]>
Commit | Line | Data |
---|---|---|
56e93d26 JQ |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
76cc7b58 JQ |
5 | * Copyright (c) 2011-2015 Red Hat Inc |
6 | * | |
7 | * Authors: | |
8 | * Juan Quintela <[email protected]> | |
56e93d26 JQ |
9 | * |
10 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
11 | * of this software and associated documentation files (the "Software"), to deal | |
12 | * in the Software without restriction, including without limitation the rights | |
13 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
14 | * copies of the Software, and to permit persons to whom the Software is | |
15 | * furnished to do so, subject to the following conditions: | |
16 | * | |
17 | * The above copyright notice and this permission notice shall be included in | |
18 | * all copies or substantial portions of the Software. | |
19 | * | |
20 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
21 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
23 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
24 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
25 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
26 | * THE SOFTWARE. | |
27 | */ | |
28 | #include <stdint.h> | |
56e93d26 | 29 | #include <zlib.h> |
56e93d26 JQ |
30 | #include "qemu/bitops.h" |
31 | #include "qemu/bitmap.h" | |
7205c9ec JQ |
32 | #include "qemu/timer.h" |
33 | #include "qemu/main-loop.h" | |
56e93d26 JQ |
34 | #include "migration/migration.h" |
35 | #include "exec/address-spaces.h" | |
36 | #include "migration/page_cache.h" | |
56e93d26 | 37 | #include "qemu/error-report.h" |
56e93d26 | 38 | #include "trace.h" |
56e93d26 | 39 | #include "exec/ram_addr.h" |
56e93d26 JQ |
40 | #include "qemu/rcu_queue.h" |
41 | ||
42 | #ifdef DEBUG_MIGRATION_RAM | |
43 | #define DPRINTF(fmt, ...) \ | |
44 | do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0) | |
45 | #else | |
46 | #define DPRINTF(fmt, ...) \ | |
47 | do { } while (0) | |
48 | #endif | |
49 | ||
50 | static bool mig_throttle_on; | |
51 | static int dirty_rate_high_cnt; | |
52 | static void check_guest_throttling(void); | |
53 | ||
54 | static uint64_t bitmap_sync_count; | |
55 | ||
56 | /***********************************************************/ | |
57 | /* ram save/restore */ | |
58 | ||
59 | #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ | |
60 | #define RAM_SAVE_FLAG_COMPRESS 0x02 | |
61 | #define RAM_SAVE_FLAG_MEM_SIZE 0x04 | |
62 | #define RAM_SAVE_FLAG_PAGE 0x08 | |
63 | #define RAM_SAVE_FLAG_EOS 0x10 | |
64 | #define RAM_SAVE_FLAG_CONTINUE 0x20 | |
65 | #define RAM_SAVE_FLAG_XBZRLE 0x40 | |
66 | /* 0x80 is reserved in migration.h start with 0x100 next */ | |
67 | #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 | |
68 | ||
69 | static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; | |
70 | ||
71 | static inline bool is_zero_range(uint8_t *p, uint64_t size) | |
72 | { | |
73 | return buffer_find_nonzero_offset(p, size) == size; | |
74 | } | |
75 | ||
76 | /* struct contains XBZRLE cache and a static page | |
77 | used by the compression */ | |
78 | static struct { | |
79 | /* buffer used for XBZRLE encoding */ | |
80 | uint8_t *encoded_buf; | |
81 | /* buffer for storing page content */ | |
82 | uint8_t *current_buf; | |
83 | /* Cache for XBZRLE, Protected by lock. */ | |
84 | PageCache *cache; | |
85 | QemuMutex lock; | |
86 | } XBZRLE; | |
87 | ||
88 | /* buffer used for XBZRLE decoding */ | |
89 | static uint8_t *xbzrle_decoded_buf; | |
90 | ||
91 | static void XBZRLE_cache_lock(void) | |
92 | { | |
93 | if (migrate_use_xbzrle()) | |
94 | qemu_mutex_lock(&XBZRLE.lock); | |
95 | } | |
96 | ||
97 | static void XBZRLE_cache_unlock(void) | |
98 | { | |
99 | if (migrate_use_xbzrle()) | |
100 | qemu_mutex_unlock(&XBZRLE.lock); | |
101 | } | |
102 | ||
103 | /* | |
104 | * called from qmp_migrate_set_cache_size in main thread, possibly while | |
105 | * a migration is in progress. | |
106 | * A running migration maybe using the cache and might finish during this | |
107 | * call, hence changes to the cache are protected by XBZRLE.lock(). | |
108 | */ | |
109 | int64_t xbzrle_cache_resize(int64_t new_size) | |
110 | { | |
111 | PageCache *new_cache; | |
112 | int64_t ret; | |
113 | ||
114 | if (new_size < TARGET_PAGE_SIZE) { | |
115 | return -1; | |
116 | } | |
117 | ||
118 | XBZRLE_cache_lock(); | |
119 | ||
120 | if (XBZRLE.cache != NULL) { | |
121 | if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { | |
122 | goto out_new_size; | |
123 | } | |
124 | new_cache = cache_init(new_size / TARGET_PAGE_SIZE, | |
125 | TARGET_PAGE_SIZE); | |
126 | if (!new_cache) { | |
127 | error_report("Error creating cache"); | |
128 | ret = -1; | |
129 | goto out; | |
130 | } | |
131 | ||
132 | cache_fini(XBZRLE.cache); | |
133 | XBZRLE.cache = new_cache; | |
134 | } | |
135 | ||
136 | out_new_size: | |
137 | ret = pow2floor(new_size); | |
138 | out: | |
139 | XBZRLE_cache_unlock(); | |
140 | return ret; | |
141 | } | |
142 | ||
143 | /* accounting for migration statistics */ | |
144 | typedef struct AccountingInfo { | |
145 | uint64_t dup_pages; | |
146 | uint64_t skipped_pages; | |
147 | uint64_t norm_pages; | |
148 | uint64_t iterations; | |
149 | uint64_t xbzrle_bytes; | |
150 | uint64_t xbzrle_pages; | |
151 | uint64_t xbzrle_cache_miss; | |
152 | double xbzrle_cache_miss_rate; | |
153 | uint64_t xbzrle_overflows; | |
154 | } AccountingInfo; | |
155 | ||
156 | static AccountingInfo acct_info; | |
157 | ||
158 | static void acct_clear(void) | |
159 | { | |
160 | memset(&acct_info, 0, sizeof(acct_info)); | |
161 | } | |
162 | ||
163 | uint64_t dup_mig_bytes_transferred(void) | |
164 | { | |
165 | return acct_info.dup_pages * TARGET_PAGE_SIZE; | |
166 | } | |
167 | ||
168 | uint64_t dup_mig_pages_transferred(void) | |
169 | { | |
170 | return acct_info.dup_pages; | |
171 | } | |
172 | ||
173 | uint64_t skipped_mig_bytes_transferred(void) | |
174 | { | |
175 | return acct_info.skipped_pages * TARGET_PAGE_SIZE; | |
176 | } | |
177 | ||
178 | uint64_t skipped_mig_pages_transferred(void) | |
179 | { | |
180 | return acct_info.skipped_pages; | |
181 | } | |
182 | ||
183 | uint64_t norm_mig_bytes_transferred(void) | |
184 | { | |
185 | return acct_info.norm_pages * TARGET_PAGE_SIZE; | |
186 | } | |
187 | ||
188 | uint64_t norm_mig_pages_transferred(void) | |
189 | { | |
190 | return acct_info.norm_pages; | |
191 | } | |
192 | ||
193 | uint64_t xbzrle_mig_bytes_transferred(void) | |
194 | { | |
195 | return acct_info.xbzrle_bytes; | |
196 | } | |
197 | ||
198 | uint64_t xbzrle_mig_pages_transferred(void) | |
199 | { | |
200 | return acct_info.xbzrle_pages; | |
201 | } | |
202 | ||
203 | uint64_t xbzrle_mig_pages_cache_miss(void) | |
204 | { | |
205 | return acct_info.xbzrle_cache_miss; | |
206 | } | |
207 | ||
208 | double xbzrle_mig_cache_miss_rate(void) | |
209 | { | |
210 | return acct_info.xbzrle_cache_miss_rate; | |
211 | } | |
212 | ||
213 | uint64_t xbzrle_mig_pages_overflow(void) | |
214 | { | |
215 | return acct_info.xbzrle_overflows; | |
216 | } | |
217 | ||
218 | /* This is the last block that we have visited serching for dirty pages | |
219 | */ | |
220 | static RAMBlock *last_seen_block; | |
221 | /* This is the last block from where we have sent data */ | |
222 | static RAMBlock *last_sent_block; | |
223 | static ram_addr_t last_offset; | |
224 | static unsigned long *migration_bitmap; | |
dd631697 | 225 | static QemuMutex migration_bitmap_mutex; |
56e93d26 JQ |
226 | static uint64_t migration_dirty_pages; |
227 | static uint32_t last_version; | |
228 | static bool ram_bulk_stage; | |
229 | ||
230 | struct CompressParam { | |
231 | bool start; | |
232 | bool done; | |
233 | QEMUFile *file; | |
234 | QemuMutex mutex; | |
235 | QemuCond cond; | |
236 | RAMBlock *block; | |
237 | ram_addr_t offset; | |
238 | }; | |
239 | typedef struct CompressParam CompressParam; | |
240 | ||
241 | struct DecompressParam { | |
242 | bool start; | |
243 | QemuMutex mutex; | |
244 | QemuCond cond; | |
245 | void *des; | |
246 | uint8 *compbuf; | |
247 | int len; | |
248 | }; | |
249 | typedef struct DecompressParam DecompressParam; | |
250 | ||
251 | static CompressParam *comp_param; | |
252 | static QemuThread *compress_threads; | |
253 | /* comp_done_cond is used to wake up the migration thread when | |
254 | * one of the compression threads has finished the compression. | |
255 | * comp_done_lock is used to co-work with comp_done_cond. | |
256 | */ | |
257 | static QemuMutex *comp_done_lock; | |
258 | static QemuCond *comp_done_cond; | |
259 | /* The empty QEMUFileOps will be used by file in CompressParam */ | |
260 | static const QEMUFileOps empty_ops = { }; | |
261 | ||
262 | static bool compression_switch; | |
263 | static bool quit_comp_thread; | |
264 | static bool quit_decomp_thread; | |
265 | static DecompressParam *decomp_param; | |
266 | static QemuThread *decompress_threads; | |
267 | static uint8_t *compressed_data_buf; | |
268 | ||
269 | static int do_compress_ram_page(CompressParam *param); | |
270 | ||
271 | static void *do_data_compress(void *opaque) | |
272 | { | |
273 | CompressParam *param = opaque; | |
274 | ||
275 | while (!quit_comp_thread) { | |
276 | qemu_mutex_lock(¶m->mutex); | |
277 | /* Re-check the quit_comp_thread in case of | |
278 | * terminate_compression_threads is called just before | |
279 | * qemu_mutex_lock(¶m->mutex) and after | |
280 | * while(!quit_comp_thread), re-check it here can make | |
281 | * sure the compression thread terminate as expected. | |
282 | */ | |
283 | while (!param->start && !quit_comp_thread) { | |
284 | qemu_cond_wait(¶m->cond, ¶m->mutex); | |
285 | } | |
286 | if (!quit_comp_thread) { | |
287 | do_compress_ram_page(param); | |
288 | } | |
289 | param->start = false; | |
290 | qemu_mutex_unlock(¶m->mutex); | |
291 | ||
292 | qemu_mutex_lock(comp_done_lock); | |
293 | param->done = true; | |
294 | qemu_cond_signal(comp_done_cond); | |
295 | qemu_mutex_unlock(comp_done_lock); | |
296 | } | |
297 | ||
298 | return NULL; | |
299 | } | |
300 | ||
301 | static inline void terminate_compression_threads(void) | |
302 | { | |
303 | int idx, thread_count; | |
304 | ||
305 | thread_count = migrate_compress_threads(); | |
306 | quit_comp_thread = true; | |
307 | for (idx = 0; idx < thread_count; idx++) { | |
308 | qemu_mutex_lock(&comp_param[idx].mutex); | |
309 | qemu_cond_signal(&comp_param[idx].cond); | |
310 | qemu_mutex_unlock(&comp_param[idx].mutex); | |
311 | } | |
312 | } | |
313 | ||
314 | void migrate_compress_threads_join(void) | |
315 | { | |
316 | int i, thread_count; | |
317 | ||
318 | if (!migrate_use_compression()) { | |
319 | return; | |
320 | } | |
321 | terminate_compression_threads(); | |
322 | thread_count = migrate_compress_threads(); | |
323 | for (i = 0; i < thread_count; i++) { | |
324 | qemu_thread_join(compress_threads + i); | |
325 | qemu_fclose(comp_param[i].file); | |
326 | qemu_mutex_destroy(&comp_param[i].mutex); | |
327 | qemu_cond_destroy(&comp_param[i].cond); | |
328 | } | |
329 | qemu_mutex_destroy(comp_done_lock); | |
330 | qemu_cond_destroy(comp_done_cond); | |
331 | g_free(compress_threads); | |
332 | g_free(comp_param); | |
333 | g_free(comp_done_cond); | |
334 | g_free(comp_done_lock); | |
335 | compress_threads = NULL; | |
336 | comp_param = NULL; | |
337 | comp_done_cond = NULL; | |
338 | comp_done_lock = NULL; | |
339 | } | |
340 | ||
341 | void migrate_compress_threads_create(void) | |
342 | { | |
343 | int i, thread_count; | |
344 | ||
345 | if (!migrate_use_compression()) { | |
346 | return; | |
347 | } | |
348 | quit_comp_thread = false; | |
349 | compression_switch = true; | |
350 | thread_count = migrate_compress_threads(); | |
351 | compress_threads = g_new0(QemuThread, thread_count); | |
352 | comp_param = g_new0(CompressParam, thread_count); | |
353 | comp_done_cond = g_new0(QemuCond, 1); | |
354 | comp_done_lock = g_new0(QemuMutex, 1); | |
355 | qemu_cond_init(comp_done_cond); | |
356 | qemu_mutex_init(comp_done_lock); | |
357 | for (i = 0; i < thread_count; i++) { | |
358 | /* com_param[i].file is just used as a dummy buffer to save data, set | |
359 | * it's ops to empty. | |
360 | */ | |
361 | comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); | |
362 | comp_param[i].done = true; | |
363 | qemu_mutex_init(&comp_param[i].mutex); | |
364 | qemu_cond_init(&comp_param[i].cond); | |
365 | qemu_thread_create(compress_threads + i, "compress", | |
366 | do_data_compress, comp_param + i, | |
367 | QEMU_THREAD_JOINABLE); | |
368 | } | |
369 | } | |
370 | ||
371 | /** | |
372 | * save_page_header: Write page header to wire | |
373 | * | |
374 | * If this is the 1st block, it also writes the block identification | |
375 | * | |
376 | * Returns: Number of bytes written | |
377 | * | |
378 | * @f: QEMUFile where to send the data | |
379 | * @block: block that contains the page we want to send | |
380 | * @offset: offset inside the block for the page | |
381 | * in the lower bits, it contains flags | |
382 | */ | |
383 | static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) | |
384 | { | |
385 | size_t size; | |
386 | ||
387 | qemu_put_be64(f, offset); | |
388 | size = 8; | |
389 | ||
390 | if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { | |
391 | qemu_put_byte(f, strlen(block->idstr)); | |
392 | qemu_put_buffer(f, (uint8_t *)block->idstr, | |
393 | strlen(block->idstr)); | |
394 | size += 1 + strlen(block->idstr); | |
395 | } | |
396 | return size; | |
397 | } | |
398 | ||
399 | /* Update the xbzrle cache to reflect a page that's been sent as all 0. | |
400 | * The important thing is that a stale (not-yet-0'd) page be replaced | |
401 | * by the new data. | |
402 | * As a bonus, if the page wasn't in the cache it gets added so that | |
403 | * when a small write is made into the 0'd page it gets XBZRLE sent | |
404 | */ | |
405 | static void xbzrle_cache_zero_page(ram_addr_t current_addr) | |
406 | { | |
407 | if (ram_bulk_stage || !migrate_use_xbzrle()) { | |
408 | return; | |
409 | } | |
410 | ||
411 | /* We don't care if this fails to allocate a new cache page | |
412 | * as long as it updated an old one */ | |
413 | cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, | |
414 | bitmap_sync_count); | |
415 | } | |
416 | ||
417 | #define ENCODING_FLAG_XBZRLE 0x1 | |
418 | ||
419 | /** | |
420 | * save_xbzrle_page: compress and send current page | |
421 | * | |
422 | * Returns: 1 means that we wrote the page | |
423 | * 0 means that page is identical to the one already sent | |
424 | * -1 means that xbzrle would be longer than normal | |
425 | * | |
426 | * @f: QEMUFile where to send the data | |
427 | * @current_data: | |
428 | * @current_addr: | |
429 | * @block: block that contains the page we want to send | |
430 | * @offset: offset inside the block for the page | |
431 | * @last_stage: if we are at the completion stage | |
432 | * @bytes_transferred: increase it with the number of transferred bytes | |
433 | */ | |
434 | static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, | |
435 | ram_addr_t current_addr, RAMBlock *block, | |
436 | ram_addr_t offset, bool last_stage, | |
437 | uint64_t *bytes_transferred) | |
438 | { | |
439 | int encoded_len = 0, bytes_xbzrle; | |
440 | uint8_t *prev_cached_page; | |
441 | ||
442 | if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { | |
443 | acct_info.xbzrle_cache_miss++; | |
444 | if (!last_stage) { | |
445 | if (cache_insert(XBZRLE.cache, current_addr, *current_data, | |
446 | bitmap_sync_count) == -1) { | |
447 | return -1; | |
448 | } else { | |
449 | /* update *current_data when the page has been | |
450 | inserted into cache */ | |
451 | *current_data = get_cached_data(XBZRLE.cache, current_addr); | |
452 | } | |
453 | } | |
454 | return -1; | |
455 | } | |
456 | ||
457 | prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); | |
458 | ||
459 | /* save current buffer into memory */ | |
460 | memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); | |
461 | ||
462 | /* XBZRLE encoding (if there is no overflow) */ | |
463 | encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, | |
464 | TARGET_PAGE_SIZE, XBZRLE.encoded_buf, | |
465 | TARGET_PAGE_SIZE); | |
466 | if (encoded_len == 0) { | |
467 | DPRINTF("Skipping unmodified page\n"); | |
468 | return 0; | |
469 | } else if (encoded_len == -1) { | |
470 | DPRINTF("Overflow\n"); | |
471 | acct_info.xbzrle_overflows++; | |
472 | /* update data in the cache */ | |
473 | if (!last_stage) { | |
474 | memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); | |
475 | *current_data = prev_cached_page; | |
476 | } | |
477 | return -1; | |
478 | } | |
479 | ||
480 | /* we need to update the data in the cache, in order to get the same data */ | |
481 | if (!last_stage) { | |
482 | memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); | |
483 | } | |
484 | ||
485 | /* Send XBZRLE based compressed page */ | |
486 | bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); | |
487 | qemu_put_byte(f, ENCODING_FLAG_XBZRLE); | |
488 | qemu_put_be16(f, encoded_len); | |
489 | qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); | |
490 | bytes_xbzrle += encoded_len + 1 + 2; | |
491 | acct_info.xbzrle_pages++; | |
492 | acct_info.xbzrle_bytes += bytes_xbzrle; | |
493 | *bytes_transferred += bytes_xbzrle; | |
494 | ||
495 | return 1; | |
496 | } | |
497 | ||
2ff64038 | 498 | /* Called with rcu_read_lock() to protect migration_bitmap */ |
56e93d26 JQ |
499 | static inline |
500 | ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, | |
501 | ram_addr_t start) | |
502 | { | |
503 | unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; | |
504 | unsigned long nr = base + (start >> TARGET_PAGE_BITS); | |
505 | uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr)); | |
506 | unsigned long size = base + (mr_size >> TARGET_PAGE_BITS); | |
2ff64038 | 507 | unsigned long *bitmap; |
56e93d26 JQ |
508 | |
509 | unsigned long next; | |
510 | ||
2ff64038 | 511 | bitmap = atomic_rcu_read(&migration_bitmap); |
56e93d26 JQ |
512 | if (ram_bulk_stage && nr > base) { |
513 | next = nr + 1; | |
514 | } else { | |
2ff64038 | 515 | next = find_next_bit(bitmap, size, nr); |
56e93d26 JQ |
516 | } |
517 | ||
518 | if (next < size) { | |
2ff64038 | 519 | clear_bit(next, bitmap); |
56e93d26 JQ |
520 | migration_dirty_pages--; |
521 | } | |
522 | return (next - base) << TARGET_PAGE_BITS; | |
523 | } | |
524 | ||
2ff64038 | 525 | /* Called with rcu_read_lock() to protect migration_bitmap */ |
56e93d26 JQ |
526 | static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) |
527 | { | |
2ff64038 LZ |
528 | unsigned long *bitmap; |
529 | bitmap = atomic_rcu_read(&migration_bitmap); | |
56e93d26 | 530 | migration_dirty_pages += |
2ff64038 | 531 | cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length); |
56e93d26 JQ |
532 | } |
533 | ||
534 | ||
535 | /* Fix me: there are too many global variables used in migration process. */ | |
536 | static int64_t start_time; | |
537 | static int64_t bytes_xfer_prev; | |
538 | static int64_t num_dirty_pages_period; | |
539 | static uint64_t xbzrle_cache_miss_prev; | |
540 | static uint64_t iterations_prev; | |
541 | ||
542 | static void migration_bitmap_sync_init(void) | |
543 | { | |
544 | start_time = 0; | |
545 | bytes_xfer_prev = 0; | |
546 | num_dirty_pages_period = 0; | |
547 | xbzrle_cache_miss_prev = 0; | |
548 | iterations_prev = 0; | |
549 | } | |
550 | ||
551 | /* Called with iothread lock held, to protect ram_list.dirty_memory[] */ | |
552 | static void migration_bitmap_sync(void) | |
553 | { | |
554 | RAMBlock *block; | |
555 | uint64_t num_dirty_pages_init = migration_dirty_pages; | |
556 | MigrationState *s = migrate_get_current(); | |
557 | int64_t end_time; | |
558 | int64_t bytes_xfer_now; | |
559 | ||
560 | bitmap_sync_count++; | |
561 | ||
562 | if (!bytes_xfer_prev) { | |
563 | bytes_xfer_prev = ram_bytes_transferred(); | |
564 | } | |
565 | ||
566 | if (!start_time) { | |
567 | start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
568 | } | |
569 | ||
570 | trace_migration_bitmap_sync_start(); | |
571 | address_space_sync_dirty_bitmap(&address_space_memory); | |
572 | ||
dd631697 | 573 | qemu_mutex_lock(&migration_bitmap_mutex); |
56e93d26 JQ |
574 | rcu_read_lock(); |
575 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
576 | migration_bitmap_sync_range(block->mr->ram_addr, block->used_length); | |
577 | } | |
578 | rcu_read_unlock(); | |
dd631697 | 579 | qemu_mutex_unlock(&migration_bitmap_mutex); |
56e93d26 JQ |
580 | |
581 | trace_migration_bitmap_sync_end(migration_dirty_pages | |
582 | - num_dirty_pages_init); | |
583 | num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; | |
584 | end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
585 | ||
586 | /* more than 1 second = 1000 millisecons */ | |
587 | if (end_time > start_time + 1000) { | |
588 | if (migrate_auto_converge()) { | |
589 | /* The following detection logic can be refined later. For now: | |
590 | Check to see if the dirtied bytes is 50% more than the approx. | |
591 | amount of bytes that just got transferred since the last time we | |
592 | were in this routine. If that happens >N times (for now N==4) | |
593 | we turn on the throttle down logic */ | |
594 | bytes_xfer_now = ram_bytes_transferred(); | |
595 | if (s->dirty_pages_rate && | |
596 | (num_dirty_pages_period * TARGET_PAGE_SIZE > | |
597 | (bytes_xfer_now - bytes_xfer_prev)/2) && | |
598 | (dirty_rate_high_cnt++ > 4)) { | |
599 | trace_migration_throttle(); | |
600 | mig_throttle_on = true; | |
601 | dirty_rate_high_cnt = 0; | |
602 | } | |
603 | bytes_xfer_prev = bytes_xfer_now; | |
604 | } else { | |
605 | mig_throttle_on = false; | |
606 | } | |
607 | if (migrate_use_xbzrle()) { | |
608 | if (iterations_prev != acct_info.iterations) { | |
609 | acct_info.xbzrle_cache_miss_rate = | |
610 | (double)(acct_info.xbzrle_cache_miss - | |
611 | xbzrle_cache_miss_prev) / | |
612 | (acct_info.iterations - iterations_prev); | |
613 | } | |
614 | iterations_prev = acct_info.iterations; | |
615 | xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; | |
616 | } | |
617 | s->dirty_pages_rate = num_dirty_pages_period * 1000 | |
618 | / (end_time - start_time); | |
619 | s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; | |
620 | start_time = end_time; | |
621 | num_dirty_pages_period = 0; | |
622 | } | |
623 | s->dirty_sync_count = bitmap_sync_count; | |
624 | } | |
625 | ||
626 | /** | |
627 | * save_zero_page: Send the zero page to the stream | |
628 | * | |
629 | * Returns: Number of pages written. | |
630 | * | |
631 | * @f: QEMUFile where to send the data | |
632 | * @block: block that contains the page we want to send | |
633 | * @offset: offset inside the block for the page | |
634 | * @p: pointer to the page | |
635 | * @bytes_transferred: increase it with the number of transferred bytes | |
636 | */ | |
637 | static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset, | |
638 | uint8_t *p, uint64_t *bytes_transferred) | |
639 | { | |
640 | int pages = -1; | |
641 | ||
642 | if (is_zero_range(p, TARGET_PAGE_SIZE)) { | |
643 | acct_info.dup_pages++; | |
644 | *bytes_transferred += save_page_header(f, block, | |
645 | offset | RAM_SAVE_FLAG_COMPRESS); | |
646 | qemu_put_byte(f, 0); | |
647 | *bytes_transferred += 1; | |
648 | pages = 1; | |
649 | } | |
650 | ||
651 | return pages; | |
652 | } | |
653 | ||
654 | /** | |
655 | * ram_save_page: Send the given page to the stream | |
656 | * | |
657 | * Returns: Number of pages written. | |
658 | * | |
659 | * @f: QEMUFile where to send the data | |
660 | * @block: block that contains the page we want to send | |
661 | * @offset: offset inside the block for the page | |
662 | * @last_stage: if we are at the completion stage | |
663 | * @bytes_transferred: increase it with the number of transferred bytes | |
664 | */ | |
665 | static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset, | |
666 | bool last_stage, uint64_t *bytes_transferred) | |
667 | { | |
668 | int pages = -1; | |
669 | uint64_t bytes_xmit; | |
670 | ram_addr_t current_addr; | |
671 | MemoryRegion *mr = block->mr; | |
672 | uint8_t *p; | |
673 | int ret; | |
674 | bool send_async = true; | |
675 | ||
676 | p = memory_region_get_ram_ptr(mr) + offset; | |
677 | ||
678 | /* In doubt sent page as normal */ | |
679 | bytes_xmit = 0; | |
680 | ret = ram_control_save_page(f, block->offset, | |
681 | offset, TARGET_PAGE_SIZE, &bytes_xmit); | |
682 | if (bytes_xmit) { | |
683 | *bytes_transferred += bytes_xmit; | |
684 | pages = 1; | |
685 | } | |
686 | ||
687 | XBZRLE_cache_lock(); | |
688 | ||
689 | current_addr = block->offset + offset; | |
690 | ||
691 | if (block == last_sent_block) { | |
692 | offset |= RAM_SAVE_FLAG_CONTINUE; | |
693 | } | |
694 | if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { | |
695 | if (ret != RAM_SAVE_CONTROL_DELAYED) { | |
696 | if (bytes_xmit > 0) { | |
697 | acct_info.norm_pages++; | |
698 | } else if (bytes_xmit == 0) { | |
699 | acct_info.dup_pages++; | |
700 | } | |
701 | } | |
702 | } else { | |
703 | pages = save_zero_page(f, block, offset, p, bytes_transferred); | |
704 | if (pages > 0) { | |
705 | /* Must let xbzrle know, otherwise a previous (now 0'd) cached | |
706 | * page would be stale | |
707 | */ | |
708 | xbzrle_cache_zero_page(current_addr); | |
709 | } else if (!ram_bulk_stage && migrate_use_xbzrle()) { | |
710 | pages = save_xbzrle_page(f, &p, current_addr, block, | |
711 | offset, last_stage, bytes_transferred); | |
712 | if (!last_stage) { | |
713 | /* Can't send this cached data async, since the cache page | |
714 | * might get updated before it gets to the wire | |
715 | */ | |
716 | send_async = false; | |
717 | } | |
718 | } | |
719 | } | |
720 | ||
721 | /* XBZRLE overflow or normal page */ | |
722 | if (pages == -1) { | |
723 | *bytes_transferred += save_page_header(f, block, | |
724 | offset | RAM_SAVE_FLAG_PAGE); | |
725 | if (send_async) { | |
726 | qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); | |
727 | } else { | |
728 | qemu_put_buffer(f, p, TARGET_PAGE_SIZE); | |
729 | } | |
730 | *bytes_transferred += TARGET_PAGE_SIZE; | |
731 | pages = 1; | |
732 | acct_info.norm_pages++; | |
733 | } | |
734 | ||
735 | XBZRLE_cache_unlock(); | |
736 | ||
737 | return pages; | |
738 | } | |
739 | ||
740 | static int do_compress_ram_page(CompressParam *param) | |
741 | { | |
742 | int bytes_sent, blen; | |
743 | uint8_t *p; | |
744 | RAMBlock *block = param->block; | |
745 | ram_addr_t offset = param->offset; | |
746 | ||
747 | p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK); | |
748 | ||
749 | bytes_sent = save_page_header(param->file, block, offset | | |
750 | RAM_SAVE_FLAG_COMPRESS_PAGE); | |
751 | blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE, | |
752 | migrate_compress_level()); | |
753 | bytes_sent += blen; | |
754 | ||
755 | return bytes_sent; | |
756 | } | |
757 | ||
758 | static inline void start_compression(CompressParam *param) | |
759 | { | |
760 | param->done = false; | |
761 | qemu_mutex_lock(¶m->mutex); | |
762 | param->start = true; | |
763 | qemu_cond_signal(¶m->cond); | |
764 | qemu_mutex_unlock(¶m->mutex); | |
765 | } | |
766 | ||
767 | static inline void start_decompression(DecompressParam *param) | |
768 | { | |
769 | qemu_mutex_lock(¶m->mutex); | |
770 | param->start = true; | |
771 | qemu_cond_signal(¶m->cond); | |
772 | qemu_mutex_unlock(¶m->mutex); | |
773 | } | |
774 | ||
775 | static uint64_t bytes_transferred; | |
776 | ||
777 | static void flush_compressed_data(QEMUFile *f) | |
778 | { | |
779 | int idx, len, thread_count; | |
780 | ||
781 | if (!migrate_use_compression()) { | |
782 | return; | |
783 | } | |
784 | thread_count = migrate_compress_threads(); | |
785 | for (idx = 0; idx < thread_count; idx++) { | |
786 | if (!comp_param[idx].done) { | |
787 | qemu_mutex_lock(comp_done_lock); | |
788 | while (!comp_param[idx].done && !quit_comp_thread) { | |
789 | qemu_cond_wait(comp_done_cond, comp_done_lock); | |
790 | } | |
791 | qemu_mutex_unlock(comp_done_lock); | |
792 | } | |
793 | if (!quit_comp_thread) { | |
794 | len = qemu_put_qemu_file(f, comp_param[idx].file); | |
795 | bytes_transferred += len; | |
796 | } | |
797 | } | |
798 | } | |
799 | ||
800 | static inline void set_compress_params(CompressParam *param, RAMBlock *block, | |
801 | ram_addr_t offset) | |
802 | { | |
803 | param->block = block; | |
804 | param->offset = offset; | |
805 | } | |
806 | ||
807 | static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block, | |
808 | ram_addr_t offset, | |
809 | uint64_t *bytes_transferred) | |
810 | { | |
811 | int idx, thread_count, bytes_xmit = -1, pages = -1; | |
812 | ||
813 | thread_count = migrate_compress_threads(); | |
814 | qemu_mutex_lock(comp_done_lock); | |
815 | while (true) { | |
816 | for (idx = 0; idx < thread_count; idx++) { | |
817 | if (comp_param[idx].done) { | |
818 | bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file); | |
819 | set_compress_params(&comp_param[idx], block, offset); | |
820 | start_compression(&comp_param[idx]); | |
821 | pages = 1; | |
822 | acct_info.norm_pages++; | |
823 | *bytes_transferred += bytes_xmit; | |
824 | break; | |
825 | } | |
826 | } | |
827 | if (pages > 0) { | |
828 | break; | |
829 | } else { | |
830 | qemu_cond_wait(comp_done_cond, comp_done_lock); | |
831 | } | |
832 | } | |
833 | qemu_mutex_unlock(comp_done_lock); | |
834 | ||
835 | return pages; | |
836 | } | |
837 | ||
838 | /** | |
839 | * ram_save_compressed_page: compress the given page and send it to the stream | |
840 | * | |
841 | * Returns: Number of pages written. | |
842 | * | |
843 | * @f: QEMUFile where to send the data | |
844 | * @block: block that contains the page we want to send | |
845 | * @offset: offset inside the block for the page | |
846 | * @last_stage: if we are at the completion stage | |
847 | * @bytes_transferred: increase it with the number of transferred bytes | |
848 | */ | |
849 | static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block, | |
850 | ram_addr_t offset, bool last_stage, | |
851 | uint64_t *bytes_transferred) | |
852 | { | |
853 | int pages = -1; | |
854 | uint64_t bytes_xmit; | |
855 | MemoryRegion *mr = block->mr; | |
856 | uint8_t *p; | |
857 | int ret; | |
858 | ||
859 | p = memory_region_get_ram_ptr(mr) + offset; | |
860 | ||
861 | bytes_xmit = 0; | |
862 | ret = ram_control_save_page(f, block->offset, | |
863 | offset, TARGET_PAGE_SIZE, &bytes_xmit); | |
864 | if (bytes_xmit) { | |
865 | *bytes_transferred += bytes_xmit; | |
866 | pages = 1; | |
867 | } | |
868 | if (block == last_sent_block) { | |
869 | offset |= RAM_SAVE_FLAG_CONTINUE; | |
870 | } | |
871 | if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { | |
872 | if (ret != RAM_SAVE_CONTROL_DELAYED) { | |
873 | if (bytes_xmit > 0) { | |
874 | acct_info.norm_pages++; | |
875 | } else if (bytes_xmit == 0) { | |
876 | acct_info.dup_pages++; | |
877 | } | |
878 | } | |
879 | } else { | |
880 | /* When starting the process of a new block, the first page of | |
881 | * the block should be sent out before other pages in the same | |
882 | * block, and all the pages in last block should have been sent | |
883 | * out, keeping this order is important, because the 'cont' flag | |
884 | * is used to avoid resending the block name. | |
885 | */ | |
886 | if (block != last_sent_block) { | |
887 | flush_compressed_data(f); | |
888 | pages = save_zero_page(f, block, offset, p, bytes_transferred); | |
889 | if (pages == -1) { | |
890 | set_compress_params(&comp_param[0], block, offset); | |
891 | /* Use the qemu thread to compress the data to make sure the | |
892 | * first page is sent out before other pages | |
893 | */ | |
894 | bytes_xmit = do_compress_ram_page(&comp_param[0]); | |
895 | acct_info.norm_pages++; | |
896 | qemu_put_qemu_file(f, comp_param[0].file); | |
897 | *bytes_transferred += bytes_xmit; | |
898 | pages = 1; | |
899 | } | |
900 | } else { | |
901 | pages = save_zero_page(f, block, offset, p, bytes_transferred); | |
902 | if (pages == -1) { | |
903 | pages = compress_page_with_multi_thread(f, block, offset, | |
904 | bytes_transferred); | |
905 | } | |
906 | } | |
907 | } | |
908 | ||
909 | return pages; | |
910 | } | |
911 | ||
912 | /** | |
913 | * ram_find_and_save_block: Finds a dirty page and sends it to f | |
914 | * | |
915 | * Called within an RCU critical section. | |
916 | * | |
917 | * Returns: The number of pages written | |
918 | * 0 means no dirty pages | |
919 | * | |
920 | * @f: QEMUFile where to send the data | |
921 | * @last_stage: if we are at the completion stage | |
922 | * @bytes_transferred: increase it with the number of transferred bytes | |
923 | */ | |
924 | ||
925 | static int ram_find_and_save_block(QEMUFile *f, bool last_stage, | |
926 | uint64_t *bytes_transferred) | |
927 | { | |
928 | RAMBlock *block = last_seen_block; | |
929 | ram_addr_t offset = last_offset; | |
930 | bool complete_round = false; | |
931 | int pages = 0; | |
932 | MemoryRegion *mr; | |
933 | ||
934 | if (!block) | |
935 | block = QLIST_FIRST_RCU(&ram_list.blocks); | |
936 | ||
937 | while (true) { | |
938 | mr = block->mr; | |
939 | offset = migration_bitmap_find_and_reset_dirty(mr, offset); | |
940 | if (complete_round && block == last_seen_block && | |
941 | offset >= last_offset) { | |
942 | break; | |
943 | } | |
944 | if (offset >= block->used_length) { | |
945 | offset = 0; | |
946 | block = QLIST_NEXT_RCU(block, next); | |
947 | if (!block) { | |
948 | block = QLIST_FIRST_RCU(&ram_list.blocks); | |
949 | complete_round = true; | |
950 | ram_bulk_stage = false; | |
951 | if (migrate_use_xbzrle()) { | |
952 | /* If xbzrle is on, stop using the data compression at this | |
953 | * point. In theory, xbzrle can do better than compression. | |
954 | */ | |
955 | flush_compressed_data(f); | |
956 | compression_switch = false; | |
957 | } | |
958 | } | |
959 | } else { | |
960 | if (compression_switch && migrate_use_compression()) { | |
961 | pages = ram_save_compressed_page(f, block, offset, last_stage, | |
962 | bytes_transferred); | |
963 | } else { | |
964 | pages = ram_save_page(f, block, offset, last_stage, | |
965 | bytes_transferred); | |
966 | } | |
967 | ||
968 | /* if page is unmodified, continue to the next */ | |
969 | if (pages > 0) { | |
970 | last_sent_block = block; | |
971 | break; | |
972 | } | |
973 | } | |
974 | } | |
975 | ||
976 | last_seen_block = block; | |
977 | last_offset = offset; | |
978 | ||
979 | return pages; | |
980 | } | |
981 | ||
982 | void acct_update_position(QEMUFile *f, size_t size, bool zero) | |
983 | { | |
984 | uint64_t pages = size / TARGET_PAGE_SIZE; | |
985 | if (zero) { | |
986 | acct_info.dup_pages += pages; | |
987 | } else { | |
988 | acct_info.norm_pages += pages; | |
989 | bytes_transferred += size; | |
990 | qemu_update_position(f, size); | |
991 | } | |
992 | } | |
993 | ||
994 | static ram_addr_t ram_save_remaining(void) | |
995 | { | |
996 | return migration_dirty_pages; | |
997 | } | |
998 | ||
999 | uint64_t ram_bytes_remaining(void) | |
1000 | { | |
1001 | return ram_save_remaining() * TARGET_PAGE_SIZE; | |
1002 | } | |
1003 | ||
1004 | uint64_t ram_bytes_transferred(void) | |
1005 | { | |
1006 | return bytes_transferred; | |
1007 | } | |
1008 | ||
1009 | uint64_t ram_bytes_total(void) | |
1010 | { | |
1011 | RAMBlock *block; | |
1012 | uint64_t total = 0; | |
1013 | ||
1014 | rcu_read_lock(); | |
1015 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) | |
1016 | total += block->used_length; | |
1017 | rcu_read_unlock(); | |
1018 | return total; | |
1019 | } | |
1020 | ||
1021 | void free_xbzrle_decoded_buf(void) | |
1022 | { | |
1023 | g_free(xbzrle_decoded_buf); | |
1024 | xbzrle_decoded_buf = NULL; | |
1025 | } | |
1026 | ||
1027 | static void migration_end(void) | |
1028 | { | |
2ff64038 LZ |
1029 | /* caller have hold iothread lock or is in a bh, so there is |
1030 | * no writing race against this migration_bitmap | |
1031 | */ | |
1032 | unsigned long *bitmap = migration_bitmap; | |
1033 | atomic_rcu_set(&migration_bitmap, NULL); | |
1034 | if (bitmap) { | |
56e93d26 | 1035 | memory_global_dirty_log_stop(); |
2ff64038 LZ |
1036 | synchronize_rcu(); |
1037 | g_free(bitmap); | |
56e93d26 JQ |
1038 | } |
1039 | ||
1040 | XBZRLE_cache_lock(); | |
1041 | if (XBZRLE.cache) { | |
1042 | cache_fini(XBZRLE.cache); | |
1043 | g_free(XBZRLE.encoded_buf); | |
1044 | g_free(XBZRLE.current_buf); | |
1045 | XBZRLE.cache = NULL; | |
1046 | XBZRLE.encoded_buf = NULL; | |
1047 | XBZRLE.current_buf = NULL; | |
1048 | } | |
1049 | XBZRLE_cache_unlock(); | |
1050 | } | |
1051 | ||
1052 | static void ram_migration_cancel(void *opaque) | |
1053 | { | |
1054 | migration_end(); | |
1055 | } | |
1056 | ||
1057 | static void reset_ram_globals(void) | |
1058 | { | |
1059 | last_seen_block = NULL; | |
1060 | last_sent_block = NULL; | |
1061 | last_offset = 0; | |
1062 | last_version = ram_list.version; | |
1063 | ram_bulk_stage = true; | |
1064 | } | |
1065 | ||
1066 | #define MAX_WAIT 50 /* ms, half buffered_file limit */ | |
1067 | ||
dd631697 LZ |
1068 | void migration_bitmap_extend(ram_addr_t old, ram_addr_t new) |
1069 | { | |
1070 | /* called in qemu main thread, so there is | |
1071 | * no writing race against this migration_bitmap | |
1072 | */ | |
1073 | if (migration_bitmap) { | |
1074 | unsigned long *old_bitmap = migration_bitmap, *bitmap; | |
1075 | bitmap = bitmap_new(new); | |
1076 | ||
1077 | /* prevent migration_bitmap content from being set bit | |
1078 | * by migration_bitmap_sync_range() at the same time. | |
1079 | * it is safe to migration if migration_bitmap is cleared bit | |
1080 | * at the same time. | |
1081 | */ | |
1082 | qemu_mutex_lock(&migration_bitmap_mutex); | |
1083 | bitmap_copy(bitmap, old_bitmap, old); | |
1084 | bitmap_set(bitmap, old, new - old); | |
1085 | atomic_rcu_set(&migration_bitmap, bitmap); | |
1086 | qemu_mutex_unlock(&migration_bitmap_mutex); | |
1087 | migration_dirty_pages += new - old; | |
1088 | synchronize_rcu(); | |
1089 | g_free(old_bitmap); | |
1090 | } | |
1091 | } | |
56e93d26 JQ |
1092 | |
1093 | /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has | |
1094 | * long-running RCU critical section. When rcu-reclaims in the code | |
1095 | * start to become numerous it will be necessary to reduce the | |
1096 | * granularity of these critical sections. | |
1097 | */ | |
1098 | ||
1099 | static int ram_save_setup(QEMUFile *f, void *opaque) | |
1100 | { | |
1101 | RAMBlock *block; | |
1102 | int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ | |
1103 | ||
1104 | mig_throttle_on = false; | |
1105 | dirty_rate_high_cnt = 0; | |
1106 | bitmap_sync_count = 0; | |
1107 | migration_bitmap_sync_init(); | |
dd631697 | 1108 | qemu_mutex_init(&migration_bitmap_mutex); |
56e93d26 JQ |
1109 | |
1110 | if (migrate_use_xbzrle()) { | |
1111 | XBZRLE_cache_lock(); | |
1112 | XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / | |
1113 | TARGET_PAGE_SIZE, | |
1114 | TARGET_PAGE_SIZE); | |
1115 | if (!XBZRLE.cache) { | |
1116 | XBZRLE_cache_unlock(); | |
1117 | error_report("Error creating cache"); | |
1118 | return -1; | |
1119 | } | |
1120 | XBZRLE_cache_unlock(); | |
1121 | ||
1122 | /* We prefer not to abort if there is no memory */ | |
1123 | XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); | |
1124 | if (!XBZRLE.encoded_buf) { | |
1125 | error_report("Error allocating encoded_buf"); | |
1126 | return -1; | |
1127 | } | |
1128 | ||
1129 | XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); | |
1130 | if (!XBZRLE.current_buf) { | |
1131 | error_report("Error allocating current_buf"); | |
1132 | g_free(XBZRLE.encoded_buf); | |
1133 | XBZRLE.encoded_buf = NULL; | |
1134 | return -1; | |
1135 | } | |
1136 | ||
1137 | acct_clear(); | |
1138 | } | |
1139 | ||
1140 | /* iothread lock needed for ram_list.dirty_memory[] */ | |
1141 | qemu_mutex_lock_iothread(); | |
1142 | qemu_mutex_lock_ramlist(); | |
1143 | rcu_read_lock(); | |
1144 | bytes_transferred = 0; | |
1145 | reset_ram_globals(); | |
1146 | ||
1147 | ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; | |
1148 | migration_bitmap = bitmap_new(ram_bitmap_pages); | |
1149 | bitmap_set(migration_bitmap, 0, ram_bitmap_pages); | |
1150 | ||
1151 | /* | |
1152 | * Count the total number of pages used by ram blocks not including any | |
1153 | * gaps due to alignment or unplugs. | |
1154 | */ | |
1155 | migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; | |
1156 | ||
1157 | memory_global_dirty_log_start(); | |
1158 | migration_bitmap_sync(); | |
1159 | qemu_mutex_unlock_ramlist(); | |
1160 | qemu_mutex_unlock_iothread(); | |
1161 | ||
1162 | qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); | |
1163 | ||
1164 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1165 | qemu_put_byte(f, strlen(block->idstr)); | |
1166 | qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); | |
1167 | qemu_put_be64(f, block->used_length); | |
1168 | } | |
1169 | ||
1170 | rcu_read_unlock(); | |
1171 | ||
1172 | ram_control_before_iterate(f, RAM_CONTROL_SETUP); | |
1173 | ram_control_after_iterate(f, RAM_CONTROL_SETUP); | |
1174 | ||
1175 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | |
1176 | ||
1177 | return 0; | |
1178 | } | |
1179 | ||
1180 | static int ram_save_iterate(QEMUFile *f, void *opaque) | |
1181 | { | |
1182 | int ret; | |
1183 | int i; | |
1184 | int64_t t0; | |
1185 | int pages_sent = 0; | |
1186 | ||
1187 | rcu_read_lock(); | |
1188 | if (ram_list.version != last_version) { | |
1189 | reset_ram_globals(); | |
1190 | } | |
1191 | ||
1192 | /* Read version before ram_list.blocks */ | |
1193 | smp_rmb(); | |
1194 | ||
1195 | ram_control_before_iterate(f, RAM_CONTROL_ROUND); | |
1196 | ||
1197 | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1198 | i = 0; | |
1199 | while ((ret = qemu_file_rate_limit(f)) == 0) { | |
1200 | int pages; | |
1201 | ||
1202 | pages = ram_find_and_save_block(f, false, &bytes_transferred); | |
1203 | /* no more pages to sent */ | |
1204 | if (pages == 0) { | |
1205 | break; | |
1206 | } | |
1207 | pages_sent += pages; | |
1208 | acct_info.iterations++; | |
1209 | check_guest_throttling(); | |
1210 | /* we want to check in the 1st loop, just in case it was the 1st time | |
1211 | and we had to sync the dirty bitmap. | |
1212 | qemu_get_clock_ns() is a bit expensive, so we only check each some | |
1213 | iterations | |
1214 | */ | |
1215 | if ((i & 63) == 0) { | |
1216 | uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; | |
1217 | if (t1 > MAX_WAIT) { | |
1218 | DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", | |
1219 | t1, i); | |
1220 | break; | |
1221 | } | |
1222 | } | |
1223 | i++; | |
1224 | } | |
1225 | flush_compressed_data(f); | |
1226 | rcu_read_unlock(); | |
1227 | ||
1228 | /* | |
1229 | * Must occur before EOS (or any QEMUFile operation) | |
1230 | * because of RDMA protocol. | |
1231 | */ | |
1232 | ram_control_after_iterate(f, RAM_CONTROL_ROUND); | |
1233 | ||
1234 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | |
1235 | bytes_transferred += 8; | |
1236 | ||
1237 | ret = qemu_file_get_error(f); | |
1238 | if (ret < 0) { | |
1239 | return ret; | |
1240 | } | |
1241 | ||
1242 | return pages_sent; | |
1243 | } | |
1244 | ||
1245 | /* Called with iothread lock */ | |
1246 | static int ram_save_complete(QEMUFile *f, void *opaque) | |
1247 | { | |
1248 | rcu_read_lock(); | |
1249 | ||
1250 | migration_bitmap_sync(); | |
1251 | ||
1252 | ram_control_before_iterate(f, RAM_CONTROL_FINISH); | |
1253 | ||
1254 | /* try transferring iterative blocks of memory */ | |
1255 | ||
1256 | /* flush all remaining blocks regardless of rate limiting */ | |
1257 | while (true) { | |
1258 | int pages; | |
1259 | ||
1260 | pages = ram_find_and_save_block(f, true, &bytes_transferred); | |
1261 | /* no more blocks to sent */ | |
1262 | if (pages == 0) { | |
1263 | break; | |
1264 | } | |
1265 | } | |
1266 | ||
1267 | flush_compressed_data(f); | |
1268 | ram_control_after_iterate(f, RAM_CONTROL_FINISH); | |
1269 | migration_end(); | |
1270 | ||
1271 | rcu_read_unlock(); | |
1272 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | |
1273 | ||
1274 | return 0; | |
1275 | } | |
1276 | ||
1277 | static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) | |
1278 | { | |
1279 | uint64_t remaining_size; | |
1280 | ||
1281 | remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; | |
1282 | ||
1283 | if (remaining_size < max_size) { | |
1284 | qemu_mutex_lock_iothread(); | |
1285 | rcu_read_lock(); | |
1286 | migration_bitmap_sync(); | |
1287 | rcu_read_unlock(); | |
1288 | qemu_mutex_unlock_iothread(); | |
1289 | remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; | |
1290 | } | |
1291 | return remaining_size; | |
1292 | } | |
1293 | ||
1294 | static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) | |
1295 | { | |
1296 | unsigned int xh_len; | |
1297 | int xh_flags; | |
1298 | ||
1299 | if (!xbzrle_decoded_buf) { | |
1300 | xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); | |
1301 | } | |
1302 | ||
1303 | /* extract RLE header */ | |
1304 | xh_flags = qemu_get_byte(f); | |
1305 | xh_len = qemu_get_be16(f); | |
1306 | ||
1307 | if (xh_flags != ENCODING_FLAG_XBZRLE) { | |
1308 | error_report("Failed to load XBZRLE page - wrong compression!"); | |
1309 | return -1; | |
1310 | } | |
1311 | ||
1312 | if (xh_len > TARGET_PAGE_SIZE) { | |
1313 | error_report("Failed to load XBZRLE page - len overflow!"); | |
1314 | return -1; | |
1315 | } | |
1316 | /* load data and decode */ | |
1317 | qemu_get_buffer(f, xbzrle_decoded_buf, xh_len); | |
1318 | ||
1319 | /* decode RLE */ | |
1320 | if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host, | |
1321 | TARGET_PAGE_SIZE) == -1) { | |
1322 | error_report("Failed to load XBZRLE page - decode error!"); | |
1323 | return -1; | |
1324 | } | |
1325 | ||
1326 | return 0; | |
1327 | } | |
1328 | ||
1329 | /* Must be called from within a rcu critical section. | |
1330 | * Returns a pointer from within the RCU-protected ram_list. | |
1331 | */ | |
1332 | static inline void *host_from_stream_offset(QEMUFile *f, | |
1333 | ram_addr_t offset, | |
1334 | int flags) | |
1335 | { | |
1336 | static RAMBlock *block = NULL; | |
1337 | char id[256]; | |
1338 | uint8_t len; | |
1339 | ||
1340 | if (flags & RAM_SAVE_FLAG_CONTINUE) { | |
1341 | if (!block || block->max_length <= offset) { | |
1342 | error_report("Ack, bad migration stream!"); | |
1343 | return NULL; | |
1344 | } | |
1345 | ||
1346 | return memory_region_get_ram_ptr(block->mr) + offset; | |
1347 | } | |
1348 | ||
1349 | len = qemu_get_byte(f); | |
1350 | qemu_get_buffer(f, (uint8_t *)id, len); | |
1351 | id[len] = 0; | |
1352 | ||
1353 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1354 | if (!strncmp(id, block->idstr, sizeof(id)) && | |
1355 | block->max_length > offset) { | |
1356 | return memory_region_get_ram_ptr(block->mr) + offset; | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | error_report("Can't find block %s!", id); | |
1361 | return NULL; | |
1362 | } | |
1363 | ||
1364 | /* | |
1365 | * If a page (or a whole RDMA chunk) has been | |
1366 | * determined to be zero, then zap it. | |
1367 | */ | |
1368 | void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) | |
1369 | { | |
1370 | if (ch != 0 || !is_zero_range(host, size)) { | |
1371 | memset(host, ch, size); | |
1372 | } | |
1373 | } | |
1374 | ||
1375 | static void *do_data_decompress(void *opaque) | |
1376 | { | |
1377 | DecompressParam *param = opaque; | |
1378 | unsigned long pagesize; | |
1379 | ||
1380 | while (!quit_decomp_thread) { | |
1381 | qemu_mutex_lock(¶m->mutex); | |
1382 | while (!param->start && !quit_decomp_thread) { | |
1383 | qemu_cond_wait(¶m->cond, ¶m->mutex); | |
1384 | pagesize = TARGET_PAGE_SIZE; | |
1385 | if (!quit_decomp_thread) { | |
1386 | /* uncompress() will return failed in some case, especially | |
1387 | * when the page is dirted when doing the compression, it's | |
1388 | * not a problem because the dirty page will be retransferred | |
1389 | * and uncompress() won't break the data in other pages. | |
1390 | */ | |
1391 | uncompress((Bytef *)param->des, &pagesize, | |
1392 | (const Bytef *)param->compbuf, param->len); | |
1393 | } | |
1394 | param->start = false; | |
1395 | } | |
1396 | qemu_mutex_unlock(¶m->mutex); | |
1397 | } | |
1398 | ||
1399 | return NULL; | |
1400 | } | |
1401 | ||
1402 | void migrate_decompress_threads_create(void) | |
1403 | { | |
1404 | int i, thread_count; | |
1405 | ||
1406 | thread_count = migrate_decompress_threads(); | |
1407 | decompress_threads = g_new0(QemuThread, thread_count); | |
1408 | decomp_param = g_new0(DecompressParam, thread_count); | |
1409 | compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); | |
1410 | quit_decomp_thread = false; | |
1411 | for (i = 0; i < thread_count; i++) { | |
1412 | qemu_mutex_init(&decomp_param[i].mutex); | |
1413 | qemu_cond_init(&decomp_param[i].cond); | |
1414 | decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); | |
1415 | qemu_thread_create(decompress_threads + i, "decompress", | |
1416 | do_data_decompress, decomp_param + i, | |
1417 | QEMU_THREAD_JOINABLE); | |
1418 | } | |
1419 | } | |
1420 | ||
1421 | void migrate_decompress_threads_join(void) | |
1422 | { | |
1423 | int i, thread_count; | |
1424 | ||
1425 | quit_decomp_thread = true; | |
1426 | thread_count = migrate_decompress_threads(); | |
1427 | for (i = 0; i < thread_count; i++) { | |
1428 | qemu_mutex_lock(&decomp_param[i].mutex); | |
1429 | qemu_cond_signal(&decomp_param[i].cond); | |
1430 | qemu_mutex_unlock(&decomp_param[i].mutex); | |
1431 | } | |
1432 | for (i = 0; i < thread_count; i++) { | |
1433 | qemu_thread_join(decompress_threads + i); | |
1434 | qemu_mutex_destroy(&decomp_param[i].mutex); | |
1435 | qemu_cond_destroy(&decomp_param[i].cond); | |
1436 | g_free(decomp_param[i].compbuf); | |
1437 | } | |
1438 | g_free(decompress_threads); | |
1439 | g_free(decomp_param); | |
1440 | g_free(compressed_data_buf); | |
1441 | decompress_threads = NULL; | |
1442 | decomp_param = NULL; | |
1443 | compressed_data_buf = NULL; | |
1444 | } | |
1445 | ||
1446 | static void decompress_data_with_multi_threads(uint8_t *compbuf, | |
1447 | void *host, int len) | |
1448 | { | |
1449 | int idx, thread_count; | |
1450 | ||
1451 | thread_count = migrate_decompress_threads(); | |
1452 | while (true) { | |
1453 | for (idx = 0; idx < thread_count; idx++) { | |
1454 | if (!decomp_param[idx].start) { | |
1455 | memcpy(decomp_param[idx].compbuf, compbuf, len); | |
1456 | decomp_param[idx].des = host; | |
1457 | decomp_param[idx].len = len; | |
1458 | start_decompression(&decomp_param[idx]); | |
1459 | break; | |
1460 | } | |
1461 | } | |
1462 | if (idx < thread_count) { | |
1463 | break; | |
1464 | } | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | static int ram_load(QEMUFile *f, void *opaque, int version_id) | |
1469 | { | |
1470 | int flags = 0, ret = 0; | |
1471 | static uint64_t seq_iter; | |
1472 | int len = 0; | |
1473 | ||
1474 | seq_iter++; | |
1475 | ||
1476 | if (version_id != 4) { | |
1477 | ret = -EINVAL; | |
1478 | } | |
1479 | ||
1480 | /* This RCU critical section can be very long running. | |
1481 | * When RCU reclaims in the code start to become numerous, | |
1482 | * it will be necessary to reduce the granularity of this | |
1483 | * critical section. | |
1484 | */ | |
1485 | rcu_read_lock(); | |
1486 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | |
1487 | ram_addr_t addr, total_ram_bytes; | |
1488 | void *host; | |
1489 | uint8_t ch; | |
1490 | ||
1491 | addr = qemu_get_be64(f); | |
1492 | flags = addr & ~TARGET_PAGE_MASK; | |
1493 | addr &= TARGET_PAGE_MASK; | |
1494 | ||
1495 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | |
1496 | case RAM_SAVE_FLAG_MEM_SIZE: | |
1497 | /* Synchronize RAM block list */ | |
1498 | total_ram_bytes = addr; | |
1499 | while (!ret && total_ram_bytes) { | |
1500 | RAMBlock *block; | |
56e93d26 JQ |
1501 | char id[256]; |
1502 | ram_addr_t length; | |
1503 | ||
1504 | len = qemu_get_byte(f); | |
1505 | qemu_get_buffer(f, (uint8_t *)id, len); | |
1506 | id[len] = 0; | |
1507 | length = qemu_get_be64(f); | |
1508 | ||
1509 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1510 | if (!strncmp(id, block->idstr, sizeof(id))) { | |
1511 | if (length != block->used_length) { | |
1512 | Error *local_err = NULL; | |
1513 | ||
1514 | ret = qemu_ram_resize(block->offset, length, &local_err); | |
1515 | if (local_err) { | |
1516 | error_report_err(local_err); | |
1517 | } | |
1518 | } | |
632e3a5c DDAG |
1519 | ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
1520 | block->idstr); | |
56e93d26 JQ |
1521 | break; |
1522 | } | |
1523 | } | |
1524 | ||
1525 | if (!block) { | |
1526 | error_report("Unknown ramblock \"%s\", cannot " | |
1527 | "accept migration", id); | |
1528 | ret = -EINVAL; | |
1529 | } | |
1530 | ||
1531 | total_ram_bytes -= length; | |
1532 | } | |
1533 | break; | |
1534 | case RAM_SAVE_FLAG_COMPRESS: | |
1535 | host = host_from_stream_offset(f, addr, flags); | |
1536 | if (!host) { | |
1537 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
1538 | ret = -EINVAL; | |
1539 | break; | |
1540 | } | |
1541 | ch = qemu_get_byte(f); | |
1542 | ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); | |
1543 | break; | |
1544 | case RAM_SAVE_FLAG_PAGE: | |
1545 | host = host_from_stream_offset(f, addr, flags); | |
1546 | if (!host) { | |
1547 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
1548 | ret = -EINVAL; | |
1549 | break; | |
1550 | } | |
1551 | qemu_get_buffer(f, host, TARGET_PAGE_SIZE); | |
1552 | break; | |
1553 | case RAM_SAVE_FLAG_COMPRESS_PAGE: | |
1554 | host = host_from_stream_offset(f, addr, flags); | |
1555 | if (!host) { | |
1556 | error_report("Invalid RAM offset " RAM_ADDR_FMT, addr); | |
1557 | ret = -EINVAL; | |
1558 | break; | |
1559 | } | |
1560 | ||
1561 | len = qemu_get_be32(f); | |
1562 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
1563 | error_report("Invalid compressed data length: %d", len); | |
1564 | ret = -EINVAL; | |
1565 | break; | |
1566 | } | |
1567 | qemu_get_buffer(f, compressed_data_buf, len); | |
1568 | decompress_data_with_multi_threads(compressed_data_buf, host, len); | |
1569 | break; | |
1570 | case RAM_SAVE_FLAG_XBZRLE: | |
1571 | host = host_from_stream_offset(f, addr, flags); | |
1572 | if (!host) { | |
1573 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
1574 | ret = -EINVAL; | |
1575 | break; | |
1576 | } | |
1577 | if (load_xbzrle(f, addr, host) < 0) { | |
1578 | error_report("Failed to decompress XBZRLE page at " | |
1579 | RAM_ADDR_FMT, addr); | |
1580 | ret = -EINVAL; | |
1581 | break; | |
1582 | } | |
1583 | break; | |
1584 | case RAM_SAVE_FLAG_EOS: | |
1585 | /* normal exit */ | |
1586 | break; | |
1587 | default: | |
1588 | if (flags & RAM_SAVE_FLAG_HOOK) { | |
632e3a5c | 1589 | ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
56e93d26 JQ |
1590 | } else { |
1591 | error_report("Unknown combination of migration flags: %#x", | |
1592 | flags); | |
1593 | ret = -EINVAL; | |
1594 | } | |
1595 | } | |
1596 | if (!ret) { | |
1597 | ret = qemu_file_get_error(f); | |
1598 | } | |
1599 | } | |
1600 | ||
1601 | rcu_read_unlock(); | |
1602 | DPRINTF("Completed load of VM with exit code %d seq iteration " | |
1603 | "%" PRIu64 "\n", ret, seq_iter); | |
1604 | return ret; | |
1605 | } | |
1606 | ||
1607 | static SaveVMHandlers savevm_ram_handlers = { | |
1608 | .save_live_setup = ram_save_setup, | |
1609 | .save_live_iterate = ram_save_iterate, | |
1610 | .save_live_complete = ram_save_complete, | |
1611 | .save_live_pending = ram_save_pending, | |
1612 | .load_state = ram_load, | |
1613 | .cancel = ram_migration_cancel, | |
1614 | }; | |
1615 | ||
1616 | void ram_mig_init(void) | |
1617 | { | |
1618 | qemu_mutex_init(&XBZRLE.lock); | |
1619 | register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); | |
1620 | } | |
1621 | /* Stub function that's gets run on the vcpu when its brought out of the | |
1622 | VM to run inside qemu via async_run_on_cpu()*/ | |
1623 | ||
1624 | static void mig_sleep_cpu(void *opq) | |
1625 | { | |
1626 | qemu_mutex_unlock_iothread(); | |
1627 | g_usleep(30*1000); | |
1628 | qemu_mutex_lock_iothread(); | |
1629 | } | |
1630 | ||
1631 | /* To reduce the dirty rate explicitly disallow the VCPUs from spending | |
1632 | much time in the VM. The migration thread will try to catchup. | |
1633 | Workload will experience a performance drop. | |
1634 | */ | |
1635 | static void mig_throttle_guest_down(void) | |
1636 | { | |
1637 | CPUState *cpu; | |
1638 | ||
1639 | qemu_mutex_lock_iothread(); | |
1640 | CPU_FOREACH(cpu) { | |
1641 | async_run_on_cpu(cpu, mig_sleep_cpu, NULL); | |
1642 | } | |
1643 | qemu_mutex_unlock_iothread(); | |
1644 | } | |
1645 | ||
1646 | static void check_guest_throttling(void) | |
1647 | { | |
1648 | static int64_t t0; | |
1649 | int64_t t1; | |
1650 | ||
1651 | if (!mig_throttle_on) { | |
1652 | return; | |
1653 | } | |
1654 | ||
1655 | if (!t0) { | |
1656 | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1657 | return; | |
1658 | } | |
1659 | ||
1660 | t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
1661 | ||
1662 | /* If it has been more than 40 ms since the last time the guest | |
1663 | * was throttled then do it again. | |
1664 | */ | |
1665 | if (40 < (t1-t0)/1000000) { | |
1666 | mig_throttle_guest_down(); | |
1667 | t0 = t1; | |
1668 | } | |
1669 | } |