]>
Commit | Line | Data |
---|---|---|
9fdf0c29 DG |
1 | /* |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
27 | #include "sysemu.h" | |
9fdf0c29 DG |
28 | #include "hw.h" |
29 | #include "elf.h" | |
8d90ad90 | 30 | #include "net.h" |
6e270446 | 31 | #include "blockdev.h" |
e97c3636 DG |
32 | #include "cpus.h" |
33 | #include "kvm.h" | |
34 | #include "kvm_ppc.h" | |
9fdf0c29 DG |
35 | |
36 | #include "hw/boards.h" | |
37 | #include "hw/ppc.h" | |
38 | #include "hw/loader.h" | |
39 | ||
40 | #include "hw/spapr.h" | |
4040ab72 | 41 | #include "hw/spapr_vio.h" |
3384f95c | 42 | #include "hw/spapr_pci.h" |
b5cec4c5 | 43 | #include "hw/xics.h" |
9fdf0c29 | 44 | |
f61b4bed AG |
45 | #include "kvm.h" |
46 | #include "kvm_ppc.h" | |
3384f95c | 47 | #include "pci.h" |
f61b4bed | 48 | |
890c2b77 AK |
49 | #include "exec-memory.h" |
50 | ||
9fdf0c29 DG |
51 | #include <libfdt.h> |
52 | ||
4d8d5467 BH |
53 | /* SLOF memory layout: |
54 | * | |
55 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
56 | * device-tree, then position SLOF itself 31M below that | |
57 | * | |
58 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
59 | * and more | |
60 | * | |
61 | * We load our kernel at 4M, leaving space for SLOF initial image | |
62 | */ | |
9fdf0c29 | 63 | #define FDT_MAX_SIZE 0x10000 |
39ac8455 | 64 | #define RTAS_MAX_SIZE 0x10000 |
a9f8ad8f DG |
65 | #define FW_MAX_SIZE 0x400000 |
66 | #define FW_FILE_NAME "slof.bin" | |
4d8d5467 BH |
67 | #define FW_OVERHEAD 0x2800000 |
68 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
a9f8ad8f | 69 | |
4d8d5467 | 70 | #define MIN_RMA_SLOF 128UL |
9fdf0c29 DG |
71 | |
72 | #define TIMEBASE_FREQ 512000000ULL | |
73 | ||
41019fec | 74 | #define MAX_CPUS 256 |
4d8d5467 | 75 | #define XICS_IRQS 1024 |
9fdf0c29 | 76 | |
3384f95c DG |
77 | #define SPAPR_PCI_BUID 0x800000020000001ULL |
78 | #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000) | |
79 | #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000 | |
80 | #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000) | |
81 | ||
0c103f8e DG |
82 | #define PHANDLE_XICP 0x00001111 |
83 | ||
9fdf0c29 DG |
84 | sPAPREnvironment *spapr; |
85 | ||
e6c866d4 DG |
86 | qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num) |
87 | { | |
88 | uint32_t irq; | |
89 | qemu_irq qirq; | |
90 | ||
91 | if (hint) { | |
92 | irq = hint; | |
93 | /* FIXME: we should probably check for collisions somehow */ | |
94 | } else { | |
95 | irq = spapr->next_irq++; | |
96 | } | |
97 | ||
98 | qirq = xics_find_qirq(spapr->icp, irq); | |
99 | if (!qirq) { | |
100 | return NULL; | |
101 | } | |
102 | ||
103 | if (irq_num) { | |
104 | *irq_num = irq; | |
105 | } | |
106 | ||
107 | return qirq; | |
108 | } | |
109 | ||
6e806cc3 BR |
110 | static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr) |
111 | { | |
112 | int ret = 0, offset; | |
113 | CPUState *env; | |
114 | char cpu_model[32]; | |
115 | int smt = kvmppc_smt_threads(); | |
116 | ||
117 | assert(spapr->cpu_model); | |
118 | ||
119 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
120 | uint32_t associativity[] = {cpu_to_be32(0x5), | |
121 | cpu_to_be32(0x0), | |
122 | cpu_to_be32(0x0), | |
123 | cpu_to_be32(0x0), | |
124 | cpu_to_be32(env->numa_node), | |
125 | cpu_to_be32(env->cpu_index)}; | |
126 | ||
127 | if ((env->cpu_index % smt) != 0) { | |
128 | continue; | |
129 | } | |
130 | ||
131 | snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model, | |
132 | env->cpu_index); | |
133 | ||
134 | offset = fdt_path_offset(fdt, cpu_model); | |
135 | if (offset < 0) { | |
136 | return offset; | |
137 | } | |
138 | ||
139 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
140 | sizeof(associativity)); | |
141 | if (ret < 0) { | |
142 | return ret; | |
143 | } | |
144 | } | |
145 | return ret; | |
146 | } | |
147 | ||
a3467baa | 148 | static void *spapr_create_fdt_skel(const char *cpu_model, |
354ac20a | 149 | target_phys_addr_t rma_size, |
a3467baa DG |
150 | target_phys_addr_t initrd_base, |
151 | target_phys_addr_t initrd_size, | |
4d8d5467 | 152 | target_phys_addr_t kernel_size, |
a3467baa DG |
153 | const char *boot_device, |
154 | const char *kernel_cmdline, | |
155 | long hash_shift) | |
9fdf0c29 DG |
156 | { |
157 | void *fdt; | |
c7a5c0c9 | 158 | CPUState *env; |
6e806cc3 | 159 | uint64_t mem_reg_property[2]; |
9fdf0c29 DG |
160 | uint32_t start_prop = cpu_to_be32(initrd_base); |
161 | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | |
f43e3525 | 162 | uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)}; |
ee86dfee | 163 | char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
a3d0abae | 164 | "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; |
b5cec4c5 | 165 | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
9fdf0c29 DG |
166 | int i; |
167 | char *modelname; | |
e97c3636 | 168 | int smt = kvmppc_smt_threads(); |
6e806cc3 BR |
169 | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
170 | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; | |
171 | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | |
172 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
173 | cpu_to_be32(0x0)}; | |
174 | char mem_name[32]; | |
175 | target_phys_addr_t node0_size, mem_start; | |
9fdf0c29 DG |
176 | |
177 | #define _FDT(exp) \ | |
178 | do { \ | |
179 | int ret = (exp); \ | |
180 | if (ret < 0) { \ | |
181 | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | |
182 | #exp, fdt_strerror(ret)); \ | |
183 | exit(1); \ | |
184 | } \ | |
185 | } while (0) | |
186 | ||
7267c094 | 187 | fdt = g_malloc0(FDT_MAX_SIZE); |
9fdf0c29 DG |
188 | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
189 | ||
4d8d5467 BH |
190 | if (kernel_size) { |
191 | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | |
192 | } | |
193 | if (initrd_size) { | |
194 | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | |
195 | } | |
9fdf0c29 DG |
196 | _FDT((fdt_finish_reservemap(fdt))); |
197 | ||
198 | /* Root node */ | |
199 | _FDT((fdt_begin_node(fdt, ""))); | |
200 | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | |
5d73dd66 | 201 | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
9fdf0c29 DG |
202 | |
203 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | |
204 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | |
205 | ||
206 | /* /chosen */ | |
207 | _FDT((fdt_begin_node(fdt, "chosen"))); | |
208 | ||
6e806cc3 BR |
209 | /* Set Form1_affinity */ |
210 | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | |
211 | ||
9fdf0c29 DG |
212 | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
213 | _FDT((fdt_property(fdt, "linux,initrd-start", | |
214 | &start_prop, sizeof(start_prop)))); | |
215 | _FDT((fdt_property(fdt, "linux,initrd-end", | |
216 | &end_prop, sizeof(end_prop)))); | |
4d8d5467 BH |
217 | if (kernel_size) { |
218 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
219 | cpu_to_be64(kernel_size) }; | |
9fdf0c29 | 220 | |
4d8d5467 BH |
221 | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
222 | } | |
223 | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | |
3384f95c | 224 | |
9fdf0c29 DG |
225 | _FDT((fdt_end_node(fdt))); |
226 | ||
354ac20a | 227 | /* memory node(s) */ |
6e806cc3 BR |
228 | node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
229 | if (rma_size > node0_size) { | |
230 | rma_size = node0_size; | |
231 | } | |
9fdf0c29 | 232 | |
6e806cc3 BR |
233 | /* RMA */ |
234 | mem_reg_property[0] = 0; | |
235 | mem_reg_property[1] = cpu_to_be64(rma_size); | |
236 | _FDT((fdt_begin_node(fdt, "memory@0"))); | |
9fdf0c29 | 237 | _FDT((fdt_property_string(fdt, "device_type", "memory"))); |
6e806cc3 BR |
238 | _FDT((fdt_property(fdt, "reg", mem_reg_property, |
239 | sizeof(mem_reg_property)))); | |
240 | _FDT((fdt_property(fdt, "ibm,associativity", associativity, | |
241 | sizeof(associativity)))); | |
9fdf0c29 DG |
242 | _FDT((fdt_end_node(fdt))); |
243 | ||
6e806cc3 BR |
244 | /* RAM: Node 0 */ |
245 | if (node0_size > rma_size) { | |
246 | mem_reg_property[0] = cpu_to_be64(rma_size); | |
247 | mem_reg_property[1] = cpu_to_be64(node0_size - rma_size); | |
354ac20a | 248 | |
6e806cc3 | 249 | sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size); |
354ac20a DG |
250 | _FDT((fdt_begin_node(fdt, mem_name))); |
251 | _FDT((fdt_property_string(fdt, "device_type", "memory"))); | |
6e806cc3 BR |
252 | _FDT((fdt_property(fdt, "reg", mem_reg_property, |
253 | sizeof(mem_reg_property)))); | |
254 | _FDT((fdt_property(fdt, "ibm,associativity", associativity, | |
255 | sizeof(associativity)))); | |
354ac20a DG |
256 | _FDT((fdt_end_node(fdt))); |
257 | } | |
258 | ||
6e806cc3 BR |
259 | /* RAM: Node 1 and beyond */ |
260 | mem_start = node0_size; | |
261 | for (i = 1; i < nb_numa_nodes; i++) { | |
262 | mem_reg_property[0] = cpu_to_be64(mem_start); | |
263 | mem_reg_property[1] = cpu_to_be64(node_mem[i]); | |
264 | associativity[3] = associativity[4] = cpu_to_be32(i); | |
265 | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | |
266 | _FDT((fdt_begin_node(fdt, mem_name))); | |
267 | _FDT((fdt_property_string(fdt, "device_type", "memory"))); | |
268 | _FDT((fdt_property(fdt, "reg", mem_reg_property, | |
269 | sizeof(mem_reg_property)))); | |
270 | _FDT((fdt_property(fdt, "ibm,associativity", associativity, | |
271 | sizeof(associativity)))); | |
272 | _FDT((fdt_end_node(fdt))); | |
273 | mem_start += node_mem[i]; | |
274 | } | |
275 | ||
9fdf0c29 DG |
276 | /* cpus */ |
277 | _FDT((fdt_begin_node(fdt, "cpus"))); | |
278 | ||
279 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
280 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
281 | ||
7267c094 | 282 | modelname = g_strdup(cpu_model); |
9fdf0c29 DG |
283 | |
284 | for (i = 0; i < strlen(modelname); i++) { | |
285 | modelname[i] = toupper(modelname[i]); | |
286 | } | |
287 | ||
6e806cc3 BR |
288 | /* This is needed during FDT finalization */ |
289 | spapr->cpu_model = g_strdup(modelname); | |
290 | ||
c7a5c0c9 DG |
291 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
292 | int index = env->cpu_index; | |
e97c3636 DG |
293 | uint32_t servers_prop[smp_threads]; |
294 | uint32_t gservers_prop[smp_threads * 2]; | |
9fdf0c29 DG |
295 | char *nodename; |
296 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
297 | 0xffffffff, 0xffffffff}; | |
0a8b2938 AG |
298 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
299 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
9fdf0c29 | 300 | |
e97c3636 DG |
301 | if ((index % smt) != 0) { |
302 | continue; | |
303 | } | |
304 | ||
c7a5c0c9 | 305 | if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { |
9fdf0c29 DG |
306 | fprintf(stderr, "Allocation failure\n"); |
307 | exit(1); | |
308 | } | |
309 | ||
310 | _FDT((fdt_begin_node(fdt, nodename))); | |
311 | ||
312 | free(nodename); | |
313 | ||
c7a5c0c9 | 314 | _FDT((fdt_property_cell(fdt, "reg", index))); |
9fdf0c29 DG |
315 | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
316 | ||
317 | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | |
318 | _FDT((fdt_property_cell(fdt, "dcache-block-size", | |
319 | env->dcache_line_size))); | |
320 | _FDT((fdt_property_cell(fdt, "icache-block-size", | |
321 | env->icache_line_size))); | |
0a8b2938 AG |
322 | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
323 | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | |
9fdf0c29 | 324 | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
f43e3525 DG |
325 | _FDT((fdt_property(fdt, "ibm,pft-size", |
326 | pft_size_prop, sizeof(pft_size_prop)))); | |
9fdf0c29 DG |
327 | _FDT((fdt_property_string(fdt, "status", "okay"))); |
328 | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | |
e97c3636 DG |
329 | |
330 | /* Build interrupt servers and gservers properties */ | |
331 | for (i = 0; i < smp_threads; i++) { | |
332 | servers_prop[i] = cpu_to_be32(index + i); | |
333 | /* Hack, direct the group queues back to cpu 0 */ | |
334 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
335 | gservers_prop[i*2 + 1] = 0; | |
336 | } | |
337 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", | |
338 | servers_prop, sizeof(servers_prop)))); | |
b5cec4c5 | 339 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", |
e97c3636 | 340 | gservers_prop, sizeof(gservers_prop)))); |
9fdf0c29 | 341 | |
c7a5c0c9 | 342 | if (env->mmu_model & POWERPC_MMU_1TSEG) { |
9fdf0c29 DG |
343 | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
344 | segs, sizeof(segs)))); | |
345 | } | |
346 | ||
6659394f DG |
347 | /* Advertise VMX/VSX (vector extensions) if available |
348 | * 0 / no property == no vector extensions | |
349 | * 1 == VMX / Altivec available | |
350 | * 2 == VSX available */ | |
a7342588 DG |
351 | if (env->insns_flags & PPC_ALTIVEC) { |
352 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
353 | ||
6659394f DG |
354 | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
355 | } | |
356 | ||
357 | /* Advertise DFP (Decimal Floating Point) if available | |
358 | * 0 / no property == no DFP | |
359 | * 1 == DFP available */ | |
a7342588 DG |
360 | if (env->insns_flags2 & PPC2_DFP) { |
361 | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | |
6659394f DG |
362 | } |
363 | ||
9fdf0c29 DG |
364 | _FDT((fdt_end_node(fdt))); |
365 | } | |
366 | ||
7267c094 | 367 | g_free(modelname); |
9fdf0c29 DG |
368 | |
369 | _FDT((fdt_end_node(fdt))); | |
370 | ||
f43e3525 DG |
371 | /* RTAS */ |
372 | _FDT((fdt_begin_node(fdt, "rtas"))); | |
373 | ||
374 | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, | |
375 | sizeof(hypertas_prop)))); | |
376 | ||
6e806cc3 BR |
377 | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
378 | refpoints, sizeof(refpoints)))); | |
379 | ||
f43e3525 DG |
380 | _FDT((fdt_end_node(fdt))); |
381 | ||
b5cec4c5 | 382 | /* interrupt controller */ |
9dfef5aa | 383 | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
b5cec4c5 DG |
384 | |
385 | _FDT((fdt_property_string(fdt, "device_type", | |
386 | "PowerPC-External-Interrupt-Presentation"))); | |
387 | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | |
b5cec4c5 DG |
388 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
389 | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | |
390 | interrupt_server_ranges_prop, | |
391 | sizeof(interrupt_server_ranges_prop)))); | |
0c103f8e DG |
392 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
393 | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | |
394 | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | |
b5cec4c5 DG |
395 | |
396 | _FDT((fdt_end_node(fdt))); | |
397 | ||
4040ab72 DG |
398 | /* vdevice */ |
399 | _FDT((fdt_begin_node(fdt, "vdevice"))); | |
400 | ||
401 | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | |
402 | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | |
403 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
404 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
b5cec4c5 DG |
405 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
406 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
4040ab72 DG |
407 | |
408 | _FDT((fdt_end_node(fdt))); | |
409 | ||
9fdf0c29 DG |
410 | _FDT((fdt_end_node(fdt))); /* close root node */ |
411 | _FDT((fdt_finish(fdt))); | |
412 | ||
a3467baa DG |
413 | return fdt; |
414 | } | |
415 | ||
416 | static void spapr_finalize_fdt(sPAPREnvironment *spapr, | |
417 | target_phys_addr_t fdt_addr, | |
418 | target_phys_addr_t rtas_addr, | |
419 | target_phys_addr_t rtas_size) | |
420 | { | |
421 | int ret; | |
422 | void *fdt; | |
3384f95c | 423 | sPAPRPHBState *phb; |
a3467baa | 424 | |
7267c094 | 425 | fdt = g_malloc(FDT_MAX_SIZE); |
a3467baa DG |
426 | |
427 | /* open out the base tree into a temp buffer for the final tweaks */ | |
428 | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | |
4040ab72 DG |
429 | |
430 | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); | |
431 | if (ret < 0) { | |
432 | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | |
433 | exit(1); | |
434 | } | |
435 | ||
3384f95c DG |
436 | QLIST_FOREACH(phb, &spapr->phbs, list) { |
437 | ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt); | |
438 | } | |
439 | ||
440 | if (ret < 0) { | |
441 | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | |
442 | exit(1); | |
443 | } | |
444 | ||
39ac8455 DG |
445 | /* RTAS */ |
446 | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | |
447 | if (ret < 0) { | |
448 | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | |
449 | } | |
450 | ||
6e806cc3 BR |
451 | /* Advertise NUMA via ibm,associativity */ |
452 | if (nb_numa_nodes > 1) { | |
453 | ret = spapr_set_associativity(fdt, spapr); | |
454 | if (ret < 0) { | |
455 | fprintf(stderr, "Couldn't set up NUMA device tree properties\n"); | |
456 | } | |
457 | } | |
458 | ||
68f3a94c DG |
459 | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
460 | ||
4040ab72 DG |
461 | _FDT((fdt_pack(fdt))); |
462 | ||
4d8d5467 BH |
463 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
464 | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | |
465 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
466 | exit(1); | |
467 | } | |
468 | ||
a3467baa | 469 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
9fdf0c29 | 470 | |
7267c094 | 471 | g_free(fdt); |
9fdf0c29 DG |
472 | } |
473 | ||
474 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
475 | { | |
476 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
477 | } | |
478 | ||
479 | static void emulate_spapr_hypercall(CPUState *env) | |
480 | { | |
481 | env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); | |
482 | } | |
483 | ||
a3467baa DG |
484 | static void spapr_reset(void *opaque) |
485 | { | |
486 | sPAPREnvironment *spapr = (sPAPREnvironment *)opaque; | |
487 | ||
488 | fprintf(stderr, "sPAPR reset\n"); | |
489 | ||
490 | /* flush out the hash table */ | |
491 | memset(spapr->htab, 0, spapr->htab_size); | |
492 | ||
493 | /* Load the fdt */ | |
494 | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | |
495 | spapr->rtas_size); | |
496 | ||
497 | /* Set up the entry state */ | |
498 | first_cpu->gpr[3] = spapr->fdt_addr; | |
499 | first_cpu->gpr[5] = 0; | |
500 | first_cpu->halted = 0; | |
501 | first_cpu->nip = spapr->entry_point; | |
502 | ||
503 | } | |
504 | ||
9fdf0c29 DG |
505 | /* pSeries LPAR / sPAPR hardware init */ |
506 | static void ppc_spapr_init(ram_addr_t ram_size, | |
507 | const char *boot_device, | |
508 | const char *kernel_filename, | |
509 | const char *kernel_cmdline, | |
510 | const char *initrd_filename, | |
511 | const char *cpu_model) | |
512 | { | |
c7a5c0c9 | 513 | CPUState *env; |
9fdf0c29 | 514 | int i; |
890c2b77 AK |
515 | MemoryRegion *sysmem = get_system_memory(); |
516 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
354ac20a | 517 | target_phys_addr_t rma_alloc_size, rma_size; |
4d8d5467 BH |
518 | uint32_t initrd_base = 0; |
519 | long kernel_size = 0, initrd_size = 0; | |
520 | long load_limit, rtas_limit, fw_size; | |
f43e3525 | 521 | long pteg_shift = 17; |
39ac8455 | 522 | char *filename; |
9fdf0c29 | 523 | |
d43b45e2 DG |
524 | spapr = g_malloc0(sizeof(*spapr)); |
525 | QLIST_INIT(&spapr->phbs); | |
526 | ||
9fdf0c29 DG |
527 | cpu_ppc_hypercall = emulate_spapr_hypercall; |
528 | ||
354ac20a DG |
529 | /* Allocate RMA if necessary */ |
530 | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | |
531 | ||
532 | if (rma_alloc_size == -1) { | |
533 | hw_error("qemu: Unable to create RMA\n"); | |
534 | exit(1); | |
535 | } | |
536 | if (rma_alloc_size && (rma_alloc_size < ram_size)) { | |
537 | rma_size = rma_alloc_size; | |
538 | } else { | |
539 | rma_size = ram_size; | |
540 | } | |
541 | ||
4d8d5467 | 542 | /* We place the device tree and RTAS just below either the top of the RMA, |
354ac20a DG |
543 | * or just below 2GB, whichever is lowere, so that it can be |
544 | * processed with 32-bit real mode code if necessary */ | |
4d8d5467 BH |
545 | rtas_limit = MIN(rma_size, 0x80000000); |
546 | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; | |
547 | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | |
548 | load_limit = spapr->fdt_addr - FW_OVERHEAD; | |
9fdf0c29 DG |
549 | |
550 | /* init CPUs */ | |
551 | if (cpu_model == NULL) { | |
6b7a2cf6 | 552 | cpu_model = kvm_enabled() ? "host" : "POWER7"; |
9fdf0c29 DG |
553 | } |
554 | for (i = 0; i < smp_cpus; i++) { | |
c7a5c0c9 | 555 | env = cpu_init(cpu_model); |
9fdf0c29 DG |
556 | |
557 | if (!env) { | |
558 | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); | |
559 | exit(1); | |
560 | } | |
561 | /* Set time-base frequency to 512 MHz */ | |
562 | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | |
563 | qemu_register_reset((QEMUResetHandler *)&cpu_reset, env); | |
564 | ||
565 | env->hreset_vector = 0x60; | |
566 | env->hreset_excp_prefix = 0; | |
c7a5c0c9 | 567 | env->gpr[3] = env->cpu_index; |
9fdf0c29 DG |
568 | } |
569 | ||
570 | /* allocate RAM */ | |
f73a2575 | 571 | spapr->ram_limit = ram_size; |
354ac20a DG |
572 | if (spapr->ram_limit > rma_alloc_size) { |
573 | ram_addr_t nonrma_base = rma_alloc_size; | |
574 | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | |
575 | ||
c5705a77 AK |
576 | memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size); |
577 | vmstate_register_ram_global(ram); | |
354ac20a DG |
578 | memory_region_add_subregion(sysmem, nonrma_base, ram); |
579 | } | |
9fdf0c29 | 580 | |
f43e3525 DG |
581 | /* allocate hash page table. For now we always make this 16mb, |
582 | * later we should probably make it scale to the size of guest | |
583 | * RAM */ | |
a3467baa | 584 | spapr->htab_size = 1ULL << (pteg_shift + 7); |
f61b4bed | 585 | spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size); |
f43e3525 | 586 | |
c7a5c0c9 | 587 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
a3467baa | 588 | env->external_htab = spapr->htab; |
c7a5c0c9 | 589 | env->htab_base = -1; |
a3467baa | 590 | env->htab_mask = spapr->htab_size - 1; |
f61b4bed AG |
591 | |
592 | /* Tell KVM that we're in PAPR mode */ | |
593 | env->spr[SPR_SDR1] = (unsigned long)spapr->htab | | |
594 | ((pteg_shift + 7) - 18); | |
595 | env->spr[SPR_HIOR] = 0; | |
596 | ||
597 | if (kvm_enabled()) { | |
598 | kvmppc_set_papr(env); | |
599 | } | |
f43e3525 DG |
600 | } |
601 | ||
39ac8455 | 602 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
a3467baa | 603 | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
4d8d5467 | 604 | rtas_limit - spapr->rtas_addr); |
a3467baa | 605 | if (spapr->rtas_size < 0) { |
39ac8455 DG |
606 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
607 | exit(1); | |
608 | } | |
4d8d5467 BH |
609 | if (spapr->rtas_size > RTAS_MAX_SIZE) { |
610 | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | |
611 | spapr->rtas_size, RTAS_MAX_SIZE); | |
612 | exit(1); | |
613 | } | |
7267c094 | 614 | g_free(filename); |
39ac8455 | 615 | |
4d8d5467 | 616 | |
b5cec4c5 | 617 | /* Set up Interrupt Controller */ |
c7a5c0c9 | 618 | spapr->icp = xics_system_init(XICS_IRQS); |
e6c866d4 | 619 | spapr->next_irq = 16; |
b5cec4c5 DG |
620 | |
621 | /* Set up VIO bus */ | |
4040ab72 DG |
622 | spapr->vio_bus = spapr_vio_bus_init(); |
623 | ||
277f9acf | 624 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
4040ab72 | 625 | if (serial_hds[i]) { |
b4a78527 | 626 | spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i, |
277f9acf | 627 | serial_hds[i]); |
4040ab72 DG |
628 | } |
629 | } | |
9fdf0c29 | 630 | |
3384f95c DG |
631 | /* Set up PCI */ |
632 | spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID, | |
633 | SPAPR_PCI_MEM_WIN_ADDR, | |
634 | SPAPR_PCI_MEM_WIN_SIZE, | |
635 | SPAPR_PCI_IO_WIN_ADDR); | |
636 | ||
277f9acf | 637 | for (i = 0; i < nb_nics; i++) { |
8d90ad90 DG |
638 | NICInfo *nd = &nd_table[i]; |
639 | ||
640 | if (!nd->model) { | |
7267c094 | 641 | nd->model = g_strdup("ibmveth"); |
8d90ad90 DG |
642 | } |
643 | ||
644 | if (strcmp(nd->model, "ibmveth") == 0) { | |
277f9acf | 645 | spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd); |
8d90ad90 | 646 | } else { |
3384f95c | 647 | pci_nic_init_nofail(&nd_table[i], nd->model, NULL); |
8d90ad90 DG |
648 | } |
649 | } | |
650 | ||
6e270446 | 651 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
277f9acf | 652 | spapr_vscsi_create(spapr->vio_bus, 0x2000 + i); |
6e270446 BH |
653 | } |
654 | ||
4d8d5467 BH |
655 | if (rma_size < (MIN_RMA_SLOF << 20)) { |
656 | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " | |
657 | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | |
658 | exit(1); | |
659 | } | |
660 | ||
661 | fprintf(stderr, "sPAPR memory map:\n"); | |
662 | fprintf(stderr, "RTAS : 0x%08lx..%08lx\n", | |
663 | (unsigned long)spapr->rtas_addr, | |
664 | (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1)); | |
665 | fprintf(stderr, "FDT : 0x%08lx..%08lx\n", | |
666 | (unsigned long)spapr->fdt_addr, | |
667 | (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1)); | |
668 | ||
9fdf0c29 DG |
669 | if (kernel_filename) { |
670 | uint64_t lowaddr = 0; | |
671 | ||
9fdf0c29 DG |
672 | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
673 | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | |
674 | if (kernel_size < 0) { | |
a3467baa DG |
675 | kernel_size = load_image_targphys(kernel_filename, |
676 | KERNEL_LOAD_ADDR, | |
4d8d5467 | 677 | load_limit - KERNEL_LOAD_ADDR); |
9fdf0c29 DG |
678 | } |
679 | if (kernel_size < 0) { | |
680 | fprintf(stderr, "qemu: could not load kernel '%s'\n", | |
681 | kernel_filename); | |
682 | exit(1); | |
683 | } | |
4d8d5467 BH |
684 | fprintf(stderr, "Kernel : 0x%08x..%08lx\n", |
685 | KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1); | |
9fdf0c29 DG |
686 | |
687 | /* load initrd */ | |
688 | if (initrd_filename) { | |
4d8d5467 BH |
689 | /* Try to locate the initrd in the gap between the kernel |
690 | * and the firmware. Add a bit of space just in case | |
691 | */ | |
692 | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | |
9fdf0c29 | 693 | initrd_size = load_image_targphys(initrd_filename, initrd_base, |
4d8d5467 | 694 | load_limit - initrd_base); |
9fdf0c29 DG |
695 | if (initrd_size < 0) { |
696 | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | |
697 | initrd_filename); | |
698 | exit(1); | |
699 | } | |
4d8d5467 BH |
700 | fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n", |
701 | (long)initrd_base, (long)(initrd_base + initrd_size - 1)); | |
9fdf0c29 DG |
702 | } else { |
703 | initrd_base = 0; | |
704 | initrd_size = 0; | |
705 | } | |
4d8d5467 | 706 | } |
a3467baa | 707 | |
4d8d5467 BH |
708 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME); |
709 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | |
710 | if (fw_size < 0) { | |
711 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
712 | exit(1); | |
713 | } | |
714 | g_free(filename); | |
715 | fprintf(stderr, "Firmware load : 0x%08x..%08lx\n", | |
716 | 0, fw_size); | |
717 | fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n", | |
718 | load_limit, (unsigned long)spapr->fdt_addr); | |
719 | ||
720 | spapr->entry_point = 0x100; | |
721 | ||
722 | /* SLOF will startup the secondary CPUs using RTAS */ | |
723 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
724 | env->halted = 1; | |
9fdf0c29 DG |
725 | } |
726 | ||
727 | /* Prepare the device tree */ | |
354ac20a | 728 | spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size, |
a3467baa | 729 | initrd_base, initrd_size, |
4d8d5467 | 730 | kernel_size, |
a3467baa DG |
731 | boot_device, kernel_cmdline, |
732 | pteg_shift + 7); | |
733 | assert(spapr->fdt_skel != NULL); | |
9fdf0c29 | 734 | |
a3467baa | 735 | qemu_register_reset(spapr_reset, spapr); |
9fdf0c29 DG |
736 | } |
737 | ||
738 | static QEMUMachine spapr_machine = { | |
739 | .name = "pseries", | |
740 | .desc = "pSeries Logical Partition (PAPR compliant)", | |
741 | .init = ppc_spapr_init, | |
742 | .max_cpus = MAX_CPUS, | |
9fdf0c29 | 743 | .no_parallel = 1, |
6e270446 | 744 | .use_scsi = 1, |
9fdf0c29 DG |
745 | }; |
746 | ||
747 | static void spapr_machine_init(void) | |
748 | { | |
749 | qemu_register_machine(&spapr_machine); | |
750 | } | |
751 | ||
752 | machine_init(spapr_machine_init); |