]> Git Repo - qemu.git/blame - migration/ram.c
migration/ram.c: reset complete_round when we gets a queued page
[qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <[email protected]>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6 586/* This value needs to be a multiple of qemu_target_page_size() */
4b0c7264 587#define MULTIFD_PACKET_SIZE (512 * 1024)
efd1a1d6 588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
5fbd8b4b
JQ
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
af8b7d2b
JQ
596} __attribute__((packed)) MultiFDInit_t;
597
2a26c979
JQ
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
6f862692
JQ
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
2a34ee59
JQ
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
2a26c979 607 uint64_t packet_num;
5fbd8b4b 608 uint64_t unused[4]; /* Reserved for future use */
2a26c979
JQ
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
34c55a94
JQ
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
8c4598f2
JQ
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
f986c3d2 630 uint8_t id;
8c4598f2 631 /* channel thread name */
f986c3d2 632 char *name;
8c4598f2 633 /* channel thread id */
f986c3d2 634 QemuThread thread;
8c4598f2 635 /* communication channel */
60df2d4a 636 QIOChannel *c;
8c4598f2 637 /* sem where to wait for more work */
f986c3d2 638 QemuSemaphore sem;
8c4598f2 639 /* this mutex protects the following parameters */
f986c3d2 640 QemuMutex mutex;
8c4598f2 641 /* is this channel thread running */
66770707 642 bool running;
8c4598f2 643 /* should this thread finish */
f986c3d2 644 bool quit;
0beb5ed3
JQ
645 /* thread has work to do */
646 int pending_job;
34c55a94
JQ
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
2a26c979
JQ
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
2a34ee59
JQ
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
2a26c979
JQ
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
408ea6ae
JQ
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
8c4598f2
JQ
664} MultiFDSendParams;
665
666typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
8c4598f2
JQ
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
34c55a94
JQ
680 /* array of pages to receive */
681 MultiFDPages_t *pages;
2a26c979
JQ
682 /* packet allocated len */
683 uint32_t packet_len;
684 /* pointer to the packet */
685 MultiFDPacket_t *packet;
686 /* multifd flags for each packet */
687 uint32_t flags;
688 /* global number of generated multifd packets */
689 uint64_t packet_num;
408ea6ae 690 /* thread local variables */
2a34ee59
JQ
691 /* size of the next packet that contains pages */
692 uint32_t next_packet_size;
408ea6ae
JQ
693 /* packets sent through this channel */
694 uint64_t num_packets;
695 /* pages sent through this channel */
696 uint64_t num_pages;
6df264ac
JQ
697 /* syncs main thread and channels */
698 QemuSemaphore sem_sync;
8c4598f2 699} MultiFDRecvParams;
f986c3d2 700
af8b7d2b
JQ
701static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
702{
703 MultiFDInit_t msg;
704 int ret;
705
706 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
707 msg.version = cpu_to_be32(MULTIFD_VERSION);
708 msg.id = p->id;
709 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
710
711 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
712 if (ret != 0) {
713 return -1;
714 }
715 return 0;
716}
717
718static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
719{
720 MultiFDInit_t msg;
721 int ret;
722
723 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
724 if (ret != 0) {
725 return -1;
726 }
727
341ba0df
PM
728 msg.magic = be32_to_cpu(msg.magic);
729 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
730
731 if (msg.magic != MULTIFD_MAGIC) {
732 error_setg(errp, "multifd: received packet magic %x "
733 "expected %x", msg.magic, MULTIFD_MAGIC);
734 return -1;
735 }
736
737 if (msg.version != MULTIFD_VERSION) {
738 error_setg(errp, "multifd: received packet version %d "
739 "expected %d", msg.version, MULTIFD_VERSION);
740 return -1;
741 }
742
743 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
744 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
745 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
746
747 error_setg(errp, "multifd: received uuid '%s' and expected "
748 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
749 g_free(uuid);
750 g_free(msg_uuid);
751 return -1;
752 }
753
754 if (msg.id > migrate_multifd_channels()) {
755 error_setg(errp, "multifd: received channel version %d "
756 "expected %d", msg.version, MULTIFD_VERSION);
757 return -1;
758 }
759
760 return msg.id;
761}
762
34c55a94
JQ
763static MultiFDPages_t *multifd_pages_init(size_t size)
764{
765 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
766
767 pages->allocated = size;
768 pages->iov = g_new0(struct iovec, size);
769 pages->offset = g_new0(ram_addr_t, size);
770
771 return pages;
772}
773
774static void multifd_pages_clear(MultiFDPages_t *pages)
775{
776 pages->used = 0;
777 pages->allocated = 0;
778 pages->packet_num = 0;
779 pages->block = NULL;
780 g_free(pages->iov);
781 pages->iov = NULL;
782 g_free(pages->offset);
783 pages->offset = NULL;
784 g_free(pages);
785}
786
2a26c979
JQ
787static void multifd_send_fill_packet(MultiFDSendParams *p)
788{
789 MultiFDPacket_t *packet = p->packet;
7ed379b2 790 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
791 int i;
792
793 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
794 packet->version = cpu_to_be32(MULTIFD_VERSION);
795 packet->flags = cpu_to_be32(p->flags);
7ed379b2 796 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 797 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
807 }
808}
809
810static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
811{
812 MultiFDPacket_t *packet = p->packet;
7ed379b2 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
814 RAMBlock *block;
815 int i;
816
341ba0df 817 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
823 }
824
341ba0df 825 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
831 }
832
833 p->flags = be32_to_cpu(packet->flags);
834
6f862692 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
836 /*
837 * If we recevied a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
839 */
840 if (packet->pages_alloc > pages_max * 100) {
2a26c979 841 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
844 return -1;
845 }
7ed379b2
JQ
846 /*
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
849 */
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
f151f8ac 852 p->pages = multifd_pages_init(packet->pages_alloc);
7ed379b2 853 }
2a26c979 854
6f862692
JQ
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
2a26c979 857 error_setg(errp, "multifd: received packet "
6f862692
JQ
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
860 return -1;
861 }
862
2a34ee59 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
864 p->packet_num = be64_to_cpu(packet->packet_num);
865
866 if (p->pages->used) {
867 /* make sure that ramblock is 0 terminated */
868 packet->ramblock[255] = 0;
869 block = qemu_ram_block_by_name(packet->ramblock);
870 if (!block) {
871 error_setg(errp, "multifd: unknown ram block %s",
872 packet->ramblock);
873 return -1;
874 }
875 }
876
877 for (i = 0; i < p->pages->used; i++) {
878 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
879
880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
882 " (max " RAM_ADDR_FMT ")",
883 offset, block->max_length);
884 return -1;
885 }
886 p->pages->iov[i].iov_base = block->host + offset;
887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
888 }
889
890 return 0;
891}
892
f986c3d2
JQ
893struct {
894 MultiFDSendParams *params;
34c55a94
JQ
895 /* array of pages to sent */
896 MultiFDPages_t *pages;
6df264ac
JQ
897 /* syncs main thread and channels */
898 QemuSemaphore sem_sync;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
b9ee2f7d
JQ
901 /* send channels ready */
902 QemuSemaphore channels_ready;
f986c3d2
JQ
903} *multifd_send_state;
904
b9ee2f7d
JQ
905/*
906 * How we use multifd_send_state->pages and channel->pages?
907 *
908 * We create a pages for each channel, and a main one. Each time that
909 * we need to send a batch of pages we interchange the ones between
910 * multifd_send_state and the channel that is sending it. There are
911 * two reasons for that:
912 * - to not have to do so many mallocs during migration
913 * - to make easier to know what to free at the end of migration
914 *
915 * This way we always know who is the owner of each "pages" struct,
a5f7b1a6 916 * and we don't need any locking. It belongs to the migration thread
b9ee2f7d
JQ
917 * or to the channel thread. Switching is safe because the migration
918 * thread is using the channel mutex when changing it, and the channel
919 * have to had finish with its own, otherwise pending_job can't be
920 * false.
921 */
922
923static void multifd_send_pages(void)
924{
925 int i;
926 static int next_channel;
927 MultiFDSendParams *p = NULL; /* make happy gcc */
928 MultiFDPages_t *pages = multifd_send_state->pages;
929 uint64_t transferred;
930
931 qemu_sem_wait(&multifd_send_state->channels_ready);
932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
933 p = &multifd_send_state->params[i];
934
935 qemu_mutex_lock(&p->mutex);
936 if (!p->pending_job) {
937 p->pending_job++;
938 next_channel = (i + 1) % migrate_multifd_channels();
939 break;
940 }
941 qemu_mutex_unlock(&p->mutex);
942 }
943 p->pages->used = 0;
944
945 p->packet_num = multifd_send_state->packet_num++;
946 p->pages->block = NULL;
947 multifd_send_state->pages = p->pages;
948 p->pages = pages;
4fcefd44 949 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
950 ram_counters.multifd_bytes += transferred;
951 ram_counters.transferred += transferred;;
952 qemu_mutex_unlock(&p->mutex);
953 qemu_sem_post(&p->sem);
954}
955
956static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
957{
958 MultiFDPages_t *pages = multifd_send_state->pages;
959
960 if (!pages->block) {
961 pages->block = block;
962 }
963
964 if (pages->block == block) {
965 pages->offset[pages->used] = offset;
966 pages->iov[pages->used].iov_base = block->host + offset;
967 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
968 pages->used++;
969
970 if (pages->used < pages->allocated) {
971 return;
972 }
973 }
974
975 multifd_send_pages();
976
977 if (pages->block != block) {
978 multifd_queue_page(block, offset);
979 }
980}
981
66770707 982static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
983{
984 int i;
985
7a169d74
JQ
986 if (err) {
987 MigrationState *s = migrate_get_current();
988 migrate_set_error(s, err);
989 if (s->state == MIGRATION_STATUS_SETUP ||
990 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
991 s->state == MIGRATION_STATUS_DEVICE ||
992 s->state == MIGRATION_STATUS_ACTIVE) {
993 migrate_set_state(&s->state, s->state,
994 MIGRATION_STATUS_FAILED);
995 }
996 }
997
66770707 998 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
999 MultiFDSendParams *p = &multifd_send_state->params[i];
1000
1001 qemu_mutex_lock(&p->mutex);
1002 p->quit = true;
1003 qemu_sem_post(&p->sem);
1004 qemu_mutex_unlock(&p->mutex);
1005 }
1006}
1007
1398b2e3 1008void multifd_save_cleanup(void)
f986c3d2
JQ
1009{
1010 int i;
f986c3d2
JQ
1011
1012 if (!migrate_use_multifd()) {
1398b2e3 1013 return;
f986c3d2 1014 }
66770707
JQ
1015 multifd_send_terminate_threads(NULL);
1016 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1017 MultiFDSendParams *p = &multifd_send_state->params[i];
1018
66770707
JQ
1019 if (p->running) {
1020 qemu_thread_join(&p->thread);
1021 }
60df2d4a
JQ
1022 socket_send_channel_destroy(p->c);
1023 p->c = NULL;
f986c3d2
JQ
1024 qemu_mutex_destroy(&p->mutex);
1025 qemu_sem_destroy(&p->sem);
1026 g_free(p->name);
1027 p->name = NULL;
34c55a94
JQ
1028 multifd_pages_clear(p->pages);
1029 p->pages = NULL;
2a26c979
JQ
1030 p->packet_len = 0;
1031 g_free(p->packet);
1032 p->packet = NULL;
f986c3d2 1033 }
b9ee2f7d 1034 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1035 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1036 g_free(multifd_send_state->params);
1037 multifd_send_state->params = NULL;
34c55a94
JQ
1038 multifd_pages_clear(multifd_send_state->pages);
1039 multifd_send_state->pages = NULL;
f986c3d2
JQ
1040 g_free(multifd_send_state);
1041 multifd_send_state = NULL;
f986c3d2
JQ
1042}
1043
6df264ac
JQ
1044static void multifd_send_sync_main(void)
1045{
1046 int i;
1047
1048 if (!migrate_use_multifd()) {
1049 return;
1050 }
b9ee2f7d
JQ
1051 if (multifd_send_state->pages->used) {
1052 multifd_send_pages();
1053 }
6df264ac
JQ
1054 for (i = 0; i < migrate_multifd_channels(); i++) {
1055 MultiFDSendParams *p = &multifd_send_state->params[i];
1056
1057 trace_multifd_send_sync_main_signal(p->id);
1058
1059 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
1060
1061 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1062 p->flags |= MULTIFD_FLAG_SYNC;
1063 p->pending_job++;
1064 qemu_mutex_unlock(&p->mutex);
1065 qemu_sem_post(&p->sem);
1066 }
1067 for (i = 0; i < migrate_multifd_channels(); i++) {
1068 MultiFDSendParams *p = &multifd_send_state->params[i];
1069
1070 trace_multifd_send_sync_main_wait(p->id);
1071 qemu_sem_wait(&multifd_send_state->sem_sync);
1072 }
1073 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1074}
1075
f986c3d2
JQ
1076static void *multifd_send_thread(void *opaque)
1077{
1078 MultiFDSendParams *p = opaque;
af8b7d2b 1079 Error *local_err = NULL;
8b2db7f5 1080 int ret;
af8b7d2b 1081
408ea6ae 1082 trace_multifd_send_thread_start(p->id);
74637e6f 1083 rcu_register_thread();
408ea6ae 1084
af8b7d2b
JQ
1085 if (multifd_send_initial_packet(p, &local_err) < 0) {
1086 goto out;
1087 }
408ea6ae
JQ
1088 /* initial packet */
1089 p->num_packets = 1;
f986c3d2
JQ
1090
1091 while (true) {
d82628e4 1092 qemu_sem_wait(&p->sem);
f986c3d2 1093 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1094
1095 if (p->pending_job) {
1096 uint32_t used = p->pages->used;
1097 uint64_t packet_num = p->packet_num;
1098 uint32_t flags = p->flags;
1099
2a34ee59 1100 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1101 multifd_send_fill_packet(p);
1102 p->flags = 0;
1103 p->num_packets++;
1104 p->num_pages += used;
1105 p->pages->used = 0;
1106 qemu_mutex_unlock(&p->mutex);
1107
2a34ee59
JQ
1108 trace_multifd_send(p->id, packet_num, used, flags,
1109 p->next_packet_size);
0beb5ed3 1110
8b2db7f5
JQ
1111 ret = qio_channel_write_all(p->c, (void *)p->packet,
1112 p->packet_len, &local_err);
1113 if (ret != 0) {
1114 break;
1115 }
1116
ad24c7cb
JQ
1117 if (used) {
1118 ret = qio_channel_writev_all(p->c, p->pages->iov,
1119 used, &local_err);
1120 if (ret != 0) {
1121 break;
1122 }
8b2db7f5 1123 }
0beb5ed3
JQ
1124
1125 qemu_mutex_lock(&p->mutex);
1126 p->pending_job--;
1127 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1128
1129 if (flags & MULTIFD_FLAG_SYNC) {
1130 qemu_sem_post(&multifd_send_state->sem_sync);
1131 }
b9ee2f7d 1132 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1133 } else if (p->quit) {
f986c3d2
JQ
1134 qemu_mutex_unlock(&p->mutex);
1135 break;
6df264ac
JQ
1136 } else {
1137 qemu_mutex_unlock(&p->mutex);
1138 /* sometimes there are spurious wakeups */
f986c3d2 1139 }
f986c3d2
JQ
1140 }
1141
af8b7d2b
JQ
1142out:
1143 if (local_err) {
1144 multifd_send_terminate_threads(local_err);
1145 }
1146
66770707
JQ
1147 qemu_mutex_lock(&p->mutex);
1148 p->running = false;
1149 qemu_mutex_unlock(&p->mutex);
1150
74637e6f 1151 rcu_unregister_thread();
408ea6ae
JQ
1152 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1153
f986c3d2
JQ
1154 return NULL;
1155}
1156
60df2d4a
JQ
1157static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1158{
1159 MultiFDSendParams *p = opaque;
1160 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1161 Error *local_err = NULL;
1162
1163 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1164 migrate_set_error(migrate_get_current(), local_err);
1165 multifd_save_cleanup();
60df2d4a
JQ
1166 } else {
1167 p->c = QIO_CHANNEL(sioc);
1168 qio_channel_set_delay(p->c, false);
1169 p->running = true;
1170 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1171 QEMU_THREAD_JOINABLE);
60df2d4a
JQ
1172 }
1173}
1174
f986c3d2
JQ
1175int multifd_save_setup(void)
1176{
1177 int thread_count;
efd1a1d6 1178 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1179 uint8_t i;
1180
1181 if (!migrate_use_multifd()) {
1182 return 0;
1183 }
1184 thread_count = migrate_multifd_channels();
1185 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1186 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
34c55a94 1187 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1188 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1189 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1190
f986c3d2
JQ
1191 for (i = 0; i < thread_count; i++) {
1192 MultiFDSendParams *p = &multifd_send_state->params[i];
1193
1194 qemu_mutex_init(&p->mutex);
1195 qemu_sem_init(&p->sem, 0);
1196 p->quit = false;
0beb5ed3 1197 p->pending_job = 0;
f986c3d2 1198 p->id = i;
34c55a94 1199 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1200 p->packet_len = sizeof(MultiFDPacket_t)
1201 + sizeof(ram_addr_t) * page_count;
1202 p->packet = g_malloc0(p->packet_len);
f986c3d2 1203 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1204 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1205 }
1206 return 0;
1207}
1208
f986c3d2
JQ
1209struct {
1210 MultiFDRecvParams *params;
1211 /* number of created threads */
1212 int count;
6df264ac
JQ
1213 /* syncs main thread and channels */
1214 QemuSemaphore sem_sync;
1215 /* global number of generated multifd packets */
1216 uint64_t packet_num;
f986c3d2
JQ
1217} *multifd_recv_state;
1218
66770707 1219static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1220{
1221 int i;
1222
7a169d74
JQ
1223 if (err) {
1224 MigrationState *s = migrate_get_current();
1225 migrate_set_error(s, err);
1226 if (s->state == MIGRATION_STATUS_SETUP ||
1227 s->state == MIGRATION_STATUS_ACTIVE) {
1228 migrate_set_state(&s->state, s->state,
1229 MIGRATION_STATUS_FAILED);
1230 }
1231 }
1232
66770707 1233 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1234 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1235
1236 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1237 /* We could arrive here for two reasons:
1238 - normal quit, i.e. everything went fine, just finished
1239 - error quit: We close the channels so the channel threads
1240 finish the qio_channel_read_all_eof() */
1241 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1242 qemu_mutex_unlock(&p->mutex);
1243 }
1244}
1245
1246int multifd_load_cleanup(Error **errp)
1247{
1248 int i;
1249 int ret = 0;
1250
1251 if (!migrate_use_multifd()) {
1252 return 0;
1253 }
66770707
JQ
1254 multifd_recv_terminate_threads(NULL);
1255 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1256 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1257
66770707
JQ
1258 if (p->running) {
1259 qemu_thread_join(&p->thread);
1260 }
60df2d4a
JQ
1261 object_unref(OBJECT(p->c));
1262 p->c = NULL;
f986c3d2 1263 qemu_mutex_destroy(&p->mutex);
6df264ac 1264 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1265 g_free(p->name);
1266 p->name = NULL;
34c55a94
JQ
1267 multifd_pages_clear(p->pages);
1268 p->pages = NULL;
2a26c979
JQ
1269 p->packet_len = 0;
1270 g_free(p->packet);
1271 p->packet = NULL;
f986c3d2 1272 }
6df264ac 1273 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1274 g_free(multifd_recv_state->params);
1275 multifd_recv_state->params = NULL;
1276 g_free(multifd_recv_state);
1277 multifd_recv_state = NULL;
1278
1279 return ret;
1280}
1281
6df264ac
JQ
1282static void multifd_recv_sync_main(void)
1283{
1284 int i;
1285
1286 if (!migrate_use_multifd()) {
1287 return;
1288 }
1289 for (i = 0; i < migrate_multifd_channels(); i++) {
1290 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291
6df264ac
JQ
1292 trace_multifd_recv_sync_main_wait(p->id);
1293 qemu_sem_wait(&multifd_recv_state->sem_sync);
77568ea7
WY
1294 }
1295 for (i = 0; i < migrate_multifd_channels(); i++) {
1296 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1297
6df264ac
JQ
1298 qemu_mutex_lock(&p->mutex);
1299 if (multifd_recv_state->packet_num < p->packet_num) {
1300 multifd_recv_state->packet_num = p->packet_num;
1301 }
1302 qemu_mutex_unlock(&p->mutex);
6df264ac 1303 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1304 qemu_sem_post(&p->sem_sync);
1305 }
1306 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1307}
1308
f986c3d2
JQ
1309static void *multifd_recv_thread(void *opaque)
1310{
1311 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1312 Error *local_err = NULL;
1313 int ret;
f986c3d2 1314
408ea6ae 1315 trace_multifd_recv_thread_start(p->id);
74637e6f 1316 rcu_register_thread();
408ea6ae 1317
f986c3d2 1318 while (true) {
6df264ac
JQ
1319 uint32_t used;
1320 uint32_t flags;
0beb5ed3 1321
8b2db7f5
JQ
1322 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1323 p->packet_len, &local_err);
1324 if (ret == 0) { /* EOF */
1325 break;
1326 }
1327 if (ret == -1) { /* Error */
1328 break;
1329 }
2a26c979 1330
6df264ac
JQ
1331 qemu_mutex_lock(&p->mutex);
1332 ret = multifd_recv_unfill_packet(p, &local_err);
1333 if (ret) {
f986c3d2
JQ
1334 qemu_mutex_unlock(&p->mutex);
1335 break;
1336 }
6df264ac
JQ
1337
1338 used = p->pages->used;
1339 flags = p->flags;
2a34ee59
JQ
1340 trace_multifd_recv(p->id, p->packet_num, used, flags,
1341 p->next_packet_size);
6df264ac
JQ
1342 p->num_packets++;
1343 p->num_pages += used;
f986c3d2 1344 qemu_mutex_unlock(&p->mutex);
6df264ac 1345
ad24c7cb
JQ
1346 if (used) {
1347 ret = qio_channel_readv_all(p->c, p->pages->iov,
1348 used, &local_err);
1349 if (ret != 0) {
1350 break;
1351 }
8b2db7f5
JQ
1352 }
1353
6df264ac
JQ
1354 if (flags & MULTIFD_FLAG_SYNC) {
1355 qemu_sem_post(&multifd_recv_state->sem_sync);
1356 qemu_sem_wait(&p->sem_sync);
1357 }
f986c3d2
JQ
1358 }
1359
d82628e4
JQ
1360 if (local_err) {
1361 multifd_recv_terminate_threads(local_err);
1362 }
66770707
JQ
1363 qemu_mutex_lock(&p->mutex);
1364 p->running = false;
1365 qemu_mutex_unlock(&p->mutex);
1366
74637e6f 1367 rcu_unregister_thread();
408ea6ae
JQ
1368 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1369
f986c3d2
JQ
1370 return NULL;
1371}
1372
1373int multifd_load_setup(void)
1374{
1375 int thread_count;
efd1a1d6 1376 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1377 uint8_t i;
1378
1379 if (!migrate_use_multifd()) {
1380 return 0;
1381 }
1382 thread_count = migrate_multifd_channels();
1383 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1384 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1385 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1386 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1387
f986c3d2
JQ
1388 for (i = 0; i < thread_count; i++) {
1389 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1390
1391 qemu_mutex_init(&p->mutex);
6df264ac 1392 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1393 p->id = i;
34c55a94 1394 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1395 p->packet_len = sizeof(MultiFDPacket_t)
1396 + sizeof(ram_addr_t) * page_count;
1397 p->packet = g_malloc0(p->packet_len);
f986c3d2 1398 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1399 }
1400 return 0;
1401}
1402
62c1e0ca
JQ
1403bool multifd_recv_all_channels_created(void)
1404{
1405 int thread_count = migrate_multifd_channels();
1406
1407 if (!migrate_use_multifd()) {
1408 return true;
1409 }
1410
1411 return thread_count == atomic_read(&multifd_recv_state->count);
1412}
1413
49ed0d24
FL
1414/*
1415 * Try to receive all multifd channels to get ready for the migration.
1416 * - Return true and do not set @errp when correctly receving all channels;
1417 * - Return false and do not set @errp when correctly receiving the current one;
1418 * - Return false and set @errp when failing to receive the current channel.
1419 */
1420bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1421{
60df2d4a 1422 MultiFDRecvParams *p;
af8b7d2b
JQ
1423 Error *local_err = NULL;
1424 int id;
60df2d4a 1425
af8b7d2b
JQ
1426 id = multifd_recv_initial_packet(ioc, &local_err);
1427 if (id < 0) {
1428 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1429 error_propagate_prepend(errp, local_err,
1430 "failed to receive packet"
1431 " via multifd channel %d: ",
1432 atomic_read(&multifd_recv_state->count));
81e62053 1433 return false;
af8b7d2b
JQ
1434 }
1435
1436 p = &multifd_recv_state->params[id];
1437 if (p->c != NULL) {
1438 error_setg(&local_err, "multifd: received id '%d' already setup'",
1439 id);
1440 multifd_recv_terminate_threads(local_err);
49ed0d24 1441 error_propagate(errp, local_err);
81e62053 1442 return false;
af8b7d2b 1443 }
60df2d4a
JQ
1444 p->c = ioc;
1445 object_ref(OBJECT(ioc));
408ea6ae
JQ
1446 /* initial packet */
1447 p->num_packets = 1;
60df2d4a
JQ
1448
1449 p->running = true;
1450 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1451 QEMU_THREAD_JOINABLE);
1452 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1453 return atomic_read(&multifd_recv_state->count) ==
1454 migrate_multifd_channels();
71bb07db
JQ
1455}
1456
56e93d26 1457/**
3d0684b2 1458 * save_page_header: write page header to wire
56e93d26
JQ
1459 *
1460 * If this is the 1st block, it also writes the block identification
1461 *
3d0684b2 1462 * Returns the number of bytes written
56e93d26
JQ
1463 *
1464 * @f: QEMUFile where to send the data
1465 * @block: block that contains the page we want to send
1466 * @offset: offset inside the block for the page
1467 * in the lower bits, it contains flags
1468 */
2bf3aa85
JQ
1469static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1470 ram_addr_t offset)
56e93d26 1471{
9f5f380b 1472 size_t size, len;
56e93d26 1473
24795694
JQ
1474 if (block == rs->last_sent_block) {
1475 offset |= RAM_SAVE_FLAG_CONTINUE;
1476 }
2bf3aa85 1477 qemu_put_be64(f, offset);
56e93d26
JQ
1478 size = 8;
1479
1480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1481 len = strlen(block->idstr);
2bf3aa85
JQ
1482 qemu_put_byte(f, len);
1483 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1484 size += 1 + len;
24795694 1485 rs->last_sent_block = block;
56e93d26
JQ
1486 }
1487 return size;
1488}
1489
3d0684b2
JQ
1490/**
1491 * mig_throttle_guest_down: throotle down the guest
1492 *
1493 * Reduce amount of guest cpu execution to hopefully slow down memory
1494 * writes. If guest dirty memory rate is reduced below the rate at
1495 * which we can transfer pages to the destination then we should be
1496 * able to complete migration. Some workloads dirty memory way too
1497 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1498 */
1499static void mig_throttle_guest_down(void)
1500{
1501 MigrationState *s = migrate_get_current();
2594f56d
DB
1502 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1503 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1504 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1505
1506 /* We have not started throttling yet. Let's start it. */
1507 if (!cpu_throttle_active()) {
1508 cpu_throttle_set(pct_initial);
1509 } else {
1510 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1511 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1512 pct_max));
070afca2
JH
1513 }
1514}
1515
3d0684b2
JQ
1516/**
1517 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1518 *
6f37bb8b 1519 * @rs: current RAM state
3d0684b2
JQ
1520 * @current_addr: address for the zero page
1521 *
1522 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1523 * The important thing is that a stale (not-yet-0'd) page be replaced
1524 * by the new data.
1525 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1526 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1527 */
6f37bb8b 1528static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1529{
6f37bb8b 1530 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1531 return;
1532 }
1533
1534 /* We don't care if this fails to allocate a new cache page
1535 * as long as it updated an old one */
c00e0928 1536 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1537 ram_counters.dirty_sync_count);
56e93d26
JQ
1538}
1539
1540#define ENCODING_FLAG_XBZRLE 0x1
1541
1542/**
1543 * save_xbzrle_page: compress and send current page
1544 *
1545 * Returns: 1 means that we wrote the page
1546 * 0 means that page is identical to the one already sent
1547 * -1 means that xbzrle would be longer than normal
1548 *
5a987738 1549 * @rs: current RAM state
3d0684b2
JQ
1550 * @current_data: pointer to the address of the page contents
1551 * @current_addr: addr of the page
56e93d26
JQ
1552 * @block: block that contains the page we want to send
1553 * @offset: offset inside the block for the page
1554 * @last_stage: if we are at the completion stage
56e93d26 1555 */
204b88b8 1556static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1557 ram_addr_t current_addr, RAMBlock *block,
072c2511 1558 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1559{
1560 int encoded_len = 0, bytes_xbzrle;
1561 uint8_t *prev_cached_page;
1562
9360447d
JQ
1563 if (!cache_is_cached(XBZRLE.cache, current_addr,
1564 ram_counters.dirty_sync_count)) {
1565 xbzrle_counters.cache_miss++;
56e93d26
JQ
1566 if (!last_stage) {
1567 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1568 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1569 return -1;
1570 } else {
1571 /* update *current_data when the page has been
1572 inserted into cache */
1573 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1574 }
1575 }
1576 return -1;
1577 }
1578
1579 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1580
1581 /* save current buffer into memory */
1582 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1583
1584 /* XBZRLE encoding (if there is no overflow) */
1585 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1586 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1587 TARGET_PAGE_SIZE);
ca353803
WY
1588
1589 /*
1590 * Update the cache contents, so that it corresponds to the data
1591 * sent, in all cases except where we skip the page.
1592 */
1593 if (!last_stage && encoded_len != 0) {
1594 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1595 /*
1596 * In the case where we couldn't compress, ensure that the caller
1597 * sends the data from the cache, since the guest might have
1598 * changed the RAM since we copied it.
1599 */
1600 *current_data = prev_cached_page;
1601 }
1602
56e93d26 1603 if (encoded_len == 0) {
55c4446b 1604 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1605 return 0;
1606 } else if (encoded_len == -1) {
55c4446b 1607 trace_save_xbzrle_page_overflow();
9360447d 1608 xbzrle_counters.overflow++;
56e93d26
JQ
1609 return -1;
1610 }
1611
56e93d26 1612 /* Send XBZRLE based compressed page */
2bf3aa85 1613 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1614 offset | RAM_SAVE_FLAG_XBZRLE);
1615 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1616 qemu_put_be16(rs->f, encoded_len);
1617 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1618 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1619 xbzrle_counters.pages++;
1620 xbzrle_counters.bytes += bytes_xbzrle;
1621 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1622
1623 return 1;
1624}
1625
3d0684b2
JQ
1626/**
1627 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1628 *
a5f7b1a6 1629 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 1630 *
6f37bb8b 1631 * @rs: current RAM state
3d0684b2 1632 * @rb: RAMBlock where to search for dirty pages
a935e30f 1633 * @start: page where we start the search
f3f491fc 1634 */
56e93d26 1635static inline
a935e30f 1636unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1637 unsigned long start)
56e93d26 1638{
6b6712ef
JQ
1639 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1640 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1641 unsigned long next;
1642
fbd162e6 1643 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1644 return size;
1645 }
1646
6eeb63f7
WW
1647 /*
1648 * When the free page optimization is enabled, we need to check the bitmap
1649 * to send the non-free pages rather than all the pages in the bulk stage.
1650 */
1651 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1652 next = start + 1;
56e93d26 1653 } else {
6b6712ef 1654 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1655 }
1656
6b6712ef 1657 return next;
56e93d26
JQ
1658}
1659
06b10688 1660static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1661 RAMBlock *rb,
1662 unsigned long page)
a82d593b
DDAG
1663{
1664 bool ret;
a82d593b 1665
386a907b 1666 qemu_mutex_lock(&rs->bitmap_mutex);
6b6712ef 1667 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1668
1669 if (ret) {
0d8ec885 1670 rs->migration_dirty_pages--;
a82d593b 1671 }
386a907b
WW
1672 qemu_mutex_unlock(&rs->bitmap_mutex);
1673
a82d593b
DDAG
1674 return ret;
1675}
1676
15440dd5 1677static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
bf212979 1678 ram_addr_t length)
56e93d26 1679{
0d8ec885 1680 rs->migration_dirty_pages +=
bf212979 1681 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
0d8ec885 1682 &rs->num_dirty_pages_period);
56e93d26
JQ
1683}
1684
3d0684b2
JQ
1685/**
1686 * ram_pagesize_summary: calculate all the pagesizes of a VM
1687 *
1688 * Returns a summary bitmap of the page sizes of all RAMBlocks
1689 *
1690 * For VMs with just normal pages this is equivalent to the host page
1691 * size. If it's got some huge pages then it's the OR of all the
1692 * different page sizes.
e8ca1db2
DDAG
1693 */
1694uint64_t ram_pagesize_summary(void)
1695{
1696 RAMBlock *block;
1697 uint64_t summary = 0;
1698
fbd162e6 1699 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1700 summary |= block->page_size;
1701 }
1702
1703 return summary;
1704}
1705
aecbfe9c
XG
1706uint64_t ram_get_total_transferred_pages(void)
1707{
1708 return ram_counters.normal + ram_counters.duplicate +
1709 compression_counters.pages + xbzrle_counters.pages;
1710}
1711
b734035b
XG
1712static void migration_update_rates(RAMState *rs, int64_t end_time)
1713{
be8b02ed 1714 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1715 double compressed_size;
b734035b
XG
1716
1717 /* calculate period counters */
1718 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1719 / (end_time - rs->time_last_bitmap_sync);
1720
be8b02ed 1721 if (!page_count) {
b734035b
XG
1722 return;
1723 }
1724
1725 if (migrate_use_xbzrle()) {
1726 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1727 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1728 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1729 }
76e03000
XG
1730
1731 if (migrate_use_compression()) {
1732 compression_counters.busy_rate = (double)(compression_counters.busy -
1733 rs->compress_thread_busy_prev) / page_count;
1734 rs->compress_thread_busy_prev = compression_counters.busy;
1735
1736 compressed_size = compression_counters.compressed_size -
1737 rs->compressed_size_prev;
1738 if (compressed_size) {
1739 double uncompressed_size = (compression_counters.pages -
1740 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1741
1742 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1743 compression_counters.compression_rate =
1744 uncompressed_size / compressed_size;
1745
1746 rs->compress_pages_prev = compression_counters.pages;
1747 rs->compressed_size_prev = compression_counters.compressed_size;
1748 }
1749 }
b734035b
XG
1750}
1751
8d820d6f 1752static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1753{
1754 RAMBlock *block;
56e93d26 1755 int64_t end_time;
c4bdf0cf 1756 uint64_t bytes_xfer_now;
56e93d26 1757
9360447d 1758 ram_counters.dirty_sync_count++;
56e93d26 1759
f664da80
JQ
1760 if (!rs->time_last_bitmap_sync) {
1761 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1762 }
1763
1764 trace_migration_bitmap_sync_start();
9c1f8f44 1765 memory_global_dirty_log_sync();
56e93d26 1766
108cfae0 1767 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1768 rcu_read_lock();
fbd162e6 1769 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 1770 migration_bitmap_sync_range(rs, block, block->used_length);
56e93d26 1771 }
650af890 1772 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1773 rcu_read_unlock();
108cfae0 1774 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1775
a66cd90c 1776 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1777
56e93d26
JQ
1778 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1779
1780 /* more than 1 second = 1000 millisecons */
f664da80 1781 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1782 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1783
9ac78b61
PL
1784 /* During block migration the auto-converge logic incorrectly detects
1785 * that ram migration makes no progress. Avoid this by disabling the
1786 * throttling logic during the bulk phase of block migration. */
1787 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1788 /* The following detection logic can be refined later. For now:
1789 Check to see if the dirtied bytes is 50% more than the approx.
1790 amount of bytes that just got transferred since the last time we
070afca2
JH
1791 were in this routine. If that happens twice, start or increase
1792 throttling */
070afca2 1793
d693c6f1 1794 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1795 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1796 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1797 trace_migration_throttle();
8d820d6f 1798 rs->dirty_rate_high_cnt = 0;
070afca2 1799 mig_throttle_guest_down();
d693c6f1 1800 }
56e93d26 1801 }
070afca2 1802
b734035b
XG
1803 migration_update_rates(rs, end_time);
1804
be8b02ed 1805 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1806
1807 /* reset period counters */
f664da80 1808 rs->time_last_bitmap_sync = end_time;
a66cd90c 1809 rs->num_dirty_pages_period = 0;
d2a4d85a 1810 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1811 }
4addcd4f 1812 if (migrate_use_events()) {
3ab72385 1813 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1814 }
56e93d26
JQ
1815}
1816
bd227060
WW
1817static void migration_bitmap_sync_precopy(RAMState *rs)
1818{
1819 Error *local_err = NULL;
1820
1821 /*
1822 * The current notifier usage is just an optimization to migration, so we
1823 * don't stop the normal migration process in the error case.
1824 */
1825 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1826 error_report_err(local_err);
1827 }
1828
1829 migration_bitmap_sync(rs);
1830
1831 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1832 error_report_err(local_err);
1833 }
1834}
1835
6c97ec5f
XG
1836/**
1837 * save_zero_page_to_file: send the zero page to the file
1838 *
1839 * Returns the size of data written to the file, 0 means the page is not
1840 * a zero page
1841 *
1842 * @rs: current RAM state
1843 * @file: the file where the data is saved
1844 * @block: block that contains the page we want to send
1845 * @offset: offset inside the block for the page
1846 */
1847static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1848 RAMBlock *block, ram_addr_t offset)
1849{
1850 uint8_t *p = block->host + offset;
1851 int len = 0;
1852
1853 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1854 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1855 qemu_put_byte(file, 0);
1856 len += 1;
1857 }
1858 return len;
1859}
1860
56e93d26 1861/**
3d0684b2 1862 * save_zero_page: send the zero page to the stream
56e93d26 1863 *
3d0684b2 1864 * Returns the number of pages written.
56e93d26 1865 *
f7ccd61b 1866 * @rs: current RAM state
56e93d26
JQ
1867 * @block: block that contains the page we want to send
1868 * @offset: offset inside the block for the page
56e93d26 1869 */
7faccdc3 1870static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1871{
6c97ec5f 1872 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1873
6c97ec5f 1874 if (len) {
9360447d 1875 ram_counters.duplicate++;
6c97ec5f
XG
1876 ram_counters.transferred += len;
1877 return 1;
56e93d26 1878 }
6c97ec5f 1879 return -1;
56e93d26
JQ
1880}
1881
5727309d 1882static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1883{
5727309d 1884 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1885 return;
1886 }
1887
aaa2064c 1888 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1889}
1890
059ff0fb
XG
1891/*
1892 * @pages: the number of pages written by the control path,
1893 * < 0 - error
1894 * > 0 - number of pages written
1895 *
1896 * Return true if the pages has been saved, otherwise false is returned.
1897 */
1898static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1899 int *pages)
1900{
1901 uint64_t bytes_xmit = 0;
1902 int ret;
1903
1904 *pages = -1;
1905 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1906 &bytes_xmit);
1907 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1908 return false;
1909 }
1910
1911 if (bytes_xmit) {
1912 ram_counters.transferred += bytes_xmit;
1913 *pages = 1;
1914 }
1915
1916 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1917 return true;
1918 }
1919
1920 if (bytes_xmit > 0) {
1921 ram_counters.normal++;
1922 } else if (bytes_xmit == 0) {
1923 ram_counters.duplicate++;
1924 }
1925
1926 return true;
1927}
1928
65dacaa0
XG
1929/*
1930 * directly send the page to the stream
1931 *
1932 * Returns the number of pages written.
1933 *
1934 * @rs: current RAM state
1935 * @block: block that contains the page we want to send
1936 * @offset: offset inside the block for the page
1937 * @buf: the page to be sent
1938 * @async: send to page asyncly
1939 */
1940static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1941 uint8_t *buf, bool async)
1942{
1943 ram_counters.transferred += save_page_header(rs, rs->f, block,
1944 offset | RAM_SAVE_FLAG_PAGE);
1945 if (async) {
1946 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1947 migrate_release_ram() &
1948 migration_in_postcopy());
1949 } else {
1950 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1951 }
1952 ram_counters.transferred += TARGET_PAGE_SIZE;
1953 ram_counters.normal++;
1954 return 1;
1955}
1956
56e93d26 1957/**
3d0684b2 1958 * ram_save_page: send the given page to the stream
56e93d26 1959 *
3d0684b2 1960 * Returns the number of pages written.
3fd3c4b3
DDAG
1961 * < 0 - error
1962 * >=0 - Number of pages written - this might legally be 0
1963 * if xbzrle noticed the page was the same.
56e93d26 1964 *
6f37bb8b 1965 * @rs: current RAM state
56e93d26
JQ
1966 * @block: block that contains the page we want to send
1967 * @offset: offset inside the block for the page
1968 * @last_stage: if we are at the completion stage
56e93d26 1969 */
a0a8aa14 1970static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1971{
1972 int pages = -1;
56e93d26 1973 uint8_t *p;
56e93d26 1974 bool send_async = true;
a08f6890 1975 RAMBlock *block = pss->block;
a935e30f 1976 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1977 ram_addr_t current_addr = block->offset + offset;
56e93d26 1978
2f68e399 1979 p = block->host + offset;
1db9d8e5 1980 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1981
56e93d26 1982 XBZRLE_cache_lock();
d7400a34
XG
1983 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1984 migrate_use_xbzrle()) {
059ff0fb
XG
1985 pages = save_xbzrle_page(rs, &p, current_addr, block,
1986 offset, last_stage);
1987 if (!last_stage) {
1988 /* Can't send this cached data async, since the cache page
1989 * might get updated before it gets to the wire
56e93d26 1990 */
059ff0fb 1991 send_async = false;
56e93d26
JQ
1992 }
1993 }
1994
1995 /* XBZRLE overflow or normal page */
1996 if (pages == -1) {
65dacaa0 1997 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1998 }
1999
2000 XBZRLE_cache_unlock();
2001
2002 return pages;
2003}
2004
b9ee2f7d
JQ
2005static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2006 ram_addr_t offset)
2007{
b9ee2f7d 2008 multifd_queue_page(block, offset);
b9ee2f7d
JQ
2009 ram_counters.normal++;
2010
2011 return 1;
2012}
2013
5e5fdcff 2014static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2015 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2016{
53518d94 2017 RAMState *rs = ram_state;
a7a9a88f 2018 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2019 bool zero_page = false;
6ef3771c 2020 int ret;
56e93d26 2021
5e5fdcff
XG
2022 if (save_zero_page_to_file(rs, f, block, offset)) {
2023 zero_page = true;
2024 goto exit;
2025 }
2026
6ef3771c 2027 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2028
2029 /*
2030 * copy it to a internal buffer to avoid it being modified by VM
2031 * so that we can catch up the error during compression and
2032 * decompression
2033 */
2034 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2035 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2036 if (ret < 0) {
2037 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2038 error_report("compressed data failed!");
5e5fdcff 2039 return false;
b3be2896 2040 }
56e93d26 2041
5e5fdcff 2042exit:
6ef3771c 2043 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2044 return zero_page;
2045}
2046
2047static void
2048update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2049{
76e03000
XG
2050 ram_counters.transferred += bytes_xmit;
2051
5e5fdcff
XG
2052 if (param->zero_page) {
2053 ram_counters.duplicate++;
76e03000 2054 return;
5e5fdcff 2055 }
76e03000
XG
2056
2057 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2058 compression_counters.compressed_size += bytes_xmit - 8;
2059 compression_counters.pages++;
56e93d26
JQ
2060}
2061
32b05495
XG
2062static bool save_page_use_compression(RAMState *rs);
2063
ce25d337 2064static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2065{
2066 int idx, len, thread_count;
2067
32b05495 2068 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2069 return;
2070 }
2071 thread_count = migrate_compress_threads();
a7a9a88f 2072
0d9f9a5c 2073 qemu_mutex_lock(&comp_done_lock);
56e93d26 2074 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2075 while (!comp_param[idx].done) {
0d9f9a5c 2076 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2077 }
a7a9a88f 2078 }
0d9f9a5c 2079 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2080
2081 for (idx = 0; idx < thread_count; idx++) {
2082 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2083 if (!comp_param[idx].quit) {
ce25d337 2084 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2085 /*
2086 * it's safe to fetch zero_page without holding comp_done_lock
2087 * as there is no further request submitted to the thread,
2088 * i.e, the thread should be waiting for a request at this point.
2089 */
2090 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2091 }
a7a9a88f 2092 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2093 }
2094}
2095
2096static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2097 ram_addr_t offset)
2098{
2099 param->block = block;
2100 param->offset = offset;
2101}
2102
ce25d337
JQ
2103static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2104 ram_addr_t offset)
56e93d26
JQ
2105{
2106 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2107 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2108
2109 thread_count = migrate_compress_threads();
0d9f9a5c 2110 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2111retry:
2112 for (idx = 0; idx < thread_count; idx++) {
2113 if (comp_param[idx].done) {
2114 comp_param[idx].done = false;
2115 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2116 qemu_mutex_lock(&comp_param[idx].mutex);
2117 set_compress_params(&comp_param[idx], block, offset);
2118 qemu_cond_signal(&comp_param[idx].cond);
2119 qemu_mutex_unlock(&comp_param[idx].mutex);
2120 pages = 1;
5e5fdcff 2121 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2122 break;
56e93d26
JQ
2123 }
2124 }
1d58872a
XG
2125
2126 /*
2127 * wait for the free thread if the user specifies 'compress-wait-thread',
2128 * otherwise we will post the page out in the main thread as normal page.
2129 */
2130 if (pages < 0 && wait) {
2131 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2132 goto retry;
2133 }
0d9f9a5c 2134 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2135
2136 return pages;
2137}
2138
3d0684b2
JQ
2139/**
2140 * find_dirty_block: find the next dirty page and update any state
2141 * associated with the search process.
b9e60928 2142 *
a5f7b1a6 2143 * Returns true if a page is found
b9e60928 2144 *
6f37bb8b 2145 * @rs: current RAM state
3d0684b2
JQ
2146 * @pss: data about the state of the current dirty page scan
2147 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2148 */
f20e2865 2149static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2150{
f20e2865 2151 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2152 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2153 pss->page >= rs->last_page) {
b9e60928
DDAG
2154 /*
2155 * We've been once around the RAM and haven't found anything.
2156 * Give up.
2157 */
2158 *again = false;
2159 return false;
2160 }
a935e30f 2161 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2162 /* Didn't find anything in this RAM Block */
a935e30f 2163 pss->page = 0;
b9e60928
DDAG
2164 pss->block = QLIST_NEXT_RCU(pss->block, next);
2165 if (!pss->block) {
48df9d80
XG
2166 /*
2167 * If memory migration starts over, we will meet a dirtied page
2168 * which may still exists in compression threads's ring, so we
2169 * should flush the compressed data to make sure the new page
2170 * is not overwritten by the old one in the destination.
2171 *
2172 * Also If xbzrle is on, stop using the data compression at this
2173 * point. In theory, xbzrle can do better than compression.
2174 */
2175 flush_compressed_data(rs);
2176
b9e60928
DDAG
2177 /* Hit the end of the list */
2178 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2179 /* Flag that we've looped */
2180 pss->complete_round = true;
6f37bb8b 2181 rs->ram_bulk_stage = false;
b9e60928
DDAG
2182 }
2183 /* Didn't find anything this time, but try again on the new block */
2184 *again = true;
2185 return false;
2186 } else {
2187 /* Can go around again, but... */
2188 *again = true;
2189 /* We've found something so probably don't need to */
2190 return true;
2191 }
2192}
2193
3d0684b2
JQ
2194/**
2195 * unqueue_page: gets a page of the queue
2196 *
a82d593b 2197 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2198 *
3d0684b2
JQ
2199 * Returns the block of the page (or NULL if none available)
2200 *
ec481c6c 2201 * @rs: current RAM state
3d0684b2 2202 * @offset: used to return the offset within the RAMBlock
a82d593b 2203 */
f20e2865 2204static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2205{
2206 RAMBlock *block = NULL;
2207
ae526e32
XG
2208 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2209 return NULL;
2210 }
2211
ec481c6c
JQ
2212 qemu_mutex_lock(&rs->src_page_req_mutex);
2213 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2214 struct RAMSrcPageRequest *entry =
2215 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2216 block = entry->rb;
2217 *offset = entry->offset;
a82d593b
DDAG
2218
2219 if (entry->len > TARGET_PAGE_SIZE) {
2220 entry->len -= TARGET_PAGE_SIZE;
2221 entry->offset += TARGET_PAGE_SIZE;
2222 } else {
2223 memory_region_unref(block->mr);
ec481c6c 2224 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2225 g_free(entry);
e03a34f8 2226 migration_consume_urgent_request();
a82d593b
DDAG
2227 }
2228 }
ec481c6c 2229 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2230
2231 return block;
2232}
2233
3d0684b2 2234/**
ff1543af 2235 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
2236 *
2237 * Skips pages that are already sent (!dirty)
a82d593b 2238 *
a5f7b1a6 2239 * Returns true if a queued page is found
a82d593b 2240 *
6f37bb8b 2241 * @rs: current RAM state
3d0684b2 2242 * @pss: data about the state of the current dirty page scan
a82d593b 2243 */
f20e2865 2244static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2245{
2246 RAMBlock *block;
2247 ram_addr_t offset;
2248 bool dirty;
2249
2250 do {
f20e2865 2251 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2252 /*
2253 * We're sending this page, and since it's postcopy nothing else
2254 * will dirty it, and we must make sure it doesn't get sent again
2255 * even if this queue request was received after the background
2256 * search already sent it.
2257 */
2258 if (block) {
f20e2865
JQ
2259 unsigned long page;
2260
6b6712ef
JQ
2261 page = offset >> TARGET_PAGE_BITS;
2262 dirty = test_bit(page, block->bmap);
a82d593b 2263 if (!dirty) {
06b10688 2264 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2265 page, test_bit(page, block->unsentmap));
a82d593b 2266 } else {
f20e2865 2267 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2268 }
2269 }
2270
2271 } while (block && !dirty);
2272
2273 if (block) {
2274 /*
2275 * As soon as we start servicing pages out of order, then we have
2276 * to kill the bulk stage, since the bulk stage assumes
2277 * in (migration_bitmap_find_and_reset_dirty) that every page is
2278 * dirty, that's no longer true.
2279 */
6f37bb8b 2280 rs->ram_bulk_stage = false;
a82d593b
DDAG
2281
2282 /*
2283 * We want the background search to continue from the queued page
2284 * since the guest is likely to want other pages near to the page
2285 * it just requested.
2286 */
2287 pss->block = block;
a935e30f 2288 pss->page = offset >> TARGET_PAGE_BITS;
422314e7
WY
2289
2290 /*
2291 * This unqueued page would break the "one round" check, even is
2292 * really rare.
2293 */
2294 pss->complete_round = false;
a82d593b
DDAG
2295 }
2296
2297 return !!block;
2298}
2299
6c595cde 2300/**
5e58f968
JQ
2301 * migration_page_queue_free: drop any remaining pages in the ram
2302 * request queue
6c595cde 2303 *
3d0684b2
JQ
2304 * It should be empty at the end anyway, but in error cases there may
2305 * be some left. in case that there is any page left, we drop it.
2306 *
6c595cde 2307 */
83c13382 2308static void migration_page_queue_free(RAMState *rs)
6c595cde 2309{
ec481c6c 2310 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2311 /* This queue generally should be empty - but in the case of a failed
2312 * migration might have some droppings in.
2313 */
2314 rcu_read_lock();
ec481c6c 2315 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2316 memory_region_unref(mspr->rb->mr);
ec481c6c 2317 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2318 g_free(mspr);
2319 }
2320 rcu_read_unlock();
2321}
2322
2323/**
3d0684b2
JQ
2324 * ram_save_queue_pages: queue the page for transmission
2325 *
2326 * A request from postcopy destination for example.
2327 *
2328 * Returns zero on success or negative on error
2329 *
3d0684b2
JQ
2330 * @rbname: Name of the RAMBLock of the request. NULL means the
2331 * same that last one.
2332 * @start: starting address from the start of the RAMBlock
2333 * @len: length (in bytes) to send
6c595cde 2334 */
96506894 2335int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2336{
2337 RAMBlock *ramblock;
53518d94 2338 RAMState *rs = ram_state;
6c595cde 2339
9360447d 2340 ram_counters.postcopy_requests++;
6c595cde
DDAG
2341 rcu_read_lock();
2342 if (!rbname) {
2343 /* Reuse last RAMBlock */
68a098f3 2344 ramblock = rs->last_req_rb;
6c595cde
DDAG
2345
2346 if (!ramblock) {
2347 /*
2348 * Shouldn't happen, we can't reuse the last RAMBlock if
2349 * it's the 1st request.
2350 */
2351 error_report("ram_save_queue_pages no previous block");
2352 goto err;
2353 }
2354 } else {
2355 ramblock = qemu_ram_block_by_name(rbname);
2356
2357 if (!ramblock) {
2358 /* We shouldn't be asked for a non-existent RAMBlock */
2359 error_report("ram_save_queue_pages no block '%s'", rbname);
2360 goto err;
2361 }
68a098f3 2362 rs->last_req_rb = ramblock;
6c595cde
DDAG
2363 }
2364 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2365 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2366 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2367 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2368 __func__, start, len, ramblock->used_length);
2369 goto err;
2370 }
2371
ec481c6c
JQ
2372 struct RAMSrcPageRequest *new_entry =
2373 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2374 new_entry->rb = ramblock;
2375 new_entry->offset = start;
2376 new_entry->len = len;
2377
2378 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2379 qemu_mutex_lock(&rs->src_page_req_mutex);
2380 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2381 migration_make_urgent_request();
ec481c6c 2382 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2383 rcu_read_unlock();
2384
2385 return 0;
2386
2387err:
2388 rcu_read_unlock();
2389 return -1;
2390}
2391
d7400a34
XG
2392static bool save_page_use_compression(RAMState *rs)
2393{
2394 if (!migrate_use_compression()) {
2395 return false;
2396 }
2397
2398 /*
2399 * If xbzrle is on, stop using the data compression after first
2400 * round of migration even if compression is enabled. In theory,
2401 * xbzrle can do better than compression.
2402 */
2403 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2404 return true;
2405 }
2406
2407 return false;
2408}
2409
5e5fdcff
XG
2410/*
2411 * try to compress the page before posting it out, return true if the page
2412 * has been properly handled by compression, otherwise needs other
2413 * paths to handle it
2414 */
2415static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2416{
2417 if (!save_page_use_compression(rs)) {
2418 return false;
2419 }
2420
2421 /*
2422 * When starting the process of a new block, the first page of
2423 * the block should be sent out before other pages in the same
2424 * block, and all the pages in last block should have been sent
2425 * out, keeping this order is important, because the 'cont' flag
2426 * is used to avoid resending the block name.
2427 *
2428 * We post the fist page as normal page as compression will take
2429 * much CPU resource.
2430 */
2431 if (block != rs->last_sent_block) {
2432 flush_compressed_data(rs);
2433 return false;
2434 }
2435
2436 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2437 return true;
2438 }
2439
76e03000 2440 compression_counters.busy++;
5e5fdcff
XG
2441 return false;
2442}
2443
a82d593b 2444/**
3d0684b2 2445 * ram_save_target_page: save one target page
a82d593b 2446 *
3d0684b2 2447 * Returns the number of pages written
a82d593b 2448 *
6f37bb8b 2449 * @rs: current RAM state
3d0684b2 2450 * @pss: data about the page we want to send
a82d593b 2451 * @last_stage: if we are at the completion stage
a82d593b 2452 */
a0a8aa14 2453static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2454 bool last_stage)
a82d593b 2455{
a8ec91f9
XG
2456 RAMBlock *block = pss->block;
2457 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2458 int res;
2459
2460 if (control_save_page(rs, block, offset, &res)) {
2461 return res;
2462 }
2463
5e5fdcff
XG
2464 if (save_compress_page(rs, block, offset)) {
2465 return 1;
d7400a34
XG
2466 }
2467
2468 res = save_zero_page(rs, block, offset);
2469 if (res > 0) {
2470 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2471 * page would be stale
2472 */
2473 if (!save_page_use_compression(rs)) {
2474 XBZRLE_cache_lock();
2475 xbzrle_cache_zero_page(rs, block->offset + offset);
2476 XBZRLE_cache_unlock();
2477 }
2478 ram_release_pages(block->idstr, offset, res);
2479 return res;
2480 }
2481
da3f56cb 2482 /*
5e5fdcff
XG
2483 * do not use multifd for compression as the first page in the new
2484 * block should be posted out before sending the compressed page
da3f56cb 2485 */
5e5fdcff 2486 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2487 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2488 }
2489
1faa5665 2490 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2491}
2492
2493/**
3d0684b2 2494 * ram_save_host_page: save a whole host page
a82d593b 2495 *
3d0684b2
JQ
2496 * Starting at *offset send pages up to the end of the current host
2497 * page. It's valid for the initial offset to point into the middle of
2498 * a host page in which case the remainder of the hostpage is sent.
2499 * Only dirty target pages are sent. Note that the host page size may
2500 * be a huge page for this block.
1eb3fc0a
DDAG
2501 * The saving stops at the boundary of the used_length of the block
2502 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2503 *
3d0684b2
JQ
2504 * Returns the number of pages written or negative on error
2505 *
6f37bb8b 2506 * @rs: current RAM state
3d0684b2 2507 * @ms: current migration state
3d0684b2 2508 * @pss: data about the page we want to send
a82d593b 2509 * @last_stage: if we are at the completion stage
a82d593b 2510 */
a0a8aa14 2511static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2512 bool last_stage)
a82d593b
DDAG
2513{
2514 int tmppages, pages = 0;
a935e30f
JQ
2515 size_t pagesize_bits =
2516 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2517
fbd162e6 2518 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2519 error_report("block %s should not be migrated !", pss->block->idstr);
2520 return 0;
2521 }
2522
a82d593b 2523 do {
1faa5665
XG
2524 /* Check the pages is dirty and if it is send it */
2525 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2526 pss->page++;
2527 continue;
2528 }
2529
f20e2865 2530 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2531 if (tmppages < 0) {
2532 return tmppages;
2533 }
2534
2535 pages += tmppages;
1faa5665
XG
2536 if (pss->block->unsentmap) {
2537 clear_bit(pss->page, pss->block->unsentmap);
2538 }
2539
a935e30f 2540 pss->page++;
1eb3fc0a
DDAG
2541 } while ((pss->page & (pagesize_bits - 1)) &&
2542 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2543
2544 /* The offset we leave with is the last one we looked at */
a935e30f 2545 pss->page--;
a82d593b
DDAG
2546 return pages;
2547}
6c595cde 2548
56e93d26 2549/**
3d0684b2 2550 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2551 *
2552 * Called within an RCU critical section.
2553 *
e8f3735f
XG
2554 * Returns the number of pages written where zero means no dirty pages,
2555 * or negative on error
56e93d26 2556 *
6f37bb8b 2557 * @rs: current RAM state
56e93d26 2558 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2559 *
2560 * On systems where host-page-size > target-page-size it will send all the
2561 * pages in a host page that are dirty.
56e93d26
JQ
2562 */
2563
ce25d337 2564static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2565{
b8fb8cb7 2566 PageSearchStatus pss;
56e93d26 2567 int pages = 0;
b9e60928 2568 bool again, found;
56e93d26 2569
0827b9e9
AA
2570 /* No dirty page as there is zero RAM */
2571 if (!ram_bytes_total()) {
2572 return pages;
2573 }
2574
6f37bb8b 2575 pss.block = rs->last_seen_block;
a935e30f 2576 pss.page = rs->last_page;
b8fb8cb7
DDAG
2577 pss.complete_round = false;
2578
2579 if (!pss.block) {
2580 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2581 }
56e93d26 2582
b9e60928 2583 do {
a82d593b 2584 again = true;
f20e2865 2585 found = get_queued_page(rs, &pss);
b9e60928 2586
a82d593b
DDAG
2587 if (!found) {
2588 /* priority queue empty, so just search for something dirty */
f20e2865 2589 found = find_dirty_block(rs, &pss, &again);
a82d593b 2590 }
f3f491fc 2591
a82d593b 2592 if (found) {
f20e2865 2593 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2594 }
b9e60928 2595 } while (!pages && again);
56e93d26 2596
6f37bb8b 2597 rs->last_seen_block = pss.block;
a935e30f 2598 rs->last_page = pss.page;
56e93d26
JQ
2599
2600 return pages;
2601}
2602
2603void acct_update_position(QEMUFile *f, size_t size, bool zero)
2604{
2605 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2606
56e93d26 2607 if (zero) {
9360447d 2608 ram_counters.duplicate += pages;
56e93d26 2609 } else {
9360447d
JQ
2610 ram_counters.normal += pages;
2611 ram_counters.transferred += size;
56e93d26
JQ
2612 qemu_update_position(f, size);
2613 }
2614}
2615
fbd162e6 2616static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2617{
2618 RAMBlock *block;
2619 uint64_t total = 0;
2620
2621 rcu_read_lock();
fbd162e6
YK
2622 if (count_ignored) {
2623 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2624 total += block->used_length;
2625 }
2626 } else {
2627 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2628 total += block->used_length;
2629 }
99e15582 2630 }
56e93d26
JQ
2631 rcu_read_unlock();
2632 return total;
2633}
2634
fbd162e6
YK
2635uint64_t ram_bytes_total(void)
2636{
2637 return ram_bytes_total_common(false);
2638}
2639
f265e0e4 2640static void xbzrle_load_setup(void)
56e93d26 2641{
f265e0e4 2642 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2643}
2644
f265e0e4
JQ
2645static void xbzrle_load_cleanup(void)
2646{
2647 g_free(XBZRLE.decoded_buf);
2648 XBZRLE.decoded_buf = NULL;
2649}
2650
7d7c96be
PX
2651static void ram_state_cleanup(RAMState **rsp)
2652{
b9ccaf6d
DDAG
2653 if (*rsp) {
2654 migration_page_queue_free(*rsp);
2655 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2656 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2657 g_free(*rsp);
2658 *rsp = NULL;
2659 }
7d7c96be
PX
2660}
2661
84593a08
PX
2662static void xbzrle_cleanup(void)
2663{
2664 XBZRLE_cache_lock();
2665 if (XBZRLE.cache) {
2666 cache_fini(XBZRLE.cache);
2667 g_free(XBZRLE.encoded_buf);
2668 g_free(XBZRLE.current_buf);
2669 g_free(XBZRLE.zero_target_page);
2670 XBZRLE.cache = NULL;
2671 XBZRLE.encoded_buf = NULL;
2672 XBZRLE.current_buf = NULL;
2673 XBZRLE.zero_target_page = NULL;
2674 }
2675 XBZRLE_cache_unlock();
2676}
2677
f265e0e4 2678static void ram_save_cleanup(void *opaque)
56e93d26 2679{
53518d94 2680 RAMState **rsp = opaque;
6b6712ef 2681 RAMBlock *block;
eb859c53 2682
2ff64038 2683 /* caller have hold iothread lock or is in a bh, so there is
4633456c 2684 * no writing race against the migration bitmap
2ff64038 2685 */
6b6712ef
JQ
2686 memory_global_dirty_log_stop();
2687
fbd162e6 2688 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2689 g_free(block->bmap);
2690 block->bmap = NULL;
2691 g_free(block->unsentmap);
2692 block->unsentmap = NULL;
56e93d26
JQ
2693 }
2694
84593a08 2695 xbzrle_cleanup();
f0afa331 2696 compress_threads_save_cleanup();
7d7c96be 2697 ram_state_cleanup(rsp);
56e93d26
JQ
2698}
2699
6f37bb8b 2700static void ram_state_reset(RAMState *rs)
56e93d26 2701{
6f37bb8b
JQ
2702 rs->last_seen_block = NULL;
2703 rs->last_sent_block = NULL;
269ace29 2704 rs->last_page = 0;
6f37bb8b
JQ
2705 rs->last_version = ram_list.version;
2706 rs->ram_bulk_stage = true;
6eeb63f7 2707 rs->fpo_enabled = false;
56e93d26
JQ
2708}
2709
2710#define MAX_WAIT 50 /* ms, half buffered_file limit */
2711
4f2e4252
DDAG
2712/*
2713 * 'expected' is the value you expect the bitmap mostly to be full
2714 * of; it won't bother printing lines that are all this value.
2715 * If 'todump' is null the migration bitmap is dumped.
2716 */
6b6712ef
JQ
2717void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2718 unsigned long pages)
4f2e4252 2719{
4f2e4252
DDAG
2720 int64_t cur;
2721 int64_t linelen = 128;
2722 char linebuf[129];
2723
6b6712ef 2724 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2725 int64_t curb;
2726 bool found = false;
2727 /*
2728 * Last line; catch the case where the line length
2729 * is longer than remaining ram
2730 */
6b6712ef
JQ
2731 if (cur + linelen > pages) {
2732 linelen = pages - cur;
4f2e4252
DDAG
2733 }
2734 for (curb = 0; curb < linelen; curb++) {
2735 bool thisbit = test_bit(cur + curb, todump);
2736 linebuf[curb] = thisbit ? '1' : '.';
2737 found = found || (thisbit != expected);
2738 }
2739 if (found) {
2740 linebuf[curb] = '\0';
2741 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2742 }
2743 }
2744}
2745
e0b266f0
DDAG
2746/* **** functions for postcopy ***** */
2747
ced1c616
PB
2748void ram_postcopy_migrated_memory_release(MigrationState *ms)
2749{
2750 struct RAMBlock *block;
ced1c616 2751
fbd162e6 2752 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2753 unsigned long *bitmap = block->bmap;
2754 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2755 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2756
2757 while (run_start < range) {
2758 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2759 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2760 (run_end - run_start) << TARGET_PAGE_BITS);
2761 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2762 }
2763 }
2764}
2765
3d0684b2
JQ
2766/**
2767 * postcopy_send_discard_bm_ram: discard a RAMBlock
2768 *
2769 * Returns zero on success
2770 *
e0b266f0
DDAG
2771 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2772 * Note: At this point the 'unsentmap' is the processed bitmap combined
2773 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2774 *
2775 * @ms: current migration state
2776 * @pds: state for postcopy
2777 * @start: RAMBlock starting page
2778 * @length: RAMBlock size
e0b266f0
DDAG
2779 */
2780static int postcopy_send_discard_bm_ram(MigrationState *ms,
2781 PostcopyDiscardState *pds,
6b6712ef 2782 RAMBlock *block)
e0b266f0 2783{
6b6712ef 2784 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2785 unsigned long current;
6b6712ef 2786 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2787
6b6712ef 2788 for (current = 0; current < end; ) {
e0b266f0
DDAG
2789 unsigned long one = find_next_bit(unsentmap, end, current);
2790
2791 if (one <= end) {
2792 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2793 unsigned long discard_length;
2794
2795 if (zero >= end) {
2796 discard_length = end - one;
2797 } else {
2798 discard_length = zero - one;
2799 }
d688c62d
DDAG
2800 if (discard_length) {
2801 postcopy_discard_send_range(ms, pds, one, discard_length);
2802 }
e0b266f0
DDAG
2803 current = one + discard_length;
2804 } else {
2805 current = one;
2806 }
2807 }
2808
2809 return 0;
2810}
2811
3d0684b2
JQ
2812/**
2813 * postcopy_each_ram_send_discard: discard all RAMBlocks
2814 *
2815 * Returns 0 for success or negative for error
2816 *
e0b266f0
DDAG
2817 * Utility for the outgoing postcopy code.
2818 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2819 * passing it bitmap indexes and name.
e0b266f0
DDAG
2820 * (qemu_ram_foreach_block ends up passing unscaled lengths
2821 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2822 *
2823 * @ms: current migration state
e0b266f0
DDAG
2824 */
2825static int postcopy_each_ram_send_discard(MigrationState *ms)
2826{
2827 struct RAMBlock *block;
2828 int ret;
2829
fbd162e6 2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2831 PostcopyDiscardState *pds =
2832 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2833
2834 /*
2835 * Postcopy sends chunks of bitmap over the wire, but it
2836 * just needs indexes at this point, avoids it having
2837 * target page specific code.
2838 */
6b6712ef 2839 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2840 postcopy_discard_send_finish(ms, pds);
2841 if (ret) {
2842 return ret;
2843 }
2844 }
2845
2846 return 0;
2847}
2848
3d0684b2
JQ
2849/**
2850 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2851 *
2852 * Helper for postcopy_chunk_hostpages; it's called twice to
2853 * canonicalize the two bitmaps, that are similar, but one is
2854 * inverted.
99e314eb 2855 *
3d0684b2
JQ
2856 * Postcopy requires that all target pages in a hostpage are dirty or
2857 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2858 *
3d0684b2
JQ
2859 * @ms: current migration state
2860 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2861 * otherwise we need to canonicalize partially dirty host pages
2862 * @block: block that contains the page we want to canonicalize
2863 * @pds: state for postcopy
99e314eb
DDAG
2864 */
2865static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2866 RAMBlock *block,
2867 PostcopyDiscardState *pds)
2868{
53518d94 2869 RAMState *rs = ram_state;
6b6712ef
JQ
2870 unsigned long *bitmap = block->bmap;
2871 unsigned long *unsentmap = block->unsentmap;
29c59172 2872 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2873 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2874 unsigned long run_start;
2875
29c59172
DDAG
2876 if (block->page_size == TARGET_PAGE_SIZE) {
2877 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2878 return;
2879 }
2880
99e314eb
DDAG
2881 if (unsent_pass) {
2882 /* Find a sent page */
6b6712ef 2883 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2884 } else {
2885 /* Find a dirty page */
6b6712ef 2886 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2887 }
2888
6b6712ef 2889 while (run_start < pages) {
99e314eb
DDAG
2890 bool do_fixup = false;
2891 unsigned long fixup_start_addr;
2892 unsigned long host_offset;
2893
2894 /*
2895 * If the start of this run of pages is in the middle of a host
2896 * page, then we need to fixup this host page.
2897 */
2898 host_offset = run_start % host_ratio;
2899 if (host_offset) {
2900 do_fixup = true;
2901 run_start -= host_offset;
2902 fixup_start_addr = run_start;
2903 /* For the next pass */
2904 run_start = run_start + host_ratio;
2905 } else {
2906 /* Find the end of this run */
2907 unsigned long run_end;
2908 if (unsent_pass) {
6b6712ef 2909 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2910 } else {
6b6712ef 2911 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2912 }
2913 /*
2914 * If the end isn't at the start of a host page, then the
2915 * run doesn't finish at the end of a host page
2916 * and we need to discard.
2917 */
2918 host_offset = run_end % host_ratio;
2919 if (host_offset) {
2920 do_fixup = true;
2921 fixup_start_addr = run_end - host_offset;
2922 /*
2923 * This host page has gone, the next loop iteration starts
2924 * from after the fixup
2925 */
2926 run_start = fixup_start_addr + host_ratio;
2927 } else {
2928 /*
2929 * No discards on this iteration, next loop starts from
2930 * next sent/dirty page
2931 */
2932 run_start = run_end + 1;
2933 }
2934 }
2935
2936 if (do_fixup) {
2937 unsigned long page;
2938
2939 /* Tell the destination to discard this page */
2940 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2941 /* For the unsent_pass we:
2942 * discard partially sent pages
2943 * For the !unsent_pass (dirty) we:
2944 * discard partially dirty pages that were sent
2945 * (any partially sent pages were already discarded
2946 * by the previous unsent_pass)
2947 */
2948 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2949 host_ratio);
2950 }
2951
2952 /* Clean up the bitmap */
2953 for (page = fixup_start_addr;
2954 page < fixup_start_addr + host_ratio; page++) {
2955 /* All pages in this host page are now not sent */
2956 set_bit(page, unsentmap);
2957
2958 /*
2959 * Remark them as dirty, updating the count for any pages
2960 * that weren't previously dirty.
2961 */
0d8ec885 2962 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2963 }
2964 }
2965
2966 if (unsent_pass) {
2967 /* Find the next sent page for the next iteration */
6b6712ef 2968 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2969 } else {
2970 /* Find the next dirty page for the next iteration */
6b6712ef 2971 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2972 }
2973 }
2974}
2975
3d0684b2
JQ
2976/**
2977 * postcopy_chuck_hostpages: discrad any partially sent host page
2978 *
99e314eb
DDAG
2979 * Utility for the outgoing postcopy code.
2980 *
2981 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2982 * dirty host-page size chunks as all dirty. In this case the host-page
2983 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2984 *
3d0684b2
JQ
2985 * Returns zero on success
2986 *
2987 * @ms: current migration state
6b6712ef 2988 * @block: block we want to work with
99e314eb 2989 */
6b6712ef 2990static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2991{
6b6712ef
JQ
2992 PostcopyDiscardState *pds =
2993 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2994
6b6712ef
JQ
2995 /* First pass: Discard all partially sent host pages */
2996 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2997 /*
2998 * Second pass: Ensure that all partially dirty host pages are made
2999 * fully dirty.
3000 */
3001 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 3002
6b6712ef 3003 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
3004 return 0;
3005}
3006
3d0684b2
JQ
3007/**
3008 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3009 *
3010 * Returns zero on success
3011 *
e0b266f0
DDAG
3012 * Transmit the set of pages to be discarded after precopy to the target
3013 * these are pages that:
3014 * a) Have been previously transmitted but are now dirty again
3015 * b) Pages that have never been transmitted, this ensures that
3016 * any pages on the destination that have been mapped by background
3017 * tasks get discarded (transparent huge pages is the specific concern)
3018 * Hopefully this is pretty sparse
3d0684b2
JQ
3019 *
3020 * @ms: current migration state
e0b266f0
DDAG
3021 */
3022int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3023{
53518d94 3024 RAMState *rs = ram_state;
6b6712ef 3025 RAMBlock *block;
e0b266f0 3026 int ret;
e0b266f0
DDAG
3027
3028 rcu_read_lock();
3029
3030 /* This should be our last sync, the src is now paused */
eb859c53 3031 migration_bitmap_sync(rs);
e0b266f0 3032
6b6712ef
JQ
3033 /* Easiest way to make sure we don't resume in the middle of a host-page */
3034 rs->last_seen_block = NULL;
3035 rs->last_sent_block = NULL;
3036 rs->last_page = 0;
e0b266f0 3037
fbd162e6 3038 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3039 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3040 unsigned long *bitmap = block->bmap;
3041 unsigned long *unsentmap = block->unsentmap;
3042
3043 if (!unsentmap) {
3044 /* We don't have a safe way to resize the sentmap, so
3045 * if the bitmap was resized it will be NULL at this
3046 * point.
3047 */
3048 error_report("migration ram resized during precopy phase");
3049 rcu_read_unlock();
3050 return -EINVAL;
3051 }
3052 /* Deal with TPS != HPS and huge pages */
3053 ret = postcopy_chunk_hostpages(ms, block);
3054 if (ret) {
3055 rcu_read_unlock();
3056 return ret;
3057 }
e0b266f0 3058
6b6712ef
JQ
3059 /*
3060 * Update the unsentmap to be unsentmap = unsentmap | dirty
3061 */
3062 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3063#ifdef DEBUG_POSTCOPY
6b6712ef 3064 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3065#endif
6b6712ef
JQ
3066 }
3067 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3068
3069 ret = postcopy_each_ram_send_discard(ms);
3070 rcu_read_unlock();
3071
3072 return ret;
3073}
3074
3d0684b2
JQ
3075/**
3076 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3077 *
3d0684b2 3078 * Returns zero on success
e0b266f0 3079 *
36449157
JQ
3080 * @rbname: name of the RAMBlock of the request. NULL means the
3081 * same that last one.
3d0684b2
JQ
3082 * @start: RAMBlock starting page
3083 * @length: RAMBlock size
e0b266f0 3084 */
aaa2064c 3085int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3086{
3087 int ret = -1;
3088
36449157 3089 trace_ram_discard_range(rbname, start, length);
d3a5038c 3090
e0b266f0 3091 rcu_read_lock();
36449157 3092 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3093
3094 if (!rb) {
36449157 3095 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3096 goto err;
3097 }
3098
814bb08f
PX
3099 /*
3100 * On source VM, we don't need to update the received bitmap since
3101 * we don't even have one.
3102 */
3103 if (rb->receivedmap) {
3104 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3105 length >> qemu_target_page_bits());
3106 }
3107
d3a5038c 3108 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3109
3110err:
3111 rcu_read_unlock();
3112
3113 return ret;
3114}
3115
84593a08
PX
3116/*
3117 * For every allocation, we will try not to crash the VM if the
3118 * allocation failed.
3119 */
3120static int xbzrle_init(void)
3121{
3122 Error *local_err = NULL;
3123
3124 if (!migrate_use_xbzrle()) {
3125 return 0;
3126 }
3127
3128 XBZRLE_cache_lock();
3129
3130 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3131 if (!XBZRLE.zero_target_page) {
3132 error_report("%s: Error allocating zero page", __func__);
3133 goto err_out;
3134 }
3135
3136 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3137 TARGET_PAGE_SIZE, &local_err);
3138 if (!XBZRLE.cache) {
3139 error_report_err(local_err);
3140 goto free_zero_page;
3141 }
3142
3143 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3144 if (!XBZRLE.encoded_buf) {
3145 error_report("%s: Error allocating encoded_buf", __func__);
3146 goto free_cache;
3147 }
3148
3149 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3150 if (!XBZRLE.current_buf) {
3151 error_report("%s: Error allocating current_buf", __func__);
3152 goto free_encoded_buf;
3153 }
3154
3155 /* We are all good */
3156 XBZRLE_cache_unlock();
3157 return 0;
3158
3159free_encoded_buf:
3160 g_free(XBZRLE.encoded_buf);
3161 XBZRLE.encoded_buf = NULL;
3162free_cache:
3163 cache_fini(XBZRLE.cache);
3164 XBZRLE.cache = NULL;
3165free_zero_page:
3166 g_free(XBZRLE.zero_target_page);
3167 XBZRLE.zero_target_page = NULL;
3168err_out:
3169 XBZRLE_cache_unlock();
3170 return -ENOMEM;
3171}
3172
53518d94 3173static int ram_state_init(RAMState **rsp)
56e93d26 3174{
7d00ee6a
PX
3175 *rsp = g_try_new0(RAMState, 1);
3176
3177 if (!*rsp) {
3178 error_report("%s: Init ramstate fail", __func__);
3179 return -1;
3180 }
53518d94
JQ
3181
3182 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3183 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3184 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3185
7d00ee6a 3186 /*
03158519
WY
3187 * This must match with the initial values of dirty bitmap.
3188 * Currently we initialize the dirty bitmap to all zeros so
3189 * here the total dirty page count is zero.
7d00ee6a 3190 */
03158519 3191 (*rsp)->migration_dirty_pages = 0;
7d00ee6a
PX
3192 ram_state_reset(*rsp);
3193
3194 return 0;
3195}
3196
d6eff5d7 3197static void ram_list_init_bitmaps(void)
7d00ee6a 3198{
d6eff5d7
PX
3199 RAMBlock *block;
3200 unsigned long pages;
56e93d26 3201
0827b9e9
AA
3202 /* Skip setting bitmap if there is no RAM */
3203 if (ram_bytes_total()) {
fbd162e6 3204 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3205 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
3206 /*
3207 * The initial dirty bitmap for migration must be set with all
3208 * ones to make sure we'll migrate every guest RAM page to
3209 * destination.
3210 * Here we didn't set RAMBlock.bmap simply because it is already
3211 * set in ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION] in
3212 * ram_block_add, and that's where we'll sync the dirty bitmaps.
3213 * Here setting RAMBlock.bmap would be fine too but not necessary.
3214 */
6b6712ef 3215 block->bmap = bitmap_new(pages);
6b6712ef
JQ
3216 if (migrate_postcopy_ram()) {
3217 block->unsentmap = bitmap_new(pages);
3218 bitmap_set(block->unsentmap, 0, pages);
3219 }
0827b9e9 3220 }
f3f491fc 3221 }
d6eff5d7
PX
3222}
3223
3224static void ram_init_bitmaps(RAMState *rs)
3225{
3226 /* For memory_global_dirty_log_start below. */
3227 qemu_mutex_lock_iothread();
3228 qemu_mutex_lock_ramlist();
3229 rcu_read_lock();
f3f491fc 3230
d6eff5d7 3231 ram_list_init_bitmaps();
56e93d26 3232 memory_global_dirty_log_start();
bd227060 3233 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3234
3235 rcu_read_unlock();
56e93d26 3236 qemu_mutex_unlock_ramlist();
49877834 3237 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3238}
3239
3240static int ram_init_all(RAMState **rsp)
3241{
3242 if (ram_state_init(rsp)) {
3243 return -1;
3244 }
3245
3246 if (xbzrle_init()) {
3247 ram_state_cleanup(rsp);
3248 return -1;
3249 }
3250
3251 ram_init_bitmaps(*rsp);
a91246c9
HZ
3252
3253 return 0;
3254}
3255
08614f34
PX
3256static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3257{
3258 RAMBlock *block;
3259 uint64_t pages = 0;
3260
3261 /*
3262 * Postcopy is not using xbzrle/compression, so no need for that.
3263 * Also, since source are already halted, we don't need to care
3264 * about dirty page logging as well.
3265 */
3266
fbd162e6 3267 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3268 pages += bitmap_count_one(block->bmap,
3269 block->used_length >> TARGET_PAGE_BITS);
3270 }
3271
3272 /* This may not be aligned with current bitmaps. Recalculate. */
3273 rs->migration_dirty_pages = pages;
3274
3275 rs->last_seen_block = NULL;
3276 rs->last_sent_block = NULL;
3277 rs->last_page = 0;
3278 rs->last_version = ram_list.version;
3279 /*
3280 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3281 * matter what we have sent.
3282 */
3283 rs->ram_bulk_stage = false;
3284
3285 /* Update RAMState cache of output QEMUFile */
3286 rs->f = out;
3287
3288 trace_ram_state_resume_prepare(pages);
3289}
3290
6bcb05fc
WW
3291/*
3292 * This function clears bits of the free pages reported by the caller from the
3293 * migration dirty bitmap. @addr is the host address corresponding to the
3294 * start of the continuous guest free pages, and @len is the total bytes of
3295 * those pages.
3296 */
3297void qemu_guest_free_page_hint(void *addr, size_t len)
3298{
3299 RAMBlock *block;
3300 ram_addr_t offset;
3301 size_t used_len, start, npages;
3302 MigrationState *s = migrate_get_current();
3303
3304 /* This function is currently expected to be used during live migration */
3305 if (!migration_is_setup_or_active(s->state)) {
3306 return;
3307 }
3308
3309 for (; len > 0; len -= used_len, addr += used_len) {
3310 block = qemu_ram_block_from_host(addr, false, &offset);
3311 if (unlikely(!block || offset >= block->used_length)) {
3312 /*
3313 * The implementation might not support RAMBlock resize during
3314 * live migration, but it could happen in theory with future
3315 * updates. So we add a check here to capture that case.
3316 */
3317 error_report_once("%s unexpected error", __func__);
3318 return;
3319 }
3320
3321 if (len <= block->used_length - offset) {
3322 used_len = len;
3323 } else {
3324 used_len = block->used_length - offset;
3325 }
3326
3327 start = offset >> TARGET_PAGE_BITS;
3328 npages = used_len >> TARGET_PAGE_BITS;
3329
3330 qemu_mutex_lock(&ram_state->bitmap_mutex);
3331 ram_state->migration_dirty_pages -=
3332 bitmap_count_one_with_offset(block->bmap, start, npages);
3333 bitmap_clear(block->bmap, start, npages);
3334 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3335 }
3336}
3337
3d0684b2
JQ
3338/*
3339 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3340 * long-running RCU critical section. When rcu-reclaims in the code
3341 * start to become numerous it will be necessary to reduce the
3342 * granularity of these critical sections.
3343 */
3344
3d0684b2
JQ
3345/**
3346 * ram_save_setup: Setup RAM for migration
3347 *
3348 * Returns zero to indicate success and negative for error
3349 *
3350 * @f: QEMUFile where to send the data
3351 * @opaque: RAMState pointer
3352 */
a91246c9
HZ
3353static int ram_save_setup(QEMUFile *f, void *opaque)
3354{
53518d94 3355 RAMState **rsp = opaque;
a91246c9
HZ
3356 RAMBlock *block;
3357
dcaf446e
XG
3358 if (compress_threads_save_setup()) {
3359 return -1;
3360 }
3361
a91246c9
HZ
3362 /* migration has already setup the bitmap, reuse it. */
3363 if (!migration_in_colo_state()) {
7d00ee6a 3364 if (ram_init_all(rsp) != 0) {
dcaf446e 3365 compress_threads_save_cleanup();
a91246c9 3366 return -1;
53518d94 3367 }
a91246c9 3368 }
53518d94 3369 (*rsp)->f = f;
a91246c9
HZ
3370
3371 rcu_read_lock();
56e93d26 3372
fbd162e6 3373 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3374
b895de50 3375 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3376 qemu_put_byte(f, strlen(block->idstr));
3377 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3378 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3379 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3380 qemu_put_be64(f, block->page_size);
3381 }
fbd162e6
YK
3382 if (migrate_ignore_shared()) {
3383 qemu_put_be64(f, block->mr->addr);
3384 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3385 }
56e93d26
JQ
3386 }
3387
3388 rcu_read_unlock();
3389
3390 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3391 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3392
6df264ac 3393 multifd_send_sync_main();
56e93d26 3394 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3395 qemu_fflush(f);
56e93d26
JQ
3396
3397 return 0;
3398}
3399
3d0684b2
JQ
3400/**
3401 * ram_save_iterate: iterative stage for migration
3402 *
3403 * Returns zero to indicate success and negative for error
3404 *
3405 * @f: QEMUFile where to send the data
3406 * @opaque: RAMState pointer
3407 */
56e93d26
JQ
3408static int ram_save_iterate(QEMUFile *f, void *opaque)
3409{
53518d94
JQ
3410 RAMState **temp = opaque;
3411 RAMState *rs = *temp;
56e93d26
JQ
3412 int ret;
3413 int i;
3414 int64_t t0;
5c90308f 3415 int done = 0;
56e93d26 3416
b2557345
PL
3417 if (blk_mig_bulk_active()) {
3418 /* Avoid transferring ram during bulk phase of block migration as
3419 * the bulk phase will usually take a long time and transferring
3420 * ram updates during that time is pointless. */
3421 goto out;
3422 }
3423
56e93d26 3424 rcu_read_lock();
6f37bb8b
JQ
3425 if (ram_list.version != rs->last_version) {
3426 ram_state_reset(rs);
56e93d26
JQ
3427 }
3428
3429 /* Read version before ram_list.blocks */
3430 smp_rmb();
3431
3432 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3433
3434 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3435 i = 0;
e03a34f8
DDAG
3436 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3437 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3438 int pages;
3439
e03a34f8
DDAG
3440 if (qemu_file_get_error(f)) {
3441 break;
3442 }
3443
ce25d337 3444 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3445 /* no more pages to sent */
3446 if (pages == 0) {
5c90308f 3447 done = 1;
56e93d26
JQ
3448 break;
3449 }
e8f3735f
XG
3450
3451 if (pages < 0) {
3452 qemu_file_set_error(f, pages);
3453 break;
3454 }
3455
be8b02ed 3456 rs->target_page_count += pages;
070afca2 3457
56e93d26
JQ
3458 /* we want to check in the 1st loop, just in case it was the 1st time
3459 and we had to sync the dirty bitmap.
a5f7b1a6 3460 qemu_clock_get_ns() is a bit expensive, so we only check each some
56e93d26
JQ
3461 iterations
3462 */
3463 if ((i & 63) == 0) {
3464 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3465 if (t1 > MAX_WAIT) {
55c4446b 3466 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3467 break;
3468 }
3469 }
3470 i++;
3471 }
56e93d26
JQ
3472 rcu_read_unlock();
3473
3474 /*
3475 * Must occur before EOS (or any QEMUFile operation)
3476 * because of RDMA protocol.
3477 */
3478 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3479
b2557345 3480out:
b6526c4b 3481 multifd_send_sync_main();
56e93d26 3482 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3483 qemu_fflush(f);
9360447d 3484 ram_counters.transferred += 8;
56e93d26
JQ
3485
3486 ret = qemu_file_get_error(f);
3487 if (ret < 0) {
3488 return ret;
3489 }
3490
5c90308f 3491 return done;
56e93d26
JQ
3492}
3493
3d0684b2
JQ
3494/**
3495 * ram_save_complete: function called to send the remaining amount of ram
3496 *
e8f3735f 3497 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3498 *
3499 * Called with iothread lock
3500 *
3501 * @f: QEMUFile where to send the data
3502 * @opaque: RAMState pointer
3503 */
56e93d26
JQ
3504static int ram_save_complete(QEMUFile *f, void *opaque)
3505{
53518d94
JQ
3506 RAMState **temp = opaque;
3507 RAMState *rs = *temp;
e8f3735f 3508 int ret = 0;
6f37bb8b 3509
56e93d26
JQ
3510 rcu_read_lock();
3511
5727309d 3512 if (!migration_in_postcopy()) {
bd227060 3513 migration_bitmap_sync_precopy(rs);
663e6c1d 3514 }
56e93d26
JQ
3515
3516 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3517
3518 /* try transferring iterative blocks of memory */
3519
3520 /* flush all remaining blocks regardless of rate limiting */
3521 while (true) {
3522 int pages;
3523
ce25d337 3524 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3525 /* no more blocks to sent */
3526 if (pages == 0) {
3527 break;
3528 }
e8f3735f
XG
3529 if (pages < 0) {
3530 ret = pages;
3531 break;
3532 }
56e93d26
JQ
3533 }
3534
ce25d337 3535 flush_compressed_data(rs);
56e93d26 3536 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3537
3538 rcu_read_unlock();
d09a6fde 3539
6df264ac 3540 multifd_send_sync_main();
56e93d26 3541 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3542 qemu_fflush(f);
56e93d26 3543
e8f3735f 3544 return ret;
56e93d26
JQ
3545}
3546
c31b098f 3547static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3548 uint64_t *res_precopy_only,
3549 uint64_t *res_compatible,
3550 uint64_t *res_postcopy_only)
56e93d26 3551{
53518d94
JQ
3552 RAMState **temp = opaque;
3553 RAMState *rs = *temp;
56e93d26
JQ
3554 uint64_t remaining_size;
3555
9edabd4d 3556 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3557
5727309d 3558 if (!migration_in_postcopy() &&
663e6c1d 3559 remaining_size < max_size) {
56e93d26
JQ
3560 qemu_mutex_lock_iothread();
3561 rcu_read_lock();
bd227060 3562 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3563 rcu_read_unlock();
3564 qemu_mutex_unlock_iothread();
9edabd4d 3565 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3566 }
c31b098f 3567
86e1167e
VSO
3568 if (migrate_postcopy_ram()) {
3569 /* We can do postcopy, and all the data is postcopiable */
47995026 3570 *res_compatible += remaining_size;
86e1167e 3571 } else {
47995026 3572 *res_precopy_only += remaining_size;
86e1167e 3573 }
56e93d26
JQ
3574}
3575
3576static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3577{
3578 unsigned int xh_len;
3579 int xh_flags;
063e760a 3580 uint8_t *loaded_data;
56e93d26 3581
56e93d26
JQ
3582 /* extract RLE header */
3583 xh_flags = qemu_get_byte(f);
3584 xh_len = qemu_get_be16(f);
3585
3586 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3587 error_report("Failed to load XBZRLE page - wrong compression!");
3588 return -1;
3589 }
3590
3591 if (xh_len > TARGET_PAGE_SIZE) {
3592 error_report("Failed to load XBZRLE page - len overflow!");
3593 return -1;
3594 }
f265e0e4 3595 loaded_data = XBZRLE.decoded_buf;
56e93d26 3596 /* load data and decode */
f265e0e4 3597 /* it can change loaded_data to point to an internal buffer */
063e760a 3598 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3599
3600 /* decode RLE */
063e760a 3601 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3602 TARGET_PAGE_SIZE) == -1) {
3603 error_report("Failed to load XBZRLE page - decode error!");
3604 return -1;
3605 }
3606
3607 return 0;
3608}
3609
3d0684b2
JQ
3610/**
3611 * ram_block_from_stream: read a RAMBlock id from the migration stream
3612 *
3613 * Must be called from within a rcu critical section.
3614 *
56e93d26 3615 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3616 *
3d0684b2
JQ
3617 * @f: QEMUFile where to read the data from
3618 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3619 */
3d0684b2 3620static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3621{
3622 static RAMBlock *block = NULL;
3623 char id[256];
3624 uint8_t len;
3625
3626 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3627 if (!block) {
56e93d26
JQ
3628 error_report("Ack, bad migration stream!");
3629 return NULL;
3630 }
4c4bad48 3631 return block;
56e93d26
JQ
3632 }
3633
3634 len = qemu_get_byte(f);
3635 qemu_get_buffer(f, (uint8_t *)id, len);
3636 id[len] = 0;
3637
e3dd7493 3638 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3639 if (!block) {
3640 error_report("Can't find block %s", id);
3641 return NULL;
56e93d26
JQ
3642 }
3643
fbd162e6 3644 if (ramblock_is_ignored(block)) {
b895de50
CLG
3645 error_report("block %s should not be migrated !", id);
3646 return NULL;
3647 }
3648
4c4bad48
HZ
3649 return block;
3650}
3651
3652static inline void *host_from_ram_block_offset(RAMBlock *block,
3653 ram_addr_t offset)
3654{
3655 if (!offset_in_ramblock(block, offset)) {
3656 return NULL;
3657 }
3658
3659 return block->host + offset;
56e93d26
JQ
3660}
3661
13af18f2
ZC
3662static inline void *colo_cache_from_block_offset(RAMBlock *block,
3663 ram_addr_t offset)
3664{
3665 if (!offset_in_ramblock(block, offset)) {
3666 return NULL;
3667 }
3668 if (!block->colo_cache) {
3669 error_report("%s: colo_cache is NULL in block :%s",
3670 __func__, block->idstr);
3671 return NULL;
3672 }
7d9acafa
ZC
3673
3674 /*
3675 * During colo checkpoint, we need bitmap of these migrated pages.
3676 * It help us to decide which pages in ram cache should be flushed
3677 * into VM's RAM later.
3678 */
3679 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3680 ram_state->migration_dirty_pages++;
3681 }
13af18f2
ZC
3682 return block->colo_cache + offset;
3683}
3684
3d0684b2
JQ
3685/**
3686 * ram_handle_compressed: handle the zero page case
3687 *
56e93d26
JQ
3688 * If a page (or a whole RDMA chunk) has been
3689 * determined to be zero, then zap it.
3d0684b2
JQ
3690 *
3691 * @host: host address for the zero page
3692 * @ch: what the page is filled from. We only support zero
3693 * @size: size of the zero page
56e93d26
JQ
3694 */
3695void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3696{
3697 if (ch != 0 || !is_zero_range(host, size)) {
3698 memset(host, ch, size);
3699 }
3700}
3701
797ca154
XG
3702/* return the size after decompression, or negative value on error */
3703static int
3704qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3705 const uint8_t *source, size_t source_len)
3706{
3707 int err;
3708
3709 err = inflateReset(stream);
3710 if (err != Z_OK) {
3711 return -1;
3712 }
3713
3714 stream->avail_in = source_len;
3715 stream->next_in = (uint8_t *)source;
3716 stream->avail_out = dest_len;
3717 stream->next_out = dest;
3718
3719 err = inflate(stream, Z_NO_FLUSH);
3720 if (err != Z_STREAM_END) {
3721 return -1;
3722 }
3723
3724 return stream->total_out;
3725}
3726
56e93d26
JQ
3727static void *do_data_decompress(void *opaque)
3728{
3729 DecompressParam *param = opaque;
3730 unsigned long pagesize;
33d151f4 3731 uint8_t *des;
34ab9e97 3732 int len, ret;
56e93d26 3733
33d151f4 3734 qemu_mutex_lock(&param->mutex);
90e56fb4 3735 while (!param->quit) {
33d151f4
LL
3736 if (param->des) {
3737 des = param->des;
3738 len = param->len;
3739 param->des = 0;
3740 qemu_mutex_unlock(&param->mutex);
3741
56e93d26 3742 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3743
3744 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3745 param->compbuf, len);
f548222c 3746 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3747 error_report("decompress data failed");
3748 qemu_file_set_error(decomp_file, ret);
3749 }
73a8912b 3750
33d151f4
LL
3751 qemu_mutex_lock(&decomp_done_lock);
3752 param->done = true;
3753 qemu_cond_signal(&decomp_done_cond);
3754 qemu_mutex_unlock(&decomp_done_lock);
3755
3756 qemu_mutex_lock(&param->mutex);
3757 } else {
3758 qemu_cond_wait(&param->cond, &param->mutex);
3759 }
56e93d26 3760 }
33d151f4 3761 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3762
3763 return NULL;
3764}
3765
34ab9e97 3766static int wait_for_decompress_done(void)
5533b2e9
LL
3767{
3768 int idx, thread_count;
3769
3770 if (!migrate_use_compression()) {
34ab9e97 3771 return 0;
5533b2e9
LL
3772 }
3773
3774 thread_count = migrate_decompress_threads();
3775 qemu_mutex_lock(&decomp_done_lock);
3776 for (idx = 0; idx < thread_count; idx++) {
3777 while (!decomp_param[idx].done) {
3778 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3779 }
3780 }
3781 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3782 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3783}
3784
f0afa331 3785static void compress_threads_load_cleanup(void)
56e93d26
JQ
3786{
3787 int i, thread_count;
3788
3416ab5b
JQ
3789 if (!migrate_use_compression()) {
3790 return;
3791 }
56e93d26
JQ
3792 thread_count = migrate_decompress_threads();
3793 for (i = 0; i < thread_count; i++) {
797ca154
XG
3794 /*
3795 * we use it as a indicator which shows if the thread is
3796 * properly init'd or not
3797 */
3798 if (!decomp_param[i].compbuf) {
3799 break;
3800 }
3801
56e93d26 3802 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3803 decomp_param[i].quit = true;
56e93d26
JQ
3804 qemu_cond_signal(&decomp_param[i].cond);
3805 qemu_mutex_unlock(&decomp_param[i].mutex);
3806 }
3807 for (i = 0; i < thread_count; i++) {
797ca154
XG
3808 if (!decomp_param[i].compbuf) {
3809 break;
3810 }
3811
56e93d26
JQ
3812 qemu_thread_join(decompress_threads + i);
3813 qemu_mutex_destroy(&decomp_param[i].mutex);
3814 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3815 inflateEnd(&decomp_param[i].stream);
56e93d26 3816 g_free(decomp_param[i].compbuf);
797ca154 3817 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3818 }
3819 g_free(decompress_threads);
3820 g_free(decomp_param);
56e93d26
JQ
3821 decompress_threads = NULL;
3822 decomp_param = NULL;
34ab9e97 3823 decomp_file = NULL;
56e93d26
JQ
3824}
3825
34ab9e97 3826static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3827{
3828 int i, thread_count;
3829
3830 if (!migrate_use_compression()) {
3831 return 0;
3832 }
3833
3834 thread_count = migrate_decompress_threads();
3835 decompress_threads = g_new0(QemuThread, thread_count);
3836 decomp_param = g_new0(DecompressParam, thread_count);
3837 qemu_mutex_init(&decomp_done_lock);
3838 qemu_cond_init(&decomp_done_cond);
34ab9e97 3839 decomp_file = f;
797ca154
XG
3840 for (i = 0; i < thread_count; i++) {
3841 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3842 goto exit;
3843 }
3844
3845 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3846 qemu_mutex_init(&decomp_param[i].mutex);
3847 qemu_cond_init(&decomp_param[i].cond);
3848 decomp_param[i].done = true;
3849 decomp_param[i].quit = false;
3850 qemu_thread_create(decompress_threads + i, "decompress",
3851 do_data_decompress, decomp_param + i,
3852 QEMU_THREAD_JOINABLE);
3853 }
3854 return 0;
3855exit:
3856 compress_threads_load_cleanup();
3857 return -1;
3858}
3859
c1bc6626 3860static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3861 void *host, int len)
3862{
3863 int idx, thread_count;
3864
3865 thread_count = migrate_decompress_threads();
73a8912b 3866 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3867 while (true) {
3868 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3869 if (decomp_param[idx].done) {
33d151f4
LL
3870 decomp_param[idx].done = false;
3871 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3872 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3873 decomp_param[idx].des = host;
3874 decomp_param[idx].len = len;
33d151f4
LL
3875 qemu_cond_signal(&decomp_param[idx].cond);
3876 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3877 break;
3878 }
3879 }
3880 if (idx < thread_count) {
3881 break;
73a8912b
LL
3882 } else {
3883 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3884 }
3885 }
73a8912b 3886 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3887}
3888
13af18f2
ZC
3889/*
3890 * colo cache: this is for secondary VM, we cache the whole
3891 * memory of the secondary VM, it is need to hold the global lock
3892 * to call this helper.
3893 */
3894int colo_init_ram_cache(void)
3895{
3896 RAMBlock *block;
3897
3898 rcu_read_lock();
fbd162e6 3899 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3900 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3901 NULL,
3902 false);
3903 if (!block->colo_cache) {
3904 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3905 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3906 block->used_length);
3907 goto out_locked;
3908 }
3909 memcpy(block->colo_cache, block->host, block->used_length);
3910 }
3911 rcu_read_unlock();
7d9acafa
ZC
3912 /*
3913 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3914 * with to decide which page in cache should be flushed into SVM's RAM. Here
3915 * we use the same name 'ram_bitmap' as for migration.
3916 */
3917 if (ram_bytes_total()) {
3918 RAMBlock *block;
3919
fbd162e6 3920 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3921 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3922
3923 block->bmap = bitmap_new(pages);
3924 bitmap_set(block->bmap, 0, pages);
3925 }
3926 }
3927 ram_state = g_new0(RAMState, 1);
3928 ram_state->migration_dirty_pages = 0;
c6e5bafb 3929 qemu_mutex_init(&ram_state->bitmap_mutex);
d1955d22 3930 memory_global_dirty_log_start();
7d9acafa 3931
13af18f2
ZC
3932 return 0;
3933
3934out_locked:
7d9acafa 3935
fbd162e6 3936 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3937 if (block->colo_cache) {
3938 qemu_anon_ram_free(block->colo_cache, block->used_length);
3939 block->colo_cache = NULL;
3940 }
3941 }
3942
3943 rcu_read_unlock();
3944 return -errno;
3945}
3946
3947/* It is need to hold the global lock to call this helper */
3948void colo_release_ram_cache(void)
3949{
3950 RAMBlock *block;
3951
d1955d22 3952 memory_global_dirty_log_stop();
fbd162e6 3953 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3954 g_free(block->bmap);
3955 block->bmap = NULL;
3956 }
3957
13af18f2 3958 rcu_read_lock();
7d9acafa 3959
fbd162e6 3960 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3961 if (block->colo_cache) {
3962 qemu_anon_ram_free(block->colo_cache, block->used_length);
3963 block->colo_cache = NULL;
3964 }
3965 }
7d9acafa 3966
13af18f2 3967 rcu_read_unlock();
c6e5bafb 3968 qemu_mutex_destroy(&ram_state->bitmap_mutex);
7d9acafa
ZC
3969 g_free(ram_state);
3970 ram_state = NULL;
13af18f2
ZC
3971}
3972
f265e0e4
JQ
3973/**
3974 * ram_load_setup: Setup RAM for migration incoming side
3975 *
3976 * Returns zero to indicate success and negative for error
3977 *
3978 * @f: QEMUFile where to receive the data
3979 * @opaque: RAMState pointer
3980 */
3981static int ram_load_setup(QEMUFile *f, void *opaque)
3982{
34ab9e97 3983 if (compress_threads_load_setup(f)) {
797ca154
XG
3984 return -1;
3985 }
3986
f265e0e4 3987 xbzrle_load_setup();
f9494614 3988 ramblock_recv_map_init();
13af18f2 3989
f265e0e4
JQ
3990 return 0;
3991}
3992
3993static int ram_load_cleanup(void *opaque)
3994{
f9494614 3995 RAMBlock *rb;
56eb90af 3996
fbd162e6 3997 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
3998 if (ramblock_is_pmem(rb)) {
3999 pmem_persist(rb->host, rb->used_length);
4000 }
4001 }
4002
f265e0e4 4003 xbzrle_load_cleanup();
f0afa331 4004 compress_threads_load_cleanup();
f9494614 4005
fbd162e6 4006 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
4007 g_free(rb->receivedmap);
4008 rb->receivedmap = NULL;
4009 }
13af18f2 4010
f265e0e4
JQ
4011 return 0;
4012}
4013
3d0684b2
JQ
4014/**
4015 * ram_postcopy_incoming_init: allocate postcopy data structures
4016 *
4017 * Returns 0 for success and negative if there was one error
4018 *
4019 * @mis: current migration incoming state
4020 *
4021 * Allocate data structures etc needed by incoming migration with
4022 * postcopy-ram. postcopy-ram's similarly names
4023 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4024 */
4025int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4026{
c136180c 4027 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4028}
4029
3d0684b2
JQ
4030/**
4031 * ram_load_postcopy: load a page in postcopy case
4032 *
4033 * Returns 0 for success or -errno in case of error
4034 *
a7180877
DDAG
4035 * Called in postcopy mode by ram_load().
4036 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4037 *
4038 * @f: QEMUFile where to send the data
a7180877
DDAG
4039 */
4040static int ram_load_postcopy(QEMUFile *f)
4041{
4042 int flags = 0, ret = 0;
4043 bool place_needed = false;
1aa83678 4044 bool matches_target_page_size = false;
a7180877
DDAG
4045 MigrationIncomingState *mis = migration_incoming_get_current();
4046 /* Temporary page that is later 'placed' */
4047 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4048 void *last_host = NULL;
a3b6ff6d 4049 bool all_zero = false;
a7180877
DDAG
4050
4051 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4052 ram_addr_t addr;
4053 void *host = NULL;
4054 void *page_buffer = NULL;
4055 void *place_source = NULL;
df9ff5e1 4056 RAMBlock *block = NULL;
a7180877 4057 uint8_t ch;
a7180877
DDAG
4058
4059 addr = qemu_get_be64(f);
7a9ddfbf
PX
4060
4061 /*
4062 * If qemu file error, we should stop here, and then "addr"
4063 * may be invalid
4064 */
4065 ret = qemu_file_get_error(f);
4066 if (ret) {
4067 break;
4068 }
4069
a7180877
DDAG
4070 flags = addr & ~TARGET_PAGE_MASK;
4071 addr &= TARGET_PAGE_MASK;
4072
4073 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4074 place_needed = false;
bb890ed5 4075 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4076 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4077
4078 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4079 if (!host) {
4080 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4081 ret = -EINVAL;
4082 break;
4083 }
1aa83678 4084 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4085 /*
28abd200
DDAG
4086 * Postcopy requires that we place whole host pages atomically;
4087 * these may be huge pages for RAMBlocks that are backed by
4088 * hugetlbfs.
a7180877
DDAG
4089 * To make it atomic, the data is read into a temporary page
4090 * that's moved into place later.
4091 * The migration protocol uses, possibly smaller, target-pages
4092 * however the source ensures it always sends all the components
4093 * of a host page in order.
4094 */
4095 page_buffer = postcopy_host_page +
28abd200 4096 ((uintptr_t)host & (block->page_size - 1));
a7180877 4097 /* If all TP are zero then we can optimise the place */
28abd200 4098 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4099 all_zero = true;
c53b7ddc
DDAG
4100 } else {
4101 /* not the 1st TP within the HP */
4102 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4103 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4104 host, last_host);
4105 ret = -EINVAL;
4106 break;
4107 }
a7180877
DDAG
4108 }
4109
c53b7ddc 4110
a7180877
DDAG
4111 /*
4112 * If it's the last part of a host page then we place the host
4113 * page
4114 */
4115 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4116 (block->page_size - 1)) == 0;
a7180877
DDAG
4117 place_source = postcopy_host_page;
4118 }
c53b7ddc 4119 last_host = host;
a7180877
DDAG
4120
4121 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4122 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4123 ch = qemu_get_byte(f);
4124 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4125 if (ch) {
4126 all_zero = false;
4127 }
4128 break;
4129
4130 case RAM_SAVE_FLAG_PAGE:
4131 all_zero = false;
1aa83678
PX
4132 if (!matches_target_page_size) {
4133 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4134 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4135 } else {
1aa83678
PX
4136 /*
4137 * For small pages that matches target page size, we
4138 * avoid the qemu_file copy. Instead we directly use
4139 * the buffer of QEMUFile to place the page. Note: we
4140 * cannot do any QEMUFile operation before using that
4141 * buffer to make sure the buffer is valid when
4142 * placing the page.
a7180877
DDAG
4143 */
4144 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4145 TARGET_PAGE_SIZE);
4146 }
4147 break;
4148 case RAM_SAVE_FLAG_EOS:
4149 /* normal exit */
6df264ac 4150 multifd_recv_sync_main();
a7180877
DDAG
4151 break;
4152 default:
4153 error_report("Unknown combination of migration flags: %#x"
4154 " (postcopy mode)", flags);
4155 ret = -EINVAL;
7a9ddfbf
PX
4156 break;
4157 }
4158
4159 /* Detect for any possible file errors */
4160 if (!ret && qemu_file_get_error(f)) {
4161 ret = qemu_file_get_error(f);
a7180877
DDAG
4162 }
4163
7a9ddfbf 4164 if (!ret && place_needed) {
a7180877 4165 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4166 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4167
a7180877 4168 if (all_zero) {
df9ff5e1 4169 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4170 block);
a7180877 4171 } else {
df9ff5e1 4172 ret = postcopy_place_page(mis, place_dest,
8be4620b 4173 place_source, block);
a7180877
DDAG
4174 }
4175 }
a7180877
DDAG
4176 }
4177
4178 return ret;
4179}
4180
acab30b8
DHB
4181static bool postcopy_is_advised(void)
4182{
4183 PostcopyState ps = postcopy_state_get();
4184 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4185}
4186
4187static bool postcopy_is_running(void)
4188{
4189 PostcopyState ps = postcopy_state_get();
4190 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4191}
4192
e6f4aa18
ZC
4193/*
4194 * Flush content of RAM cache into SVM's memory.
4195 * Only flush the pages that be dirtied by PVM or SVM or both.
4196 */
4197static void colo_flush_ram_cache(void)
4198{
4199 RAMBlock *block = NULL;
4200 void *dst_host;
4201 void *src_host;
4202 unsigned long offset = 0;
4203
d1955d22
HZ
4204 memory_global_dirty_log_sync();
4205 rcu_read_lock();
fbd162e6 4206 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 4207 migration_bitmap_sync_range(ram_state, block, block->used_length);
d1955d22
HZ
4208 }
4209 rcu_read_unlock();
4210
e6f4aa18
ZC
4211 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4212 rcu_read_lock();
4213 block = QLIST_FIRST_RCU(&ram_list.blocks);
4214
4215 while (block) {
4216 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4217
4218 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4219 offset = 0;
4220 block = QLIST_NEXT_RCU(block, next);
4221 } else {
4222 migration_bitmap_clear_dirty(ram_state, block, offset);
4223 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4224 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4225 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4226 }
4227 }
4228
4229 rcu_read_unlock();
4230 trace_colo_flush_ram_cache_end();
4231}
4232
56e93d26
JQ
4233static int ram_load(QEMUFile *f, void *opaque, int version_id)
4234{
edc60127 4235 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4236 static uint64_t seq_iter;
4237 int len = 0;
a7180877
DDAG
4238 /*
4239 * If system is running in postcopy mode, page inserts to host memory must
4240 * be atomic
4241 */
acab30b8 4242 bool postcopy_running = postcopy_is_running();
ef08fb38 4243 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4244 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4245
4246 seq_iter++;
4247
4248 if (version_id != 4) {
4249 ret = -EINVAL;
4250 }
4251
edc60127
JQ
4252 if (!migrate_use_compression()) {
4253 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4254 }
56e93d26
JQ
4255 /* This RCU critical section can be very long running.
4256 * When RCU reclaims in the code start to become numerous,
4257 * it will be necessary to reduce the granularity of this
4258 * critical section.
4259 */
4260 rcu_read_lock();
a7180877
DDAG
4261
4262 if (postcopy_running) {
4263 ret = ram_load_postcopy(f);
4264 }
4265
4266 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4267 ram_addr_t addr, total_ram_bytes;
a776aa15 4268 void *host = NULL;
56e93d26
JQ
4269 uint8_t ch;
4270
4271 addr = qemu_get_be64(f);
4272 flags = addr & ~TARGET_PAGE_MASK;
4273 addr &= TARGET_PAGE_MASK;
4274
edc60127
JQ
4275 if (flags & invalid_flags) {
4276 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4277 error_report("Received an unexpected compressed page");
4278 }
4279
4280 ret = -EINVAL;
4281 break;
4282 }
4283
bb890ed5 4284 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4285 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4286 RAMBlock *block = ram_block_from_stream(f, flags);
4287
13af18f2
ZC
4288 /*
4289 * After going into COLO, we should load the Page into colo_cache.
4290 */
4291 if (migration_incoming_in_colo_state()) {
4292 host = colo_cache_from_block_offset(block, addr);
4293 } else {
4294 host = host_from_ram_block_offset(block, addr);
4295 }
a776aa15
DDAG
4296 if (!host) {
4297 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4298 ret = -EINVAL;
4299 break;
4300 }
13af18f2
ZC
4301
4302 if (!migration_incoming_in_colo_state()) {
4303 ramblock_recv_bitmap_set(block, host);
4304 }
4305
1db9d8e5 4306 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4307 }
4308
56e93d26
JQ
4309 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4310 case RAM_SAVE_FLAG_MEM_SIZE:
4311 /* Synchronize RAM block list */
4312 total_ram_bytes = addr;
4313 while (!ret && total_ram_bytes) {
4314 RAMBlock *block;
56e93d26
JQ
4315 char id[256];
4316 ram_addr_t length;
4317
4318 len = qemu_get_byte(f);
4319 qemu_get_buffer(f, (uint8_t *)id, len);
4320 id[len] = 0;
4321 length = qemu_get_be64(f);
4322
e3dd7493 4323 block = qemu_ram_block_by_name(id);
b895de50
CLG
4324 if (block && !qemu_ram_is_migratable(block)) {
4325 error_report("block %s should not be migrated !", id);
4326 ret = -EINVAL;
4327 } else if (block) {
e3dd7493
DDAG
4328 if (length != block->used_length) {
4329 Error *local_err = NULL;
56e93d26 4330
fa53a0e5 4331 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4332 &local_err);
4333 if (local_err) {
4334 error_report_err(local_err);
56e93d26 4335 }
56e93d26 4336 }
ef08fb38
DDAG
4337 /* For postcopy we need to check hugepage sizes match */
4338 if (postcopy_advised &&
4339 block->page_size != qemu_host_page_size) {
4340 uint64_t remote_page_size = qemu_get_be64(f);
4341 if (remote_page_size != block->page_size) {
4342 error_report("Mismatched RAM page size %s "
4343 "(local) %zd != %" PRId64,
4344 id, block->page_size,
4345 remote_page_size);
4346 ret = -EINVAL;
4347 }
4348 }
fbd162e6
YK
4349 if (migrate_ignore_shared()) {
4350 hwaddr addr = qemu_get_be64(f);
4351 bool ignored = qemu_get_byte(f);
4352 if (ignored != ramblock_is_ignored(block)) {
4353 error_report("RAM block %s should %s be migrated",
4354 id, ignored ? "" : "not");
4355 ret = -EINVAL;
4356 }
4357 if (ramblock_is_ignored(block) &&
4358 block->mr->addr != addr) {
4359 error_report("Mismatched GPAs for block %s "
4360 "%" PRId64 "!= %" PRId64,
4361 id, (uint64_t)addr,
4362 (uint64_t)block->mr->addr);
4363 ret = -EINVAL;
4364 }
4365 }
e3dd7493
DDAG
4366 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4367 block->idstr);
4368 } else {
56e93d26
JQ
4369 error_report("Unknown ramblock \"%s\", cannot "
4370 "accept migration", id);
4371 ret = -EINVAL;
4372 }
4373
4374 total_ram_bytes -= length;
4375 }
4376 break;
a776aa15 4377
bb890ed5 4378 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4379 ch = qemu_get_byte(f);
4380 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4381 break;
a776aa15 4382
56e93d26 4383 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4384 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4385 break;
56e93d26 4386
a776aa15 4387 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4388 len = qemu_get_be32(f);
4389 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4390 error_report("Invalid compressed data length: %d", len);
4391 ret = -EINVAL;
4392 break;
4393 }
c1bc6626 4394 decompress_data_with_multi_threads(f, host, len);
56e93d26 4395 break;
a776aa15 4396
56e93d26 4397 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4398 if (load_xbzrle(f, addr, host) < 0) {
4399 error_report("Failed to decompress XBZRLE page at "
4400 RAM_ADDR_FMT, addr);
4401 ret = -EINVAL;
4402 break;
4403 }
4404 break;
4405 case RAM_SAVE_FLAG_EOS:
4406 /* normal exit */
6df264ac 4407 multifd_recv_sync_main();
56e93d26
JQ
4408 break;
4409 default:
4410 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4411 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4412 } else {
4413 error_report("Unknown combination of migration flags: %#x",
4414 flags);
4415 ret = -EINVAL;
4416 }
4417 }
4418 if (!ret) {
4419 ret = qemu_file_get_error(f);
4420 }
4421 }
4422
34ab9e97 4423 ret |= wait_for_decompress_done();
56e93d26 4424 rcu_read_unlock();
55c4446b 4425 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4426
4427 if (!ret && migration_incoming_in_colo_state()) {
4428 colo_flush_ram_cache();
4429 }
56e93d26
JQ
4430 return ret;
4431}
4432
c6467627
VSO
4433static bool ram_has_postcopy(void *opaque)
4434{
469dd51b 4435 RAMBlock *rb;
fbd162e6 4436 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4437 if (ramblock_is_pmem(rb)) {
4438 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4439 "is not supported now!", rb->idstr, rb->host);
4440 return false;
4441 }
4442 }
4443
c6467627
VSO
4444 return migrate_postcopy_ram();
4445}
4446
edd090c7
PX
4447/* Sync all the dirty bitmap with destination VM. */
4448static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4449{
4450 RAMBlock *block;
4451 QEMUFile *file = s->to_dst_file;
4452 int ramblock_count = 0;
4453
4454 trace_ram_dirty_bitmap_sync_start();
4455
fbd162e6 4456 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4457 qemu_savevm_send_recv_bitmap(file, block->idstr);
4458 trace_ram_dirty_bitmap_request(block->idstr);
4459 ramblock_count++;
4460 }
4461
4462 trace_ram_dirty_bitmap_sync_wait();
4463
4464 /* Wait until all the ramblocks' dirty bitmap synced */
4465 while (ramblock_count--) {
4466 qemu_sem_wait(&s->rp_state.rp_sem);
4467 }
4468
4469 trace_ram_dirty_bitmap_sync_complete();
4470
4471 return 0;
4472}
4473
4474static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4475{
4476 qemu_sem_post(&s->rp_state.rp_sem);
4477}
4478
a335debb
PX
4479/*
4480 * Read the received bitmap, revert it as the initial dirty bitmap.
4481 * This is only used when the postcopy migration is paused but wants
4482 * to resume from a middle point.
4483 */
4484int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4485{
4486 int ret = -EINVAL;
4487 QEMUFile *file = s->rp_state.from_dst_file;
4488 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4489 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4490 uint64_t size, end_mark;
4491
4492 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4493
4494 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4495 error_report("%s: incorrect state %s", __func__,
4496 MigrationStatus_str(s->state));
4497 return -EINVAL;
4498 }
4499
4500 /*
4501 * Note: see comments in ramblock_recv_bitmap_send() on why we
4502 * need the endianess convertion, and the paddings.
4503 */
4504 local_size = ROUND_UP(local_size, 8);
4505
4506 /* Add paddings */
4507 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4508
4509 size = qemu_get_be64(file);
4510
4511 /* The size of the bitmap should match with our ramblock */
4512 if (size != local_size) {
4513 error_report("%s: ramblock '%s' bitmap size mismatch "
4514 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4515 block->idstr, size, local_size);
4516 ret = -EINVAL;
4517 goto out;
4518 }
4519
4520 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4521 end_mark = qemu_get_be64(file);
4522
4523 ret = qemu_file_get_error(file);
4524 if (ret || size != local_size) {
4525 error_report("%s: read bitmap failed for ramblock '%s': %d"
4526 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4527 __func__, block->idstr, ret, local_size, size);
4528 ret = -EIO;
4529 goto out;
4530 }
4531
4532 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4533 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4534 __func__, block->idstr, end_mark);
4535 ret = -EINVAL;
4536 goto out;
4537 }
4538
4539 /*
4540 * Endianess convertion. We are during postcopy (though paused).
4541 * The dirty bitmap won't change. We can directly modify it.
4542 */
4543 bitmap_from_le(block->bmap, le_bitmap, nbits);
4544
4545 /*
4546 * What we received is "received bitmap". Revert it as the initial
4547 * dirty bitmap for this ramblock.
4548 */
4549 bitmap_complement(block->bmap, block->bmap, nbits);
4550
4551 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4552
edd090c7
PX
4553 /*
4554 * We succeeded to sync bitmap for current ramblock. If this is
4555 * the last one to sync, we need to notify the main send thread.
4556 */
4557 ram_dirty_bitmap_reload_notify(s);
4558
a335debb
PX
4559 ret = 0;
4560out:
bf269906 4561 g_free(le_bitmap);
a335debb
PX
4562 return ret;
4563}
4564
edd090c7
PX
4565static int ram_resume_prepare(MigrationState *s, void *opaque)
4566{
4567 RAMState *rs = *(RAMState **)opaque;
08614f34 4568 int ret;
edd090c7 4569
08614f34
PX
4570 ret = ram_dirty_bitmap_sync_all(s, rs);
4571 if (ret) {
4572 return ret;
4573 }
4574
4575 ram_state_resume_prepare(rs, s->to_dst_file);
4576
4577 return 0;
edd090c7
PX
4578}
4579
56e93d26 4580static SaveVMHandlers savevm_ram_handlers = {
9907e842 4581 .save_setup = ram_save_setup,
56e93d26 4582 .save_live_iterate = ram_save_iterate,
763c906b 4583 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4584 .save_live_complete_precopy = ram_save_complete,
c6467627 4585 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4586 .save_live_pending = ram_save_pending,
4587 .load_state = ram_load,
f265e0e4
JQ
4588 .save_cleanup = ram_save_cleanup,
4589 .load_setup = ram_load_setup,
4590 .load_cleanup = ram_load_cleanup,
edd090c7 4591 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4592};
4593
4594void ram_mig_init(void)
4595{
4596 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4597 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4598}
This page took 0.94356 seconds and 4 git commands to generate.