]>
Commit | Line | Data |
---|---|---|
56e93d26 JQ |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
76cc7b58 JQ |
5 | * Copyright (c) 2011-2015 Red Hat Inc |
6 | * | |
7 | * Authors: | |
8 | * Juan Quintela <[email protected]> | |
56e93d26 JQ |
9 | * |
10 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
11 | * of this software and associated documentation files (the "Software"), to deal | |
12 | * in the Software without restriction, including without limitation the rights | |
13 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
14 | * copies of the Software, and to permit persons to whom the Software is | |
15 | * furnished to do so, subject to the following conditions: | |
16 | * | |
17 | * The above copyright notice and this permission notice shall be included in | |
18 | * all copies or substantial portions of the Software. | |
19 | * | |
20 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
21 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
23 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
24 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
25 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
26 | * THE SOFTWARE. | |
27 | */ | |
e688df6b | 28 | |
1393a485 | 29 | #include "qemu/osdep.h" |
f348b6d1 | 30 | #include "qemu/cutils.h" |
56e93d26 JQ |
31 | #include "qemu/bitops.h" |
32 | #include "qemu/bitmap.h" | |
7205c9ec | 33 | #include "qemu/main-loop.h" |
709e3fe8 | 34 | #include "xbzrle.h" |
7b1e1a22 | 35 | #include "ram.h" |
6666c96a | 36 | #include "migration.h" |
f2a8f0a6 | 37 | #include "migration/register.h" |
7b1e1a22 | 38 | #include "migration/misc.h" |
08a0aee1 | 39 | #include "qemu-file.h" |
be07b0ac | 40 | #include "postcopy-ram.h" |
53d37d36 | 41 | #include "page_cache.h" |
56e93d26 | 42 | #include "qemu/error-report.h" |
e688df6b | 43 | #include "qapi/error.h" |
ab7cbb0b | 44 | #include "qapi/qapi-types-migration.h" |
9af23989 | 45 | #include "qapi/qapi-events-migration.h" |
8acabf69 | 46 | #include "qapi/qmp/qerror.h" |
56e93d26 | 47 | #include "trace.h" |
56e93d26 | 48 | #include "exec/ram_addr.h" |
f9494614 | 49 | #include "exec/target_page.h" |
56e93d26 | 50 | #include "qemu/rcu_queue.h" |
a91246c9 | 51 | #include "migration/colo.h" |
53d37d36 | 52 | #include "block.h" |
b0c3cf94 | 53 | #include "sysemu/cpu-throttle.h" |
edd090c7 | 54 | #include "savevm.h" |
b9ee2f7d | 55 | #include "qemu/iov.h" |
d32ca5ad | 56 | #include "multifd.h" |
278e2f55 AG |
57 | #include "sysemu/runstate.h" |
58 | ||
e5fdf920 LS |
59 | #include "hw/boards.h" /* for machine_dump_guest_core() */ |
60 | ||
278e2f55 AG |
61 | #if defined(__linux__) |
62 | #include "qemu/userfaultfd.h" | |
63 | #endif /* defined(__linux__) */ | |
56e93d26 | 64 | |
56e93d26 JQ |
65 | /***********************************************************/ |
66 | /* ram save/restore */ | |
67 | ||
bb890ed5 JQ |
68 | /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it |
69 | * worked for pages that where filled with the same char. We switched | |
70 | * it to only search for the zero value. And to avoid confusion with | |
71 | * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. | |
72 | */ | |
73 | ||
56e93d26 | 74 | #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ |
bb890ed5 | 75 | #define RAM_SAVE_FLAG_ZERO 0x02 |
56e93d26 JQ |
76 | #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
77 | #define RAM_SAVE_FLAG_PAGE 0x08 | |
78 | #define RAM_SAVE_FLAG_EOS 0x10 | |
79 | #define RAM_SAVE_FLAG_CONTINUE 0x20 | |
80 | #define RAM_SAVE_FLAG_XBZRLE 0x40 | |
81 | /* 0x80 is reserved in migration.h start with 0x100 next */ | |
82 | #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 | |
83 | ||
9360447d JQ |
84 | XBZRLECacheStats xbzrle_counters; |
85 | ||
56e93d26 JQ |
86 | /* struct contains XBZRLE cache and a static page |
87 | used by the compression */ | |
88 | static struct { | |
89 | /* buffer used for XBZRLE encoding */ | |
90 | uint8_t *encoded_buf; | |
91 | /* buffer for storing page content */ | |
92 | uint8_t *current_buf; | |
93 | /* Cache for XBZRLE, Protected by lock. */ | |
94 | PageCache *cache; | |
95 | QemuMutex lock; | |
c00e0928 JQ |
96 | /* it will store a page full of zeros */ |
97 | uint8_t *zero_target_page; | |
f265e0e4 JQ |
98 | /* buffer used for XBZRLE decoding */ |
99 | uint8_t *decoded_buf; | |
56e93d26 JQ |
100 | } XBZRLE; |
101 | ||
56e93d26 JQ |
102 | static void XBZRLE_cache_lock(void) |
103 | { | |
f4c51a6b | 104 | if (migrate_use_xbzrle()) { |
56e93d26 | 105 | qemu_mutex_lock(&XBZRLE.lock); |
f4c51a6b | 106 | } |
56e93d26 JQ |
107 | } |
108 | ||
109 | static void XBZRLE_cache_unlock(void) | |
110 | { | |
f4c51a6b | 111 | if (migrate_use_xbzrle()) { |
56e93d26 | 112 | qemu_mutex_unlock(&XBZRLE.lock); |
f4c51a6b | 113 | } |
56e93d26 JQ |
114 | } |
115 | ||
3d0684b2 JQ |
116 | /** |
117 | * xbzrle_cache_resize: resize the xbzrle cache | |
118 | * | |
cbde7be9 | 119 | * This function is called from migrate_params_apply in main |
3d0684b2 JQ |
120 | * thread, possibly while a migration is in progress. A running |
121 | * migration may be using the cache and might finish during this call, | |
122 | * hence changes to the cache are protected by XBZRLE.lock(). | |
123 | * | |
c9dede2d | 124 | * Returns 0 for success or -1 for error |
3d0684b2 JQ |
125 | * |
126 | * @new_size: new cache size | |
8acabf69 | 127 | * @errp: set *errp if the check failed, with reason |
56e93d26 | 128 | */ |
8b9407a0 | 129 | int xbzrle_cache_resize(uint64_t new_size, Error **errp) |
56e93d26 JQ |
130 | { |
131 | PageCache *new_cache; | |
c9dede2d | 132 | int64_t ret = 0; |
56e93d26 | 133 | |
8acabf69 JQ |
134 | /* Check for truncation */ |
135 | if (new_size != (size_t)new_size) { | |
136 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", | |
137 | "exceeding address space"); | |
138 | return -1; | |
139 | } | |
140 | ||
2a313e5c JQ |
141 | if (new_size == migrate_xbzrle_cache_size()) { |
142 | /* nothing to do */ | |
c9dede2d | 143 | return 0; |
2a313e5c JQ |
144 | } |
145 | ||
56e93d26 JQ |
146 | XBZRLE_cache_lock(); |
147 | ||
148 | if (XBZRLE.cache != NULL) { | |
80f8dfde | 149 | new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); |
56e93d26 | 150 | if (!new_cache) { |
56e93d26 JQ |
151 | ret = -1; |
152 | goto out; | |
153 | } | |
154 | ||
155 | cache_fini(XBZRLE.cache); | |
156 | XBZRLE.cache = new_cache; | |
157 | } | |
56e93d26 JQ |
158 | out: |
159 | XBZRLE_cache_unlock(); | |
160 | return ret; | |
161 | } | |
162 | ||
3ded54b1 | 163 | bool ramblock_is_ignored(RAMBlock *block) |
fbd162e6 YK |
164 | { |
165 | return !qemu_ram_is_migratable(block) || | |
166 | (migrate_ignore_shared() && qemu_ram_is_shared(block)); | |
167 | } | |
168 | ||
343f632c DDAG |
169 | #undef RAMBLOCK_FOREACH |
170 | ||
fbd162e6 YK |
171 | int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) |
172 | { | |
173 | RAMBlock *block; | |
174 | int ret = 0; | |
175 | ||
89ac5a1d DDAG |
176 | RCU_READ_LOCK_GUARD(); |
177 | ||
fbd162e6 YK |
178 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
179 | ret = func(block, opaque); | |
180 | if (ret) { | |
181 | break; | |
182 | } | |
183 | } | |
fbd162e6 YK |
184 | return ret; |
185 | } | |
186 | ||
f9494614 AP |
187 | static void ramblock_recv_map_init(void) |
188 | { | |
189 | RAMBlock *rb; | |
190 | ||
fbd162e6 | 191 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
f9494614 AP |
192 | assert(!rb->receivedmap); |
193 | rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); | |
194 | } | |
195 | } | |
196 | ||
197 | int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) | |
198 | { | |
199 | return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), | |
200 | rb->receivedmap); | |
201 | } | |
202 | ||
1cba9f6e DDAG |
203 | bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) |
204 | { | |
205 | return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); | |
206 | } | |
207 | ||
f9494614 AP |
208 | void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) |
209 | { | |
210 | set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); | |
211 | } | |
212 | ||
213 | void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, | |
214 | size_t nr) | |
215 | { | |
216 | bitmap_set_atomic(rb->receivedmap, | |
217 | ramblock_recv_bitmap_offset(host_addr, rb), | |
218 | nr); | |
219 | } | |
220 | ||
a335debb PX |
221 | #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) |
222 | ||
223 | /* | |
224 | * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). | |
225 | * | |
226 | * Returns >0 if success with sent bytes, or <0 if error. | |
227 | */ | |
228 | int64_t ramblock_recv_bitmap_send(QEMUFile *file, | |
229 | const char *block_name) | |
230 | { | |
231 | RAMBlock *block = qemu_ram_block_by_name(block_name); | |
232 | unsigned long *le_bitmap, nbits; | |
233 | uint64_t size; | |
234 | ||
235 | if (!block) { | |
236 | error_report("%s: invalid block name: %s", __func__, block_name); | |
237 | return -1; | |
238 | } | |
239 | ||
898ba906 | 240 | nbits = block->postcopy_length >> TARGET_PAGE_BITS; |
a335debb PX |
241 | |
242 | /* | |
243 | * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit | |
244 | * machines we may need 4 more bytes for padding (see below | |
245 | * comment). So extend it a bit before hand. | |
246 | */ | |
247 | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | |
248 | ||
249 | /* | |
250 | * Always use little endian when sending the bitmap. This is | |
251 | * required that when source and destination VMs are not using the | |
3a4452d8 | 252 | * same endianness. (Note: big endian won't work.) |
a335debb PX |
253 | */ |
254 | bitmap_to_le(le_bitmap, block->receivedmap, nbits); | |
255 | ||
256 | /* Size of the bitmap, in bytes */ | |
a725ef9f | 257 | size = DIV_ROUND_UP(nbits, 8); |
a335debb PX |
258 | |
259 | /* | |
260 | * size is always aligned to 8 bytes for 64bit machines, but it | |
261 | * may not be true for 32bit machines. We need this padding to | |
262 | * make sure the migration can survive even between 32bit and | |
263 | * 64bit machines. | |
264 | */ | |
265 | size = ROUND_UP(size, 8); | |
266 | ||
267 | qemu_put_be64(file, size); | |
268 | qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); | |
269 | /* | |
270 | * Mark as an end, in case the middle part is screwed up due to | |
3a4452d8 | 271 | * some "mysterious" reason. |
a335debb PX |
272 | */ |
273 | qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); | |
274 | qemu_fflush(file); | |
275 | ||
bf269906 | 276 | g_free(le_bitmap); |
a335debb PX |
277 | |
278 | if (qemu_file_get_error(file)) { | |
279 | return qemu_file_get_error(file); | |
280 | } | |
281 | ||
282 | return size + sizeof(size); | |
283 | } | |
284 | ||
ec481c6c JQ |
285 | /* |
286 | * An outstanding page request, on the source, having been received | |
287 | * and queued | |
288 | */ | |
289 | struct RAMSrcPageRequest { | |
290 | RAMBlock *rb; | |
291 | hwaddr offset; | |
292 | hwaddr len; | |
293 | ||
294 | QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; | |
295 | }; | |
296 | ||
6f37bb8b JQ |
297 | /* State of RAM for migration */ |
298 | struct RAMState { | |
204b88b8 JQ |
299 | /* QEMUFile used for this migration */ |
300 | QEMUFile *f; | |
278e2f55 AG |
301 | /* UFFD file descriptor, used in 'write-tracking' migration */ |
302 | int uffdio_fd; | |
6f37bb8b JQ |
303 | /* Last block that we have visited searching for dirty pages */ |
304 | RAMBlock *last_seen_block; | |
305 | /* Last block from where we have sent data */ | |
306 | RAMBlock *last_sent_block; | |
269ace29 JQ |
307 | /* Last dirty target page we have sent */ |
308 | ram_addr_t last_page; | |
6f37bb8b JQ |
309 | /* last ram version we have seen */ |
310 | uint32_t last_version; | |
8d820d6f JQ |
311 | /* How many times we have dirty too many pages */ |
312 | int dirty_rate_high_cnt; | |
f664da80 JQ |
313 | /* these variables are used for bitmap sync */ |
314 | /* last time we did a full bitmap_sync */ | |
315 | int64_t time_last_bitmap_sync; | |
eac74159 | 316 | /* bytes transferred at start_time */ |
c4bdf0cf | 317 | uint64_t bytes_xfer_prev; |
a66cd90c | 318 | /* number of dirty pages since start_time */ |
68908ed6 | 319 | uint64_t num_dirty_pages_period; |
b5833fde JQ |
320 | /* xbzrle misses since the beginning of the period */ |
321 | uint64_t xbzrle_cache_miss_prev; | |
e460a4b1 WW |
322 | /* Amount of xbzrle pages since the beginning of the period */ |
323 | uint64_t xbzrle_pages_prev; | |
324 | /* Amount of xbzrle encoded bytes since the beginning of the period */ | |
325 | uint64_t xbzrle_bytes_prev; | |
1a373522 DH |
326 | /* Start using XBZRLE (e.g., after the first round). */ |
327 | bool xbzrle_enabled; | |
05931ec5 JQ |
328 | /* Are we on the last stage of migration */ |
329 | bool last_stage; | |
76e03000 XG |
330 | /* compression statistics since the beginning of the period */ |
331 | /* amount of count that no free thread to compress data */ | |
332 | uint64_t compress_thread_busy_prev; | |
333 | /* amount bytes after compression */ | |
334 | uint64_t compressed_size_prev; | |
335 | /* amount of compressed pages */ | |
336 | uint64_t compress_pages_prev; | |
337 | ||
be8b02ed XG |
338 | /* total handled target pages at the beginning of period */ |
339 | uint64_t target_page_count_prev; | |
340 | /* total handled target pages since start */ | |
341 | uint64_t target_page_count; | |
9360447d | 342 | /* number of dirty bits in the bitmap */ |
2dfaf12e | 343 | uint64_t migration_dirty_pages; |
386a907b | 344 | /* Protects modification of the bitmap and migration dirty pages */ |
108cfae0 | 345 | QemuMutex bitmap_mutex; |
68a098f3 JQ |
346 | /* The RAMBlock used in the last src_page_requests */ |
347 | RAMBlock *last_req_rb; | |
ec481c6c JQ |
348 | /* Queue of outstanding page requests from the destination */ |
349 | QemuMutex src_page_req_mutex; | |
b58deb34 | 350 | QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; |
6f37bb8b JQ |
351 | }; |
352 | typedef struct RAMState RAMState; | |
353 | ||
53518d94 | 354 | static RAMState *ram_state; |
6f37bb8b | 355 | |
bd227060 WW |
356 | static NotifierWithReturnList precopy_notifier_list; |
357 | ||
a1fe28df PX |
358 | /* Whether postcopy has queued requests? */ |
359 | static bool postcopy_has_request(RAMState *rs) | |
360 | { | |
361 | return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); | |
362 | } | |
363 | ||
bd227060 WW |
364 | void precopy_infrastructure_init(void) |
365 | { | |
366 | notifier_with_return_list_init(&precopy_notifier_list); | |
367 | } | |
368 | ||
369 | void precopy_add_notifier(NotifierWithReturn *n) | |
370 | { | |
371 | notifier_with_return_list_add(&precopy_notifier_list, n); | |
372 | } | |
373 | ||
374 | void precopy_remove_notifier(NotifierWithReturn *n) | |
375 | { | |
376 | notifier_with_return_remove(n); | |
377 | } | |
378 | ||
379 | int precopy_notify(PrecopyNotifyReason reason, Error **errp) | |
380 | { | |
381 | PrecopyNotifyData pnd; | |
382 | pnd.reason = reason; | |
383 | pnd.errp = errp; | |
384 | ||
385 | return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); | |
386 | } | |
387 | ||
9edabd4d | 388 | uint64_t ram_bytes_remaining(void) |
2f4fde93 | 389 | { |
bae416e5 DDAG |
390 | return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : |
391 | 0; | |
2f4fde93 JQ |
392 | } |
393 | ||
9360447d | 394 | MigrationStats ram_counters; |
96506894 | 395 | |
4c2d0f6d DE |
396 | static void ram_transferred_add(uint64_t bytes) |
397 | { | |
ae680668 DE |
398 | if (runstate_is_running()) { |
399 | ram_counters.precopy_bytes += bytes; | |
400 | } else if (migration_in_postcopy()) { | |
401 | ram_counters.postcopy_bytes += bytes; | |
402 | } else { | |
403 | ram_counters.downtime_bytes += bytes; | |
404 | } | |
4c2d0f6d DE |
405 | ram_counters.transferred += bytes; |
406 | } | |
407 | ||
b8fb8cb7 DDAG |
408 | /* used by the search for pages to send */ |
409 | struct PageSearchStatus { | |
410 | /* Current block being searched */ | |
411 | RAMBlock *block; | |
a935e30f JQ |
412 | /* Current page to search from */ |
413 | unsigned long page; | |
b8fb8cb7 DDAG |
414 | /* Set once we wrap around */ |
415 | bool complete_round; | |
416 | }; | |
417 | typedef struct PageSearchStatus PageSearchStatus; | |
418 | ||
76e03000 XG |
419 | CompressionStats compression_counters; |
420 | ||
56e93d26 | 421 | struct CompressParam { |
56e93d26 | 422 | bool done; |
90e56fb4 | 423 | bool quit; |
5e5fdcff | 424 | bool zero_page; |
56e93d26 JQ |
425 | QEMUFile *file; |
426 | QemuMutex mutex; | |
427 | QemuCond cond; | |
428 | RAMBlock *block; | |
429 | ram_addr_t offset; | |
34ab9e97 XG |
430 | |
431 | /* internally used fields */ | |
dcaf446e | 432 | z_stream stream; |
34ab9e97 | 433 | uint8_t *originbuf; |
56e93d26 JQ |
434 | }; |
435 | typedef struct CompressParam CompressParam; | |
436 | ||
437 | struct DecompressParam { | |
73a8912b | 438 | bool done; |
90e56fb4 | 439 | bool quit; |
56e93d26 JQ |
440 | QemuMutex mutex; |
441 | QemuCond cond; | |
442 | void *des; | |
d341d9f3 | 443 | uint8_t *compbuf; |
56e93d26 | 444 | int len; |
797ca154 | 445 | z_stream stream; |
56e93d26 JQ |
446 | }; |
447 | typedef struct DecompressParam DecompressParam; | |
448 | ||
449 | static CompressParam *comp_param; | |
450 | static QemuThread *compress_threads; | |
451 | /* comp_done_cond is used to wake up the migration thread when | |
452 | * one of the compression threads has finished the compression. | |
453 | * comp_done_lock is used to co-work with comp_done_cond. | |
454 | */ | |
0d9f9a5c LL |
455 | static QemuMutex comp_done_lock; |
456 | static QemuCond comp_done_cond; | |
56e93d26 JQ |
457 | /* The empty QEMUFileOps will be used by file in CompressParam */ |
458 | static const QEMUFileOps empty_ops = { }; | |
459 | ||
34ab9e97 | 460 | static QEMUFile *decomp_file; |
56e93d26 JQ |
461 | static DecompressParam *decomp_param; |
462 | static QemuThread *decompress_threads; | |
73a8912b LL |
463 | static QemuMutex decomp_done_lock; |
464 | static QemuCond decomp_done_cond; | |
56e93d26 | 465 | |
5e5fdcff | 466 | static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
6ef3771c | 467 | ram_addr_t offset, uint8_t *source_buf); |
56e93d26 JQ |
468 | |
469 | static void *do_data_compress(void *opaque) | |
470 | { | |
471 | CompressParam *param = opaque; | |
a7a9a88f LL |
472 | RAMBlock *block; |
473 | ram_addr_t offset; | |
5e5fdcff | 474 | bool zero_page; |
56e93d26 | 475 | |
a7a9a88f | 476 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 477 | while (!param->quit) { |
a7a9a88f LL |
478 | if (param->block) { |
479 | block = param->block; | |
480 | offset = param->offset; | |
481 | param->block = NULL; | |
482 | qemu_mutex_unlock(¶m->mutex); | |
483 | ||
5e5fdcff XG |
484 | zero_page = do_compress_ram_page(param->file, ¶m->stream, |
485 | block, offset, param->originbuf); | |
a7a9a88f | 486 | |
0d9f9a5c | 487 | qemu_mutex_lock(&comp_done_lock); |
a7a9a88f | 488 | param->done = true; |
5e5fdcff | 489 | param->zero_page = zero_page; |
0d9f9a5c LL |
490 | qemu_cond_signal(&comp_done_cond); |
491 | qemu_mutex_unlock(&comp_done_lock); | |
a7a9a88f LL |
492 | |
493 | qemu_mutex_lock(¶m->mutex); | |
494 | } else { | |
56e93d26 JQ |
495 | qemu_cond_wait(¶m->cond, ¶m->mutex); |
496 | } | |
56e93d26 | 497 | } |
a7a9a88f | 498 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
499 | |
500 | return NULL; | |
501 | } | |
502 | ||
f0afa331 | 503 | static void compress_threads_save_cleanup(void) |
56e93d26 JQ |
504 | { |
505 | int i, thread_count; | |
506 | ||
05306935 | 507 | if (!migrate_use_compression() || !comp_param) { |
56e93d26 JQ |
508 | return; |
509 | } | |
05306935 | 510 | |
56e93d26 JQ |
511 | thread_count = migrate_compress_threads(); |
512 | for (i = 0; i < thread_count; i++) { | |
dcaf446e XG |
513 | /* |
514 | * we use it as a indicator which shows if the thread is | |
515 | * properly init'd or not | |
516 | */ | |
517 | if (!comp_param[i].file) { | |
518 | break; | |
519 | } | |
05306935 FL |
520 | |
521 | qemu_mutex_lock(&comp_param[i].mutex); | |
522 | comp_param[i].quit = true; | |
523 | qemu_cond_signal(&comp_param[i].cond); | |
524 | qemu_mutex_unlock(&comp_param[i].mutex); | |
525 | ||
56e93d26 | 526 | qemu_thread_join(compress_threads + i); |
56e93d26 JQ |
527 | qemu_mutex_destroy(&comp_param[i].mutex); |
528 | qemu_cond_destroy(&comp_param[i].cond); | |
dcaf446e | 529 | deflateEnd(&comp_param[i].stream); |
34ab9e97 | 530 | g_free(comp_param[i].originbuf); |
dcaf446e XG |
531 | qemu_fclose(comp_param[i].file); |
532 | comp_param[i].file = NULL; | |
56e93d26 | 533 | } |
0d9f9a5c LL |
534 | qemu_mutex_destroy(&comp_done_lock); |
535 | qemu_cond_destroy(&comp_done_cond); | |
56e93d26 JQ |
536 | g_free(compress_threads); |
537 | g_free(comp_param); | |
56e93d26 JQ |
538 | compress_threads = NULL; |
539 | comp_param = NULL; | |
56e93d26 JQ |
540 | } |
541 | ||
dcaf446e | 542 | static int compress_threads_save_setup(void) |
56e93d26 JQ |
543 | { |
544 | int i, thread_count; | |
545 | ||
546 | if (!migrate_use_compression()) { | |
dcaf446e | 547 | return 0; |
56e93d26 | 548 | } |
56e93d26 JQ |
549 | thread_count = migrate_compress_threads(); |
550 | compress_threads = g_new0(QemuThread, thread_count); | |
551 | comp_param = g_new0(CompressParam, thread_count); | |
0d9f9a5c LL |
552 | qemu_cond_init(&comp_done_cond); |
553 | qemu_mutex_init(&comp_done_lock); | |
56e93d26 | 554 | for (i = 0; i < thread_count; i++) { |
34ab9e97 XG |
555 | comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); |
556 | if (!comp_param[i].originbuf) { | |
557 | goto exit; | |
558 | } | |
559 | ||
dcaf446e XG |
560 | if (deflateInit(&comp_param[i].stream, |
561 | migrate_compress_level()) != Z_OK) { | |
34ab9e97 | 562 | g_free(comp_param[i].originbuf); |
dcaf446e XG |
563 | goto exit; |
564 | } | |
565 | ||
e110aa91 C |
566 | /* comp_param[i].file is just used as a dummy buffer to save data, |
567 | * set its ops to empty. | |
56e93d26 | 568 | */ |
c6ad5be7 | 569 | comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false); |
56e93d26 | 570 | comp_param[i].done = true; |
90e56fb4 | 571 | comp_param[i].quit = false; |
56e93d26 JQ |
572 | qemu_mutex_init(&comp_param[i].mutex); |
573 | qemu_cond_init(&comp_param[i].cond); | |
574 | qemu_thread_create(compress_threads + i, "compress", | |
575 | do_data_compress, comp_param + i, | |
576 | QEMU_THREAD_JOINABLE); | |
577 | } | |
dcaf446e XG |
578 | return 0; |
579 | ||
580 | exit: | |
581 | compress_threads_save_cleanup(); | |
582 | return -1; | |
56e93d26 JQ |
583 | } |
584 | ||
585 | /** | |
3d0684b2 | 586 | * save_page_header: write page header to wire |
56e93d26 JQ |
587 | * |
588 | * If this is the 1st block, it also writes the block identification | |
589 | * | |
3d0684b2 | 590 | * Returns the number of bytes written |
56e93d26 JQ |
591 | * |
592 | * @f: QEMUFile where to send the data | |
593 | * @block: block that contains the page we want to send | |
594 | * @offset: offset inside the block for the page | |
595 | * in the lower bits, it contains flags | |
596 | */ | |
2bf3aa85 JQ |
597 | static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, |
598 | ram_addr_t offset) | |
56e93d26 | 599 | { |
9f5f380b | 600 | size_t size, len; |
56e93d26 | 601 | |
24795694 JQ |
602 | if (block == rs->last_sent_block) { |
603 | offset |= RAM_SAVE_FLAG_CONTINUE; | |
604 | } | |
2bf3aa85 | 605 | qemu_put_be64(f, offset); |
56e93d26 JQ |
606 | size = 8; |
607 | ||
608 | if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { | |
9f5f380b | 609 | len = strlen(block->idstr); |
2bf3aa85 JQ |
610 | qemu_put_byte(f, len); |
611 | qemu_put_buffer(f, (uint8_t *)block->idstr, len); | |
9f5f380b | 612 | size += 1 + len; |
24795694 | 613 | rs->last_sent_block = block; |
56e93d26 JQ |
614 | } |
615 | return size; | |
616 | } | |
617 | ||
3d0684b2 | 618 | /** |
179a8080 | 619 | * mig_throttle_guest_down: throttle down the guest |
3d0684b2 JQ |
620 | * |
621 | * Reduce amount of guest cpu execution to hopefully slow down memory | |
622 | * writes. If guest dirty memory rate is reduced below the rate at | |
623 | * which we can transfer pages to the destination then we should be | |
624 | * able to complete migration. Some workloads dirty memory way too | |
625 | * fast and will not effectively converge, even with auto-converge. | |
070afca2 | 626 | */ |
cbbf8182 KZ |
627 | static void mig_throttle_guest_down(uint64_t bytes_dirty_period, |
628 | uint64_t bytes_dirty_threshold) | |
070afca2 JH |
629 | { |
630 | MigrationState *s = migrate_get_current(); | |
2594f56d | 631 | uint64_t pct_initial = s->parameters.cpu_throttle_initial; |
cbbf8182 KZ |
632 | uint64_t pct_increment = s->parameters.cpu_throttle_increment; |
633 | bool pct_tailslow = s->parameters.cpu_throttle_tailslow; | |
4cbc9c7f | 634 | int pct_max = s->parameters.max_cpu_throttle; |
070afca2 | 635 | |
cbbf8182 KZ |
636 | uint64_t throttle_now = cpu_throttle_get_percentage(); |
637 | uint64_t cpu_now, cpu_ideal, throttle_inc; | |
638 | ||
070afca2 JH |
639 | /* We have not started throttling yet. Let's start it. */ |
640 | if (!cpu_throttle_active()) { | |
641 | cpu_throttle_set(pct_initial); | |
642 | } else { | |
643 | /* Throttling already on, just increase the rate */ | |
cbbf8182 KZ |
644 | if (!pct_tailslow) { |
645 | throttle_inc = pct_increment; | |
646 | } else { | |
647 | /* Compute the ideal CPU percentage used by Guest, which may | |
648 | * make the dirty rate match the dirty rate threshold. */ | |
649 | cpu_now = 100 - throttle_now; | |
650 | cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / | |
651 | bytes_dirty_period); | |
652 | throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); | |
653 | } | |
654 | cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); | |
070afca2 JH |
655 | } |
656 | } | |
657 | ||
91fe9a8d RL |
658 | void mig_throttle_counter_reset(void) |
659 | { | |
660 | RAMState *rs = ram_state; | |
661 | ||
662 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
663 | rs->num_dirty_pages_period = 0; | |
664 | rs->bytes_xfer_prev = ram_counters.transferred; | |
665 | } | |
666 | ||
3d0684b2 JQ |
667 | /** |
668 | * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache | |
669 | * | |
6f37bb8b | 670 | * @rs: current RAM state |
3d0684b2 JQ |
671 | * @current_addr: address for the zero page |
672 | * | |
673 | * Update the xbzrle cache to reflect a page that's been sent as all 0. | |
56e93d26 JQ |
674 | * The important thing is that a stale (not-yet-0'd) page be replaced |
675 | * by the new data. | |
676 | * As a bonus, if the page wasn't in the cache it gets added so that | |
3d0684b2 | 677 | * when a small write is made into the 0'd page it gets XBZRLE sent. |
56e93d26 | 678 | */ |
6f37bb8b | 679 | static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) |
56e93d26 | 680 | { |
1a373522 | 681 | if (!rs->xbzrle_enabled) { |
56e93d26 JQ |
682 | return; |
683 | } | |
684 | ||
685 | /* We don't care if this fails to allocate a new cache page | |
686 | * as long as it updated an old one */ | |
c00e0928 | 687 | cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, |
9360447d | 688 | ram_counters.dirty_sync_count); |
56e93d26 JQ |
689 | } |
690 | ||
691 | #define ENCODING_FLAG_XBZRLE 0x1 | |
692 | ||
693 | /** | |
694 | * save_xbzrle_page: compress and send current page | |
695 | * | |
696 | * Returns: 1 means that we wrote the page | |
697 | * 0 means that page is identical to the one already sent | |
698 | * -1 means that xbzrle would be longer than normal | |
699 | * | |
5a987738 | 700 | * @rs: current RAM state |
3d0684b2 JQ |
701 | * @current_data: pointer to the address of the page contents |
702 | * @current_addr: addr of the page | |
56e93d26 JQ |
703 | * @block: block that contains the page we want to send |
704 | * @offset: offset inside the block for the page | |
56e93d26 | 705 | */ |
204b88b8 | 706 | static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, |
56e93d26 | 707 | ram_addr_t current_addr, RAMBlock *block, |
05931ec5 | 708 | ram_addr_t offset) |
56e93d26 JQ |
709 | { |
710 | int encoded_len = 0, bytes_xbzrle; | |
711 | uint8_t *prev_cached_page; | |
712 | ||
9360447d JQ |
713 | if (!cache_is_cached(XBZRLE.cache, current_addr, |
714 | ram_counters.dirty_sync_count)) { | |
715 | xbzrle_counters.cache_miss++; | |
05931ec5 | 716 | if (!rs->last_stage) { |
56e93d26 | 717 | if (cache_insert(XBZRLE.cache, current_addr, *current_data, |
9360447d | 718 | ram_counters.dirty_sync_count) == -1) { |
56e93d26 JQ |
719 | return -1; |
720 | } else { | |
721 | /* update *current_data when the page has been | |
722 | inserted into cache */ | |
723 | *current_data = get_cached_data(XBZRLE.cache, current_addr); | |
724 | } | |
725 | } | |
726 | return -1; | |
727 | } | |
728 | ||
e460a4b1 WW |
729 | /* |
730 | * Reaching here means the page has hit the xbzrle cache, no matter what | |
731 | * encoding result it is (normal encoding, overflow or skipping the page), | |
3a4452d8 | 732 | * count the page as encoded. This is used to calculate the encoding rate. |
e460a4b1 WW |
733 | * |
734 | * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, | |
735 | * 2nd page turns out to be skipped (i.e. no new bytes written to the | |
736 | * page), the overall encoding rate will be 8KB / 2KB = 4, which has the | |
737 | * skipped page included. In this way, the encoding rate can tell if the | |
738 | * guest page is good for xbzrle encoding. | |
739 | */ | |
740 | xbzrle_counters.pages++; | |
56e93d26 JQ |
741 | prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); |
742 | ||
743 | /* save current buffer into memory */ | |
744 | memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); | |
745 | ||
746 | /* XBZRLE encoding (if there is no overflow) */ | |
747 | encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, | |
748 | TARGET_PAGE_SIZE, XBZRLE.encoded_buf, | |
749 | TARGET_PAGE_SIZE); | |
ca353803 WY |
750 | |
751 | /* | |
752 | * Update the cache contents, so that it corresponds to the data | |
753 | * sent, in all cases except where we skip the page. | |
754 | */ | |
05931ec5 | 755 | if (!rs->last_stage && encoded_len != 0) { |
ca353803 WY |
756 | memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); |
757 | /* | |
758 | * In the case where we couldn't compress, ensure that the caller | |
759 | * sends the data from the cache, since the guest might have | |
760 | * changed the RAM since we copied it. | |
761 | */ | |
762 | *current_data = prev_cached_page; | |
763 | } | |
764 | ||
56e93d26 | 765 | if (encoded_len == 0) { |
55c4446b | 766 | trace_save_xbzrle_page_skipping(); |
56e93d26 JQ |
767 | return 0; |
768 | } else if (encoded_len == -1) { | |
55c4446b | 769 | trace_save_xbzrle_page_overflow(); |
9360447d | 770 | xbzrle_counters.overflow++; |
e460a4b1 | 771 | xbzrle_counters.bytes += TARGET_PAGE_SIZE; |
56e93d26 JQ |
772 | return -1; |
773 | } | |
774 | ||
56e93d26 | 775 | /* Send XBZRLE based compressed page */ |
2bf3aa85 | 776 | bytes_xbzrle = save_page_header(rs, rs->f, block, |
204b88b8 JQ |
777 | offset | RAM_SAVE_FLAG_XBZRLE); |
778 | qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); | |
779 | qemu_put_be16(rs->f, encoded_len); | |
780 | qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); | |
56e93d26 | 781 | bytes_xbzrle += encoded_len + 1 + 2; |
e460a4b1 WW |
782 | /* |
783 | * Like compressed_size (please see update_compress_thread_counts), | |
784 | * the xbzrle encoded bytes don't count the 8 byte header with | |
785 | * RAM_SAVE_FLAG_CONTINUE. | |
786 | */ | |
787 | xbzrle_counters.bytes += bytes_xbzrle - 8; | |
4c2d0f6d | 788 | ram_transferred_add(bytes_xbzrle); |
56e93d26 JQ |
789 | |
790 | return 1; | |
791 | } | |
792 | ||
3d0684b2 JQ |
793 | /** |
794 | * migration_bitmap_find_dirty: find the next dirty page from start | |
f3f491fc | 795 | * |
a5f7b1a6 | 796 | * Returns the page offset within memory region of the start of a dirty page |
3d0684b2 | 797 | * |
6f37bb8b | 798 | * @rs: current RAM state |
3d0684b2 | 799 | * @rb: RAMBlock where to search for dirty pages |
a935e30f | 800 | * @start: page where we start the search |
f3f491fc | 801 | */ |
56e93d26 | 802 | static inline |
a935e30f | 803 | unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, |
f20e2865 | 804 | unsigned long start) |
56e93d26 | 805 | { |
6b6712ef JQ |
806 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
807 | unsigned long *bitmap = rb->bmap; | |
56e93d26 | 808 | |
fbd162e6 | 809 | if (ramblock_is_ignored(rb)) { |
b895de50 CLG |
810 | return size; |
811 | } | |
812 | ||
1a373522 | 813 | return find_next_bit(bitmap, size, start); |
56e93d26 JQ |
814 | } |
815 | ||
1230a25f | 816 | static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, |
3143577d WW |
817 | unsigned long page) |
818 | { | |
819 | uint8_t shift; | |
820 | hwaddr size, start; | |
821 | ||
822 | if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { | |
823 | return; | |
824 | } | |
825 | ||
826 | shift = rb->clear_bmap_shift; | |
827 | /* | |
828 | * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this | |
829 | * can make things easier sometimes since then start address | |
830 | * of the small chunk will always be 64 pages aligned so the | |
831 | * bitmap will always be aligned to unsigned long. We should | |
832 | * even be able to remove this restriction but I'm simply | |
833 | * keeping it. | |
834 | */ | |
835 | assert(shift >= 6); | |
836 | ||
837 | size = 1ULL << (TARGET_PAGE_BITS + shift); | |
7648297d | 838 | start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); |
3143577d WW |
839 | trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); |
840 | memory_region_clear_dirty_bitmap(rb->mr, start, size); | |
841 | } | |
842 | ||
843 | static void | |
1230a25f | 844 | migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, |
3143577d WW |
845 | unsigned long start, |
846 | unsigned long npages) | |
847 | { | |
848 | unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; | |
849 | unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); | |
850 | unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); | |
851 | ||
852 | /* | |
853 | * Clear pages from start to start + npages - 1, so the end boundary is | |
854 | * exclusive. | |
855 | */ | |
856 | for (i = chunk_start; i < chunk_end; i += chunk_pages) { | |
1230a25f | 857 | migration_clear_memory_region_dirty_bitmap(rb, i); |
3143577d WW |
858 | } |
859 | } | |
860 | ||
a6a83cef RL |
861 | /* |
862 | * colo_bitmap_find_diry:find contiguous dirty pages from start | |
863 | * | |
864 | * Returns the page offset within memory region of the start of the contiguout | |
865 | * dirty page | |
866 | * | |
867 | * @rs: current RAM state | |
868 | * @rb: RAMBlock where to search for dirty pages | |
869 | * @start: page where we start the search | |
870 | * @num: the number of contiguous dirty pages | |
871 | */ | |
872 | static inline | |
873 | unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, | |
874 | unsigned long start, unsigned long *num) | |
875 | { | |
876 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; | |
877 | unsigned long *bitmap = rb->bmap; | |
878 | unsigned long first, next; | |
879 | ||
880 | *num = 0; | |
881 | ||
882 | if (ramblock_is_ignored(rb)) { | |
883 | return size; | |
884 | } | |
885 | ||
886 | first = find_next_bit(bitmap, size, start); | |
887 | if (first >= size) { | |
888 | return first; | |
889 | } | |
890 | next = find_next_zero_bit(bitmap, size, first + 1); | |
891 | assert(next >= first); | |
892 | *num = next - first; | |
893 | return first; | |
894 | } | |
895 | ||
06b10688 | 896 | static inline bool migration_bitmap_clear_dirty(RAMState *rs, |
f20e2865 JQ |
897 | RAMBlock *rb, |
898 | unsigned long page) | |
a82d593b DDAG |
899 | { |
900 | bool ret; | |
a82d593b | 901 | |
002cad6b PX |
902 | /* |
903 | * Clear dirty bitmap if needed. This _must_ be called before we | |
904 | * send any of the page in the chunk because we need to make sure | |
905 | * we can capture further page content changes when we sync dirty | |
906 | * log the next time. So as long as we are going to send any of | |
907 | * the page in the chunk we clear the remote dirty bitmap for all. | |
908 | * Clearing it earlier won't be a problem, but too late will. | |
909 | */ | |
1230a25f | 910 | migration_clear_memory_region_dirty_bitmap(rb, page); |
002cad6b | 911 | |
6b6712ef | 912 | ret = test_and_clear_bit(page, rb->bmap); |
a82d593b | 913 | if (ret) { |
0d8ec885 | 914 | rs->migration_dirty_pages--; |
a82d593b | 915 | } |
386a907b | 916 | |
a82d593b DDAG |
917 | return ret; |
918 | } | |
919 | ||
be39b4cd DH |
920 | static void dirty_bitmap_clear_section(MemoryRegionSection *section, |
921 | void *opaque) | |
922 | { | |
923 | const hwaddr offset = section->offset_within_region; | |
924 | const hwaddr size = int128_get64(section->size); | |
925 | const unsigned long start = offset >> TARGET_PAGE_BITS; | |
926 | const unsigned long npages = size >> TARGET_PAGE_BITS; | |
927 | RAMBlock *rb = section->mr->ram_block; | |
928 | uint64_t *cleared_bits = opaque; | |
929 | ||
930 | /* | |
931 | * We don't grab ram_state->bitmap_mutex because we expect to run | |
932 | * only when starting migration or during postcopy recovery where | |
933 | * we don't have concurrent access. | |
934 | */ | |
935 | if (!migration_in_postcopy() && !migrate_background_snapshot()) { | |
936 | migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); | |
937 | } | |
938 | *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); | |
939 | bitmap_clear(rb->bmap, start, npages); | |
940 | } | |
941 | ||
942 | /* | |
943 | * Exclude all dirty pages from migration that fall into a discarded range as | |
944 | * managed by a RamDiscardManager responsible for the mapped memory region of | |
945 | * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. | |
946 | * | |
947 | * Discarded pages ("logically unplugged") have undefined content and must | |
948 | * not get migrated, because even reading these pages for migration might | |
949 | * result in undesired behavior. | |
950 | * | |
951 | * Returns the number of cleared bits in the RAMBlock dirty bitmap. | |
952 | * | |
953 | * Note: The result is only stable while migrating (precopy/postcopy). | |
954 | */ | |
955 | static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) | |
956 | { | |
957 | uint64_t cleared_bits = 0; | |
958 | ||
959 | if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { | |
960 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
961 | MemoryRegionSection section = { | |
962 | .mr = rb->mr, | |
963 | .offset_within_region = 0, | |
964 | .size = int128_make64(qemu_ram_get_used_length(rb)), | |
965 | }; | |
966 | ||
967 | ram_discard_manager_replay_discarded(rdm, §ion, | |
968 | dirty_bitmap_clear_section, | |
969 | &cleared_bits); | |
970 | } | |
971 | return cleared_bits; | |
972 | } | |
973 | ||
9470c5e0 DH |
974 | /* |
975 | * Check if a host-page aligned page falls into a discarded range as managed by | |
976 | * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. | |
977 | * | |
978 | * Note: The result is only stable while migrating (precopy/postcopy). | |
979 | */ | |
980 | bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) | |
981 | { | |
982 | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | |
983 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
984 | MemoryRegionSection section = { | |
985 | .mr = rb->mr, | |
986 | .offset_within_region = start, | |
987 | .size = int128_make64(qemu_ram_pagesize(rb)), | |
988 | }; | |
989 | ||
990 | return !ram_discard_manager_is_populated(rdm, §ion); | |
991 | } | |
992 | return false; | |
993 | } | |
994 | ||
267691b6 | 995 | /* Called with RCU critical section */ |
7a3e9571 | 996 | static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) |
56e93d26 | 997 | { |
fb613580 KZ |
998 | uint64_t new_dirty_pages = |
999 | cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); | |
1000 | ||
1001 | rs->migration_dirty_pages += new_dirty_pages; | |
1002 | rs->num_dirty_pages_period += new_dirty_pages; | |
56e93d26 JQ |
1003 | } |
1004 | ||
3d0684b2 JQ |
1005 | /** |
1006 | * ram_pagesize_summary: calculate all the pagesizes of a VM | |
1007 | * | |
1008 | * Returns a summary bitmap of the page sizes of all RAMBlocks | |
1009 | * | |
1010 | * For VMs with just normal pages this is equivalent to the host page | |
1011 | * size. If it's got some huge pages then it's the OR of all the | |
1012 | * different page sizes. | |
e8ca1db2 DDAG |
1013 | */ |
1014 | uint64_t ram_pagesize_summary(void) | |
1015 | { | |
1016 | RAMBlock *block; | |
1017 | uint64_t summary = 0; | |
1018 | ||
fbd162e6 | 1019 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
e8ca1db2 DDAG |
1020 | summary |= block->page_size; |
1021 | } | |
1022 | ||
1023 | return summary; | |
1024 | } | |
1025 | ||
aecbfe9c XG |
1026 | uint64_t ram_get_total_transferred_pages(void) |
1027 | { | |
1028 | return ram_counters.normal + ram_counters.duplicate + | |
1029 | compression_counters.pages + xbzrle_counters.pages; | |
1030 | } | |
1031 | ||
b734035b XG |
1032 | static void migration_update_rates(RAMState *rs, int64_t end_time) |
1033 | { | |
be8b02ed | 1034 | uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; |
76e03000 | 1035 | double compressed_size; |
b734035b XG |
1036 | |
1037 | /* calculate period counters */ | |
1038 | ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 | |
1039 | / (end_time - rs->time_last_bitmap_sync); | |
1040 | ||
be8b02ed | 1041 | if (!page_count) { |
b734035b XG |
1042 | return; |
1043 | } | |
1044 | ||
1045 | if (migrate_use_xbzrle()) { | |
e460a4b1 WW |
1046 | double encoded_size, unencoded_size; |
1047 | ||
b734035b | 1048 | xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - |
be8b02ed | 1049 | rs->xbzrle_cache_miss_prev) / page_count; |
b734035b | 1050 | rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; |
e460a4b1 WW |
1051 | unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * |
1052 | TARGET_PAGE_SIZE; | |
1053 | encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; | |
92271402 | 1054 | if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { |
e460a4b1 | 1055 | xbzrle_counters.encoding_rate = 0; |
e460a4b1 WW |
1056 | } else { |
1057 | xbzrle_counters.encoding_rate = unencoded_size / encoded_size; | |
1058 | } | |
1059 | rs->xbzrle_pages_prev = xbzrle_counters.pages; | |
1060 | rs->xbzrle_bytes_prev = xbzrle_counters.bytes; | |
b734035b | 1061 | } |
76e03000 XG |
1062 | |
1063 | if (migrate_use_compression()) { | |
1064 | compression_counters.busy_rate = (double)(compression_counters.busy - | |
1065 | rs->compress_thread_busy_prev) / page_count; | |
1066 | rs->compress_thread_busy_prev = compression_counters.busy; | |
1067 | ||
1068 | compressed_size = compression_counters.compressed_size - | |
1069 | rs->compressed_size_prev; | |
1070 | if (compressed_size) { | |
1071 | double uncompressed_size = (compression_counters.pages - | |
1072 | rs->compress_pages_prev) * TARGET_PAGE_SIZE; | |
1073 | ||
1074 | /* Compression-Ratio = Uncompressed-size / Compressed-size */ | |
1075 | compression_counters.compression_rate = | |
1076 | uncompressed_size / compressed_size; | |
1077 | ||
1078 | rs->compress_pages_prev = compression_counters.pages; | |
1079 | rs->compressed_size_prev = compression_counters.compressed_size; | |
1080 | } | |
1081 | } | |
b734035b XG |
1082 | } |
1083 | ||
dc14a470 KZ |
1084 | static void migration_trigger_throttle(RAMState *rs) |
1085 | { | |
1086 | MigrationState *s = migrate_get_current(); | |
1087 | uint64_t threshold = s->parameters.throttle_trigger_threshold; | |
1088 | ||
1089 | uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev; | |
1090 | uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; | |
1091 | uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; | |
1092 | ||
1093 | /* During block migration the auto-converge logic incorrectly detects | |
1094 | * that ram migration makes no progress. Avoid this by disabling the | |
1095 | * throttling logic during the bulk phase of block migration. */ | |
1096 | if (migrate_auto_converge() && !blk_mig_bulk_active()) { | |
1097 | /* The following detection logic can be refined later. For now: | |
1098 | Check to see if the ratio between dirtied bytes and the approx. | |
1099 | amount of bytes that just got transferred since the last time | |
1100 | we were in this routine reaches the threshold. If that happens | |
1101 | twice, start or increase throttling. */ | |
1102 | ||
1103 | if ((bytes_dirty_period > bytes_dirty_threshold) && | |
1104 | (++rs->dirty_rate_high_cnt >= 2)) { | |
1105 | trace_migration_throttle(); | |
1106 | rs->dirty_rate_high_cnt = 0; | |
cbbf8182 KZ |
1107 | mig_throttle_guest_down(bytes_dirty_period, |
1108 | bytes_dirty_threshold); | |
dc14a470 KZ |
1109 | } |
1110 | } | |
1111 | } | |
1112 | ||
8d820d6f | 1113 | static void migration_bitmap_sync(RAMState *rs) |
56e93d26 JQ |
1114 | { |
1115 | RAMBlock *block; | |
56e93d26 | 1116 | int64_t end_time; |
56e93d26 | 1117 | |
9360447d | 1118 | ram_counters.dirty_sync_count++; |
56e93d26 | 1119 | |
f664da80 JQ |
1120 | if (!rs->time_last_bitmap_sync) { |
1121 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
56e93d26 JQ |
1122 | } |
1123 | ||
1124 | trace_migration_bitmap_sync_start(); | |
9c1f8f44 | 1125 | memory_global_dirty_log_sync(); |
56e93d26 | 1126 | |
108cfae0 | 1127 | qemu_mutex_lock(&rs->bitmap_mutex); |
89ac5a1d DDAG |
1128 | WITH_RCU_READ_LOCK_GUARD() { |
1129 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
1130 | ramblock_sync_dirty_bitmap(rs, block); | |
1131 | } | |
1132 | ram_counters.remaining = ram_bytes_remaining(); | |
56e93d26 | 1133 | } |
108cfae0 | 1134 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 | 1135 | |
9458a9a1 | 1136 | memory_global_after_dirty_log_sync(); |
a66cd90c | 1137 | trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); |
1ffb5dfd | 1138 | |
56e93d26 JQ |
1139 | end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
1140 | ||
1141 | /* more than 1 second = 1000 millisecons */ | |
f664da80 | 1142 | if (end_time > rs->time_last_bitmap_sync + 1000) { |
dc14a470 | 1143 | migration_trigger_throttle(rs); |
070afca2 | 1144 | |
b734035b XG |
1145 | migration_update_rates(rs, end_time); |
1146 | ||
be8b02ed | 1147 | rs->target_page_count_prev = rs->target_page_count; |
d693c6f1 FF |
1148 | |
1149 | /* reset period counters */ | |
f664da80 | 1150 | rs->time_last_bitmap_sync = end_time; |
a66cd90c | 1151 | rs->num_dirty_pages_period = 0; |
dc14a470 | 1152 | rs->bytes_xfer_prev = ram_counters.transferred; |
56e93d26 | 1153 | } |
4addcd4f | 1154 | if (migrate_use_events()) { |
3ab72385 | 1155 | qapi_event_send_migration_pass(ram_counters.dirty_sync_count); |
4addcd4f | 1156 | } |
56e93d26 JQ |
1157 | } |
1158 | ||
bd227060 WW |
1159 | static void migration_bitmap_sync_precopy(RAMState *rs) |
1160 | { | |
1161 | Error *local_err = NULL; | |
1162 | ||
1163 | /* | |
1164 | * The current notifier usage is just an optimization to migration, so we | |
1165 | * don't stop the normal migration process in the error case. | |
1166 | */ | |
1167 | if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { | |
1168 | error_report_err(local_err); | |
b4a1733c | 1169 | local_err = NULL; |
bd227060 WW |
1170 | } |
1171 | ||
1172 | migration_bitmap_sync(rs); | |
1173 | ||
1174 | if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { | |
1175 | error_report_err(local_err); | |
1176 | } | |
1177 | } | |
1178 | ||
47fe16ff JQ |
1179 | static void ram_release_page(const char *rbname, uint64_t offset) |
1180 | { | |
1181 | if (!migrate_release_ram() || !migration_in_postcopy()) { | |
1182 | return; | |
1183 | } | |
1184 | ||
1185 | ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); | |
1186 | } | |
1187 | ||
6c97ec5f XG |
1188 | /** |
1189 | * save_zero_page_to_file: send the zero page to the file | |
1190 | * | |
1191 | * Returns the size of data written to the file, 0 means the page is not | |
1192 | * a zero page | |
1193 | * | |
1194 | * @rs: current RAM state | |
1195 | * @file: the file where the data is saved | |
1196 | * @block: block that contains the page we want to send | |
1197 | * @offset: offset inside the block for the page | |
1198 | */ | |
1199 | static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, | |
1200 | RAMBlock *block, ram_addr_t offset) | |
1201 | { | |
1202 | uint8_t *p = block->host + offset; | |
1203 | int len = 0; | |
1204 | ||
bad452a7 | 1205 | if (buffer_is_zero(p, TARGET_PAGE_SIZE)) { |
6c97ec5f XG |
1206 | len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); |
1207 | qemu_put_byte(file, 0); | |
1208 | len += 1; | |
47fe16ff | 1209 | ram_release_page(block->idstr, offset); |
6c97ec5f XG |
1210 | } |
1211 | return len; | |
1212 | } | |
1213 | ||
56e93d26 | 1214 | /** |
3d0684b2 | 1215 | * save_zero_page: send the zero page to the stream |
56e93d26 | 1216 | * |
3d0684b2 | 1217 | * Returns the number of pages written. |
56e93d26 | 1218 | * |
f7ccd61b | 1219 | * @rs: current RAM state |
56e93d26 JQ |
1220 | * @block: block that contains the page we want to send |
1221 | * @offset: offset inside the block for the page | |
56e93d26 | 1222 | */ |
7faccdc3 | 1223 | static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) |
56e93d26 | 1224 | { |
6c97ec5f | 1225 | int len = save_zero_page_to_file(rs, rs->f, block, offset); |
56e93d26 | 1226 | |
6c97ec5f | 1227 | if (len) { |
9360447d | 1228 | ram_counters.duplicate++; |
4c2d0f6d | 1229 | ram_transferred_add(len); |
6c97ec5f | 1230 | return 1; |
56e93d26 | 1231 | } |
6c97ec5f | 1232 | return -1; |
56e93d26 JQ |
1233 | } |
1234 | ||
059ff0fb XG |
1235 | /* |
1236 | * @pages: the number of pages written by the control path, | |
1237 | * < 0 - error | |
1238 | * > 0 - number of pages written | |
1239 | * | |
1240 | * Return true if the pages has been saved, otherwise false is returned. | |
1241 | */ | |
1242 | static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, | |
1243 | int *pages) | |
1244 | { | |
1245 | uint64_t bytes_xmit = 0; | |
1246 | int ret; | |
1247 | ||
1248 | *pages = -1; | |
1249 | ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, | |
1250 | &bytes_xmit); | |
1251 | if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { | |
1252 | return false; | |
1253 | } | |
1254 | ||
1255 | if (bytes_xmit) { | |
4c2d0f6d | 1256 | ram_transferred_add(bytes_xmit); |
059ff0fb XG |
1257 | *pages = 1; |
1258 | } | |
1259 | ||
1260 | if (ret == RAM_SAVE_CONTROL_DELAYED) { | |
1261 | return true; | |
1262 | } | |
1263 | ||
1264 | if (bytes_xmit > 0) { | |
1265 | ram_counters.normal++; | |
1266 | } else if (bytes_xmit == 0) { | |
1267 | ram_counters.duplicate++; | |
1268 | } | |
1269 | ||
1270 | return true; | |
1271 | } | |
1272 | ||
65dacaa0 XG |
1273 | /* |
1274 | * directly send the page to the stream | |
1275 | * | |
1276 | * Returns the number of pages written. | |
1277 | * | |
1278 | * @rs: current RAM state | |
1279 | * @block: block that contains the page we want to send | |
1280 | * @offset: offset inside the block for the page | |
1281 | * @buf: the page to be sent | |
1282 | * @async: send to page asyncly | |
1283 | */ | |
1284 | static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, | |
1285 | uint8_t *buf, bool async) | |
1286 | { | |
4c2d0f6d DE |
1287 | ram_transferred_add(save_page_header(rs, rs->f, block, |
1288 | offset | RAM_SAVE_FLAG_PAGE)); | |
65dacaa0 XG |
1289 | if (async) { |
1290 | qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, | |
1291 | migrate_release_ram() & | |
1292 | migration_in_postcopy()); | |
1293 | } else { | |
1294 | qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); | |
1295 | } | |
4c2d0f6d | 1296 | ram_transferred_add(TARGET_PAGE_SIZE); |
65dacaa0 XG |
1297 | ram_counters.normal++; |
1298 | return 1; | |
1299 | } | |
1300 | ||
56e93d26 | 1301 | /** |
3d0684b2 | 1302 | * ram_save_page: send the given page to the stream |
56e93d26 | 1303 | * |
3d0684b2 | 1304 | * Returns the number of pages written. |
3fd3c4b3 DDAG |
1305 | * < 0 - error |
1306 | * >=0 - Number of pages written - this might legally be 0 | |
1307 | * if xbzrle noticed the page was the same. | |
56e93d26 | 1308 | * |
6f37bb8b | 1309 | * @rs: current RAM state |
56e93d26 JQ |
1310 | * @block: block that contains the page we want to send |
1311 | * @offset: offset inside the block for the page | |
56e93d26 | 1312 | */ |
05931ec5 | 1313 | static int ram_save_page(RAMState *rs, PageSearchStatus *pss) |
56e93d26 JQ |
1314 | { |
1315 | int pages = -1; | |
56e93d26 | 1316 | uint8_t *p; |
56e93d26 | 1317 | bool send_async = true; |
a08f6890 | 1318 | RAMBlock *block = pss->block; |
8bba004c | 1319 | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
059ff0fb | 1320 | ram_addr_t current_addr = block->offset + offset; |
56e93d26 | 1321 | |
2f68e399 | 1322 | p = block->host + offset; |
1db9d8e5 | 1323 | trace_ram_save_page(block->idstr, (uint64_t)offset, p); |
56e93d26 | 1324 | |
56e93d26 | 1325 | XBZRLE_cache_lock(); |
1a373522 | 1326 | if (rs->xbzrle_enabled && !migration_in_postcopy()) { |
059ff0fb | 1327 | pages = save_xbzrle_page(rs, &p, current_addr, block, |
05931ec5 JQ |
1328 | offset); |
1329 | if (!rs->last_stage) { | |
059ff0fb XG |
1330 | /* Can't send this cached data async, since the cache page |
1331 | * might get updated before it gets to the wire | |
56e93d26 | 1332 | */ |
059ff0fb | 1333 | send_async = false; |
56e93d26 JQ |
1334 | } |
1335 | } | |
1336 | ||
1337 | /* XBZRLE overflow or normal page */ | |
1338 | if (pages == -1) { | |
65dacaa0 | 1339 | pages = save_normal_page(rs, block, offset, p, send_async); |
56e93d26 JQ |
1340 | } |
1341 | ||
1342 | XBZRLE_cache_unlock(); | |
1343 | ||
1344 | return pages; | |
1345 | } | |
1346 | ||
b9ee2f7d JQ |
1347 | static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, |
1348 | ram_addr_t offset) | |
1349 | { | |
67a4c891 | 1350 | if (multifd_queue_page(rs->f, block, offset) < 0) { |
713f762a IR |
1351 | return -1; |
1352 | } | |
b9ee2f7d JQ |
1353 | ram_counters.normal++; |
1354 | ||
1355 | return 1; | |
1356 | } | |
1357 | ||
5e5fdcff | 1358 | static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
6ef3771c | 1359 | ram_addr_t offset, uint8_t *source_buf) |
56e93d26 | 1360 | { |
53518d94 | 1361 | RAMState *rs = ram_state; |
20d549cb | 1362 | uint8_t *p = block->host + offset; |
6ef3771c | 1363 | int ret; |
56e93d26 | 1364 | |
5e5fdcff | 1365 | if (save_zero_page_to_file(rs, f, block, offset)) { |
e7f2e190 | 1366 | return true; |
5e5fdcff XG |
1367 | } |
1368 | ||
6ef3771c | 1369 | save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); |
34ab9e97 XG |
1370 | |
1371 | /* | |
1372 | * copy it to a internal buffer to avoid it being modified by VM | |
1373 | * so that we can catch up the error during compression and | |
1374 | * decompression | |
1375 | */ | |
1376 | memcpy(source_buf, p, TARGET_PAGE_SIZE); | |
6ef3771c XG |
1377 | ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); |
1378 | if (ret < 0) { | |
1379 | qemu_file_set_error(migrate_get_current()->to_dst_file, ret); | |
b3be2896 | 1380 | error_report("compressed data failed!"); |
b3be2896 | 1381 | } |
e7f2e190 | 1382 | return false; |
5e5fdcff XG |
1383 | } |
1384 | ||
1385 | static void | |
1386 | update_compress_thread_counts(const CompressParam *param, int bytes_xmit) | |
1387 | { | |
4c2d0f6d | 1388 | ram_transferred_add(bytes_xmit); |
76e03000 | 1389 | |
5e5fdcff XG |
1390 | if (param->zero_page) { |
1391 | ram_counters.duplicate++; | |
76e03000 | 1392 | return; |
5e5fdcff | 1393 | } |
76e03000 XG |
1394 | |
1395 | /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ | |
1396 | compression_counters.compressed_size += bytes_xmit - 8; | |
1397 | compression_counters.pages++; | |
56e93d26 JQ |
1398 | } |
1399 | ||
32b05495 XG |
1400 | static bool save_page_use_compression(RAMState *rs); |
1401 | ||
ce25d337 | 1402 | static void flush_compressed_data(RAMState *rs) |
56e93d26 JQ |
1403 | { |
1404 | int idx, len, thread_count; | |
1405 | ||
32b05495 | 1406 | if (!save_page_use_compression(rs)) { |
56e93d26 JQ |
1407 | return; |
1408 | } | |
1409 | thread_count = migrate_compress_threads(); | |
a7a9a88f | 1410 | |
0d9f9a5c | 1411 | qemu_mutex_lock(&comp_done_lock); |
56e93d26 | 1412 | for (idx = 0; idx < thread_count; idx++) { |
a7a9a88f | 1413 | while (!comp_param[idx].done) { |
0d9f9a5c | 1414 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
56e93d26 | 1415 | } |
a7a9a88f | 1416 | } |
0d9f9a5c | 1417 | qemu_mutex_unlock(&comp_done_lock); |
a7a9a88f LL |
1418 | |
1419 | for (idx = 0; idx < thread_count; idx++) { | |
1420 | qemu_mutex_lock(&comp_param[idx].mutex); | |
90e56fb4 | 1421 | if (!comp_param[idx].quit) { |
ce25d337 | 1422 | len = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
5e5fdcff XG |
1423 | /* |
1424 | * it's safe to fetch zero_page without holding comp_done_lock | |
1425 | * as there is no further request submitted to the thread, | |
1426 | * i.e, the thread should be waiting for a request at this point. | |
1427 | */ | |
1428 | update_compress_thread_counts(&comp_param[idx], len); | |
56e93d26 | 1429 | } |
a7a9a88f | 1430 | qemu_mutex_unlock(&comp_param[idx].mutex); |
56e93d26 JQ |
1431 | } |
1432 | } | |
1433 | ||
1434 | static inline void set_compress_params(CompressParam *param, RAMBlock *block, | |
1435 | ram_addr_t offset) | |
1436 | { | |
1437 | param->block = block; | |
1438 | param->offset = offset; | |
1439 | } | |
1440 | ||
ce25d337 JQ |
1441 | static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, |
1442 | ram_addr_t offset) | |
56e93d26 JQ |
1443 | { |
1444 | int idx, thread_count, bytes_xmit = -1, pages = -1; | |
1d58872a | 1445 | bool wait = migrate_compress_wait_thread(); |
56e93d26 JQ |
1446 | |
1447 | thread_count = migrate_compress_threads(); | |
0d9f9a5c | 1448 | qemu_mutex_lock(&comp_done_lock); |
1d58872a XG |
1449 | retry: |
1450 | for (idx = 0; idx < thread_count; idx++) { | |
1451 | if (comp_param[idx].done) { | |
1452 | comp_param[idx].done = false; | |
1453 | bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); | |
1454 | qemu_mutex_lock(&comp_param[idx].mutex); | |
1455 | set_compress_params(&comp_param[idx], block, offset); | |
1456 | qemu_cond_signal(&comp_param[idx].cond); | |
1457 | qemu_mutex_unlock(&comp_param[idx].mutex); | |
1458 | pages = 1; | |
5e5fdcff | 1459 | update_compress_thread_counts(&comp_param[idx], bytes_xmit); |
56e93d26 | 1460 | break; |
56e93d26 JQ |
1461 | } |
1462 | } | |
1d58872a XG |
1463 | |
1464 | /* | |
1465 | * wait for the free thread if the user specifies 'compress-wait-thread', | |
1466 | * otherwise we will post the page out in the main thread as normal page. | |
1467 | */ | |
1468 | if (pages < 0 && wait) { | |
1469 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); | |
1470 | goto retry; | |
1471 | } | |
0d9f9a5c | 1472 | qemu_mutex_unlock(&comp_done_lock); |
56e93d26 JQ |
1473 | |
1474 | return pages; | |
1475 | } | |
1476 | ||
3d0684b2 JQ |
1477 | /** |
1478 | * find_dirty_block: find the next dirty page and update any state | |
1479 | * associated with the search process. | |
b9e60928 | 1480 | * |
a5f7b1a6 | 1481 | * Returns true if a page is found |
b9e60928 | 1482 | * |
6f37bb8b | 1483 | * @rs: current RAM state |
3d0684b2 JQ |
1484 | * @pss: data about the state of the current dirty page scan |
1485 | * @again: set to false if the search has scanned the whole of RAM | |
b9e60928 | 1486 | */ |
f20e2865 | 1487 | static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) |
b9e60928 | 1488 | { |
f20e2865 | 1489 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
6f37bb8b | 1490 | if (pss->complete_round && pss->block == rs->last_seen_block && |
a935e30f | 1491 | pss->page >= rs->last_page) { |
b9e60928 DDAG |
1492 | /* |
1493 | * We've been once around the RAM and haven't found anything. | |
1494 | * Give up. | |
1495 | */ | |
1496 | *again = false; | |
1497 | return false; | |
1498 | } | |
542147f4 DH |
1499 | if (!offset_in_ramblock(pss->block, |
1500 | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { | |
b9e60928 | 1501 | /* Didn't find anything in this RAM Block */ |
a935e30f | 1502 | pss->page = 0; |
b9e60928 DDAG |
1503 | pss->block = QLIST_NEXT_RCU(pss->block, next); |
1504 | if (!pss->block) { | |
48df9d80 XG |
1505 | /* |
1506 | * If memory migration starts over, we will meet a dirtied page | |
1507 | * which may still exists in compression threads's ring, so we | |
1508 | * should flush the compressed data to make sure the new page | |
1509 | * is not overwritten by the old one in the destination. | |
1510 | * | |
1511 | * Also If xbzrle is on, stop using the data compression at this | |
1512 | * point. In theory, xbzrle can do better than compression. | |
1513 | */ | |
1514 | flush_compressed_data(rs); | |
1515 | ||
b9e60928 DDAG |
1516 | /* Hit the end of the list */ |
1517 | pss->block = QLIST_FIRST_RCU(&ram_list.blocks); | |
1518 | /* Flag that we've looped */ | |
1519 | pss->complete_round = true; | |
1a373522 DH |
1520 | /* After the first round, enable XBZRLE. */ |
1521 | if (migrate_use_xbzrle()) { | |
1522 | rs->xbzrle_enabled = true; | |
1523 | } | |
b9e60928 DDAG |
1524 | } |
1525 | /* Didn't find anything this time, but try again on the new block */ | |
1526 | *again = true; | |
1527 | return false; | |
1528 | } else { | |
1529 | /* Can go around again, but... */ | |
1530 | *again = true; | |
1531 | /* We've found something so probably don't need to */ | |
1532 | return true; | |
1533 | } | |
1534 | } | |
1535 | ||
3d0684b2 JQ |
1536 | /** |
1537 | * unqueue_page: gets a page of the queue | |
1538 | * | |
a82d593b | 1539 | * Helper for 'get_queued_page' - gets a page off the queue |
a82d593b | 1540 | * |
3d0684b2 JQ |
1541 | * Returns the block of the page (or NULL if none available) |
1542 | * | |
ec481c6c | 1543 | * @rs: current RAM state |
3d0684b2 | 1544 | * @offset: used to return the offset within the RAMBlock |
a82d593b | 1545 | */ |
f20e2865 | 1546 | static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) |
a82d593b | 1547 | { |
a1fe28df | 1548 | struct RAMSrcPageRequest *entry; |
a82d593b | 1549 | RAMBlock *block = NULL; |
cfd66f30 | 1550 | size_t page_size; |
a82d593b | 1551 | |
a1fe28df | 1552 | if (!postcopy_has_request(rs)) { |
ae526e32 XG |
1553 | return NULL; |
1554 | } | |
1555 | ||
6e8a355d | 1556 | QEMU_LOCK_GUARD(&rs->src_page_req_mutex); |
a1fe28df PX |
1557 | |
1558 | /* | |
1559 | * This should _never_ change even after we take the lock, because no one | |
1560 | * should be taking anything off the request list other than us. | |
1561 | */ | |
1562 | assert(postcopy_has_request(rs)); | |
1563 | ||
1564 | entry = QSIMPLEQ_FIRST(&rs->src_page_requests); | |
1565 | block = entry->rb; | |
1566 | *offset = entry->offset; | |
cfd66f30 PX |
1567 | page_size = qemu_ram_pagesize(block); |
1568 | /* Each page request should only be multiple page size of the ramblock */ | |
1569 | assert((entry->len % page_size) == 0); | |
a1fe28df | 1570 | |
cfd66f30 PX |
1571 | if (entry->len > page_size) { |
1572 | entry->len -= page_size; | |
1573 | entry->offset += page_size; | |
a1fe28df PX |
1574 | } else { |
1575 | memory_region_unref(block->mr); | |
1576 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); | |
1577 | g_free(entry); | |
1578 | migration_consume_urgent_request(); | |
a82d593b | 1579 | } |
a82d593b | 1580 | |
cfd66f30 PX |
1581 | trace_unqueue_page(block->idstr, *offset, |
1582 | test_bit((*offset >> TARGET_PAGE_BITS), block->bmap)); | |
1583 | ||
a82d593b DDAG |
1584 | return block; |
1585 | } | |
1586 | ||
278e2f55 AG |
1587 | #if defined(__linux__) |
1588 | /** | |
1589 | * poll_fault_page: try to get next UFFD write fault page and, if pending fault | |
1590 | * is found, return RAM block pointer and page offset | |
1591 | * | |
1592 | * Returns pointer to the RAMBlock containing faulting page, | |
1593 | * NULL if no write faults are pending | |
1594 | * | |
1595 | * @rs: current RAM state | |
1596 | * @offset: page offset from the beginning of the block | |
1597 | */ | |
1598 | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | |
1599 | { | |
1600 | struct uffd_msg uffd_msg; | |
1601 | void *page_address; | |
82ea3e3b | 1602 | RAMBlock *block; |
278e2f55 AG |
1603 | int res; |
1604 | ||
1605 | if (!migrate_background_snapshot()) { | |
1606 | return NULL; | |
1607 | } | |
1608 | ||
1609 | res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); | |
1610 | if (res <= 0) { | |
1611 | return NULL; | |
1612 | } | |
1613 | ||
1614 | page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; | |
82ea3e3b AG |
1615 | block = qemu_ram_block_from_host(page_address, false, offset); |
1616 | assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); | |
1617 | return block; | |
278e2f55 AG |
1618 | } |
1619 | ||
1620 | /** | |
1621 | * ram_save_release_protection: release UFFD write protection after | |
1622 | * a range of pages has been saved | |
1623 | * | |
1624 | * @rs: current RAM state | |
1625 | * @pss: page-search-status structure | |
1626 | * @start_page: index of the first page in the range relative to pss->block | |
1627 | * | |
1628 | * Returns 0 on success, negative value in case of an error | |
1629 | */ | |
1630 | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | |
1631 | unsigned long start_page) | |
1632 | { | |
1633 | int res = 0; | |
1634 | ||
1635 | /* Check if page is from UFFD-managed region. */ | |
1636 | if (pss->block->flags & RAM_UF_WRITEPROTECT) { | |
1637 | void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); | |
258f5c98 | 1638 | uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; |
278e2f55 AG |
1639 | |
1640 | /* Flush async buffers before un-protect. */ | |
1641 | qemu_fflush(rs->f); | |
1642 | /* Un-protect memory range. */ | |
1643 | res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, | |
1644 | false, false); | |
1645 | } | |
1646 | ||
1647 | return res; | |
1648 | } | |
1649 | ||
1650 | /* ram_write_tracking_available: check if kernel supports required UFFD features | |
1651 | * | |
1652 | * Returns true if supports, false otherwise | |
1653 | */ | |
1654 | bool ram_write_tracking_available(void) | |
1655 | { | |
1656 | uint64_t uffd_features; | |
1657 | int res; | |
1658 | ||
1659 | res = uffd_query_features(&uffd_features); | |
1660 | return (res == 0 && | |
1661 | (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); | |
1662 | } | |
1663 | ||
1664 | /* ram_write_tracking_compatible: check if guest configuration is | |
1665 | * compatible with 'write-tracking' | |
1666 | * | |
1667 | * Returns true if compatible, false otherwise | |
1668 | */ | |
1669 | bool ram_write_tracking_compatible(void) | |
1670 | { | |
1671 | const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); | |
1672 | int uffd_fd; | |
82ea3e3b | 1673 | RAMBlock *block; |
278e2f55 AG |
1674 | bool ret = false; |
1675 | ||
1676 | /* Open UFFD file descriptor */ | |
1677 | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); | |
1678 | if (uffd_fd < 0) { | |
1679 | return false; | |
1680 | } | |
1681 | ||
1682 | RCU_READ_LOCK_GUARD(); | |
1683 | ||
82ea3e3b | 1684 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
278e2f55 AG |
1685 | uint64_t uffd_ioctls; |
1686 | ||
1687 | /* Nothing to do with read-only and MMIO-writable regions */ | |
82ea3e3b | 1688 | if (block->mr->readonly || block->mr->rom_device) { |
278e2f55 AG |
1689 | continue; |
1690 | } | |
1691 | /* Try to register block memory via UFFD-IO to track writes */ | |
82ea3e3b | 1692 | if (uffd_register_memory(uffd_fd, block->host, block->max_length, |
278e2f55 AG |
1693 | UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { |
1694 | goto out; | |
1695 | } | |
1696 | if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { | |
1697 | goto out; | |
1698 | } | |
1699 | } | |
1700 | ret = true; | |
1701 | ||
1702 | out: | |
1703 | uffd_close_fd(uffd_fd); | |
1704 | return ret; | |
1705 | } | |
1706 | ||
f7b9dcfb DH |
1707 | static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, |
1708 | ram_addr_t size) | |
1709 | { | |
1710 | /* | |
1711 | * We read one byte of each page; this will preallocate page tables if | |
1712 | * required and populate the shared zeropage on MAP_PRIVATE anonymous memory | |
1713 | * where no page was populated yet. This might require adaption when | |
1714 | * supporting other mappings, like shmem. | |
1715 | */ | |
1716 | for (; offset < size; offset += block->page_size) { | |
1717 | char tmp = *((char *)block->host + offset); | |
1718 | ||
1719 | /* Don't optimize the read out */ | |
1720 | asm volatile("" : "+r" (tmp)); | |
1721 | } | |
1722 | } | |
1723 | ||
6fee3a1f DH |
1724 | static inline int populate_read_section(MemoryRegionSection *section, |
1725 | void *opaque) | |
1726 | { | |
1727 | const hwaddr size = int128_get64(section->size); | |
1728 | hwaddr offset = section->offset_within_region; | |
1729 | RAMBlock *block = section->mr->ram_block; | |
1730 | ||
1731 | populate_read_range(block, offset, size); | |
1732 | return 0; | |
1733 | } | |
1734 | ||
eeccb99c | 1735 | /* |
f7b9dcfb DH |
1736 | * ram_block_populate_read: preallocate page tables and populate pages in the |
1737 | * RAM block by reading a byte of each page. | |
eeccb99c AG |
1738 | * |
1739 | * Since it's solely used for userfault_fd WP feature, here we just | |
1740 | * hardcode page size to qemu_real_host_page_size. | |
1741 | * | |
82ea3e3b | 1742 | * @block: RAM block to populate |
eeccb99c | 1743 | */ |
6fee3a1f | 1744 | static void ram_block_populate_read(RAMBlock *rb) |
eeccb99c | 1745 | { |
6fee3a1f DH |
1746 | /* |
1747 | * Skip populating all pages that fall into a discarded range as managed by | |
1748 | * a RamDiscardManager responsible for the mapped memory region of the | |
1749 | * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock | |
1750 | * must not get populated automatically. We don't have to track | |
1751 | * modifications via userfaultfd WP reliably, because these pages will | |
1752 | * not be part of the migration stream either way -- see | |
1753 | * ramblock_dirty_bitmap_exclude_discarded_pages(). | |
1754 | * | |
1755 | * Note: The result is only stable while migrating (precopy/postcopy). | |
1756 | */ | |
1757 | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | |
1758 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
1759 | MemoryRegionSection section = { | |
1760 | .mr = rb->mr, | |
1761 | .offset_within_region = 0, | |
1762 | .size = rb->mr->size, | |
1763 | }; | |
1764 | ||
1765 | ram_discard_manager_replay_populated(rdm, §ion, | |
1766 | populate_read_section, NULL); | |
1767 | } else { | |
1768 | populate_read_range(rb, 0, rb->used_length); | |
1769 | } | |
eeccb99c AG |
1770 | } |
1771 | ||
1772 | /* | |
1773 | * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking | |
1774 | */ | |
1775 | void ram_write_tracking_prepare(void) | |
1776 | { | |
82ea3e3b | 1777 | RAMBlock *block; |
eeccb99c AG |
1778 | |
1779 | RCU_READ_LOCK_GUARD(); | |
1780 | ||
82ea3e3b | 1781 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
eeccb99c | 1782 | /* Nothing to do with read-only and MMIO-writable regions */ |
82ea3e3b | 1783 | if (block->mr->readonly || block->mr->rom_device) { |
eeccb99c AG |
1784 | continue; |
1785 | } | |
1786 | ||
1787 | /* | |
1788 | * Populate pages of the RAM block before enabling userfault_fd | |
1789 | * write protection. | |
1790 | * | |
1791 | * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with | |
1792 | * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip | |
1793 | * pages with pte_none() entries in page table. | |
1794 | */ | |
f7b9dcfb | 1795 | ram_block_populate_read(block); |
eeccb99c AG |
1796 | } |
1797 | } | |
1798 | ||
278e2f55 AG |
1799 | /* |
1800 | * ram_write_tracking_start: start UFFD-WP memory tracking | |
1801 | * | |
1802 | * Returns 0 for success or negative value in case of error | |
1803 | */ | |
1804 | int ram_write_tracking_start(void) | |
1805 | { | |
1806 | int uffd_fd; | |
1807 | RAMState *rs = ram_state; | |
82ea3e3b | 1808 | RAMBlock *block; |
278e2f55 AG |
1809 | |
1810 | /* Open UFFD file descriptor */ | |
1811 | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); | |
1812 | if (uffd_fd < 0) { | |
1813 | return uffd_fd; | |
1814 | } | |
1815 | rs->uffdio_fd = uffd_fd; | |
1816 | ||
1817 | RCU_READ_LOCK_GUARD(); | |
1818 | ||
82ea3e3b | 1819 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
278e2f55 | 1820 | /* Nothing to do with read-only and MMIO-writable regions */ |
82ea3e3b | 1821 | if (block->mr->readonly || block->mr->rom_device) { |
278e2f55 AG |
1822 | continue; |
1823 | } | |
1824 | ||
1825 | /* Register block memory with UFFD to track writes */ | |
82ea3e3b AG |
1826 | if (uffd_register_memory(rs->uffdio_fd, block->host, |
1827 | block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { | |
278e2f55 AG |
1828 | goto fail; |
1829 | } | |
1830 | /* Apply UFFD write protection to the block memory range */ | |
82ea3e3b AG |
1831 | if (uffd_change_protection(rs->uffdio_fd, block->host, |
1832 | block->max_length, true, false)) { | |
278e2f55 AG |
1833 | goto fail; |
1834 | } | |
82ea3e3b AG |
1835 | block->flags |= RAM_UF_WRITEPROTECT; |
1836 | memory_region_ref(block->mr); | |
278e2f55 | 1837 | |
82ea3e3b AG |
1838 | trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, |
1839 | block->host, block->max_length); | |
278e2f55 AG |
1840 | } |
1841 | ||
1842 | return 0; | |
1843 | ||
1844 | fail: | |
1845 | error_report("ram_write_tracking_start() failed: restoring initial memory state"); | |
1846 | ||
82ea3e3b AG |
1847 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
1848 | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | |
278e2f55 AG |
1849 | continue; |
1850 | } | |
1851 | /* | |
1852 | * In case some memory block failed to be write-protected | |
1853 | * remove protection and unregister all succeeded RAM blocks | |
1854 | */ | |
82ea3e3b AG |
1855 | uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, |
1856 | false, false); | |
1857 | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | |
278e2f55 | 1858 | /* Cleanup flags and remove reference */ |
82ea3e3b AG |
1859 | block->flags &= ~RAM_UF_WRITEPROTECT; |
1860 | memory_region_unref(block->mr); | |
278e2f55 AG |
1861 | } |
1862 | ||
1863 | uffd_close_fd(uffd_fd); | |
1864 | rs->uffdio_fd = -1; | |
1865 | return -1; | |
1866 | } | |
1867 | ||
1868 | /** | |
1869 | * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection | |
1870 | */ | |
1871 | void ram_write_tracking_stop(void) | |
1872 | { | |
1873 | RAMState *rs = ram_state; | |
82ea3e3b | 1874 | RAMBlock *block; |
278e2f55 AG |
1875 | |
1876 | RCU_READ_LOCK_GUARD(); | |
1877 | ||
82ea3e3b AG |
1878 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
1879 | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | |
278e2f55 AG |
1880 | continue; |
1881 | } | |
1882 | /* Remove protection and unregister all affected RAM blocks */ | |
82ea3e3b AG |
1883 | uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, |
1884 | false, false); | |
1885 | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | |
278e2f55 | 1886 | |
82ea3e3b AG |
1887 | trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, |
1888 | block->host, block->max_length); | |
278e2f55 AG |
1889 | |
1890 | /* Cleanup flags and remove reference */ | |
82ea3e3b AG |
1891 | block->flags &= ~RAM_UF_WRITEPROTECT; |
1892 | memory_region_unref(block->mr); | |
278e2f55 AG |
1893 | } |
1894 | ||
1895 | /* Finally close UFFD file descriptor */ | |
1896 | uffd_close_fd(rs->uffdio_fd); | |
1897 | rs->uffdio_fd = -1; | |
1898 | } | |
1899 | ||
1900 | #else | |
1901 | /* No target OS support, stubs just fail or ignore */ | |
1902 | ||
1903 | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | |
1904 | { | |
1905 | (void) rs; | |
1906 | (void) offset; | |
1907 | ||
1908 | return NULL; | |
1909 | } | |
1910 | ||
1911 | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | |
1912 | unsigned long start_page) | |
1913 | { | |
1914 | (void) rs; | |
1915 | (void) pss; | |
1916 | (void) start_page; | |
1917 | ||
1918 | return 0; | |
1919 | } | |
1920 | ||
1921 | bool ram_write_tracking_available(void) | |
1922 | { | |
1923 | return false; | |
1924 | } | |
1925 | ||
1926 | bool ram_write_tracking_compatible(void) | |
1927 | { | |
1928 | assert(0); | |
1929 | return false; | |
1930 | } | |
1931 | ||
1932 | int ram_write_tracking_start(void) | |
1933 | { | |
1934 | assert(0); | |
1935 | return -1; | |
1936 | } | |
1937 | ||
1938 | void ram_write_tracking_stop(void) | |
1939 | { | |
1940 | assert(0); | |
1941 | } | |
1942 | #endif /* defined(__linux__) */ | |
1943 | ||
3d0684b2 | 1944 | /** |
ff1543af | 1945 | * get_queued_page: unqueue a page from the postcopy requests |
3d0684b2 JQ |
1946 | * |
1947 | * Skips pages that are already sent (!dirty) | |
a82d593b | 1948 | * |
a5f7b1a6 | 1949 | * Returns true if a queued page is found |
a82d593b | 1950 | * |
6f37bb8b | 1951 | * @rs: current RAM state |
3d0684b2 | 1952 | * @pss: data about the state of the current dirty page scan |
a82d593b | 1953 | */ |
f20e2865 | 1954 | static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b DDAG |
1955 | { |
1956 | RAMBlock *block; | |
1957 | ram_addr_t offset; | |
a82d593b | 1958 | |
cfd66f30 | 1959 | block = unqueue_page(rs, &offset); |
a82d593b | 1960 | |
278e2f55 AG |
1961 | if (!block) { |
1962 | /* | |
1963 | * Poll write faults too if background snapshot is enabled; that's | |
1964 | * when we have vcpus got blocked by the write protected pages. | |
1965 | */ | |
1966 | block = poll_fault_page(rs, &offset); | |
1967 | } | |
1968 | ||
a82d593b | 1969 | if (block) { |
a82d593b DDAG |
1970 | /* |
1971 | * We want the background search to continue from the queued page | |
1972 | * since the guest is likely to want other pages near to the page | |
1973 | * it just requested. | |
1974 | */ | |
1975 | pss->block = block; | |
a935e30f | 1976 | pss->page = offset >> TARGET_PAGE_BITS; |
422314e7 WY |
1977 | |
1978 | /* | |
1979 | * This unqueued page would break the "one round" check, even is | |
1980 | * really rare. | |
1981 | */ | |
1982 | pss->complete_round = false; | |
a82d593b DDAG |
1983 | } |
1984 | ||
1985 | return !!block; | |
1986 | } | |
1987 | ||
6c595cde | 1988 | /** |
5e58f968 JQ |
1989 | * migration_page_queue_free: drop any remaining pages in the ram |
1990 | * request queue | |
6c595cde | 1991 | * |
3d0684b2 JQ |
1992 | * It should be empty at the end anyway, but in error cases there may |
1993 | * be some left. in case that there is any page left, we drop it. | |
1994 | * | |
6c595cde | 1995 | */ |
83c13382 | 1996 | static void migration_page_queue_free(RAMState *rs) |
6c595cde | 1997 | { |
ec481c6c | 1998 | struct RAMSrcPageRequest *mspr, *next_mspr; |
6c595cde DDAG |
1999 | /* This queue generally should be empty - but in the case of a failed |
2000 | * migration might have some droppings in. | |
2001 | */ | |
89ac5a1d | 2002 | RCU_READ_LOCK_GUARD(); |
ec481c6c | 2003 | QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { |
6c595cde | 2004 | memory_region_unref(mspr->rb->mr); |
ec481c6c | 2005 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
6c595cde DDAG |
2006 | g_free(mspr); |
2007 | } | |
6c595cde DDAG |
2008 | } |
2009 | ||
2010 | /** | |
3d0684b2 JQ |
2011 | * ram_save_queue_pages: queue the page for transmission |
2012 | * | |
2013 | * A request from postcopy destination for example. | |
2014 | * | |
2015 | * Returns zero on success or negative on error | |
2016 | * | |
3d0684b2 JQ |
2017 | * @rbname: Name of the RAMBLock of the request. NULL means the |
2018 | * same that last one. | |
2019 | * @start: starting address from the start of the RAMBlock | |
2020 | * @len: length (in bytes) to send | |
6c595cde | 2021 | */ |
96506894 | 2022 | int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) |
6c595cde DDAG |
2023 | { |
2024 | RAMBlock *ramblock; | |
53518d94 | 2025 | RAMState *rs = ram_state; |
6c595cde | 2026 | |
9360447d | 2027 | ram_counters.postcopy_requests++; |
89ac5a1d DDAG |
2028 | RCU_READ_LOCK_GUARD(); |
2029 | ||
6c595cde DDAG |
2030 | if (!rbname) { |
2031 | /* Reuse last RAMBlock */ | |
68a098f3 | 2032 | ramblock = rs->last_req_rb; |
6c595cde DDAG |
2033 | |
2034 | if (!ramblock) { | |
2035 | /* | |
2036 | * Shouldn't happen, we can't reuse the last RAMBlock if | |
2037 | * it's the 1st request. | |
2038 | */ | |
2039 | error_report("ram_save_queue_pages no previous block"); | |
03acb4e9 | 2040 | return -1; |
6c595cde DDAG |
2041 | } |
2042 | } else { | |
2043 | ramblock = qemu_ram_block_by_name(rbname); | |
2044 | ||
2045 | if (!ramblock) { | |
2046 | /* We shouldn't be asked for a non-existent RAMBlock */ | |
2047 | error_report("ram_save_queue_pages no block '%s'", rbname); | |
03acb4e9 | 2048 | return -1; |
6c595cde | 2049 | } |
68a098f3 | 2050 | rs->last_req_rb = ramblock; |
6c595cde DDAG |
2051 | } |
2052 | trace_ram_save_queue_pages(ramblock->idstr, start, len); | |
542147f4 | 2053 | if (!offset_in_ramblock(ramblock, start + len - 1)) { |
9458ad6b JQ |
2054 | error_report("%s request overrun start=" RAM_ADDR_FMT " len=" |
2055 | RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, | |
6c595cde | 2056 | __func__, start, len, ramblock->used_length); |
03acb4e9 | 2057 | return -1; |
6c595cde DDAG |
2058 | } |
2059 | ||
ec481c6c JQ |
2060 | struct RAMSrcPageRequest *new_entry = |
2061 | g_malloc0(sizeof(struct RAMSrcPageRequest)); | |
6c595cde DDAG |
2062 | new_entry->rb = ramblock; |
2063 | new_entry->offset = start; | |
2064 | new_entry->len = len; | |
2065 | ||
2066 | memory_region_ref(ramblock->mr); | |
ec481c6c JQ |
2067 | qemu_mutex_lock(&rs->src_page_req_mutex); |
2068 | QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); | |
e03a34f8 | 2069 | migration_make_urgent_request(); |
ec481c6c | 2070 | qemu_mutex_unlock(&rs->src_page_req_mutex); |
6c595cde DDAG |
2071 | |
2072 | return 0; | |
6c595cde DDAG |
2073 | } |
2074 | ||
d7400a34 XG |
2075 | static bool save_page_use_compression(RAMState *rs) |
2076 | { | |
2077 | if (!migrate_use_compression()) { | |
2078 | return false; | |
2079 | } | |
2080 | ||
2081 | /* | |
1a373522 DH |
2082 | * If xbzrle is enabled (e.g., after first round of migration), stop |
2083 | * using the data compression. In theory, xbzrle can do better than | |
2084 | * compression. | |
d7400a34 | 2085 | */ |
1a373522 DH |
2086 | if (rs->xbzrle_enabled) { |
2087 | return false; | |
d7400a34 XG |
2088 | } |
2089 | ||
1a373522 | 2090 | return true; |
d7400a34 XG |
2091 | } |
2092 | ||
5e5fdcff XG |
2093 | /* |
2094 | * try to compress the page before posting it out, return true if the page | |
2095 | * has been properly handled by compression, otherwise needs other | |
2096 | * paths to handle it | |
2097 | */ | |
2098 | static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) | |
2099 | { | |
2100 | if (!save_page_use_compression(rs)) { | |
2101 | return false; | |
2102 | } | |
2103 | ||
2104 | /* | |
2105 | * When starting the process of a new block, the first page of | |
2106 | * the block should be sent out before other pages in the same | |
2107 | * block, and all the pages in last block should have been sent | |
2108 | * out, keeping this order is important, because the 'cont' flag | |
2109 | * is used to avoid resending the block name. | |
2110 | * | |
2111 | * We post the fist page as normal page as compression will take | |
2112 | * much CPU resource. | |
2113 | */ | |
2114 | if (block != rs->last_sent_block) { | |
2115 | flush_compressed_data(rs); | |
2116 | return false; | |
2117 | } | |
2118 | ||
2119 | if (compress_page_with_multi_thread(rs, block, offset) > 0) { | |
2120 | return true; | |
2121 | } | |
2122 | ||
76e03000 | 2123 | compression_counters.busy++; |
5e5fdcff XG |
2124 | return false; |
2125 | } | |
2126 | ||
a82d593b | 2127 | /** |
3d0684b2 | 2128 | * ram_save_target_page: save one target page |
a82d593b | 2129 | * |
3d0684b2 | 2130 | * Returns the number of pages written |
a82d593b | 2131 | * |
6f37bb8b | 2132 | * @rs: current RAM state |
3d0684b2 | 2133 | * @pss: data about the page we want to send |
a82d593b | 2134 | */ |
05931ec5 | 2135 | static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b | 2136 | { |
a8ec91f9 | 2137 | RAMBlock *block = pss->block; |
8bba004c | 2138 | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
a8ec91f9 XG |
2139 | int res; |
2140 | ||
2141 | if (control_save_page(rs, block, offset, &res)) { | |
2142 | return res; | |
2143 | } | |
2144 | ||
5e5fdcff XG |
2145 | if (save_compress_page(rs, block, offset)) { |
2146 | return 1; | |
d7400a34 XG |
2147 | } |
2148 | ||
2149 | res = save_zero_page(rs, block, offset); | |
2150 | if (res > 0) { | |
2151 | /* Must let xbzrle know, otherwise a previous (now 0'd) cached | |
2152 | * page would be stale | |
2153 | */ | |
2154 | if (!save_page_use_compression(rs)) { | |
2155 | XBZRLE_cache_lock(); | |
2156 | xbzrle_cache_zero_page(rs, block->offset + offset); | |
2157 | XBZRLE_cache_unlock(); | |
2158 | } | |
d7400a34 XG |
2159 | return res; |
2160 | } | |
2161 | ||
da3f56cb | 2162 | /* |
c6b3a2e0 WY |
2163 | * Do not use multifd for: |
2164 | * 1. Compression as the first page in the new block should be posted out | |
2165 | * before sending the compressed page | |
2166 | * 2. In postcopy as one whole host page should be placed | |
da3f56cb | 2167 | */ |
c6b3a2e0 WY |
2168 | if (!save_page_use_compression(rs) && migrate_use_multifd() |
2169 | && !migration_in_postcopy()) { | |
b9ee2f7d | 2170 | return ram_save_multifd_page(rs, block, offset); |
a82d593b DDAG |
2171 | } |
2172 | ||
05931ec5 | 2173 | return ram_save_page(rs, pss); |
a82d593b DDAG |
2174 | } |
2175 | ||
2176 | /** | |
3d0684b2 | 2177 | * ram_save_host_page: save a whole host page |
a82d593b | 2178 | * |
3d0684b2 JQ |
2179 | * Starting at *offset send pages up to the end of the current host |
2180 | * page. It's valid for the initial offset to point into the middle of | |
2181 | * a host page in which case the remainder of the hostpage is sent. | |
2182 | * Only dirty target pages are sent. Note that the host page size may | |
2183 | * be a huge page for this block. | |
1eb3fc0a DDAG |
2184 | * The saving stops at the boundary of the used_length of the block |
2185 | * if the RAMBlock isn't a multiple of the host page size. | |
a82d593b | 2186 | * |
3d0684b2 JQ |
2187 | * Returns the number of pages written or negative on error |
2188 | * | |
6f37bb8b | 2189 | * @rs: current RAM state |
3d0684b2 | 2190 | * @pss: data about the page we want to send |
a82d593b | 2191 | */ |
05931ec5 | 2192 | static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b DDAG |
2193 | { |
2194 | int tmppages, pages = 0; | |
a935e30f JQ |
2195 | size_t pagesize_bits = |
2196 | qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; | |
ba1b7c81 KJ |
2197 | unsigned long hostpage_boundary = |
2198 | QEMU_ALIGN_UP(pss->page + 1, pagesize_bits); | |
278e2f55 AG |
2199 | unsigned long start_page = pss->page; |
2200 | int res; | |
4c011c37 | 2201 | |
fbd162e6 | 2202 | if (ramblock_is_ignored(pss->block)) { |
b895de50 CLG |
2203 | error_report("block %s should not be migrated !", pss->block->idstr); |
2204 | return 0; | |
2205 | } | |
2206 | ||
a82d593b | 2207 | do { |
1faa5665 | 2208 | /* Check the pages is dirty and if it is send it */ |
ba1b7c81 | 2209 | if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { |
05931ec5 | 2210 | tmppages = ram_save_target_page(rs, pss); |
ba1b7c81 KJ |
2211 | if (tmppages < 0) { |
2212 | return tmppages; | |
2213 | } | |
a82d593b | 2214 | |
ba1b7c81 KJ |
2215 | pages += tmppages; |
2216 | /* | |
2217 | * Allow rate limiting to happen in the middle of huge pages if | |
2218 | * something is sent in the current iteration. | |
2219 | */ | |
2220 | if (pagesize_bits > 1 && tmppages > 0) { | |
2221 | migration_rate_limit(); | |
2222 | } | |
23feba90 | 2223 | } |
ba1b7c81 KJ |
2224 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
2225 | } while ((pss->page < hostpage_boundary) && | |
8bba004c AR |
2226 | offset_in_ramblock(pss->block, |
2227 | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)); | |
ba1b7c81 | 2228 | /* The offset we leave with is the min boundary of host page and block */ |
258f5c98 | 2229 | pss->page = MIN(pss->page, hostpage_boundary); |
278e2f55 AG |
2230 | |
2231 | res = ram_save_release_protection(rs, pss, start_page); | |
2232 | return (res < 0 ? res : pages); | |
a82d593b | 2233 | } |
6c595cde | 2234 | |
56e93d26 | 2235 | /** |
3d0684b2 | 2236 | * ram_find_and_save_block: finds a dirty page and sends it to f |
56e93d26 JQ |
2237 | * |
2238 | * Called within an RCU critical section. | |
2239 | * | |
e8f3735f XG |
2240 | * Returns the number of pages written where zero means no dirty pages, |
2241 | * or negative on error | |
56e93d26 | 2242 | * |
6f37bb8b | 2243 | * @rs: current RAM state |
a82d593b DDAG |
2244 | * |
2245 | * On systems where host-page-size > target-page-size it will send all the | |
2246 | * pages in a host page that are dirty. | |
56e93d26 | 2247 | */ |
05931ec5 | 2248 | static int ram_find_and_save_block(RAMState *rs) |
56e93d26 | 2249 | { |
b8fb8cb7 | 2250 | PageSearchStatus pss; |
56e93d26 | 2251 | int pages = 0; |
b9e60928 | 2252 | bool again, found; |
56e93d26 | 2253 | |
0827b9e9 AA |
2254 | /* No dirty page as there is zero RAM */ |
2255 | if (!ram_bytes_total()) { | |
2256 | return pages; | |
2257 | } | |
2258 | ||
6f37bb8b | 2259 | pss.block = rs->last_seen_block; |
a935e30f | 2260 | pss.page = rs->last_page; |
b8fb8cb7 DDAG |
2261 | pss.complete_round = false; |
2262 | ||
2263 | if (!pss.block) { | |
2264 | pss.block = QLIST_FIRST_RCU(&ram_list.blocks); | |
2265 | } | |
56e93d26 | 2266 | |
b9e60928 | 2267 | do { |
a82d593b | 2268 | again = true; |
f20e2865 | 2269 | found = get_queued_page(rs, &pss); |
b9e60928 | 2270 | |
a82d593b DDAG |
2271 | if (!found) { |
2272 | /* priority queue empty, so just search for something dirty */ | |
f20e2865 | 2273 | found = find_dirty_block(rs, &pss, &again); |
a82d593b | 2274 | } |
f3f491fc | 2275 | |
a82d593b | 2276 | if (found) { |
05931ec5 | 2277 | pages = ram_save_host_page(rs, &pss); |
56e93d26 | 2278 | } |
b9e60928 | 2279 | } while (!pages && again); |
56e93d26 | 2280 | |
6f37bb8b | 2281 | rs->last_seen_block = pss.block; |
a935e30f | 2282 | rs->last_page = pss.page; |
56e93d26 JQ |
2283 | |
2284 | return pages; | |
2285 | } | |
2286 | ||
2287 | void acct_update_position(QEMUFile *f, size_t size, bool zero) | |
2288 | { | |
2289 | uint64_t pages = size / TARGET_PAGE_SIZE; | |
f7ccd61b | 2290 | |
56e93d26 | 2291 | if (zero) { |
9360447d | 2292 | ram_counters.duplicate += pages; |
56e93d26 | 2293 | } else { |
9360447d | 2294 | ram_counters.normal += pages; |
4c2d0f6d | 2295 | ram_transferred_add(size); |
56e93d26 JQ |
2296 | qemu_update_position(f, size); |
2297 | } | |
2298 | } | |
2299 | ||
fbd162e6 | 2300 | static uint64_t ram_bytes_total_common(bool count_ignored) |
56e93d26 JQ |
2301 | { |
2302 | RAMBlock *block; | |
2303 | uint64_t total = 0; | |
2304 | ||
89ac5a1d DDAG |
2305 | RCU_READ_LOCK_GUARD(); |
2306 | ||
fbd162e6 YK |
2307 | if (count_ignored) { |
2308 | RAMBLOCK_FOREACH_MIGRATABLE(block) { | |
2309 | total += block->used_length; | |
2310 | } | |
2311 | } else { | |
2312 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
2313 | total += block->used_length; | |
2314 | } | |
99e15582 | 2315 | } |
56e93d26 JQ |
2316 | return total; |
2317 | } | |
2318 | ||
fbd162e6 YK |
2319 | uint64_t ram_bytes_total(void) |
2320 | { | |
2321 | return ram_bytes_total_common(false); | |
2322 | } | |
2323 | ||
f265e0e4 | 2324 | static void xbzrle_load_setup(void) |
56e93d26 | 2325 | { |
f265e0e4 | 2326 | XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
56e93d26 JQ |
2327 | } |
2328 | ||
f265e0e4 JQ |
2329 | static void xbzrle_load_cleanup(void) |
2330 | { | |
2331 | g_free(XBZRLE.decoded_buf); | |
2332 | XBZRLE.decoded_buf = NULL; | |
2333 | } | |
2334 | ||
7d7c96be PX |
2335 | static void ram_state_cleanup(RAMState **rsp) |
2336 | { | |
b9ccaf6d DDAG |
2337 | if (*rsp) { |
2338 | migration_page_queue_free(*rsp); | |
2339 | qemu_mutex_destroy(&(*rsp)->bitmap_mutex); | |
2340 | qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); | |
2341 | g_free(*rsp); | |
2342 | *rsp = NULL; | |
2343 | } | |
7d7c96be PX |
2344 | } |
2345 | ||
84593a08 PX |
2346 | static void xbzrle_cleanup(void) |
2347 | { | |
2348 | XBZRLE_cache_lock(); | |
2349 | if (XBZRLE.cache) { | |
2350 | cache_fini(XBZRLE.cache); | |
2351 | g_free(XBZRLE.encoded_buf); | |
2352 | g_free(XBZRLE.current_buf); | |
2353 | g_free(XBZRLE.zero_target_page); | |
2354 | XBZRLE.cache = NULL; | |
2355 | XBZRLE.encoded_buf = NULL; | |
2356 | XBZRLE.current_buf = NULL; | |
2357 | XBZRLE.zero_target_page = NULL; | |
2358 | } | |
2359 | XBZRLE_cache_unlock(); | |
2360 | } | |
2361 | ||
f265e0e4 | 2362 | static void ram_save_cleanup(void *opaque) |
56e93d26 | 2363 | { |
53518d94 | 2364 | RAMState **rsp = opaque; |
6b6712ef | 2365 | RAMBlock *block; |
eb859c53 | 2366 | |
278e2f55 AG |
2367 | /* We don't use dirty log with background snapshots */ |
2368 | if (!migrate_background_snapshot()) { | |
2369 | /* caller have hold iothread lock or is in a bh, so there is | |
2370 | * no writing race against the migration bitmap | |
2371 | */ | |
63b41db4 HH |
2372 | if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { |
2373 | /* | |
2374 | * do not stop dirty log without starting it, since | |
2375 | * memory_global_dirty_log_stop will assert that | |
2376 | * memory_global_dirty_log_start/stop used in pairs | |
2377 | */ | |
2378 | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); | |
2379 | } | |
278e2f55 | 2380 | } |
6b6712ef | 2381 | |
fbd162e6 | 2382 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
002cad6b PX |
2383 | g_free(block->clear_bmap); |
2384 | block->clear_bmap = NULL; | |
6b6712ef JQ |
2385 | g_free(block->bmap); |
2386 | block->bmap = NULL; | |
56e93d26 JQ |
2387 | } |
2388 | ||
84593a08 | 2389 | xbzrle_cleanup(); |
f0afa331 | 2390 | compress_threads_save_cleanup(); |
7d7c96be | 2391 | ram_state_cleanup(rsp); |
56e93d26 JQ |
2392 | } |
2393 | ||
6f37bb8b | 2394 | static void ram_state_reset(RAMState *rs) |
56e93d26 | 2395 | { |
6f37bb8b JQ |
2396 | rs->last_seen_block = NULL; |
2397 | rs->last_sent_block = NULL; | |
269ace29 | 2398 | rs->last_page = 0; |
6f37bb8b | 2399 | rs->last_version = ram_list.version; |
1a373522 | 2400 | rs->xbzrle_enabled = false; |
56e93d26 JQ |
2401 | } |
2402 | ||
2403 | #define MAX_WAIT 50 /* ms, half buffered_file limit */ | |
2404 | ||
e0b266f0 DDAG |
2405 | /* **** functions for postcopy ***** */ |
2406 | ||
ced1c616 PB |
2407 | void ram_postcopy_migrated_memory_release(MigrationState *ms) |
2408 | { | |
2409 | struct RAMBlock *block; | |
ced1c616 | 2410 | |
fbd162e6 | 2411 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
6b6712ef JQ |
2412 | unsigned long *bitmap = block->bmap; |
2413 | unsigned long range = block->used_length >> TARGET_PAGE_BITS; | |
2414 | unsigned long run_start = find_next_zero_bit(bitmap, range, 0); | |
ced1c616 PB |
2415 | |
2416 | while (run_start < range) { | |
2417 | unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); | |
8bba004c AR |
2418 | ram_discard_range(block->idstr, |
2419 | ((ram_addr_t)run_start) << TARGET_PAGE_BITS, | |
2420 | ((ram_addr_t)(run_end - run_start)) | |
2421 | << TARGET_PAGE_BITS); | |
ced1c616 PB |
2422 | run_start = find_next_zero_bit(bitmap, range, run_end + 1); |
2423 | } | |
2424 | } | |
2425 | } | |
2426 | ||
3d0684b2 JQ |
2427 | /** |
2428 | * postcopy_send_discard_bm_ram: discard a RAMBlock | |
2429 | * | |
e0b266f0 | 2430 | * Callback from postcopy_each_ram_send_discard for each RAMBlock |
3d0684b2 JQ |
2431 | * |
2432 | * @ms: current migration state | |
89dab31b | 2433 | * @block: RAMBlock to discard |
e0b266f0 | 2434 | */ |
9e7d1223 | 2435 | static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) |
e0b266f0 | 2436 | { |
6b6712ef | 2437 | unsigned long end = block->used_length >> TARGET_PAGE_BITS; |
e0b266f0 | 2438 | unsigned long current; |
1e7cf8c3 | 2439 | unsigned long *bitmap = block->bmap; |
e0b266f0 | 2440 | |
6b6712ef | 2441 | for (current = 0; current < end; ) { |
1e7cf8c3 | 2442 | unsigned long one = find_next_bit(bitmap, end, current); |
33a5cb62 | 2443 | unsigned long zero, discard_length; |
e0b266f0 | 2444 | |
33a5cb62 WY |
2445 | if (one >= end) { |
2446 | break; | |
2447 | } | |
e0b266f0 | 2448 | |
1e7cf8c3 | 2449 | zero = find_next_zero_bit(bitmap, end, one + 1); |
33a5cb62 WY |
2450 | |
2451 | if (zero >= end) { | |
2452 | discard_length = end - one; | |
e0b266f0 | 2453 | } else { |
33a5cb62 WY |
2454 | discard_length = zero - one; |
2455 | } | |
810cf2bb | 2456 | postcopy_discard_send_range(ms, one, discard_length); |
33a5cb62 | 2457 | current = one + discard_length; |
e0b266f0 | 2458 | } |
e0b266f0 DDAG |
2459 | } |
2460 | ||
f30c2e5b PX |
2461 | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); |
2462 | ||
3d0684b2 JQ |
2463 | /** |
2464 | * postcopy_each_ram_send_discard: discard all RAMBlocks | |
2465 | * | |
e0b266f0 DDAG |
2466 | * Utility for the outgoing postcopy code. |
2467 | * Calls postcopy_send_discard_bm_ram for each RAMBlock | |
2468 | * passing it bitmap indexes and name. | |
e0b266f0 DDAG |
2469 | * (qemu_ram_foreach_block ends up passing unscaled lengths |
2470 | * which would mean postcopy code would have to deal with target page) | |
3d0684b2 JQ |
2471 | * |
2472 | * @ms: current migration state | |
e0b266f0 | 2473 | */ |
739fcc1b | 2474 | static void postcopy_each_ram_send_discard(MigrationState *ms) |
e0b266f0 DDAG |
2475 | { |
2476 | struct RAMBlock *block; | |
e0b266f0 | 2477 | |
fbd162e6 | 2478 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
810cf2bb | 2479 | postcopy_discard_send_init(ms, block->idstr); |
e0b266f0 | 2480 | |
f30c2e5b PX |
2481 | /* |
2482 | * Deal with TPS != HPS and huge pages. It discard any partially sent | |
2483 | * host-page size chunks, mark any partially dirty host-page size | |
2484 | * chunks as all dirty. In this case the host-page is the host-page | |
2485 | * for the particular RAMBlock, i.e. it might be a huge page. | |
2486 | */ | |
2487 | postcopy_chunk_hostpages_pass(ms, block); | |
2488 | ||
e0b266f0 DDAG |
2489 | /* |
2490 | * Postcopy sends chunks of bitmap over the wire, but it | |
2491 | * just needs indexes at this point, avoids it having | |
2492 | * target page specific code. | |
2493 | */ | |
739fcc1b | 2494 | postcopy_send_discard_bm_ram(ms, block); |
810cf2bb | 2495 | postcopy_discard_send_finish(ms); |
e0b266f0 | 2496 | } |
e0b266f0 DDAG |
2497 | } |
2498 | ||
3d0684b2 | 2499 | /** |
8324ef86 | 2500 | * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages |
3d0684b2 JQ |
2501 | * |
2502 | * Helper for postcopy_chunk_hostpages; it's called twice to | |
2503 | * canonicalize the two bitmaps, that are similar, but one is | |
2504 | * inverted. | |
99e314eb | 2505 | * |
3d0684b2 JQ |
2506 | * Postcopy requires that all target pages in a hostpage are dirty or |
2507 | * clean, not a mix. This function canonicalizes the bitmaps. | |
99e314eb | 2508 | * |
3d0684b2 | 2509 | * @ms: current migration state |
3d0684b2 | 2510 | * @block: block that contains the page we want to canonicalize |
99e314eb | 2511 | */ |
1e7cf8c3 | 2512 | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) |
99e314eb | 2513 | { |
53518d94 | 2514 | RAMState *rs = ram_state; |
6b6712ef | 2515 | unsigned long *bitmap = block->bmap; |
29c59172 | 2516 | unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; |
6b6712ef | 2517 | unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
99e314eb DDAG |
2518 | unsigned long run_start; |
2519 | ||
29c59172 DDAG |
2520 | if (block->page_size == TARGET_PAGE_SIZE) { |
2521 | /* Easy case - TPS==HPS for a non-huge page RAMBlock */ | |
2522 | return; | |
2523 | } | |
2524 | ||
1e7cf8c3 WY |
2525 | /* Find a dirty page */ |
2526 | run_start = find_next_bit(bitmap, pages, 0); | |
99e314eb | 2527 | |
6b6712ef | 2528 | while (run_start < pages) { |
99e314eb DDAG |
2529 | |
2530 | /* | |
2531 | * If the start of this run of pages is in the middle of a host | |
2532 | * page, then we need to fixup this host page. | |
2533 | */ | |
9dec3cc3 | 2534 | if (QEMU_IS_ALIGNED(run_start, host_ratio)) { |
99e314eb | 2535 | /* Find the end of this run */ |
1e7cf8c3 | 2536 | run_start = find_next_zero_bit(bitmap, pages, run_start + 1); |
99e314eb DDAG |
2537 | /* |
2538 | * If the end isn't at the start of a host page, then the | |
2539 | * run doesn't finish at the end of a host page | |
2540 | * and we need to discard. | |
2541 | */ | |
99e314eb DDAG |
2542 | } |
2543 | ||
9dec3cc3 | 2544 | if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { |
99e314eb | 2545 | unsigned long page; |
dad45ab2 WY |
2546 | unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, |
2547 | host_ratio); | |
2548 | run_start = QEMU_ALIGN_UP(run_start, host_ratio); | |
99e314eb | 2549 | |
99e314eb DDAG |
2550 | /* Clean up the bitmap */ |
2551 | for (page = fixup_start_addr; | |
2552 | page < fixup_start_addr + host_ratio; page++) { | |
99e314eb DDAG |
2553 | /* |
2554 | * Remark them as dirty, updating the count for any pages | |
2555 | * that weren't previously dirty. | |
2556 | */ | |
0d8ec885 | 2557 | rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); |
99e314eb DDAG |
2558 | } |
2559 | } | |
2560 | ||
1e7cf8c3 WY |
2561 | /* Find the next dirty page for the next iteration */ |
2562 | run_start = find_next_bit(bitmap, pages, run_start); | |
99e314eb DDAG |
2563 | } |
2564 | } | |
2565 | ||
3d0684b2 JQ |
2566 | /** |
2567 | * ram_postcopy_send_discard_bitmap: transmit the discard bitmap | |
2568 | * | |
e0b266f0 DDAG |
2569 | * Transmit the set of pages to be discarded after precopy to the target |
2570 | * these are pages that: | |
2571 | * a) Have been previously transmitted but are now dirty again | |
2572 | * b) Pages that have never been transmitted, this ensures that | |
2573 | * any pages on the destination that have been mapped by background | |
2574 | * tasks get discarded (transparent huge pages is the specific concern) | |
2575 | * Hopefully this is pretty sparse | |
3d0684b2 JQ |
2576 | * |
2577 | * @ms: current migration state | |
e0b266f0 | 2578 | */ |
739fcc1b | 2579 | void ram_postcopy_send_discard_bitmap(MigrationState *ms) |
e0b266f0 | 2580 | { |
53518d94 | 2581 | RAMState *rs = ram_state; |
e0b266f0 | 2582 | |
89ac5a1d | 2583 | RCU_READ_LOCK_GUARD(); |
e0b266f0 DDAG |
2584 | |
2585 | /* This should be our last sync, the src is now paused */ | |
eb859c53 | 2586 | migration_bitmap_sync(rs); |
e0b266f0 | 2587 | |
6b6712ef JQ |
2588 | /* Easiest way to make sure we don't resume in the middle of a host-page */ |
2589 | rs->last_seen_block = NULL; | |
2590 | rs->last_sent_block = NULL; | |
2591 | rs->last_page = 0; | |
e0b266f0 | 2592 | |
739fcc1b | 2593 | postcopy_each_ram_send_discard(ms); |
e0b266f0 | 2594 | |
739fcc1b | 2595 | trace_ram_postcopy_send_discard_bitmap(); |
e0b266f0 DDAG |
2596 | } |
2597 | ||
3d0684b2 JQ |
2598 | /** |
2599 | * ram_discard_range: discard dirtied pages at the beginning of postcopy | |
e0b266f0 | 2600 | * |
3d0684b2 | 2601 | * Returns zero on success |
e0b266f0 | 2602 | * |
36449157 JQ |
2603 | * @rbname: name of the RAMBlock of the request. NULL means the |
2604 | * same that last one. | |
3d0684b2 JQ |
2605 | * @start: RAMBlock starting page |
2606 | * @length: RAMBlock size | |
e0b266f0 | 2607 | */ |
aaa2064c | 2608 | int ram_discard_range(const char *rbname, uint64_t start, size_t length) |
e0b266f0 | 2609 | { |
36449157 | 2610 | trace_ram_discard_range(rbname, start, length); |
d3a5038c | 2611 | |
89ac5a1d | 2612 | RCU_READ_LOCK_GUARD(); |
36449157 | 2613 | RAMBlock *rb = qemu_ram_block_by_name(rbname); |
e0b266f0 DDAG |
2614 | |
2615 | if (!rb) { | |
36449157 | 2616 | error_report("ram_discard_range: Failed to find block '%s'", rbname); |
03acb4e9 | 2617 | return -1; |
e0b266f0 DDAG |
2618 | } |
2619 | ||
814bb08f PX |
2620 | /* |
2621 | * On source VM, we don't need to update the received bitmap since | |
2622 | * we don't even have one. | |
2623 | */ | |
2624 | if (rb->receivedmap) { | |
2625 | bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), | |
2626 | length >> qemu_target_page_bits()); | |
2627 | } | |
2628 | ||
03acb4e9 | 2629 | return ram_block_discard_range(rb, start, length); |
e0b266f0 DDAG |
2630 | } |
2631 | ||
84593a08 PX |
2632 | /* |
2633 | * For every allocation, we will try not to crash the VM if the | |
2634 | * allocation failed. | |
2635 | */ | |
2636 | static int xbzrle_init(void) | |
2637 | { | |
2638 | Error *local_err = NULL; | |
2639 | ||
2640 | if (!migrate_use_xbzrle()) { | |
2641 | return 0; | |
2642 | } | |
2643 | ||
2644 | XBZRLE_cache_lock(); | |
2645 | ||
2646 | XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); | |
2647 | if (!XBZRLE.zero_target_page) { | |
2648 | error_report("%s: Error allocating zero page", __func__); | |
2649 | goto err_out; | |
2650 | } | |
2651 | ||
2652 | XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), | |
2653 | TARGET_PAGE_SIZE, &local_err); | |
2654 | if (!XBZRLE.cache) { | |
2655 | error_report_err(local_err); | |
2656 | goto free_zero_page; | |
2657 | } | |
2658 | ||
2659 | XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); | |
2660 | if (!XBZRLE.encoded_buf) { | |
2661 | error_report("%s: Error allocating encoded_buf", __func__); | |
2662 | goto free_cache; | |
2663 | } | |
2664 | ||
2665 | XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); | |
2666 | if (!XBZRLE.current_buf) { | |
2667 | error_report("%s: Error allocating current_buf", __func__); | |
2668 | goto free_encoded_buf; | |
2669 | } | |
2670 | ||
2671 | /* We are all good */ | |
2672 | XBZRLE_cache_unlock(); | |
2673 | return 0; | |
2674 | ||
2675 | free_encoded_buf: | |
2676 | g_free(XBZRLE.encoded_buf); | |
2677 | XBZRLE.encoded_buf = NULL; | |
2678 | free_cache: | |
2679 | cache_fini(XBZRLE.cache); | |
2680 | XBZRLE.cache = NULL; | |
2681 | free_zero_page: | |
2682 | g_free(XBZRLE.zero_target_page); | |
2683 | XBZRLE.zero_target_page = NULL; | |
2684 | err_out: | |
2685 | XBZRLE_cache_unlock(); | |
2686 | return -ENOMEM; | |
2687 | } | |
2688 | ||
53518d94 | 2689 | static int ram_state_init(RAMState **rsp) |
56e93d26 | 2690 | { |
7d00ee6a PX |
2691 | *rsp = g_try_new0(RAMState, 1); |
2692 | ||
2693 | if (!*rsp) { | |
2694 | error_report("%s: Init ramstate fail", __func__); | |
2695 | return -1; | |
2696 | } | |
53518d94 JQ |
2697 | |
2698 | qemu_mutex_init(&(*rsp)->bitmap_mutex); | |
2699 | qemu_mutex_init(&(*rsp)->src_page_req_mutex); | |
2700 | QSIMPLEQ_INIT(&(*rsp)->src_page_requests); | |
56e93d26 | 2701 | |
7d00ee6a | 2702 | /* |
40c4d4a8 IR |
2703 | * Count the total number of pages used by ram blocks not including any |
2704 | * gaps due to alignment or unplugs. | |
03158519 | 2705 | * This must match with the initial values of dirty bitmap. |
7d00ee6a | 2706 | */ |
40c4d4a8 | 2707 | (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; |
7d00ee6a PX |
2708 | ram_state_reset(*rsp); |
2709 | ||
2710 | return 0; | |
2711 | } | |
2712 | ||
d6eff5d7 | 2713 | static void ram_list_init_bitmaps(void) |
7d00ee6a | 2714 | { |
002cad6b | 2715 | MigrationState *ms = migrate_get_current(); |
d6eff5d7 PX |
2716 | RAMBlock *block; |
2717 | unsigned long pages; | |
002cad6b | 2718 | uint8_t shift; |
56e93d26 | 2719 | |
0827b9e9 AA |
2720 | /* Skip setting bitmap if there is no RAM */ |
2721 | if (ram_bytes_total()) { | |
002cad6b PX |
2722 | shift = ms->clear_bitmap_shift; |
2723 | if (shift > CLEAR_BITMAP_SHIFT_MAX) { | |
2724 | error_report("clear_bitmap_shift (%u) too big, using " | |
2725 | "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); | |
2726 | shift = CLEAR_BITMAP_SHIFT_MAX; | |
2727 | } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { | |
2728 | error_report("clear_bitmap_shift (%u) too small, using " | |
2729 | "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); | |
2730 | shift = CLEAR_BITMAP_SHIFT_MIN; | |
2731 | } | |
2732 | ||
fbd162e6 | 2733 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
d6eff5d7 | 2734 | pages = block->max_length >> TARGET_PAGE_BITS; |
03158519 WY |
2735 | /* |
2736 | * The initial dirty bitmap for migration must be set with all | |
2737 | * ones to make sure we'll migrate every guest RAM page to | |
2738 | * destination. | |
40c4d4a8 IR |
2739 | * Here we set RAMBlock.bmap all to 1 because when rebegin a |
2740 | * new migration after a failed migration, ram_list. | |
2741 | * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole | |
2742 | * guest memory. | |
03158519 | 2743 | */ |
6b6712ef | 2744 | block->bmap = bitmap_new(pages); |
40c4d4a8 | 2745 | bitmap_set(block->bmap, 0, pages); |
002cad6b PX |
2746 | block->clear_bmap_shift = shift; |
2747 | block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); | |
0827b9e9 | 2748 | } |
f3f491fc | 2749 | } |
d6eff5d7 PX |
2750 | } |
2751 | ||
be39b4cd DH |
2752 | static void migration_bitmap_clear_discarded_pages(RAMState *rs) |
2753 | { | |
2754 | unsigned long pages; | |
2755 | RAMBlock *rb; | |
2756 | ||
2757 | RCU_READ_LOCK_GUARD(); | |
2758 | ||
2759 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | |
2760 | pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); | |
2761 | rs->migration_dirty_pages -= pages; | |
2762 | } | |
2763 | } | |
2764 | ||
d6eff5d7 PX |
2765 | static void ram_init_bitmaps(RAMState *rs) |
2766 | { | |
2767 | /* For memory_global_dirty_log_start below. */ | |
2768 | qemu_mutex_lock_iothread(); | |
2769 | qemu_mutex_lock_ramlist(); | |
f3f491fc | 2770 | |
89ac5a1d DDAG |
2771 | WITH_RCU_READ_LOCK_GUARD() { |
2772 | ram_list_init_bitmaps(); | |
278e2f55 AG |
2773 | /* We don't use dirty log with background snapshots */ |
2774 | if (!migrate_background_snapshot()) { | |
63b41db4 | 2775 | memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
278e2f55 AG |
2776 | migration_bitmap_sync_precopy(rs); |
2777 | } | |
89ac5a1d | 2778 | } |
56e93d26 | 2779 | qemu_mutex_unlock_ramlist(); |
49877834 | 2780 | qemu_mutex_unlock_iothread(); |
be39b4cd DH |
2781 | |
2782 | /* | |
2783 | * After an eventual first bitmap sync, fixup the initial bitmap | |
2784 | * containing all 1s to exclude any discarded pages from migration. | |
2785 | */ | |
2786 | migration_bitmap_clear_discarded_pages(rs); | |
d6eff5d7 PX |
2787 | } |
2788 | ||
2789 | static int ram_init_all(RAMState **rsp) | |
2790 | { | |
2791 | if (ram_state_init(rsp)) { | |
2792 | return -1; | |
2793 | } | |
2794 | ||
2795 | if (xbzrle_init()) { | |
2796 | ram_state_cleanup(rsp); | |
2797 | return -1; | |
2798 | } | |
2799 | ||
2800 | ram_init_bitmaps(*rsp); | |
a91246c9 HZ |
2801 | |
2802 | return 0; | |
2803 | } | |
2804 | ||
08614f34 PX |
2805 | static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) |
2806 | { | |
2807 | RAMBlock *block; | |
2808 | uint64_t pages = 0; | |
2809 | ||
2810 | /* | |
2811 | * Postcopy is not using xbzrle/compression, so no need for that. | |
2812 | * Also, since source are already halted, we don't need to care | |
2813 | * about dirty page logging as well. | |
2814 | */ | |
2815 | ||
fbd162e6 | 2816 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
08614f34 PX |
2817 | pages += bitmap_count_one(block->bmap, |
2818 | block->used_length >> TARGET_PAGE_BITS); | |
2819 | } | |
2820 | ||
2821 | /* This may not be aligned with current bitmaps. Recalculate. */ | |
2822 | rs->migration_dirty_pages = pages; | |
2823 | ||
1a373522 | 2824 | ram_state_reset(rs); |
08614f34 PX |
2825 | |
2826 | /* Update RAMState cache of output QEMUFile */ | |
2827 | rs->f = out; | |
2828 | ||
2829 | trace_ram_state_resume_prepare(pages); | |
2830 | } | |
2831 | ||
6bcb05fc WW |
2832 | /* |
2833 | * This function clears bits of the free pages reported by the caller from the | |
2834 | * migration dirty bitmap. @addr is the host address corresponding to the | |
2835 | * start of the continuous guest free pages, and @len is the total bytes of | |
2836 | * those pages. | |
2837 | */ | |
2838 | void qemu_guest_free_page_hint(void *addr, size_t len) | |
2839 | { | |
2840 | RAMBlock *block; | |
2841 | ram_addr_t offset; | |
2842 | size_t used_len, start, npages; | |
2843 | MigrationState *s = migrate_get_current(); | |
2844 | ||
2845 | /* This function is currently expected to be used during live migration */ | |
2846 | if (!migration_is_setup_or_active(s->state)) { | |
2847 | return; | |
2848 | } | |
2849 | ||
2850 | for (; len > 0; len -= used_len, addr += used_len) { | |
2851 | block = qemu_ram_block_from_host(addr, false, &offset); | |
2852 | if (unlikely(!block || offset >= block->used_length)) { | |
2853 | /* | |
2854 | * The implementation might not support RAMBlock resize during | |
2855 | * live migration, but it could happen in theory with future | |
2856 | * updates. So we add a check here to capture that case. | |
2857 | */ | |
2858 | error_report_once("%s unexpected error", __func__); | |
2859 | return; | |
2860 | } | |
2861 | ||
2862 | if (len <= block->used_length - offset) { | |
2863 | used_len = len; | |
2864 | } else { | |
2865 | used_len = block->used_length - offset; | |
2866 | } | |
2867 | ||
2868 | start = offset >> TARGET_PAGE_BITS; | |
2869 | npages = used_len >> TARGET_PAGE_BITS; | |
2870 | ||
2871 | qemu_mutex_lock(&ram_state->bitmap_mutex); | |
3143577d WW |
2872 | /* |
2873 | * The skipped free pages are equavalent to be sent from clear_bmap's | |
2874 | * perspective, so clear the bits from the memory region bitmap which | |
2875 | * are initially set. Otherwise those skipped pages will be sent in | |
2876 | * the next round after syncing from the memory region bitmap. | |
2877 | */ | |
1230a25f | 2878 | migration_clear_memory_region_dirty_bitmap_range(block, start, npages); |
6bcb05fc WW |
2879 | ram_state->migration_dirty_pages -= |
2880 | bitmap_count_one_with_offset(block->bmap, start, npages); | |
2881 | bitmap_clear(block->bmap, start, npages); | |
2882 | qemu_mutex_unlock(&ram_state->bitmap_mutex); | |
2883 | } | |
2884 | } | |
2885 | ||
3d0684b2 JQ |
2886 | /* |
2887 | * Each of ram_save_setup, ram_save_iterate and ram_save_complete has | |
a91246c9 HZ |
2888 | * long-running RCU critical section. When rcu-reclaims in the code |
2889 | * start to become numerous it will be necessary to reduce the | |
2890 | * granularity of these critical sections. | |
2891 | */ | |
2892 | ||
3d0684b2 JQ |
2893 | /** |
2894 | * ram_save_setup: Setup RAM for migration | |
2895 | * | |
2896 | * Returns zero to indicate success and negative for error | |
2897 | * | |
2898 | * @f: QEMUFile where to send the data | |
2899 | * @opaque: RAMState pointer | |
2900 | */ | |
a91246c9 HZ |
2901 | static int ram_save_setup(QEMUFile *f, void *opaque) |
2902 | { | |
53518d94 | 2903 | RAMState **rsp = opaque; |
a91246c9 HZ |
2904 | RAMBlock *block; |
2905 | ||
dcaf446e XG |
2906 | if (compress_threads_save_setup()) { |
2907 | return -1; | |
2908 | } | |
2909 | ||
a91246c9 HZ |
2910 | /* migration has already setup the bitmap, reuse it. */ |
2911 | if (!migration_in_colo_state()) { | |
7d00ee6a | 2912 | if (ram_init_all(rsp) != 0) { |
dcaf446e | 2913 | compress_threads_save_cleanup(); |
a91246c9 | 2914 | return -1; |
53518d94 | 2915 | } |
a91246c9 | 2916 | } |
53518d94 | 2917 | (*rsp)->f = f; |
a91246c9 | 2918 | |
0e6ebd48 DDAG |
2919 | WITH_RCU_READ_LOCK_GUARD() { |
2920 | qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); | |
56e93d26 | 2921 | |
0e6ebd48 DDAG |
2922 | RAMBLOCK_FOREACH_MIGRATABLE(block) { |
2923 | qemu_put_byte(f, strlen(block->idstr)); | |
2924 | qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); | |
2925 | qemu_put_be64(f, block->used_length); | |
2926 | if (migrate_postcopy_ram() && block->page_size != | |
2927 | qemu_host_page_size) { | |
2928 | qemu_put_be64(f, block->page_size); | |
2929 | } | |
2930 | if (migrate_ignore_shared()) { | |
2931 | qemu_put_be64(f, block->mr->addr); | |
2932 | } | |
fbd162e6 | 2933 | } |
56e93d26 JQ |
2934 | } |
2935 | ||
56e93d26 JQ |
2936 | ram_control_before_iterate(f, RAM_CONTROL_SETUP); |
2937 | ram_control_after_iterate(f, RAM_CONTROL_SETUP); | |
2938 | ||
99f2c6fb | 2939 | multifd_send_sync_main(f); |
56e93d26 | 2940 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
35374cbd | 2941 | qemu_fflush(f); |
56e93d26 JQ |
2942 | |
2943 | return 0; | |
2944 | } | |
2945 | ||
3d0684b2 JQ |
2946 | /** |
2947 | * ram_save_iterate: iterative stage for migration | |
2948 | * | |
2949 | * Returns zero to indicate success and negative for error | |
2950 | * | |
2951 | * @f: QEMUFile where to send the data | |
2952 | * @opaque: RAMState pointer | |
2953 | */ | |
56e93d26 JQ |
2954 | static int ram_save_iterate(QEMUFile *f, void *opaque) |
2955 | { | |
53518d94 JQ |
2956 | RAMState **temp = opaque; |
2957 | RAMState *rs = *temp; | |
3d4095b2 | 2958 | int ret = 0; |
56e93d26 JQ |
2959 | int i; |
2960 | int64_t t0; | |
5c90308f | 2961 | int done = 0; |
56e93d26 | 2962 | |
b2557345 PL |
2963 | if (blk_mig_bulk_active()) { |
2964 | /* Avoid transferring ram during bulk phase of block migration as | |
2965 | * the bulk phase will usually take a long time and transferring | |
2966 | * ram updates during that time is pointless. */ | |
2967 | goto out; | |
2968 | } | |
2969 | ||
63268c49 PX |
2970 | /* |
2971 | * We'll take this lock a little bit long, but it's okay for two reasons. | |
2972 | * Firstly, the only possible other thread to take it is who calls | |
2973 | * qemu_guest_free_page_hint(), which should be rare; secondly, see | |
2974 | * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which | |
2975 | * guarantees that we'll at least released it in a regular basis. | |
2976 | */ | |
2977 | qemu_mutex_lock(&rs->bitmap_mutex); | |
89ac5a1d DDAG |
2978 | WITH_RCU_READ_LOCK_GUARD() { |
2979 | if (ram_list.version != rs->last_version) { | |
2980 | ram_state_reset(rs); | |
2981 | } | |
56e93d26 | 2982 | |
89ac5a1d DDAG |
2983 | /* Read version before ram_list.blocks */ |
2984 | smp_rmb(); | |
56e93d26 | 2985 | |
89ac5a1d | 2986 | ram_control_before_iterate(f, RAM_CONTROL_ROUND); |
56e93d26 | 2987 | |
89ac5a1d DDAG |
2988 | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
2989 | i = 0; | |
2990 | while ((ret = qemu_file_rate_limit(f)) == 0 || | |
a1fe28df | 2991 | postcopy_has_request(rs)) { |
89ac5a1d | 2992 | int pages; |
e03a34f8 | 2993 | |
89ac5a1d DDAG |
2994 | if (qemu_file_get_error(f)) { |
2995 | break; | |
2996 | } | |
e8f3735f | 2997 | |
05931ec5 | 2998 | pages = ram_find_and_save_block(rs); |
89ac5a1d DDAG |
2999 | /* no more pages to sent */ |
3000 | if (pages == 0) { | |
3001 | done = 1; | |
3002 | break; | |
3003 | } | |
e8f3735f | 3004 | |
89ac5a1d DDAG |
3005 | if (pages < 0) { |
3006 | qemu_file_set_error(f, pages); | |
56e93d26 JQ |
3007 | break; |
3008 | } | |
89ac5a1d DDAG |
3009 | |
3010 | rs->target_page_count += pages; | |
3011 | ||
644acf99 WY |
3012 | /* |
3013 | * During postcopy, it is necessary to make sure one whole host | |
3014 | * page is sent in one chunk. | |
3015 | */ | |
3016 | if (migrate_postcopy_ram()) { | |
3017 | flush_compressed_data(rs); | |
3018 | } | |
3019 | ||
89ac5a1d DDAG |
3020 | /* |
3021 | * we want to check in the 1st loop, just in case it was the 1st | |
3022 | * time and we had to sync the dirty bitmap. | |
3023 | * qemu_clock_get_ns() is a bit expensive, so we only check each | |
3024 | * some iterations | |
3025 | */ | |
3026 | if ((i & 63) == 0) { | |
3027 | uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / | |
3028 | 1000000; | |
3029 | if (t1 > MAX_WAIT) { | |
3030 | trace_ram_save_iterate_big_wait(t1, i); | |
3031 | break; | |
3032 | } | |
3033 | } | |
3034 | i++; | |
56e93d26 | 3035 | } |
56e93d26 | 3036 | } |
63268c49 | 3037 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 JQ |
3038 | |
3039 | /* | |
3040 | * Must occur before EOS (or any QEMUFile operation) | |
3041 | * because of RDMA protocol. | |
3042 | */ | |
3043 | ram_control_after_iterate(f, RAM_CONTROL_ROUND); | |
3044 | ||
b2557345 | 3045 | out: |
b69a0227 JQ |
3046 | if (ret >= 0 |
3047 | && migration_is_setup_or_active(migrate_get_current()->state)) { | |
99f2c6fb | 3048 | multifd_send_sync_main(rs->f); |
3d4095b2 JQ |
3049 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
3050 | qemu_fflush(f); | |
4c2d0f6d | 3051 | ram_transferred_add(8); |
56e93d26 | 3052 | |
3d4095b2 JQ |
3053 | ret = qemu_file_get_error(f); |
3054 | } | |
56e93d26 JQ |
3055 | if (ret < 0) { |
3056 | return ret; | |
3057 | } | |
3058 | ||
5c90308f | 3059 | return done; |
56e93d26 JQ |
3060 | } |
3061 | ||
3d0684b2 JQ |
3062 | /** |
3063 | * ram_save_complete: function called to send the remaining amount of ram | |
3064 | * | |
e8f3735f | 3065 | * Returns zero to indicate success or negative on error |
3d0684b2 JQ |
3066 | * |
3067 | * Called with iothread lock | |
3068 | * | |
3069 | * @f: QEMUFile where to send the data | |
3070 | * @opaque: RAMState pointer | |
3071 | */ | |
56e93d26 JQ |
3072 | static int ram_save_complete(QEMUFile *f, void *opaque) |
3073 | { | |
53518d94 JQ |
3074 | RAMState **temp = opaque; |
3075 | RAMState *rs = *temp; | |
e8f3735f | 3076 | int ret = 0; |
6f37bb8b | 3077 | |
05931ec5 JQ |
3078 | rs->last_stage = !migration_in_colo_state(); |
3079 | ||
89ac5a1d DDAG |
3080 | WITH_RCU_READ_LOCK_GUARD() { |
3081 | if (!migration_in_postcopy()) { | |
3082 | migration_bitmap_sync_precopy(rs); | |
3083 | } | |
56e93d26 | 3084 | |
89ac5a1d | 3085 | ram_control_before_iterate(f, RAM_CONTROL_FINISH); |
56e93d26 | 3086 | |
89ac5a1d | 3087 | /* try transferring iterative blocks of memory */ |
56e93d26 | 3088 | |
89ac5a1d DDAG |
3089 | /* flush all remaining blocks regardless of rate limiting */ |
3090 | while (true) { | |
3091 | int pages; | |
56e93d26 | 3092 | |
05931ec5 | 3093 | pages = ram_find_and_save_block(rs); |
89ac5a1d DDAG |
3094 | /* no more blocks to sent */ |
3095 | if (pages == 0) { | |
3096 | break; | |
3097 | } | |
3098 | if (pages < 0) { | |
3099 | ret = pages; | |
3100 | break; | |
3101 | } | |
e8f3735f | 3102 | } |
56e93d26 | 3103 | |
89ac5a1d DDAG |
3104 | flush_compressed_data(rs); |
3105 | ram_control_after_iterate(f, RAM_CONTROL_FINISH); | |
3106 | } | |
d09a6fde | 3107 | |
3d4095b2 | 3108 | if (ret >= 0) { |
99f2c6fb | 3109 | multifd_send_sync_main(rs->f); |
3d4095b2 JQ |
3110 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
3111 | qemu_fflush(f); | |
3112 | } | |
56e93d26 | 3113 | |
e8f3735f | 3114 | return ret; |
56e93d26 JQ |
3115 | } |
3116 | ||
c31b098f | 3117 | static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, |
47995026 VSO |
3118 | uint64_t *res_precopy_only, |
3119 | uint64_t *res_compatible, | |
3120 | uint64_t *res_postcopy_only) | |
56e93d26 | 3121 | { |
53518d94 JQ |
3122 | RAMState **temp = opaque; |
3123 | RAMState *rs = *temp; | |
56e93d26 JQ |
3124 | uint64_t remaining_size; |
3125 | ||
9edabd4d | 3126 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 3127 | |
5727309d | 3128 | if (!migration_in_postcopy() && |
663e6c1d | 3129 | remaining_size < max_size) { |
56e93d26 | 3130 | qemu_mutex_lock_iothread(); |
89ac5a1d DDAG |
3131 | WITH_RCU_READ_LOCK_GUARD() { |
3132 | migration_bitmap_sync_precopy(rs); | |
3133 | } | |
56e93d26 | 3134 | qemu_mutex_unlock_iothread(); |
9edabd4d | 3135 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 3136 | } |
c31b098f | 3137 | |
86e1167e VSO |
3138 | if (migrate_postcopy_ram()) { |
3139 | /* We can do postcopy, and all the data is postcopiable */ | |
47995026 | 3140 | *res_compatible += remaining_size; |
86e1167e | 3141 | } else { |
47995026 | 3142 | *res_precopy_only += remaining_size; |
86e1167e | 3143 | } |
56e93d26 JQ |
3144 | } |
3145 | ||
3146 | static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) | |
3147 | { | |
3148 | unsigned int xh_len; | |
3149 | int xh_flags; | |
063e760a | 3150 | uint8_t *loaded_data; |
56e93d26 | 3151 | |
56e93d26 JQ |
3152 | /* extract RLE header */ |
3153 | xh_flags = qemu_get_byte(f); | |
3154 | xh_len = qemu_get_be16(f); | |
3155 | ||
3156 | if (xh_flags != ENCODING_FLAG_XBZRLE) { | |
3157 | error_report("Failed to load XBZRLE page - wrong compression!"); | |
3158 | return -1; | |
3159 | } | |
3160 | ||
3161 | if (xh_len > TARGET_PAGE_SIZE) { | |
3162 | error_report("Failed to load XBZRLE page - len overflow!"); | |
3163 | return -1; | |
3164 | } | |
f265e0e4 | 3165 | loaded_data = XBZRLE.decoded_buf; |
56e93d26 | 3166 | /* load data and decode */ |
f265e0e4 | 3167 | /* it can change loaded_data to point to an internal buffer */ |
063e760a | 3168 | qemu_get_buffer_in_place(f, &loaded_data, xh_len); |
56e93d26 JQ |
3169 | |
3170 | /* decode RLE */ | |
063e760a | 3171 | if (xbzrle_decode_buffer(loaded_data, xh_len, host, |
56e93d26 JQ |
3172 | TARGET_PAGE_SIZE) == -1) { |
3173 | error_report("Failed to load XBZRLE page - decode error!"); | |
3174 | return -1; | |
3175 | } | |
3176 | ||
3177 | return 0; | |
3178 | } | |
3179 | ||
3d0684b2 JQ |
3180 | /** |
3181 | * ram_block_from_stream: read a RAMBlock id from the migration stream | |
3182 | * | |
3183 | * Must be called from within a rcu critical section. | |
3184 | * | |
56e93d26 | 3185 | * Returns a pointer from within the RCU-protected ram_list. |
a7180877 | 3186 | * |
3d0684b2 JQ |
3187 | * @f: QEMUFile where to read the data from |
3188 | * @flags: Page flags (mostly to see if it's a continuation of previous block) | |
a7180877 | 3189 | */ |
3d0684b2 | 3190 | static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) |
56e93d26 | 3191 | { |
49324e93 | 3192 | static RAMBlock *block; |
56e93d26 JQ |
3193 | char id[256]; |
3194 | uint8_t len; | |
3195 | ||
3196 | if (flags & RAM_SAVE_FLAG_CONTINUE) { | |
4c4bad48 | 3197 | if (!block) { |
56e93d26 JQ |
3198 | error_report("Ack, bad migration stream!"); |
3199 | return NULL; | |
3200 | } | |
4c4bad48 | 3201 | return block; |
56e93d26 JQ |
3202 | } |
3203 | ||
3204 | len = qemu_get_byte(f); | |
3205 | qemu_get_buffer(f, (uint8_t *)id, len); | |
3206 | id[len] = 0; | |
3207 | ||
e3dd7493 | 3208 | block = qemu_ram_block_by_name(id); |
4c4bad48 HZ |
3209 | if (!block) { |
3210 | error_report("Can't find block %s", id); | |
3211 | return NULL; | |
56e93d26 JQ |
3212 | } |
3213 | ||
fbd162e6 | 3214 | if (ramblock_is_ignored(block)) { |
b895de50 CLG |
3215 | error_report("block %s should not be migrated !", id); |
3216 | return NULL; | |
3217 | } | |
3218 | ||
4c4bad48 HZ |
3219 | return block; |
3220 | } | |
3221 | ||
3222 | static inline void *host_from_ram_block_offset(RAMBlock *block, | |
3223 | ram_addr_t offset) | |
3224 | { | |
3225 | if (!offset_in_ramblock(block, offset)) { | |
3226 | return NULL; | |
3227 | } | |
3228 | ||
3229 | return block->host + offset; | |
56e93d26 JQ |
3230 | } |
3231 | ||
6a23f639 DH |
3232 | static void *host_page_from_ram_block_offset(RAMBlock *block, |
3233 | ram_addr_t offset) | |
3234 | { | |
3235 | /* Note: Explicitly no check against offset_in_ramblock(). */ | |
3236 | return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), | |
3237 | block->page_size); | |
3238 | } | |
3239 | ||
3240 | static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, | |
3241 | ram_addr_t offset) | |
3242 | { | |
3243 | return ((uintptr_t)block->host + offset) & (block->page_size - 1); | |
3244 | } | |
3245 | ||
13af18f2 | 3246 | static inline void *colo_cache_from_block_offset(RAMBlock *block, |
8af66371 | 3247 | ram_addr_t offset, bool record_bitmap) |
13af18f2 ZC |
3248 | { |
3249 | if (!offset_in_ramblock(block, offset)) { | |
3250 | return NULL; | |
3251 | } | |
3252 | if (!block->colo_cache) { | |
3253 | error_report("%s: colo_cache is NULL in block :%s", | |
3254 | __func__, block->idstr); | |
3255 | return NULL; | |
3256 | } | |
7d9acafa ZC |
3257 | |
3258 | /* | |
3259 | * During colo checkpoint, we need bitmap of these migrated pages. | |
3260 | * It help us to decide which pages in ram cache should be flushed | |
3261 | * into VM's RAM later. | |
3262 | */ | |
8af66371 HZ |
3263 | if (record_bitmap && |
3264 | !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { | |
7d9acafa ZC |
3265 | ram_state->migration_dirty_pages++; |
3266 | } | |
13af18f2 ZC |
3267 | return block->colo_cache + offset; |
3268 | } | |
3269 | ||
3d0684b2 JQ |
3270 | /** |
3271 | * ram_handle_compressed: handle the zero page case | |
3272 | * | |
56e93d26 JQ |
3273 | * If a page (or a whole RDMA chunk) has been |
3274 | * determined to be zero, then zap it. | |
3d0684b2 JQ |
3275 | * |
3276 | * @host: host address for the zero page | |
3277 | * @ch: what the page is filled from. We only support zero | |
3278 | * @size: size of the zero page | |
56e93d26 JQ |
3279 | */ |
3280 | void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) | |
3281 | { | |
bad452a7 | 3282 | if (ch != 0 || !buffer_is_zero(host, size)) { |
56e93d26 JQ |
3283 | memset(host, ch, size); |
3284 | } | |
3285 | } | |
3286 | ||
797ca154 XG |
3287 | /* return the size after decompression, or negative value on error */ |
3288 | static int | |
3289 | qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, | |
3290 | const uint8_t *source, size_t source_len) | |
3291 | { | |
3292 | int err; | |
3293 | ||
3294 | err = inflateReset(stream); | |
3295 | if (err != Z_OK) { | |
3296 | return -1; | |
3297 | } | |
3298 | ||
3299 | stream->avail_in = source_len; | |
3300 | stream->next_in = (uint8_t *)source; | |
3301 | stream->avail_out = dest_len; | |
3302 | stream->next_out = dest; | |
3303 | ||
3304 | err = inflate(stream, Z_NO_FLUSH); | |
3305 | if (err != Z_STREAM_END) { | |
3306 | return -1; | |
3307 | } | |
3308 | ||
3309 | return stream->total_out; | |
3310 | } | |
3311 | ||
56e93d26 JQ |
3312 | static void *do_data_decompress(void *opaque) |
3313 | { | |
3314 | DecompressParam *param = opaque; | |
3315 | unsigned long pagesize; | |
33d151f4 | 3316 | uint8_t *des; |
34ab9e97 | 3317 | int len, ret; |
56e93d26 | 3318 | |
33d151f4 | 3319 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 3320 | while (!param->quit) { |
33d151f4 LL |
3321 | if (param->des) { |
3322 | des = param->des; | |
3323 | len = param->len; | |
3324 | param->des = 0; | |
3325 | qemu_mutex_unlock(¶m->mutex); | |
3326 | ||
56e93d26 | 3327 | pagesize = TARGET_PAGE_SIZE; |
34ab9e97 XG |
3328 | |
3329 | ret = qemu_uncompress_data(¶m->stream, des, pagesize, | |
3330 | param->compbuf, len); | |
f548222c | 3331 | if (ret < 0 && migrate_get_current()->decompress_error_check) { |
34ab9e97 XG |
3332 | error_report("decompress data failed"); |
3333 | qemu_file_set_error(decomp_file, ret); | |
3334 | } | |
73a8912b | 3335 | |
33d151f4 LL |
3336 | qemu_mutex_lock(&decomp_done_lock); |
3337 | param->done = true; | |
3338 | qemu_cond_signal(&decomp_done_cond); | |
3339 | qemu_mutex_unlock(&decomp_done_lock); | |
3340 | ||
3341 | qemu_mutex_lock(¶m->mutex); | |
3342 | } else { | |
3343 | qemu_cond_wait(¶m->cond, ¶m->mutex); | |
3344 | } | |
56e93d26 | 3345 | } |
33d151f4 | 3346 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
3347 | |
3348 | return NULL; | |
3349 | } | |
3350 | ||
34ab9e97 | 3351 | static int wait_for_decompress_done(void) |
5533b2e9 LL |
3352 | { |
3353 | int idx, thread_count; | |
3354 | ||
3355 | if (!migrate_use_compression()) { | |
34ab9e97 | 3356 | return 0; |
5533b2e9 LL |
3357 | } |
3358 | ||
3359 | thread_count = migrate_decompress_threads(); | |
3360 | qemu_mutex_lock(&decomp_done_lock); | |
3361 | for (idx = 0; idx < thread_count; idx++) { | |
3362 | while (!decomp_param[idx].done) { | |
3363 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
3364 | } | |
3365 | } | |
3366 | qemu_mutex_unlock(&decomp_done_lock); | |
34ab9e97 | 3367 | return qemu_file_get_error(decomp_file); |
5533b2e9 LL |
3368 | } |
3369 | ||
f0afa331 | 3370 | static void compress_threads_load_cleanup(void) |
56e93d26 JQ |
3371 | { |
3372 | int i, thread_count; | |
3373 | ||
3416ab5b JQ |
3374 | if (!migrate_use_compression()) { |
3375 | return; | |
3376 | } | |
56e93d26 JQ |
3377 | thread_count = migrate_decompress_threads(); |
3378 | for (i = 0; i < thread_count; i++) { | |
797ca154 XG |
3379 | /* |
3380 | * we use it as a indicator which shows if the thread is | |
3381 | * properly init'd or not | |
3382 | */ | |
3383 | if (!decomp_param[i].compbuf) { | |
3384 | break; | |
3385 | } | |
3386 | ||
56e93d26 | 3387 | qemu_mutex_lock(&decomp_param[i].mutex); |
90e56fb4 | 3388 | decomp_param[i].quit = true; |
56e93d26 JQ |
3389 | qemu_cond_signal(&decomp_param[i].cond); |
3390 | qemu_mutex_unlock(&decomp_param[i].mutex); | |
3391 | } | |
3392 | for (i = 0; i < thread_count; i++) { | |
797ca154 XG |
3393 | if (!decomp_param[i].compbuf) { |
3394 | break; | |
3395 | } | |
3396 | ||
56e93d26 JQ |
3397 | qemu_thread_join(decompress_threads + i); |
3398 | qemu_mutex_destroy(&decomp_param[i].mutex); | |
3399 | qemu_cond_destroy(&decomp_param[i].cond); | |
797ca154 | 3400 | inflateEnd(&decomp_param[i].stream); |
56e93d26 | 3401 | g_free(decomp_param[i].compbuf); |
797ca154 | 3402 | decomp_param[i].compbuf = NULL; |
56e93d26 JQ |
3403 | } |
3404 | g_free(decompress_threads); | |
3405 | g_free(decomp_param); | |
56e93d26 JQ |
3406 | decompress_threads = NULL; |
3407 | decomp_param = NULL; | |
34ab9e97 | 3408 | decomp_file = NULL; |
56e93d26 JQ |
3409 | } |
3410 | ||
34ab9e97 | 3411 | static int compress_threads_load_setup(QEMUFile *f) |
797ca154 XG |
3412 | { |
3413 | int i, thread_count; | |
3414 | ||
3415 | if (!migrate_use_compression()) { | |
3416 | return 0; | |
3417 | } | |
3418 | ||
3419 | thread_count = migrate_decompress_threads(); | |
3420 | decompress_threads = g_new0(QemuThread, thread_count); | |
3421 | decomp_param = g_new0(DecompressParam, thread_count); | |
3422 | qemu_mutex_init(&decomp_done_lock); | |
3423 | qemu_cond_init(&decomp_done_cond); | |
34ab9e97 | 3424 | decomp_file = f; |
797ca154 XG |
3425 | for (i = 0; i < thread_count; i++) { |
3426 | if (inflateInit(&decomp_param[i].stream) != Z_OK) { | |
3427 | goto exit; | |
3428 | } | |
3429 | ||
3430 | decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); | |
3431 | qemu_mutex_init(&decomp_param[i].mutex); | |
3432 | qemu_cond_init(&decomp_param[i].cond); | |
3433 | decomp_param[i].done = true; | |
3434 | decomp_param[i].quit = false; | |
3435 | qemu_thread_create(decompress_threads + i, "decompress", | |
3436 | do_data_decompress, decomp_param + i, | |
3437 | QEMU_THREAD_JOINABLE); | |
3438 | } | |
3439 | return 0; | |
3440 | exit: | |
3441 | compress_threads_load_cleanup(); | |
3442 | return -1; | |
3443 | } | |
3444 | ||
c1bc6626 | 3445 | static void decompress_data_with_multi_threads(QEMUFile *f, |
56e93d26 JQ |
3446 | void *host, int len) |
3447 | { | |
3448 | int idx, thread_count; | |
3449 | ||
3450 | thread_count = migrate_decompress_threads(); | |
37396950 | 3451 | QEMU_LOCK_GUARD(&decomp_done_lock); |
56e93d26 JQ |
3452 | while (true) { |
3453 | for (idx = 0; idx < thread_count; idx++) { | |
73a8912b | 3454 | if (decomp_param[idx].done) { |
33d151f4 LL |
3455 | decomp_param[idx].done = false; |
3456 | qemu_mutex_lock(&decomp_param[idx].mutex); | |
c1bc6626 | 3457 | qemu_get_buffer(f, decomp_param[idx].compbuf, len); |
56e93d26 JQ |
3458 | decomp_param[idx].des = host; |
3459 | decomp_param[idx].len = len; | |
33d151f4 LL |
3460 | qemu_cond_signal(&decomp_param[idx].cond); |
3461 | qemu_mutex_unlock(&decomp_param[idx].mutex); | |
56e93d26 JQ |
3462 | break; |
3463 | } | |
3464 | } | |
3465 | if (idx < thread_count) { | |
3466 | break; | |
73a8912b LL |
3467 | } else { |
3468 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
56e93d26 JQ |
3469 | } |
3470 | } | |
3471 | } | |
3472 | ||
b70cb3b4 RL |
3473 | static void colo_init_ram_state(void) |
3474 | { | |
3475 | ram_state_init(&ram_state); | |
b70cb3b4 RL |
3476 | } |
3477 | ||
13af18f2 ZC |
3478 | /* |
3479 | * colo cache: this is for secondary VM, we cache the whole | |
3480 | * memory of the secondary VM, it is need to hold the global lock | |
3481 | * to call this helper. | |
3482 | */ | |
3483 | int colo_init_ram_cache(void) | |
3484 | { | |
3485 | RAMBlock *block; | |
3486 | ||
44901b5a PB |
3487 | WITH_RCU_READ_LOCK_GUARD() { |
3488 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3489 | block->colo_cache = qemu_anon_ram_alloc(block->used_length, | |
8dbe22c6 | 3490 | NULL, false, false); |
44901b5a PB |
3491 | if (!block->colo_cache) { |
3492 | error_report("%s: Can't alloc memory for COLO cache of block %s," | |
3493 | "size 0x" RAM_ADDR_FMT, __func__, block->idstr, | |
3494 | block->used_length); | |
3495 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3496 | if (block->colo_cache) { | |
3497 | qemu_anon_ram_free(block->colo_cache, block->used_length); | |
3498 | block->colo_cache = NULL; | |
3499 | } | |
89ac5a1d | 3500 | } |
44901b5a | 3501 | return -errno; |
89ac5a1d | 3502 | } |
e5fdf920 LS |
3503 | if (!machine_dump_guest_core(current_machine)) { |
3504 | qemu_madvise(block->colo_cache, block->used_length, | |
3505 | QEMU_MADV_DONTDUMP); | |
3506 | } | |
13af18f2 | 3507 | } |
13af18f2 | 3508 | } |
44901b5a | 3509 | |
7d9acafa ZC |
3510 | /* |
3511 | * Record the dirty pages that sent by PVM, we use this dirty bitmap together | |
3512 | * with to decide which page in cache should be flushed into SVM's RAM. Here | |
3513 | * we use the same name 'ram_bitmap' as for migration. | |
3514 | */ | |
3515 | if (ram_bytes_total()) { | |
3516 | RAMBlock *block; | |
3517 | ||
fbd162e6 | 3518 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
7d9acafa | 3519 | unsigned long pages = block->max_length >> TARGET_PAGE_BITS; |
7d9acafa | 3520 | block->bmap = bitmap_new(pages); |
7d9acafa ZC |
3521 | } |
3522 | } | |
7d9acafa | 3523 | |
b70cb3b4 | 3524 | colo_init_ram_state(); |
13af18f2 | 3525 | return 0; |
13af18f2 ZC |
3526 | } |
3527 | ||
0393031a HZ |
3528 | /* TODO: duplicated with ram_init_bitmaps */ |
3529 | void colo_incoming_start_dirty_log(void) | |
3530 | { | |
3531 | RAMBlock *block = NULL; | |
3532 | /* For memory_global_dirty_log_start below. */ | |
3533 | qemu_mutex_lock_iothread(); | |
3534 | qemu_mutex_lock_ramlist(); | |
3535 | ||
3536 | memory_global_dirty_log_sync(); | |
3537 | WITH_RCU_READ_LOCK_GUARD() { | |
3538 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3539 | ramblock_sync_dirty_bitmap(ram_state, block); | |
3540 | /* Discard this dirty bitmap record */ | |
3541 | bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); | |
3542 | } | |
63b41db4 | 3543 | memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
0393031a HZ |
3544 | } |
3545 | ram_state->migration_dirty_pages = 0; | |
3546 | qemu_mutex_unlock_ramlist(); | |
3547 | qemu_mutex_unlock_iothread(); | |
3548 | } | |
3549 | ||
13af18f2 ZC |
3550 | /* It is need to hold the global lock to call this helper */ |
3551 | void colo_release_ram_cache(void) | |
3552 | { | |
3553 | RAMBlock *block; | |
3554 | ||
63b41db4 | 3555 | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); |
fbd162e6 | 3556 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
7d9acafa ZC |
3557 | g_free(block->bmap); |
3558 | block->bmap = NULL; | |
3559 | } | |
3560 | ||
89ac5a1d DDAG |
3561 | WITH_RCU_READ_LOCK_GUARD() { |
3562 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3563 | if (block->colo_cache) { | |
3564 | qemu_anon_ram_free(block->colo_cache, block->used_length); | |
3565 | block->colo_cache = NULL; | |
3566 | } | |
13af18f2 ZC |
3567 | } |
3568 | } | |
0393031a | 3569 | ram_state_cleanup(&ram_state); |
13af18f2 ZC |
3570 | } |
3571 | ||
f265e0e4 JQ |
3572 | /** |
3573 | * ram_load_setup: Setup RAM for migration incoming side | |
3574 | * | |
3575 | * Returns zero to indicate success and negative for error | |
3576 | * | |
3577 | * @f: QEMUFile where to receive the data | |
3578 | * @opaque: RAMState pointer | |
3579 | */ | |
3580 | static int ram_load_setup(QEMUFile *f, void *opaque) | |
3581 | { | |
34ab9e97 | 3582 | if (compress_threads_load_setup(f)) { |
797ca154 XG |
3583 | return -1; |
3584 | } | |
3585 | ||
f265e0e4 | 3586 | xbzrle_load_setup(); |
f9494614 | 3587 | ramblock_recv_map_init(); |
13af18f2 | 3588 | |
f265e0e4 JQ |
3589 | return 0; |
3590 | } | |
3591 | ||
3592 | static int ram_load_cleanup(void *opaque) | |
3593 | { | |
f9494614 | 3594 | RAMBlock *rb; |
56eb90af | 3595 | |
fbd162e6 | 3596 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
bd108a44 | 3597 | qemu_ram_block_writeback(rb); |
56eb90af JH |
3598 | } |
3599 | ||
f265e0e4 | 3600 | xbzrle_load_cleanup(); |
f0afa331 | 3601 | compress_threads_load_cleanup(); |
f9494614 | 3602 | |
fbd162e6 | 3603 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
f9494614 AP |
3604 | g_free(rb->receivedmap); |
3605 | rb->receivedmap = NULL; | |
3606 | } | |
13af18f2 | 3607 | |
f265e0e4 JQ |
3608 | return 0; |
3609 | } | |
3610 | ||
3d0684b2 JQ |
3611 | /** |
3612 | * ram_postcopy_incoming_init: allocate postcopy data structures | |
3613 | * | |
3614 | * Returns 0 for success and negative if there was one error | |
3615 | * | |
3616 | * @mis: current migration incoming state | |
3617 | * | |
3618 | * Allocate data structures etc needed by incoming migration with | |
3619 | * postcopy-ram. postcopy-ram's similarly names | |
3620 | * postcopy_ram_incoming_init does the work. | |
1caddf8a DDAG |
3621 | */ |
3622 | int ram_postcopy_incoming_init(MigrationIncomingState *mis) | |
3623 | { | |
c136180c | 3624 | return postcopy_ram_incoming_init(mis); |
1caddf8a DDAG |
3625 | } |
3626 | ||
3d0684b2 JQ |
3627 | /** |
3628 | * ram_load_postcopy: load a page in postcopy case | |
3629 | * | |
3630 | * Returns 0 for success or -errno in case of error | |
3631 | * | |
a7180877 DDAG |
3632 | * Called in postcopy mode by ram_load(). |
3633 | * rcu_read_lock is taken prior to this being called. | |
3d0684b2 JQ |
3634 | * |
3635 | * @f: QEMUFile where to send the data | |
a7180877 DDAG |
3636 | */ |
3637 | static int ram_load_postcopy(QEMUFile *f) | |
3638 | { | |
3639 | int flags = 0, ret = 0; | |
3640 | bool place_needed = false; | |
1aa83678 | 3641 | bool matches_target_page_size = false; |
a7180877 DDAG |
3642 | MigrationIncomingState *mis = migration_incoming_get_current(); |
3643 | /* Temporary page that is later 'placed' */ | |
3414322a | 3644 | void *postcopy_host_page = mis->postcopy_tmp_page; |
6a23f639 | 3645 | void *host_page = NULL; |
ddf35bdf | 3646 | bool all_zero = true; |
4cbb3c63 | 3647 | int target_pages = 0; |
a7180877 DDAG |
3648 | |
3649 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | |
3650 | ram_addr_t addr; | |
a7180877 DDAG |
3651 | void *page_buffer = NULL; |
3652 | void *place_source = NULL; | |
df9ff5e1 | 3653 | RAMBlock *block = NULL; |
a7180877 | 3654 | uint8_t ch; |
644acf99 | 3655 | int len; |
a7180877 DDAG |
3656 | |
3657 | addr = qemu_get_be64(f); | |
7a9ddfbf PX |
3658 | |
3659 | /* | |
3660 | * If qemu file error, we should stop here, and then "addr" | |
3661 | * may be invalid | |
3662 | */ | |
3663 | ret = qemu_file_get_error(f); | |
3664 | if (ret) { | |
3665 | break; | |
3666 | } | |
3667 | ||
a7180877 DDAG |
3668 | flags = addr & ~TARGET_PAGE_MASK; |
3669 | addr &= TARGET_PAGE_MASK; | |
3670 | ||
3671 | trace_ram_load_postcopy_loop((uint64_t)addr, flags); | |
644acf99 WY |
3672 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
3673 | RAM_SAVE_FLAG_COMPRESS_PAGE)) { | |
df9ff5e1 | 3674 | block = ram_block_from_stream(f, flags); |
6a23f639 DH |
3675 | if (!block) { |
3676 | ret = -EINVAL; | |
3677 | break; | |
3678 | } | |
4c4bad48 | 3679 | |
898ba906 DH |
3680 | /* |
3681 | * Relying on used_length is racy and can result in false positives. | |
3682 | * We might place pages beyond used_length in case RAM was shrunk | |
3683 | * while in postcopy, which is fine - trying to place via | |
3684 | * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. | |
3685 | */ | |
3686 | if (!block->host || addr >= block->postcopy_length) { | |
a7180877 DDAG |
3687 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
3688 | ret = -EINVAL; | |
3689 | break; | |
3690 | } | |
4cbb3c63 | 3691 | target_pages++; |
1aa83678 | 3692 | matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; |
a7180877 | 3693 | /* |
28abd200 DDAG |
3694 | * Postcopy requires that we place whole host pages atomically; |
3695 | * these may be huge pages for RAMBlocks that are backed by | |
3696 | * hugetlbfs. | |
a7180877 DDAG |
3697 | * To make it atomic, the data is read into a temporary page |
3698 | * that's moved into place later. | |
3699 | * The migration protocol uses, possibly smaller, target-pages | |
3700 | * however the source ensures it always sends all the components | |
91ba442f | 3701 | * of a host page in one chunk. |
a7180877 DDAG |
3702 | */ |
3703 | page_buffer = postcopy_host_page + | |
6a23f639 DH |
3704 | host_page_offset_from_ram_block_offset(block, addr); |
3705 | /* If all TP are zero then we can optimise the place */ | |
e5e73b0f | 3706 | if (target_pages == 1) { |
6a23f639 DH |
3707 | host_page = host_page_from_ram_block_offset(block, addr); |
3708 | } else if (host_page != host_page_from_ram_block_offset(block, | |
3709 | addr)) { | |
c53b7ddc | 3710 | /* not the 1st TP within the HP */ |
6a23f639 DH |
3711 | error_report("Non-same host page %p/%p", host_page, |
3712 | host_page_from_ram_block_offset(block, addr)); | |
3713 | ret = -EINVAL; | |
3714 | break; | |
a7180877 DDAG |
3715 | } |
3716 | ||
3717 | /* | |
3718 | * If it's the last part of a host page then we place the host | |
3719 | * page | |
3720 | */ | |
4cbb3c63 WY |
3721 | if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) { |
3722 | place_needed = true; | |
4cbb3c63 | 3723 | } |
a7180877 DDAG |
3724 | place_source = postcopy_host_page; |
3725 | } | |
3726 | ||
3727 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | |
bb890ed5 | 3728 | case RAM_SAVE_FLAG_ZERO: |
a7180877 | 3729 | ch = qemu_get_byte(f); |
2e36bc1b WY |
3730 | /* |
3731 | * Can skip to set page_buffer when | |
3732 | * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). | |
3733 | */ | |
3734 | if (ch || !matches_target_page_size) { | |
3735 | memset(page_buffer, ch, TARGET_PAGE_SIZE); | |
3736 | } | |
a7180877 DDAG |
3737 | if (ch) { |
3738 | all_zero = false; | |
3739 | } | |
3740 | break; | |
3741 | ||
3742 | case RAM_SAVE_FLAG_PAGE: | |
3743 | all_zero = false; | |
1aa83678 PX |
3744 | if (!matches_target_page_size) { |
3745 | /* For huge pages, we always use temporary buffer */ | |
a7180877 DDAG |
3746 | qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); |
3747 | } else { | |
1aa83678 PX |
3748 | /* |
3749 | * For small pages that matches target page size, we | |
3750 | * avoid the qemu_file copy. Instead we directly use | |
3751 | * the buffer of QEMUFile to place the page. Note: we | |
3752 | * cannot do any QEMUFile operation before using that | |
3753 | * buffer to make sure the buffer is valid when | |
3754 | * placing the page. | |
a7180877 DDAG |
3755 | */ |
3756 | qemu_get_buffer_in_place(f, (uint8_t **)&place_source, | |
3757 | TARGET_PAGE_SIZE); | |
3758 | } | |
3759 | break; | |
644acf99 WY |
3760 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
3761 | all_zero = false; | |
3762 | len = qemu_get_be32(f); | |
3763 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
3764 | error_report("Invalid compressed data length: %d", len); | |
3765 | ret = -EINVAL; | |
3766 | break; | |
3767 | } | |
3768 | decompress_data_with_multi_threads(f, page_buffer, len); | |
3769 | break; | |
3770 | ||
a7180877 DDAG |
3771 | case RAM_SAVE_FLAG_EOS: |
3772 | /* normal exit */ | |
6df264ac | 3773 | multifd_recv_sync_main(); |
a7180877 DDAG |
3774 | break; |
3775 | default: | |
29fccade | 3776 | error_report("Unknown combination of migration flags: 0x%x" |
a7180877 DDAG |
3777 | " (postcopy mode)", flags); |
3778 | ret = -EINVAL; | |
7a9ddfbf PX |
3779 | break; |
3780 | } | |
3781 | ||
644acf99 WY |
3782 | /* Got the whole host page, wait for decompress before placing. */ |
3783 | if (place_needed) { | |
3784 | ret |= wait_for_decompress_done(); | |
3785 | } | |
3786 | ||
7a9ddfbf PX |
3787 | /* Detect for any possible file errors */ |
3788 | if (!ret && qemu_file_get_error(f)) { | |
3789 | ret = qemu_file_get_error(f); | |
a7180877 DDAG |
3790 | } |
3791 | ||
7a9ddfbf | 3792 | if (!ret && place_needed) { |
a7180877 | 3793 | if (all_zero) { |
6a23f639 | 3794 | ret = postcopy_place_page_zero(mis, host_page, block); |
a7180877 | 3795 | } else { |
6a23f639 DH |
3796 | ret = postcopy_place_page(mis, host_page, place_source, |
3797 | block); | |
a7180877 | 3798 | } |
ddf35bdf DH |
3799 | place_needed = false; |
3800 | target_pages = 0; | |
3801 | /* Assume we have a zero page until we detect something different */ | |
3802 | all_zero = true; | |
a7180877 | 3803 | } |
a7180877 DDAG |
3804 | } |
3805 | ||
3806 | return ret; | |
3807 | } | |
3808 | ||
acab30b8 DHB |
3809 | static bool postcopy_is_advised(void) |
3810 | { | |
3811 | PostcopyState ps = postcopy_state_get(); | |
3812 | return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; | |
3813 | } | |
3814 | ||
3815 | static bool postcopy_is_running(void) | |
3816 | { | |
3817 | PostcopyState ps = postcopy_state_get(); | |
3818 | return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; | |
3819 | } | |
3820 | ||
e6f4aa18 ZC |
3821 | /* |
3822 | * Flush content of RAM cache into SVM's memory. | |
3823 | * Only flush the pages that be dirtied by PVM or SVM or both. | |
3824 | */ | |
24fa16f8 | 3825 | void colo_flush_ram_cache(void) |
e6f4aa18 ZC |
3826 | { |
3827 | RAMBlock *block = NULL; | |
3828 | void *dst_host; | |
3829 | void *src_host; | |
3830 | unsigned long offset = 0; | |
3831 | ||
d1955d22 | 3832 | memory_global_dirty_log_sync(); |
89ac5a1d DDAG |
3833 | WITH_RCU_READ_LOCK_GUARD() { |
3834 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3835 | ramblock_sync_dirty_bitmap(ram_state, block); | |
3836 | } | |
d1955d22 | 3837 | } |
d1955d22 | 3838 | |
e6f4aa18 | 3839 | trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); |
89ac5a1d DDAG |
3840 | WITH_RCU_READ_LOCK_GUARD() { |
3841 | block = QLIST_FIRST_RCU(&ram_list.blocks); | |
e6f4aa18 | 3842 | |
89ac5a1d | 3843 | while (block) { |
a6a83cef | 3844 | unsigned long num = 0; |
e6f4aa18 | 3845 | |
a6a83cef | 3846 | offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); |
542147f4 DH |
3847 | if (!offset_in_ramblock(block, |
3848 | ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { | |
89ac5a1d | 3849 | offset = 0; |
a6a83cef | 3850 | num = 0; |
89ac5a1d DDAG |
3851 | block = QLIST_NEXT_RCU(block, next); |
3852 | } else { | |
a6a83cef RL |
3853 | unsigned long i = 0; |
3854 | ||
3855 | for (i = 0; i < num; i++) { | |
3856 | migration_bitmap_clear_dirty(ram_state, block, offset + i); | |
3857 | } | |
8bba004c AR |
3858 | dst_host = block->host |
3859 | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | |
3860 | src_host = block->colo_cache | |
3861 | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | |
a6a83cef RL |
3862 | memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); |
3863 | offset += num; | |
89ac5a1d | 3864 | } |
e6f4aa18 ZC |
3865 | } |
3866 | } | |
e6f4aa18 ZC |
3867 | trace_colo_flush_ram_cache_end(); |
3868 | } | |
3869 | ||
10da4a36 WY |
3870 | /** |
3871 | * ram_load_precopy: load pages in precopy case | |
3872 | * | |
3873 | * Returns 0 for success or -errno in case of error | |
3874 | * | |
3875 | * Called in precopy mode by ram_load(). | |
3876 | * rcu_read_lock is taken prior to this being called. | |
3877 | * | |
3878 | * @f: QEMUFile where to send the data | |
3879 | */ | |
3880 | static int ram_load_precopy(QEMUFile *f) | |
56e93d26 | 3881 | { |
e65cec5e | 3882 | int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; |
ef08fb38 | 3883 | /* ADVISE is earlier, it shows the source has the postcopy capability on */ |
acab30b8 | 3884 | bool postcopy_advised = postcopy_is_advised(); |
edc60127 JQ |
3885 | if (!migrate_use_compression()) { |
3886 | invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; | |
3887 | } | |
a7180877 | 3888 | |
10da4a36 | 3889 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
56e93d26 | 3890 | ram_addr_t addr, total_ram_bytes; |
0393031a | 3891 | void *host = NULL, *host_bak = NULL; |
56e93d26 JQ |
3892 | uint8_t ch; |
3893 | ||
e65cec5e YK |
3894 | /* |
3895 | * Yield periodically to let main loop run, but an iteration of | |
3896 | * the main loop is expensive, so do it each some iterations | |
3897 | */ | |
3898 | if ((i & 32767) == 0 && qemu_in_coroutine()) { | |
3899 | aio_co_schedule(qemu_get_current_aio_context(), | |
3900 | qemu_coroutine_self()); | |
3901 | qemu_coroutine_yield(); | |
3902 | } | |
3903 | i++; | |
3904 | ||
56e93d26 JQ |
3905 | addr = qemu_get_be64(f); |
3906 | flags = addr & ~TARGET_PAGE_MASK; | |
3907 | addr &= TARGET_PAGE_MASK; | |
3908 | ||
edc60127 JQ |
3909 | if (flags & invalid_flags) { |
3910 | if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { | |
3911 | error_report("Received an unexpected compressed page"); | |
3912 | } | |
3913 | ||
3914 | ret = -EINVAL; | |
3915 | break; | |
3916 | } | |
3917 | ||
bb890ed5 | 3918 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
a776aa15 | 3919 | RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { |
4c4bad48 HZ |
3920 | RAMBlock *block = ram_block_from_stream(f, flags); |
3921 | ||
0393031a | 3922 | host = host_from_ram_block_offset(block, addr); |
13af18f2 | 3923 | /* |
0393031a HZ |
3924 | * After going into COLO stage, we should not load the page |
3925 | * into SVM's memory directly, we put them into colo_cache firstly. | |
3926 | * NOTE: We need to keep a copy of SVM's ram in colo_cache. | |
3927 | * Previously, we copied all these memory in preparing stage of COLO | |
3928 | * while we need to stop VM, which is a time-consuming process. | |
3929 | * Here we optimize it by a trick, back-up every page while in | |
3930 | * migration process while COLO is enabled, though it affects the | |
3931 | * speed of the migration, but it obviously reduce the downtime of | |
3932 | * back-up all SVM'S memory in COLO preparing stage. | |
13af18f2 | 3933 | */ |
0393031a HZ |
3934 | if (migration_incoming_colo_enabled()) { |
3935 | if (migration_incoming_in_colo_state()) { | |
3936 | /* In COLO stage, put all pages into cache temporarily */ | |
8af66371 | 3937 | host = colo_cache_from_block_offset(block, addr, true); |
0393031a HZ |
3938 | } else { |
3939 | /* | |
3940 | * In migration stage but before COLO stage, | |
3941 | * Put all pages into both cache and SVM's memory. | |
3942 | */ | |
8af66371 | 3943 | host_bak = colo_cache_from_block_offset(block, addr, false); |
0393031a | 3944 | } |
13af18f2 | 3945 | } |
a776aa15 DDAG |
3946 | if (!host) { |
3947 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
3948 | ret = -EINVAL; | |
3949 | break; | |
3950 | } | |
13af18f2 ZC |
3951 | if (!migration_incoming_in_colo_state()) { |
3952 | ramblock_recv_bitmap_set(block, host); | |
3953 | } | |
3954 | ||
1db9d8e5 | 3955 | trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); |
a776aa15 DDAG |
3956 | } |
3957 | ||
56e93d26 JQ |
3958 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
3959 | case RAM_SAVE_FLAG_MEM_SIZE: | |
3960 | /* Synchronize RAM block list */ | |
3961 | total_ram_bytes = addr; | |
3962 | while (!ret && total_ram_bytes) { | |
3963 | RAMBlock *block; | |
56e93d26 JQ |
3964 | char id[256]; |
3965 | ram_addr_t length; | |
3966 | ||
3967 | len = qemu_get_byte(f); | |
3968 | qemu_get_buffer(f, (uint8_t *)id, len); | |
3969 | id[len] = 0; | |
3970 | length = qemu_get_be64(f); | |
3971 | ||
e3dd7493 | 3972 | block = qemu_ram_block_by_name(id); |
b895de50 CLG |
3973 | if (block && !qemu_ram_is_migratable(block)) { |
3974 | error_report("block %s should not be migrated !", id); | |
3975 | ret = -EINVAL; | |
3976 | } else if (block) { | |
e3dd7493 DDAG |
3977 | if (length != block->used_length) { |
3978 | Error *local_err = NULL; | |
56e93d26 | 3979 | |
fa53a0e5 | 3980 | ret = qemu_ram_resize(block, length, |
e3dd7493 DDAG |
3981 | &local_err); |
3982 | if (local_err) { | |
3983 | error_report_err(local_err); | |
56e93d26 | 3984 | } |
56e93d26 | 3985 | } |
ef08fb38 | 3986 | /* For postcopy we need to check hugepage sizes match */ |
e846b746 | 3987 | if (postcopy_advised && migrate_postcopy_ram() && |
ef08fb38 DDAG |
3988 | block->page_size != qemu_host_page_size) { |
3989 | uint64_t remote_page_size = qemu_get_be64(f); | |
3990 | if (remote_page_size != block->page_size) { | |
3991 | error_report("Mismatched RAM page size %s " | |
3992 | "(local) %zd != %" PRId64, | |
3993 | id, block->page_size, | |
3994 | remote_page_size); | |
3995 | ret = -EINVAL; | |
3996 | } | |
3997 | } | |
fbd162e6 YK |
3998 | if (migrate_ignore_shared()) { |
3999 | hwaddr addr = qemu_get_be64(f); | |
fbd162e6 YK |
4000 | if (ramblock_is_ignored(block) && |
4001 | block->mr->addr != addr) { | |
4002 | error_report("Mismatched GPAs for block %s " | |
4003 | "%" PRId64 "!= %" PRId64, | |
4004 | id, (uint64_t)addr, | |
4005 | (uint64_t)block->mr->addr); | |
4006 | ret = -EINVAL; | |
4007 | } | |
4008 | } | |
e3dd7493 DDAG |
4009 | ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
4010 | block->idstr); | |
4011 | } else { | |
56e93d26 JQ |
4012 | error_report("Unknown ramblock \"%s\", cannot " |
4013 | "accept migration", id); | |
4014 | ret = -EINVAL; | |
4015 | } | |
4016 | ||
4017 | total_ram_bytes -= length; | |
4018 | } | |
4019 | break; | |
a776aa15 | 4020 | |
bb890ed5 | 4021 | case RAM_SAVE_FLAG_ZERO: |
56e93d26 JQ |
4022 | ch = qemu_get_byte(f); |
4023 | ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); | |
4024 | break; | |
a776aa15 | 4025 | |
56e93d26 | 4026 | case RAM_SAVE_FLAG_PAGE: |
56e93d26 JQ |
4027 | qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
4028 | break; | |
56e93d26 | 4029 | |
a776aa15 | 4030 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
56e93d26 JQ |
4031 | len = qemu_get_be32(f); |
4032 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
4033 | error_report("Invalid compressed data length: %d", len); | |
4034 | ret = -EINVAL; | |
4035 | break; | |
4036 | } | |
c1bc6626 | 4037 | decompress_data_with_multi_threads(f, host, len); |
56e93d26 | 4038 | break; |
a776aa15 | 4039 | |
56e93d26 | 4040 | case RAM_SAVE_FLAG_XBZRLE: |
56e93d26 JQ |
4041 | if (load_xbzrle(f, addr, host) < 0) { |
4042 | error_report("Failed to decompress XBZRLE page at " | |
4043 | RAM_ADDR_FMT, addr); | |
4044 | ret = -EINVAL; | |
4045 | break; | |
4046 | } | |
4047 | break; | |
4048 | case RAM_SAVE_FLAG_EOS: | |
4049 | /* normal exit */ | |
6df264ac | 4050 | multifd_recv_sync_main(); |
56e93d26 JQ |
4051 | break; |
4052 | default: | |
4053 | if (flags & RAM_SAVE_FLAG_HOOK) { | |
632e3a5c | 4054 | ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
56e93d26 | 4055 | } else { |
29fccade | 4056 | error_report("Unknown combination of migration flags: 0x%x", |
56e93d26 JQ |
4057 | flags); |
4058 | ret = -EINVAL; | |
4059 | } | |
4060 | } | |
4061 | if (!ret) { | |
4062 | ret = qemu_file_get_error(f); | |
4063 | } | |
0393031a HZ |
4064 | if (!ret && host_bak) { |
4065 | memcpy(host_bak, host, TARGET_PAGE_SIZE); | |
4066 | } | |
56e93d26 JQ |
4067 | } |
4068 | ||
ca1a6b70 | 4069 | ret |= wait_for_decompress_done(); |
10da4a36 WY |
4070 | return ret; |
4071 | } | |
4072 | ||
4073 | static int ram_load(QEMUFile *f, void *opaque, int version_id) | |
4074 | { | |
4075 | int ret = 0; | |
4076 | static uint64_t seq_iter; | |
4077 | /* | |
4078 | * If system is running in postcopy mode, page inserts to host memory must | |
4079 | * be atomic | |
4080 | */ | |
4081 | bool postcopy_running = postcopy_is_running(); | |
4082 | ||
4083 | seq_iter++; | |
4084 | ||
4085 | if (version_id != 4) { | |
4086 | return -EINVAL; | |
4087 | } | |
4088 | ||
4089 | /* | |
4090 | * This RCU critical section can be very long running. | |
4091 | * When RCU reclaims in the code start to become numerous, | |
4092 | * it will be necessary to reduce the granularity of this | |
4093 | * critical section. | |
4094 | */ | |
89ac5a1d DDAG |
4095 | WITH_RCU_READ_LOCK_GUARD() { |
4096 | if (postcopy_running) { | |
4097 | ret = ram_load_postcopy(f); | |
4098 | } else { | |
4099 | ret = ram_load_precopy(f); | |
4100 | } | |
10da4a36 | 4101 | } |
55c4446b | 4102 | trace_ram_load_complete(ret, seq_iter); |
e6f4aa18 | 4103 | |
56e93d26 JQ |
4104 | return ret; |
4105 | } | |
4106 | ||
c6467627 VSO |
4107 | static bool ram_has_postcopy(void *opaque) |
4108 | { | |
469dd51b | 4109 | RAMBlock *rb; |
fbd162e6 | 4110 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
469dd51b JH |
4111 | if (ramblock_is_pmem(rb)) { |
4112 | info_report("Block: %s, host: %p is a nvdimm memory, postcopy" | |
4113 | "is not supported now!", rb->idstr, rb->host); | |
4114 | return false; | |
4115 | } | |
4116 | } | |
4117 | ||
c6467627 VSO |
4118 | return migrate_postcopy_ram(); |
4119 | } | |
4120 | ||
edd090c7 PX |
4121 | /* Sync all the dirty bitmap with destination VM. */ |
4122 | static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) | |
4123 | { | |
4124 | RAMBlock *block; | |
4125 | QEMUFile *file = s->to_dst_file; | |
4126 | int ramblock_count = 0; | |
4127 | ||
4128 | trace_ram_dirty_bitmap_sync_start(); | |
4129 | ||
fbd162e6 | 4130 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
edd090c7 PX |
4131 | qemu_savevm_send_recv_bitmap(file, block->idstr); |
4132 | trace_ram_dirty_bitmap_request(block->idstr); | |
4133 | ramblock_count++; | |
4134 | } | |
4135 | ||
4136 | trace_ram_dirty_bitmap_sync_wait(); | |
4137 | ||
4138 | /* Wait until all the ramblocks' dirty bitmap synced */ | |
4139 | while (ramblock_count--) { | |
4140 | qemu_sem_wait(&s->rp_state.rp_sem); | |
4141 | } | |
4142 | ||
4143 | trace_ram_dirty_bitmap_sync_complete(); | |
4144 | ||
4145 | return 0; | |
4146 | } | |
4147 | ||
4148 | static void ram_dirty_bitmap_reload_notify(MigrationState *s) | |
4149 | { | |
4150 | qemu_sem_post(&s->rp_state.rp_sem); | |
4151 | } | |
4152 | ||
a335debb PX |
4153 | /* |
4154 | * Read the received bitmap, revert it as the initial dirty bitmap. | |
4155 | * This is only used when the postcopy migration is paused but wants | |
4156 | * to resume from a middle point. | |
4157 | */ | |
4158 | int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) | |
4159 | { | |
4160 | int ret = -EINVAL; | |
43044ac0 | 4161 | /* from_dst_file is always valid because we're within rp_thread */ |
a335debb PX |
4162 | QEMUFile *file = s->rp_state.from_dst_file; |
4163 | unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; | |
a725ef9f | 4164 | uint64_t local_size = DIV_ROUND_UP(nbits, 8); |
a335debb PX |
4165 | uint64_t size, end_mark; |
4166 | ||
4167 | trace_ram_dirty_bitmap_reload_begin(block->idstr); | |
4168 | ||
4169 | if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { | |
4170 | error_report("%s: incorrect state %s", __func__, | |
4171 | MigrationStatus_str(s->state)); | |
4172 | return -EINVAL; | |
4173 | } | |
4174 | ||
4175 | /* | |
4176 | * Note: see comments in ramblock_recv_bitmap_send() on why we | |
3a4452d8 | 4177 | * need the endianness conversion, and the paddings. |
a335debb PX |
4178 | */ |
4179 | local_size = ROUND_UP(local_size, 8); | |
4180 | ||
4181 | /* Add paddings */ | |
4182 | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | |
4183 | ||
4184 | size = qemu_get_be64(file); | |
4185 | ||
4186 | /* The size of the bitmap should match with our ramblock */ | |
4187 | if (size != local_size) { | |
4188 | error_report("%s: ramblock '%s' bitmap size mismatch " | |
4189 | "(0x%"PRIx64" != 0x%"PRIx64")", __func__, | |
4190 | block->idstr, size, local_size); | |
4191 | ret = -EINVAL; | |
4192 | goto out; | |
4193 | } | |
4194 | ||
4195 | size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); | |
4196 | end_mark = qemu_get_be64(file); | |
4197 | ||
4198 | ret = qemu_file_get_error(file); | |
4199 | if (ret || size != local_size) { | |
4200 | error_report("%s: read bitmap failed for ramblock '%s': %d" | |
4201 | " (size 0x%"PRIx64", got: 0x%"PRIx64")", | |
4202 | __func__, block->idstr, ret, local_size, size); | |
4203 | ret = -EIO; | |
4204 | goto out; | |
4205 | } | |
4206 | ||
4207 | if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { | |
af3bbbe9 | 4208 | error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, |
a335debb PX |
4209 | __func__, block->idstr, end_mark); |
4210 | ret = -EINVAL; | |
4211 | goto out; | |
4212 | } | |
4213 | ||
4214 | /* | |
3a4452d8 | 4215 | * Endianness conversion. We are during postcopy (though paused). |
a335debb PX |
4216 | * The dirty bitmap won't change. We can directly modify it. |
4217 | */ | |
4218 | bitmap_from_le(block->bmap, le_bitmap, nbits); | |
4219 | ||
4220 | /* | |
4221 | * What we received is "received bitmap". Revert it as the initial | |
4222 | * dirty bitmap for this ramblock. | |
4223 | */ | |
4224 | bitmap_complement(block->bmap, block->bmap, nbits); | |
4225 | ||
be39b4cd DH |
4226 | /* Clear dirty bits of discarded ranges that we don't want to migrate. */ |
4227 | ramblock_dirty_bitmap_clear_discarded_pages(block); | |
4228 | ||
4229 | /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ | |
a335debb PX |
4230 | trace_ram_dirty_bitmap_reload_complete(block->idstr); |
4231 | ||
edd090c7 PX |
4232 | /* |
4233 | * We succeeded to sync bitmap for current ramblock. If this is | |
4234 | * the last one to sync, we need to notify the main send thread. | |
4235 | */ | |
4236 | ram_dirty_bitmap_reload_notify(s); | |
4237 | ||
a335debb PX |
4238 | ret = 0; |
4239 | out: | |
bf269906 | 4240 | g_free(le_bitmap); |
a335debb PX |
4241 | return ret; |
4242 | } | |
4243 | ||
edd090c7 PX |
4244 | static int ram_resume_prepare(MigrationState *s, void *opaque) |
4245 | { | |
4246 | RAMState *rs = *(RAMState **)opaque; | |
08614f34 | 4247 | int ret; |
edd090c7 | 4248 | |
08614f34 PX |
4249 | ret = ram_dirty_bitmap_sync_all(s, rs); |
4250 | if (ret) { | |
4251 | return ret; | |
4252 | } | |
4253 | ||
4254 | ram_state_resume_prepare(rs, s->to_dst_file); | |
4255 | ||
4256 | return 0; | |
edd090c7 PX |
4257 | } |
4258 | ||
56e93d26 | 4259 | static SaveVMHandlers savevm_ram_handlers = { |
9907e842 | 4260 | .save_setup = ram_save_setup, |
56e93d26 | 4261 | .save_live_iterate = ram_save_iterate, |
763c906b | 4262 | .save_live_complete_postcopy = ram_save_complete, |
a3e06c3d | 4263 | .save_live_complete_precopy = ram_save_complete, |
c6467627 | 4264 | .has_postcopy = ram_has_postcopy, |
56e93d26 JQ |
4265 | .save_live_pending = ram_save_pending, |
4266 | .load_state = ram_load, | |
f265e0e4 JQ |
4267 | .save_cleanup = ram_save_cleanup, |
4268 | .load_setup = ram_load_setup, | |
4269 | .load_cleanup = ram_load_cleanup, | |
edd090c7 | 4270 | .resume_prepare = ram_resume_prepare, |
56e93d26 JQ |
4271 | }; |
4272 | ||
c7c0e724 DH |
4273 | static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, |
4274 | size_t old_size, size_t new_size) | |
4275 | { | |
cc61c703 | 4276 | PostcopyState ps = postcopy_state_get(); |
c7c0e724 DH |
4277 | ram_addr_t offset; |
4278 | RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); | |
4279 | Error *err = NULL; | |
4280 | ||
4281 | if (ramblock_is_ignored(rb)) { | |
4282 | return; | |
4283 | } | |
4284 | ||
4285 | if (!migration_is_idle()) { | |
4286 | /* | |
4287 | * Precopy code on the source cannot deal with the size of RAM blocks | |
4288 | * changing at random points in time - especially after sending the | |
4289 | * RAM block sizes in the migration stream, they must no longer change. | |
4290 | * Abort and indicate a proper reason. | |
4291 | */ | |
4292 | error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); | |
458fecca | 4293 | migration_cancel(err); |
c7c0e724 | 4294 | error_free(err); |
c7c0e724 | 4295 | } |
cc61c703 DH |
4296 | |
4297 | switch (ps) { | |
4298 | case POSTCOPY_INCOMING_ADVISE: | |
4299 | /* | |
4300 | * Update what ram_postcopy_incoming_init()->init_range() does at the | |
4301 | * time postcopy was advised. Syncing RAM blocks with the source will | |
4302 | * result in RAM resizes. | |
4303 | */ | |
4304 | if (old_size < new_size) { | |
4305 | if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { | |
4306 | error_report("RAM block '%s' discard of resized RAM failed", | |
4307 | rb->idstr); | |
4308 | } | |
4309 | } | |
898ba906 | 4310 | rb->postcopy_length = new_size; |
cc61c703 DH |
4311 | break; |
4312 | case POSTCOPY_INCOMING_NONE: | |
4313 | case POSTCOPY_INCOMING_RUNNING: | |
4314 | case POSTCOPY_INCOMING_END: | |
4315 | /* | |
4316 | * Once our guest is running, postcopy does no longer care about | |
4317 | * resizes. When growing, the new memory was not available on the | |
4318 | * source, no handler needed. | |
4319 | */ | |
4320 | break; | |
4321 | default: | |
4322 | error_report("RAM block '%s' resized during postcopy state: %d", | |
4323 | rb->idstr, ps); | |
4324 | exit(-1); | |
4325 | } | |
c7c0e724 DH |
4326 | } |
4327 | ||
4328 | static RAMBlockNotifier ram_mig_ram_notifier = { | |
4329 | .ram_block_resized = ram_mig_ram_block_resized, | |
4330 | }; | |
4331 | ||
56e93d26 JQ |
4332 | void ram_mig_init(void) |
4333 | { | |
4334 | qemu_mutex_init(&XBZRLE.lock); | |
ce62df53 | 4335 | register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); |
c7c0e724 | 4336 | ram_block_notifier_add(&ram_mig_ram_notifier); |
56e93d26 | 4337 | } |