio.h" | |
43 | #include "hw/pci-host/spapr.h" | |
44 | #include "hw/ppc/xics.h" | |
a2cb15b0 | 45 | #include "hw/pci/msi.h" |
9fdf0c29 | 46 | |
83c9f4ca | 47 | #include "hw/pci/pci.h" |
f61b4bed | 48 | |
022c62cb | 49 | #include "exec/address-spaces.h" |
35139a59 | 50 | #include "hw/usb.h" |
1de7afc9 | 51 | #include "qemu/config-file.h" |
135a129a | 52 | #include "qemu/error-report.h" |
890c2b77 | 53 | |
9fdf0c29 DG |
54 | #include <libfdt.h> |
55 | ||
4d8d5467 BH |
56 | /* SLOF memory layout: |
57 | * | |
58 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
59 | * device-tree, then position SLOF itself 31M below that | |
60 | * | |
61 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
62 | * and more | |
63 | * | |
64 | * We load our kernel at 4M, leaving space for SLOF initial image | |
65 | */ | |
3bf6eedd | 66 | #define FDT_MAX_SIZE 0x40000 |
39ac8455 | 67 | #define RTAS_MAX_SIZE 0x10000 |
a9f8ad8f DG |
68 | #define FW_MAX_SIZE 0x400000 |
69 | #define FW_FILE_NAME "slof.bin" | |
4d8d5467 BH |
70 | #define FW_OVERHEAD 0x2800000 |
71 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
a9f8ad8f | 72 | |
4d8d5467 | 73 | #define MIN_RMA_SLOF 128UL |
9fdf0c29 DG |
74 | |
75 | #define TIMEBASE_FREQ 512000000ULL | |
76 | ||
41019fec | 77 | #define MAX_CPUS 256 |
4d8d5467 | 78 | #define XICS_IRQS 1024 |
9fdf0c29 | 79 | |
0c103f8e DG |
80 | #define PHANDLE_XICP 0x00001111 |
81 | ||
7f763a5d DG |
82 | #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) |
83 | ||
9fdf0c29 DG |
84 | sPAPREnvironment *spapr; |
85 | ||
ff9d2afa | 86 | int spapr_allocate_irq(int hint, bool lsi) |
e6c866d4 | 87 | { |
a307d594 | 88 | int irq; |
e6c866d4 DG |
89 | |
90 | if (hint) { | |
91 | irq = hint; | |
f1c2dc7c AK |
92 | if (hint >= spapr->next_irq) { |
93 | spapr->next_irq = hint + 1; | |
94 | } | |
e6c866d4 DG |
95 | /* FIXME: we should probably check for collisions somehow */ |
96 | } else { | |
97 | irq = spapr->next_irq++; | |
98 | } | |
99 | ||
a307d594 AK |
100 | /* Configure irq type */ |
101 | if (!xics_get_qirq(spapr->icp, irq)) { | |
102 | return 0; | |
e6c866d4 DG |
103 | } |
104 | ||
ff9d2afa | 105 | xics_set_irq_type(spapr->icp, irq, lsi); |
e6c866d4 | 106 | |
a307d594 | 107 | return irq; |
e6c866d4 DG |
108 | } |
109 | ||
f1c2dc7c AK |
110 | /* |
111 | * Allocate block of consequtive IRQs, returns a number of the first. | |
112 | * If msi==true, aligns the first IRQ number to num. | |
113 | */ | |
114 | int spapr_allocate_irq_block(int num, bool lsi, bool msi) | |
f4b9523b AK |
115 | { |
116 | int first = -1; | |
f1c2dc7c AK |
117 | int i, hint = 0; |
118 | ||
119 | /* | |
120 | * MSIMesage::data is used for storing VIRQ so | |
121 | * it has to be aligned to num to support multiple | |
122 | * MSI vectors. MSI-X is not affected by this. | |
123 | * The hint is used for the first IRQ, the rest should | |
73f395fa | 124 | * be allocated continuously. |
f1c2dc7c AK |
125 | */ |
126 | if (msi) { | |
127 | assert((num == 1) || (num == 2) || (num == 4) || | |
128 | (num == 8) || (num == 16) || (num == 32)); | |
129 | hint = (spapr->next_irq + num - 1) & ~(num - 1); | |
130 | } | |
f4b9523b AK |
131 | |
132 | for (i = 0; i < num; ++i) { | |
133 | int irq; | |
134 | ||
f1c2dc7c | 135 | irq = spapr_allocate_irq(hint, lsi); |
f4b9523b AK |
136 | if (!irq) { |
137 | return -1; | |
138 | } | |
139 | ||
140 | if (0 == i) { | |
141 | first = irq; | |
f1c2dc7c | 142 | hint = 0; |
f4b9523b AK |
143 | } |
144 | ||
145 | /* If the above doesn't create a consecutive block then that's | |
146 | * an internal bug */ | |
147 | assert(irq == (first + i)); | |
148 | } | |
149 | ||
150 | return first; | |
151 | } | |
152 | ||
c04d6cfa AL |
153 | static XICSState *try_create_xics(const char *type, int nr_servers, |
154 | int nr_irqs) | |
155 | { | |
156 | DeviceState *dev; | |
157 | ||
158 | dev = qdev_create(NULL, type); | |
159 | qdev_prop_set_uint32(dev, "nr_servers", nr_servers); | |
160 | qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); | |
161 | if (qdev_init(dev) < 0) { | |
162 | return NULL; | |
163 | } | |
164 | ||
5a3d7b23 | 165 | return XICS_COMMON(dev); |
c04d6cfa AL |
166 | } |
167 | ||
168 | static XICSState *xics_system_init(int nr_servers, int nr_irqs) | |
169 | { | |
170 | XICSState *icp = NULL; | |
171 | ||
11ad93f6 DG |
172 | if (kvm_enabled()) { |
173 | QemuOpts *machine_opts = qemu_get_machine_opts(); | |
174 | bool irqchip_allowed = qemu_opt_get_bool(machine_opts, | |
175 | "kernel_irqchip", true); | |
176 | bool irqchip_required = qemu_opt_get_bool(machine_opts, | |
177 | "kernel_irqchip", false); | |
178 | if (irqchip_allowed) { | |
179 | icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs); | |
180 | } | |
181 | ||
182 | if (irqchip_required && !icp) { | |
183 | perror("Failed to create in-kernel XICS\n"); | |
184 | abort(); | |
185 | } | |
186 | } | |
187 | ||
188 | if (!icp) { | |
189 | icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs); | |
190 | } | |
191 | ||
c04d6cfa AL |
192 | if (!icp) { |
193 | perror("Failed to create XICS\n"); | |
194 | abort(); | |
195 | } | |
196 | ||
197 | return icp; | |
198 | } | |
199 | ||
7f763a5d | 200 | static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) |
6e806cc3 BR |
201 | { |
202 | int ret = 0, offset; | |
1b1ed8dc | 203 | CPUState *cpu; |
6e806cc3 BR |
204 | char cpu_model[32]; |
205 | int smt = kvmppc_smt_threads(); | |
7f763a5d | 206 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
6e806cc3 | 207 | |
bdc44640 | 208 | CPU_FOREACH(cpu) { |
3bbf37f2 | 209 | DeviceClass *dc = DEVICE_GET_CLASS(cpu); |
6e806cc3 BR |
210 | uint32_t associativity[] = {cpu_to_be32(0x5), |
211 | cpu_to_be32(0x0), | |
212 | cpu_to_be32(0x0), | |
213 | cpu_to_be32(0x0), | |
1b1ed8dc | 214 | cpu_to_be32(cpu->numa_node), |
55e5c285 | 215 | cpu_to_be32(cpu->cpu_index)}; |
6e806cc3 | 216 | |
55e5c285 | 217 | if ((cpu->cpu_index % smt) != 0) { |
6e806cc3 BR |
218 | continue; |
219 | } | |
220 | ||
3bbf37f2 | 221 | snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name, |
55e5c285 | 222 | cpu->cpu_index); |
6e806cc3 BR |
223 | |
224 | offset = fdt_path_offset(fdt, cpu_model); | |
225 | if (offset < 0) { | |
226 | return offset; | |
227 | } | |
228 | ||
7f763a5d DG |
229 | if (nb_numa_nodes > 1) { |
230 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
231 | sizeof(associativity)); | |
232 | if (ret < 0) { | |
233 | return ret; | |
234 | } | |
235 | } | |
236 | ||
237 | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | |
238 | pft_size_prop, sizeof(pft_size_prop)); | |
6e806cc3 BR |
239 | if (ret < 0) { |
240 | return ret; | |
241 | } | |
242 | } | |
243 | return ret; | |
244 | } | |
245 | ||
5af9873d BH |
246 | |
247 | static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, | |
248 | size_t maxsize) | |
249 | { | |
250 | size_t maxcells = maxsize / sizeof(uint32_t); | |
251 | int i, j, count; | |
252 | uint32_t *p = prop; | |
253 | ||
254 | for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { | |
255 | struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; | |
256 | ||
257 | if (!sps->page_shift) { | |
258 | break; | |
259 | } | |
260 | for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { | |
261 | if (sps->enc[count].page_shift == 0) { | |
262 | break; | |
263 | } | |
264 | } | |
265 | if ((p - prop) >= (maxcells - 3 - count * 2)) { | |
266 | break; | |
267 | } | |
268 | *(p++) = cpu_to_be32(sps->page_shift); | |
269 | *(p++) = cpu_to_be32(sps->slb_enc); | |
270 | *(p++) = cpu_to_be32(count); | |
271 | for (j = 0; j < count; j++) { | |
272 | *(p++) = cpu_to_be32(sps->enc[j].page_shift); | |
273 | *(p++) = cpu_to_be32(sps->enc[j].pte_enc); | |
274 | } | |
275 | } | |
276 | ||
277 | return (p - prop) * sizeof(uint32_t); | |
278 | } | |
279 | ||
7f763a5d DG |
280 | #define _FDT(exp) \ |
281 | do { \ | |
282 | int ret = (exp); \ | |
283 | if (ret < 0) { \ | |
284 | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | |
285 | #exp, fdt_strerror(ret)); \ | |
286 | exit(1); \ | |
287 | } \ | |
288 | } while (0) | |
289 | ||
290 | ||
3bbf37f2 | 291 | static void *spapr_create_fdt_skel(hwaddr initrd_base, |
a8170e5e AK |
292 | hwaddr initrd_size, |
293 | hwaddr kernel_size, | |
16457e7f | 294 | bool little_endian, |
a3467baa | 295 | const char *boot_device, |
74d042e5 DG |
296 | const char *kernel_cmdline, |
297 | uint32_t epow_irq) | |
9fdf0c29 DG |
298 | { |
299 | void *fdt; | |
182735ef | 300 | CPUState *cs; |
9fdf0c29 DG |
301 | uint32_t start_prop = cpu_to_be32(initrd_base); |
302 | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | |
ee86dfee | 303 | char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
42561bf2 | 304 | "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode"; |
c73e3771 | 305 | char qemu_hypertas_prop[] = "hcall-memop1"; |
7f763a5d | 306 | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; |
b5cec4c5 | 307 | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
7f763a5d | 308 | int i, smt = kvmppc_smt_threads(); |
6e806cc3 | 309 | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
9fdf0c29 | 310 | |
7267c094 | 311 | fdt = g_malloc0(FDT_MAX_SIZE); |
9fdf0c29 DG |
312 | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
313 | ||
4d8d5467 BH |
314 | if (kernel_size) { |
315 | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | |
316 | } | |
317 | if (initrd_size) { | |
318 | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | |
319 | } | |
9fdf0c29 DG |
320 | _FDT((fdt_finish_reservemap(fdt))); |
321 | ||
322 | /* Root node */ | |
323 | _FDT((fdt_begin_node(fdt, ""))); | |
324 | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | |
5d73dd66 | 325 | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
d63919c9 | 326 | _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); |
9fdf0c29 DG |
327 | |
328 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | |
329 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | |
330 | ||
331 | /* /chosen */ | |
332 | _FDT((fdt_begin_node(fdt, "chosen"))); | |
333 | ||
6e806cc3 BR |
334 | /* Set Form1_affinity */ |
335 | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | |
336 | ||
9fdf0c29 DG |
337 | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
338 | _FDT((fdt_property(fdt, "linux,initrd-start", | |
339 | &start_prop, sizeof(start_prop)))); | |
340 | _FDT((fdt_property(fdt, "linux,initrd-end", | |
341 | &end_prop, sizeof(end_prop)))); | |
4d8d5467 BH |
342 | if (kernel_size) { |
343 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
344 | cpu_to_be64(kernel_size) }; | |
9fdf0c29 | 345 | |
4d8d5467 | 346 | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
16457e7f BH |
347 | if (little_endian) { |
348 | _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); | |
349 | } | |
4d8d5467 | 350 | } |
2c9ee029 AS |
351 | if (boot_device) { |
352 | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | |
353 | } | |
f28359d8 LZ |
354 | _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); |
355 | _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); | |
356 | _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); | |
3384f95c | 357 | |
9fdf0c29 DG |
358 | _FDT((fdt_end_node(fdt))); |
359 | ||
9fdf0c29 DG |
360 | /* cpus */ |
361 | _FDT((fdt_begin_node(fdt, "cpus"))); | |
362 | ||
363 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
364 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
365 | ||
bdc44640 | 366 | CPU_FOREACH(cs) { |
182735ef AF |
367 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
368 | CPUPPCState *env = &cpu->env; | |
3bbf37f2 | 369 | DeviceClass *dc = DEVICE_GET_CLASS(cs); |
182735ef AF |
370 | PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
371 | int index = cs->cpu_index; | |
e97c3636 DG |
372 | uint32_t servers_prop[smp_threads]; |
373 | uint32_t gservers_prop[smp_threads * 2]; | |
9fdf0c29 DG |
374 | char *nodename; |
375 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
376 | 0xffffffff, 0xffffffff}; | |
0a8b2938 AG |
377 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
378 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
5af9873d BH |
379 | uint32_t page_sizes_prop[64]; |
380 | size_t page_sizes_prop_size; | |
9fdf0c29 | 381 | |
e97c3636 DG |
382 | if ((index % smt) != 0) { |
383 | continue; | |
384 | } | |
385 | ||
3bbf37f2 | 386 | nodename = g_strdup_printf("%s@%x", dc->fw_name, index); |
9fdf0c29 DG |
387 | |
388 | _FDT((fdt_begin_node(fdt, nodename))); | |
389 | ||
4ecf8aa5 | 390 | g_free(nodename); |
9fdf0c29 | 391 | |
c7a5c0c9 | 392 | _FDT((fdt_property_cell(fdt, "reg", index))); |
9fdf0c29 DG |
393 | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
394 | ||
395 | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | |
0cbad81f | 396 | _FDT((fdt_property_cell(fdt, "d-cache-block-size", |
9fdf0c29 | 397 | env->dcache_line_size))); |
0cbad81f DG |
398 | _FDT((fdt_property_cell(fdt, "d-cache-line-size", |
399 | env->dcache_line_size))); | |
400 | _FDT((fdt_property_cell(fdt, "i-cache-block-size", | |
401 | env->icache_line_size))); | |
402 | _FDT((fdt_property_cell(fdt, "i-cache-line-size", | |
9fdf0c29 | 403 | env->icache_line_size))); |
0cbad81f DG |
404 | |
405 | if (pcc->l1_dcache_size) { | |
406 | _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size))); | |
407 | } else { | |
408 | fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); | |
409 | } | |
410 | if (pcc->l1_icache_size) { | |
411 | _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size))); | |
412 | } else { | |
413 | fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); | |
414 | } | |
415 | ||
0a8b2938 AG |
416 | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
417 | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | |
9fdf0c29 DG |
418 | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
419 | _FDT((fdt_property_string(fdt, "status", "okay"))); | |
420 | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | |
e97c3636 DG |
421 | |
422 | /* Build interrupt servers and gservers properties */ | |
423 | for (i = 0; i < smp_threads; i++) { | |
424 | servers_prop[i] = cpu_to_be32(index + i); | |
425 | /* Hack, direct the group queues back to cpu 0 */ | |
426 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
427 | gservers_prop[i*2 + 1] = 0; | |
428 | } | |
429 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", | |
430 | servers_prop, sizeof(servers_prop)))); | |
b5cec4c5 | 431 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", |
e97c3636 | 432 | gservers_prop, sizeof(gservers_prop)))); |
9fdf0c29 | 433 | |
dcb861cb AK |
434 | if (env->spr_cb[SPR_PURR].oea_read) { |
435 | _FDT((fdt_property(fdt, "ibm,purr", NULL, 0))); | |
436 | } | |
437 | ||
c7a5c0c9 | 438 | if (env->mmu_model & POWERPC_MMU_1TSEG) { |
9fdf0c29 DG |
439 | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
440 | segs, sizeof(segs)))); | |
441 | } | |
442 | ||
6659394f DG |
443 | /* Advertise VMX/VSX (vector extensions) if available |
444 | * 0 / no property == no vector extensions | |
445 | * 1 == VMX / Altivec available | |
446 | * 2 == VSX available */ | |
a7342588 DG |
447 | if (env->insns_flags & PPC_ALTIVEC) { |
448 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
449 | ||
6659394f DG |
450 | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
451 | } | |
452 | ||
453 | /* Advertise DFP (Decimal Floating Point) if available | |
454 | * 0 / no property == no DFP | |
455 | * 1 == DFP available */ | |
a7342588 DG |
456 | if (env->insns_flags2 & PPC2_DFP) { |
457 | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | |
6659394f DG |
458 | } |
459 | ||
5af9873d BH |
460 | page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, |
461 | sizeof(page_sizes_prop)); | |
462 | if (page_sizes_prop_size) { | |
463 | _FDT((fdt_property(fdt, "ibm,segment-page-sizes", | |
464 | page_sizes_prop, page_sizes_prop_size))); | |
465 | } | |
466 | ||
9fdf0c29 DG |
467 | _FDT((fdt_end_node(fdt))); |
468 | } | |
469 | ||
9fdf0c29 DG |
470 | _FDT((fdt_end_node(fdt))); |
471 | ||
f43e3525 DG |
472 | /* RTAS */ |
473 | _FDT((fdt_begin_node(fdt, "rtas"))); | |
474 | ||
475 | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, | |
476 | sizeof(hypertas_prop)))); | |
c73e3771 BH |
477 | _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, |
478 | sizeof(qemu_hypertas_prop)))); | |
f43e3525 | 479 | |
6e806cc3 BR |
480 | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
481 | refpoints, sizeof(refpoints)))); | |
482 | ||
74d042e5 DG |
483 | _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); |
484 | ||
f43e3525 DG |
485 | _FDT((fdt_end_node(fdt))); |
486 | ||
b5cec4c5 | 487 | /* interrupt controller */ |
9dfef5aa | 488 | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
b5cec4c5 DG |
489 | |
490 | _FDT((fdt_property_string(fdt, "device_type", | |
491 | "PowerPC-External-Interrupt-Presentation"))); | |
492 | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | |
b5cec4c5 DG |
493 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
494 | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | |
495 | interrupt_server_ranges_prop, | |
496 | sizeof(interrupt_server_ranges_prop)))); | |
0c103f8e DG |
497 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
498 | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | |
499 | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | |
b5cec4c5 DG |
500 | |
501 | _FDT((fdt_end_node(fdt))); | |
502 | ||
4040ab72 DG |
503 | /* vdevice */ |
504 | _FDT((fdt_begin_node(fdt, "vdevice"))); | |
505 | ||
506 | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | |
507 | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | |
508 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
509 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
b5cec4c5 DG |
510 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
511 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
4040ab72 DG |
512 | |
513 | _FDT((fdt_end_node(fdt))); | |
514 | ||
74d042e5 DG |
515 | /* event-sources */ |
516 | spapr_events_fdt_skel(fdt, epow_irq); | |
517 | ||
9fdf0c29 DG |
518 | _FDT((fdt_end_node(fdt))); /* close root node */ |
519 | _FDT((fdt_finish(fdt))); | |
520 | ||
a3467baa DG |
521 | return fdt; |
522 | } | |
523 | ||
7f763a5d DG |
524 | static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) |
525 | { | |
526 | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | |
527 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
528 | cpu_to_be32(0x0)}; | |
529 | char mem_name[32]; | |
5fe269b1 | 530 | hwaddr node0_size, mem_start, node_size; |
7f763a5d DG |
531 | uint64_t mem_reg_property[2]; |
532 | int i, off; | |
533 | ||
534 | /* memory node(s) */ | |
5fe269b1 PM |
535 | if (nb_numa_nodes > 1 && node_mem[0] < ram_size) { |
536 | node0_size = node_mem[0]; | |
537 | } else { | |
538 | node0_size = ram_size; | |
539 | } | |
7f763a5d DG |
540 | |
541 | /* RMA */ | |
542 | mem_reg_property[0] = 0; | |
543 | mem_reg_property[1] = cpu_to_be64(spapr->rma_size); | |
544 | off = fdt_add_subnode(fdt, 0, "memory@0"); | |
545 | _FDT(off); | |
546 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
547 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
548 | sizeof(mem_reg_property)))); | |
549 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
550 | sizeof(associativity)))); | |
551 | ||
552 | /* RAM: Node 0 */ | |
553 | if (node0_size > spapr->rma_size) { | |
554 | mem_reg_property[0] = cpu_to_be64(spapr->rma_size); | |
555 | mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); | |
556 | ||
557 | sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); | |
558 | off = fdt_add_subnode(fdt, 0, mem_name); | |
559 | _FDT(off); | |
560 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
561 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
562 | sizeof(mem_reg_property)))); | |
563 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
564 | sizeof(associativity)))); | |
565 | } | |
566 | ||
567 | /* RAM: Node 1 and beyond */ | |
568 | mem_start = node0_size; | |
569 | for (i = 1; i < nb_numa_nodes; i++) { | |
570 | mem_reg_property[0] = cpu_to_be64(mem_start); | |
5fe269b1 PM |
571 | if (mem_start >= ram_size) { |
572 | node_size = 0; | |
573 | } else { | |
574 | node_size = node_mem[i]; | |
575 | if (node_size > ram_size - mem_start) { | |
576 | node_size = ram_size - mem_start; | |
577 | } | |
578 | } | |
579 | mem_reg_property[1] = cpu_to_be64(node_size); | |
7f763a5d DG |
580 | associativity[3] = associativity[4] = cpu_to_be32(i); |
581 | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | |
582 | off = fdt_add_subnode(fdt, 0, mem_name); | |
583 | _FDT(off); | |
584 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
585 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
586 | sizeof(mem_reg_property)))); | |
587 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
588 | sizeof(associativity)))); | |
5fe269b1 | 589 | mem_start += node_size; |
7f763a5d DG |
590 | } |
591 | ||
592 | return 0; | |
593 | } | |
594 | ||
a3467baa | 595 | static void spapr_finalize_fdt(sPAPREnvironment *spapr, |
a8170e5e AK |
596 | hwaddr fdt_addr, |
597 | hwaddr rtas_addr, | |
598 | hwaddr rtas_size) | |
a3467baa DG |
599 | { |
600 | int ret; | |
601 | void *fdt; | |
3384f95c | 602 | sPAPRPHBState *phb; |
a3467baa | 603 | |
7267c094 | 604 | fdt = g_malloc(FDT_MAX_SIZE); |
a3467baa DG |
605 | |
606 | /* open out the base tree into a temp buffer for the final tweaks */ | |
607 | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | |
4040ab72 | 608 | |
7f763a5d DG |
609 | ret = spapr_populate_memory(spapr, fdt); |
610 | if (ret < 0) { | |
611 | fprintf(stderr, "couldn't setup memory nodes in fdt\n"); | |
612 | exit(1); | |
613 | } | |
614 | ||
4040ab72 DG |
615 | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); |
616 | if (ret < 0) { | |
617 | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | |
618 | exit(1); | |
619 | } | |
620 | ||
3384f95c | 621 | QLIST_FOREACH(phb, &spapr->phbs, list) { |
e0fdbd7c | 622 | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); |
3384f95c DG |
623 | } |
624 | ||
625 | if (ret < 0) { | |
626 | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | |
627 | exit(1); | |
628 | } | |
629 | ||
39ac8455 DG |
630 | /* RTAS */ |
631 | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | |
632 | if (ret < 0) { | |
633 | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | |
634 | } | |
635 | ||
6e806cc3 | 636 | /* Advertise NUMA via ibm,associativity */ |
7f763a5d DG |
637 | ret = spapr_fixup_cpu_dt(fdt, spapr); |
638 | if (ret < 0) { | |
639 | fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); | |
6e806cc3 BR |
640 | } |
641 | ||
3fc5acde | 642 | if (!spapr->has_graphics) { |
f28359d8 LZ |
643 | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
644 | } | |
68f3a94c | 645 | |
4040ab72 DG |
646 | _FDT((fdt_pack(fdt))); |
647 | ||
4d8d5467 BH |
648 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
649 | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | |
650 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
651 | exit(1); | |
652 | } | |
653 | ||
a3467baa | 654 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
9fdf0c29 | 655 | |
7267c094 | 656 | g_free(fdt); |
9fdf0c29 DG |
657 | } |
658 | ||
659 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
660 | { | |
661 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
662 | } | |
663 | ||
1b14670a | 664 | static void emulate_spapr_hypercall(PowerPCCPU *cpu) |
9fdf0c29 | 665 | { |
1b14670a AF |
666 | CPUPPCState *env = &cpu->env; |
667 | ||
efcb9383 DG |
668 | if (msr_pr) { |
669 | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | |
670 | env->gpr[3] = H_PRIVILEGE; | |
671 | } else { | |
aa100fa4 | 672 | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); |
efcb9383 | 673 | } |
9fdf0c29 DG |
674 | } |
675 | ||
7f763a5d DG |
676 | static void spapr_reset_htab(sPAPREnvironment *spapr) |
677 | { | |
678 | long shift; | |
679 | ||
680 | /* allocate hash page table. For now we always make this 16mb, | |
681 | * later we should probably make it scale to the size of guest | |
682 | * RAM */ | |
683 | ||
684 | shift = kvmppc_reset_htab(spapr->htab_shift); | |
685 | ||
686 | if (shift > 0) { | |
687 | /* Kernel handles htab, we don't need to allocate one */ | |
688 | spapr->htab_shift = shift; | |
689 | } else { | |
690 | if (!spapr->htab) { | |
691 | /* Allocate an htab if we don't yet have one */ | |
692 | spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); | |
693 | } | |
694 | ||
695 | /* And clear it */ | |
696 | memset(spapr->htab, 0, HTAB_SIZE(spapr)); | |
697 | } | |
698 | ||
699 | /* Update the RMA size if necessary */ | |
700 | if (spapr->vrma_adjust) { | |
c4177479 AK |
701 | hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
702 | spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift); | |
7f763a5d | 703 | } |
9fdf0c29 DG |
704 | } |
705 | ||
c8787ad4 | 706 | static void ppc_spapr_reset(void) |
a3467baa | 707 | { |
182735ef | 708 | PowerPCCPU *first_ppc_cpu; |
259186a7 | 709 | |
7f763a5d DG |
710 | /* Reset the hash table & recalc the RMA */ |
711 | spapr_reset_htab(spapr); | |
a3467baa | 712 | |
c8787ad4 | 713 | qemu_devices_reset(); |
a3467baa DG |
714 | |
715 | /* Load the fdt */ | |
716 | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | |
717 | spapr->rtas_size); | |
718 | ||
719 | /* Set up the entry state */ | |
182735ef AF |
720 | first_ppc_cpu = POWERPC_CPU(first_cpu); |
721 | first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; | |
722 | first_ppc_cpu->env.gpr[5] = 0; | |
723 | first_cpu->halted = 0; | |
724 | first_ppc_cpu->env.nip = spapr->entry_point; | |
a3467baa DG |
725 | |
726 | } | |
727 | ||
1bba0dc9 AF |
728 | static void spapr_cpu_reset(void *opaque) |
729 | { | |
5b2038e0 | 730 | PowerPCCPU *cpu = opaque; |
259186a7 | 731 | CPUState *cs = CPU(cpu); |
048706d9 | 732 | CPUPPCState *env = &cpu->env; |
1bba0dc9 | 733 | |
259186a7 | 734 | cpu_reset(cs); |
048706d9 DG |
735 | |
736 | /* All CPUs start halted. CPU0 is unhalted from the machine level | |
737 | * reset code and the rest are explicitly started up by the guest | |
738 | * using an RTAS call */ | |
259186a7 | 739 | cs->halted = 1; |
048706d9 DG |
740 | |
741 | env->spr[SPR_HIOR] = 0; | |
7f763a5d | 742 | |
4be21d56 | 743 | env->external_htab = (uint8_t *)spapr->htab; |
5736245c AK |
744 | if (kvm_enabled() && !env->external_htab) { |
745 | /* | |
746 | * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* | |
747 | * functions do the right thing. | |
748 | */ | |
749 | env->external_htab = (void *)1; | |
750 | } | |
7f763a5d | 751 | env->htab_base = -1; |
f3c75d42 AK |
752 | /* |
753 | * htab_mask is the mask used to normalize hash value to PTEG index. | |
754 | * htab_shift is log2 of hash table size. | |
755 | * We have 8 hpte per group, and each hpte is 16 bytes. | |
756 | * ie have 128 bytes per hpte entry. | |
757 | */ | |
758 | env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1; | |
ec4936e1 | 759 | env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | |
7f763a5d | 760 | (spapr->htab_shift - 18); |
1bba0dc9 AF |
761 | } |
762 | ||
639e8102 DG |
763 | static void spapr_create_nvram(sPAPREnvironment *spapr) |
764 | { | |
2ff3de68 | 765 | DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); |
3978b863 | 766 | DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); |
639e8102 | 767 | |
3978b863 PB |
768 | if (dinfo) { |
769 | qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); | |
639e8102 DG |
770 | } |
771 | ||
772 | qdev_init_nofail(dev); | |
773 | ||
774 | spapr->nvram = (struct sPAPRNVRAM *)dev; | |
775 | } | |
776 | ||
8c57b867 | 777 | /* Returns whether we want to use VGA or not */ |
f28359d8 LZ |
778 | static int spapr_vga_init(PCIBus *pci_bus) |
779 | { | |
8c57b867 | 780 | switch (vga_interface_type) { |
8c57b867 | 781 | case VGA_NONE: |
1ddcae82 AJ |
782 | case VGA_STD: |
783 | return pci_vga_init(pci_bus) != NULL; | |
8c57b867 | 784 | default: |
f28359d8 LZ |
785 | fprintf(stderr, "This vga model is not supported," |
786 | "currently it only supports -vga std\n"); | |
8c57b867 AG |
787 | exit(0); |
788 | break; | |
f28359d8 | 789 | } |
f28359d8 LZ |
790 | } |
791 | ||
4be21d56 DG |
792 | static const VMStateDescription vmstate_spapr = { |
793 | .name = "spapr", | |
794 | .version_id = 1, | |
795 | .minimum_version_id = 1, | |
796 | .minimum_version_id_old = 1, | |
797 | .fields = (VMStateField []) { | |
798 | VMSTATE_UINT32(next_irq, sPAPREnvironment), | |
799 | ||
800 | /* RTC offset */ | |
801 | VMSTATE_UINT64(rtc_offset, sPAPREnvironment), | |
802 | ||
803 | VMSTATE_END_OF_LIST() | |
804 | }, | |
805 | }; | |
806 | ||
807 | #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) | |
808 | #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) | |
809 | #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) | |
810 | #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) | |
811 | ||
812 | static int htab_save_setup(QEMUFile *f, void *opaque) | |
813 | { | |
814 | sPAPREnvironment *spapr = opaque; | |
815 | ||
4be21d56 DG |
816 | /* "Iteration" header */ |
817 | qemu_put_be32(f, spapr->htab_shift); | |
818 | ||
e68cb8b4 AK |
819 | if (spapr->htab) { |
820 | spapr->htab_save_index = 0; | |
821 | spapr->htab_first_pass = true; | |
822 | } else { | |
823 | assert(kvm_enabled()); | |
824 | ||
825 | spapr->htab_fd = kvmppc_get_htab_fd(false); | |
826 | if (spapr->htab_fd < 0) { | |
827 | fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", | |
828 | strerror(errno)); | |
829 | return -1; | |
830 | } | |
831 | } | |
832 | ||
833 | ||
4be21d56 DG |
834 | return 0; |
835 | } | |
836 | ||
4be21d56 DG |
837 | static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr, |
838 | int64_t max_ns) | |
839 | { | |
840 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
841 | int index = spapr->htab_save_index; | |
bc72ad67 | 842 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
4be21d56 DG |
843 | |
844 | assert(spapr->htab_first_pass); | |
845 | ||
846 | do { | |
847 | int chunkstart; | |
848 | ||
849 | /* Consume invalid HPTEs */ | |
850 | while ((index < htabslots) | |
851 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
852 | index++; | |
853 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
854 | } | |
855 | ||
856 | /* Consume valid HPTEs */ | |
857 | chunkstart = index; | |
858 | while ((index < htabslots) | |
859 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
860 | index++; | |
861 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
862 | } | |
863 | ||
864 | if (index > chunkstart) { | |
865 | int n_valid = index - chunkstart; | |
866 | ||
867 | qemu_put_be32(f, chunkstart); | |
868 | qemu_put_be16(f, n_valid); | |
869 | qemu_put_be16(f, 0); | |
870 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
871 | HASH_PTE_SIZE_64 * n_valid); | |
872 | ||
bc72ad67 | 873 | if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
4be21d56 DG |
874 | break; |
875 | } | |
876 | } | |
877 | } while ((index < htabslots) && !qemu_file_rate_limit(f)); | |
878 | ||
879 | if (index >= htabslots) { | |
880 | assert(index == htabslots); | |
881 | index = 0; | |
882 | spapr->htab_first_pass = false; | |
883 | } | |
884 | spapr->htab_save_index = index; | |
885 | } | |
886 | ||
e68cb8b4 AK |
887 | static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr, |
888 | int64_t max_ns) | |
4be21d56 DG |
889 | { |
890 | bool final = max_ns < 0; | |
891 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
892 | int examined = 0, sent = 0; | |
893 | int index = spapr->htab_save_index; | |
bc72ad67 | 894 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
4be21d56 DG |
895 | |
896 | assert(!spapr->htab_first_pass); | |
897 | ||
898 | do { | |
899 | int chunkstart, invalidstart; | |
900 | ||
901 | /* Consume non-dirty HPTEs */ | |
902 | while ((index < htabslots) | |
903 | && !HPTE_DIRTY(HPTE(spapr->htab, index))) { | |
904 | index++; | |
905 | examined++; | |
906 | } | |
907 | ||
908 | chunkstart = index; | |
909 | /* Consume valid dirty HPTEs */ | |
910 | while ((index < htabslots) | |
911 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
912 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
913 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
914 | index++; | |
915 | examined++; | |
916 | } | |
917 | ||
918 | invalidstart = index; | |
919 | /* Consume invalid dirty HPTEs */ | |
920 | while ((index < htabslots) | |
921 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
922 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
923 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
924 | index++; | |
925 | examined++; | |
926 | } | |
927 | ||
928 | if (index > chunkstart) { | |
929 | int n_valid = invalidstart - chunkstart; | |
930 | int n_invalid = index - invalidstart; | |
931 | ||
932 | qemu_put_be32(f, chunkstart); | |
933 | qemu_put_be16(f, n_valid); | |
934 | qemu_put_be16(f, n_invalid); | |
935 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
936 | HASH_PTE_SIZE_64 * n_valid); | |
937 | sent += index - chunkstart; | |
938 | ||
bc72ad67 | 939 | if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
4be21d56 DG |
940 | break; |
941 | } | |
942 | } | |
943 | ||
944 | if (examined >= htabslots) { | |
945 | break; | |
946 | } | |
947 | ||
948 | if (index >= htabslots) { | |
949 | assert(index == htabslots); | |
950 | index = 0; | |
951 | } | |
952 | } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); | |
953 | ||
954 | if (index >= htabslots) { | |
955 | assert(index == htabslots); | |
956 | index = 0; | |
957 | } | |
958 | ||
959 | spapr->htab_save_index = index; | |
960 | ||
e68cb8b4 | 961 | return (examined >= htabslots) && (sent == 0) ? 1 : 0; |
4be21d56 DG |
962 | } |
963 | ||
e68cb8b4 AK |
964 | #define MAX_ITERATION_NS 5000000 /* 5 ms */ |
965 | #define MAX_KVM_BUF_SIZE 2048 | |
966 | ||
4be21d56 DG |
967 | static int htab_save_iterate(QEMUFile *f, void *opaque) |
968 | { | |
969 | sPAPREnvironment *spapr = opaque; | |
e68cb8b4 | 970 | int rc = 0; |
4be21d56 DG |
971 | |
972 | /* Iteration header */ | |
973 | qemu_put_be32(f, 0); | |
974 | ||
e68cb8b4 AK |
975 | if (!spapr->htab) { |
976 | assert(kvm_enabled()); | |
977 | ||
978 | rc = kvmppc_save_htab(f, spapr->htab_fd, | |
979 | MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | |
980 | if (rc < 0) { | |
981 | return rc; | |
982 | } | |
983 | } else if (spapr->htab_first_pass) { | |
4be21d56 DG |
984 | htab_save_first_pass(f, spapr, MAX_ITERATION_NS); |
985 | } else { | |
e68cb8b4 | 986 | rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); |
4be21d56 DG |
987 | } |
988 | ||
989 | /* End marker */ | |
990 | qemu_put_be32(f, 0); | |
991 | qemu_put_be16(f, 0); | |
992 | qemu_put_be16(f, 0); | |
993 | ||
e68cb8b4 | 994 | return rc; |
4be21d56 DG |
995 | } |
996 | ||
997 | static int htab_save_complete(QEMUFile *f, void *opaque) | |
998 | { | |
999 | sPAPREnvironment *spapr = opaque; | |
1000 | ||
1001 | /* Iteration header */ | |
1002 | qemu_put_be32(f, 0); | |
1003 | ||
e68cb8b4 AK |
1004 | if (!spapr->htab) { |
1005 | int rc; | |
1006 | ||
1007 | assert(kvm_enabled()); | |
1008 | ||
1009 | rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); | |
1010 | if (rc < 0) { | |
1011 | return rc; | |
1012 | } | |
1013 | close(spapr->htab_fd); | |
1014 | spapr->htab_fd = -1; | |
1015 | } else { | |
1016 | htab_save_later_pass(f, spapr, -1); | |
1017 | } | |
4be21d56 DG |
1018 | |
1019 | /* End marker */ | |
1020 | qemu_put_be32(f, 0); | |
1021 | qemu_put_be16(f, 0); | |
1022 | qemu_put_be16(f, 0); | |
1023 | ||
1024 | return 0; | |
1025 | } | |
1026 | ||
1027 | static int htab_load(QEMUFile *f, void *opaque, int version_id) | |
1028 | { | |
1029 | sPAPREnvironment *spapr = opaque; | |
1030 | uint32_t section_hdr; | |
e68cb8b4 | 1031 | int fd = -1; |
4be21d56 DG |
1032 | |
1033 | if (version_id < 1 || version_id > 1) { | |
1034 | fprintf(stderr, "htab_load() bad version\n"); | |
1035 | return -EINVAL; | |
1036 | } | |
1037 | ||
1038 | section_hdr = qemu_get_be32(f); | |
1039 | ||
1040 | if (section_hdr) { | |
1041 | /* First section, just the hash shift */ | |
1042 | if (spapr->htab_shift != section_hdr) { | |
1043 | return -EINVAL; | |
1044 | } | |
1045 | return 0; | |
1046 | } | |
1047 | ||
e68cb8b4 AK |
1048 | if (!spapr->htab) { |
1049 | assert(kvm_enabled()); | |
1050 | ||
1051 | fd = kvmppc_get_htab_fd(true); | |
1052 | if (fd < 0) { | |
1053 | fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", | |
1054 | strerror(errno)); | |
1055 | } | |
1056 | } | |
1057 | ||
4be21d56 DG |
1058 | while (true) { |
1059 | uint32_t index; | |
1060 | uint16_t n_valid, n_invalid; | |
1061 | ||
1062 | index = qemu_get_be32(f); | |
1063 | n_valid = qemu_get_be16(f); | |
1064 | n_invalid = qemu_get_be16(f); | |
1065 | ||
1066 | if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | |
1067 | /* End of Stream */ | |
1068 | break; | |
1069 | } | |
1070 | ||
e68cb8b4 | 1071 | if ((index + n_valid + n_invalid) > |
4be21d56 DG |
1072 | (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { |
1073 | /* Bad index in stream */ | |
1074 | fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " | |
e68cb8b4 AK |
1075 | "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, |
1076 | spapr->htab_shift); | |
4be21d56 DG |
1077 | return -EINVAL; |
1078 | } | |
1079 | ||
e68cb8b4 AK |
1080 | if (spapr->htab) { |
1081 | if (n_valid) { | |
1082 | qemu_get_buffer(f, HPTE(spapr->htab, index), | |
1083 | HASH_PTE_SIZE_64 * n_valid); | |
1084 | } | |
1085 | if (n_invalid) { | |
1086 | memset(HPTE(spapr->htab, index + n_valid), 0, | |
1087 | HASH_PTE_SIZE_64 * n_invalid); | |
1088 | } | |
1089 | } else { | |
1090 | int rc; | |
1091 | ||
1092 | assert(fd >= 0); | |
1093 | ||
1094 | rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); | |
1095 | if (rc < 0) { | |
1096 | return rc; | |
1097 | } | |
4be21d56 DG |
1098 | } |
1099 | } | |
1100 | ||
e68cb8b4 AK |
1101 | if (!spapr->htab) { |
1102 | assert(fd >= 0); | |
1103 | close(fd); | |
1104 | } | |
1105 | ||
4be21d56 DG |
1106 | return 0; |
1107 | } | |
1108 | ||
1109 | static SaveVMHandlers savevm_htab_handlers = { | |
1110 | .save_live_setup = htab_save_setup, | |
1111 | .save_live_iterate = htab_save_iterate, | |
1112 | .save_live_complete = htab_save_complete, | |
1113 | .load_state = htab_load, | |
1114 | }; | |
1115 | ||
9fdf0c29 | 1116 | /* pSeries LPAR / sPAPR hardware init */ |
5f072e1f | 1117 | static void ppc_spapr_init(QEMUMachineInitArgs *args) |
9fdf0c29 | 1118 | { |
5f072e1f EH |
1119 | ram_addr_t ram_size = args->ram_size; |
1120 | const char *cpu_model = args->cpu_model; | |
1121 | const char *kernel_filename = args->kernel_filename; | |
1122 | const char *kernel_cmdline = args->kernel_cmdline; | |
1123 | const char *initrd_filename = args->initrd_filename; | |
c1654732 | 1124 | const char *boot_device = args->boot_order; |
05769733 | 1125 | PowerPCCPU *cpu; |
e2684c0b | 1126 | CPUPPCState *env; |
8c9f64df | 1127 | PCIHostState *phb; |
9fdf0c29 | 1128 | int i; |
890c2b77 AK |
1129 | MemoryRegion *sysmem = get_system_memory(); |
1130 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
a8170e5e | 1131 | hwaddr rma_alloc_size; |
c4177479 | 1132 | hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
4d8d5467 BH |
1133 | uint32_t initrd_base = 0; |
1134 | long kernel_size = 0, initrd_size = 0; | |
1135 | long load_limit, rtas_limit, fw_size; | |
16457e7f | 1136 | bool kernel_le = false; |
39ac8455 | 1137 | char *filename; |
9fdf0c29 | 1138 | |
0ee2c058 AK |
1139 | msi_supported = true; |
1140 | ||
d43b45e2 DG |
1141 | spapr = g_malloc0(sizeof(*spapr)); |
1142 | QLIST_INIT(&spapr->phbs); | |
1143 | ||
9fdf0c29 DG |
1144 | cpu_ppc_hypercall = emulate_spapr_hypercall; |
1145 | ||
354ac20a DG |
1146 | /* Allocate RMA if necessary */ |
1147 | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | |
1148 | ||
1149 | if (rma_alloc_size == -1) { | |
1150 | hw_error("qemu: Unable to create RMA\n"); | |
1151 | exit(1); | |
1152 | } | |
7f763a5d | 1153 | |
c4177479 | 1154 | if (rma_alloc_size && (rma_alloc_size < node0_size)) { |
7f763a5d | 1155 | spapr->rma_size = rma_alloc_size; |
354ac20a | 1156 | } else { |
c4177479 | 1157 | spapr->rma_size = node0_size; |
7f763a5d DG |
1158 | |
1159 | /* With KVM, we don't actually know whether KVM supports an | |
1160 | * unbounded RMA (PR KVM) or is limited by the hash table size | |
1161 | * (HV KVM using VRMA), so we always assume the latter | |
1162 | * | |
1163 | * In that case, we also limit the initial allocations for RTAS | |
1164 | * etc... to 256M since we have no way to know what the VRMA size | |
1165 | * is going to be as it depends on the size of the hash table | |
1166 | * isn't determined yet. | |
1167 | */ | |
1168 | if (kvm_enabled()) { | |
1169 | spapr->vrma_adjust = 1; | |
1170 | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | |
1171 | } | |
354ac20a DG |
1172 | } |
1173 | ||
c4177479 AK |
1174 | if (spapr->rma_size > node0_size) { |
1175 | fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", | |
1176 | spapr->rma_size); | |
1177 | exit(1); | |
1178 | } | |
1179 | ||
4d8d5467 | 1180 | /* We place the device tree and RTAS just below either the top of the RMA, |
354ac20a DG |
1181 | * or just below 2GB, whichever is lowere, so that it can be |
1182 | * processed with 32-bit real mode code if necessary */ | |
7f763a5d | 1183 | rtas_limit = MIN(spapr->rma_size, 0x80000000); |
4d8d5467 BH |
1184 | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; |
1185 | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | |
1186 | load_limit = spapr->fdt_addr - FW_OVERHEAD; | |
9fdf0c29 | 1187 | |
382be75d DG |
1188 | /* We aim for a hash table of size 1/128 the size of RAM. The |
1189 | * normal rule of thumb is 1/64 the size of RAM, but that's much | |
1190 | * more than needed for the Linux guests we support. */ | |
1191 | spapr->htab_shift = 18; /* Minimum architected size */ | |
1192 | while (spapr->htab_shift <= 46) { | |
1193 | if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { | |
1194 | break; | |
1195 | } | |
1196 | spapr->htab_shift++; | |
1197 | } | |
7f763a5d | 1198 | |
7b565160 DG |
1199 | /* Set up Interrupt Controller before we create the VCPUs */ |
1200 | spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads, | |
1201 | XICS_IRQS); | |
1202 | spapr->next_irq = XICS_IRQ_BASE; | |
1203 | ||
9fdf0c29 DG |
1204 | /* init CPUs */ |
1205 | if (cpu_model == NULL) { | |
6b7a2cf6 | 1206 | cpu_model = kvm_enabled() ? "host" : "POWER7"; |
9fdf0c29 DG |
1207 | } |
1208 | for (i = 0; i < smp_cpus; i++) { | |
05769733 AF |
1209 | cpu = cpu_ppc_init(cpu_model); |
1210 | if (cpu == NULL) { | |
9fdf0c29 DG |
1211 | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
1212 | exit(1); | |
1213 | } | |
05769733 AF |
1214 | env = &cpu->env; |
1215 | ||
9fdf0c29 DG |
1216 | /* Set time-base frequency to 512 MHz */ |
1217 | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | |
9fdf0c29 | 1218 | |
2cf3eb6d FC |
1219 | /* PAPR always has exception vectors in RAM not ROM. To ensure this, |
1220 | * MSR[IP] should never be set. | |
1221 | */ | |
1222 | env->msr_mask &= ~(1 << 6); | |
048706d9 DG |
1223 | |
1224 | /* Tell KVM that we're in PAPR mode */ | |
1225 | if (kvm_enabled()) { | |
1bc22652 | 1226 | kvmppc_set_papr(cpu); |
048706d9 DG |
1227 | } |
1228 | ||
24408a7d AK |
1229 | xics_cpu_setup(spapr->icp, cpu); |
1230 | ||
048706d9 | 1231 | qemu_register_reset(spapr_cpu_reset, cpu); |
9fdf0c29 DG |
1232 | } |
1233 | ||
1234 | /* allocate RAM */ | |
f73a2575 | 1235 | spapr->ram_limit = ram_size; |
354ac20a DG |
1236 | if (spapr->ram_limit > rma_alloc_size) { |
1237 | ram_addr_t nonrma_base = rma_alloc_size; | |
1238 | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | |
1239 | ||
2c9b15ca | 1240 | memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size); |
c5705a77 | 1241 | vmstate_register_ram_global(ram); |
354ac20a DG |
1242 | memory_region_add_subregion(sysmem, nonrma_base, ram); |
1243 | } | |
9fdf0c29 | 1244 | |
39ac8455 | 1245 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
a3467baa | 1246 | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
4d8d5467 | 1247 | rtas_limit - spapr->rtas_addr); |
a3467baa | 1248 | if (spapr->rtas_size < 0) { |
39ac8455 DG |
1249 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
1250 | exit(1); | |
1251 | } | |
4d8d5467 BH |
1252 | if (spapr->rtas_size > RTAS_MAX_SIZE) { |
1253 | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | |
1254 | spapr->rtas_size, RTAS_MAX_SIZE); | |
1255 | exit(1); | |
1256 | } | |
7267c094 | 1257 | g_free(filename); |
39ac8455 | 1258 | |
74d042e5 DG |
1259 | /* Set up EPOW events infrastructure */ |
1260 | spapr_events_init(spapr); | |
1261 | ||
b5cec4c5 | 1262 | /* Set up VIO bus */ |
4040ab72 DG |
1263 | spapr->vio_bus = spapr_vio_bus_init(); |
1264 | ||
277f9acf | 1265 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
4040ab72 | 1266 | if (serial_hds[i]) { |
d601fac4 | 1267 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); |
4040ab72 DG |
1268 | } |
1269 | } | |
9fdf0c29 | 1270 | |
639e8102 DG |
1271 | /* We always have at least the nvram device on VIO */ |
1272 | spapr_create_nvram(spapr); | |
1273 | ||
3384f95c | 1274 | /* Set up PCI */ |
f1c2dc7c | 1275 | spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW); |
fa28f71b AK |
1276 | spapr_pci_rtas_init(); |
1277 | ||
89dfd6e1 | 1278 | phb = spapr_create_phb(spapr, 0); |
3384f95c | 1279 | |
277f9acf | 1280 | for (i = 0; i < nb_nics; i++) { |
8d90ad90 DG |
1281 | NICInfo *nd = &nd_table[i]; |
1282 | ||
1283 | if (!nd->model) { | |
7267c094 | 1284 | nd->model = g_strdup("ibmveth"); |
8d90ad90 DG |
1285 | } |
1286 | ||
1287 | if (strcmp(nd->model, "ibmveth") == 0) { | |
d601fac4 | 1288 | spapr_vlan_create(spapr->vio_bus, nd); |
8d90ad90 | 1289 | } else { |
29b358f9 | 1290 | pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); |
8d90ad90 DG |
1291 | } |
1292 | } | |
1293 | ||
6e270446 | 1294 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
d601fac4 | 1295 | spapr_vscsi_create(spapr->vio_bus); |
6e270446 BH |
1296 | } |
1297 | ||
f28359d8 | 1298 | /* Graphics */ |
8c9f64df | 1299 | if (spapr_vga_init(phb->bus)) { |
3fc5acde | 1300 | spapr->has_graphics = true; |
f28359d8 LZ |
1301 | } |
1302 | ||
094b287f | 1303 | if (usb_enabled(spapr->has_graphics)) { |
8c9f64df | 1304 | pci_create_simple(phb->bus, -1, "pci-ohci"); |
35139a59 DG |
1305 | if (spapr->has_graphics) { |
1306 | usbdevice_create("keyboard"); | |
1307 | usbdevice_create("mouse"); | |
1308 | } | |
1309 | } | |
1310 | ||
7f763a5d | 1311 | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { |
4d8d5467 BH |
1312 | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " |
1313 | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | |
1314 | exit(1); | |
1315 | } | |
1316 | ||
9fdf0c29 DG |
1317 | if (kernel_filename) { |
1318 | uint64_t lowaddr = 0; | |
1319 | ||
9fdf0c29 DG |
1320 | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
1321 | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | |
3b66da82 | 1322 | if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { |
16457e7f BH |
1323 | kernel_size = load_elf(kernel_filename, |
1324 | translate_kernel_address, NULL, | |
1325 | NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0); | |
1326 | kernel_le = kernel_size > 0; | |
1327 | } | |
9fdf0c29 | 1328 | if (kernel_size < 0) { |
3b66da82 AK |
1329 | fprintf(stderr, "qemu: error loading %s: %s\n", |
1330 | kernel_filename, load_elf_strerror(kernel_size)); | |
9fdf0c29 DG |
1331 | exit(1); |
1332 | } | |
1333 | ||
1334 | /* load initrd */ | |
1335 | if (initrd_filename) { | |
4d8d5467 BH |
1336 | /* Try to locate the initrd in the gap between the kernel |
1337 | * and the firmware. Add a bit of space just in case | |
1338 | */ | |
1339 | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | |
9fdf0c29 | 1340 | initrd_size = load_image_targphys(initrd_filename, initrd_base, |
4d8d5467 | 1341 | load_limit - initrd_base); |
9fdf0c29 DG |
1342 | if (initrd_size < 0) { |
1343 | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | |
1344 | initrd_filename); | |
1345 | exit(1); | |
1346 | } | |
1347 | } else { | |
1348 | initrd_base = 0; | |
1349 | initrd_size = 0; | |
1350 | } | |
4d8d5467 | 1351 | } |
a3467baa | 1352 | |
8e7ea787 AF |
1353 | if (bios_name == NULL) { |
1354 | bios_name = FW_FILE_NAME; | |
1355 | } | |
1356 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | |
4d8d5467 BH |
1357 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); |
1358 | if (fw_size < 0) { | |
1359 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
1360 | exit(1); | |
1361 | } | |
1362 | g_free(filename); | |
4d8d5467 BH |
1363 | |
1364 | spapr->entry_point = 0x100; | |
1365 | ||
4be21d56 DG |
1366 | vmstate_register(NULL, 0, &vmstate_spapr, spapr); |
1367 | register_savevm_live(NULL, "spapr/htab", -1, 1, | |
1368 | &savevm_htab_handlers, spapr); | |
1369 | ||
9fdf0c29 | 1370 | /* Prepare the device tree */ |
3bbf37f2 | 1371 | spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, |
16457e7f | 1372 | kernel_size, kernel_le, |
74d042e5 DG |
1373 | boot_device, kernel_cmdline, |
1374 | spapr->epow_irq); | |
a3467baa | 1375 | assert(spapr->fdt_skel != NULL); |
9fdf0c29 DG |
1376 | } |
1377 | ||
135a129a AK |
1378 | static int spapr_kvm_type(const char *vm_type) |
1379 | { | |
1380 | if (!vm_type) { | |
1381 | return 0; | |
1382 | } | |
1383 | ||
1384 | if (!strcmp(vm_type, "HV")) { | |
1385 | return 1; | |
1386 | } | |
1387 | ||
1388 | if (!strcmp(vm_type, "PR")) { | |
1389 | return 2; | |
1390 | } | |
1391 | ||
1392 | error_report("Unknown kvm-type specified '%s'", vm_type); | |
1393 | exit(1); | |
1394 | } | |
1395 | ||
9fdf0c29 DG |
1396 | static QEMUMachine spapr_machine = { |
1397 | .name = "pseries", | |
1398 | .desc = "pSeries Logical Partition (PAPR compliant)", | |
159f8286 | 1399 | .is_default = 1, |
9fdf0c29 | 1400 | .init = ppc_spapr_init, |
c8787ad4 | 1401 | .reset = ppc_spapr_reset, |
2d0d2837 | 1402 | .block_default_type = IF_SCSI, |
9fdf0c29 | 1403 | .max_cpus = MAX_CPUS, |
9fdf0c29 | 1404 | .no_parallel = 1, |
c1654732 | 1405 | .default_boot_order = NULL, |
135a129a | 1406 | .kvm_type = spapr_kvm_type, |
9fdf0c29 DG |
1407 | }; |
1408 | ||
1409 | static void spapr_machine_init(void) | |
1410 | { | |
1411 | qemu_register_machine(&spapr_machine); | |
1412 | } | |
1413 | ||
1414 | machine_init(spapr_machine_init); |