]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
777872e5 | 20 | #ifndef _WIN32 |
d5a8f07c FB |
21 | #include <sys/mman.h> |
22 | #endif | |
54936004 | 23 | |
055403b2 | 24 | #include "qemu-common.h" |
6180a181 | 25 | #include "cpu.h" |
b67d9a52 | 26 | #include "tcg.h" |
b3c7724c | 27 | #include "hw/hw.h" |
4485bd26 | 28 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 29 | #include "hw/boards.h" |
4485bd26 | 30 | #endif |
cc9e98cb | 31 | #include "hw/qdev.h" |
9c17d615 | 32 | #include "sysemu/kvm.h" |
2ff3de68 | 33 | #include "sysemu/sysemu.h" |
0d09e41a | 34 | #include "hw/xen/xen.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
022c62cb | 38 | #include "exec/memory.h" |
9c17d615 | 39 | #include "sysemu/dma.h" |
022c62cb | 40 | #include "exec/address-spaces.h" |
53a5960a PB |
41 | #if defined(CONFIG_USER_ONLY) |
42 | #include <qemu.h> | |
432d268c | 43 | #else /* !CONFIG_USER_ONLY */ |
9c17d615 | 44 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 45 | #include "trace.h" |
53a5960a | 46 | #endif |
0d6d3c87 | 47 | #include "exec/cpu-all.h" |
0dc3f44a | 48 | #include "qemu/rcu_queue.h" |
4840f10e | 49 | #include "qemu/main-loop.h" |
5b6dd868 | 50 | #include "translate-all.h" |
7615936e | 51 | #include "sysemu/replay.h" |
0cac1b66 | 52 | |
022c62cb | 53 | #include "exec/memory-internal.h" |
220c3ebd | 54 | #include "exec/ram_addr.h" |
508127e2 | 55 | #include "exec/log.h" |
67d95c15 | 56 | |
b35ba30f | 57 | #include "qemu/range.h" |
794e8f30 MT |
58 | #ifndef _WIN32 |
59 | #include "qemu/mmap-alloc.h" | |
60 | #endif | |
b35ba30f | 61 | |
db7b5426 | 62 | //#define DEBUG_SUBPAGE |
1196be37 | 63 | |
e2eef170 | 64 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
65 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
66 | * are protected by the ramlist lock. | |
67 | */ | |
0d53d9fe | 68 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
69 | |
70 | static MemoryRegion *system_memory; | |
309cb471 | 71 | static MemoryRegion *system_io; |
62152b8a | 72 | |
f6790af6 AK |
73 | AddressSpace address_space_io; |
74 | AddressSpace address_space_memory; | |
2673a5da | 75 | |
0844e007 | 76 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 77 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 78 | |
7bd4f430 PB |
79 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
80 | #define RAM_PREALLOC (1 << 0) | |
81 | ||
dbcb8981 PB |
82 | /* RAM is mmap-ed with MAP_SHARED */ |
83 | #define RAM_SHARED (1 << 1) | |
84 | ||
62be4e3a MT |
85 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
86 | * This used_length size can change across reboots. | |
87 | */ | |
88 | #define RAM_RESIZEABLE (1 << 2) | |
89 | ||
e2eef170 | 90 | #endif |
9fa3e853 | 91 | |
bdc44640 | 92 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
93 | /* current CPU in the current thread. It is only valid inside |
94 | cpu_exec() */ | |
f240eb6f | 95 | __thread CPUState *current_cpu; |
2e70f6ef | 96 | /* 0 = Do not count executed instructions. |
bf20dc07 | 97 | 1 = Precise instruction counting. |
2e70f6ef | 98 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 99 | int use_icount; |
6a00d601 | 100 | |
e2eef170 | 101 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 102 | |
1db8abb1 PB |
103 | typedef struct PhysPageEntry PhysPageEntry; |
104 | ||
105 | struct PhysPageEntry { | |
9736e55b | 106 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 107 | uint32_t skip : 6; |
9736e55b | 108 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 109 | uint32_t ptr : 26; |
1db8abb1 PB |
110 | }; |
111 | ||
8b795765 MT |
112 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
113 | ||
03f49957 | 114 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 115 | #define ADDR_SPACE_BITS 64 |
03f49957 | 116 | |
026736ce | 117 | #define P_L2_BITS 9 |
03f49957 PB |
118 | #define P_L2_SIZE (1 << P_L2_BITS) |
119 | ||
120 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
121 | ||
122 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 123 | |
53cb28cb | 124 | typedef struct PhysPageMap { |
79e2b9ae PB |
125 | struct rcu_head rcu; |
126 | ||
53cb28cb MA |
127 | unsigned sections_nb; |
128 | unsigned sections_nb_alloc; | |
129 | unsigned nodes_nb; | |
130 | unsigned nodes_nb_alloc; | |
131 | Node *nodes; | |
132 | MemoryRegionSection *sections; | |
133 | } PhysPageMap; | |
134 | ||
1db8abb1 | 135 | struct AddressSpaceDispatch { |
79e2b9ae PB |
136 | struct rcu_head rcu; |
137 | ||
729633c2 | 138 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
139 | /* This is a multi-level map on the physical address space. |
140 | * The bottom level has pointers to MemoryRegionSections. | |
141 | */ | |
142 | PhysPageEntry phys_map; | |
53cb28cb | 143 | PhysPageMap map; |
acc9d80b | 144 | AddressSpace *as; |
1db8abb1 PB |
145 | }; |
146 | ||
90260c6c JK |
147 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
148 | typedef struct subpage_t { | |
149 | MemoryRegion iomem; | |
acc9d80b | 150 | AddressSpace *as; |
90260c6c JK |
151 | hwaddr base; |
152 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
153 | } subpage_t; | |
154 | ||
b41aac4f LPF |
155 | #define PHYS_SECTION_UNASSIGNED 0 |
156 | #define PHYS_SECTION_NOTDIRTY 1 | |
157 | #define PHYS_SECTION_ROM 2 | |
158 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 159 | |
e2eef170 | 160 | static void io_mem_init(void); |
62152b8a | 161 | static void memory_map_init(void); |
09daed84 | 162 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 163 | |
1ec9b909 | 164 | static MemoryRegion io_mem_watch; |
32857f4d PM |
165 | |
166 | /** | |
167 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
168 | * @cpu: the CPU whose AddressSpace this is | |
169 | * @as: the AddressSpace itself | |
170 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
171 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
172 | */ | |
173 | struct CPUAddressSpace { | |
174 | CPUState *cpu; | |
175 | AddressSpace *as; | |
176 | struct AddressSpaceDispatch *memory_dispatch; | |
177 | MemoryListener tcg_as_listener; | |
178 | }; | |
179 | ||
6658ffb8 | 180 | #endif |
fd6ce8f6 | 181 | |
6d9a1304 | 182 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 183 | |
53cb28cb | 184 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 185 | { |
53cb28cb MA |
186 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
187 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
188 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
189 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 190 | } |
f7bf5461 AK |
191 | } |
192 | ||
db94604b | 193 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
194 | { |
195 | unsigned i; | |
8b795765 | 196 | uint32_t ret; |
db94604b PB |
197 | PhysPageEntry e; |
198 | PhysPageEntry *p; | |
f7bf5461 | 199 | |
53cb28cb | 200 | ret = map->nodes_nb++; |
db94604b | 201 | p = map->nodes[ret]; |
f7bf5461 | 202 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 203 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
204 | |
205 | e.skip = leaf ? 0 : 1; | |
206 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 207 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 208 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 209 | } |
f7bf5461 | 210 | return ret; |
d6f2ea22 AK |
211 | } |
212 | ||
53cb28cb MA |
213 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
214 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 215 | int level) |
f7bf5461 AK |
216 | { |
217 | PhysPageEntry *p; | |
03f49957 | 218 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 219 | |
9736e55b | 220 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 221 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 222 | } |
db94604b | 223 | p = map->nodes[lp->ptr]; |
03f49957 | 224 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 225 | |
03f49957 | 226 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 227 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 228 | lp->skip = 0; |
c19e8800 | 229 | lp->ptr = leaf; |
07f07b31 AK |
230 | *index += step; |
231 | *nb -= step; | |
2999097b | 232 | } else { |
53cb28cb | 233 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
234 | } |
235 | ++lp; | |
f7bf5461 AK |
236 | } |
237 | } | |
238 | ||
ac1970fb | 239 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 240 | hwaddr index, hwaddr nb, |
2999097b | 241 | uint16_t leaf) |
f7bf5461 | 242 | { |
2999097b | 243 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 244 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 245 | |
53cb28cb | 246 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
247 | } |
248 | ||
b35ba30f MT |
249 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
250 | * and update our entry so we can skip it and go directly to the destination. | |
251 | */ | |
252 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
253 | { | |
254 | unsigned valid_ptr = P_L2_SIZE; | |
255 | int valid = 0; | |
256 | PhysPageEntry *p; | |
257 | int i; | |
258 | ||
259 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
260 | return; | |
261 | } | |
262 | ||
263 | p = nodes[lp->ptr]; | |
264 | for (i = 0; i < P_L2_SIZE; i++) { | |
265 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
266 | continue; | |
267 | } | |
268 | ||
269 | valid_ptr = i; | |
270 | valid++; | |
271 | if (p[i].skip) { | |
272 | phys_page_compact(&p[i], nodes, compacted); | |
273 | } | |
274 | } | |
275 | ||
276 | /* We can only compress if there's only one child. */ | |
277 | if (valid != 1) { | |
278 | return; | |
279 | } | |
280 | ||
281 | assert(valid_ptr < P_L2_SIZE); | |
282 | ||
283 | /* Don't compress if it won't fit in the # of bits we have. */ | |
284 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
285 | return; | |
286 | } | |
287 | ||
288 | lp->ptr = p[valid_ptr].ptr; | |
289 | if (!p[valid_ptr].skip) { | |
290 | /* If our only child is a leaf, make this a leaf. */ | |
291 | /* By design, we should have made this node a leaf to begin with so we | |
292 | * should never reach here. | |
293 | * But since it's so simple to handle this, let's do it just in case we | |
294 | * change this rule. | |
295 | */ | |
296 | lp->skip = 0; | |
297 | } else { | |
298 | lp->skip += p[valid_ptr].skip; | |
299 | } | |
300 | } | |
301 | ||
302 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
303 | { | |
304 | DECLARE_BITMAP(compacted, nodes_nb); | |
305 | ||
306 | if (d->phys_map.skip) { | |
53cb28cb | 307 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
308 | } |
309 | } | |
310 | ||
29cb533d FZ |
311 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
312 | hwaddr addr) | |
313 | { | |
314 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
315 | * the section must cover the entire address space. | |
316 | */ | |
317 | return section->size.hi || | |
318 | range_covers_byte(section->offset_within_address_space, | |
319 | section->size.lo, addr); | |
320 | } | |
321 | ||
97115a8d | 322 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 323 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 324 | { |
31ab2b4a | 325 | PhysPageEntry *p; |
97115a8d | 326 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 327 | int i; |
f1f6e3b8 | 328 | |
9736e55b | 329 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 330 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 331 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 332 | } |
9affd6fc | 333 | p = nodes[lp.ptr]; |
03f49957 | 334 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 335 | } |
b35ba30f | 336 | |
29cb533d | 337 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
338 | return §ions[lp.ptr]; |
339 | } else { | |
340 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
341 | } | |
f3705d53 AK |
342 | } |
343 | ||
e5548617 BS |
344 | bool memory_region_is_unassigned(MemoryRegion *mr) |
345 | { | |
2a8e7499 | 346 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 347 | && mr != &io_mem_watch; |
fd6ce8f6 | 348 | } |
149f54b5 | 349 | |
79e2b9ae | 350 | /* Called from RCU critical section */ |
c7086b4a | 351 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
352 | hwaddr addr, |
353 | bool resolve_subpage) | |
9f029603 | 354 | { |
729633c2 | 355 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 356 | subpage_t *subpage; |
729633c2 | 357 | bool update; |
90260c6c | 358 | |
729633c2 FZ |
359 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
360 | section_covers_addr(section, addr)) { | |
361 | update = false; | |
362 | } else { | |
363 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
364 | d->map.sections); | |
365 | update = true; | |
366 | } | |
90260c6c JK |
367 | if (resolve_subpage && section->mr->subpage) { |
368 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 369 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 370 | } |
729633c2 FZ |
371 | if (update) { |
372 | atomic_set(&d->mru_section, section); | |
373 | } | |
90260c6c | 374 | return section; |
9f029603 JK |
375 | } |
376 | ||
79e2b9ae | 377 | /* Called from RCU critical section */ |
90260c6c | 378 | static MemoryRegionSection * |
c7086b4a | 379 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 380 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
381 | { |
382 | MemoryRegionSection *section; | |
965eb2fc | 383 | MemoryRegion *mr; |
a87f3954 | 384 | Int128 diff; |
149f54b5 | 385 | |
c7086b4a | 386 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
387 | /* Compute offset within MemoryRegionSection */ |
388 | addr -= section->offset_within_address_space; | |
389 | ||
390 | /* Compute offset within MemoryRegion */ | |
391 | *xlat = addr + section->offset_within_region; | |
392 | ||
965eb2fc | 393 | mr = section->mr; |
b242e0e0 PB |
394 | |
395 | /* MMIO registers can be expected to perform full-width accesses based only | |
396 | * on their address, without considering adjacent registers that could | |
397 | * decode to completely different MemoryRegions. When such registers | |
398 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
399 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
400 | * here. | |
401 | * | |
402 | * If the length is small (as is the case for address_space_ldl/stl), | |
403 | * everything works fine. If the incoming length is large, however, | |
404 | * the caller really has to do the clamping through memory_access_size. | |
405 | */ | |
965eb2fc | 406 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 407 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
408 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
409 | } | |
149f54b5 PB |
410 | return section; |
411 | } | |
90260c6c | 412 | |
41063e1e | 413 | /* Called from RCU critical section */ |
5c8a00ce PB |
414 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
415 | hwaddr *xlat, hwaddr *plen, | |
416 | bool is_write) | |
90260c6c | 417 | { |
30951157 AK |
418 | IOMMUTLBEntry iotlb; |
419 | MemoryRegionSection *section; | |
420 | MemoryRegion *mr; | |
30951157 AK |
421 | |
422 | for (;;) { | |
79e2b9ae PB |
423 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
424 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
425 | mr = section->mr; |
426 | ||
427 | if (!mr->iommu_ops) { | |
428 | break; | |
429 | } | |
430 | ||
8d7b8cb9 | 431 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
432 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
433 | | (addr & iotlb.addr_mask)); | |
23820dbf | 434 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
435 | if (!(iotlb.perm & (1 << is_write))) { |
436 | mr = &io_mem_unassigned; | |
437 | break; | |
438 | } | |
439 | ||
440 | as = iotlb.target_as; | |
441 | } | |
442 | ||
fe680d0d | 443 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 444 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 445 | *plen = MIN(page, *plen); |
a87f3954 PB |
446 | } |
447 | ||
30951157 AK |
448 | *xlat = addr; |
449 | return mr; | |
90260c6c JK |
450 | } |
451 | ||
79e2b9ae | 452 | /* Called from RCU critical section */ |
90260c6c | 453 | MemoryRegionSection * |
d7898cda | 454 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 455 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 456 | { |
30951157 | 457 | MemoryRegionSection *section; |
d7898cda PM |
458 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
459 | ||
460 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
461 | |
462 | assert(!section->mr->iommu_ops); | |
463 | return section; | |
90260c6c | 464 | } |
5b6dd868 | 465 | #endif |
fd6ce8f6 | 466 | |
b170fce3 | 467 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
468 | |
469 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 470 | { |
259186a7 | 471 | CPUState *cpu = opaque; |
a513fe19 | 472 | |
5b6dd868 BS |
473 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
474 | version_id is increased. */ | |
259186a7 | 475 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 476 | tlb_flush(cpu, 1); |
5b6dd868 BS |
477 | |
478 | return 0; | |
a513fe19 | 479 | } |
7501267e | 480 | |
6c3bff0e PD |
481 | static int cpu_common_pre_load(void *opaque) |
482 | { | |
483 | CPUState *cpu = opaque; | |
484 | ||
adee6424 | 485 | cpu->exception_index = -1; |
6c3bff0e PD |
486 | |
487 | return 0; | |
488 | } | |
489 | ||
490 | static bool cpu_common_exception_index_needed(void *opaque) | |
491 | { | |
492 | CPUState *cpu = opaque; | |
493 | ||
adee6424 | 494 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
495 | } |
496 | ||
497 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
498 | .name = "cpu_common/exception_index", | |
499 | .version_id = 1, | |
500 | .minimum_version_id = 1, | |
5cd8cada | 501 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
502 | .fields = (VMStateField[]) { |
503 | VMSTATE_INT32(exception_index, CPUState), | |
504 | VMSTATE_END_OF_LIST() | |
505 | } | |
506 | }; | |
507 | ||
bac05aa9 AS |
508 | static bool cpu_common_crash_occurred_needed(void *opaque) |
509 | { | |
510 | CPUState *cpu = opaque; | |
511 | ||
512 | return cpu->crash_occurred; | |
513 | } | |
514 | ||
515 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
516 | .name = "cpu_common/crash_occurred", | |
517 | .version_id = 1, | |
518 | .minimum_version_id = 1, | |
519 | .needed = cpu_common_crash_occurred_needed, | |
520 | .fields = (VMStateField[]) { | |
521 | VMSTATE_BOOL(crash_occurred, CPUState), | |
522 | VMSTATE_END_OF_LIST() | |
523 | } | |
524 | }; | |
525 | ||
1a1562f5 | 526 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
527 | .name = "cpu_common", |
528 | .version_id = 1, | |
529 | .minimum_version_id = 1, | |
6c3bff0e | 530 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 531 | .post_load = cpu_common_post_load, |
35d08458 | 532 | .fields = (VMStateField[]) { |
259186a7 AF |
533 | VMSTATE_UINT32(halted, CPUState), |
534 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 535 | VMSTATE_END_OF_LIST() |
6c3bff0e | 536 | }, |
5cd8cada JQ |
537 | .subsections = (const VMStateDescription*[]) { |
538 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 539 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 540 | NULL |
5b6dd868 BS |
541 | } |
542 | }; | |
1a1562f5 | 543 | |
5b6dd868 | 544 | #endif |
ea041c0e | 545 | |
38d8f5c8 | 546 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 547 | { |
bdc44640 | 548 | CPUState *cpu; |
ea041c0e | 549 | |
bdc44640 | 550 | CPU_FOREACH(cpu) { |
55e5c285 | 551 | if (cpu->cpu_index == index) { |
bdc44640 | 552 | return cpu; |
55e5c285 | 553 | } |
ea041c0e | 554 | } |
5b6dd868 | 555 | |
bdc44640 | 556 | return NULL; |
ea041c0e FB |
557 | } |
558 | ||
09daed84 | 559 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 560 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 561 | { |
12ebc9a7 PM |
562 | CPUAddressSpace *newas; |
563 | ||
564 | /* Target code should have set num_ases before calling us */ | |
565 | assert(asidx < cpu->num_ases); | |
566 | ||
56943e8c PM |
567 | if (asidx == 0) { |
568 | /* address space 0 gets the convenience alias */ | |
569 | cpu->as = as; | |
570 | } | |
571 | ||
12ebc9a7 PM |
572 | /* KVM cannot currently support multiple address spaces. */ |
573 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 574 | |
12ebc9a7 PM |
575 | if (!cpu->cpu_ases) { |
576 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 577 | } |
32857f4d | 578 | |
12ebc9a7 PM |
579 | newas = &cpu->cpu_ases[asidx]; |
580 | newas->cpu = cpu; | |
581 | newas->as = as; | |
56943e8c | 582 | if (tcg_enabled()) { |
12ebc9a7 PM |
583 | newas->tcg_as_listener.commit = tcg_commit; |
584 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 585 | } |
09daed84 | 586 | } |
651a5bc0 PM |
587 | |
588 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
589 | { | |
590 | /* Return the AddressSpace corresponding to the specified index */ | |
591 | return cpu->cpu_ases[asidx].as; | |
592 | } | |
09daed84 EI |
593 | #endif |
594 | ||
b7bca733 BR |
595 | #ifndef CONFIG_USER_ONLY |
596 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
597 | ||
598 | static int cpu_get_free_index(Error **errp) | |
599 | { | |
600 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
601 | ||
602 | if (cpu >= MAX_CPUMASK_BITS) { | |
603 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
604 | MAX_CPUMASK_BITS); | |
605 | return -1; | |
606 | } | |
607 | ||
608 | bitmap_set(cpu_index_map, cpu, 1); | |
609 | return cpu; | |
610 | } | |
611 | ||
612 | void cpu_exec_exit(CPUState *cpu) | |
613 | { | |
614 | if (cpu->cpu_index == -1) { | |
615 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
616 | return; | |
617 | } | |
618 | ||
619 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
620 | cpu->cpu_index = -1; | |
621 | } | |
622 | #else | |
623 | ||
624 | static int cpu_get_free_index(Error **errp) | |
625 | { | |
626 | CPUState *some_cpu; | |
627 | int cpu_index = 0; | |
628 | ||
629 | CPU_FOREACH(some_cpu) { | |
630 | cpu_index++; | |
631 | } | |
632 | return cpu_index; | |
633 | } | |
634 | ||
635 | void cpu_exec_exit(CPUState *cpu) | |
636 | { | |
637 | } | |
638 | #endif | |
639 | ||
4bad9e39 | 640 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 641 | { |
b170fce3 | 642 | CPUClass *cc = CPU_GET_CLASS(cpu); |
5b6dd868 | 643 | int cpu_index; |
b7bca733 | 644 | Error *local_err = NULL; |
5b6dd868 | 645 | |
56943e8c | 646 | cpu->as = NULL; |
12ebc9a7 | 647 | cpu->num_ases = 0; |
56943e8c | 648 | |
291135b5 | 649 | #ifndef CONFIG_USER_ONLY |
291135b5 | 650 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
651 | |
652 | /* This is a softmmu CPU object, so create a property for it | |
653 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
654 | * because that file is compiled only once for both user-mode | |
655 | * and system builds.) The default if no link is set up is to use | |
656 | * the system address space. | |
657 | */ | |
658 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
659 | (Object **)&cpu->memory, | |
660 | qdev_prop_allow_set_link_before_realize, | |
661 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
662 | &error_abort); | |
663 | cpu->memory = system_memory; | |
664 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
665 | #endif |
666 | ||
5b6dd868 BS |
667 | #if defined(CONFIG_USER_ONLY) |
668 | cpu_list_lock(); | |
669 | #endif | |
b7bca733 BR |
670 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); |
671 | if (local_err) { | |
672 | error_propagate(errp, local_err); | |
673 | #if defined(CONFIG_USER_ONLY) | |
674 | cpu_list_unlock(); | |
675 | #endif | |
676 | return; | |
5b6dd868 | 677 | } |
bdc44640 | 678 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 BS |
679 | #if defined(CONFIG_USER_ONLY) |
680 | cpu_list_unlock(); | |
681 | #endif | |
e0d47944 AF |
682 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
683 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
684 | } | |
b170fce3 AF |
685 | if (cc->vmsd != NULL) { |
686 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
687 | } | |
ea041c0e FB |
688 | } |
689 | ||
94df27fd | 690 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 691 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
692 | { |
693 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
694 | } | |
695 | #else | |
00b941e5 | 696 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 697 | { |
5232e4c7 PM |
698 | MemTxAttrs attrs; |
699 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
700 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 701 | if (phys != -1) { |
5232e4c7 | 702 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 703 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 704 | } |
1e7855a5 | 705 | } |
c27004ec | 706 | #endif |
d720b93d | 707 | |
c527ee8f | 708 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 709 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
710 | |
711 | { | |
712 | } | |
713 | ||
3ee887e8 PM |
714 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
715 | int flags) | |
716 | { | |
717 | return -ENOSYS; | |
718 | } | |
719 | ||
720 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
721 | { | |
722 | } | |
723 | ||
75a34036 | 724 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
725 | int flags, CPUWatchpoint **watchpoint) |
726 | { | |
727 | return -ENOSYS; | |
728 | } | |
729 | #else | |
6658ffb8 | 730 | /* Add a watchpoint. */ |
75a34036 | 731 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 732 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 733 | { |
c0ce998e | 734 | CPUWatchpoint *wp; |
6658ffb8 | 735 | |
05068c0d | 736 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 737 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
738 | error_report("tried to set invalid watchpoint at %" |
739 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
740 | return -EINVAL; |
741 | } | |
7267c094 | 742 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
743 | |
744 | wp->vaddr = addr; | |
05068c0d | 745 | wp->len = len; |
a1d1bb31 AL |
746 | wp->flags = flags; |
747 | ||
2dc9f411 | 748 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
749 | if (flags & BP_GDB) { |
750 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
751 | } else { | |
752 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
753 | } | |
6658ffb8 | 754 | |
31b030d4 | 755 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
756 | |
757 | if (watchpoint) | |
758 | *watchpoint = wp; | |
759 | return 0; | |
6658ffb8 PB |
760 | } |
761 | ||
a1d1bb31 | 762 | /* Remove a specific watchpoint. */ |
75a34036 | 763 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 764 | int flags) |
6658ffb8 | 765 | { |
a1d1bb31 | 766 | CPUWatchpoint *wp; |
6658ffb8 | 767 | |
ff4700b0 | 768 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 769 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 770 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 771 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
772 | return 0; |
773 | } | |
774 | } | |
a1d1bb31 | 775 | return -ENOENT; |
6658ffb8 PB |
776 | } |
777 | ||
a1d1bb31 | 778 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 779 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 780 | { |
ff4700b0 | 781 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 782 | |
31b030d4 | 783 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 784 | |
7267c094 | 785 | g_free(watchpoint); |
a1d1bb31 AL |
786 | } |
787 | ||
788 | /* Remove all matching watchpoints. */ | |
75a34036 | 789 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 790 | { |
c0ce998e | 791 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 792 | |
ff4700b0 | 793 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
794 | if (wp->flags & mask) { |
795 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
796 | } | |
c0ce998e | 797 | } |
7d03f82f | 798 | } |
05068c0d PM |
799 | |
800 | /* Return true if this watchpoint address matches the specified | |
801 | * access (ie the address range covered by the watchpoint overlaps | |
802 | * partially or completely with the address range covered by the | |
803 | * access). | |
804 | */ | |
805 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
806 | vaddr addr, | |
807 | vaddr len) | |
808 | { | |
809 | /* We know the lengths are non-zero, but a little caution is | |
810 | * required to avoid errors in the case where the range ends | |
811 | * exactly at the top of the address space and so addr + len | |
812 | * wraps round to zero. | |
813 | */ | |
814 | vaddr wpend = wp->vaddr + wp->len - 1; | |
815 | vaddr addrend = addr + len - 1; | |
816 | ||
817 | return !(addr > wpend || wp->vaddr > addrend); | |
818 | } | |
819 | ||
c527ee8f | 820 | #endif |
7d03f82f | 821 | |
a1d1bb31 | 822 | /* Add a breakpoint. */ |
b3310ab3 | 823 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 824 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 825 | { |
c0ce998e | 826 | CPUBreakpoint *bp; |
3b46e624 | 827 | |
7267c094 | 828 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 829 | |
a1d1bb31 AL |
830 | bp->pc = pc; |
831 | bp->flags = flags; | |
832 | ||
2dc9f411 | 833 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 834 | if (flags & BP_GDB) { |
f0c3c505 | 835 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 836 | } else { |
f0c3c505 | 837 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 838 | } |
3b46e624 | 839 | |
f0c3c505 | 840 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 841 | |
00b941e5 | 842 | if (breakpoint) { |
a1d1bb31 | 843 | *breakpoint = bp; |
00b941e5 | 844 | } |
4c3a88a2 | 845 | return 0; |
4c3a88a2 FB |
846 | } |
847 | ||
a1d1bb31 | 848 | /* Remove a specific breakpoint. */ |
b3310ab3 | 849 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 850 | { |
a1d1bb31 AL |
851 | CPUBreakpoint *bp; |
852 | ||
f0c3c505 | 853 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 854 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 855 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
856 | return 0; |
857 | } | |
7d03f82f | 858 | } |
a1d1bb31 | 859 | return -ENOENT; |
7d03f82f EI |
860 | } |
861 | ||
a1d1bb31 | 862 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 863 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 864 | { |
f0c3c505 AF |
865 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
866 | ||
867 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 868 | |
7267c094 | 869 | g_free(breakpoint); |
a1d1bb31 AL |
870 | } |
871 | ||
872 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 873 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 874 | { |
c0ce998e | 875 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 876 | |
f0c3c505 | 877 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
878 | if (bp->flags & mask) { |
879 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
880 | } | |
c0ce998e | 881 | } |
4c3a88a2 FB |
882 | } |
883 | ||
c33a346e FB |
884 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
885 | CPU loop after each instruction */ | |
3825b28f | 886 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 887 | { |
ed2803da AF |
888 | if (cpu->singlestep_enabled != enabled) { |
889 | cpu->singlestep_enabled = enabled; | |
890 | if (kvm_enabled()) { | |
38e478ec | 891 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 892 | } else { |
ccbb4d44 | 893 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 894 | /* XXX: only flush what is necessary */ |
bbd77c18 | 895 | tb_flush(cpu); |
e22a25c9 | 896 | } |
c33a346e | 897 | } |
c33a346e FB |
898 | } |
899 | ||
a47dddd7 | 900 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
901 | { |
902 | va_list ap; | |
493ae1f0 | 903 | va_list ap2; |
7501267e FB |
904 | |
905 | va_start(ap, fmt); | |
493ae1f0 | 906 | va_copy(ap2, ap); |
7501267e FB |
907 | fprintf(stderr, "qemu: fatal: "); |
908 | vfprintf(stderr, fmt, ap); | |
909 | fprintf(stderr, "\n"); | |
878096ee | 910 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 911 | if (qemu_log_separate()) { |
93fcfe39 AL |
912 | qemu_log("qemu: fatal: "); |
913 | qemu_log_vprintf(fmt, ap2); | |
914 | qemu_log("\n"); | |
a0762859 | 915 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 916 | qemu_log_flush(); |
93fcfe39 | 917 | qemu_log_close(); |
924edcae | 918 | } |
493ae1f0 | 919 | va_end(ap2); |
f9373291 | 920 | va_end(ap); |
7615936e | 921 | replay_finish(); |
fd052bf6 RV |
922 | #if defined(CONFIG_USER_ONLY) |
923 | { | |
924 | struct sigaction act; | |
925 | sigfillset(&act.sa_mask); | |
926 | act.sa_handler = SIG_DFL; | |
927 | sigaction(SIGABRT, &act, NULL); | |
928 | } | |
929 | #endif | |
7501267e FB |
930 | abort(); |
931 | } | |
932 | ||
0124311e | 933 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 934 | /* Called from RCU critical section */ |
041603fe PB |
935 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
936 | { | |
937 | RAMBlock *block; | |
938 | ||
43771539 | 939 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 940 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 941 | return block; |
041603fe | 942 | } |
0dc3f44a | 943 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 944 | if (addr - block->offset < block->max_length) { |
041603fe PB |
945 | goto found; |
946 | } | |
947 | } | |
948 | ||
949 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
950 | abort(); | |
951 | ||
952 | found: | |
43771539 PB |
953 | /* It is safe to write mru_block outside the iothread lock. This |
954 | * is what happens: | |
955 | * | |
956 | * mru_block = xxx | |
957 | * rcu_read_unlock() | |
958 | * xxx removed from list | |
959 | * rcu_read_lock() | |
960 | * read mru_block | |
961 | * mru_block = NULL; | |
962 | * call_rcu(reclaim_ramblock, xxx); | |
963 | * rcu_read_unlock() | |
964 | * | |
965 | * atomic_rcu_set is not needed here. The block was already published | |
966 | * when it was placed into the list. Here we're just making an extra | |
967 | * copy of the pointer. | |
968 | */ | |
041603fe PB |
969 | ram_list.mru_block = block; |
970 | return block; | |
971 | } | |
972 | ||
a2f4d5be | 973 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 974 | { |
9a13565d | 975 | CPUState *cpu; |
041603fe | 976 | ram_addr_t start1; |
a2f4d5be JQ |
977 | RAMBlock *block; |
978 | ram_addr_t end; | |
979 | ||
980 | end = TARGET_PAGE_ALIGN(start + length); | |
981 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 982 | |
0dc3f44a | 983 | rcu_read_lock(); |
041603fe PB |
984 | block = qemu_get_ram_block(start); |
985 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 986 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
987 | CPU_FOREACH(cpu) { |
988 | tlb_reset_dirty(cpu, start1, length); | |
989 | } | |
0dc3f44a | 990 | rcu_read_unlock(); |
d24981d3 JQ |
991 | } |
992 | ||
5579c7f3 | 993 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
994 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
995 | ram_addr_t length, | |
996 | unsigned client) | |
1ccde1cb | 997 | { |
5b82b703 | 998 | DirtyMemoryBlocks *blocks; |
03eebc9e | 999 | unsigned long end, page; |
5b82b703 | 1000 | bool dirty = false; |
03eebc9e SH |
1001 | |
1002 | if (length == 0) { | |
1003 | return false; | |
1004 | } | |
f23db169 | 1005 | |
03eebc9e SH |
1006 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1007 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1008 | |
1009 | rcu_read_lock(); | |
1010 | ||
1011 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1012 | ||
1013 | while (page < end) { | |
1014 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1015 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1016 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1017 | ||
1018 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1019 | offset, num); | |
1020 | page += num; | |
1021 | } | |
1022 | ||
1023 | rcu_read_unlock(); | |
03eebc9e SH |
1024 | |
1025 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1026 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1027 | } |
03eebc9e SH |
1028 | |
1029 | return dirty; | |
1ccde1cb FB |
1030 | } |
1031 | ||
79e2b9ae | 1032 | /* Called from RCU critical section */ |
bb0e627a | 1033 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1034 | MemoryRegionSection *section, |
1035 | target_ulong vaddr, | |
1036 | hwaddr paddr, hwaddr xlat, | |
1037 | int prot, | |
1038 | target_ulong *address) | |
e5548617 | 1039 | { |
a8170e5e | 1040 | hwaddr iotlb; |
e5548617 BS |
1041 | CPUWatchpoint *wp; |
1042 | ||
cc5bea60 | 1043 | if (memory_region_is_ram(section->mr)) { |
e5548617 BS |
1044 | /* Normal RAM. */ |
1045 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
149f54b5 | 1046 | + xlat; |
e5548617 | 1047 | if (!section->readonly) { |
b41aac4f | 1048 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1049 | } else { |
b41aac4f | 1050 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1051 | } |
1052 | } else { | |
0b8e2c10 PM |
1053 | AddressSpaceDispatch *d; |
1054 | ||
1055 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1056 | iotlb = section - d->map.sections; | |
149f54b5 | 1057 | iotlb += xlat; |
e5548617 BS |
1058 | } |
1059 | ||
1060 | /* Make accesses to pages with watchpoints go via the | |
1061 | watchpoint trap routines. */ | |
ff4700b0 | 1062 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1063 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1064 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1065 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1066 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1067 | *address |= TLB_MMIO; |
1068 | break; | |
1069 | } | |
1070 | } | |
1071 | } | |
1072 | ||
1073 | return iotlb; | |
1074 | } | |
9fa3e853 FB |
1075 | #endif /* defined(CONFIG_USER_ONLY) */ |
1076 | ||
e2eef170 | 1077 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1078 | |
c227f099 | 1079 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1080 | uint16_t section); |
acc9d80b | 1081 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1082 | |
a2b257d6 IM |
1083 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1084 | qemu_anon_ram_alloc; | |
91138037 MA |
1085 | |
1086 | /* | |
1087 | * Set a custom physical guest memory alloator. | |
1088 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1089 | * get rid of it eventually. | |
1090 | */ | |
a2b257d6 | 1091 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1092 | { |
1093 | phys_mem_alloc = alloc; | |
1094 | } | |
1095 | ||
53cb28cb MA |
1096 | static uint16_t phys_section_add(PhysPageMap *map, |
1097 | MemoryRegionSection *section) | |
5312bd8b | 1098 | { |
68f3f65b PB |
1099 | /* The physical section number is ORed with a page-aligned |
1100 | * pointer to produce the iotlb entries. Thus it should | |
1101 | * never overflow into the page-aligned value. | |
1102 | */ | |
53cb28cb | 1103 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1104 | |
53cb28cb MA |
1105 | if (map->sections_nb == map->sections_nb_alloc) { |
1106 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1107 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1108 | map->sections_nb_alloc); | |
5312bd8b | 1109 | } |
53cb28cb | 1110 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1111 | memory_region_ref(section->mr); |
53cb28cb | 1112 | return map->sections_nb++; |
5312bd8b AK |
1113 | } |
1114 | ||
058bc4b5 PB |
1115 | static void phys_section_destroy(MemoryRegion *mr) |
1116 | { | |
55b4e80b DS |
1117 | bool have_sub_page = mr->subpage; |
1118 | ||
dfde4e6e PB |
1119 | memory_region_unref(mr); |
1120 | ||
55b4e80b | 1121 | if (have_sub_page) { |
058bc4b5 | 1122 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1123 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1124 | g_free(subpage); |
1125 | } | |
1126 | } | |
1127 | ||
6092666e | 1128 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1129 | { |
9affd6fc PB |
1130 | while (map->sections_nb > 0) { |
1131 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1132 | phys_section_destroy(section->mr); |
1133 | } | |
9affd6fc PB |
1134 | g_free(map->sections); |
1135 | g_free(map->nodes); | |
5312bd8b AK |
1136 | } |
1137 | ||
ac1970fb | 1138 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1139 | { |
1140 | subpage_t *subpage; | |
a8170e5e | 1141 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1142 | & TARGET_PAGE_MASK; |
97115a8d | 1143 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1144 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1145 | MemoryRegionSection subsection = { |
1146 | .offset_within_address_space = base, | |
052e87b0 | 1147 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1148 | }; |
a8170e5e | 1149 | hwaddr start, end; |
0f0cb164 | 1150 | |
f3705d53 | 1151 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1152 | |
f3705d53 | 1153 | if (!(existing->mr->subpage)) { |
acc9d80b | 1154 | subpage = subpage_init(d->as, base); |
3be91e86 | 1155 | subsection.address_space = d->as; |
0f0cb164 | 1156 | subsection.mr = &subpage->iomem; |
ac1970fb | 1157 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1158 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1159 | } else { |
f3705d53 | 1160 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1161 | } |
1162 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1163 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1164 | subpage_register(subpage, start, end, |
1165 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1166 | } |
1167 | ||
1168 | ||
052e87b0 PB |
1169 | static void register_multipage(AddressSpaceDispatch *d, |
1170 | MemoryRegionSection *section) | |
33417e70 | 1171 | { |
a8170e5e | 1172 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1173 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1174 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1175 | TARGET_PAGE_BITS)); | |
dd81124b | 1176 | |
733d5ef5 PB |
1177 | assert(num_pages); |
1178 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1179 | } |
1180 | ||
ac1970fb | 1181 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1182 | { |
89ae337a | 1183 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1184 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1185 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1186 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1187 | |
733d5ef5 PB |
1188 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1189 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1190 | - now.offset_within_address_space; | |
1191 | ||
052e87b0 | 1192 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1193 | register_subpage(d, &now); |
733d5ef5 | 1194 | } else { |
052e87b0 | 1195 | now.size = int128_zero(); |
733d5ef5 | 1196 | } |
052e87b0 PB |
1197 | while (int128_ne(remain.size, now.size)) { |
1198 | remain.size = int128_sub(remain.size, now.size); | |
1199 | remain.offset_within_address_space += int128_get64(now.size); | |
1200 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1201 | now = remain; |
052e87b0 | 1202 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1203 | register_subpage(d, &now); |
88266249 | 1204 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1205 | now.size = page_size; |
ac1970fb | 1206 | register_subpage(d, &now); |
69b67646 | 1207 | } else { |
052e87b0 | 1208 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1209 | register_multipage(d, &now); |
69b67646 | 1210 | } |
0f0cb164 AK |
1211 | } |
1212 | } | |
1213 | ||
62a2744c SY |
1214 | void qemu_flush_coalesced_mmio_buffer(void) |
1215 | { | |
1216 | if (kvm_enabled()) | |
1217 | kvm_flush_coalesced_mmio_buffer(); | |
1218 | } | |
1219 | ||
b2a8658e UD |
1220 | void qemu_mutex_lock_ramlist(void) |
1221 | { | |
1222 | qemu_mutex_lock(&ram_list.mutex); | |
1223 | } | |
1224 | ||
1225 | void qemu_mutex_unlock_ramlist(void) | |
1226 | { | |
1227 | qemu_mutex_unlock(&ram_list.mutex); | |
1228 | } | |
1229 | ||
e1e84ba0 | 1230 | #ifdef __linux__ |
04b16653 AW |
1231 | static void *file_ram_alloc(RAMBlock *block, |
1232 | ram_addr_t memory, | |
7f56e740 PB |
1233 | const char *path, |
1234 | Error **errp) | |
c902760f | 1235 | { |
fd97fd44 | 1236 | bool unlink_on_error = false; |
c902760f | 1237 | char *filename; |
8ca761f6 PF |
1238 | char *sanitized_name; |
1239 | char *c; | |
794e8f30 | 1240 | void *area; |
c902760f | 1241 | int fd; |
e1fb6471 | 1242 | int64_t page_size; |
c902760f MT |
1243 | |
1244 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1245 | error_setg(errp, |
1246 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1247 | return NULL; |
c902760f MT |
1248 | } |
1249 | ||
fd97fd44 MA |
1250 | for (;;) { |
1251 | fd = open(path, O_RDWR); | |
1252 | if (fd >= 0) { | |
1253 | /* @path names an existing file, use it */ | |
1254 | break; | |
8d31d6b6 | 1255 | } |
fd97fd44 MA |
1256 | if (errno == ENOENT) { |
1257 | /* @path names a file that doesn't exist, create it */ | |
1258 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1259 | if (fd >= 0) { | |
1260 | unlink_on_error = true; | |
1261 | break; | |
1262 | } | |
1263 | } else if (errno == EISDIR) { | |
1264 | /* @path names a directory, create a file there */ | |
1265 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1266 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1267 | for (c = sanitized_name; *c != '\0'; c++) { | |
1268 | if (*c == '/') { | |
1269 | *c = '_'; | |
1270 | } | |
1271 | } | |
8ca761f6 | 1272 | |
fd97fd44 MA |
1273 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1274 | sanitized_name); | |
1275 | g_free(sanitized_name); | |
8d31d6b6 | 1276 | |
fd97fd44 MA |
1277 | fd = mkstemp(filename); |
1278 | if (fd >= 0) { | |
1279 | unlink(filename); | |
1280 | g_free(filename); | |
1281 | break; | |
1282 | } | |
1283 | g_free(filename); | |
8d31d6b6 | 1284 | } |
fd97fd44 MA |
1285 | if (errno != EEXIST && errno != EINTR) { |
1286 | error_setg_errno(errp, errno, | |
1287 | "can't open backing store %s for guest RAM", | |
1288 | path); | |
1289 | goto error; | |
1290 | } | |
1291 | /* | |
1292 | * Try again on EINTR and EEXIST. The latter happens when | |
1293 | * something else creates the file between our two open(). | |
1294 | */ | |
8d31d6b6 | 1295 | } |
c902760f | 1296 | |
e1fb6471 MA |
1297 | page_size = qemu_fd_getpagesize(fd); |
1298 | block->mr->align = page_size; | |
fd97fd44 | 1299 | |
e1fb6471 | 1300 | if (memory < page_size) { |
fd97fd44 MA |
1301 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1302 | "or larger than page size 0x%" PRIx64, | |
e1fb6471 | 1303 | memory, page_size); |
f9a49dfa | 1304 | goto error; |
c902760f | 1305 | } |
c902760f | 1306 | |
e1fb6471 | 1307 | memory = ROUND_UP(memory, page_size); |
c902760f MT |
1308 | |
1309 | /* | |
1310 | * ftruncate is not supported by hugetlbfs in older | |
1311 | * hosts, so don't bother bailing out on errors. | |
1312 | * If anything goes wrong with it under other filesystems, | |
1313 | * mmap will fail. | |
1314 | */ | |
7f56e740 | 1315 | if (ftruncate(fd, memory)) { |
9742bf26 | 1316 | perror("ftruncate"); |
7f56e740 | 1317 | } |
c902760f | 1318 | |
e1fb6471 | 1319 | area = qemu_ram_mmap(fd, memory, page_size, block->flags & RAM_SHARED); |
c902760f | 1320 | if (area == MAP_FAILED) { |
7f56e740 | 1321 | error_setg_errno(errp, errno, |
fd97fd44 | 1322 | "unable to map backing store for guest RAM"); |
9742bf26 | 1323 | close(fd); |
f9a49dfa | 1324 | goto error; |
c902760f | 1325 | } |
ef36fa14 MT |
1326 | |
1327 | if (mem_prealloc) { | |
38183310 | 1328 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1329 | } |
1330 | ||
04b16653 | 1331 | block->fd = fd; |
c902760f | 1332 | return area; |
f9a49dfa MT |
1333 | |
1334 | error: | |
fd97fd44 MA |
1335 | if (unlink_on_error) { |
1336 | unlink(path); | |
1337 | } | |
1338 | close(fd); | |
f9a49dfa | 1339 | return NULL; |
c902760f MT |
1340 | } |
1341 | #endif | |
1342 | ||
0dc3f44a | 1343 | /* Called with the ramlist lock held. */ |
d17b5288 | 1344 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1345 | { |
1346 | RAMBlock *block, *next_block; | |
3e837b2c | 1347 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1348 | |
49cd9ac6 SH |
1349 | assert(size != 0); /* it would hand out same offset multiple times */ |
1350 | ||
0dc3f44a | 1351 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1352 | return 0; |
0d53d9fe | 1353 | } |
04b16653 | 1354 | |
0dc3f44a | 1355 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1356 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1357 | |
62be4e3a | 1358 | end = block->offset + block->max_length; |
04b16653 | 1359 | |
0dc3f44a | 1360 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1361 | if (next_block->offset >= end) { |
1362 | next = MIN(next, next_block->offset); | |
1363 | } | |
1364 | } | |
1365 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1366 | offset = end; |
04b16653 AW |
1367 | mingap = next - end; |
1368 | } | |
1369 | } | |
3e837b2c AW |
1370 | |
1371 | if (offset == RAM_ADDR_MAX) { | |
1372 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1373 | (uint64_t)size); | |
1374 | abort(); | |
1375 | } | |
1376 | ||
04b16653 AW |
1377 | return offset; |
1378 | } | |
1379 | ||
652d7ec2 | 1380 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1381 | { |
1382 | RAMBlock *block; | |
1383 | ram_addr_t last = 0; | |
1384 | ||
0dc3f44a MD |
1385 | rcu_read_lock(); |
1386 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1387 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1388 | } |
0dc3f44a | 1389 | rcu_read_unlock(); |
d17b5288 AW |
1390 | return last; |
1391 | } | |
1392 | ||
ddb97f1d JB |
1393 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1394 | { | |
1395 | int ret; | |
ddb97f1d JB |
1396 | |
1397 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1398 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1399 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1400 | if (ret) { | |
1401 | perror("qemu_madvise"); | |
1402 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1403 | "but dump_guest_core=off specified\n"); | |
1404 | } | |
1405 | } | |
1406 | } | |
1407 | ||
0dc3f44a MD |
1408 | /* Called within an RCU critical section, or while the ramlist lock |
1409 | * is held. | |
1410 | */ | |
20cfe881 | 1411 | static RAMBlock *find_ram_block(ram_addr_t addr) |
84b89d78 | 1412 | { |
20cfe881 | 1413 | RAMBlock *block; |
84b89d78 | 1414 | |
0dc3f44a | 1415 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1416 | if (block->offset == addr) { |
20cfe881 | 1417 | return block; |
c5705a77 AK |
1418 | } |
1419 | } | |
20cfe881 HT |
1420 | |
1421 | return NULL; | |
1422 | } | |
1423 | ||
422148d3 DDAG |
1424 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1425 | { | |
1426 | return rb->idstr; | |
1427 | } | |
1428 | ||
ae3a7047 | 1429 | /* Called with iothread lock held. */ |
20cfe881 HT |
1430 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
1431 | { | |
ae3a7047 | 1432 | RAMBlock *new_block, *block; |
20cfe881 | 1433 | |
0dc3f44a | 1434 | rcu_read_lock(); |
ae3a7047 | 1435 | new_block = find_ram_block(addr); |
c5705a77 AK |
1436 | assert(new_block); |
1437 | assert(!new_block->idstr[0]); | |
84b89d78 | 1438 | |
09e5ab63 AL |
1439 | if (dev) { |
1440 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1441 | if (id) { |
1442 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1443 | g_free(id); |
84b89d78 CM |
1444 | } |
1445 | } | |
1446 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1447 | ||
0dc3f44a | 1448 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1449 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
1450 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1451 | new_block->idstr); | |
1452 | abort(); | |
1453 | } | |
1454 | } | |
0dc3f44a | 1455 | rcu_read_unlock(); |
c5705a77 AK |
1456 | } |
1457 | ||
ae3a7047 | 1458 | /* Called with iothread lock held. */ |
20cfe881 HT |
1459 | void qemu_ram_unset_idstr(ram_addr_t addr) |
1460 | { | |
ae3a7047 | 1461 | RAMBlock *block; |
20cfe881 | 1462 | |
ae3a7047 MD |
1463 | /* FIXME: arch_init.c assumes that this is not called throughout |
1464 | * migration. Ignore the problem since hot-unplug during migration | |
1465 | * does not work anyway. | |
1466 | */ | |
1467 | ||
0dc3f44a | 1468 | rcu_read_lock(); |
ae3a7047 | 1469 | block = find_ram_block(addr); |
20cfe881 HT |
1470 | if (block) { |
1471 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1472 | } | |
0dc3f44a | 1473 | rcu_read_unlock(); |
20cfe881 HT |
1474 | } |
1475 | ||
8490fc78 LC |
1476 | static int memory_try_enable_merging(void *addr, size_t len) |
1477 | { | |
75cc7f01 | 1478 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1479 | /* disabled by the user */ |
1480 | return 0; | |
1481 | } | |
1482 | ||
1483 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1484 | } | |
1485 | ||
62be4e3a MT |
1486 | /* Only legal before guest might have detected the memory size: e.g. on |
1487 | * incoming migration, or right after reset. | |
1488 | * | |
1489 | * As memory core doesn't know how is memory accessed, it is up to | |
1490 | * resize callback to update device state and/or add assertions to detect | |
1491 | * misuse, if necessary. | |
1492 | */ | |
1493 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1494 | { | |
1495 | RAMBlock *block = find_ram_block(base); | |
1496 | ||
1497 | assert(block); | |
1498 | ||
4ed023ce | 1499 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1500 | |
62be4e3a MT |
1501 | if (block->used_length == newsize) { |
1502 | return 0; | |
1503 | } | |
1504 | ||
1505 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1506 | error_setg_errno(errp, EINVAL, | |
1507 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1508 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1509 | newsize, block->used_length); | |
1510 | return -EINVAL; | |
1511 | } | |
1512 | ||
1513 | if (block->max_length < newsize) { | |
1514 | error_setg_errno(errp, EINVAL, | |
1515 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1516 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1517 | newsize, block->max_length); | |
1518 | return -EINVAL; | |
1519 | } | |
1520 | ||
1521 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1522 | block->used_length = newsize; | |
58d2707e PB |
1523 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1524 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1525 | memory_region_set_size(block->mr, newsize); |
1526 | if (block->resized) { | |
1527 | block->resized(block->idstr, newsize, block->host); | |
1528 | } | |
1529 | return 0; | |
1530 | } | |
1531 | ||
5b82b703 SH |
1532 | /* Called with ram_list.mutex held */ |
1533 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1534 | ram_addr_t new_ram_size) | |
1535 | { | |
1536 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1537 | DIRTY_MEMORY_BLOCK_SIZE); | |
1538 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1539 | DIRTY_MEMORY_BLOCK_SIZE); | |
1540 | int i; | |
1541 | ||
1542 | /* Only need to extend if block count increased */ | |
1543 | if (new_num_blocks <= old_num_blocks) { | |
1544 | return; | |
1545 | } | |
1546 | ||
1547 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1548 | DirtyMemoryBlocks *old_blocks; | |
1549 | DirtyMemoryBlocks *new_blocks; | |
1550 | int j; | |
1551 | ||
1552 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1553 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1554 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1555 | ||
1556 | if (old_num_blocks) { | |
1557 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1558 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1559 | } | |
1560 | ||
1561 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1562 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1563 | } | |
1564 | ||
1565 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1566 | ||
1567 | if (old_blocks) { | |
1568 | g_free_rcu(old_blocks, rcu); | |
1569 | } | |
1570 | } | |
1571 | } | |
1572 | ||
528f46af | 1573 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1574 | { |
e1c57ab8 | 1575 | RAMBlock *block; |
0d53d9fe | 1576 | RAMBlock *last_block = NULL; |
2152f5ca | 1577 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1578 | Error *err = NULL; |
2152f5ca JQ |
1579 | |
1580 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1581 | |
b2a8658e | 1582 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1583 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1584 | |
1585 | if (!new_block->host) { | |
1586 | if (xen_enabled()) { | |
9b8424d5 | 1587 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1588 | new_block->mr, &err); |
1589 | if (err) { | |
1590 | error_propagate(errp, err); | |
1591 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1592 | return; |
37aa7a0e | 1593 | } |
e1c57ab8 | 1594 | } else { |
9b8424d5 | 1595 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1596 | &new_block->mr->align); |
39228250 | 1597 | if (!new_block->host) { |
ef701d7b HT |
1598 | error_setg_errno(errp, errno, |
1599 | "cannot set up guest memory '%s'", | |
1600 | memory_region_name(new_block->mr)); | |
1601 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1602 | return; |
39228250 | 1603 | } |
9b8424d5 | 1604 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1605 | } |
c902760f | 1606 | } |
94a6b54f | 1607 | |
dd631697 LZ |
1608 | new_ram_size = MAX(old_ram_size, |
1609 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1610 | if (new_ram_size > old_ram_size) { | |
1611 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1612 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1613 | } |
0d53d9fe MD |
1614 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1615 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1616 | * tail, so save the last element in last_block. | |
1617 | */ | |
0dc3f44a | 1618 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1619 | last_block = block; |
9b8424d5 | 1620 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1621 | break; |
1622 | } | |
1623 | } | |
1624 | if (block) { | |
0dc3f44a | 1625 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1626 | } else if (last_block) { |
0dc3f44a | 1627 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1628 | } else { /* list is empty */ |
0dc3f44a | 1629 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1630 | } |
0d6d3c87 | 1631 | ram_list.mru_block = NULL; |
94a6b54f | 1632 | |
0dc3f44a MD |
1633 | /* Write list before version */ |
1634 | smp_wmb(); | |
f798b07f | 1635 | ram_list.version++; |
b2a8658e | 1636 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1637 | |
9b8424d5 | 1638 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1639 | new_block->used_length, |
1640 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1641 | |
a904c911 PB |
1642 | if (new_block->host) { |
1643 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1644 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1645 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1646 | if (kvm_enabled()) { | |
1647 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1648 | } | |
e1c57ab8 | 1649 | } |
94a6b54f | 1650 | } |
e9a1ab19 | 1651 | |
0b183fc8 | 1652 | #ifdef __linux__ |
528f46af FZ |
1653 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1654 | bool share, const char *mem_path, | |
1655 | Error **errp) | |
e1c57ab8 PB |
1656 | { |
1657 | RAMBlock *new_block; | |
ef701d7b | 1658 | Error *local_err = NULL; |
e1c57ab8 PB |
1659 | |
1660 | if (xen_enabled()) { | |
7f56e740 | 1661 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1662 | return NULL; |
e1c57ab8 PB |
1663 | } |
1664 | ||
1665 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1666 | /* | |
1667 | * file_ram_alloc() needs to allocate just like | |
1668 | * phys_mem_alloc, but we haven't bothered to provide | |
1669 | * a hook there. | |
1670 | */ | |
7f56e740 PB |
1671 | error_setg(errp, |
1672 | "-mem-path not supported with this accelerator"); | |
528f46af | 1673 | return NULL; |
e1c57ab8 PB |
1674 | } |
1675 | ||
4ed023ce | 1676 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1677 | new_block = g_malloc0(sizeof(*new_block)); |
1678 | new_block->mr = mr; | |
9b8424d5 MT |
1679 | new_block->used_length = size; |
1680 | new_block->max_length = size; | |
dbcb8981 | 1681 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1682 | new_block->host = file_ram_alloc(new_block, size, |
1683 | mem_path, errp); | |
1684 | if (!new_block->host) { | |
1685 | g_free(new_block); | |
528f46af | 1686 | return NULL; |
7f56e740 PB |
1687 | } |
1688 | ||
528f46af | 1689 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1690 | if (local_err) { |
1691 | g_free(new_block); | |
1692 | error_propagate(errp, local_err); | |
528f46af | 1693 | return NULL; |
ef701d7b | 1694 | } |
528f46af | 1695 | return new_block; |
e1c57ab8 | 1696 | } |
0b183fc8 | 1697 | #endif |
e1c57ab8 | 1698 | |
62be4e3a | 1699 | static |
528f46af FZ |
1700 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1701 | void (*resized)(const char*, | |
1702 | uint64_t length, | |
1703 | void *host), | |
1704 | void *host, bool resizeable, | |
1705 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1706 | { |
1707 | RAMBlock *new_block; | |
ef701d7b | 1708 | Error *local_err = NULL; |
e1c57ab8 | 1709 | |
4ed023ce DDAG |
1710 | size = HOST_PAGE_ALIGN(size); |
1711 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1712 | new_block = g_malloc0(sizeof(*new_block)); |
1713 | new_block->mr = mr; | |
62be4e3a | 1714 | new_block->resized = resized; |
9b8424d5 MT |
1715 | new_block->used_length = size; |
1716 | new_block->max_length = max_size; | |
62be4e3a | 1717 | assert(max_size >= size); |
e1c57ab8 PB |
1718 | new_block->fd = -1; |
1719 | new_block->host = host; | |
1720 | if (host) { | |
7bd4f430 | 1721 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1722 | } |
62be4e3a MT |
1723 | if (resizeable) { |
1724 | new_block->flags |= RAM_RESIZEABLE; | |
1725 | } | |
528f46af | 1726 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1727 | if (local_err) { |
1728 | g_free(new_block); | |
1729 | error_propagate(errp, local_err); | |
528f46af | 1730 | return NULL; |
ef701d7b | 1731 | } |
528f46af | 1732 | return new_block; |
e1c57ab8 PB |
1733 | } |
1734 | ||
528f46af | 1735 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1736 | MemoryRegion *mr, Error **errp) |
1737 | { | |
1738 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1739 | } | |
1740 | ||
528f46af | 1741 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1742 | { |
62be4e3a MT |
1743 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1744 | } | |
1745 | ||
528f46af | 1746 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1747 | void (*resized)(const char*, |
1748 | uint64_t length, | |
1749 | void *host), | |
1750 | MemoryRegion *mr, Error **errp) | |
1751 | { | |
1752 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1753 | } |
1754 | ||
43771539 PB |
1755 | static void reclaim_ramblock(RAMBlock *block) |
1756 | { | |
1757 | if (block->flags & RAM_PREALLOC) { | |
1758 | ; | |
1759 | } else if (xen_enabled()) { | |
1760 | xen_invalidate_map_cache_entry(block->host); | |
1761 | #ifndef _WIN32 | |
1762 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1763 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1764 | close(block->fd); |
1765 | #endif | |
1766 | } else { | |
1767 | qemu_anon_ram_free(block->host, block->max_length); | |
1768 | } | |
1769 | g_free(block); | |
1770 | } | |
1771 | ||
f1060c55 | 1772 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1773 | { |
b2a8658e | 1774 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1775 | QLIST_REMOVE_RCU(block, next); |
1776 | ram_list.mru_block = NULL; | |
1777 | /* Write list before version */ | |
1778 | smp_wmb(); | |
1779 | ram_list.version++; | |
1780 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1781 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1782 | } |
1783 | ||
cd19cfa2 HY |
1784 | #ifndef _WIN32 |
1785 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1786 | { | |
1787 | RAMBlock *block; | |
1788 | ram_addr_t offset; | |
1789 | int flags; | |
1790 | void *area, *vaddr; | |
1791 | ||
0dc3f44a | 1792 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1793 | offset = addr - block->offset; |
9b8424d5 | 1794 | if (offset < block->max_length) { |
1240be24 | 1795 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1796 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1797 | ; |
dfeaf2ab MA |
1798 | } else if (xen_enabled()) { |
1799 | abort(); | |
cd19cfa2 HY |
1800 | } else { |
1801 | flags = MAP_FIXED; | |
3435f395 | 1802 | if (block->fd >= 0) { |
dbcb8981 PB |
1803 | flags |= (block->flags & RAM_SHARED ? |
1804 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1805 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1806 | flags, block->fd, offset); | |
cd19cfa2 | 1807 | } else { |
2eb9fbaa MA |
1808 | /* |
1809 | * Remap needs to match alloc. Accelerators that | |
1810 | * set phys_mem_alloc never remap. If they did, | |
1811 | * we'd need a remap hook here. | |
1812 | */ | |
1813 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1814 | ||
cd19cfa2 HY |
1815 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1816 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1817 | flags, -1, 0); | |
cd19cfa2 HY |
1818 | } |
1819 | if (area != vaddr) { | |
f15fbc4b AP |
1820 | fprintf(stderr, "Could not remap addr: " |
1821 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1822 | length, addr); |
1823 | exit(1); | |
1824 | } | |
8490fc78 | 1825 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1826 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1827 | } |
cd19cfa2 HY |
1828 | } |
1829 | } | |
1830 | } | |
1831 | #endif /* !_WIN32 */ | |
1832 | ||
a35ba7be PB |
1833 | int qemu_get_ram_fd(ram_addr_t addr) |
1834 | { | |
ae3a7047 MD |
1835 | RAMBlock *block; |
1836 | int fd; | |
a35ba7be | 1837 | |
0dc3f44a | 1838 | rcu_read_lock(); |
ae3a7047 MD |
1839 | block = qemu_get_ram_block(addr); |
1840 | fd = block->fd; | |
0dc3f44a | 1841 | rcu_read_unlock(); |
ae3a7047 | 1842 | return fd; |
a35ba7be PB |
1843 | } |
1844 | ||
56a571d9 TM |
1845 | void qemu_set_ram_fd(ram_addr_t addr, int fd) |
1846 | { | |
1847 | RAMBlock *block; | |
1848 | ||
1849 | rcu_read_lock(); | |
1850 | block = qemu_get_ram_block(addr); | |
1851 | block->fd = fd; | |
1852 | rcu_read_unlock(); | |
1853 | } | |
1854 | ||
3fd74b84 DM |
1855 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) |
1856 | { | |
ae3a7047 MD |
1857 | RAMBlock *block; |
1858 | void *ptr; | |
3fd74b84 | 1859 | |
0dc3f44a | 1860 | rcu_read_lock(); |
ae3a7047 MD |
1861 | block = qemu_get_ram_block(addr); |
1862 | ptr = ramblock_ptr(block, 0); | |
0dc3f44a | 1863 | rcu_read_unlock(); |
ae3a7047 | 1864 | return ptr; |
3fd74b84 DM |
1865 | } |
1866 | ||
1b5ec234 | 1867 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1868 | * This should not be used for general purpose DMA. Use address_space_map |
1869 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1870 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1871 | * |
49b24afc | 1872 | * Called within RCU critical section. |
1b5ec234 | 1873 | */ |
3655cb9c | 1874 | void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1875 | { |
3655cb9c GA |
1876 | RAMBlock *block = ram_block; |
1877 | ||
1878 | if (block == NULL) { | |
1879 | block = qemu_get_ram_block(addr); | |
1880 | } | |
ae3a7047 MD |
1881 | |
1882 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1883 | /* We need to check if the requested address is in the RAM |
1884 | * because we don't want to map the entire memory in QEMU. | |
1885 | * In that case just map until the end of the page. | |
1886 | */ | |
1887 | if (block->offset == 0) { | |
49b24afc | 1888 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1889 | } |
ae3a7047 MD |
1890 | |
1891 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1892 | } |
49b24afc | 1893 | return ramblock_ptr(block, addr - block->offset); |
dc828ca1 PB |
1894 | } |
1895 | ||
38bee5dc | 1896 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1897 | * but takes a size argument. |
0dc3f44a | 1898 | * |
e81bcda5 | 1899 | * Called within RCU critical section. |
ae3a7047 | 1900 | */ |
3655cb9c GA |
1901 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1902 | hwaddr *size) | |
38bee5dc | 1903 | { |
3655cb9c | 1904 | RAMBlock *block = ram_block; |
e81bcda5 | 1905 | ram_addr_t offset_inside_block; |
8ab934f9 SS |
1906 | if (*size == 0) { |
1907 | return NULL; | |
1908 | } | |
e81bcda5 | 1909 | |
3655cb9c GA |
1910 | if (block == NULL) { |
1911 | block = qemu_get_ram_block(addr); | |
1912 | } | |
e81bcda5 PB |
1913 | offset_inside_block = addr - block->offset; |
1914 | *size = MIN(*size, block->max_length - offset_inside_block); | |
1915 | ||
1916 | if (xen_enabled() && block->host == NULL) { | |
1917 | /* We need to check if the requested address is in the RAM | |
1918 | * because we don't want to map the entire memory in QEMU. | |
1919 | * In that case just map the requested area. | |
1920 | */ | |
1921 | if (block->offset == 0) { | |
1922 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1923 | } |
1924 | ||
e81bcda5 | 1925 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1926 | } |
e81bcda5 PB |
1927 | |
1928 | return ramblock_ptr(block, offset_inside_block); | |
38bee5dc SS |
1929 | } |
1930 | ||
422148d3 DDAG |
1931 | /* |
1932 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1933 | * in that RAMBlock. | |
1934 | * | |
1935 | * ptr: Host pointer to look up | |
1936 | * round_offset: If true round the result offset down to a page boundary | |
1937 | * *ram_addr: set to result ram_addr | |
1938 | * *offset: set to result offset within the RAMBlock | |
1939 | * | |
1940 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1941 | * |
1942 | * By the time this function returns, the returned pointer is not protected | |
1943 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1944 | * does not hold the iothread lock, it must have other means of protecting the | |
1945 | * pointer, such as a reference to the region that includes the incoming | |
1946 | * ram_addr_t. | |
1947 | */ | |
422148d3 DDAG |
1948 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
1949 | ram_addr_t *ram_addr, | |
1950 | ram_addr_t *offset) | |
5579c7f3 | 1951 | { |
94a6b54f PB |
1952 | RAMBlock *block; |
1953 | uint8_t *host = ptr; | |
1954 | ||
868bb33f | 1955 | if (xen_enabled()) { |
0dc3f44a | 1956 | rcu_read_lock(); |
e41d7c69 | 1957 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
422148d3 DDAG |
1958 | block = qemu_get_ram_block(*ram_addr); |
1959 | if (block) { | |
1960 | *offset = (host - block->host); | |
1961 | } | |
0dc3f44a | 1962 | rcu_read_unlock(); |
422148d3 | 1963 | return block; |
712c2b41 SS |
1964 | } |
1965 | ||
0dc3f44a MD |
1966 | rcu_read_lock(); |
1967 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1968 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1969 | goto found; |
1970 | } | |
1971 | ||
0dc3f44a | 1972 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1973 | /* This case append when the block is not mapped. */ |
1974 | if (block->host == NULL) { | |
1975 | continue; | |
1976 | } | |
9b8424d5 | 1977 | if (host - block->host < block->max_length) { |
23887b79 | 1978 | goto found; |
f471a17e | 1979 | } |
94a6b54f | 1980 | } |
432d268c | 1981 | |
0dc3f44a | 1982 | rcu_read_unlock(); |
1b5ec234 | 1983 | return NULL; |
23887b79 PB |
1984 | |
1985 | found: | |
422148d3 DDAG |
1986 | *offset = (host - block->host); |
1987 | if (round_offset) { | |
1988 | *offset &= TARGET_PAGE_MASK; | |
1989 | } | |
1990 | *ram_addr = block->offset + *offset; | |
0dc3f44a | 1991 | rcu_read_unlock(); |
422148d3 DDAG |
1992 | return block; |
1993 | } | |
1994 | ||
e3dd7493 DDAG |
1995 | /* |
1996 | * Finds the named RAMBlock | |
1997 | * | |
1998 | * name: The name of RAMBlock to find | |
1999 | * | |
2000 | * Returns: RAMBlock (or NULL if not found) | |
2001 | */ | |
2002 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2003 | { | |
2004 | RAMBlock *block; | |
2005 | ||
2006 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
2007 | if (!strcmp(name, block->idstr)) { | |
2008 | return block; | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | return NULL; | |
2013 | } | |
2014 | ||
422148d3 DDAG |
2015 | /* Some of the softmmu routines need to translate from a host pointer |
2016 | (typically a TLB entry) back to a ram offset. */ | |
2017 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
2018 | { | |
2019 | RAMBlock *block; | |
2020 | ram_addr_t offset; /* Not used */ | |
2021 | ||
2022 | block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset); | |
2023 | ||
2024 | if (!block) { | |
2025 | return NULL; | |
2026 | } | |
2027 | ||
2028 | return block->mr; | |
e890261f | 2029 | } |
f471a17e | 2030 | |
49b24afc | 2031 | /* Called within RCU critical section. */ |
a8170e5e | 2032 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2033 | uint64_t val, unsigned size) |
9fa3e853 | 2034 | { |
52159192 | 2035 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 2036 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2037 | } |
0e0df1e2 AK |
2038 | switch (size) { |
2039 | case 1: | |
3655cb9c | 2040 | stb_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2041 | break; |
2042 | case 2: | |
3655cb9c | 2043 | stw_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2044 | break; |
2045 | case 4: | |
3655cb9c | 2046 | stl_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2047 | break; |
2048 | default: | |
2049 | abort(); | |
3a7d929e | 2050 | } |
58d2707e PB |
2051 | /* Set both VGA and migration bits for simplicity and to remove |
2052 | * the notdirty callback faster. | |
2053 | */ | |
2054 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2055 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2056 | /* we remove the notdirty callback only if the code has been |
2057 | flushed */ | |
a2cd8c85 | 2058 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2059 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2060 | } |
9fa3e853 FB |
2061 | } |
2062 | ||
b018ddf6 PB |
2063 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2064 | unsigned size, bool is_write) | |
2065 | { | |
2066 | return is_write; | |
2067 | } | |
2068 | ||
0e0df1e2 | 2069 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2070 | .write = notdirty_mem_write, |
b018ddf6 | 2071 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2072 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2073 | }; |
2074 | ||
0f459d16 | 2075 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2076 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2077 | { |
93afeade | 2078 | CPUState *cpu = current_cpu; |
568496c0 | 2079 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2080 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2081 | target_ulong pc, cs_base; |
0f459d16 | 2082 | target_ulong vaddr; |
a1d1bb31 | 2083 | CPUWatchpoint *wp; |
06d55cc1 | 2084 | int cpu_flags; |
0f459d16 | 2085 | |
ff4700b0 | 2086 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2087 | /* We re-entered the check after replacing the TB. Now raise |
2088 | * the debug interrupt so that is will trigger after the | |
2089 | * current instruction. */ | |
93afeade | 2090 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2091 | return; |
2092 | } | |
93afeade | 2093 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2094 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2095 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2096 | && (wp->flags & flags)) { | |
08225676 PM |
2097 | if (flags == BP_MEM_READ) { |
2098 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2099 | } else { | |
2100 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2101 | } | |
2102 | wp->hitaddr = vaddr; | |
66b9b43c | 2103 | wp->hitattrs = attrs; |
ff4700b0 | 2104 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2105 | if (wp->flags & BP_CPU && |
2106 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2107 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2108 | continue; | |
2109 | } | |
ff4700b0 | 2110 | cpu->watchpoint_hit = wp; |
239c51a5 | 2111 | tb_check_watchpoint(cpu); |
6e140f28 | 2112 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2113 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2114 | cpu_loop_exit(cpu); |
6e140f28 AL |
2115 | } else { |
2116 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2117 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2118 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2119 | } |
06d55cc1 | 2120 | } |
6e140f28 AL |
2121 | } else { |
2122 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2123 | } |
2124 | } | |
2125 | } | |
2126 | ||
6658ffb8 PB |
2127 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2128 | so these check for a hit then pass through to the normal out-of-line | |
2129 | phys routines. */ | |
66b9b43c PM |
2130 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2131 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2132 | { |
66b9b43c PM |
2133 | MemTxResult res; |
2134 | uint64_t data; | |
79ed0416 PM |
2135 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2136 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2137 | |
2138 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2139 | switch (size) { |
66b9b43c | 2140 | case 1: |
79ed0416 | 2141 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2142 | break; |
2143 | case 2: | |
79ed0416 | 2144 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2145 | break; |
2146 | case 4: | |
79ed0416 | 2147 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2148 | break; |
1ec9b909 AK |
2149 | default: abort(); |
2150 | } | |
66b9b43c PM |
2151 | *pdata = data; |
2152 | return res; | |
6658ffb8 PB |
2153 | } |
2154 | ||
66b9b43c PM |
2155 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2156 | uint64_t val, unsigned size, | |
2157 | MemTxAttrs attrs) | |
6658ffb8 | 2158 | { |
66b9b43c | 2159 | MemTxResult res; |
79ed0416 PM |
2160 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2161 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2162 | |
2163 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2164 | switch (size) { |
67364150 | 2165 | case 1: |
79ed0416 | 2166 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2167 | break; |
2168 | case 2: | |
79ed0416 | 2169 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2170 | break; |
2171 | case 4: | |
79ed0416 | 2172 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2173 | break; |
1ec9b909 AK |
2174 | default: abort(); |
2175 | } | |
66b9b43c | 2176 | return res; |
6658ffb8 PB |
2177 | } |
2178 | ||
1ec9b909 | 2179 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2180 | .read_with_attrs = watch_mem_read, |
2181 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2182 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2183 | }; |
6658ffb8 | 2184 | |
f25a49e0 PM |
2185 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2186 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2187 | { |
acc9d80b | 2188 | subpage_t *subpage = opaque; |
ff6cff75 | 2189 | uint8_t buf[8]; |
5c9eb028 | 2190 | MemTxResult res; |
791af8c8 | 2191 | |
db7b5426 | 2192 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2193 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2194 | subpage, len, addr); |
db7b5426 | 2195 | #endif |
5c9eb028 PM |
2196 | res = address_space_read(subpage->as, addr + subpage->base, |
2197 | attrs, buf, len); | |
2198 | if (res) { | |
2199 | return res; | |
f25a49e0 | 2200 | } |
acc9d80b JK |
2201 | switch (len) { |
2202 | case 1: | |
f25a49e0 PM |
2203 | *data = ldub_p(buf); |
2204 | return MEMTX_OK; | |
acc9d80b | 2205 | case 2: |
f25a49e0 PM |
2206 | *data = lduw_p(buf); |
2207 | return MEMTX_OK; | |
acc9d80b | 2208 | case 4: |
f25a49e0 PM |
2209 | *data = ldl_p(buf); |
2210 | return MEMTX_OK; | |
ff6cff75 | 2211 | case 8: |
f25a49e0 PM |
2212 | *data = ldq_p(buf); |
2213 | return MEMTX_OK; | |
acc9d80b JK |
2214 | default: |
2215 | abort(); | |
2216 | } | |
db7b5426 BS |
2217 | } |
2218 | ||
f25a49e0 PM |
2219 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2220 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2221 | { |
acc9d80b | 2222 | subpage_t *subpage = opaque; |
ff6cff75 | 2223 | uint8_t buf[8]; |
acc9d80b | 2224 | |
db7b5426 | 2225 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2226 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2227 | " value %"PRIx64"\n", |
2228 | __func__, subpage, len, addr, value); | |
db7b5426 | 2229 | #endif |
acc9d80b JK |
2230 | switch (len) { |
2231 | case 1: | |
2232 | stb_p(buf, value); | |
2233 | break; | |
2234 | case 2: | |
2235 | stw_p(buf, value); | |
2236 | break; | |
2237 | case 4: | |
2238 | stl_p(buf, value); | |
2239 | break; | |
ff6cff75 PB |
2240 | case 8: |
2241 | stq_p(buf, value); | |
2242 | break; | |
acc9d80b JK |
2243 | default: |
2244 | abort(); | |
2245 | } | |
5c9eb028 PM |
2246 | return address_space_write(subpage->as, addr + subpage->base, |
2247 | attrs, buf, len); | |
db7b5426 BS |
2248 | } |
2249 | ||
c353e4cc | 2250 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2251 | unsigned len, bool is_write) |
c353e4cc | 2252 | { |
acc9d80b | 2253 | subpage_t *subpage = opaque; |
c353e4cc | 2254 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2255 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2256 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2257 | #endif |
2258 | ||
acc9d80b | 2259 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2260 | len, is_write); |
c353e4cc PB |
2261 | } |
2262 | ||
70c68e44 | 2263 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2264 | .read_with_attrs = subpage_read, |
2265 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2266 | .impl.min_access_size = 1, |
2267 | .impl.max_access_size = 8, | |
2268 | .valid.min_access_size = 1, | |
2269 | .valid.max_access_size = 8, | |
c353e4cc | 2270 | .valid.accepts = subpage_accepts, |
70c68e44 | 2271 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2272 | }; |
2273 | ||
c227f099 | 2274 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2275 | uint16_t section) |
db7b5426 BS |
2276 | { |
2277 | int idx, eidx; | |
2278 | ||
2279 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2280 | return -1; | |
2281 | idx = SUBPAGE_IDX(start); | |
2282 | eidx = SUBPAGE_IDX(end); | |
2283 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2284 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2285 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2286 | #endif |
db7b5426 | 2287 | for (; idx <= eidx; idx++) { |
5312bd8b | 2288 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2289 | } |
2290 | ||
2291 | return 0; | |
2292 | } | |
2293 | ||
acc9d80b | 2294 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2295 | { |
c227f099 | 2296 | subpage_t *mmio; |
db7b5426 | 2297 | |
7267c094 | 2298 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2299 | |
acc9d80b | 2300 | mmio->as = as; |
1eec614b | 2301 | mmio->base = base; |
2c9b15ca | 2302 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2303 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2304 | mmio->iomem.subpage = true; |
db7b5426 | 2305 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2306 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2307 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2308 | #endif |
b41aac4f | 2309 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2310 | |
2311 | return mmio; | |
2312 | } | |
2313 | ||
a656e22f PC |
2314 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2315 | MemoryRegion *mr) | |
5312bd8b | 2316 | { |
a656e22f | 2317 | assert(as); |
5312bd8b | 2318 | MemoryRegionSection section = { |
a656e22f | 2319 | .address_space = as, |
5312bd8b AK |
2320 | .mr = mr, |
2321 | .offset_within_address_space = 0, | |
2322 | .offset_within_region = 0, | |
052e87b0 | 2323 | .size = int128_2_64(), |
5312bd8b AK |
2324 | }; |
2325 | ||
53cb28cb | 2326 | return phys_section_add(map, §ion); |
5312bd8b AK |
2327 | } |
2328 | ||
a54c87b6 | 2329 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2330 | { |
a54c87b6 PM |
2331 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2332 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2333 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2334 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2335 | |
2336 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2337 | } |
2338 | ||
e9179ce1 AK |
2339 | static void io_mem_init(void) |
2340 | { | |
1f6245e5 | 2341 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2342 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2343 | NULL, UINT64_MAX); |
2c9b15ca | 2344 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2345 | NULL, UINT64_MAX); |
2c9b15ca | 2346 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2347 | NULL, UINT64_MAX); |
e9179ce1 AK |
2348 | } |
2349 | ||
ac1970fb | 2350 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2351 | { |
2352 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2353 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2354 | uint16_t n; | |
2355 | ||
a656e22f | 2356 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2357 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2358 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2359 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2360 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2361 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2362 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2363 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2364 | |
9736e55b | 2365 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2366 | d->as = as; |
2367 | as->next_dispatch = d; | |
2368 | } | |
2369 | ||
79e2b9ae PB |
2370 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2371 | { | |
2372 | phys_sections_free(&d->map); | |
2373 | g_free(d); | |
2374 | } | |
2375 | ||
00752703 | 2376 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2377 | { |
89ae337a | 2378 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2379 | AddressSpaceDispatch *cur = as->dispatch; |
2380 | AddressSpaceDispatch *next = as->next_dispatch; | |
2381 | ||
53cb28cb | 2382 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2383 | |
79e2b9ae | 2384 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2385 | if (cur) { |
79e2b9ae | 2386 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2387 | } |
9affd6fc PB |
2388 | } |
2389 | ||
1d71148e | 2390 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2391 | { |
32857f4d PM |
2392 | CPUAddressSpace *cpuas; |
2393 | AddressSpaceDispatch *d; | |
117712c3 AK |
2394 | |
2395 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2396 | reset the modified entries */ | |
32857f4d PM |
2397 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2398 | cpu_reloading_memory_map(); | |
2399 | /* The CPU and TLB are protected by the iothread lock. | |
2400 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2401 | * may have split the RCU critical section. | |
2402 | */ | |
2403 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2404 | cpuas->memory_dispatch = d; | |
2405 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2406 | } |
2407 | ||
ac1970fb AK |
2408 | void address_space_init_dispatch(AddressSpace *as) |
2409 | { | |
00752703 | 2410 | as->dispatch = NULL; |
89ae337a | 2411 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2412 | .begin = mem_begin, |
00752703 | 2413 | .commit = mem_commit, |
ac1970fb AK |
2414 | .region_add = mem_add, |
2415 | .region_nop = mem_add, | |
2416 | .priority = 0, | |
2417 | }; | |
89ae337a | 2418 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2419 | } |
2420 | ||
6e48e8f9 PB |
2421 | void address_space_unregister(AddressSpace *as) |
2422 | { | |
2423 | memory_listener_unregister(&as->dispatch_listener); | |
2424 | } | |
2425 | ||
83f3c251 AK |
2426 | void address_space_destroy_dispatch(AddressSpace *as) |
2427 | { | |
2428 | AddressSpaceDispatch *d = as->dispatch; | |
2429 | ||
79e2b9ae PB |
2430 | atomic_rcu_set(&as->dispatch, NULL); |
2431 | if (d) { | |
2432 | call_rcu(d, address_space_dispatch_free, rcu); | |
2433 | } | |
83f3c251 AK |
2434 | } |
2435 | ||
62152b8a AK |
2436 | static void memory_map_init(void) |
2437 | { | |
7267c094 | 2438 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2439 | |
57271d63 | 2440 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2441 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2442 | |
7267c094 | 2443 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2444 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2445 | 65536); | |
7dca8043 | 2446 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2447 | } |
2448 | ||
2449 | MemoryRegion *get_system_memory(void) | |
2450 | { | |
2451 | return system_memory; | |
2452 | } | |
2453 | ||
309cb471 AK |
2454 | MemoryRegion *get_system_io(void) |
2455 | { | |
2456 | return system_io; | |
2457 | } | |
2458 | ||
e2eef170 PB |
2459 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2460 | ||
13eb76e0 FB |
2461 | /* physical memory access (slow version, mainly for debug) */ |
2462 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2463 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2464 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2465 | { |
2466 | int l, flags; | |
2467 | target_ulong page; | |
53a5960a | 2468 | void * p; |
13eb76e0 FB |
2469 | |
2470 | while (len > 0) { | |
2471 | page = addr & TARGET_PAGE_MASK; | |
2472 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2473 | if (l > len) | |
2474 | l = len; | |
2475 | flags = page_get_flags(page); | |
2476 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2477 | return -1; |
13eb76e0 FB |
2478 | if (is_write) { |
2479 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2480 | return -1; |
579a97f7 | 2481 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2482 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2483 | return -1; |
72fb7daa AJ |
2484 | memcpy(p, buf, l); |
2485 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2486 | } else { |
2487 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2488 | return -1; |
579a97f7 | 2489 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2490 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2491 | return -1; |
72fb7daa | 2492 | memcpy(buf, p, l); |
5b257578 | 2493 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2494 | } |
2495 | len -= l; | |
2496 | buf += l; | |
2497 | addr += l; | |
2498 | } | |
a68fe89c | 2499 | return 0; |
13eb76e0 | 2500 | } |
8df1cd07 | 2501 | |
13eb76e0 | 2502 | #else |
51d7a9eb | 2503 | |
845b6214 | 2504 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2505 | hwaddr length) |
51d7a9eb | 2506 | { |
e87f7778 PB |
2507 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2508 | /* No early return if dirty_log_mask is or becomes 0, because | |
2509 | * cpu_physical_memory_set_dirty_range will still call | |
2510 | * xen_modified_memory. | |
2511 | */ | |
2512 | if (dirty_log_mask) { | |
2513 | dirty_log_mask = | |
2514 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2515 | } | |
2516 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2517 | tb_invalidate_phys_range(addr, addr + length); | |
2518 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2519 | } |
e87f7778 | 2520 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2521 | } |
2522 | ||
23326164 | 2523 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2524 | { |
e1622f4b | 2525 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2526 | |
2527 | /* Regions are assumed to support 1-4 byte accesses unless | |
2528 | otherwise specified. */ | |
23326164 RH |
2529 | if (access_size_max == 0) { |
2530 | access_size_max = 4; | |
2531 | } | |
2532 | ||
2533 | /* Bound the maximum access by the alignment of the address. */ | |
2534 | if (!mr->ops->impl.unaligned) { | |
2535 | unsigned align_size_max = addr & -addr; | |
2536 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2537 | access_size_max = align_size_max; | |
2538 | } | |
82f2563f | 2539 | } |
23326164 RH |
2540 | |
2541 | /* Don't attempt accesses larger than the maximum. */ | |
2542 | if (l > access_size_max) { | |
2543 | l = access_size_max; | |
82f2563f | 2544 | } |
6554f5c0 | 2545 | l = pow2floor(l); |
23326164 RH |
2546 | |
2547 | return l; | |
82f2563f PB |
2548 | } |
2549 | ||
4840f10e | 2550 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2551 | { |
4840f10e JK |
2552 | bool unlocked = !qemu_mutex_iothread_locked(); |
2553 | bool release_lock = false; | |
2554 | ||
2555 | if (unlocked && mr->global_locking) { | |
2556 | qemu_mutex_lock_iothread(); | |
2557 | unlocked = false; | |
2558 | release_lock = true; | |
2559 | } | |
125b3806 | 2560 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2561 | if (unlocked) { |
2562 | qemu_mutex_lock_iothread(); | |
2563 | } | |
125b3806 | 2564 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2565 | if (unlocked) { |
2566 | qemu_mutex_unlock_iothread(); | |
2567 | } | |
125b3806 | 2568 | } |
4840f10e JK |
2569 | |
2570 | return release_lock; | |
125b3806 PB |
2571 | } |
2572 | ||
a203ac70 PB |
2573 | /* Called within RCU critical section. */ |
2574 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2575 | MemTxAttrs attrs, | |
2576 | const uint8_t *buf, | |
2577 | int len, hwaddr addr1, | |
2578 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2579 | { |
13eb76e0 | 2580 | uint8_t *ptr; |
791af8c8 | 2581 | uint64_t val; |
3b643495 | 2582 | MemTxResult result = MEMTX_OK; |
4840f10e | 2583 | bool release_lock = false; |
3b46e624 | 2584 | |
a203ac70 | 2585 | for (;;) { |
eb7eeb88 PB |
2586 | if (!memory_access_is_direct(mr, true)) { |
2587 | release_lock |= prepare_mmio_access(mr); | |
2588 | l = memory_access_size(mr, l, addr1); | |
2589 | /* XXX: could force current_cpu to NULL to avoid | |
2590 | potential bugs */ | |
2591 | switch (l) { | |
2592 | case 8: | |
2593 | /* 64 bit write access */ | |
2594 | val = ldq_p(buf); | |
2595 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2596 | attrs); | |
2597 | break; | |
2598 | case 4: | |
2599 | /* 32 bit write access */ | |
2600 | val = ldl_p(buf); | |
2601 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2602 | attrs); | |
2603 | break; | |
2604 | case 2: | |
2605 | /* 16 bit write access */ | |
2606 | val = lduw_p(buf); | |
2607 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2608 | attrs); | |
2609 | break; | |
2610 | case 1: | |
2611 | /* 8 bit write access */ | |
2612 | val = ldub_p(buf); | |
2613 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2614 | attrs); | |
2615 | break; | |
2616 | default: | |
2617 | abort(); | |
13eb76e0 FB |
2618 | } |
2619 | } else { | |
eb7eeb88 PB |
2620 | addr1 += memory_region_get_ram_addr(mr); |
2621 | /* RAM case */ | |
3655cb9c | 2622 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2623 | memcpy(ptr, buf, l); |
2624 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2625 | } |
4840f10e JK |
2626 | |
2627 | if (release_lock) { | |
2628 | qemu_mutex_unlock_iothread(); | |
2629 | release_lock = false; | |
2630 | } | |
2631 | ||
13eb76e0 FB |
2632 | len -= l; |
2633 | buf += l; | |
2634 | addr += l; | |
a203ac70 PB |
2635 | |
2636 | if (!len) { | |
2637 | break; | |
2638 | } | |
2639 | ||
2640 | l = len; | |
2641 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2642 | } |
fd8aaa76 | 2643 | |
3b643495 | 2644 | return result; |
13eb76e0 | 2645 | } |
8df1cd07 | 2646 | |
a203ac70 PB |
2647 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2648 | const uint8_t *buf, int len) | |
ac1970fb | 2649 | { |
eb7eeb88 | 2650 | hwaddr l; |
eb7eeb88 PB |
2651 | hwaddr addr1; |
2652 | MemoryRegion *mr; | |
2653 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2654 | |
a203ac70 PB |
2655 | if (len > 0) { |
2656 | rcu_read_lock(); | |
eb7eeb88 | 2657 | l = len; |
a203ac70 PB |
2658 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2659 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2660 | addr1, l, mr); | |
2661 | rcu_read_unlock(); | |
2662 | } | |
2663 | ||
2664 | return result; | |
2665 | } | |
2666 | ||
2667 | /* Called within RCU critical section. */ | |
2668 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2669 | MemTxAttrs attrs, uint8_t *buf, | |
2670 | int len, hwaddr addr1, hwaddr l, | |
2671 | MemoryRegion *mr) | |
2672 | { | |
2673 | uint8_t *ptr; | |
2674 | uint64_t val; | |
2675 | MemTxResult result = MEMTX_OK; | |
2676 | bool release_lock = false; | |
eb7eeb88 | 2677 | |
a203ac70 | 2678 | for (;;) { |
eb7eeb88 PB |
2679 | if (!memory_access_is_direct(mr, false)) { |
2680 | /* I/O case */ | |
2681 | release_lock |= prepare_mmio_access(mr); | |
2682 | l = memory_access_size(mr, l, addr1); | |
2683 | switch (l) { | |
2684 | case 8: | |
2685 | /* 64 bit read access */ | |
2686 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2687 | attrs); | |
2688 | stq_p(buf, val); | |
2689 | break; | |
2690 | case 4: | |
2691 | /* 32 bit read access */ | |
2692 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2693 | attrs); | |
2694 | stl_p(buf, val); | |
2695 | break; | |
2696 | case 2: | |
2697 | /* 16 bit read access */ | |
2698 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2699 | attrs); | |
2700 | stw_p(buf, val); | |
2701 | break; | |
2702 | case 1: | |
2703 | /* 8 bit read access */ | |
2704 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2705 | attrs); | |
2706 | stb_p(buf, val); | |
2707 | break; | |
2708 | default: | |
2709 | abort(); | |
2710 | } | |
2711 | } else { | |
2712 | /* RAM case */ | |
8e41fb63 FZ |
2713 | ptr = qemu_get_ram_ptr(mr->ram_block, |
2714 | memory_region_get_ram_addr(mr) + addr1); | |
eb7eeb88 PB |
2715 | memcpy(buf, ptr, l); |
2716 | } | |
2717 | ||
2718 | if (release_lock) { | |
2719 | qemu_mutex_unlock_iothread(); | |
2720 | release_lock = false; | |
2721 | } | |
2722 | ||
2723 | len -= l; | |
2724 | buf += l; | |
2725 | addr += l; | |
a203ac70 PB |
2726 | |
2727 | if (!len) { | |
2728 | break; | |
2729 | } | |
2730 | ||
2731 | l = len; | |
2732 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2733 | } | |
2734 | ||
2735 | return result; | |
2736 | } | |
2737 | ||
3cc8f884 PB |
2738 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2739 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2740 | { |
2741 | hwaddr l; | |
2742 | hwaddr addr1; | |
2743 | MemoryRegion *mr; | |
2744 | MemTxResult result = MEMTX_OK; | |
2745 | ||
2746 | if (len > 0) { | |
2747 | rcu_read_lock(); | |
2748 | l = len; | |
2749 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2750 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2751 | addr1, l, mr); | |
2752 | rcu_read_unlock(); | |
eb7eeb88 | 2753 | } |
eb7eeb88 PB |
2754 | |
2755 | return result; | |
ac1970fb AK |
2756 | } |
2757 | ||
eb7eeb88 PB |
2758 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2759 | uint8_t *buf, int len, bool is_write) | |
2760 | { | |
2761 | if (is_write) { | |
2762 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2763 | } else { | |
2764 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2765 | } | |
2766 | } | |
ac1970fb | 2767 | |
a8170e5e | 2768 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2769 | int len, int is_write) |
2770 | { | |
5c9eb028 PM |
2771 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2772 | buf, len, is_write); | |
ac1970fb AK |
2773 | } |
2774 | ||
582b55a9 AG |
2775 | enum write_rom_type { |
2776 | WRITE_DATA, | |
2777 | FLUSH_CACHE, | |
2778 | }; | |
2779 | ||
2a221651 | 2780 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2781 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2782 | { |
149f54b5 | 2783 | hwaddr l; |
d0ecd2aa | 2784 | uint8_t *ptr; |
149f54b5 | 2785 | hwaddr addr1; |
5c8a00ce | 2786 | MemoryRegion *mr; |
3b46e624 | 2787 | |
41063e1e | 2788 | rcu_read_lock(); |
d0ecd2aa | 2789 | while (len > 0) { |
149f54b5 | 2790 | l = len; |
2a221651 | 2791 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2792 | |
5c8a00ce PB |
2793 | if (!(memory_region_is_ram(mr) || |
2794 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2795 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2796 | } else { |
5c8a00ce | 2797 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2798 | /* ROM/RAM case */ |
3655cb9c | 2799 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2800 | switch (type) { |
2801 | case WRITE_DATA: | |
2802 | memcpy(ptr, buf, l); | |
845b6214 | 2803 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2804 | break; |
2805 | case FLUSH_CACHE: | |
2806 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2807 | break; | |
2808 | } | |
d0ecd2aa FB |
2809 | } |
2810 | len -= l; | |
2811 | buf += l; | |
2812 | addr += l; | |
2813 | } | |
41063e1e | 2814 | rcu_read_unlock(); |
d0ecd2aa FB |
2815 | } |
2816 | ||
582b55a9 | 2817 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2818 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2819 | const uint8_t *buf, int len) |
2820 | { | |
2a221651 | 2821 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2822 | } |
2823 | ||
2824 | void cpu_flush_icache_range(hwaddr start, int len) | |
2825 | { | |
2826 | /* | |
2827 | * This function should do the same thing as an icache flush that was | |
2828 | * triggered from within the guest. For TCG we are always cache coherent, | |
2829 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2830 | * the host's instruction cache at least. | |
2831 | */ | |
2832 | if (tcg_enabled()) { | |
2833 | return; | |
2834 | } | |
2835 | ||
2a221651 EI |
2836 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2837 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2838 | } |
2839 | ||
6d16c2f8 | 2840 | typedef struct { |
d3e71559 | 2841 | MemoryRegion *mr; |
6d16c2f8 | 2842 | void *buffer; |
a8170e5e AK |
2843 | hwaddr addr; |
2844 | hwaddr len; | |
c2cba0ff | 2845 | bool in_use; |
6d16c2f8 AL |
2846 | } BounceBuffer; |
2847 | ||
2848 | static BounceBuffer bounce; | |
2849 | ||
ba223c29 | 2850 | typedef struct MapClient { |
e95205e1 | 2851 | QEMUBH *bh; |
72cf2d4f | 2852 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2853 | } MapClient; |
2854 | ||
38e047b5 | 2855 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2856 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2857 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2858 | |
e95205e1 FZ |
2859 | static void cpu_unregister_map_client_do(MapClient *client) |
2860 | { | |
2861 | QLIST_REMOVE(client, link); | |
2862 | g_free(client); | |
2863 | } | |
2864 | ||
33b6c2ed FZ |
2865 | static void cpu_notify_map_clients_locked(void) |
2866 | { | |
2867 | MapClient *client; | |
2868 | ||
2869 | while (!QLIST_EMPTY(&map_client_list)) { | |
2870 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2871 | qemu_bh_schedule(client->bh); |
2872 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2873 | } |
2874 | } | |
2875 | ||
e95205e1 | 2876 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2877 | { |
7267c094 | 2878 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2879 | |
38e047b5 | 2880 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2881 | client->bh = bh; |
72cf2d4f | 2882 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2883 | if (!atomic_read(&bounce.in_use)) { |
2884 | cpu_notify_map_clients_locked(); | |
2885 | } | |
38e047b5 | 2886 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2887 | } |
2888 | ||
38e047b5 | 2889 | void cpu_exec_init_all(void) |
ba223c29 | 2890 | { |
38e047b5 | 2891 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2892 | io_mem_init(); |
680a4783 | 2893 | memory_map_init(); |
38e047b5 | 2894 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2895 | } |
2896 | ||
e95205e1 | 2897 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2898 | { |
2899 | MapClient *client; | |
2900 | ||
e95205e1 FZ |
2901 | qemu_mutex_lock(&map_client_list_lock); |
2902 | QLIST_FOREACH(client, &map_client_list, link) { | |
2903 | if (client->bh == bh) { | |
2904 | cpu_unregister_map_client_do(client); | |
2905 | break; | |
2906 | } | |
ba223c29 | 2907 | } |
e95205e1 | 2908 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2909 | } |
2910 | ||
2911 | static void cpu_notify_map_clients(void) | |
2912 | { | |
38e047b5 | 2913 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2914 | cpu_notify_map_clients_locked(); |
38e047b5 | 2915 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2916 | } |
2917 | ||
51644ab7 PB |
2918 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2919 | { | |
5c8a00ce | 2920 | MemoryRegion *mr; |
51644ab7 PB |
2921 | hwaddr l, xlat; |
2922 | ||
41063e1e | 2923 | rcu_read_lock(); |
51644ab7 PB |
2924 | while (len > 0) { |
2925 | l = len; | |
5c8a00ce PB |
2926 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2927 | if (!memory_access_is_direct(mr, is_write)) { | |
2928 | l = memory_access_size(mr, l, addr); | |
2929 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2930 | return false; |
2931 | } | |
2932 | } | |
2933 | ||
2934 | len -= l; | |
2935 | addr += l; | |
2936 | } | |
41063e1e | 2937 | rcu_read_unlock(); |
51644ab7 PB |
2938 | return true; |
2939 | } | |
2940 | ||
6d16c2f8 AL |
2941 | /* Map a physical memory region into a host virtual address. |
2942 | * May map a subset of the requested range, given by and returned in *plen. | |
2943 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2944 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2945 | * Use cpu_register_map_client() to know when retrying the map operation is |
2946 | * likely to succeed. | |
6d16c2f8 | 2947 | */ |
ac1970fb | 2948 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2949 | hwaddr addr, |
2950 | hwaddr *plen, | |
ac1970fb | 2951 | bool is_write) |
6d16c2f8 | 2952 | { |
a8170e5e | 2953 | hwaddr len = *plen; |
e3127ae0 PB |
2954 | hwaddr done = 0; |
2955 | hwaddr l, xlat, base; | |
2956 | MemoryRegion *mr, *this_mr; | |
2957 | ram_addr_t raddr; | |
e81bcda5 | 2958 | void *ptr; |
6d16c2f8 | 2959 | |
e3127ae0 PB |
2960 | if (len == 0) { |
2961 | return NULL; | |
2962 | } | |
38bee5dc | 2963 | |
e3127ae0 | 2964 | l = len; |
41063e1e | 2965 | rcu_read_lock(); |
e3127ae0 | 2966 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2967 | |
e3127ae0 | 2968 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2969 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2970 | rcu_read_unlock(); |
e3127ae0 | 2971 | return NULL; |
6d16c2f8 | 2972 | } |
e85d9db5 KW |
2973 | /* Avoid unbounded allocations */ |
2974 | l = MIN(l, TARGET_PAGE_SIZE); | |
2975 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2976 | bounce.addr = addr; |
2977 | bounce.len = l; | |
d3e71559 PB |
2978 | |
2979 | memory_region_ref(mr); | |
2980 | bounce.mr = mr; | |
e3127ae0 | 2981 | if (!is_write) { |
5c9eb028 PM |
2982 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2983 | bounce.buffer, l); | |
8ab934f9 | 2984 | } |
6d16c2f8 | 2985 | |
41063e1e | 2986 | rcu_read_unlock(); |
e3127ae0 PB |
2987 | *plen = l; |
2988 | return bounce.buffer; | |
2989 | } | |
2990 | ||
2991 | base = xlat; | |
2992 | raddr = memory_region_get_ram_addr(mr); | |
2993 | ||
2994 | for (;;) { | |
6d16c2f8 AL |
2995 | len -= l; |
2996 | addr += l; | |
e3127ae0 PB |
2997 | done += l; |
2998 | if (len == 0) { | |
2999 | break; | |
3000 | } | |
3001 | ||
3002 | l = len; | |
3003 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
3004 | if (this_mr != mr || xlat != base + done) { | |
3005 | break; | |
3006 | } | |
6d16c2f8 | 3007 | } |
e3127ae0 | 3008 | |
d3e71559 | 3009 | memory_region_ref(mr); |
e3127ae0 | 3010 | *plen = done; |
3655cb9c | 3011 | ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen); |
e81bcda5 PB |
3012 | rcu_read_unlock(); |
3013 | ||
3014 | return ptr; | |
6d16c2f8 AL |
3015 | } |
3016 | ||
ac1970fb | 3017 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3018 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3019 | * the amount of memory that was actually read or written by the caller. | |
3020 | */ | |
a8170e5e AK |
3021 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3022 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3023 | { |
3024 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3025 | MemoryRegion *mr; |
3026 | ram_addr_t addr1; | |
3027 | ||
3028 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
3029 | assert(mr != NULL); | |
6d16c2f8 | 3030 | if (is_write) { |
845b6214 | 3031 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3032 | } |
868bb33f | 3033 | if (xen_enabled()) { |
e41d7c69 | 3034 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3035 | } |
d3e71559 | 3036 | memory_region_unref(mr); |
6d16c2f8 AL |
3037 | return; |
3038 | } | |
3039 | if (is_write) { | |
5c9eb028 PM |
3040 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3041 | bounce.buffer, access_len); | |
6d16c2f8 | 3042 | } |
f8a83245 | 3043 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3044 | bounce.buffer = NULL; |
d3e71559 | 3045 | memory_region_unref(bounce.mr); |
c2cba0ff | 3046 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3047 | cpu_notify_map_clients(); |
6d16c2f8 | 3048 | } |
d0ecd2aa | 3049 | |
a8170e5e AK |
3050 | void *cpu_physical_memory_map(hwaddr addr, |
3051 | hwaddr *plen, | |
ac1970fb AK |
3052 | int is_write) |
3053 | { | |
3054 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3055 | } | |
3056 | ||
a8170e5e AK |
3057 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3058 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3059 | { |
3060 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3061 | } | |
3062 | ||
8df1cd07 | 3063 | /* warning: addr must be aligned */ |
50013115 PM |
3064 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3065 | MemTxAttrs attrs, | |
3066 | MemTxResult *result, | |
3067 | enum device_endian endian) | |
8df1cd07 | 3068 | { |
8df1cd07 | 3069 | uint8_t *ptr; |
791af8c8 | 3070 | uint64_t val; |
5c8a00ce | 3071 | MemoryRegion *mr; |
149f54b5 PB |
3072 | hwaddr l = 4; |
3073 | hwaddr addr1; | |
50013115 | 3074 | MemTxResult r; |
4840f10e | 3075 | bool release_lock = false; |
8df1cd07 | 3076 | |
41063e1e | 3077 | rcu_read_lock(); |
fdfba1a2 | 3078 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3079 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3080 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3081 | |
8df1cd07 | 3082 | /* I/O case */ |
50013115 | 3083 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3084 | #if defined(TARGET_WORDS_BIGENDIAN) |
3085 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3086 | val = bswap32(val); | |
3087 | } | |
3088 | #else | |
3089 | if (endian == DEVICE_BIG_ENDIAN) { | |
3090 | val = bswap32(val); | |
3091 | } | |
3092 | #endif | |
8df1cd07 FB |
3093 | } else { |
3094 | /* RAM case */ | |
3655cb9c GA |
3095 | ptr = qemu_get_ram_ptr(mr->ram_block, |
3096 | (memory_region_get_ram_addr(mr) | |
06ef3525 | 3097 | & TARGET_PAGE_MASK) |
149f54b5 | 3098 | + addr1); |
1e78bcc1 AG |
3099 | switch (endian) { |
3100 | case DEVICE_LITTLE_ENDIAN: | |
3101 | val = ldl_le_p(ptr); | |
3102 | break; | |
3103 | case DEVICE_BIG_ENDIAN: | |
3104 | val = ldl_be_p(ptr); | |
3105 | break; | |
3106 | default: | |
3107 | val = ldl_p(ptr); | |
3108 | break; | |
3109 | } | |
50013115 PM |
3110 | r = MEMTX_OK; |
3111 | } | |
3112 | if (result) { | |
3113 | *result = r; | |
8df1cd07 | 3114 | } |
4840f10e JK |
3115 | if (release_lock) { |
3116 | qemu_mutex_unlock_iothread(); | |
3117 | } | |
41063e1e | 3118 | rcu_read_unlock(); |
8df1cd07 FB |
3119 | return val; |
3120 | } | |
3121 | ||
50013115 PM |
3122 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3123 | MemTxAttrs attrs, MemTxResult *result) | |
3124 | { | |
3125 | return address_space_ldl_internal(as, addr, attrs, result, | |
3126 | DEVICE_NATIVE_ENDIAN); | |
3127 | } | |
3128 | ||
3129 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3130 | MemTxAttrs attrs, MemTxResult *result) | |
3131 | { | |
3132 | return address_space_ldl_internal(as, addr, attrs, result, | |
3133 | DEVICE_LITTLE_ENDIAN); | |
3134 | } | |
3135 | ||
3136 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3137 | MemTxAttrs attrs, MemTxResult *result) | |
3138 | { | |
3139 | return address_space_ldl_internal(as, addr, attrs, result, | |
3140 | DEVICE_BIG_ENDIAN); | |
3141 | } | |
3142 | ||
fdfba1a2 | 3143 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3144 | { |
50013115 | 3145 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3146 | } |
3147 | ||
fdfba1a2 | 3148 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3149 | { |
50013115 | 3150 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3151 | } |
3152 | ||
fdfba1a2 | 3153 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3154 | { |
50013115 | 3155 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3156 | } |
3157 | ||
84b7b8e7 | 3158 | /* warning: addr must be aligned */ |
50013115 PM |
3159 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3160 | MemTxAttrs attrs, | |
3161 | MemTxResult *result, | |
3162 | enum device_endian endian) | |
84b7b8e7 | 3163 | { |
84b7b8e7 FB |
3164 | uint8_t *ptr; |
3165 | uint64_t val; | |
5c8a00ce | 3166 | MemoryRegion *mr; |
149f54b5 PB |
3167 | hwaddr l = 8; |
3168 | hwaddr addr1; | |
50013115 | 3169 | MemTxResult r; |
4840f10e | 3170 | bool release_lock = false; |
84b7b8e7 | 3171 | |
41063e1e | 3172 | rcu_read_lock(); |
2c17449b | 3173 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3174 | false); |
3175 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3176 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3177 | |
84b7b8e7 | 3178 | /* I/O case */ |
50013115 | 3179 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3180 | #if defined(TARGET_WORDS_BIGENDIAN) |
3181 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3182 | val = bswap64(val); | |
3183 | } | |
3184 | #else | |
3185 | if (endian == DEVICE_BIG_ENDIAN) { | |
3186 | val = bswap64(val); | |
3187 | } | |
84b7b8e7 FB |
3188 | #endif |
3189 | } else { | |
3190 | /* RAM case */ | |
3655cb9c GA |
3191 | ptr = qemu_get_ram_ptr(mr->ram_block, |
3192 | (memory_region_get_ram_addr(mr) | |
06ef3525 | 3193 | & TARGET_PAGE_MASK) |
149f54b5 | 3194 | + addr1); |
1e78bcc1 AG |
3195 | switch (endian) { |
3196 | case DEVICE_LITTLE_ENDIAN: | |
3197 | val = ldq_le_p(ptr); | |
3198 | break; | |
3199 | case DEVICE_BIG_ENDIAN: | |
3200 | val = ldq_be_p(ptr); | |
3201 | break; | |
3202 | default: | |
3203 | val = ldq_p(ptr); | |
3204 | break; | |
3205 | } | |
50013115 PM |
3206 | r = MEMTX_OK; |
3207 | } | |
3208 | if (result) { | |
3209 | *result = r; | |
84b7b8e7 | 3210 | } |
4840f10e JK |
3211 | if (release_lock) { |
3212 | qemu_mutex_unlock_iothread(); | |
3213 | } | |
41063e1e | 3214 | rcu_read_unlock(); |
84b7b8e7 FB |
3215 | return val; |
3216 | } | |
3217 | ||
50013115 PM |
3218 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3219 | MemTxAttrs attrs, MemTxResult *result) | |
3220 | { | |
3221 | return address_space_ldq_internal(as, addr, attrs, result, | |
3222 | DEVICE_NATIVE_ENDIAN); | |
3223 | } | |
3224 | ||
3225 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3226 | MemTxAttrs attrs, MemTxResult *result) | |
3227 | { | |
3228 | return address_space_ldq_internal(as, addr, attrs, result, | |
3229 | DEVICE_LITTLE_ENDIAN); | |
3230 | } | |
3231 | ||
3232 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3233 | MemTxAttrs attrs, MemTxResult *result) | |
3234 | { | |
3235 | return address_space_ldq_internal(as, addr, attrs, result, | |
3236 | DEVICE_BIG_ENDIAN); | |
3237 | } | |
3238 | ||
2c17449b | 3239 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3240 | { |
50013115 | 3241 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3242 | } |
3243 | ||
2c17449b | 3244 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3245 | { |
50013115 | 3246 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3247 | } |
3248 | ||
2c17449b | 3249 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3250 | { |
50013115 | 3251 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3252 | } |
3253 | ||
aab33094 | 3254 | /* XXX: optimize */ |
50013115 PM |
3255 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3256 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3257 | { |
3258 | uint8_t val; | |
50013115 PM |
3259 | MemTxResult r; |
3260 | ||
3261 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3262 | if (result) { | |
3263 | *result = r; | |
3264 | } | |
aab33094 FB |
3265 | return val; |
3266 | } | |
3267 | ||
50013115 PM |
3268 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3269 | { | |
3270 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3271 | } | |
3272 | ||
733f0b02 | 3273 | /* warning: addr must be aligned */ |
50013115 PM |
3274 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3275 | hwaddr addr, | |
3276 | MemTxAttrs attrs, | |
3277 | MemTxResult *result, | |
3278 | enum device_endian endian) | |
aab33094 | 3279 | { |
733f0b02 MT |
3280 | uint8_t *ptr; |
3281 | uint64_t val; | |
5c8a00ce | 3282 | MemoryRegion *mr; |
149f54b5 PB |
3283 | hwaddr l = 2; |
3284 | hwaddr addr1; | |
50013115 | 3285 | MemTxResult r; |
4840f10e | 3286 | bool release_lock = false; |
733f0b02 | 3287 | |
41063e1e | 3288 | rcu_read_lock(); |
41701aa4 | 3289 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3290 | false); |
3291 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3292 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3293 | |
733f0b02 | 3294 | /* I/O case */ |
50013115 | 3295 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3296 | #if defined(TARGET_WORDS_BIGENDIAN) |
3297 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3298 | val = bswap16(val); | |
3299 | } | |
3300 | #else | |
3301 | if (endian == DEVICE_BIG_ENDIAN) { | |
3302 | val = bswap16(val); | |
3303 | } | |
3304 | #endif | |
733f0b02 MT |
3305 | } else { |
3306 | /* RAM case */ | |
3655cb9c GA |
3307 | ptr = qemu_get_ram_ptr(mr->ram_block, |
3308 | (memory_region_get_ram_addr(mr) | |
06ef3525 | 3309 | & TARGET_PAGE_MASK) |
149f54b5 | 3310 | + addr1); |
1e78bcc1 AG |
3311 | switch (endian) { |
3312 | case DEVICE_LITTLE_ENDIAN: | |
3313 | val = lduw_le_p(ptr); | |
3314 | break; | |
3315 | case DEVICE_BIG_ENDIAN: | |
3316 | val = lduw_be_p(ptr); | |
3317 | break; | |
3318 | default: | |
3319 | val = lduw_p(ptr); | |
3320 | break; | |
3321 | } | |
50013115 PM |
3322 | r = MEMTX_OK; |
3323 | } | |
3324 | if (result) { | |
3325 | *result = r; | |
733f0b02 | 3326 | } |
4840f10e JK |
3327 | if (release_lock) { |
3328 | qemu_mutex_unlock_iothread(); | |
3329 | } | |
41063e1e | 3330 | rcu_read_unlock(); |
733f0b02 | 3331 | return val; |
aab33094 FB |
3332 | } |
3333 | ||
50013115 PM |
3334 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3335 | MemTxAttrs attrs, MemTxResult *result) | |
3336 | { | |
3337 | return address_space_lduw_internal(as, addr, attrs, result, | |
3338 | DEVICE_NATIVE_ENDIAN); | |
3339 | } | |
3340 | ||
3341 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3342 | MemTxAttrs attrs, MemTxResult *result) | |
3343 | { | |
3344 | return address_space_lduw_internal(as, addr, attrs, result, | |
3345 | DEVICE_LITTLE_ENDIAN); | |
3346 | } | |
3347 | ||
3348 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3349 | MemTxAttrs attrs, MemTxResult *result) | |
3350 | { | |
3351 | return address_space_lduw_internal(as, addr, attrs, result, | |
3352 | DEVICE_BIG_ENDIAN); | |
3353 | } | |
3354 | ||
41701aa4 | 3355 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3356 | { |
50013115 | 3357 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3358 | } |
3359 | ||
41701aa4 | 3360 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3361 | { |
50013115 | 3362 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3363 | } |
3364 | ||
41701aa4 | 3365 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3366 | { |
50013115 | 3367 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3368 | } |
3369 | ||
8df1cd07 FB |
3370 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3371 | and the code inside is not invalidated. It is useful if the dirty | |
3372 | bits are used to track modified PTEs */ | |
50013115 PM |
3373 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3374 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3375 | { |
8df1cd07 | 3376 | uint8_t *ptr; |
5c8a00ce | 3377 | MemoryRegion *mr; |
149f54b5 PB |
3378 | hwaddr l = 4; |
3379 | hwaddr addr1; | |
50013115 | 3380 | MemTxResult r; |
845b6214 | 3381 | uint8_t dirty_log_mask; |
4840f10e | 3382 | bool release_lock = false; |
8df1cd07 | 3383 | |
41063e1e | 3384 | rcu_read_lock(); |
2198a121 | 3385 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3386 | true); |
3387 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3388 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3389 | |
50013115 | 3390 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3391 | } else { |
5c8a00ce | 3392 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
3655cb9c | 3393 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3394 | stl_p(ptr, val); |
74576198 | 3395 | |
845b6214 PB |
3396 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3397 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3398 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3399 | r = MEMTX_OK; |
3400 | } | |
3401 | if (result) { | |
3402 | *result = r; | |
8df1cd07 | 3403 | } |
4840f10e JK |
3404 | if (release_lock) { |
3405 | qemu_mutex_unlock_iothread(); | |
3406 | } | |
41063e1e | 3407 | rcu_read_unlock(); |
8df1cd07 FB |
3408 | } |
3409 | ||
50013115 PM |
3410 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3411 | { | |
3412 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3413 | } | |
3414 | ||
8df1cd07 | 3415 | /* warning: addr must be aligned */ |
50013115 PM |
3416 | static inline void address_space_stl_internal(AddressSpace *as, |
3417 | hwaddr addr, uint32_t val, | |
3418 | MemTxAttrs attrs, | |
3419 | MemTxResult *result, | |
3420 | enum device_endian endian) | |
8df1cd07 | 3421 | { |
8df1cd07 | 3422 | uint8_t *ptr; |
5c8a00ce | 3423 | MemoryRegion *mr; |
149f54b5 PB |
3424 | hwaddr l = 4; |
3425 | hwaddr addr1; | |
50013115 | 3426 | MemTxResult r; |
4840f10e | 3427 | bool release_lock = false; |
8df1cd07 | 3428 | |
41063e1e | 3429 | rcu_read_lock(); |
ab1da857 | 3430 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3431 | true); |
3432 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3433 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3434 | |
1e78bcc1 AG |
3435 | #if defined(TARGET_WORDS_BIGENDIAN) |
3436 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3437 | val = bswap32(val); | |
3438 | } | |
3439 | #else | |
3440 | if (endian == DEVICE_BIG_ENDIAN) { | |
3441 | val = bswap32(val); | |
3442 | } | |
3443 | #endif | |
50013115 | 3444 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3445 | } else { |
8df1cd07 | 3446 | /* RAM case */ |
5c8a00ce | 3447 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
3655cb9c | 3448 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3449 | switch (endian) { |
3450 | case DEVICE_LITTLE_ENDIAN: | |
3451 | stl_le_p(ptr, val); | |
3452 | break; | |
3453 | case DEVICE_BIG_ENDIAN: | |
3454 | stl_be_p(ptr, val); | |
3455 | break; | |
3456 | default: | |
3457 | stl_p(ptr, val); | |
3458 | break; | |
3459 | } | |
845b6214 | 3460 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3461 | r = MEMTX_OK; |
3462 | } | |
3463 | if (result) { | |
3464 | *result = r; | |
8df1cd07 | 3465 | } |
4840f10e JK |
3466 | if (release_lock) { |
3467 | qemu_mutex_unlock_iothread(); | |
3468 | } | |
41063e1e | 3469 | rcu_read_unlock(); |
8df1cd07 FB |
3470 | } |
3471 | ||
50013115 PM |
3472 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3473 | MemTxAttrs attrs, MemTxResult *result) | |
3474 | { | |
3475 | address_space_stl_internal(as, addr, val, attrs, result, | |
3476 | DEVICE_NATIVE_ENDIAN); | |
3477 | } | |
3478 | ||
3479 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3480 | MemTxAttrs attrs, MemTxResult *result) | |
3481 | { | |
3482 | address_space_stl_internal(as, addr, val, attrs, result, | |
3483 | DEVICE_LITTLE_ENDIAN); | |
3484 | } | |
3485 | ||
3486 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3487 | MemTxAttrs attrs, MemTxResult *result) | |
3488 | { | |
3489 | address_space_stl_internal(as, addr, val, attrs, result, | |
3490 | DEVICE_BIG_ENDIAN); | |
3491 | } | |
3492 | ||
ab1da857 | 3493 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3494 | { |
50013115 | 3495 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3496 | } |
3497 | ||
ab1da857 | 3498 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3499 | { |
50013115 | 3500 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3501 | } |
3502 | ||
ab1da857 | 3503 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3504 | { |
50013115 | 3505 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3506 | } |
3507 | ||
aab33094 | 3508 | /* XXX: optimize */ |
50013115 PM |
3509 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3510 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3511 | { |
3512 | uint8_t v = val; | |
50013115 PM |
3513 | MemTxResult r; |
3514 | ||
3515 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3516 | if (result) { | |
3517 | *result = r; | |
3518 | } | |
3519 | } | |
3520 | ||
3521 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3522 | { | |
3523 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3524 | } |
3525 | ||
733f0b02 | 3526 | /* warning: addr must be aligned */ |
50013115 PM |
3527 | static inline void address_space_stw_internal(AddressSpace *as, |
3528 | hwaddr addr, uint32_t val, | |
3529 | MemTxAttrs attrs, | |
3530 | MemTxResult *result, | |
3531 | enum device_endian endian) | |
aab33094 | 3532 | { |
733f0b02 | 3533 | uint8_t *ptr; |
5c8a00ce | 3534 | MemoryRegion *mr; |
149f54b5 PB |
3535 | hwaddr l = 2; |
3536 | hwaddr addr1; | |
50013115 | 3537 | MemTxResult r; |
4840f10e | 3538 | bool release_lock = false; |
733f0b02 | 3539 | |
41063e1e | 3540 | rcu_read_lock(); |
5ce5944d | 3541 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3542 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3543 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3544 | |
1e78bcc1 AG |
3545 | #if defined(TARGET_WORDS_BIGENDIAN) |
3546 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3547 | val = bswap16(val); | |
3548 | } | |
3549 | #else | |
3550 | if (endian == DEVICE_BIG_ENDIAN) { | |
3551 | val = bswap16(val); | |
3552 | } | |
3553 | #endif | |
50013115 | 3554 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3555 | } else { |
733f0b02 | 3556 | /* RAM case */ |
5c8a00ce | 3557 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
3655cb9c | 3558 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3559 | switch (endian) { |
3560 | case DEVICE_LITTLE_ENDIAN: | |
3561 | stw_le_p(ptr, val); | |
3562 | break; | |
3563 | case DEVICE_BIG_ENDIAN: | |
3564 | stw_be_p(ptr, val); | |
3565 | break; | |
3566 | default: | |
3567 | stw_p(ptr, val); | |
3568 | break; | |
3569 | } | |
845b6214 | 3570 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3571 | r = MEMTX_OK; |
3572 | } | |
3573 | if (result) { | |
3574 | *result = r; | |
733f0b02 | 3575 | } |
4840f10e JK |
3576 | if (release_lock) { |
3577 | qemu_mutex_unlock_iothread(); | |
3578 | } | |
41063e1e | 3579 | rcu_read_unlock(); |
aab33094 FB |
3580 | } |
3581 | ||
50013115 PM |
3582 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3583 | MemTxAttrs attrs, MemTxResult *result) | |
3584 | { | |
3585 | address_space_stw_internal(as, addr, val, attrs, result, | |
3586 | DEVICE_NATIVE_ENDIAN); | |
3587 | } | |
3588 | ||
3589 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3590 | MemTxAttrs attrs, MemTxResult *result) | |
3591 | { | |
3592 | address_space_stw_internal(as, addr, val, attrs, result, | |
3593 | DEVICE_LITTLE_ENDIAN); | |
3594 | } | |
3595 | ||
3596 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3597 | MemTxAttrs attrs, MemTxResult *result) | |
3598 | { | |
3599 | address_space_stw_internal(as, addr, val, attrs, result, | |
3600 | DEVICE_BIG_ENDIAN); | |
3601 | } | |
3602 | ||
5ce5944d | 3603 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3604 | { |
50013115 | 3605 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3606 | } |
3607 | ||
5ce5944d | 3608 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3609 | { |
50013115 | 3610 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3611 | } |
3612 | ||
5ce5944d | 3613 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3614 | { |
50013115 | 3615 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3616 | } |
3617 | ||
aab33094 | 3618 | /* XXX: optimize */ |
50013115 PM |
3619 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3620 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3621 | { |
50013115 | 3622 | MemTxResult r; |
aab33094 | 3623 | val = tswap64(val); |
50013115 PM |
3624 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3625 | if (result) { | |
3626 | *result = r; | |
3627 | } | |
aab33094 FB |
3628 | } |
3629 | ||
50013115 PM |
3630 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3631 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3632 | { |
50013115 | 3633 | MemTxResult r; |
1e78bcc1 | 3634 | val = cpu_to_le64(val); |
50013115 PM |
3635 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3636 | if (result) { | |
3637 | *result = r; | |
3638 | } | |
3639 | } | |
3640 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3641 | MemTxAttrs attrs, MemTxResult *result) | |
3642 | { | |
3643 | MemTxResult r; | |
3644 | val = cpu_to_be64(val); | |
3645 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3646 | if (result) { | |
3647 | *result = r; | |
3648 | } | |
3649 | } | |
3650 | ||
3651 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3652 | { | |
3653 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3654 | } | |
3655 | ||
3656 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3657 | { | |
3658 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3659 | } |
3660 | ||
f606604f | 3661 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3662 | { |
50013115 | 3663 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3664 | } |
3665 | ||
5e2972fd | 3666 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3667 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3668 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3669 | { |
3670 | int l; | |
a8170e5e | 3671 | hwaddr phys_addr; |
9b3c35e0 | 3672 | target_ulong page; |
13eb76e0 FB |
3673 | |
3674 | while (len > 0) { | |
5232e4c7 PM |
3675 | int asidx; |
3676 | MemTxAttrs attrs; | |
3677 | ||
13eb76e0 | 3678 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3679 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3680 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3681 | /* if no physical page mapped, return an error */ |
3682 | if (phys_addr == -1) | |
3683 | return -1; | |
3684 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3685 | if (l > len) | |
3686 | l = len; | |
5e2972fd | 3687 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3688 | if (is_write) { |
5232e4c7 PM |
3689 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3690 | phys_addr, buf, l); | |
2e38847b | 3691 | } else { |
5232e4c7 PM |
3692 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3693 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3694 | buf, l, 0); |
2e38847b | 3695 | } |
13eb76e0 FB |
3696 | len -= l; |
3697 | buf += l; | |
3698 | addr += l; | |
3699 | } | |
3700 | return 0; | |
3701 | } | |
038629a6 DDAG |
3702 | |
3703 | /* | |
3704 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3705 | * target independent. | |
3706 | */ | |
3707 | size_t qemu_target_page_bits(void) | |
3708 | { | |
3709 | return TARGET_PAGE_BITS; | |
3710 | } | |
3711 | ||
a68fe89c | 3712 | #endif |
13eb76e0 | 3713 | |
8e4a424b BS |
3714 | /* |
3715 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3716 | * it's running on a big endian machine. Don't do this at home kids! | |
3717 | */ | |
98ed8ecf GK |
3718 | bool target_words_bigendian(void); |
3719 | bool target_words_bigendian(void) | |
8e4a424b BS |
3720 | { |
3721 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3722 | return true; | |
3723 | #else | |
3724 | return false; | |
3725 | #endif | |
3726 | } | |
3727 | ||
76f35538 | 3728 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3729 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3730 | { |
5c8a00ce | 3731 | MemoryRegion*mr; |
149f54b5 | 3732 | hwaddr l = 1; |
41063e1e | 3733 | bool res; |
76f35538 | 3734 | |
41063e1e | 3735 | rcu_read_lock(); |
5c8a00ce PB |
3736 | mr = address_space_translate(&address_space_memory, |
3737 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3738 | |
41063e1e PB |
3739 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3740 | rcu_read_unlock(); | |
3741 | return res; | |
76f35538 | 3742 | } |
bd2fa51f | 3743 | |
e3807054 | 3744 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3745 | { |
3746 | RAMBlock *block; | |
e3807054 | 3747 | int ret = 0; |
bd2fa51f | 3748 | |
0dc3f44a MD |
3749 | rcu_read_lock(); |
3750 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3751 | ret = func(block->idstr, block->host, block->offset, |
3752 | block->used_length, opaque); | |
3753 | if (ret) { | |
3754 | break; | |
3755 | } | |
bd2fa51f | 3756 | } |
0dc3f44a | 3757 | rcu_read_unlock(); |
e3807054 | 3758 | return ret; |
bd2fa51f | 3759 | } |
ec3f8c99 | 3760 | #endif |