]>
Commit | Line | Data |
---|---|---|
56e93d26 JQ |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
76cc7b58 JQ |
5 | * Copyright (c) 2011-2015 Red Hat Inc |
6 | * | |
7 | * Authors: | |
8 | * Juan Quintela <[email protected]> | |
56e93d26 JQ |
9 | * |
10 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
11 | * of this software and associated documentation files (the "Software"), to deal | |
12 | * in the Software without restriction, including without limitation the rights | |
13 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
14 | * copies of the Software, and to permit persons to whom the Software is | |
15 | * furnished to do so, subject to the following conditions: | |
16 | * | |
17 | * The above copyright notice and this permission notice shall be included in | |
18 | * all copies or substantial portions of the Software. | |
19 | * | |
20 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
21 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
23 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
24 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
25 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
26 | * THE SOFTWARE. | |
27 | */ | |
e688df6b | 28 | |
1393a485 | 29 | #include "qemu/osdep.h" |
f348b6d1 | 30 | #include "qemu/cutils.h" |
56e93d26 JQ |
31 | #include "qemu/bitops.h" |
32 | #include "qemu/bitmap.h" | |
7205c9ec | 33 | #include "qemu/main-loop.h" |
709e3fe8 | 34 | #include "xbzrle.h" |
7b1e1a22 | 35 | #include "ram.h" |
6666c96a | 36 | #include "migration.h" |
f2a8f0a6 | 37 | #include "migration/register.h" |
7b1e1a22 | 38 | #include "migration/misc.h" |
08a0aee1 | 39 | #include "qemu-file.h" |
be07b0ac | 40 | #include "postcopy-ram.h" |
53d37d36 | 41 | #include "page_cache.h" |
56e93d26 | 42 | #include "qemu/error-report.h" |
e688df6b | 43 | #include "qapi/error.h" |
ab7cbb0b | 44 | #include "qapi/qapi-types-migration.h" |
9af23989 | 45 | #include "qapi/qapi-events-migration.h" |
8acabf69 | 46 | #include "qapi/qmp/qerror.h" |
56e93d26 | 47 | #include "trace.h" |
56e93d26 | 48 | #include "exec/ram_addr.h" |
f9494614 | 49 | #include "exec/target_page.h" |
56e93d26 | 50 | #include "qemu/rcu_queue.h" |
a91246c9 | 51 | #include "migration/colo.h" |
53d37d36 | 52 | #include "block.h" |
b0c3cf94 | 53 | #include "sysemu/cpu-throttle.h" |
edd090c7 | 54 | #include "savevm.h" |
b9ee2f7d | 55 | #include "qemu/iov.h" |
d32ca5ad | 56 | #include "multifd.h" |
278e2f55 AG |
57 | #include "sysemu/runstate.h" |
58 | ||
e5fdf920 LS |
59 | #include "hw/boards.h" /* for machine_dump_guest_core() */ |
60 | ||
278e2f55 AG |
61 | #if defined(__linux__) |
62 | #include "qemu/userfaultfd.h" | |
63 | #endif /* defined(__linux__) */ | |
56e93d26 | 64 | |
56e93d26 JQ |
65 | /***********************************************************/ |
66 | /* ram save/restore */ | |
67 | ||
bb890ed5 JQ |
68 | /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it |
69 | * worked for pages that where filled with the same char. We switched | |
70 | * it to only search for the zero value. And to avoid confusion with | |
71 | * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. | |
72 | */ | |
73 | ||
56e93d26 | 74 | #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ |
bb890ed5 | 75 | #define RAM_SAVE_FLAG_ZERO 0x02 |
56e93d26 JQ |
76 | #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
77 | #define RAM_SAVE_FLAG_PAGE 0x08 | |
78 | #define RAM_SAVE_FLAG_EOS 0x10 | |
79 | #define RAM_SAVE_FLAG_CONTINUE 0x20 | |
80 | #define RAM_SAVE_FLAG_XBZRLE 0x40 | |
81 | /* 0x80 is reserved in migration.h start with 0x100 next */ | |
82 | #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 | |
83 | ||
9360447d JQ |
84 | XBZRLECacheStats xbzrle_counters; |
85 | ||
56e93d26 JQ |
86 | /* struct contains XBZRLE cache and a static page |
87 | used by the compression */ | |
88 | static struct { | |
89 | /* buffer used for XBZRLE encoding */ | |
90 | uint8_t *encoded_buf; | |
91 | /* buffer for storing page content */ | |
92 | uint8_t *current_buf; | |
93 | /* Cache for XBZRLE, Protected by lock. */ | |
94 | PageCache *cache; | |
95 | QemuMutex lock; | |
c00e0928 JQ |
96 | /* it will store a page full of zeros */ |
97 | uint8_t *zero_target_page; | |
f265e0e4 JQ |
98 | /* buffer used for XBZRLE decoding */ |
99 | uint8_t *decoded_buf; | |
56e93d26 JQ |
100 | } XBZRLE; |
101 | ||
56e93d26 JQ |
102 | static void XBZRLE_cache_lock(void) |
103 | { | |
f4c51a6b | 104 | if (migrate_use_xbzrle()) { |
56e93d26 | 105 | qemu_mutex_lock(&XBZRLE.lock); |
f4c51a6b | 106 | } |
56e93d26 JQ |
107 | } |
108 | ||
109 | static void XBZRLE_cache_unlock(void) | |
110 | { | |
f4c51a6b | 111 | if (migrate_use_xbzrle()) { |
56e93d26 | 112 | qemu_mutex_unlock(&XBZRLE.lock); |
f4c51a6b | 113 | } |
56e93d26 JQ |
114 | } |
115 | ||
3d0684b2 JQ |
116 | /** |
117 | * xbzrle_cache_resize: resize the xbzrle cache | |
118 | * | |
cbde7be9 | 119 | * This function is called from migrate_params_apply in main |
3d0684b2 JQ |
120 | * thread, possibly while a migration is in progress. A running |
121 | * migration may be using the cache and might finish during this call, | |
122 | * hence changes to the cache are protected by XBZRLE.lock(). | |
123 | * | |
c9dede2d | 124 | * Returns 0 for success or -1 for error |
3d0684b2 JQ |
125 | * |
126 | * @new_size: new cache size | |
8acabf69 | 127 | * @errp: set *errp if the check failed, with reason |
56e93d26 | 128 | */ |
8b9407a0 | 129 | int xbzrle_cache_resize(uint64_t new_size, Error **errp) |
56e93d26 JQ |
130 | { |
131 | PageCache *new_cache; | |
c9dede2d | 132 | int64_t ret = 0; |
56e93d26 | 133 | |
8acabf69 JQ |
134 | /* Check for truncation */ |
135 | if (new_size != (size_t)new_size) { | |
136 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", | |
137 | "exceeding address space"); | |
138 | return -1; | |
139 | } | |
140 | ||
2a313e5c JQ |
141 | if (new_size == migrate_xbzrle_cache_size()) { |
142 | /* nothing to do */ | |
c9dede2d | 143 | return 0; |
2a313e5c JQ |
144 | } |
145 | ||
56e93d26 JQ |
146 | XBZRLE_cache_lock(); |
147 | ||
148 | if (XBZRLE.cache != NULL) { | |
80f8dfde | 149 | new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); |
56e93d26 | 150 | if (!new_cache) { |
56e93d26 JQ |
151 | ret = -1; |
152 | goto out; | |
153 | } | |
154 | ||
155 | cache_fini(XBZRLE.cache); | |
156 | XBZRLE.cache = new_cache; | |
157 | } | |
56e93d26 JQ |
158 | out: |
159 | XBZRLE_cache_unlock(); | |
160 | return ret; | |
161 | } | |
162 | ||
3ded54b1 | 163 | bool ramblock_is_ignored(RAMBlock *block) |
fbd162e6 YK |
164 | { |
165 | return !qemu_ram_is_migratable(block) || | |
166 | (migrate_ignore_shared() && qemu_ram_is_shared(block)); | |
167 | } | |
168 | ||
343f632c DDAG |
169 | #undef RAMBLOCK_FOREACH |
170 | ||
fbd162e6 YK |
171 | int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) |
172 | { | |
173 | RAMBlock *block; | |
174 | int ret = 0; | |
175 | ||
89ac5a1d DDAG |
176 | RCU_READ_LOCK_GUARD(); |
177 | ||
fbd162e6 YK |
178 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
179 | ret = func(block, opaque); | |
180 | if (ret) { | |
181 | break; | |
182 | } | |
183 | } | |
fbd162e6 YK |
184 | return ret; |
185 | } | |
186 | ||
f9494614 AP |
187 | static void ramblock_recv_map_init(void) |
188 | { | |
189 | RAMBlock *rb; | |
190 | ||
fbd162e6 | 191 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
f9494614 AP |
192 | assert(!rb->receivedmap); |
193 | rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); | |
194 | } | |
195 | } | |
196 | ||
197 | int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) | |
198 | { | |
199 | return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), | |
200 | rb->receivedmap); | |
201 | } | |
202 | ||
1cba9f6e DDAG |
203 | bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) |
204 | { | |
205 | return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); | |
206 | } | |
207 | ||
f9494614 AP |
208 | void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) |
209 | { | |
210 | set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); | |
211 | } | |
212 | ||
213 | void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, | |
214 | size_t nr) | |
215 | { | |
216 | bitmap_set_atomic(rb->receivedmap, | |
217 | ramblock_recv_bitmap_offset(host_addr, rb), | |
218 | nr); | |
219 | } | |
220 | ||
a335debb PX |
221 | #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) |
222 | ||
223 | /* | |
224 | * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). | |
225 | * | |
226 | * Returns >0 if success with sent bytes, or <0 if error. | |
227 | */ | |
228 | int64_t ramblock_recv_bitmap_send(QEMUFile *file, | |
229 | const char *block_name) | |
230 | { | |
231 | RAMBlock *block = qemu_ram_block_by_name(block_name); | |
232 | unsigned long *le_bitmap, nbits; | |
233 | uint64_t size; | |
234 | ||
235 | if (!block) { | |
236 | error_report("%s: invalid block name: %s", __func__, block_name); | |
237 | return -1; | |
238 | } | |
239 | ||
898ba906 | 240 | nbits = block->postcopy_length >> TARGET_PAGE_BITS; |
a335debb PX |
241 | |
242 | /* | |
243 | * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit | |
244 | * machines we may need 4 more bytes for padding (see below | |
245 | * comment). So extend it a bit before hand. | |
246 | */ | |
247 | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | |
248 | ||
249 | /* | |
250 | * Always use little endian when sending the bitmap. This is | |
251 | * required that when source and destination VMs are not using the | |
3a4452d8 | 252 | * same endianness. (Note: big endian won't work.) |
a335debb PX |
253 | */ |
254 | bitmap_to_le(le_bitmap, block->receivedmap, nbits); | |
255 | ||
256 | /* Size of the bitmap, in bytes */ | |
a725ef9f | 257 | size = DIV_ROUND_UP(nbits, 8); |
a335debb PX |
258 | |
259 | /* | |
260 | * size is always aligned to 8 bytes for 64bit machines, but it | |
261 | * may not be true for 32bit machines. We need this padding to | |
262 | * make sure the migration can survive even between 32bit and | |
263 | * 64bit machines. | |
264 | */ | |
265 | size = ROUND_UP(size, 8); | |
266 | ||
267 | qemu_put_be64(file, size); | |
268 | qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); | |
269 | /* | |
270 | * Mark as an end, in case the middle part is screwed up due to | |
3a4452d8 | 271 | * some "mysterious" reason. |
a335debb PX |
272 | */ |
273 | qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); | |
274 | qemu_fflush(file); | |
275 | ||
bf269906 | 276 | g_free(le_bitmap); |
a335debb PX |
277 | |
278 | if (qemu_file_get_error(file)) { | |
279 | return qemu_file_get_error(file); | |
280 | } | |
281 | ||
282 | return size + sizeof(size); | |
283 | } | |
284 | ||
ec481c6c JQ |
285 | /* |
286 | * An outstanding page request, on the source, having been received | |
287 | * and queued | |
288 | */ | |
289 | struct RAMSrcPageRequest { | |
290 | RAMBlock *rb; | |
291 | hwaddr offset; | |
292 | hwaddr len; | |
293 | ||
294 | QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; | |
295 | }; | |
296 | ||
6f37bb8b JQ |
297 | /* State of RAM for migration */ |
298 | struct RAMState { | |
204b88b8 JQ |
299 | /* QEMUFile used for this migration */ |
300 | QEMUFile *f; | |
278e2f55 AG |
301 | /* UFFD file descriptor, used in 'write-tracking' migration */ |
302 | int uffdio_fd; | |
6f37bb8b JQ |
303 | /* Last block that we have visited searching for dirty pages */ |
304 | RAMBlock *last_seen_block; | |
305 | /* Last block from where we have sent data */ | |
306 | RAMBlock *last_sent_block; | |
269ace29 JQ |
307 | /* Last dirty target page we have sent */ |
308 | ram_addr_t last_page; | |
6f37bb8b JQ |
309 | /* last ram version we have seen */ |
310 | uint32_t last_version; | |
8d820d6f JQ |
311 | /* How many times we have dirty too many pages */ |
312 | int dirty_rate_high_cnt; | |
f664da80 JQ |
313 | /* these variables are used for bitmap sync */ |
314 | /* last time we did a full bitmap_sync */ | |
315 | int64_t time_last_bitmap_sync; | |
eac74159 | 316 | /* bytes transferred at start_time */ |
c4bdf0cf | 317 | uint64_t bytes_xfer_prev; |
a66cd90c | 318 | /* number of dirty pages since start_time */ |
68908ed6 | 319 | uint64_t num_dirty_pages_period; |
b5833fde JQ |
320 | /* xbzrle misses since the beginning of the period */ |
321 | uint64_t xbzrle_cache_miss_prev; | |
e460a4b1 WW |
322 | /* Amount of xbzrle pages since the beginning of the period */ |
323 | uint64_t xbzrle_pages_prev; | |
324 | /* Amount of xbzrle encoded bytes since the beginning of the period */ | |
325 | uint64_t xbzrle_bytes_prev; | |
1a373522 DH |
326 | /* Start using XBZRLE (e.g., after the first round). */ |
327 | bool xbzrle_enabled; | |
05931ec5 JQ |
328 | /* Are we on the last stage of migration */ |
329 | bool last_stage; | |
76e03000 XG |
330 | /* compression statistics since the beginning of the period */ |
331 | /* amount of count that no free thread to compress data */ | |
332 | uint64_t compress_thread_busy_prev; | |
333 | /* amount bytes after compression */ | |
334 | uint64_t compressed_size_prev; | |
335 | /* amount of compressed pages */ | |
336 | uint64_t compress_pages_prev; | |
337 | ||
be8b02ed XG |
338 | /* total handled target pages at the beginning of period */ |
339 | uint64_t target_page_count_prev; | |
340 | /* total handled target pages since start */ | |
341 | uint64_t target_page_count; | |
9360447d | 342 | /* number of dirty bits in the bitmap */ |
2dfaf12e | 343 | uint64_t migration_dirty_pages; |
386a907b | 344 | /* Protects modification of the bitmap and migration dirty pages */ |
108cfae0 | 345 | QemuMutex bitmap_mutex; |
68a098f3 JQ |
346 | /* The RAMBlock used in the last src_page_requests */ |
347 | RAMBlock *last_req_rb; | |
ec481c6c JQ |
348 | /* Queue of outstanding page requests from the destination */ |
349 | QemuMutex src_page_req_mutex; | |
b58deb34 | 350 | QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; |
6f37bb8b JQ |
351 | }; |
352 | typedef struct RAMState RAMState; | |
353 | ||
53518d94 | 354 | static RAMState *ram_state; |
6f37bb8b | 355 | |
bd227060 WW |
356 | static NotifierWithReturnList precopy_notifier_list; |
357 | ||
358 | void precopy_infrastructure_init(void) | |
359 | { | |
360 | notifier_with_return_list_init(&precopy_notifier_list); | |
361 | } | |
362 | ||
363 | void precopy_add_notifier(NotifierWithReturn *n) | |
364 | { | |
365 | notifier_with_return_list_add(&precopy_notifier_list, n); | |
366 | } | |
367 | ||
368 | void precopy_remove_notifier(NotifierWithReturn *n) | |
369 | { | |
370 | notifier_with_return_remove(n); | |
371 | } | |
372 | ||
373 | int precopy_notify(PrecopyNotifyReason reason, Error **errp) | |
374 | { | |
375 | PrecopyNotifyData pnd; | |
376 | pnd.reason = reason; | |
377 | pnd.errp = errp; | |
378 | ||
379 | return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); | |
380 | } | |
381 | ||
9edabd4d | 382 | uint64_t ram_bytes_remaining(void) |
2f4fde93 | 383 | { |
bae416e5 DDAG |
384 | return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : |
385 | 0; | |
2f4fde93 JQ |
386 | } |
387 | ||
9360447d | 388 | MigrationStats ram_counters; |
96506894 | 389 | |
4c2d0f6d DE |
390 | static void ram_transferred_add(uint64_t bytes) |
391 | { | |
ae680668 DE |
392 | if (runstate_is_running()) { |
393 | ram_counters.precopy_bytes += bytes; | |
394 | } else if (migration_in_postcopy()) { | |
395 | ram_counters.postcopy_bytes += bytes; | |
396 | } else { | |
397 | ram_counters.downtime_bytes += bytes; | |
398 | } | |
4c2d0f6d DE |
399 | ram_counters.transferred += bytes; |
400 | } | |
401 | ||
b8fb8cb7 DDAG |
402 | /* used by the search for pages to send */ |
403 | struct PageSearchStatus { | |
404 | /* Current block being searched */ | |
405 | RAMBlock *block; | |
a935e30f JQ |
406 | /* Current page to search from */ |
407 | unsigned long page; | |
b8fb8cb7 DDAG |
408 | /* Set once we wrap around */ |
409 | bool complete_round; | |
410 | }; | |
411 | typedef struct PageSearchStatus PageSearchStatus; | |
412 | ||
76e03000 XG |
413 | CompressionStats compression_counters; |
414 | ||
56e93d26 | 415 | struct CompressParam { |
56e93d26 | 416 | bool done; |
90e56fb4 | 417 | bool quit; |
5e5fdcff | 418 | bool zero_page; |
56e93d26 JQ |
419 | QEMUFile *file; |
420 | QemuMutex mutex; | |
421 | QemuCond cond; | |
422 | RAMBlock *block; | |
423 | ram_addr_t offset; | |
34ab9e97 XG |
424 | |
425 | /* internally used fields */ | |
dcaf446e | 426 | z_stream stream; |
34ab9e97 | 427 | uint8_t *originbuf; |
56e93d26 JQ |
428 | }; |
429 | typedef struct CompressParam CompressParam; | |
430 | ||
431 | struct DecompressParam { | |
73a8912b | 432 | bool done; |
90e56fb4 | 433 | bool quit; |
56e93d26 JQ |
434 | QemuMutex mutex; |
435 | QemuCond cond; | |
436 | void *des; | |
d341d9f3 | 437 | uint8_t *compbuf; |
56e93d26 | 438 | int len; |
797ca154 | 439 | z_stream stream; |
56e93d26 JQ |
440 | }; |
441 | typedef struct DecompressParam DecompressParam; | |
442 | ||
443 | static CompressParam *comp_param; | |
444 | static QemuThread *compress_threads; | |
445 | /* comp_done_cond is used to wake up the migration thread when | |
446 | * one of the compression threads has finished the compression. | |
447 | * comp_done_lock is used to co-work with comp_done_cond. | |
448 | */ | |
0d9f9a5c LL |
449 | static QemuMutex comp_done_lock; |
450 | static QemuCond comp_done_cond; | |
56e93d26 JQ |
451 | /* The empty QEMUFileOps will be used by file in CompressParam */ |
452 | static const QEMUFileOps empty_ops = { }; | |
453 | ||
34ab9e97 | 454 | static QEMUFile *decomp_file; |
56e93d26 JQ |
455 | static DecompressParam *decomp_param; |
456 | static QemuThread *decompress_threads; | |
73a8912b LL |
457 | static QemuMutex decomp_done_lock; |
458 | static QemuCond decomp_done_cond; | |
56e93d26 | 459 | |
5e5fdcff | 460 | static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
6ef3771c | 461 | ram_addr_t offset, uint8_t *source_buf); |
56e93d26 JQ |
462 | |
463 | static void *do_data_compress(void *opaque) | |
464 | { | |
465 | CompressParam *param = opaque; | |
a7a9a88f LL |
466 | RAMBlock *block; |
467 | ram_addr_t offset; | |
5e5fdcff | 468 | bool zero_page; |
56e93d26 | 469 | |
a7a9a88f | 470 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 471 | while (!param->quit) { |
a7a9a88f LL |
472 | if (param->block) { |
473 | block = param->block; | |
474 | offset = param->offset; | |
475 | param->block = NULL; | |
476 | qemu_mutex_unlock(¶m->mutex); | |
477 | ||
5e5fdcff XG |
478 | zero_page = do_compress_ram_page(param->file, ¶m->stream, |
479 | block, offset, param->originbuf); | |
a7a9a88f | 480 | |
0d9f9a5c | 481 | qemu_mutex_lock(&comp_done_lock); |
a7a9a88f | 482 | param->done = true; |
5e5fdcff | 483 | param->zero_page = zero_page; |
0d9f9a5c LL |
484 | qemu_cond_signal(&comp_done_cond); |
485 | qemu_mutex_unlock(&comp_done_lock); | |
a7a9a88f LL |
486 | |
487 | qemu_mutex_lock(¶m->mutex); | |
488 | } else { | |
56e93d26 JQ |
489 | qemu_cond_wait(¶m->cond, ¶m->mutex); |
490 | } | |
56e93d26 | 491 | } |
a7a9a88f | 492 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
493 | |
494 | return NULL; | |
495 | } | |
496 | ||
f0afa331 | 497 | static void compress_threads_save_cleanup(void) |
56e93d26 JQ |
498 | { |
499 | int i, thread_count; | |
500 | ||
05306935 | 501 | if (!migrate_use_compression() || !comp_param) { |
56e93d26 JQ |
502 | return; |
503 | } | |
05306935 | 504 | |
56e93d26 JQ |
505 | thread_count = migrate_compress_threads(); |
506 | for (i = 0; i < thread_count; i++) { | |
dcaf446e XG |
507 | /* |
508 | * we use it as a indicator which shows if the thread is | |
509 | * properly init'd or not | |
510 | */ | |
511 | if (!comp_param[i].file) { | |
512 | break; | |
513 | } | |
05306935 FL |
514 | |
515 | qemu_mutex_lock(&comp_param[i].mutex); | |
516 | comp_param[i].quit = true; | |
517 | qemu_cond_signal(&comp_param[i].cond); | |
518 | qemu_mutex_unlock(&comp_param[i].mutex); | |
519 | ||
56e93d26 | 520 | qemu_thread_join(compress_threads + i); |
56e93d26 JQ |
521 | qemu_mutex_destroy(&comp_param[i].mutex); |
522 | qemu_cond_destroy(&comp_param[i].cond); | |
dcaf446e | 523 | deflateEnd(&comp_param[i].stream); |
34ab9e97 | 524 | g_free(comp_param[i].originbuf); |
dcaf446e XG |
525 | qemu_fclose(comp_param[i].file); |
526 | comp_param[i].file = NULL; | |
56e93d26 | 527 | } |
0d9f9a5c LL |
528 | qemu_mutex_destroy(&comp_done_lock); |
529 | qemu_cond_destroy(&comp_done_cond); | |
56e93d26 JQ |
530 | g_free(compress_threads); |
531 | g_free(comp_param); | |
56e93d26 JQ |
532 | compress_threads = NULL; |
533 | comp_param = NULL; | |
56e93d26 JQ |
534 | } |
535 | ||
dcaf446e | 536 | static int compress_threads_save_setup(void) |
56e93d26 JQ |
537 | { |
538 | int i, thread_count; | |
539 | ||
540 | if (!migrate_use_compression()) { | |
dcaf446e | 541 | return 0; |
56e93d26 | 542 | } |
56e93d26 JQ |
543 | thread_count = migrate_compress_threads(); |
544 | compress_threads = g_new0(QemuThread, thread_count); | |
545 | comp_param = g_new0(CompressParam, thread_count); | |
0d9f9a5c LL |
546 | qemu_cond_init(&comp_done_cond); |
547 | qemu_mutex_init(&comp_done_lock); | |
56e93d26 | 548 | for (i = 0; i < thread_count; i++) { |
34ab9e97 XG |
549 | comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); |
550 | if (!comp_param[i].originbuf) { | |
551 | goto exit; | |
552 | } | |
553 | ||
dcaf446e XG |
554 | if (deflateInit(&comp_param[i].stream, |
555 | migrate_compress_level()) != Z_OK) { | |
34ab9e97 | 556 | g_free(comp_param[i].originbuf); |
dcaf446e XG |
557 | goto exit; |
558 | } | |
559 | ||
e110aa91 C |
560 | /* comp_param[i].file is just used as a dummy buffer to save data, |
561 | * set its ops to empty. | |
56e93d26 | 562 | */ |
c6ad5be7 | 563 | comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false); |
56e93d26 | 564 | comp_param[i].done = true; |
90e56fb4 | 565 | comp_param[i].quit = false; |
56e93d26 JQ |
566 | qemu_mutex_init(&comp_param[i].mutex); |
567 | qemu_cond_init(&comp_param[i].cond); | |
568 | qemu_thread_create(compress_threads + i, "compress", | |
569 | do_data_compress, comp_param + i, | |
570 | QEMU_THREAD_JOINABLE); | |
571 | } | |
dcaf446e XG |
572 | return 0; |
573 | ||
574 | exit: | |
575 | compress_threads_save_cleanup(); | |
576 | return -1; | |
56e93d26 JQ |
577 | } |
578 | ||
579 | /** | |
3d0684b2 | 580 | * save_page_header: write page header to wire |
56e93d26 JQ |
581 | * |
582 | * If this is the 1st block, it also writes the block identification | |
583 | * | |
3d0684b2 | 584 | * Returns the number of bytes written |
56e93d26 JQ |
585 | * |
586 | * @f: QEMUFile where to send the data | |
587 | * @block: block that contains the page we want to send | |
588 | * @offset: offset inside the block for the page | |
589 | * in the lower bits, it contains flags | |
590 | */ | |
2bf3aa85 JQ |
591 | static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, |
592 | ram_addr_t offset) | |
56e93d26 | 593 | { |
9f5f380b | 594 | size_t size, len; |
56e93d26 | 595 | |
24795694 JQ |
596 | if (block == rs->last_sent_block) { |
597 | offset |= RAM_SAVE_FLAG_CONTINUE; | |
598 | } | |
2bf3aa85 | 599 | qemu_put_be64(f, offset); |
56e93d26 JQ |
600 | size = 8; |
601 | ||
602 | if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { | |
9f5f380b | 603 | len = strlen(block->idstr); |
2bf3aa85 JQ |
604 | qemu_put_byte(f, len); |
605 | qemu_put_buffer(f, (uint8_t *)block->idstr, len); | |
9f5f380b | 606 | size += 1 + len; |
24795694 | 607 | rs->last_sent_block = block; |
56e93d26 JQ |
608 | } |
609 | return size; | |
610 | } | |
611 | ||
3d0684b2 | 612 | /** |
179a8080 | 613 | * mig_throttle_guest_down: throttle down the guest |
3d0684b2 JQ |
614 | * |
615 | * Reduce amount of guest cpu execution to hopefully slow down memory | |
616 | * writes. If guest dirty memory rate is reduced below the rate at | |
617 | * which we can transfer pages to the destination then we should be | |
618 | * able to complete migration. Some workloads dirty memory way too | |
619 | * fast and will not effectively converge, even with auto-converge. | |
070afca2 | 620 | */ |
cbbf8182 KZ |
621 | static void mig_throttle_guest_down(uint64_t bytes_dirty_period, |
622 | uint64_t bytes_dirty_threshold) | |
070afca2 JH |
623 | { |
624 | MigrationState *s = migrate_get_current(); | |
2594f56d | 625 | uint64_t pct_initial = s->parameters.cpu_throttle_initial; |
cbbf8182 KZ |
626 | uint64_t pct_increment = s->parameters.cpu_throttle_increment; |
627 | bool pct_tailslow = s->parameters.cpu_throttle_tailslow; | |
4cbc9c7f | 628 | int pct_max = s->parameters.max_cpu_throttle; |
070afca2 | 629 | |
cbbf8182 KZ |
630 | uint64_t throttle_now = cpu_throttle_get_percentage(); |
631 | uint64_t cpu_now, cpu_ideal, throttle_inc; | |
632 | ||
070afca2 JH |
633 | /* We have not started throttling yet. Let's start it. */ |
634 | if (!cpu_throttle_active()) { | |
635 | cpu_throttle_set(pct_initial); | |
636 | } else { | |
637 | /* Throttling already on, just increase the rate */ | |
cbbf8182 KZ |
638 | if (!pct_tailslow) { |
639 | throttle_inc = pct_increment; | |
640 | } else { | |
641 | /* Compute the ideal CPU percentage used by Guest, which may | |
642 | * make the dirty rate match the dirty rate threshold. */ | |
643 | cpu_now = 100 - throttle_now; | |
644 | cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / | |
645 | bytes_dirty_period); | |
646 | throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); | |
647 | } | |
648 | cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); | |
070afca2 JH |
649 | } |
650 | } | |
651 | ||
91fe9a8d RL |
652 | void mig_throttle_counter_reset(void) |
653 | { | |
654 | RAMState *rs = ram_state; | |
655 | ||
656 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
657 | rs->num_dirty_pages_period = 0; | |
658 | rs->bytes_xfer_prev = ram_counters.transferred; | |
659 | } | |
660 | ||
3d0684b2 JQ |
661 | /** |
662 | * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache | |
663 | * | |
6f37bb8b | 664 | * @rs: current RAM state |
3d0684b2 JQ |
665 | * @current_addr: address for the zero page |
666 | * | |
667 | * Update the xbzrle cache to reflect a page that's been sent as all 0. | |
56e93d26 JQ |
668 | * The important thing is that a stale (not-yet-0'd) page be replaced |
669 | * by the new data. | |
670 | * As a bonus, if the page wasn't in the cache it gets added so that | |
3d0684b2 | 671 | * when a small write is made into the 0'd page it gets XBZRLE sent. |
56e93d26 | 672 | */ |
6f37bb8b | 673 | static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) |
56e93d26 | 674 | { |
1a373522 | 675 | if (!rs->xbzrle_enabled) { |
56e93d26 JQ |
676 | return; |
677 | } | |
678 | ||
679 | /* We don't care if this fails to allocate a new cache page | |
680 | * as long as it updated an old one */ | |
c00e0928 | 681 | cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, |
9360447d | 682 | ram_counters.dirty_sync_count); |
56e93d26 JQ |
683 | } |
684 | ||
685 | #define ENCODING_FLAG_XBZRLE 0x1 | |
686 | ||
687 | /** | |
688 | * save_xbzrle_page: compress and send current page | |
689 | * | |
690 | * Returns: 1 means that we wrote the page | |
691 | * 0 means that page is identical to the one already sent | |
692 | * -1 means that xbzrle would be longer than normal | |
693 | * | |
5a987738 | 694 | * @rs: current RAM state |
3d0684b2 JQ |
695 | * @current_data: pointer to the address of the page contents |
696 | * @current_addr: addr of the page | |
56e93d26 JQ |
697 | * @block: block that contains the page we want to send |
698 | * @offset: offset inside the block for the page | |
56e93d26 | 699 | */ |
204b88b8 | 700 | static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, |
56e93d26 | 701 | ram_addr_t current_addr, RAMBlock *block, |
05931ec5 | 702 | ram_addr_t offset) |
56e93d26 JQ |
703 | { |
704 | int encoded_len = 0, bytes_xbzrle; | |
705 | uint8_t *prev_cached_page; | |
706 | ||
9360447d JQ |
707 | if (!cache_is_cached(XBZRLE.cache, current_addr, |
708 | ram_counters.dirty_sync_count)) { | |
709 | xbzrle_counters.cache_miss++; | |
05931ec5 | 710 | if (!rs->last_stage) { |
56e93d26 | 711 | if (cache_insert(XBZRLE.cache, current_addr, *current_data, |
9360447d | 712 | ram_counters.dirty_sync_count) == -1) { |
56e93d26 JQ |
713 | return -1; |
714 | } else { | |
715 | /* update *current_data when the page has been | |
716 | inserted into cache */ | |
717 | *current_data = get_cached_data(XBZRLE.cache, current_addr); | |
718 | } | |
719 | } | |
720 | return -1; | |
721 | } | |
722 | ||
e460a4b1 WW |
723 | /* |
724 | * Reaching here means the page has hit the xbzrle cache, no matter what | |
725 | * encoding result it is (normal encoding, overflow or skipping the page), | |
3a4452d8 | 726 | * count the page as encoded. This is used to calculate the encoding rate. |
e460a4b1 WW |
727 | * |
728 | * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, | |
729 | * 2nd page turns out to be skipped (i.e. no new bytes written to the | |
730 | * page), the overall encoding rate will be 8KB / 2KB = 4, which has the | |
731 | * skipped page included. In this way, the encoding rate can tell if the | |
732 | * guest page is good for xbzrle encoding. | |
733 | */ | |
734 | xbzrle_counters.pages++; | |
56e93d26 JQ |
735 | prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); |
736 | ||
737 | /* save current buffer into memory */ | |
738 | memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); | |
739 | ||
740 | /* XBZRLE encoding (if there is no overflow) */ | |
741 | encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, | |
742 | TARGET_PAGE_SIZE, XBZRLE.encoded_buf, | |
743 | TARGET_PAGE_SIZE); | |
ca353803 WY |
744 | |
745 | /* | |
746 | * Update the cache contents, so that it corresponds to the data | |
747 | * sent, in all cases except where we skip the page. | |
748 | */ | |
05931ec5 | 749 | if (!rs->last_stage && encoded_len != 0) { |
ca353803 WY |
750 | memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); |
751 | /* | |
752 | * In the case where we couldn't compress, ensure that the caller | |
753 | * sends the data from the cache, since the guest might have | |
754 | * changed the RAM since we copied it. | |
755 | */ | |
756 | *current_data = prev_cached_page; | |
757 | } | |
758 | ||
56e93d26 | 759 | if (encoded_len == 0) { |
55c4446b | 760 | trace_save_xbzrle_page_skipping(); |
56e93d26 JQ |
761 | return 0; |
762 | } else if (encoded_len == -1) { | |
55c4446b | 763 | trace_save_xbzrle_page_overflow(); |
9360447d | 764 | xbzrle_counters.overflow++; |
e460a4b1 | 765 | xbzrle_counters.bytes += TARGET_PAGE_SIZE; |
56e93d26 JQ |
766 | return -1; |
767 | } | |
768 | ||
56e93d26 | 769 | /* Send XBZRLE based compressed page */ |
2bf3aa85 | 770 | bytes_xbzrle = save_page_header(rs, rs->f, block, |
204b88b8 JQ |
771 | offset | RAM_SAVE_FLAG_XBZRLE); |
772 | qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); | |
773 | qemu_put_be16(rs->f, encoded_len); | |
774 | qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); | |
56e93d26 | 775 | bytes_xbzrle += encoded_len + 1 + 2; |
e460a4b1 WW |
776 | /* |
777 | * Like compressed_size (please see update_compress_thread_counts), | |
778 | * the xbzrle encoded bytes don't count the 8 byte header with | |
779 | * RAM_SAVE_FLAG_CONTINUE. | |
780 | */ | |
781 | xbzrle_counters.bytes += bytes_xbzrle - 8; | |
4c2d0f6d | 782 | ram_transferred_add(bytes_xbzrle); |
56e93d26 JQ |
783 | |
784 | return 1; | |
785 | } | |
786 | ||
3d0684b2 JQ |
787 | /** |
788 | * migration_bitmap_find_dirty: find the next dirty page from start | |
f3f491fc | 789 | * |
a5f7b1a6 | 790 | * Returns the page offset within memory region of the start of a dirty page |
3d0684b2 | 791 | * |
6f37bb8b | 792 | * @rs: current RAM state |
3d0684b2 | 793 | * @rb: RAMBlock where to search for dirty pages |
a935e30f | 794 | * @start: page where we start the search |
f3f491fc | 795 | */ |
56e93d26 | 796 | static inline |
a935e30f | 797 | unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, |
f20e2865 | 798 | unsigned long start) |
56e93d26 | 799 | { |
6b6712ef JQ |
800 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
801 | unsigned long *bitmap = rb->bmap; | |
56e93d26 | 802 | |
fbd162e6 | 803 | if (ramblock_is_ignored(rb)) { |
b895de50 CLG |
804 | return size; |
805 | } | |
806 | ||
1a373522 | 807 | return find_next_bit(bitmap, size, start); |
56e93d26 JQ |
808 | } |
809 | ||
1230a25f | 810 | static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, |
3143577d WW |
811 | unsigned long page) |
812 | { | |
813 | uint8_t shift; | |
814 | hwaddr size, start; | |
815 | ||
816 | if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { | |
817 | return; | |
818 | } | |
819 | ||
820 | shift = rb->clear_bmap_shift; | |
821 | /* | |
822 | * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this | |
823 | * can make things easier sometimes since then start address | |
824 | * of the small chunk will always be 64 pages aligned so the | |
825 | * bitmap will always be aligned to unsigned long. We should | |
826 | * even be able to remove this restriction but I'm simply | |
827 | * keeping it. | |
828 | */ | |
829 | assert(shift >= 6); | |
830 | ||
831 | size = 1ULL << (TARGET_PAGE_BITS + shift); | |
7648297d | 832 | start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); |
3143577d WW |
833 | trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); |
834 | memory_region_clear_dirty_bitmap(rb->mr, start, size); | |
835 | } | |
836 | ||
837 | static void | |
1230a25f | 838 | migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, |
3143577d WW |
839 | unsigned long start, |
840 | unsigned long npages) | |
841 | { | |
842 | unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; | |
843 | unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); | |
844 | unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); | |
845 | ||
846 | /* | |
847 | * Clear pages from start to start + npages - 1, so the end boundary is | |
848 | * exclusive. | |
849 | */ | |
850 | for (i = chunk_start; i < chunk_end; i += chunk_pages) { | |
1230a25f | 851 | migration_clear_memory_region_dirty_bitmap(rb, i); |
3143577d WW |
852 | } |
853 | } | |
854 | ||
a6a83cef RL |
855 | /* |
856 | * colo_bitmap_find_diry:find contiguous dirty pages from start | |
857 | * | |
858 | * Returns the page offset within memory region of the start of the contiguout | |
859 | * dirty page | |
860 | * | |
861 | * @rs: current RAM state | |
862 | * @rb: RAMBlock where to search for dirty pages | |
863 | * @start: page where we start the search | |
864 | * @num: the number of contiguous dirty pages | |
865 | */ | |
866 | static inline | |
867 | unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, | |
868 | unsigned long start, unsigned long *num) | |
869 | { | |
870 | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; | |
871 | unsigned long *bitmap = rb->bmap; | |
872 | unsigned long first, next; | |
873 | ||
874 | *num = 0; | |
875 | ||
876 | if (ramblock_is_ignored(rb)) { | |
877 | return size; | |
878 | } | |
879 | ||
880 | first = find_next_bit(bitmap, size, start); | |
881 | if (first >= size) { | |
882 | return first; | |
883 | } | |
884 | next = find_next_zero_bit(bitmap, size, first + 1); | |
885 | assert(next >= first); | |
886 | *num = next - first; | |
887 | return first; | |
888 | } | |
889 | ||
06b10688 | 890 | static inline bool migration_bitmap_clear_dirty(RAMState *rs, |
f20e2865 JQ |
891 | RAMBlock *rb, |
892 | unsigned long page) | |
a82d593b DDAG |
893 | { |
894 | bool ret; | |
a82d593b | 895 | |
002cad6b PX |
896 | /* |
897 | * Clear dirty bitmap if needed. This _must_ be called before we | |
898 | * send any of the page in the chunk because we need to make sure | |
899 | * we can capture further page content changes when we sync dirty | |
900 | * log the next time. So as long as we are going to send any of | |
901 | * the page in the chunk we clear the remote dirty bitmap for all. | |
902 | * Clearing it earlier won't be a problem, but too late will. | |
903 | */ | |
1230a25f | 904 | migration_clear_memory_region_dirty_bitmap(rb, page); |
002cad6b | 905 | |
6b6712ef | 906 | ret = test_and_clear_bit(page, rb->bmap); |
a82d593b | 907 | if (ret) { |
0d8ec885 | 908 | rs->migration_dirty_pages--; |
a82d593b | 909 | } |
386a907b | 910 | |
a82d593b DDAG |
911 | return ret; |
912 | } | |
913 | ||
be39b4cd DH |
914 | static void dirty_bitmap_clear_section(MemoryRegionSection *section, |
915 | void *opaque) | |
916 | { | |
917 | const hwaddr offset = section->offset_within_region; | |
918 | const hwaddr size = int128_get64(section->size); | |
919 | const unsigned long start = offset >> TARGET_PAGE_BITS; | |
920 | const unsigned long npages = size >> TARGET_PAGE_BITS; | |
921 | RAMBlock *rb = section->mr->ram_block; | |
922 | uint64_t *cleared_bits = opaque; | |
923 | ||
924 | /* | |
925 | * We don't grab ram_state->bitmap_mutex because we expect to run | |
926 | * only when starting migration or during postcopy recovery where | |
927 | * we don't have concurrent access. | |
928 | */ | |
929 | if (!migration_in_postcopy() && !migrate_background_snapshot()) { | |
930 | migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); | |
931 | } | |
932 | *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); | |
933 | bitmap_clear(rb->bmap, start, npages); | |
934 | } | |
935 | ||
936 | /* | |
937 | * Exclude all dirty pages from migration that fall into a discarded range as | |
938 | * managed by a RamDiscardManager responsible for the mapped memory region of | |
939 | * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. | |
940 | * | |
941 | * Discarded pages ("logically unplugged") have undefined content and must | |
942 | * not get migrated, because even reading these pages for migration might | |
943 | * result in undesired behavior. | |
944 | * | |
945 | * Returns the number of cleared bits in the RAMBlock dirty bitmap. | |
946 | * | |
947 | * Note: The result is only stable while migrating (precopy/postcopy). | |
948 | */ | |
949 | static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) | |
950 | { | |
951 | uint64_t cleared_bits = 0; | |
952 | ||
953 | if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { | |
954 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
955 | MemoryRegionSection section = { | |
956 | .mr = rb->mr, | |
957 | .offset_within_region = 0, | |
958 | .size = int128_make64(qemu_ram_get_used_length(rb)), | |
959 | }; | |
960 | ||
961 | ram_discard_manager_replay_discarded(rdm, §ion, | |
962 | dirty_bitmap_clear_section, | |
963 | &cleared_bits); | |
964 | } | |
965 | return cleared_bits; | |
966 | } | |
967 | ||
9470c5e0 DH |
968 | /* |
969 | * Check if a host-page aligned page falls into a discarded range as managed by | |
970 | * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. | |
971 | * | |
972 | * Note: The result is only stable while migrating (precopy/postcopy). | |
973 | */ | |
974 | bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) | |
975 | { | |
976 | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | |
977 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
978 | MemoryRegionSection section = { | |
979 | .mr = rb->mr, | |
980 | .offset_within_region = start, | |
981 | .size = int128_make64(qemu_ram_pagesize(rb)), | |
982 | }; | |
983 | ||
984 | return !ram_discard_manager_is_populated(rdm, §ion); | |
985 | } | |
986 | return false; | |
987 | } | |
988 | ||
267691b6 | 989 | /* Called with RCU critical section */ |
7a3e9571 | 990 | static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) |
56e93d26 | 991 | { |
fb613580 KZ |
992 | uint64_t new_dirty_pages = |
993 | cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); | |
994 | ||
995 | rs->migration_dirty_pages += new_dirty_pages; | |
996 | rs->num_dirty_pages_period += new_dirty_pages; | |
56e93d26 JQ |
997 | } |
998 | ||
3d0684b2 JQ |
999 | /** |
1000 | * ram_pagesize_summary: calculate all the pagesizes of a VM | |
1001 | * | |
1002 | * Returns a summary bitmap of the page sizes of all RAMBlocks | |
1003 | * | |
1004 | * For VMs with just normal pages this is equivalent to the host page | |
1005 | * size. If it's got some huge pages then it's the OR of all the | |
1006 | * different page sizes. | |
e8ca1db2 DDAG |
1007 | */ |
1008 | uint64_t ram_pagesize_summary(void) | |
1009 | { | |
1010 | RAMBlock *block; | |
1011 | uint64_t summary = 0; | |
1012 | ||
fbd162e6 | 1013 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
e8ca1db2 DDAG |
1014 | summary |= block->page_size; |
1015 | } | |
1016 | ||
1017 | return summary; | |
1018 | } | |
1019 | ||
aecbfe9c XG |
1020 | uint64_t ram_get_total_transferred_pages(void) |
1021 | { | |
1022 | return ram_counters.normal + ram_counters.duplicate + | |
1023 | compression_counters.pages + xbzrle_counters.pages; | |
1024 | } | |
1025 | ||
b734035b XG |
1026 | static void migration_update_rates(RAMState *rs, int64_t end_time) |
1027 | { | |
be8b02ed | 1028 | uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; |
76e03000 | 1029 | double compressed_size; |
b734035b XG |
1030 | |
1031 | /* calculate period counters */ | |
1032 | ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 | |
1033 | / (end_time - rs->time_last_bitmap_sync); | |
1034 | ||
be8b02ed | 1035 | if (!page_count) { |
b734035b XG |
1036 | return; |
1037 | } | |
1038 | ||
1039 | if (migrate_use_xbzrle()) { | |
e460a4b1 WW |
1040 | double encoded_size, unencoded_size; |
1041 | ||
b734035b | 1042 | xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - |
be8b02ed | 1043 | rs->xbzrle_cache_miss_prev) / page_count; |
b734035b | 1044 | rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; |
e460a4b1 WW |
1045 | unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * |
1046 | TARGET_PAGE_SIZE; | |
1047 | encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; | |
92271402 | 1048 | if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { |
e460a4b1 | 1049 | xbzrle_counters.encoding_rate = 0; |
e460a4b1 WW |
1050 | } else { |
1051 | xbzrle_counters.encoding_rate = unencoded_size / encoded_size; | |
1052 | } | |
1053 | rs->xbzrle_pages_prev = xbzrle_counters.pages; | |
1054 | rs->xbzrle_bytes_prev = xbzrle_counters.bytes; | |
b734035b | 1055 | } |
76e03000 XG |
1056 | |
1057 | if (migrate_use_compression()) { | |
1058 | compression_counters.busy_rate = (double)(compression_counters.busy - | |
1059 | rs->compress_thread_busy_prev) / page_count; | |
1060 | rs->compress_thread_busy_prev = compression_counters.busy; | |
1061 | ||
1062 | compressed_size = compression_counters.compressed_size - | |
1063 | rs->compressed_size_prev; | |
1064 | if (compressed_size) { | |
1065 | double uncompressed_size = (compression_counters.pages - | |
1066 | rs->compress_pages_prev) * TARGET_PAGE_SIZE; | |
1067 | ||
1068 | /* Compression-Ratio = Uncompressed-size / Compressed-size */ | |
1069 | compression_counters.compression_rate = | |
1070 | uncompressed_size / compressed_size; | |
1071 | ||
1072 | rs->compress_pages_prev = compression_counters.pages; | |
1073 | rs->compressed_size_prev = compression_counters.compressed_size; | |
1074 | } | |
1075 | } | |
b734035b XG |
1076 | } |
1077 | ||
dc14a470 KZ |
1078 | static void migration_trigger_throttle(RAMState *rs) |
1079 | { | |
1080 | MigrationState *s = migrate_get_current(); | |
1081 | uint64_t threshold = s->parameters.throttle_trigger_threshold; | |
1082 | ||
1083 | uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev; | |
1084 | uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; | |
1085 | uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; | |
1086 | ||
1087 | /* During block migration the auto-converge logic incorrectly detects | |
1088 | * that ram migration makes no progress. Avoid this by disabling the | |
1089 | * throttling logic during the bulk phase of block migration. */ | |
1090 | if (migrate_auto_converge() && !blk_mig_bulk_active()) { | |
1091 | /* The following detection logic can be refined later. For now: | |
1092 | Check to see if the ratio between dirtied bytes and the approx. | |
1093 | amount of bytes that just got transferred since the last time | |
1094 | we were in this routine reaches the threshold. If that happens | |
1095 | twice, start or increase throttling. */ | |
1096 | ||
1097 | if ((bytes_dirty_period > bytes_dirty_threshold) && | |
1098 | (++rs->dirty_rate_high_cnt >= 2)) { | |
1099 | trace_migration_throttle(); | |
1100 | rs->dirty_rate_high_cnt = 0; | |
cbbf8182 KZ |
1101 | mig_throttle_guest_down(bytes_dirty_period, |
1102 | bytes_dirty_threshold); | |
dc14a470 KZ |
1103 | } |
1104 | } | |
1105 | } | |
1106 | ||
8d820d6f | 1107 | static void migration_bitmap_sync(RAMState *rs) |
56e93d26 JQ |
1108 | { |
1109 | RAMBlock *block; | |
56e93d26 | 1110 | int64_t end_time; |
56e93d26 | 1111 | |
9360447d | 1112 | ram_counters.dirty_sync_count++; |
56e93d26 | 1113 | |
f664da80 JQ |
1114 | if (!rs->time_last_bitmap_sync) { |
1115 | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | |
56e93d26 JQ |
1116 | } |
1117 | ||
1118 | trace_migration_bitmap_sync_start(); | |
9c1f8f44 | 1119 | memory_global_dirty_log_sync(); |
56e93d26 | 1120 | |
108cfae0 | 1121 | qemu_mutex_lock(&rs->bitmap_mutex); |
89ac5a1d DDAG |
1122 | WITH_RCU_READ_LOCK_GUARD() { |
1123 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
1124 | ramblock_sync_dirty_bitmap(rs, block); | |
1125 | } | |
1126 | ram_counters.remaining = ram_bytes_remaining(); | |
56e93d26 | 1127 | } |
108cfae0 | 1128 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 | 1129 | |
9458a9a1 | 1130 | memory_global_after_dirty_log_sync(); |
a66cd90c | 1131 | trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); |
1ffb5dfd | 1132 | |
56e93d26 JQ |
1133 | end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
1134 | ||
1135 | /* more than 1 second = 1000 millisecons */ | |
f664da80 | 1136 | if (end_time > rs->time_last_bitmap_sync + 1000) { |
dc14a470 | 1137 | migration_trigger_throttle(rs); |
070afca2 | 1138 | |
b734035b XG |
1139 | migration_update_rates(rs, end_time); |
1140 | ||
be8b02ed | 1141 | rs->target_page_count_prev = rs->target_page_count; |
d693c6f1 FF |
1142 | |
1143 | /* reset period counters */ | |
f664da80 | 1144 | rs->time_last_bitmap_sync = end_time; |
a66cd90c | 1145 | rs->num_dirty_pages_period = 0; |
dc14a470 | 1146 | rs->bytes_xfer_prev = ram_counters.transferred; |
56e93d26 | 1147 | } |
4addcd4f | 1148 | if (migrate_use_events()) { |
3ab72385 | 1149 | qapi_event_send_migration_pass(ram_counters.dirty_sync_count); |
4addcd4f | 1150 | } |
56e93d26 JQ |
1151 | } |
1152 | ||
bd227060 WW |
1153 | static void migration_bitmap_sync_precopy(RAMState *rs) |
1154 | { | |
1155 | Error *local_err = NULL; | |
1156 | ||
1157 | /* | |
1158 | * The current notifier usage is just an optimization to migration, so we | |
1159 | * don't stop the normal migration process in the error case. | |
1160 | */ | |
1161 | if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { | |
1162 | error_report_err(local_err); | |
b4a1733c | 1163 | local_err = NULL; |
bd227060 WW |
1164 | } |
1165 | ||
1166 | migration_bitmap_sync(rs); | |
1167 | ||
1168 | if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { | |
1169 | error_report_err(local_err); | |
1170 | } | |
1171 | } | |
1172 | ||
47fe16ff JQ |
1173 | static void ram_release_page(const char *rbname, uint64_t offset) |
1174 | { | |
1175 | if (!migrate_release_ram() || !migration_in_postcopy()) { | |
1176 | return; | |
1177 | } | |
1178 | ||
1179 | ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); | |
1180 | } | |
1181 | ||
6c97ec5f XG |
1182 | /** |
1183 | * save_zero_page_to_file: send the zero page to the file | |
1184 | * | |
1185 | * Returns the size of data written to the file, 0 means the page is not | |
1186 | * a zero page | |
1187 | * | |
1188 | * @rs: current RAM state | |
1189 | * @file: the file where the data is saved | |
1190 | * @block: block that contains the page we want to send | |
1191 | * @offset: offset inside the block for the page | |
1192 | */ | |
1193 | static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, | |
1194 | RAMBlock *block, ram_addr_t offset) | |
1195 | { | |
1196 | uint8_t *p = block->host + offset; | |
1197 | int len = 0; | |
1198 | ||
bad452a7 | 1199 | if (buffer_is_zero(p, TARGET_PAGE_SIZE)) { |
6c97ec5f XG |
1200 | len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); |
1201 | qemu_put_byte(file, 0); | |
1202 | len += 1; | |
47fe16ff | 1203 | ram_release_page(block->idstr, offset); |
6c97ec5f XG |
1204 | } |
1205 | return len; | |
1206 | } | |
1207 | ||
56e93d26 | 1208 | /** |
3d0684b2 | 1209 | * save_zero_page: send the zero page to the stream |
56e93d26 | 1210 | * |
3d0684b2 | 1211 | * Returns the number of pages written. |
56e93d26 | 1212 | * |
f7ccd61b | 1213 | * @rs: current RAM state |
56e93d26 JQ |
1214 | * @block: block that contains the page we want to send |
1215 | * @offset: offset inside the block for the page | |
56e93d26 | 1216 | */ |
7faccdc3 | 1217 | static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) |
56e93d26 | 1218 | { |
6c97ec5f | 1219 | int len = save_zero_page_to_file(rs, rs->f, block, offset); |
56e93d26 | 1220 | |
6c97ec5f | 1221 | if (len) { |
9360447d | 1222 | ram_counters.duplicate++; |
4c2d0f6d | 1223 | ram_transferred_add(len); |
6c97ec5f | 1224 | return 1; |
56e93d26 | 1225 | } |
6c97ec5f | 1226 | return -1; |
56e93d26 JQ |
1227 | } |
1228 | ||
059ff0fb XG |
1229 | /* |
1230 | * @pages: the number of pages written by the control path, | |
1231 | * < 0 - error | |
1232 | * > 0 - number of pages written | |
1233 | * | |
1234 | * Return true if the pages has been saved, otherwise false is returned. | |
1235 | */ | |
1236 | static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, | |
1237 | int *pages) | |
1238 | { | |
1239 | uint64_t bytes_xmit = 0; | |
1240 | int ret; | |
1241 | ||
1242 | *pages = -1; | |
1243 | ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, | |
1244 | &bytes_xmit); | |
1245 | if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { | |
1246 | return false; | |
1247 | } | |
1248 | ||
1249 | if (bytes_xmit) { | |
4c2d0f6d | 1250 | ram_transferred_add(bytes_xmit); |
059ff0fb XG |
1251 | *pages = 1; |
1252 | } | |
1253 | ||
1254 | if (ret == RAM_SAVE_CONTROL_DELAYED) { | |
1255 | return true; | |
1256 | } | |
1257 | ||
1258 | if (bytes_xmit > 0) { | |
1259 | ram_counters.normal++; | |
1260 | } else if (bytes_xmit == 0) { | |
1261 | ram_counters.duplicate++; | |
1262 | } | |
1263 | ||
1264 | return true; | |
1265 | } | |
1266 | ||
65dacaa0 XG |
1267 | /* |
1268 | * directly send the page to the stream | |
1269 | * | |
1270 | * Returns the number of pages written. | |
1271 | * | |
1272 | * @rs: current RAM state | |
1273 | * @block: block that contains the page we want to send | |
1274 | * @offset: offset inside the block for the page | |
1275 | * @buf: the page to be sent | |
1276 | * @async: send to page asyncly | |
1277 | */ | |
1278 | static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, | |
1279 | uint8_t *buf, bool async) | |
1280 | { | |
4c2d0f6d DE |
1281 | ram_transferred_add(save_page_header(rs, rs->f, block, |
1282 | offset | RAM_SAVE_FLAG_PAGE)); | |
65dacaa0 XG |
1283 | if (async) { |
1284 | qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, | |
1285 | migrate_release_ram() & | |
1286 | migration_in_postcopy()); | |
1287 | } else { | |
1288 | qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); | |
1289 | } | |
4c2d0f6d | 1290 | ram_transferred_add(TARGET_PAGE_SIZE); |
65dacaa0 XG |
1291 | ram_counters.normal++; |
1292 | return 1; | |
1293 | } | |
1294 | ||
56e93d26 | 1295 | /** |
3d0684b2 | 1296 | * ram_save_page: send the given page to the stream |
56e93d26 | 1297 | * |
3d0684b2 | 1298 | * Returns the number of pages written. |
3fd3c4b3 DDAG |
1299 | * < 0 - error |
1300 | * >=0 - Number of pages written - this might legally be 0 | |
1301 | * if xbzrle noticed the page was the same. | |
56e93d26 | 1302 | * |
6f37bb8b | 1303 | * @rs: current RAM state |
56e93d26 JQ |
1304 | * @block: block that contains the page we want to send |
1305 | * @offset: offset inside the block for the page | |
56e93d26 | 1306 | */ |
05931ec5 | 1307 | static int ram_save_page(RAMState *rs, PageSearchStatus *pss) |
56e93d26 JQ |
1308 | { |
1309 | int pages = -1; | |
56e93d26 | 1310 | uint8_t *p; |
56e93d26 | 1311 | bool send_async = true; |
a08f6890 | 1312 | RAMBlock *block = pss->block; |
8bba004c | 1313 | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
059ff0fb | 1314 | ram_addr_t current_addr = block->offset + offset; |
56e93d26 | 1315 | |
2f68e399 | 1316 | p = block->host + offset; |
1db9d8e5 | 1317 | trace_ram_save_page(block->idstr, (uint64_t)offset, p); |
56e93d26 | 1318 | |
56e93d26 | 1319 | XBZRLE_cache_lock(); |
1a373522 | 1320 | if (rs->xbzrle_enabled && !migration_in_postcopy()) { |
059ff0fb | 1321 | pages = save_xbzrle_page(rs, &p, current_addr, block, |
05931ec5 JQ |
1322 | offset); |
1323 | if (!rs->last_stage) { | |
059ff0fb XG |
1324 | /* Can't send this cached data async, since the cache page |
1325 | * might get updated before it gets to the wire | |
56e93d26 | 1326 | */ |
059ff0fb | 1327 | send_async = false; |
56e93d26 JQ |
1328 | } |
1329 | } | |
1330 | ||
1331 | /* XBZRLE overflow or normal page */ | |
1332 | if (pages == -1) { | |
65dacaa0 | 1333 | pages = save_normal_page(rs, block, offset, p, send_async); |
56e93d26 JQ |
1334 | } |
1335 | ||
1336 | XBZRLE_cache_unlock(); | |
1337 | ||
1338 | return pages; | |
1339 | } | |
1340 | ||
b9ee2f7d JQ |
1341 | static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, |
1342 | ram_addr_t offset) | |
1343 | { | |
67a4c891 | 1344 | if (multifd_queue_page(rs->f, block, offset) < 0) { |
713f762a IR |
1345 | return -1; |
1346 | } | |
b9ee2f7d JQ |
1347 | ram_counters.normal++; |
1348 | ||
1349 | return 1; | |
1350 | } | |
1351 | ||
5e5fdcff | 1352 | static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
6ef3771c | 1353 | ram_addr_t offset, uint8_t *source_buf) |
56e93d26 | 1354 | { |
53518d94 | 1355 | RAMState *rs = ram_state; |
20d549cb | 1356 | uint8_t *p = block->host + offset; |
6ef3771c | 1357 | int ret; |
56e93d26 | 1358 | |
5e5fdcff | 1359 | if (save_zero_page_to_file(rs, f, block, offset)) { |
e7f2e190 | 1360 | return true; |
5e5fdcff XG |
1361 | } |
1362 | ||
6ef3771c | 1363 | save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); |
34ab9e97 XG |
1364 | |
1365 | /* | |
1366 | * copy it to a internal buffer to avoid it being modified by VM | |
1367 | * so that we can catch up the error during compression and | |
1368 | * decompression | |
1369 | */ | |
1370 | memcpy(source_buf, p, TARGET_PAGE_SIZE); | |
6ef3771c XG |
1371 | ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); |
1372 | if (ret < 0) { | |
1373 | qemu_file_set_error(migrate_get_current()->to_dst_file, ret); | |
b3be2896 | 1374 | error_report("compressed data failed!"); |
b3be2896 | 1375 | } |
e7f2e190 | 1376 | return false; |
5e5fdcff XG |
1377 | } |
1378 | ||
1379 | static void | |
1380 | update_compress_thread_counts(const CompressParam *param, int bytes_xmit) | |
1381 | { | |
4c2d0f6d | 1382 | ram_transferred_add(bytes_xmit); |
76e03000 | 1383 | |
5e5fdcff XG |
1384 | if (param->zero_page) { |
1385 | ram_counters.duplicate++; | |
76e03000 | 1386 | return; |
5e5fdcff | 1387 | } |
76e03000 XG |
1388 | |
1389 | /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ | |
1390 | compression_counters.compressed_size += bytes_xmit - 8; | |
1391 | compression_counters.pages++; | |
56e93d26 JQ |
1392 | } |
1393 | ||
32b05495 XG |
1394 | static bool save_page_use_compression(RAMState *rs); |
1395 | ||
ce25d337 | 1396 | static void flush_compressed_data(RAMState *rs) |
56e93d26 JQ |
1397 | { |
1398 | int idx, len, thread_count; | |
1399 | ||
32b05495 | 1400 | if (!save_page_use_compression(rs)) { |
56e93d26 JQ |
1401 | return; |
1402 | } | |
1403 | thread_count = migrate_compress_threads(); | |
a7a9a88f | 1404 | |
0d9f9a5c | 1405 | qemu_mutex_lock(&comp_done_lock); |
56e93d26 | 1406 | for (idx = 0; idx < thread_count; idx++) { |
a7a9a88f | 1407 | while (!comp_param[idx].done) { |
0d9f9a5c | 1408 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
56e93d26 | 1409 | } |
a7a9a88f | 1410 | } |
0d9f9a5c | 1411 | qemu_mutex_unlock(&comp_done_lock); |
a7a9a88f LL |
1412 | |
1413 | for (idx = 0; idx < thread_count; idx++) { | |
1414 | qemu_mutex_lock(&comp_param[idx].mutex); | |
90e56fb4 | 1415 | if (!comp_param[idx].quit) { |
ce25d337 | 1416 | len = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
5e5fdcff XG |
1417 | /* |
1418 | * it's safe to fetch zero_page without holding comp_done_lock | |
1419 | * as there is no further request submitted to the thread, | |
1420 | * i.e, the thread should be waiting for a request at this point. | |
1421 | */ | |
1422 | update_compress_thread_counts(&comp_param[idx], len); | |
56e93d26 | 1423 | } |
a7a9a88f | 1424 | qemu_mutex_unlock(&comp_param[idx].mutex); |
56e93d26 JQ |
1425 | } |
1426 | } | |
1427 | ||
1428 | static inline void set_compress_params(CompressParam *param, RAMBlock *block, | |
1429 | ram_addr_t offset) | |
1430 | { | |
1431 | param->block = block; | |
1432 | param->offset = offset; | |
1433 | } | |
1434 | ||
ce25d337 JQ |
1435 | static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, |
1436 | ram_addr_t offset) | |
56e93d26 JQ |
1437 | { |
1438 | int idx, thread_count, bytes_xmit = -1, pages = -1; | |
1d58872a | 1439 | bool wait = migrate_compress_wait_thread(); |
56e93d26 JQ |
1440 | |
1441 | thread_count = migrate_compress_threads(); | |
0d9f9a5c | 1442 | qemu_mutex_lock(&comp_done_lock); |
1d58872a XG |
1443 | retry: |
1444 | for (idx = 0; idx < thread_count; idx++) { | |
1445 | if (comp_param[idx].done) { | |
1446 | comp_param[idx].done = false; | |
1447 | bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); | |
1448 | qemu_mutex_lock(&comp_param[idx].mutex); | |
1449 | set_compress_params(&comp_param[idx], block, offset); | |
1450 | qemu_cond_signal(&comp_param[idx].cond); | |
1451 | qemu_mutex_unlock(&comp_param[idx].mutex); | |
1452 | pages = 1; | |
5e5fdcff | 1453 | update_compress_thread_counts(&comp_param[idx], bytes_xmit); |
56e93d26 | 1454 | break; |
56e93d26 JQ |
1455 | } |
1456 | } | |
1d58872a XG |
1457 | |
1458 | /* | |
1459 | * wait for the free thread if the user specifies 'compress-wait-thread', | |
1460 | * otherwise we will post the page out in the main thread as normal page. | |
1461 | */ | |
1462 | if (pages < 0 && wait) { | |
1463 | qemu_cond_wait(&comp_done_cond, &comp_done_lock); | |
1464 | goto retry; | |
1465 | } | |
0d9f9a5c | 1466 | qemu_mutex_unlock(&comp_done_lock); |
56e93d26 JQ |
1467 | |
1468 | return pages; | |
1469 | } | |
1470 | ||
3d0684b2 JQ |
1471 | /** |
1472 | * find_dirty_block: find the next dirty page and update any state | |
1473 | * associated with the search process. | |
b9e60928 | 1474 | * |
a5f7b1a6 | 1475 | * Returns true if a page is found |
b9e60928 | 1476 | * |
6f37bb8b | 1477 | * @rs: current RAM state |
3d0684b2 JQ |
1478 | * @pss: data about the state of the current dirty page scan |
1479 | * @again: set to false if the search has scanned the whole of RAM | |
b9e60928 | 1480 | */ |
f20e2865 | 1481 | static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) |
b9e60928 | 1482 | { |
f20e2865 | 1483 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
6f37bb8b | 1484 | if (pss->complete_round && pss->block == rs->last_seen_block && |
a935e30f | 1485 | pss->page >= rs->last_page) { |
b9e60928 DDAG |
1486 | /* |
1487 | * We've been once around the RAM and haven't found anything. | |
1488 | * Give up. | |
1489 | */ | |
1490 | *again = false; | |
1491 | return false; | |
1492 | } | |
542147f4 DH |
1493 | if (!offset_in_ramblock(pss->block, |
1494 | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { | |
b9e60928 | 1495 | /* Didn't find anything in this RAM Block */ |
a935e30f | 1496 | pss->page = 0; |
b9e60928 DDAG |
1497 | pss->block = QLIST_NEXT_RCU(pss->block, next); |
1498 | if (!pss->block) { | |
48df9d80 XG |
1499 | /* |
1500 | * If memory migration starts over, we will meet a dirtied page | |
1501 | * which may still exists in compression threads's ring, so we | |
1502 | * should flush the compressed data to make sure the new page | |
1503 | * is not overwritten by the old one in the destination. | |
1504 | * | |
1505 | * Also If xbzrle is on, stop using the data compression at this | |
1506 | * point. In theory, xbzrle can do better than compression. | |
1507 | */ | |
1508 | flush_compressed_data(rs); | |
1509 | ||
b9e60928 DDAG |
1510 | /* Hit the end of the list */ |
1511 | pss->block = QLIST_FIRST_RCU(&ram_list.blocks); | |
1512 | /* Flag that we've looped */ | |
1513 | pss->complete_round = true; | |
1a373522 DH |
1514 | /* After the first round, enable XBZRLE. */ |
1515 | if (migrate_use_xbzrle()) { | |
1516 | rs->xbzrle_enabled = true; | |
1517 | } | |
b9e60928 DDAG |
1518 | } |
1519 | /* Didn't find anything this time, but try again on the new block */ | |
1520 | *again = true; | |
1521 | return false; | |
1522 | } else { | |
1523 | /* Can go around again, but... */ | |
1524 | *again = true; | |
1525 | /* We've found something so probably don't need to */ | |
1526 | return true; | |
1527 | } | |
1528 | } | |
1529 | ||
3d0684b2 JQ |
1530 | /** |
1531 | * unqueue_page: gets a page of the queue | |
1532 | * | |
a82d593b | 1533 | * Helper for 'get_queued_page' - gets a page off the queue |
a82d593b | 1534 | * |
3d0684b2 JQ |
1535 | * Returns the block of the page (or NULL if none available) |
1536 | * | |
ec481c6c | 1537 | * @rs: current RAM state |
3d0684b2 | 1538 | * @offset: used to return the offset within the RAMBlock |
a82d593b | 1539 | */ |
f20e2865 | 1540 | static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) |
a82d593b DDAG |
1541 | { |
1542 | RAMBlock *block = NULL; | |
1543 | ||
ae526e32 XG |
1544 | if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { |
1545 | return NULL; | |
1546 | } | |
1547 | ||
6e8a355d | 1548 | QEMU_LOCK_GUARD(&rs->src_page_req_mutex); |
ec481c6c JQ |
1549 | if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { |
1550 | struct RAMSrcPageRequest *entry = | |
1551 | QSIMPLEQ_FIRST(&rs->src_page_requests); | |
a82d593b DDAG |
1552 | block = entry->rb; |
1553 | *offset = entry->offset; | |
a82d593b DDAG |
1554 | |
1555 | if (entry->len > TARGET_PAGE_SIZE) { | |
1556 | entry->len -= TARGET_PAGE_SIZE; | |
1557 | entry->offset += TARGET_PAGE_SIZE; | |
1558 | } else { | |
1559 | memory_region_unref(block->mr); | |
ec481c6c | 1560 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
a82d593b | 1561 | g_free(entry); |
e03a34f8 | 1562 | migration_consume_urgent_request(); |
a82d593b DDAG |
1563 | } |
1564 | } | |
a82d593b DDAG |
1565 | |
1566 | return block; | |
1567 | } | |
1568 | ||
278e2f55 AG |
1569 | #if defined(__linux__) |
1570 | /** | |
1571 | * poll_fault_page: try to get next UFFD write fault page and, if pending fault | |
1572 | * is found, return RAM block pointer and page offset | |
1573 | * | |
1574 | * Returns pointer to the RAMBlock containing faulting page, | |
1575 | * NULL if no write faults are pending | |
1576 | * | |
1577 | * @rs: current RAM state | |
1578 | * @offset: page offset from the beginning of the block | |
1579 | */ | |
1580 | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | |
1581 | { | |
1582 | struct uffd_msg uffd_msg; | |
1583 | void *page_address; | |
82ea3e3b | 1584 | RAMBlock *block; |
278e2f55 AG |
1585 | int res; |
1586 | ||
1587 | if (!migrate_background_snapshot()) { | |
1588 | return NULL; | |
1589 | } | |
1590 | ||
1591 | res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); | |
1592 | if (res <= 0) { | |
1593 | return NULL; | |
1594 | } | |
1595 | ||
1596 | page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; | |
82ea3e3b AG |
1597 | block = qemu_ram_block_from_host(page_address, false, offset); |
1598 | assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); | |
1599 | return block; | |
278e2f55 AG |
1600 | } |
1601 | ||
1602 | /** | |
1603 | * ram_save_release_protection: release UFFD write protection after | |
1604 | * a range of pages has been saved | |
1605 | * | |
1606 | * @rs: current RAM state | |
1607 | * @pss: page-search-status structure | |
1608 | * @start_page: index of the first page in the range relative to pss->block | |
1609 | * | |
1610 | * Returns 0 on success, negative value in case of an error | |
1611 | */ | |
1612 | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | |
1613 | unsigned long start_page) | |
1614 | { | |
1615 | int res = 0; | |
1616 | ||
1617 | /* Check if page is from UFFD-managed region. */ | |
1618 | if (pss->block->flags & RAM_UF_WRITEPROTECT) { | |
1619 | void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); | |
258f5c98 | 1620 | uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; |
278e2f55 AG |
1621 | |
1622 | /* Flush async buffers before un-protect. */ | |
1623 | qemu_fflush(rs->f); | |
1624 | /* Un-protect memory range. */ | |
1625 | res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, | |
1626 | false, false); | |
1627 | } | |
1628 | ||
1629 | return res; | |
1630 | } | |
1631 | ||
1632 | /* ram_write_tracking_available: check if kernel supports required UFFD features | |
1633 | * | |
1634 | * Returns true if supports, false otherwise | |
1635 | */ | |
1636 | bool ram_write_tracking_available(void) | |
1637 | { | |
1638 | uint64_t uffd_features; | |
1639 | int res; | |
1640 | ||
1641 | res = uffd_query_features(&uffd_features); | |
1642 | return (res == 0 && | |
1643 | (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); | |
1644 | } | |
1645 | ||
1646 | /* ram_write_tracking_compatible: check if guest configuration is | |
1647 | * compatible with 'write-tracking' | |
1648 | * | |
1649 | * Returns true if compatible, false otherwise | |
1650 | */ | |
1651 | bool ram_write_tracking_compatible(void) | |
1652 | { | |
1653 | const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); | |
1654 | int uffd_fd; | |
82ea3e3b | 1655 | RAMBlock *block; |
278e2f55 AG |
1656 | bool ret = false; |
1657 | ||
1658 | /* Open UFFD file descriptor */ | |
1659 | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); | |
1660 | if (uffd_fd < 0) { | |
1661 | return false; | |
1662 | } | |
1663 | ||
1664 | RCU_READ_LOCK_GUARD(); | |
1665 | ||
82ea3e3b | 1666 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
278e2f55 AG |
1667 | uint64_t uffd_ioctls; |
1668 | ||
1669 | /* Nothing to do with read-only and MMIO-writable regions */ | |
82ea3e3b | 1670 | if (block->mr->readonly || block->mr->rom_device) { |
278e2f55 AG |
1671 | continue; |
1672 | } | |
1673 | /* Try to register block memory via UFFD-IO to track writes */ | |
82ea3e3b | 1674 | if (uffd_register_memory(uffd_fd, block->host, block->max_length, |
278e2f55 AG |
1675 | UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { |
1676 | goto out; | |
1677 | } | |
1678 | if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { | |
1679 | goto out; | |
1680 | } | |
1681 | } | |
1682 | ret = true; | |
1683 | ||
1684 | out: | |
1685 | uffd_close_fd(uffd_fd); | |
1686 | return ret; | |
1687 | } | |
1688 | ||
f7b9dcfb DH |
1689 | static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, |
1690 | ram_addr_t size) | |
1691 | { | |
1692 | /* | |
1693 | * We read one byte of each page; this will preallocate page tables if | |
1694 | * required and populate the shared zeropage on MAP_PRIVATE anonymous memory | |
1695 | * where no page was populated yet. This might require adaption when | |
1696 | * supporting other mappings, like shmem. | |
1697 | */ | |
1698 | for (; offset < size; offset += block->page_size) { | |
1699 | char tmp = *((char *)block->host + offset); | |
1700 | ||
1701 | /* Don't optimize the read out */ | |
1702 | asm volatile("" : "+r" (tmp)); | |
1703 | } | |
1704 | } | |
1705 | ||
6fee3a1f DH |
1706 | static inline int populate_read_section(MemoryRegionSection *section, |
1707 | void *opaque) | |
1708 | { | |
1709 | const hwaddr size = int128_get64(section->size); | |
1710 | hwaddr offset = section->offset_within_region; | |
1711 | RAMBlock *block = section->mr->ram_block; | |
1712 | ||
1713 | populate_read_range(block, offset, size); | |
1714 | return 0; | |
1715 | } | |
1716 | ||
eeccb99c | 1717 | /* |
f7b9dcfb DH |
1718 | * ram_block_populate_read: preallocate page tables and populate pages in the |
1719 | * RAM block by reading a byte of each page. | |
eeccb99c AG |
1720 | * |
1721 | * Since it's solely used for userfault_fd WP feature, here we just | |
1722 | * hardcode page size to qemu_real_host_page_size. | |
1723 | * | |
82ea3e3b | 1724 | * @block: RAM block to populate |
eeccb99c | 1725 | */ |
6fee3a1f | 1726 | static void ram_block_populate_read(RAMBlock *rb) |
eeccb99c | 1727 | { |
6fee3a1f DH |
1728 | /* |
1729 | * Skip populating all pages that fall into a discarded range as managed by | |
1730 | * a RamDiscardManager responsible for the mapped memory region of the | |
1731 | * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock | |
1732 | * must not get populated automatically. We don't have to track | |
1733 | * modifications via userfaultfd WP reliably, because these pages will | |
1734 | * not be part of the migration stream either way -- see | |
1735 | * ramblock_dirty_bitmap_exclude_discarded_pages(). | |
1736 | * | |
1737 | * Note: The result is only stable while migrating (precopy/postcopy). | |
1738 | */ | |
1739 | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | |
1740 | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | |
1741 | MemoryRegionSection section = { | |
1742 | .mr = rb->mr, | |
1743 | .offset_within_region = 0, | |
1744 | .size = rb->mr->size, | |
1745 | }; | |
1746 | ||
1747 | ram_discard_manager_replay_populated(rdm, §ion, | |
1748 | populate_read_section, NULL); | |
1749 | } else { | |
1750 | populate_read_range(rb, 0, rb->used_length); | |
1751 | } | |
eeccb99c AG |
1752 | } |
1753 | ||
1754 | /* | |
1755 | * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking | |
1756 | */ | |
1757 | void ram_write_tracking_prepare(void) | |
1758 | { | |
82ea3e3b | 1759 | RAMBlock *block; |
eeccb99c AG |
1760 | |
1761 | RCU_READ_LOCK_GUARD(); | |
1762 | ||
82ea3e3b | 1763 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
eeccb99c | 1764 | /* Nothing to do with read-only and MMIO-writable regions */ |
82ea3e3b | 1765 | if (block->mr->readonly || block->mr->rom_device) { |
eeccb99c AG |
1766 | continue; |
1767 | } | |
1768 | ||
1769 | /* | |
1770 | * Populate pages of the RAM block before enabling userfault_fd | |
1771 | * write protection. | |
1772 | * | |
1773 | * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with | |
1774 | * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip | |
1775 | * pages with pte_none() entries in page table. | |
1776 | */ | |
f7b9dcfb | 1777 | ram_block_populate_read(block); |
eeccb99c AG |
1778 | } |
1779 | } | |
1780 | ||
278e2f55 AG |
1781 | /* |
1782 | * ram_write_tracking_start: start UFFD-WP memory tracking | |
1783 | * | |
1784 | * Returns 0 for success or negative value in case of error | |
1785 | */ | |
1786 | int ram_write_tracking_start(void) | |
1787 | { | |
1788 | int uffd_fd; | |
1789 | RAMState *rs = ram_state; | |
82ea3e3b | 1790 | RAMBlock *block; |
278e2f55 AG |
1791 | |
1792 | /* Open UFFD file descriptor */ | |
1793 | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); | |
1794 | if (uffd_fd < 0) { | |
1795 | return uffd_fd; | |
1796 | } | |
1797 | rs->uffdio_fd = uffd_fd; | |
1798 | ||
1799 | RCU_READ_LOCK_GUARD(); | |
1800 | ||
82ea3e3b | 1801 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
278e2f55 | 1802 | /* Nothing to do with read-only and MMIO-writable regions */ |
82ea3e3b | 1803 | if (block->mr->readonly || block->mr->rom_device) { |
278e2f55 AG |
1804 | continue; |
1805 | } | |
1806 | ||
1807 | /* Register block memory with UFFD to track writes */ | |
82ea3e3b AG |
1808 | if (uffd_register_memory(rs->uffdio_fd, block->host, |
1809 | block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { | |
278e2f55 AG |
1810 | goto fail; |
1811 | } | |
1812 | /* Apply UFFD write protection to the block memory range */ | |
82ea3e3b AG |
1813 | if (uffd_change_protection(rs->uffdio_fd, block->host, |
1814 | block->max_length, true, false)) { | |
278e2f55 AG |
1815 | goto fail; |
1816 | } | |
82ea3e3b AG |
1817 | block->flags |= RAM_UF_WRITEPROTECT; |
1818 | memory_region_ref(block->mr); | |
278e2f55 | 1819 | |
82ea3e3b AG |
1820 | trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, |
1821 | block->host, block->max_length); | |
278e2f55 AG |
1822 | } |
1823 | ||
1824 | return 0; | |
1825 | ||
1826 | fail: | |
1827 | error_report("ram_write_tracking_start() failed: restoring initial memory state"); | |
1828 | ||
82ea3e3b AG |
1829 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
1830 | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | |
278e2f55 AG |
1831 | continue; |
1832 | } | |
1833 | /* | |
1834 | * In case some memory block failed to be write-protected | |
1835 | * remove protection and unregister all succeeded RAM blocks | |
1836 | */ | |
82ea3e3b AG |
1837 | uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, |
1838 | false, false); | |
1839 | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | |
278e2f55 | 1840 | /* Cleanup flags and remove reference */ |
82ea3e3b AG |
1841 | block->flags &= ~RAM_UF_WRITEPROTECT; |
1842 | memory_region_unref(block->mr); | |
278e2f55 AG |
1843 | } |
1844 | ||
1845 | uffd_close_fd(uffd_fd); | |
1846 | rs->uffdio_fd = -1; | |
1847 | return -1; | |
1848 | } | |
1849 | ||
1850 | /** | |
1851 | * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection | |
1852 | */ | |
1853 | void ram_write_tracking_stop(void) | |
1854 | { | |
1855 | RAMState *rs = ram_state; | |
82ea3e3b | 1856 | RAMBlock *block; |
278e2f55 AG |
1857 | |
1858 | RCU_READ_LOCK_GUARD(); | |
1859 | ||
82ea3e3b AG |
1860 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
1861 | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | |
278e2f55 AG |
1862 | continue; |
1863 | } | |
1864 | /* Remove protection and unregister all affected RAM blocks */ | |
82ea3e3b AG |
1865 | uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, |
1866 | false, false); | |
1867 | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | |
278e2f55 | 1868 | |
82ea3e3b AG |
1869 | trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, |
1870 | block->host, block->max_length); | |
278e2f55 AG |
1871 | |
1872 | /* Cleanup flags and remove reference */ | |
82ea3e3b AG |
1873 | block->flags &= ~RAM_UF_WRITEPROTECT; |
1874 | memory_region_unref(block->mr); | |
278e2f55 AG |
1875 | } |
1876 | ||
1877 | /* Finally close UFFD file descriptor */ | |
1878 | uffd_close_fd(rs->uffdio_fd); | |
1879 | rs->uffdio_fd = -1; | |
1880 | } | |
1881 | ||
1882 | #else | |
1883 | /* No target OS support, stubs just fail or ignore */ | |
1884 | ||
1885 | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | |
1886 | { | |
1887 | (void) rs; | |
1888 | (void) offset; | |
1889 | ||
1890 | return NULL; | |
1891 | } | |
1892 | ||
1893 | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | |
1894 | unsigned long start_page) | |
1895 | { | |
1896 | (void) rs; | |
1897 | (void) pss; | |
1898 | (void) start_page; | |
1899 | ||
1900 | return 0; | |
1901 | } | |
1902 | ||
1903 | bool ram_write_tracking_available(void) | |
1904 | { | |
1905 | return false; | |
1906 | } | |
1907 | ||
1908 | bool ram_write_tracking_compatible(void) | |
1909 | { | |
1910 | assert(0); | |
1911 | return false; | |
1912 | } | |
1913 | ||
1914 | int ram_write_tracking_start(void) | |
1915 | { | |
1916 | assert(0); | |
1917 | return -1; | |
1918 | } | |
1919 | ||
1920 | void ram_write_tracking_stop(void) | |
1921 | { | |
1922 | assert(0); | |
1923 | } | |
1924 | #endif /* defined(__linux__) */ | |
1925 | ||
3d0684b2 | 1926 | /** |
ff1543af | 1927 | * get_queued_page: unqueue a page from the postcopy requests |
3d0684b2 JQ |
1928 | * |
1929 | * Skips pages that are already sent (!dirty) | |
a82d593b | 1930 | * |
a5f7b1a6 | 1931 | * Returns true if a queued page is found |
a82d593b | 1932 | * |
6f37bb8b | 1933 | * @rs: current RAM state |
3d0684b2 | 1934 | * @pss: data about the state of the current dirty page scan |
a82d593b | 1935 | */ |
f20e2865 | 1936 | static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b DDAG |
1937 | { |
1938 | RAMBlock *block; | |
1939 | ram_addr_t offset; | |
1940 | bool dirty; | |
1941 | ||
1942 | do { | |
f20e2865 | 1943 | block = unqueue_page(rs, &offset); |
a82d593b DDAG |
1944 | /* |
1945 | * We're sending this page, and since it's postcopy nothing else | |
1946 | * will dirty it, and we must make sure it doesn't get sent again | |
1947 | * even if this queue request was received after the background | |
1948 | * search already sent it. | |
1949 | */ | |
1950 | if (block) { | |
f20e2865 JQ |
1951 | unsigned long page; |
1952 | ||
6b6712ef JQ |
1953 | page = offset >> TARGET_PAGE_BITS; |
1954 | dirty = test_bit(page, block->bmap); | |
a82d593b | 1955 | if (!dirty) { |
06b10688 | 1956 | trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, |
64737606 | 1957 | page); |
a82d593b | 1958 | } else { |
f20e2865 | 1959 | trace_get_queued_page(block->idstr, (uint64_t)offset, page); |
a82d593b DDAG |
1960 | } |
1961 | } | |
1962 | ||
1963 | } while (block && !dirty); | |
1964 | ||
278e2f55 AG |
1965 | if (!block) { |
1966 | /* | |
1967 | * Poll write faults too if background snapshot is enabled; that's | |
1968 | * when we have vcpus got blocked by the write protected pages. | |
1969 | */ | |
1970 | block = poll_fault_page(rs, &offset); | |
1971 | } | |
1972 | ||
a82d593b | 1973 | if (block) { |
a82d593b DDAG |
1974 | /* |
1975 | * We want the background search to continue from the queued page | |
1976 | * since the guest is likely to want other pages near to the page | |
1977 | * it just requested. | |
1978 | */ | |
1979 | pss->block = block; | |
a935e30f | 1980 | pss->page = offset >> TARGET_PAGE_BITS; |
422314e7 WY |
1981 | |
1982 | /* | |
1983 | * This unqueued page would break the "one round" check, even is | |
1984 | * really rare. | |
1985 | */ | |
1986 | pss->complete_round = false; | |
a82d593b DDAG |
1987 | } |
1988 | ||
1989 | return !!block; | |
1990 | } | |
1991 | ||
6c595cde | 1992 | /** |
5e58f968 JQ |
1993 | * migration_page_queue_free: drop any remaining pages in the ram |
1994 | * request queue | |
6c595cde | 1995 | * |
3d0684b2 JQ |
1996 | * It should be empty at the end anyway, but in error cases there may |
1997 | * be some left. in case that there is any page left, we drop it. | |
1998 | * | |
6c595cde | 1999 | */ |
83c13382 | 2000 | static void migration_page_queue_free(RAMState *rs) |
6c595cde | 2001 | { |
ec481c6c | 2002 | struct RAMSrcPageRequest *mspr, *next_mspr; |
6c595cde DDAG |
2003 | /* This queue generally should be empty - but in the case of a failed |
2004 | * migration might have some droppings in. | |
2005 | */ | |
89ac5a1d | 2006 | RCU_READ_LOCK_GUARD(); |
ec481c6c | 2007 | QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { |
6c595cde | 2008 | memory_region_unref(mspr->rb->mr); |
ec481c6c | 2009 | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
6c595cde DDAG |
2010 | g_free(mspr); |
2011 | } | |
6c595cde DDAG |
2012 | } |
2013 | ||
2014 | /** | |
3d0684b2 JQ |
2015 | * ram_save_queue_pages: queue the page for transmission |
2016 | * | |
2017 | * A request from postcopy destination for example. | |
2018 | * | |
2019 | * Returns zero on success or negative on error | |
2020 | * | |
3d0684b2 JQ |
2021 | * @rbname: Name of the RAMBLock of the request. NULL means the |
2022 | * same that last one. | |
2023 | * @start: starting address from the start of the RAMBlock | |
2024 | * @len: length (in bytes) to send | |
6c595cde | 2025 | */ |
96506894 | 2026 | int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) |
6c595cde DDAG |
2027 | { |
2028 | RAMBlock *ramblock; | |
53518d94 | 2029 | RAMState *rs = ram_state; |
6c595cde | 2030 | |
9360447d | 2031 | ram_counters.postcopy_requests++; |
89ac5a1d DDAG |
2032 | RCU_READ_LOCK_GUARD(); |
2033 | ||
6c595cde DDAG |
2034 | if (!rbname) { |
2035 | /* Reuse last RAMBlock */ | |
68a098f3 | 2036 | ramblock = rs->last_req_rb; |
6c595cde DDAG |
2037 | |
2038 | if (!ramblock) { | |
2039 | /* | |
2040 | * Shouldn't happen, we can't reuse the last RAMBlock if | |
2041 | * it's the 1st request. | |
2042 | */ | |
2043 | error_report("ram_save_queue_pages no previous block"); | |
03acb4e9 | 2044 | return -1; |
6c595cde DDAG |
2045 | } |
2046 | } else { | |
2047 | ramblock = qemu_ram_block_by_name(rbname); | |
2048 | ||
2049 | if (!ramblock) { | |
2050 | /* We shouldn't be asked for a non-existent RAMBlock */ | |
2051 | error_report("ram_save_queue_pages no block '%s'", rbname); | |
03acb4e9 | 2052 | return -1; |
6c595cde | 2053 | } |
68a098f3 | 2054 | rs->last_req_rb = ramblock; |
6c595cde DDAG |
2055 | } |
2056 | trace_ram_save_queue_pages(ramblock->idstr, start, len); | |
542147f4 | 2057 | if (!offset_in_ramblock(ramblock, start + len - 1)) { |
9458ad6b JQ |
2058 | error_report("%s request overrun start=" RAM_ADDR_FMT " len=" |
2059 | RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, | |
6c595cde | 2060 | __func__, start, len, ramblock->used_length); |
03acb4e9 | 2061 | return -1; |
6c595cde DDAG |
2062 | } |
2063 | ||
ec481c6c JQ |
2064 | struct RAMSrcPageRequest *new_entry = |
2065 | g_malloc0(sizeof(struct RAMSrcPageRequest)); | |
6c595cde DDAG |
2066 | new_entry->rb = ramblock; |
2067 | new_entry->offset = start; | |
2068 | new_entry->len = len; | |
2069 | ||
2070 | memory_region_ref(ramblock->mr); | |
ec481c6c JQ |
2071 | qemu_mutex_lock(&rs->src_page_req_mutex); |
2072 | QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); | |
e03a34f8 | 2073 | migration_make_urgent_request(); |
ec481c6c | 2074 | qemu_mutex_unlock(&rs->src_page_req_mutex); |
6c595cde DDAG |
2075 | |
2076 | return 0; | |
6c595cde DDAG |
2077 | } |
2078 | ||
d7400a34 XG |
2079 | static bool save_page_use_compression(RAMState *rs) |
2080 | { | |
2081 | if (!migrate_use_compression()) { | |
2082 | return false; | |
2083 | } | |
2084 | ||
2085 | /* | |
1a373522 DH |
2086 | * If xbzrle is enabled (e.g., after first round of migration), stop |
2087 | * using the data compression. In theory, xbzrle can do better than | |
2088 | * compression. | |
d7400a34 | 2089 | */ |
1a373522 DH |
2090 | if (rs->xbzrle_enabled) { |
2091 | return false; | |
d7400a34 XG |
2092 | } |
2093 | ||
1a373522 | 2094 | return true; |
d7400a34 XG |
2095 | } |
2096 | ||
5e5fdcff XG |
2097 | /* |
2098 | * try to compress the page before posting it out, return true if the page | |
2099 | * has been properly handled by compression, otherwise needs other | |
2100 | * paths to handle it | |
2101 | */ | |
2102 | static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) | |
2103 | { | |
2104 | if (!save_page_use_compression(rs)) { | |
2105 | return false; | |
2106 | } | |
2107 | ||
2108 | /* | |
2109 | * When starting the process of a new block, the first page of | |
2110 | * the block should be sent out before other pages in the same | |
2111 | * block, and all the pages in last block should have been sent | |
2112 | * out, keeping this order is important, because the 'cont' flag | |
2113 | * is used to avoid resending the block name. | |
2114 | * | |
2115 | * We post the fist page as normal page as compression will take | |
2116 | * much CPU resource. | |
2117 | */ | |
2118 | if (block != rs->last_sent_block) { | |
2119 | flush_compressed_data(rs); | |
2120 | return false; | |
2121 | } | |
2122 | ||
2123 | if (compress_page_with_multi_thread(rs, block, offset) > 0) { | |
2124 | return true; | |
2125 | } | |
2126 | ||
76e03000 | 2127 | compression_counters.busy++; |
5e5fdcff XG |
2128 | return false; |
2129 | } | |
2130 | ||
a82d593b | 2131 | /** |
3d0684b2 | 2132 | * ram_save_target_page: save one target page |
a82d593b | 2133 | * |
3d0684b2 | 2134 | * Returns the number of pages written |
a82d593b | 2135 | * |
6f37bb8b | 2136 | * @rs: current RAM state |
3d0684b2 | 2137 | * @pss: data about the page we want to send |
a82d593b | 2138 | */ |
05931ec5 | 2139 | static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b | 2140 | { |
a8ec91f9 | 2141 | RAMBlock *block = pss->block; |
8bba004c | 2142 | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
a8ec91f9 XG |
2143 | int res; |
2144 | ||
2145 | if (control_save_page(rs, block, offset, &res)) { | |
2146 | return res; | |
2147 | } | |
2148 | ||
5e5fdcff XG |
2149 | if (save_compress_page(rs, block, offset)) { |
2150 | return 1; | |
d7400a34 XG |
2151 | } |
2152 | ||
2153 | res = save_zero_page(rs, block, offset); | |
2154 | if (res > 0) { | |
2155 | /* Must let xbzrle know, otherwise a previous (now 0'd) cached | |
2156 | * page would be stale | |
2157 | */ | |
2158 | if (!save_page_use_compression(rs)) { | |
2159 | XBZRLE_cache_lock(); | |
2160 | xbzrle_cache_zero_page(rs, block->offset + offset); | |
2161 | XBZRLE_cache_unlock(); | |
2162 | } | |
d7400a34 XG |
2163 | return res; |
2164 | } | |
2165 | ||
da3f56cb | 2166 | /* |
c6b3a2e0 WY |
2167 | * Do not use multifd for: |
2168 | * 1. Compression as the first page in the new block should be posted out | |
2169 | * before sending the compressed page | |
2170 | * 2. In postcopy as one whole host page should be placed | |
da3f56cb | 2171 | */ |
c6b3a2e0 WY |
2172 | if (!save_page_use_compression(rs) && migrate_use_multifd() |
2173 | && !migration_in_postcopy()) { | |
b9ee2f7d | 2174 | return ram_save_multifd_page(rs, block, offset); |
a82d593b DDAG |
2175 | } |
2176 | ||
05931ec5 | 2177 | return ram_save_page(rs, pss); |
a82d593b DDAG |
2178 | } |
2179 | ||
2180 | /** | |
3d0684b2 | 2181 | * ram_save_host_page: save a whole host page |
a82d593b | 2182 | * |
3d0684b2 JQ |
2183 | * Starting at *offset send pages up to the end of the current host |
2184 | * page. It's valid for the initial offset to point into the middle of | |
2185 | * a host page in which case the remainder of the hostpage is sent. | |
2186 | * Only dirty target pages are sent. Note that the host page size may | |
2187 | * be a huge page for this block. | |
1eb3fc0a DDAG |
2188 | * The saving stops at the boundary of the used_length of the block |
2189 | * if the RAMBlock isn't a multiple of the host page size. | |
a82d593b | 2190 | * |
3d0684b2 JQ |
2191 | * Returns the number of pages written or negative on error |
2192 | * | |
6f37bb8b | 2193 | * @rs: current RAM state |
3d0684b2 | 2194 | * @pss: data about the page we want to send |
a82d593b | 2195 | */ |
05931ec5 | 2196 | static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) |
a82d593b DDAG |
2197 | { |
2198 | int tmppages, pages = 0; | |
a935e30f JQ |
2199 | size_t pagesize_bits = |
2200 | qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; | |
ba1b7c81 KJ |
2201 | unsigned long hostpage_boundary = |
2202 | QEMU_ALIGN_UP(pss->page + 1, pagesize_bits); | |
278e2f55 AG |
2203 | unsigned long start_page = pss->page; |
2204 | int res; | |
4c011c37 | 2205 | |
fbd162e6 | 2206 | if (ramblock_is_ignored(pss->block)) { |
b895de50 CLG |
2207 | error_report("block %s should not be migrated !", pss->block->idstr); |
2208 | return 0; | |
2209 | } | |
2210 | ||
a82d593b | 2211 | do { |
1faa5665 | 2212 | /* Check the pages is dirty and if it is send it */ |
ba1b7c81 | 2213 | if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { |
05931ec5 | 2214 | tmppages = ram_save_target_page(rs, pss); |
ba1b7c81 KJ |
2215 | if (tmppages < 0) { |
2216 | return tmppages; | |
2217 | } | |
a82d593b | 2218 | |
ba1b7c81 KJ |
2219 | pages += tmppages; |
2220 | /* | |
2221 | * Allow rate limiting to happen in the middle of huge pages if | |
2222 | * something is sent in the current iteration. | |
2223 | */ | |
2224 | if (pagesize_bits > 1 && tmppages > 0) { | |
2225 | migration_rate_limit(); | |
2226 | } | |
23feba90 | 2227 | } |
ba1b7c81 KJ |
2228 | pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
2229 | } while ((pss->page < hostpage_boundary) && | |
8bba004c AR |
2230 | offset_in_ramblock(pss->block, |
2231 | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)); | |
ba1b7c81 | 2232 | /* The offset we leave with is the min boundary of host page and block */ |
258f5c98 | 2233 | pss->page = MIN(pss->page, hostpage_boundary); |
278e2f55 AG |
2234 | |
2235 | res = ram_save_release_protection(rs, pss, start_page); | |
2236 | return (res < 0 ? res : pages); | |
a82d593b | 2237 | } |
6c595cde | 2238 | |
56e93d26 | 2239 | /** |
3d0684b2 | 2240 | * ram_find_and_save_block: finds a dirty page and sends it to f |
56e93d26 JQ |
2241 | * |
2242 | * Called within an RCU critical section. | |
2243 | * | |
e8f3735f XG |
2244 | * Returns the number of pages written where zero means no dirty pages, |
2245 | * or negative on error | |
56e93d26 | 2246 | * |
6f37bb8b | 2247 | * @rs: current RAM state |
a82d593b DDAG |
2248 | * |
2249 | * On systems where host-page-size > target-page-size it will send all the | |
2250 | * pages in a host page that are dirty. | |
56e93d26 | 2251 | */ |
05931ec5 | 2252 | static int ram_find_and_save_block(RAMState *rs) |
56e93d26 | 2253 | { |
b8fb8cb7 | 2254 | PageSearchStatus pss; |
56e93d26 | 2255 | int pages = 0; |
b9e60928 | 2256 | bool again, found; |
56e93d26 | 2257 | |
0827b9e9 AA |
2258 | /* No dirty page as there is zero RAM */ |
2259 | if (!ram_bytes_total()) { | |
2260 | return pages; | |
2261 | } | |
2262 | ||
6f37bb8b | 2263 | pss.block = rs->last_seen_block; |
a935e30f | 2264 | pss.page = rs->last_page; |
b8fb8cb7 DDAG |
2265 | pss.complete_round = false; |
2266 | ||
2267 | if (!pss.block) { | |
2268 | pss.block = QLIST_FIRST_RCU(&ram_list.blocks); | |
2269 | } | |
56e93d26 | 2270 | |
b9e60928 | 2271 | do { |
a82d593b | 2272 | again = true; |
f20e2865 | 2273 | found = get_queued_page(rs, &pss); |
b9e60928 | 2274 | |
a82d593b DDAG |
2275 | if (!found) { |
2276 | /* priority queue empty, so just search for something dirty */ | |
f20e2865 | 2277 | found = find_dirty_block(rs, &pss, &again); |
a82d593b | 2278 | } |
f3f491fc | 2279 | |
a82d593b | 2280 | if (found) { |
05931ec5 | 2281 | pages = ram_save_host_page(rs, &pss); |
56e93d26 | 2282 | } |
b9e60928 | 2283 | } while (!pages && again); |
56e93d26 | 2284 | |
6f37bb8b | 2285 | rs->last_seen_block = pss.block; |
a935e30f | 2286 | rs->last_page = pss.page; |
56e93d26 JQ |
2287 | |
2288 | return pages; | |
2289 | } | |
2290 | ||
2291 | void acct_update_position(QEMUFile *f, size_t size, bool zero) | |
2292 | { | |
2293 | uint64_t pages = size / TARGET_PAGE_SIZE; | |
f7ccd61b | 2294 | |
56e93d26 | 2295 | if (zero) { |
9360447d | 2296 | ram_counters.duplicate += pages; |
56e93d26 | 2297 | } else { |
9360447d | 2298 | ram_counters.normal += pages; |
4c2d0f6d | 2299 | ram_transferred_add(size); |
56e93d26 JQ |
2300 | qemu_update_position(f, size); |
2301 | } | |
2302 | } | |
2303 | ||
fbd162e6 | 2304 | static uint64_t ram_bytes_total_common(bool count_ignored) |
56e93d26 JQ |
2305 | { |
2306 | RAMBlock *block; | |
2307 | uint64_t total = 0; | |
2308 | ||
89ac5a1d DDAG |
2309 | RCU_READ_LOCK_GUARD(); |
2310 | ||
fbd162e6 YK |
2311 | if (count_ignored) { |
2312 | RAMBLOCK_FOREACH_MIGRATABLE(block) { | |
2313 | total += block->used_length; | |
2314 | } | |
2315 | } else { | |
2316 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
2317 | total += block->used_length; | |
2318 | } | |
99e15582 | 2319 | } |
56e93d26 JQ |
2320 | return total; |
2321 | } | |
2322 | ||
fbd162e6 YK |
2323 | uint64_t ram_bytes_total(void) |
2324 | { | |
2325 | return ram_bytes_total_common(false); | |
2326 | } | |
2327 | ||
f265e0e4 | 2328 | static void xbzrle_load_setup(void) |
56e93d26 | 2329 | { |
f265e0e4 | 2330 | XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
56e93d26 JQ |
2331 | } |
2332 | ||
f265e0e4 JQ |
2333 | static void xbzrle_load_cleanup(void) |
2334 | { | |
2335 | g_free(XBZRLE.decoded_buf); | |
2336 | XBZRLE.decoded_buf = NULL; | |
2337 | } | |
2338 | ||
7d7c96be PX |
2339 | static void ram_state_cleanup(RAMState **rsp) |
2340 | { | |
b9ccaf6d DDAG |
2341 | if (*rsp) { |
2342 | migration_page_queue_free(*rsp); | |
2343 | qemu_mutex_destroy(&(*rsp)->bitmap_mutex); | |
2344 | qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); | |
2345 | g_free(*rsp); | |
2346 | *rsp = NULL; | |
2347 | } | |
7d7c96be PX |
2348 | } |
2349 | ||
84593a08 PX |
2350 | static void xbzrle_cleanup(void) |
2351 | { | |
2352 | XBZRLE_cache_lock(); | |
2353 | if (XBZRLE.cache) { | |
2354 | cache_fini(XBZRLE.cache); | |
2355 | g_free(XBZRLE.encoded_buf); | |
2356 | g_free(XBZRLE.current_buf); | |
2357 | g_free(XBZRLE.zero_target_page); | |
2358 | XBZRLE.cache = NULL; | |
2359 | XBZRLE.encoded_buf = NULL; | |
2360 | XBZRLE.current_buf = NULL; | |
2361 | XBZRLE.zero_target_page = NULL; | |
2362 | } | |
2363 | XBZRLE_cache_unlock(); | |
2364 | } | |
2365 | ||
f265e0e4 | 2366 | static void ram_save_cleanup(void *opaque) |
56e93d26 | 2367 | { |
53518d94 | 2368 | RAMState **rsp = opaque; |
6b6712ef | 2369 | RAMBlock *block; |
eb859c53 | 2370 | |
278e2f55 AG |
2371 | /* We don't use dirty log with background snapshots */ |
2372 | if (!migrate_background_snapshot()) { | |
2373 | /* caller have hold iothread lock or is in a bh, so there is | |
2374 | * no writing race against the migration bitmap | |
2375 | */ | |
63b41db4 HH |
2376 | if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { |
2377 | /* | |
2378 | * do not stop dirty log without starting it, since | |
2379 | * memory_global_dirty_log_stop will assert that | |
2380 | * memory_global_dirty_log_start/stop used in pairs | |
2381 | */ | |
2382 | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); | |
2383 | } | |
278e2f55 | 2384 | } |
6b6712ef | 2385 | |
fbd162e6 | 2386 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
002cad6b PX |
2387 | g_free(block->clear_bmap); |
2388 | block->clear_bmap = NULL; | |
6b6712ef JQ |
2389 | g_free(block->bmap); |
2390 | block->bmap = NULL; | |
56e93d26 JQ |
2391 | } |
2392 | ||
84593a08 | 2393 | xbzrle_cleanup(); |
f0afa331 | 2394 | compress_threads_save_cleanup(); |
7d7c96be | 2395 | ram_state_cleanup(rsp); |
56e93d26 JQ |
2396 | } |
2397 | ||
6f37bb8b | 2398 | static void ram_state_reset(RAMState *rs) |
56e93d26 | 2399 | { |
6f37bb8b JQ |
2400 | rs->last_seen_block = NULL; |
2401 | rs->last_sent_block = NULL; | |
269ace29 | 2402 | rs->last_page = 0; |
6f37bb8b | 2403 | rs->last_version = ram_list.version; |
1a373522 | 2404 | rs->xbzrle_enabled = false; |
56e93d26 JQ |
2405 | } |
2406 | ||
2407 | #define MAX_WAIT 50 /* ms, half buffered_file limit */ | |
2408 | ||
e0b266f0 DDAG |
2409 | /* **** functions for postcopy ***** */ |
2410 | ||
ced1c616 PB |
2411 | void ram_postcopy_migrated_memory_release(MigrationState *ms) |
2412 | { | |
2413 | struct RAMBlock *block; | |
ced1c616 | 2414 | |
fbd162e6 | 2415 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
6b6712ef JQ |
2416 | unsigned long *bitmap = block->bmap; |
2417 | unsigned long range = block->used_length >> TARGET_PAGE_BITS; | |
2418 | unsigned long run_start = find_next_zero_bit(bitmap, range, 0); | |
ced1c616 PB |
2419 | |
2420 | while (run_start < range) { | |
2421 | unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); | |
8bba004c AR |
2422 | ram_discard_range(block->idstr, |
2423 | ((ram_addr_t)run_start) << TARGET_PAGE_BITS, | |
2424 | ((ram_addr_t)(run_end - run_start)) | |
2425 | << TARGET_PAGE_BITS); | |
ced1c616 PB |
2426 | run_start = find_next_zero_bit(bitmap, range, run_end + 1); |
2427 | } | |
2428 | } | |
2429 | } | |
2430 | ||
3d0684b2 JQ |
2431 | /** |
2432 | * postcopy_send_discard_bm_ram: discard a RAMBlock | |
2433 | * | |
e0b266f0 | 2434 | * Callback from postcopy_each_ram_send_discard for each RAMBlock |
3d0684b2 JQ |
2435 | * |
2436 | * @ms: current migration state | |
89dab31b | 2437 | * @block: RAMBlock to discard |
e0b266f0 | 2438 | */ |
9e7d1223 | 2439 | static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) |
e0b266f0 | 2440 | { |
6b6712ef | 2441 | unsigned long end = block->used_length >> TARGET_PAGE_BITS; |
e0b266f0 | 2442 | unsigned long current; |
1e7cf8c3 | 2443 | unsigned long *bitmap = block->bmap; |
e0b266f0 | 2444 | |
6b6712ef | 2445 | for (current = 0; current < end; ) { |
1e7cf8c3 | 2446 | unsigned long one = find_next_bit(bitmap, end, current); |
33a5cb62 | 2447 | unsigned long zero, discard_length; |
e0b266f0 | 2448 | |
33a5cb62 WY |
2449 | if (one >= end) { |
2450 | break; | |
2451 | } | |
e0b266f0 | 2452 | |
1e7cf8c3 | 2453 | zero = find_next_zero_bit(bitmap, end, one + 1); |
33a5cb62 WY |
2454 | |
2455 | if (zero >= end) { | |
2456 | discard_length = end - one; | |
e0b266f0 | 2457 | } else { |
33a5cb62 WY |
2458 | discard_length = zero - one; |
2459 | } | |
810cf2bb | 2460 | postcopy_discard_send_range(ms, one, discard_length); |
33a5cb62 | 2461 | current = one + discard_length; |
e0b266f0 | 2462 | } |
e0b266f0 DDAG |
2463 | } |
2464 | ||
f30c2e5b PX |
2465 | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); |
2466 | ||
3d0684b2 JQ |
2467 | /** |
2468 | * postcopy_each_ram_send_discard: discard all RAMBlocks | |
2469 | * | |
e0b266f0 DDAG |
2470 | * Utility for the outgoing postcopy code. |
2471 | * Calls postcopy_send_discard_bm_ram for each RAMBlock | |
2472 | * passing it bitmap indexes and name. | |
e0b266f0 DDAG |
2473 | * (qemu_ram_foreach_block ends up passing unscaled lengths |
2474 | * which would mean postcopy code would have to deal with target page) | |
3d0684b2 JQ |
2475 | * |
2476 | * @ms: current migration state | |
e0b266f0 | 2477 | */ |
739fcc1b | 2478 | static void postcopy_each_ram_send_discard(MigrationState *ms) |
e0b266f0 DDAG |
2479 | { |
2480 | struct RAMBlock *block; | |
e0b266f0 | 2481 | |
fbd162e6 | 2482 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
810cf2bb | 2483 | postcopy_discard_send_init(ms, block->idstr); |
e0b266f0 | 2484 | |
f30c2e5b PX |
2485 | /* |
2486 | * Deal with TPS != HPS and huge pages. It discard any partially sent | |
2487 | * host-page size chunks, mark any partially dirty host-page size | |
2488 | * chunks as all dirty. In this case the host-page is the host-page | |
2489 | * for the particular RAMBlock, i.e. it might be a huge page. | |
2490 | */ | |
2491 | postcopy_chunk_hostpages_pass(ms, block); | |
2492 | ||
e0b266f0 DDAG |
2493 | /* |
2494 | * Postcopy sends chunks of bitmap over the wire, but it | |
2495 | * just needs indexes at this point, avoids it having | |
2496 | * target page specific code. | |
2497 | */ | |
739fcc1b | 2498 | postcopy_send_discard_bm_ram(ms, block); |
810cf2bb | 2499 | postcopy_discard_send_finish(ms); |
e0b266f0 | 2500 | } |
e0b266f0 DDAG |
2501 | } |
2502 | ||
3d0684b2 | 2503 | /** |
8324ef86 | 2504 | * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages |
3d0684b2 JQ |
2505 | * |
2506 | * Helper for postcopy_chunk_hostpages; it's called twice to | |
2507 | * canonicalize the two bitmaps, that are similar, but one is | |
2508 | * inverted. | |
99e314eb | 2509 | * |
3d0684b2 JQ |
2510 | * Postcopy requires that all target pages in a hostpage are dirty or |
2511 | * clean, not a mix. This function canonicalizes the bitmaps. | |
99e314eb | 2512 | * |
3d0684b2 | 2513 | * @ms: current migration state |
3d0684b2 | 2514 | * @block: block that contains the page we want to canonicalize |
99e314eb | 2515 | */ |
1e7cf8c3 | 2516 | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) |
99e314eb | 2517 | { |
53518d94 | 2518 | RAMState *rs = ram_state; |
6b6712ef | 2519 | unsigned long *bitmap = block->bmap; |
29c59172 | 2520 | unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; |
6b6712ef | 2521 | unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
99e314eb DDAG |
2522 | unsigned long run_start; |
2523 | ||
29c59172 DDAG |
2524 | if (block->page_size == TARGET_PAGE_SIZE) { |
2525 | /* Easy case - TPS==HPS for a non-huge page RAMBlock */ | |
2526 | return; | |
2527 | } | |
2528 | ||
1e7cf8c3 WY |
2529 | /* Find a dirty page */ |
2530 | run_start = find_next_bit(bitmap, pages, 0); | |
99e314eb | 2531 | |
6b6712ef | 2532 | while (run_start < pages) { |
99e314eb DDAG |
2533 | |
2534 | /* | |
2535 | * If the start of this run of pages is in the middle of a host | |
2536 | * page, then we need to fixup this host page. | |
2537 | */ | |
9dec3cc3 | 2538 | if (QEMU_IS_ALIGNED(run_start, host_ratio)) { |
99e314eb | 2539 | /* Find the end of this run */ |
1e7cf8c3 | 2540 | run_start = find_next_zero_bit(bitmap, pages, run_start + 1); |
99e314eb DDAG |
2541 | /* |
2542 | * If the end isn't at the start of a host page, then the | |
2543 | * run doesn't finish at the end of a host page | |
2544 | * and we need to discard. | |
2545 | */ | |
99e314eb DDAG |
2546 | } |
2547 | ||
9dec3cc3 | 2548 | if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { |
99e314eb | 2549 | unsigned long page; |
dad45ab2 WY |
2550 | unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, |
2551 | host_ratio); | |
2552 | run_start = QEMU_ALIGN_UP(run_start, host_ratio); | |
99e314eb | 2553 | |
99e314eb DDAG |
2554 | /* Clean up the bitmap */ |
2555 | for (page = fixup_start_addr; | |
2556 | page < fixup_start_addr + host_ratio; page++) { | |
99e314eb DDAG |
2557 | /* |
2558 | * Remark them as dirty, updating the count for any pages | |
2559 | * that weren't previously dirty. | |
2560 | */ | |
0d8ec885 | 2561 | rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); |
99e314eb DDAG |
2562 | } |
2563 | } | |
2564 | ||
1e7cf8c3 WY |
2565 | /* Find the next dirty page for the next iteration */ |
2566 | run_start = find_next_bit(bitmap, pages, run_start); | |
99e314eb DDAG |
2567 | } |
2568 | } | |
2569 | ||
3d0684b2 JQ |
2570 | /** |
2571 | * ram_postcopy_send_discard_bitmap: transmit the discard bitmap | |
2572 | * | |
e0b266f0 DDAG |
2573 | * Transmit the set of pages to be discarded after precopy to the target |
2574 | * these are pages that: | |
2575 | * a) Have been previously transmitted but are now dirty again | |
2576 | * b) Pages that have never been transmitted, this ensures that | |
2577 | * any pages on the destination that have been mapped by background | |
2578 | * tasks get discarded (transparent huge pages is the specific concern) | |
2579 | * Hopefully this is pretty sparse | |
3d0684b2 JQ |
2580 | * |
2581 | * @ms: current migration state | |
e0b266f0 | 2582 | */ |
739fcc1b | 2583 | void ram_postcopy_send_discard_bitmap(MigrationState *ms) |
e0b266f0 | 2584 | { |
53518d94 | 2585 | RAMState *rs = ram_state; |
e0b266f0 | 2586 | |
89ac5a1d | 2587 | RCU_READ_LOCK_GUARD(); |
e0b266f0 DDAG |
2588 | |
2589 | /* This should be our last sync, the src is now paused */ | |
eb859c53 | 2590 | migration_bitmap_sync(rs); |
e0b266f0 | 2591 | |
6b6712ef JQ |
2592 | /* Easiest way to make sure we don't resume in the middle of a host-page */ |
2593 | rs->last_seen_block = NULL; | |
2594 | rs->last_sent_block = NULL; | |
2595 | rs->last_page = 0; | |
e0b266f0 | 2596 | |
739fcc1b | 2597 | postcopy_each_ram_send_discard(ms); |
e0b266f0 | 2598 | |
739fcc1b | 2599 | trace_ram_postcopy_send_discard_bitmap(); |
e0b266f0 DDAG |
2600 | } |
2601 | ||
3d0684b2 JQ |
2602 | /** |
2603 | * ram_discard_range: discard dirtied pages at the beginning of postcopy | |
e0b266f0 | 2604 | * |
3d0684b2 | 2605 | * Returns zero on success |
e0b266f0 | 2606 | * |
36449157 JQ |
2607 | * @rbname: name of the RAMBlock of the request. NULL means the |
2608 | * same that last one. | |
3d0684b2 JQ |
2609 | * @start: RAMBlock starting page |
2610 | * @length: RAMBlock size | |
e0b266f0 | 2611 | */ |
aaa2064c | 2612 | int ram_discard_range(const char *rbname, uint64_t start, size_t length) |
e0b266f0 | 2613 | { |
36449157 | 2614 | trace_ram_discard_range(rbname, start, length); |
d3a5038c | 2615 | |
89ac5a1d | 2616 | RCU_READ_LOCK_GUARD(); |
36449157 | 2617 | RAMBlock *rb = qemu_ram_block_by_name(rbname); |
e0b266f0 DDAG |
2618 | |
2619 | if (!rb) { | |
36449157 | 2620 | error_report("ram_discard_range: Failed to find block '%s'", rbname); |
03acb4e9 | 2621 | return -1; |
e0b266f0 DDAG |
2622 | } |
2623 | ||
814bb08f PX |
2624 | /* |
2625 | * On source VM, we don't need to update the received bitmap since | |
2626 | * we don't even have one. | |
2627 | */ | |
2628 | if (rb->receivedmap) { | |
2629 | bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), | |
2630 | length >> qemu_target_page_bits()); | |
2631 | } | |
2632 | ||
03acb4e9 | 2633 | return ram_block_discard_range(rb, start, length); |
e0b266f0 DDAG |
2634 | } |
2635 | ||
84593a08 PX |
2636 | /* |
2637 | * For every allocation, we will try not to crash the VM if the | |
2638 | * allocation failed. | |
2639 | */ | |
2640 | static int xbzrle_init(void) | |
2641 | { | |
2642 | Error *local_err = NULL; | |
2643 | ||
2644 | if (!migrate_use_xbzrle()) { | |
2645 | return 0; | |
2646 | } | |
2647 | ||
2648 | XBZRLE_cache_lock(); | |
2649 | ||
2650 | XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); | |
2651 | if (!XBZRLE.zero_target_page) { | |
2652 | error_report("%s: Error allocating zero page", __func__); | |
2653 | goto err_out; | |
2654 | } | |
2655 | ||
2656 | XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), | |
2657 | TARGET_PAGE_SIZE, &local_err); | |
2658 | if (!XBZRLE.cache) { | |
2659 | error_report_err(local_err); | |
2660 | goto free_zero_page; | |
2661 | } | |
2662 | ||
2663 | XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); | |
2664 | if (!XBZRLE.encoded_buf) { | |
2665 | error_report("%s: Error allocating encoded_buf", __func__); | |
2666 | goto free_cache; | |
2667 | } | |
2668 | ||
2669 | XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); | |
2670 | if (!XBZRLE.current_buf) { | |
2671 | error_report("%s: Error allocating current_buf", __func__); | |
2672 | goto free_encoded_buf; | |
2673 | } | |
2674 | ||
2675 | /* We are all good */ | |
2676 | XBZRLE_cache_unlock(); | |
2677 | return 0; | |
2678 | ||
2679 | free_encoded_buf: | |
2680 | g_free(XBZRLE.encoded_buf); | |
2681 | XBZRLE.encoded_buf = NULL; | |
2682 | free_cache: | |
2683 | cache_fini(XBZRLE.cache); | |
2684 | XBZRLE.cache = NULL; | |
2685 | free_zero_page: | |
2686 | g_free(XBZRLE.zero_target_page); | |
2687 | XBZRLE.zero_target_page = NULL; | |
2688 | err_out: | |
2689 | XBZRLE_cache_unlock(); | |
2690 | return -ENOMEM; | |
2691 | } | |
2692 | ||
53518d94 | 2693 | static int ram_state_init(RAMState **rsp) |
56e93d26 | 2694 | { |
7d00ee6a PX |
2695 | *rsp = g_try_new0(RAMState, 1); |
2696 | ||
2697 | if (!*rsp) { | |
2698 | error_report("%s: Init ramstate fail", __func__); | |
2699 | return -1; | |
2700 | } | |
53518d94 JQ |
2701 | |
2702 | qemu_mutex_init(&(*rsp)->bitmap_mutex); | |
2703 | qemu_mutex_init(&(*rsp)->src_page_req_mutex); | |
2704 | QSIMPLEQ_INIT(&(*rsp)->src_page_requests); | |
56e93d26 | 2705 | |
7d00ee6a | 2706 | /* |
40c4d4a8 IR |
2707 | * Count the total number of pages used by ram blocks not including any |
2708 | * gaps due to alignment or unplugs. | |
03158519 | 2709 | * This must match with the initial values of dirty bitmap. |
7d00ee6a | 2710 | */ |
40c4d4a8 | 2711 | (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; |
7d00ee6a PX |
2712 | ram_state_reset(*rsp); |
2713 | ||
2714 | return 0; | |
2715 | } | |
2716 | ||
d6eff5d7 | 2717 | static void ram_list_init_bitmaps(void) |
7d00ee6a | 2718 | { |
002cad6b | 2719 | MigrationState *ms = migrate_get_current(); |
d6eff5d7 PX |
2720 | RAMBlock *block; |
2721 | unsigned long pages; | |
002cad6b | 2722 | uint8_t shift; |
56e93d26 | 2723 | |
0827b9e9 AA |
2724 | /* Skip setting bitmap if there is no RAM */ |
2725 | if (ram_bytes_total()) { | |
002cad6b PX |
2726 | shift = ms->clear_bitmap_shift; |
2727 | if (shift > CLEAR_BITMAP_SHIFT_MAX) { | |
2728 | error_report("clear_bitmap_shift (%u) too big, using " | |
2729 | "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); | |
2730 | shift = CLEAR_BITMAP_SHIFT_MAX; | |
2731 | } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { | |
2732 | error_report("clear_bitmap_shift (%u) too small, using " | |
2733 | "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); | |
2734 | shift = CLEAR_BITMAP_SHIFT_MIN; | |
2735 | } | |
2736 | ||
fbd162e6 | 2737 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
d6eff5d7 | 2738 | pages = block->max_length >> TARGET_PAGE_BITS; |
03158519 WY |
2739 | /* |
2740 | * The initial dirty bitmap for migration must be set with all | |
2741 | * ones to make sure we'll migrate every guest RAM page to | |
2742 | * destination. | |
40c4d4a8 IR |
2743 | * Here we set RAMBlock.bmap all to 1 because when rebegin a |
2744 | * new migration after a failed migration, ram_list. | |
2745 | * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole | |
2746 | * guest memory. | |
03158519 | 2747 | */ |
6b6712ef | 2748 | block->bmap = bitmap_new(pages); |
40c4d4a8 | 2749 | bitmap_set(block->bmap, 0, pages); |
002cad6b PX |
2750 | block->clear_bmap_shift = shift; |
2751 | block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); | |
0827b9e9 | 2752 | } |
f3f491fc | 2753 | } |
d6eff5d7 PX |
2754 | } |
2755 | ||
be39b4cd DH |
2756 | static void migration_bitmap_clear_discarded_pages(RAMState *rs) |
2757 | { | |
2758 | unsigned long pages; | |
2759 | RAMBlock *rb; | |
2760 | ||
2761 | RCU_READ_LOCK_GUARD(); | |
2762 | ||
2763 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | |
2764 | pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); | |
2765 | rs->migration_dirty_pages -= pages; | |
2766 | } | |
2767 | } | |
2768 | ||
d6eff5d7 PX |
2769 | static void ram_init_bitmaps(RAMState *rs) |
2770 | { | |
2771 | /* For memory_global_dirty_log_start below. */ | |
2772 | qemu_mutex_lock_iothread(); | |
2773 | qemu_mutex_lock_ramlist(); | |
f3f491fc | 2774 | |
89ac5a1d DDAG |
2775 | WITH_RCU_READ_LOCK_GUARD() { |
2776 | ram_list_init_bitmaps(); | |
278e2f55 AG |
2777 | /* We don't use dirty log with background snapshots */ |
2778 | if (!migrate_background_snapshot()) { | |
63b41db4 | 2779 | memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
278e2f55 AG |
2780 | migration_bitmap_sync_precopy(rs); |
2781 | } | |
89ac5a1d | 2782 | } |
56e93d26 | 2783 | qemu_mutex_unlock_ramlist(); |
49877834 | 2784 | qemu_mutex_unlock_iothread(); |
be39b4cd DH |
2785 | |
2786 | /* | |
2787 | * After an eventual first bitmap sync, fixup the initial bitmap | |
2788 | * containing all 1s to exclude any discarded pages from migration. | |
2789 | */ | |
2790 | migration_bitmap_clear_discarded_pages(rs); | |
d6eff5d7 PX |
2791 | } |
2792 | ||
2793 | static int ram_init_all(RAMState **rsp) | |
2794 | { | |
2795 | if (ram_state_init(rsp)) { | |
2796 | return -1; | |
2797 | } | |
2798 | ||
2799 | if (xbzrle_init()) { | |
2800 | ram_state_cleanup(rsp); | |
2801 | return -1; | |
2802 | } | |
2803 | ||
2804 | ram_init_bitmaps(*rsp); | |
a91246c9 HZ |
2805 | |
2806 | return 0; | |
2807 | } | |
2808 | ||
08614f34 PX |
2809 | static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) |
2810 | { | |
2811 | RAMBlock *block; | |
2812 | uint64_t pages = 0; | |
2813 | ||
2814 | /* | |
2815 | * Postcopy is not using xbzrle/compression, so no need for that. | |
2816 | * Also, since source are already halted, we don't need to care | |
2817 | * about dirty page logging as well. | |
2818 | */ | |
2819 | ||
fbd162e6 | 2820 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
08614f34 PX |
2821 | pages += bitmap_count_one(block->bmap, |
2822 | block->used_length >> TARGET_PAGE_BITS); | |
2823 | } | |
2824 | ||
2825 | /* This may not be aligned with current bitmaps. Recalculate. */ | |
2826 | rs->migration_dirty_pages = pages; | |
2827 | ||
1a373522 | 2828 | ram_state_reset(rs); |
08614f34 PX |
2829 | |
2830 | /* Update RAMState cache of output QEMUFile */ | |
2831 | rs->f = out; | |
2832 | ||
2833 | trace_ram_state_resume_prepare(pages); | |
2834 | } | |
2835 | ||
6bcb05fc WW |
2836 | /* |
2837 | * This function clears bits of the free pages reported by the caller from the | |
2838 | * migration dirty bitmap. @addr is the host address corresponding to the | |
2839 | * start of the continuous guest free pages, and @len is the total bytes of | |
2840 | * those pages. | |
2841 | */ | |
2842 | void qemu_guest_free_page_hint(void *addr, size_t len) | |
2843 | { | |
2844 | RAMBlock *block; | |
2845 | ram_addr_t offset; | |
2846 | size_t used_len, start, npages; | |
2847 | MigrationState *s = migrate_get_current(); | |
2848 | ||
2849 | /* This function is currently expected to be used during live migration */ | |
2850 | if (!migration_is_setup_or_active(s->state)) { | |
2851 | return; | |
2852 | } | |
2853 | ||
2854 | for (; len > 0; len -= used_len, addr += used_len) { | |
2855 | block = qemu_ram_block_from_host(addr, false, &offset); | |
2856 | if (unlikely(!block || offset >= block->used_length)) { | |
2857 | /* | |
2858 | * The implementation might not support RAMBlock resize during | |
2859 | * live migration, but it could happen in theory with future | |
2860 | * updates. So we add a check here to capture that case. | |
2861 | */ | |
2862 | error_report_once("%s unexpected error", __func__); | |
2863 | return; | |
2864 | } | |
2865 | ||
2866 | if (len <= block->used_length - offset) { | |
2867 | used_len = len; | |
2868 | } else { | |
2869 | used_len = block->used_length - offset; | |
2870 | } | |
2871 | ||
2872 | start = offset >> TARGET_PAGE_BITS; | |
2873 | npages = used_len >> TARGET_PAGE_BITS; | |
2874 | ||
2875 | qemu_mutex_lock(&ram_state->bitmap_mutex); | |
3143577d WW |
2876 | /* |
2877 | * The skipped free pages are equavalent to be sent from clear_bmap's | |
2878 | * perspective, so clear the bits from the memory region bitmap which | |
2879 | * are initially set. Otherwise those skipped pages will be sent in | |
2880 | * the next round after syncing from the memory region bitmap. | |
2881 | */ | |
1230a25f | 2882 | migration_clear_memory_region_dirty_bitmap_range(block, start, npages); |
6bcb05fc WW |
2883 | ram_state->migration_dirty_pages -= |
2884 | bitmap_count_one_with_offset(block->bmap, start, npages); | |
2885 | bitmap_clear(block->bmap, start, npages); | |
2886 | qemu_mutex_unlock(&ram_state->bitmap_mutex); | |
2887 | } | |
2888 | } | |
2889 | ||
3d0684b2 JQ |
2890 | /* |
2891 | * Each of ram_save_setup, ram_save_iterate and ram_save_complete has | |
a91246c9 HZ |
2892 | * long-running RCU critical section. When rcu-reclaims in the code |
2893 | * start to become numerous it will be necessary to reduce the | |
2894 | * granularity of these critical sections. | |
2895 | */ | |
2896 | ||
3d0684b2 JQ |
2897 | /** |
2898 | * ram_save_setup: Setup RAM for migration | |
2899 | * | |
2900 | * Returns zero to indicate success and negative for error | |
2901 | * | |
2902 | * @f: QEMUFile where to send the data | |
2903 | * @opaque: RAMState pointer | |
2904 | */ | |
a91246c9 HZ |
2905 | static int ram_save_setup(QEMUFile *f, void *opaque) |
2906 | { | |
53518d94 | 2907 | RAMState **rsp = opaque; |
a91246c9 HZ |
2908 | RAMBlock *block; |
2909 | ||
dcaf446e XG |
2910 | if (compress_threads_save_setup()) { |
2911 | return -1; | |
2912 | } | |
2913 | ||
a91246c9 HZ |
2914 | /* migration has already setup the bitmap, reuse it. */ |
2915 | if (!migration_in_colo_state()) { | |
7d00ee6a | 2916 | if (ram_init_all(rsp) != 0) { |
dcaf446e | 2917 | compress_threads_save_cleanup(); |
a91246c9 | 2918 | return -1; |
53518d94 | 2919 | } |
a91246c9 | 2920 | } |
53518d94 | 2921 | (*rsp)->f = f; |
a91246c9 | 2922 | |
0e6ebd48 DDAG |
2923 | WITH_RCU_READ_LOCK_GUARD() { |
2924 | qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); | |
56e93d26 | 2925 | |
0e6ebd48 DDAG |
2926 | RAMBLOCK_FOREACH_MIGRATABLE(block) { |
2927 | qemu_put_byte(f, strlen(block->idstr)); | |
2928 | qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); | |
2929 | qemu_put_be64(f, block->used_length); | |
2930 | if (migrate_postcopy_ram() && block->page_size != | |
2931 | qemu_host_page_size) { | |
2932 | qemu_put_be64(f, block->page_size); | |
2933 | } | |
2934 | if (migrate_ignore_shared()) { | |
2935 | qemu_put_be64(f, block->mr->addr); | |
2936 | } | |
fbd162e6 | 2937 | } |
56e93d26 JQ |
2938 | } |
2939 | ||
56e93d26 JQ |
2940 | ram_control_before_iterate(f, RAM_CONTROL_SETUP); |
2941 | ram_control_after_iterate(f, RAM_CONTROL_SETUP); | |
2942 | ||
99f2c6fb | 2943 | multifd_send_sync_main(f); |
56e93d26 | 2944 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
35374cbd | 2945 | qemu_fflush(f); |
56e93d26 JQ |
2946 | |
2947 | return 0; | |
2948 | } | |
2949 | ||
3d0684b2 JQ |
2950 | /** |
2951 | * ram_save_iterate: iterative stage for migration | |
2952 | * | |
2953 | * Returns zero to indicate success and negative for error | |
2954 | * | |
2955 | * @f: QEMUFile where to send the data | |
2956 | * @opaque: RAMState pointer | |
2957 | */ | |
56e93d26 JQ |
2958 | static int ram_save_iterate(QEMUFile *f, void *opaque) |
2959 | { | |
53518d94 JQ |
2960 | RAMState **temp = opaque; |
2961 | RAMState *rs = *temp; | |
3d4095b2 | 2962 | int ret = 0; |
56e93d26 JQ |
2963 | int i; |
2964 | int64_t t0; | |
5c90308f | 2965 | int done = 0; |
56e93d26 | 2966 | |
b2557345 PL |
2967 | if (blk_mig_bulk_active()) { |
2968 | /* Avoid transferring ram during bulk phase of block migration as | |
2969 | * the bulk phase will usually take a long time and transferring | |
2970 | * ram updates during that time is pointless. */ | |
2971 | goto out; | |
2972 | } | |
2973 | ||
63268c49 PX |
2974 | /* |
2975 | * We'll take this lock a little bit long, but it's okay for two reasons. | |
2976 | * Firstly, the only possible other thread to take it is who calls | |
2977 | * qemu_guest_free_page_hint(), which should be rare; secondly, see | |
2978 | * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which | |
2979 | * guarantees that we'll at least released it in a regular basis. | |
2980 | */ | |
2981 | qemu_mutex_lock(&rs->bitmap_mutex); | |
89ac5a1d DDAG |
2982 | WITH_RCU_READ_LOCK_GUARD() { |
2983 | if (ram_list.version != rs->last_version) { | |
2984 | ram_state_reset(rs); | |
2985 | } | |
56e93d26 | 2986 | |
89ac5a1d DDAG |
2987 | /* Read version before ram_list.blocks */ |
2988 | smp_rmb(); | |
56e93d26 | 2989 | |
89ac5a1d | 2990 | ram_control_before_iterate(f, RAM_CONTROL_ROUND); |
56e93d26 | 2991 | |
89ac5a1d DDAG |
2992 | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
2993 | i = 0; | |
2994 | while ((ret = qemu_file_rate_limit(f)) == 0 || | |
2995 | !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { | |
2996 | int pages; | |
e03a34f8 | 2997 | |
89ac5a1d DDAG |
2998 | if (qemu_file_get_error(f)) { |
2999 | break; | |
3000 | } | |
e8f3735f | 3001 | |
05931ec5 | 3002 | pages = ram_find_and_save_block(rs); |
89ac5a1d DDAG |
3003 | /* no more pages to sent */ |
3004 | if (pages == 0) { | |
3005 | done = 1; | |
3006 | break; | |
3007 | } | |
e8f3735f | 3008 | |
89ac5a1d DDAG |
3009 | if (pages < 0) { |
3010 | qemu_file_set_error(f, pages); | |
56e93d26 JQ |
3011 | break; |
3012 | } | |
89ac5a1d DDAG |
3013 | |
3014 | rs->target_page_count += pages; | |
3015 | ||
644acf99 WY |
3016 | /* |
3017 | * During postcopy, it is necessary to make sure one whole host | |
3018 | * page is sent in one chunk. | |
3019 | */ | |
3020 | if (migrate_postcopy_ram()) { | |
3021 | flush_compressed_data(rs); | |
3022 | } | |
3023 | ||
89ac5a1d DDAG |
3024 | /* |
3025 | * we want to check in the 1st loop, just in case it was the 1st | |
3026 | * time and we had to sync the dirty bitmap. | |
3027 | * qemu_clock_get_ns() is a bit expensive, so we only check each | |
3028 | * some iterations | |
3029 | */ | |
3030 | if ((i & 63) == 0) { | |
3031 | uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / | |
3032 | 1000000; | |
3033 | if (t1 > MAX_WAIT) { | |
3034 | trace_ram_save_iterate_big_wait(t1, i); | |
3035 | break; | |
3036 | } | |
3037 | } | |
3038 | i++; | |
56e93d26 | 3039 | } |
56e93d26 | 3040 | } |
63268c49 | 3041 | qemu_mutex_unlock(&rs->bitmap_mutex); |
56e93d26 JQ |
3042 | |
3043 | /* | |
3044 | * Must occur before EOS (or any QEMUFile operation) | |
3045 | * because of RDMA protocol. | |
3046 | */ | |
3047 | ram_control_after_iterate(f, RAM_CONTROL_ROUND); | |
3048 | ||
b2557345 | 3049 | out: |
b69a0227 JQ |
3050 | if (ret >= 0 |
3051 | && migration_is_setup_or_active(migrate_get_current()->state)) { | |
99f2c6fb | 3052 | multifd_send_sync_main(rs->f); |
3d4095b2 JQ |
3053 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
3054 | qemu_fflush(f); | |
4c2d0f6d | 3055 | ram_transferred_add(8); |
56e93d26 | 3056 | |
3d4095b2 JQ |
3057 | ret = qemu_file_get_error(f); |
3058 | } | |
56e93d26 JQ |
3059 | if (ret < 0) { |
3060 | return ret; | |
3061 | } | |
3062 | ||
5c90308f | 3063 | return done; |
56e93d26 JQ |
3064 | } |
3065 | ||
3d0684b2 JQ |
3066 | /** |
3067 | * ram_save_complete: function called to send the remaining amount of ram | |
3068 | * | |
e8f3735f | 3069 | * Returns zero to indicate success or negative on error |
3d0684b2 JQ |
3070 | * |
3071 | * Called with iothread lock | |
3072 | * | |
3073 | * @f: QEMUFile where to send the data | |
3074 | * @opaque: RAMState pointer | |
3075 | */ | |
56e93d26 JQ |
3076 | static int ram_save_complete(QEMUFile *f, void *opaque) |
3077 | { | |
53518d94 JQ |
3078 | RAMState **temp = opaque; |
3079 | RAMState *rs = *temp; | |
e8f3735f | 3080 | int ret = 0; |
6f37bb8b | 3081 | |
05931ec5 JQ |
3082 | rs->last_stage = !migration_in_colo_state(); |
3083 | ||
89ac5a1d DDAG |
3084 | WITH_RCU_READ_LOCK_GUARD() { |
3085 | if (!migration_in_postcopy()) { | |
3086 | migration_bitmap_sync_precopy(rs); | |
3087 | } | |
56e93d26 | 3088 | |
89ac5a1d | 3089 | ram_control_before_iterate(f, RAM_CONTROL_FINISH); |
56e93d26 | 3090 | |
89ac5a1d | 3091 | /* try transferring iterative blocks of memory */ |
56e93d26 | 3092 | |
89ac5a1d DDAG |
3093 | /* flush all remaining blocks regardless of rate limiting */ |
3094 | while (true) { | |
3095 | int pages; | |
56e93d26 | 3096 | |
05931ec5 | 3097 | pages = ram_find_and_save_block(rs); |
89ac5a1d DDAG |
3098 | /* no more blocks to sent */ |
3099 | if (pages == 0) { | |
3100 | break; | |
3101 | } | |
3102 | if (pages < 0) { | |
3103 | ret = pages; | |
3104 | break; | |
3105 | } | |
e8f3735f | 3106 | } |
56e93d26 | 3107 | |
89ac5a1d DDAG |
3108 | flush_compressed_data(rs); |
3109 | ram_control_after_iterate(f, RAM_CONTROL_FINISH); | |
3110 | } | |
d09a6fde | 3111 | |
3d4095b2 | 3112 | if (ret >= 0) { |
99f2c6fb | 3113 | multifd_send_sync_main(rs->f); |
3d4095b2 JQ |
3114 | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
3115 | qemu_fflush(f); | |
3116 | } | |
56e93d26 | 3117 | |
e8f3735f | 3118 | return ret; |
56e93d26 JQ |
3119 | } |
3120 | ||
c31b098f | 3121 | static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, |
47995026 VSO |
3122 | uint64_t *res_precopy_only, |
3123 | uint64_t *res_compatible, | |
3124 | uint64_t *res_postcopy_only) | |
56e93d26 | 3125 | { |
53518d94 JQ |
3126 | RAMState **temp = opaque; |
3127 | RAMState *rs = *temp; | |
56e93d26 JQ |
3128 | uint64_t remaining_size; |
3129 | ||
9edabd4d | 3130 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 3131 | |
5727309d | 3132 | if (!migration_in_postcopy() && |
663e6c1d | 3133 | remaining_size < max_size) { |
56e93d26 | 3134 | qemu_mutex_lock_iothread(); |
89ac5a1d DDAG |
3135 | WITH_RCU_READ_LOCK_GUARD() { |
3136 | migration_bitmap_sync_precopy(rs); | |
3137 | } | |
56e93d26 | 3138 | qemu_mutex_unlock_iothread(); |
9edabd4d | 3139 | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
56e93d26 | 3140 | } |
c31b098f | 3141 | |
86e1167e VSO |
3142 | if (migrate_postcopy_ram()) { |
3143 | /* We can do postcopy, and all the data is postcopiable */ | |
47995026 | 3144 | *res_compatible += remaining_size; |
86e1167e | 3145 | } else { |
47995026 | 3146 | *res_precopy_only += remaining_size; |
86e1167e | 3147 | } |
56e93d26 JQ |
3148 | } |
3149 | ||
3150 | static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) | |
3151 | { | |
3152 | unsigned int xh_len; | |
3153 | int xh_flags; | |
063e760a | 3154 | uint8_t *loaded_data; |
56e93d26 | 3155 | |
56e93d26 JQ |
3156 | /* extract RLE header */ |
3157 | xh_flags = qemu_get_byte(f); | |
3158 | xh_len = qemu_get_be16(f); | |
3159 | ||
3160 | if (xh_flags != ENCODING_FLAG_XBZRLE) { | |
3161 | error_report("Failed to load XBZRLE page - wrong compression!"); | |
3162 | return -1; | |
3163 | } | |
3164 | ||
3165 | if (xh_len > TARGET_PAGE_SIZE) { | |
3166 | error_report("Failed to load XBZRLE page - len overflow!"); | |
3167 | return -1; | |
3168 | } | |
f265e0e4 | 3169 | loaded_data = XBZRLE.decoded_buf; |
56e93d26 | 3170 | /* load data and decode */ |
f265e0e4 | 3171 | /* it can change loaded_data to point to an internal buffer */ |
063e760a | 3172 | qemu_get_buffer_in_place(f, &loaded_data, xh_len); |
56e93d26 JQ |
3173 | |
3174 | /* decode RLE */ | |
063e760a | 3175 | if (xbzrle_decode_buffer(loaded_data, xh_len, host, |
56e93d26 JQ |
3176 | TARGET_PAGE_SIZE) == -1) { |
3177 | error_report("Failed to load XBZRLE page - decode error!"); | |
3178 | return -1; | |
3179 | } | |
3180 | ||
3181 | return 0; | |
3182 | } | |
3183 | ||
3d0684b2 JQ |
3184 | /** |
3185 | * ram_block_from_stream: read a RAMBlock id from the migration stream | |
3186 | * | |
3187 | * Must be called from within a rcu critical section. | |
3188 | * | |
56e93d26 | 3189 | * Returns a pointer from within the RCU-protected ram_list. |
a7180877 | 3190 | * |
3d0684b2 JQ |
3191 | * @f: QEMUFile where to read the data from |
3192 | * @flags: Page flags (mostly to see if it's a continuation of previous block) | |
a7180877 | 3193 | */ |
3d0684b2 | 3194 | static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) |
56e93d26 | 3195 | { |
49324e93 | 3196 | static RAMBlock *block; |
56e93d26 JQ |
3197 | char id[256]; |
3198 | uint8_t len; | |
3199 | ||
3200 | if (flags & RAM_SAVE_FLAG_CONTINUE) { | |
4c4bad48 | 3201 | if (!block) { |
56e93d26 JQ |
3202 | error_report("Ack, bad migration stream!"); |
3203 | return NULL; | |
3204 | } | |
4c4bad48 | 3205 | return block; |
56e93d26 JQ |
3206 | } |
3207 | ||
3208 | len = qemu_get_byte(f); | |
3209 | qemu_get_buffer(f, (uint8_t *)id, len); | |
3210 | id[len] = 0; | |
3211 | ||
e3dd7493 | 3212 | block = qemu_ram_block_by_name(id); |
4c4bad48 HZ |
3213 | if (!block) { |
3214 | error_report("Can't find block %s", id); | |
3215 | return NULL; | |
56e93d26 JQ |
3216 | } |
3217 | ||
fbd162e6 | 3218 | if (ramblock_is_ignored(block)) { |
b895de50 CLG |
3219 | error_report("block %s should not be migrated !", id); |
3220 | return NULL; | |
3221 | } | |
3222 | ||
4c4bad48 HZ |
3223 | return block; |
3224 | } | |
3225 | ||
3226 | static inline void *host_from_ram_block_offset(RAMBlock *block, | |
3227 | ram_addr_t offset) | |
3228 | { | |
3229 | if (!offset_in_ramblock(block, offset)) { | |
3230 | return NULL; | |
3231 | } | |
3232 | ||
3233 | return block->host + offset; | |
56e93d26 JQ |
3234 | } |
3235 | ||
6a23f639 DH |
3236 | static void *host_page_from_ram_block_offset(RAMBlock *block, |
3237 | ram_addr_t offset) | |
3238 | { | |
3239 | /* Note: Explicitly no check against offset_in_ramblock(). */ | |
3240 | return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), | |
3241 | block->page_size); | |
3242 | } | |
3243 | ||
3244 | static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, | |
3245 | ram_addr_t offset) | |
3246 | { | |
3247 | return ((uintptr_t)block->host + offset) & (block->page_size - 1); | |
3248 | } | |
3249 | ||
13af18f2 | 3250 | static inline void *colo_cache_from_block_offset(RAMBlock *block, |
8af66371 | 3251 | ram_addr_t offset, bool record_bitmap) |
13af18f2 ZC |
3252 | { |
3253 | if (!offset_in_ramblock(block, offset)) { | |
3254 | return NULL; | |
3255 | } | |
3256 | if (!block->colo_cache) { | |
3257 | error_report("%s: colo_cache is NULL in block :%s", | |
3258 | __func__, block->idstr); | |
3259 | return NULL; | |
3260 | } | |
7d9acafa ZC |
3261 | |
3262 | /* | |
3263 | * During colo checkpoint, we need bitmap of these migrated pages. | |
3264 | * It help us to decide which pages in ram cache should be flushed | |
3265 | * into VM's RAM later. | |
3266 | */ | |
8af66371 HZ |
3267 | if (record_bitmap && |
3268 | !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { | |
7d9acafa ZC |
3269 | ram_state->migration_dirty_pages++; |
3270 | } | |
13af18f2 ZC |
3271 | return block->colo_cache + offset; |
3272 | } | |
3273 | ||
3d0684b2 JQ |
3274 | /** |
3275 | * ram_handle_compressed: handle the zero page case | |
3276 | * | |
56e93d26 JQ |
3277 | * If a page (or a whole RDMA chunk) has been |
3278 | * determined to be zero, then zap it. | |
3d0684b2 JQ |
3279 | * |
3280 | * @host: host address for the zero page | |
3281 | * @ch: what the page is filled from. We only support zero | |
3282 | * @size: size of the zero page | |
56e93d26 JQ |
3283 | */ |
3284 | void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) | |
3285 | { | |
bad452a7 | 3286 | if (ch != 0 || !buffer_is_zero(host, size)) { |
56e93d26 JQ |
3287 | memset(host, ch, size); |
3288 | } | |
3289 | } | |
3290 | ||
797ca154 XG |
3291 | /* return the size after decompression, or negative value on error */ |
3292 | static int | |
3293 | qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, | |
3294 | const uint8_t *source, size_t source_len) | |
3295 | { | |
3296 | int err; | |
3297 | ||
3298 | err = inflateReset(stream); | |
3299 | if (err != Z_OK) { | |
3300 | return -1; | |
3301 | } | |
3302 | ||
3303 | stream->avail_in = source_len; | |
3304 | stream->next_in = (uint8_t *)source; | |
3305 | stream->avail_out = dest_len; | |
3306 | stream->next_out = dest; | |
3307 | ||
3308 | err = inflate(stream, Z_NO_FLUSH); | |
3309 | if (err != Z_STREAM_END) { | |
3310 | return -1; | |
3311 | } | |
3312 | ||
3313 | return stream->total_out; | |
3314 | } | |
3315 | ||
56e93d26 JQ |
3316 | static void *do_data_decompress(void *opaque) |
3317 | { | |
3318 | DecompressParam *param = opaque; | |
3319 | unsigned long pagesize; | |
33d151f4 | 3320 | uint8_t *des; |
34ab9e97 | 3321 | int len, ret; |
56e93d26 | 3322 | |
33d151f4 | 3323 | qemu_mutex_lock(¶m->mutex); |
90e56fb4 | 3324 | while (!param->quit) { |
33d151f4 LL |
3325 | if (param->des) { |
3326 | des = param->des; | |
3327 | len = param->len; | |
3328 | param->des = 0; | |
3329 | qemu_mutex_unlock(¶m->mutex); | |
3330 | ||
56e93d26 | 3331 | pagesize = TARGET_PAGE_SIZE; |
34ab9e97 XG |
3332 | |
3333 | ret = qemu_uncompress_data(¶m->stream, des, pagesize, | |
3334 | param->compbuf, len); | |
f548222c | 3335 | if (ret < 0 && migrate_get_current()->decompress_error_check) { |
34ab9e97 XG |
3336 | error_report("decompress data failed"); |
3337 | qemu_file_set_error(decomp_file, ret); | |
3338 | } | |
73a8912b | 3339 | |
33d151f4 LL |
3340 | qemu_mutex_lock(&decomp_done_lock); |
3341 | param->done = true; | |
3342 | qemu_cond_signal(&decomp_done_cond); | |
3343 | qemu_mutex_unlock(&decomp_done_lock); | |
3344 | ||
3345 | qemu_mutex_lock(¶m->mutex); | |
3346 | } else { | |
3347 | qemu_cond_wait(¶m->cond, ¶m->mutex); | |
3348 | } | |
56e93d26 | 3349 | } |
33d151f4 | 3350 | qemu_mutex_unlock(¶m->mutex); |
56e93d26 JQ |
3351 | |
3352 | return NULL; | |
3353 | } | |
3354 | ||
34ab9e97 | 3355 | static int wait_for_decompress_done(void) |
5533b2e9 LL |
3356 | { |
3357 | int idx, thread_count; | |
3358 | ||
3359 | if (!migrate_use_compression()) { | |
34ab9e97 | 3360 | return 0; |
5533b2e9 LL |
3361 | } |
3362 | ||
3363 | thread_count = migrate_decompress_threads(); | |
3364 | qemu_mutex_lock(&decomp_done_lock); | |
3365 | for (idx = 0; idx < thread_count; idx++) { | |
3366 | while (!decomp_param[idx].done) { | |
3367 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
3368 | } | |
3369 | } | |
3370 | qemu_mutex_unlock(&decomp_done_lock); | |
34ab9e97 | 3371 | return qemu_file_get_error(decomp_file); |
5533b2e9 LL |
3372 | } |
3373 | ||
f0afa331 | 3374 | static void compress_threads_load_cleanup(void) |
56e93d26 JQ |
3375 | { |
3376 | int i, thread_count; | |
3377 | ||
3416ab5b JQ |
3378 | if (!migrate_use_compression()) { |
3379 | return; | |
3380 | } | |
56e93d26 JQ |
3381 | thread_count = migrate_decompress_threads(); |
3382 | for (i = 0; i < thread_count; i++) { | |
797ca154 XG |
3383 | /* |
3384 | * we use it as a indicator which shows if the thread is | |
3385 | * properly init'd or not | |
3386 | */ | |
3387 | if (!decomp_param[i].compbuf) { | |
3388 | break; | |
3389 | } | |
3390 | ||
56e93d26 | 3391 | qemu_mutex_lock(&decomp_param[i].mutex); |
90e56fb4 | 3392 | decomp_param[i].quit = true; |
56e93d26 JQ |
3393 | qemu_cond_signal(&decomp_param[i].cond); |
3394 | qemu_mutex_unlock(&decomp_param[i].mutex); | |
3395 | } | |
3396 | for (i = 0; i < thread_count; i++) { | |
797ca154 XG |
3397 | if (!decomp_param[i].compbuf) { |
3398 | break; | |
3399 | } | |
3400 | ||
56e93d26 JQ |
3401 | qemu_thread_join(decompress_threads + i); |
3402 | qemu_mutex_destroy(&decomp_param[i].mutex); | |
3403 | qemu_cond_destroy(&decomp_param[i].cond); | |
797ca154 | 3404 | inflateEnd(&decomp_param[i].stream); |
56e93d26 | 3405 | g_free(decomp_param[i].compbuf); |
797ca154 | 3406 | decomp_param[i].compbuf = NULL; |
56e93d26 JQ |
3407 | } |
3408 | g_free(decompress_threads); | |
3409 | g_free(decomp_param); | |
56e93d26 JQ |
3410 | decompress_threads = NULL; |
3411 | decomp_param = NULL; | |
34ab9e97 | 3412 | decomp_file = NULL; |
56e93d26 JQ |
3413 | } |
3414 | ||
34ab9e97 | 3415 | static int compress_threads_load_setup(QEMUFile *f) |
797ca154 XG |
3416 | { |
3417 | int i, thread_count; | |
3418 | ||
3419 | if (!migrate_use_compression()) { | |
3420 | return 0; | |
3421 | } | |
3422 | ||
3423 | thread_count = migrate_decompress_threads(); | |
3424 | decompress_threads = g_new0(QemuThread, thread_count); | |
3425 | decomp_param = g_new0(DecompressParam, thread_count); | |
3426 | qemu_mutex_init(&decomp_done_lock); | |
3427 | qemu_cond_init(&decomp_done_cond); | |
34ab9e97 | 3428 | decomp_file = f; |
797ca154 XG |
3429 | for (i = 0; i < thread_count; i++) { |
3430 | if (inflateInit(&decomp_param[i].stream) != Z_OK) { | |
3431 | goto exit; | |
3432 | } | |
3433 | ||
3434 | decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); | |
3435 | qemu_mutex_init(&decomp_param[i].mutex); | |
3436 | qemu_cond_init(&decomp_param[i].cond); | |
3437 | decomp_param[i].done = true; | |
3438 | decomp_param[i].quit = false; | |
3439 | qemu_thread_create(decompress_threads + i, "decompress", | |
3440 | do_data_decompress, decomp_param + i, | |
3441 | QEMU_THREAD_JOINABLE); | |
3442 | } | |
3443 | return 0; | |
3444 | exit: | |
3445 | compress_threads_load_cleanup(); | |
3446 | return -1; | |
3447 | } | |
3448 | ||
c1bc6626 | 3449 | static void decompress_data_with_multi_threads(QEMUFile *f, |
56e93d26 JQ |
3450 | void *host, int len) |
3451 | { | |
3452 | int idx, thread_count; | |
3453 | ||
3454 | thread_count = migrate_decompress_threads(); | |
37396950 | 3455 | QEMU_LOCK_GUARD(&decomp_done_lock); |
56e93d26 JQ |
3456 | while (true) { |
3457 | for (idx = 0; idx < thread_count; idx++) { | |
73a8912b | 3458 | if (decomp_param[idx].done) { |
33d151f4 LL |
3459 | decomp_param[idx].done = false; |
3460 | qemu_mutex_lock(&decomp_param[idx].mutex); | |
c1bc6626 | 3461 | qemu_get_buffer(f, decomp_param[idx].compbuf, len); |
56e93d26 JQ |
3462 | decomp_param[idx].des = host; |
3463 | decomp_param[idx].len = len; | |
33d151f4 LL |
3464 | qemu_cond_signal(&decomp_param[idx].cond); |
3465 | qemu_mutex_unlock(&decomp_param[idx].mutex); | |
56e93d26 JQ |
3466 | break; |
3467 | } | |
3468 | } | |
3469 | if (idx < thread_count) { | |
3470 | break; | |
73a8912b LL |
3471 | } else { |
3472 | qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); | |
56e93d26 JQ |
3473 | } |
3474 | } | |
3475 | } | |
3476 | ||
b70cb3b4 RL |
3477 | static void colo_init_ram_state(void) |
3478 | { | |
3479 | ram_state_init(&ram_state); | |
b70cb3b4 RL |
3480 | } |
3481 | ||
13af18f2 ZC |
3482 | /* |
3483 | * colo cache: this is for secondary VM, we cache the whole | |
3484 | * memory of the secondary VM, it is need to hold the global lock | |
3485 | * to call this helper. | |
3486 | */ | |
3487 | int colo_init_ram_cache(void) | |
3488 | { | |
3489 | RAMBlock *block; | |
3490 | ||
44901b5a PB |
3491 | WITH_RCU_READ_LOCK_GUARD() { |
3492 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3493 | block->colo_cache = qemu_anon_ram_alloc(block->used_length, | |
8dbe22c6 | 3494 | NULL, false, false); |
44901b5a PB |
3495 | if (!block->colo_cache) { |
3496 | error_report("%s: Can't alloc memory for COLO cache of block %s," | |
3497 | "size 0x" RAM_ADDR_FMT, __func__, block->idstr, | |
3498 | block->used_length); | |
3499 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3500 | if (block->colo_cache) { | |
3501 | qemu_anon_ram_free(block->colo_cache, block->used_length); | |
3502 | block->colo_cache = NULL; | |
3503 | } | |
89ac5a1d | 3504 | } |
44901b5a | 3505 | return -errno; |
89ac5a1d | 3506 | } |
e5fdf920 LS |
3507 | if (!machine_dump_guest_core(current_machine)) { |
3508 | qemu_madvise(block->colo_cache, block->used_length, | |
3509 | QEMU_MADV_DONTDUMP); | |
3510 | } | |
13af18f2 | 3511 | } |
13af18f2 | 3512 | } |
44901b5a | 3513 | |
7d9acafa ZC |
3514 | /* |
3515 | * Record the dirty pages that sent by PVM, we use this dirty bitmap together | |
3516 | * with to decide which page in cache should be flushed into SVM's RAM. Here | |
3517 | * we use the same name 'ram_bitmap' as for migration. | |
3518 | */ | |
3519 | if (ram_bytes_total()) { | |
3520 | RAMBlock *block; | |
3521 | ||
fbd162e6 | 3522 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
7d9acafa | 3523 | unsigned long pages = block->max_length >> TARGET_PAGE_BITS; |
7d9acafa | 3524 | block->bmap = bitmap_new(pages); |
7d9acafa ZC |
3525 | } |
3526 | } | |
7d9acafa | 3527 | |
b70cb3b4 | 3528 | colo_init_ram_state(); |
13af18f2 | 3529 | return 0; |
13af18f2 ZC |
3530 | } |
3531 | ||
0393031a HZ |
3532 | /* TODO: duplicated with ram_init_bitmaps */ |
3533 | void colo_incoming_start_dirty_log(void) | |
3534 | { | |
3535 | RAMBlock *block = NULL; | |
3536 | /* For memory_global_dirty_log_start below. */ | |
3537 | qemu_mutex_lock_iothread(); | |
3538 | qemu_mutex_lock_ramlist(); | |
3539 | ||
3540 | memory_global_dirty_log_sync(); | |
3541 | WITH_RCU_READ_LOCK_GUARD() { | |
3542 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3543 | ramblock_sync_dirty_bitmap(ram_state, block); | |
3544 | /* Discard this dirty bitmap record */ | |
3545 | bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); | |
3546 | } | |
63b41db4 | 3547 | memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
0393031a HZ |
3548 | } |
3549 | ram_state->migration_dirty_pages = 0; | |
3550 | qemu_mutex_unlock_ramlist(); | |
3551 | qemu_mutex_unlock_iothread(); | |
3552 | } | |
3553 | ||
13af18f2 ZC |
3554 | /* It is need to hold the global lock to call this helper */ |
3555 | void colo_release_ram_cache(void) | |
3556 | { | |
3557 | RAMBlock *block; | |
3558 | ||
63b41db4 | 3559 | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); |
fbd162e6 | 3560 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
7d9acafa ZC |
3561 | g_free(block->bmap); |
3562 | block->bmap = NULL; | |
3563 | } | |
3564 | ||
89ac5a1d DDAG |
3565 | WITH_RCU_READ_LOCK_GUARD() { |
3566 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3567 | if (block->colo_cache) { | |
3568 | qemu_anon_ram_free(block->colo_cache, block->used_length); | |
3569 | block->colo_cache = NULL; | |
3570 | } | |
13af18f2 ZC |
3571 | } |
3572 | } | |
0393031a | 3573 | ram_state_cleanup(&ram_state); |
13af18f2 ZC |
3574 | } |
3575 | ||
f265e0e4 JQ |
3576 | /** |
3577 | * ram_load_setup: Setup RAM for migration incoming side | |
3578 | * | |
3579 | * Returns zero to indicate success and negative for error | |
3580 | * | |
3581 | * @f: QEMUFile where to receive the data | |
3582 | * @opaque: RAMState pointer | |
3583 | */ | |
3584 | static int ram_load_setup(QEMUFile *f, void *opaque) | |
3585 | { | |
34ab9e97 | 3586 | if (compress_threads_load_setup(f)) { |
797ca154 XG |
3587 | return -1; |
3588 | } | |
3589 | ||
f265e0e4 | 3590 | xbzrle_load_setup(); |
f9494614 | 3591 | ramblock_recv_map_init(); |
13af18f2 | 3592 | |
f265e0e4 JQ |
3593 | return 0; |
3594 | } | |
3595 | ||
3596 | static int ram_load_cleanup(void *opaque) | |
3597 | { | |
f9494614 | 3598 | RAMBlock *rb; |
56eb90af | 3599 | |
fbd162e6 | 3600 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
bd108a44 | 3601 | qemu_ram_block_writeback(rb); |
56eb90af JH |
3602 | } |
3603 | ||
f265e0e4 | 3604 | xbzrle_load_cleanup(); |
f0afa331 | 3605 | compress_threads_load_cleanup(); |
f9494614 | 3606 | |
fbd162e6 | 3607 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
f9494614 AP |
3608 | g_free(rb->receivedmap); |
3609 | rb->receivedmap = NULL; | |
3610 | } | |
13af18f2 | 3611 | |
f265e0e4 JQ |
3612 | return 0; |
3613 | } | |
3614 | ||
3d0684b2 JQ |
3615 | /** |
3616 | * ram_postcopy_incoming_init: allocate postcopy data structures | |
3617 | * | |
3618 | * Returns 0 for success and negative if there was one error | |
3619 | * | |
3620 | * @mis: current migration incoming state | |
3621 | * | |
3622 | * Allocate data structures etc needed by incoming migration with | |
3623 | * postcopy-ram. postcopy-ram's similarly names | |
3624 | * postcopy_ram_incoming_init does the work. | |
1caddf8a DDAG |
3625 | */ |
3626 | int ram_postcopy_incoming_init(MigrationIncomingState *mis) | |
3627 | { | |
c136180c | 3628 | return postcopy_ram_incoming_init(mis); |
1caddf8a DDAG |
3629 | } |
3630 | ||
3d0684b2 JQ |
3631 | /** |
3632 | * ram_load_postcopy: load a page in postcopy case | |
3633 | * | |
3634 | * Returns 0 for success or -errno in case of error | |
3635 | * | |
a7180877 DDAG |
3636 | * Called in postcopy mode by ram_load(). |
3637 | * rcu_read_lock is taken prior to this being called. | |
3d0684b2 JQ |
3638 | * |
3639 | * @f: QEMUFile where to send the data | |
a7180877 DDAG |
3640 | */ |
3641 | static int ram_load_postcopy(QEMUFile *f) | |
3642 | { | |
3643 | int flags = 0, ret = 0; | |
3644 | bool place_needed = false; | |
1aa83678 | 3645 | bool matches_target_page_size = false; |
a7180877 DDAG |
3646 | MigrationIncomingState *mis = migration_incoming_get_current(); |
3647 | /* Temporary page that is later 'placed' */ | |
3414322a | 3648 | void *postcopy_host_page = mis->postcopy_tmp_page; |
6a23f639 | 3649 | void *host_page = NULL; |
ddf35bdf | 3650 | bool all_zero = true; |
4cbb3c63 | 3651 | int target_pages = 0; |
a7180877 DDAG |
3652 | |
3653 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | |
3654 | ram_addr_t addr; | |
a7180877 DDAG |
3655 | void *page_buffer = NULL; |
3656 | void *place_source = NULL; | |
df9ff5e1 | 3657 | RAMBlock *block = NULL; |
a7180877 | 3658 | uint8_t ch; |
644acf99 | 3659 | int len; |
a7180877 DDAG |
3660 | |
3661 | addr = qemu_get_be64(f); | |
7a9ddfbf PX |
3662 | |
3663 | /* | |
3664 | * If qemu file error, we should stop here, and then "addr" | |
3665 | * may be invalid | |
3666 | */ | |
3667 | ret = qemu_file_get_error(f); | |
3668 | if (ret) { | |
3669 | break; | |
3670 | } | |
3671 | ||
a7180877 DDAG |
3672 | flags = addr & ~TARGET_PAGE_MASK; |
3673 | addr &= TARGET_PAGE_MASK; | |
3674 | ||
3675 | trace_ram_load_postcopy_loop((uint64_t)addr, flags); | |
644acf99 WY |
3676 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
3677 | RAM_SAVE_FLAG_COMPRESS_PAGE)) { | |
df9ff5e1 | 3678 | block = ram_block_from_stream(f, flags); |
6a23f639 DH |
3679 | if (!block) { |
3680 | ret = -EINVAL; | |
3681 | break; | |
3682 | } | |
4c4bad48 | 3683 | |
898ba906 DH |
3684 | /* |
3685 | * Relying on used_length is racy and can result in false positives. | |
3686 | * We might place pages beyond used_length in case RAM was shrunk | |
3687 | * while in postcopy, which is fine - trying to place via | |
3688 | * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. | |
3689 | */ | |
3690 | if (!block->host || addr >= block->postcopy_length) { | |
a7180877 DDAG |
3691 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
3692 | ret = -EINVAL; | |
3693 | break; | |
3694 | } | |
4cbb3c63 | 3695 | target_pages++; |
1aa83678 | 3696 | matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; |
a7180877 | 3697 | /* |
28abd200 DDAG |
3698 | * Postcopy requires that we place whole host pages atomically; |
3699 | * these may be huge pages for RAMBlocks that are backed by | |
3700 | * hugetlbfs. | |
a7180877 DDAG |
3701 | * To make it atomic, the data is read into a temporary page |
3702 | * that's moved into place later. | |
3703 | * The migration protocol uses, possibly smaller, target-pages | |
3704 | * however the source ensures it always sends all the components | |
91ba442f | 3705 | * of a host page in one chunk. |
a7180877 DDAG |
3706 | */ |
3707 | page_buffer = postcopy_host_page + | |
6a23f639 DH |
3708 | host_page_offset_from_ram_block_offset(block, addr); |
3709 | /* If all TP are zero then we can optimise the place */ | |
e5e73b0f | 3710 | if (target_pages == 1) { |
6a23f639 DH |
3711 | host_page = host_page_from_ram_block_offset(block, addr); |
3712 | } else if (host_page != host_page_from_ram_block_offset(block, | |
3713 | addr)) { | |
c53b7ddc | 3714 | /* not the 1st TP within the HP */ |
6a23f639 DH |
3715 | error_report("Non-same host page %p/%p", host_page, |
3716 | host_page_from_ram_block_offset(block, addr)); | |
3717 | ret = -EINVAL; | |
3718 | break; | |
a7180877 DDAG |
3719 | } |
3720 | ||
3721 | /* | |
3722 | * If it's the last part of a host page then we place the host | |
3723 | * page | |
3724 | */ | |
4cbb3c63 WY |
3725 | if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) { |
3726 | place_needed = true; | |
4cbb3c63 | 3727 | } |
a7180877 DDAG |
3728 | place_source = postcopy_host_page; |
3729 | } | |
3730 | ||
3731 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | |
bb890ed5 | 3732 | case RAM_SAVE_FLAG_ZERO: |
a7180877 | 3733 | ch = qemu_get_byte(f); |
2e36bc1b WY |
3734 | /* |
3735 | * Can skip to set page_buffer when | |
3736 | * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). | |
3737 | */ | |
3738 | if (ch || !matches_target_page_size) { | |
3739 | memset(page_buffer, ch, TARGET_PAGE_SIZE); | |
3740 | } | |
a7180877 DDAG |
3741 | if (ch) { |
3742 | all_zero = false; | |
3743 | } | |
3744 | break; | |
3745 | ||
3746 | case RAM_SAVE_FLAG_PAGE: | |
3747 | all_zero = false; | |
1aa83678 PX |
3748 | if (!matches_target_page_size) { |
3749 | /* For huge pages, we always use temporary buffer */ | |
a7180877 DDAG |
3750 | qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); |
3751 | } else { | |
1aa83678 PX |
3752 | /* |
3753 | * For small pages that matches target page size, we | |
3754 | * avoid the qemu_file copy. Instead we directly use | |
3755 | * the buffer of QEMUFile to place the page. Note: we | |
3756 | * cannot do any QEMUFile operation before using that | |
3757 | * buffer to make sure the buffer is valid when | |
3758 | * placing the page. | |
a7180877 DDAG |
3759 | */ |
3760 | qemu_get_buffer_in_place(f, (uint8_t **)&place_source, | |
3761 | TARGET_PAGE_SIZE); | |
3762 | } | |
3763 | break; | |
644acf99 WY |
3764 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
3765 | all_zero = false; | |
3766 | len = qemu_get_be32(f); | |
3767 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
3768 | error_report("Invalid compressed data length: %d", len); | |
3769 | ret = -EINVAL; | |
3770 | break; | |
3771 | } | |
3772 | decompress_data_with_multi_threads(f, page_buffer, len); | |
3773 | break; | |
3774 | ||
a7180877 DDAG |
3775 | case RAM_SAVE_FLAG_EOS: |
3776 | /* normal exit */ | |
6df264ac | 3777 | multifd_recv_sync_main(); |
a7180877 DDAG |
3778 | break; |
3779 | default: | |
29fccade | 3780 | error_report("Unknown combination of migration flags: 0x%x" |
a7180877 DDAG |
3781 | " (postcopy mode)", flags); |
3782 | ret = -EINVAL; | |
7a9ddfbf PX |
3783 | break; |
3784 | } | |
3785 | ||
644acf99 WY |
3786 | /* Got the whole host page, wait for decompress before placing. */ |
3787 | if (place_needed) { | |
3788 | ret |= wait_for_decompress_done(); | |
3789 | } | |
3790 | ||
7a9ddfbf PX |
3791 | /* Detect for any possible file errors */ |
3792 | if (!ret && qemu_file_get_error(f)) { | |
3793 | ret = qemu_file_get_error(f); | |
a7180877 DDAG |
3794 | } |
3795 | ||
7a9ddfbf | 3796 | if (!ret && place_needed) { |
a7180877 | 3797 | if (all_zero) { |
6a23f639 | 3798 | ret = postcopy_place_page_zero(mis, host_page, block); |
a7180877 | 3799 | } else { |
6a23f639 DH |
3800 | ret = postcopy_place_page(mis, host_page, place_source, |
3801 | block); | |
a7180877 | 3802 | } |
ddf35bdf DH |
3803 | place_needed = false; |
3804 | target_pages = 0; | |
3805 | /* Assume we have a zero page until we detect something different */ | |
3806 | all_zero = true; | |
a7180877 | 3807 | } |
a7180877 DDAG |
3808 | } |
3809 | ||
3810 | return ret; | |
3811 | } | |
3812 | ||
acab30b8 DHB |
3813 | static bool postcopy_is_advised(void) |
3814 | { | |
3815 | PostcopyState ps = postcopy_state_get(); | |
3816 | return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; | |
3817 | } | |
3818 | ||
3819 | static bool postcopy_is_running(void) | |
3820 | { | |
3821 | PostcopyState ps = postcopy_state_get(); | |
3822 | return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; | |
3823 | } | |
3824 | ||
e6f4aa18 ZC |
3825 | /* |
3826 | * Flush content of RAM cache into SVM's memory. | |
3827 | * Only flush the pages that be dirtied by PVM or SVM or both. | |
3828 | */ | |
24fa16f8 | 3829 | void colo_flush_ram_cache(void) |
e6f4aa18 ZC |
3830 | { |
3831 | RAMBlock *block = NULL; | |
3832 | void *dst_host; | |
3833 | void *src_host; | |
3834 | unsigned long offset = 0; | |
3835 | ||
d1955d22 | 3836 | memory_global_dirty_log_sync(); |
89ac5a1d DDAG |
3837 | WITH_RCU_READ_LOCK_GUARD() { |
3838 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | |
3839 | ramblock_sync_dirty_bitmap(ram_state, block); | |
3840 | } | |
d1955d22 | 3841 | } |
d1955d22 | 3842 | |
e6f4aa18 | 3843 | trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); |
89ac5a1d DDAG |
3844 | WITH_RCU_READ_LOCK_GUARD() { |
3845 | block = QLIST_FIRST_RCU(&ram_list.blocks); | |
e6f4aa18 | 3846 | |
89ac5a1d | 3847 | while (block) { |
a6a83cef | 3848 | unsigned long num = 0; |
e6f4aa18 | 3849 | |
a6a83cef | 3850 | offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); |
542147f4 DH |
3851 | if (!offset_in_ramblock(block, |
3852 | ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { | |
89ac5a1d | 3853 | offset = 0; |
a6a83cef | 3854 | num = 0; |
89ac5a1d DDAG |
3855 | block = QLIST_NEXT_RCU(block, next); |
3856 | } else { | |
a6a83cef RL |
3857 | unsigned long i = 0; |
3858 | ||
3859 | for (i = 0; i < num; i++) { | |
3860 | migration_bitmap_clear_dirty(ram_state, block, offset + i); | |
3861 | } | |
8bba004c AR |
3862 | dst_host = block->host |
3863 | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | |
3864 | src_host = block->colo_cache | |
3865 | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | |
a6a83cef RL |
3866 | memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); |
3867 | offset += num; | |
89ac5a1d | 3868 | } |
e6f4aa18 ZC |
3869 | } |
3870 | } | |
e6f4aa18 ZC |
3871 | trace_colo_flush_ram_cache_end(); |
3872 | } | |
3873 | ||
10da4a36 WY |
3874 | /** |
3875 | * ram_load_precopy: load pages in precopy case | |
3876 | * | |
3877 | * Returns 0 for success or -errno in case of error | |
3878 | * | |
3879 | * Called in precopy mode by ram_load(). | |
3880 | * rcu_read_lock is taken prior to this being called. | |
3881 | * | |
3882 | * @f: QEMUFile where to send the data | |
3883 | */ | |
3884 | static int ram_load_precopy(QEMUFile *f) | |
56e93d26 | 3885 | { |
e65cec5e | 3886 | int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; |
ef08fb38 | 3887 | /* ADVISE is earlier, it shows the source has the postcopy capability on */ |
acab30b8 | 3888 | bool postcopy_advised = postcopy_is_advised(); |
edc60127 JQ |
3889 | if (!migrate_use_compression()) { |
3890 | invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; | |
3891 | } | |
a7180877 | 3892 | |
10da4a36 | 3893 | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
56e93d26 | 3894 | ram_addr_t addr, total_ram_bytes; |
0393031a | 3895 | void *host = NULL, *host_bak = NULL; |
56e93d26 JQ |
3896 | uint8_t ch; |
3897 | ||
e65cec5e YK |
3898 | /* |
3899 | * Yield periodically to let main loop run, but an iteration of | |
3900 | * the main loop is expensive, so do it each some iterations | |
3901 | */ | |
3902 | if ((i & 32767) == 0 && qemu_in_coroutine()) { | |
3903 | aio_co_schedule(qemu_get_current_aio_context(), | |
3904 | qemu_coroutine_self()); | |
3905 | qemu_coroutine_yield(); | |
3906 | } | |
3907 | i++; | |
3908 | ||
56e93d26 JQ |
3909 | addr = qemu_get_be64(f); |
3910 | flags = addr & ~TARGET_PAGE_MASK; | |
3911 | addr &= TARGET_PAGE_MASK; | |
3912 | ||
edc60127 JQ |
3913 | if (flags & invalid_flags) { |
3914 | if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { | |
3915 | error_report("Received an unexpected compressed page"); | |
3916 | } | |
3917 | ||
3918 | ret = -EINVAL; | |
3919 | break; | |
3920 | } | |
3921 | ||
bb890ed5 | 3922 | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
a776aa15 | 3923 | RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { |
4c4bad48 HZ |
3924 | RAMBlock *block = ram_block_from_stream(f, flags); |
3925 | ||
0393031a | 3926 | host = host_from_ram_block_offset(block, addr); |
13af18f2 | 3927 | /* |
0393031a HZ |
3928 | * After going into COLO stage, we should not load the page |
3929 | * into SVM's memory directly, we put them into colo_cache firstly. | |
3930 | * NOTE: We need to keep a copy of SVM's ram in colo_cache. | |
3931 | * Previously, we copied all these memory in preparing stage of COLO | |
3932 | * while we need to stop VM, which is a time-consuming process. | |
3933 | * Here we optimize it by a trick, back-up every page while in | |
3934 | * migration process while COLO is enabled, though it affects the | |
3935 | * speed of the migration, but it obviously reduce the downtime of | |
3936 | * back-up all SVM'S memory in COLO preparing stage. | |
13af18f2 | 3937 | */ |
0393031a HZ |
3938 | if (migration_incoming_colo_enabled()) { |
3939 | if (migration_incoming_in_colo_state()) { | |
3940 | /* In COLO stage, put all pages into cache temporarily */ | |
8af66371 | 3941 | host = colo_cache_from_block_offset(block, addr, true); |
0393031a HZ |
3942 | } else { |
3943 | /* | |
3944 | * In migration stage but before COLO stage, | |
3945 | * Put all pages into both cache and SVM's memory. | |
3946 | */ | |
8af66371 | 3947 | host_bak = colo_cache_from_block_offset(block, addr, false); |
0393031a | 3948 | } |
13af18f2 | 3949 | } |
a776aa15 DDAG |
3950 | if (!host) { |
3951 | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | |
3952 | ret = -EINVAL; | |
3953 | break; | |
3954 | } | |
13af18f2 ZC |
3955 | if (!migration_incoming_in_colo_state()) { |
3956 | ramblock_recv_bitmap_set(block, host); | |
3957 | } | |
3958 | ||
1db9d8e5 | 3959 | trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); |
a776aa15 DDAG |
3960 | } |
3961 | ||
56e93d26 JQ |
3962 | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
3963 | case RAM_SAVE_FLAG_MEM_SIZE: | |
3964 | /* Synchronize RAM block list */ | |
3965 | total_ram_bytes = addr; | |
3966 | while (!ret && total_ram_bytes) { | |
3967 | RAMBlock *block; | |
56e93d26 JQ |
3968 | char id[256]; |
3969 | ram_addr_t length; | |
3970 | ||
3971 | len = qemu_get_byte(f); | |
3972 | qemu_get_buffer(f, (uint8_t *)id, len); | |
3973 | id[len] = 0; | |
3974 | length = qemu_get_be64(f); | |
3975 | ||
e3dd7493 | 3976 | block = qemu_ram_block_by_name(id); |
b895de50 CLG |
3977 | if (block && !qemu_ram_is_migratable(block)) { |
3978 | error_report("block %s should not be migrated !", id); | |
3979 | ret = -EINVAL; | |
3980 | } else if (block) { | |
e3dd7493 DDAG |
3981 | if (length != block->used_length) { |
3982 | Error *local_err = NULL; | |
56e93d26 | 3983 | |
fa53a0e5 | 3984 | ret = qemu_ram_resize(block, length, |
e3dd7493 DDAG |
3985 | &local_err); |
3986 | if (local_err) { | |
3987 | error_report_err(local_err); | |
56e93d26 | 3988 | } |
56e93d26 | 3989 | } |
ef08fb38 | 3990 | /* For postcopy we need to check hugepage sizes match */ |
e846b746 | 3991 | if (postcopy_advised && migrate_postcopy_ram() && |
ef08fb38 DDAG |
3992 | block->page_size != qemu_host_page_size) { |
3993 | uint64_t remote_page_size = qemu_get_be64(f); | |
3994 | if (remote_page_size != block->page_size) { | |
3995 | error_report("Mismatched RAM page size %s " | |
3996 | "(local) %zd != %" PRId64, | |
3997 | id, block->page_size, | |
3998 | remote_page_size); | |
3999 | ret = -EINVAL; | |
4000 | } | |
4001 | } | |
fbd162e6 YK |
4002 | if (migrate_ignore_shared()) { |
4003 | hwaddr addr = qemu_get_be64(f); | |
fbd162e6 YK |
4004 | if (ramblock_is_ignored(block) && |
4005 | block->mr->addr != addr) { | |
4006 | error_report("Mismatched GPAs for block %s " | |
4007 | "%" PRId64 "!= %" PRId64, | |
4008 | id, (uint64_t)addr, | |
4009 | (uint64_t)block->mr->addr); | |
4010 | ret = -EINVAL; | |
4011 | } | |
4012 | } | |
e3dd7493 DDAG |
4013 | ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
4014 | block->idstr); | |
4015 | } else { | |
56e93d26 JQ |
4016 | error_report("Unknown ramblock \"%s\", cannot " |
4017 | "accept migration", id); | |
4018 | ret = -EINVAL; | |
4019 | } | |
4020 | ||
4021 | total_ram_bytes -= length; | |
4022 | } | |
4023 | break; | |
a776aa15 | 4024 | |
bb890ed5 | 4025 | case RAM_SAVE_FLAG_ZERO: |
56e93d26 JQ |
4026 | ch = qemu_get_byte(f); |
4027 | ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); | |
4028 | break; | |
a776aa15 | 4029 | |
56e93d26 | 4030 | case RAM_SAVE_FLAG_PAGE: |
56e93d26 JQ |
4031 | qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
4032 | break; | |
56e93d26 | 4033 | |
a776aa15 | 4034 | case RAM_SAVE_FLAG_COMPRESS_PAGE: |
56e93d26 JQ |
4035 | len = qemu_get_be32(f); |
4036 | if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { | |
4037 | error_report("Invalid compressed data length: %d", len); | |
4038 | ret = -EINVAL; | |
4039 | break; | |
4040 | } | |
c1bc6626 | 4041 | decompress_data_with_multi_threads(f, host, len); |
56e93d26 | 4042 | break; |
a776aa15 | 4043 | |
56e93d26 | 4044 | case RAM_SAVE_FLAG_XBZRLE: |
56e93d26 JQ |
4045 | if (load_xbzrle(f, addr, host) < 0) { |
4046 | error_report("Failed to decompress XBZRLE page at " | |
4047 | RAM_ADDR_FMT, addr); | |
4048 | ret = -EINVAL; | |
4049 | break; | |
4050 | } | |
4051 | break; | |
4052 | case RAM_SAVE_FLAG_EOS: | |
4053 | /* normal exit */ | |
6df264ac | 4054 | multifd_recv_sync_main(); |
56e93d26 JQ |
4055 | break; |
4056 | default: | |
4057 | if (flags & RAM_SAVE_FLAG_HOOK) { | |
632e3a5c | 4058 | ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
56e93d26 | 4059 | } else { |
29fccade | 4060 | error_report("Unknown combination of migration flags: 0x%x", |
56e93d26 JQ |
4061 | flags); |
4062 | ret = -EINVAL; | |
4063 | } | |
4064 | } | |
4065 | if (!ret) { | |
4066 | ret = qemu_file_get_error(f); | |
4067 | } | |
0393031a HZ |
4068 | if (!ret && host_bak) { |
4069 | memcpy(host_bak, host, TARGET_PAGE_SIZE); | |
4070 | } | |
56e93d26 JQ |
4071 | } |
4072 | ||
ca1a6b70 | 4073 | ret |= wait_for_decompress_done(); |
10da4a36 WY |
4074 | return ret; |
4075 | } | |
4076 | ||
4077 | static int ram_load(QEMUFile *f, void *opaque, int version_id) | |
4078 | { | |
4079 | int ret = 0; | |
4080 | static uint64_t seq_iter; | |
4081 | /* | |
4082 | * If system is running in postcopy mode, page inserts to host memory must | |
4083 | * be atomic | |
4084 | */ | |
4085 | bool postcopy_running = postcopy_is_running(); | |
4086 | ||
4087 | seq_iter++; | |
4088 | ||
4089 | if (version_id != 4) { | |
4090 | return -EINVAL; | |
4091 | } | |
4092 | ||
4093 | /* | |
4094 | * This RCU critical section can be very long running. | |
4095 | * When RCU reclaims in the code start to become numerous, | |
4096 | * it will be necessary to reduce the granularity of this | |
4097 | * critical section. | |
4098 | */ | |
89ac5a1d DDAG |
4099 | WITH_RCU_READ_LOCK_GUARD() { |
4100 | if (postcopy_running) { | |
4101 | ret = ram_load_postcopy(f); | |
4102 | } else { | |
4103 | ret = ram_load_precopy(f); | |
4104 | } | |
10da4a36 | 4105 | } |
55c4446b | 4106 | trace_ram_load_complete(ret, seq_iter); |
e6f4aa18 | 4107 | |
56e93d26 JQ |
4108 | return ret; |
4109 | } | |
4110 | ||
c6467627 VSO |
4111 | static bool ram_has_postcopy(void *opaque) |
4112 | { | |
469dd51b | 4113 | RAMBlock *rb; |
fbd162e6 | 4114 | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
469dd51b JH |
4115 | if (ramblock_is_pmem(rb)) { |
4116 | info_report("Block: %s, host: %p is a nvdimm memory, postcopy" | |
4117 | "is not supported now!", rb->idstr, rb->host); | |
4118 | return false; | |
4119 | } | |
4120 | } | |
4121 | ||
c6467627 VSO |
4122 | return migrate_postcopy_ram(); |
4123 | } | |
4124 | ||
edd090c7 PX |
4125 | /* Sync all the dirty bitmap with destination VM. */ |
4126 | static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) | |
4127 | { | |
4128 | RAMBlock *block; | |
4129 | QEMUFile *file = s->to_dst_file; | |
4130 | int ramblock_count = 0; | |
4131 | ||
4132 | trace_ram_dirty_bitmap_sync_start(); | |
4133 | ||
fbd162e6 | 4134 | RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
edd090c7 PX |
4135 | qemu_savevm_send_recv_bitmap(file, block->idstr); |
4136 | trace_ram_dirty_bitmap_request(block->idstr); | |
4137 | ramblock_count++; | |
4138 | } | |
4139 | ||
4140 | trace_ram_dirty_bitmap_sync_wait(); | |
4141 | ||
4142 | /* Wait until all the ramblocks' dirty bitmap synced */ | |
4143 | while (ramblock_count--) { | |
4144 | qemu_sem_wait(&s->rp_state.rp_sem); | |
4145 | } | |
4146 | ||
4147 | trace_ram_dirty_bitmap_sync_complete(); | |
4148 | ||
4149 | return 0; | |
4150 | } | |
4151 | ||
4152 | static void ram_dirty_bitmap_reload_notify(MigrationState *s) | |
4153 | { | |
4154 | qemu_sem_post(&s->rp_state.rp_sem); | |
4155 | } | |
4156 | ||
a335debb PX |
4157 | /* |
4158 | * Read the received bitmap, revert it as the initial dirty bitmap. | |
4159 | * This is only used when the postcopy migration is paused but wants | |
4160 | * to resume from a middle point. | |
4161 | */ | |
4162 | int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) | |
4163 | { | |
4164 | int ret = -EINVAL; | |
43044ac0 | 4165 | /* from_dst_file is always valid because we're within rp_thread */ |
a335debb PX |
4166 | QEMUFile *file = s->rp_state.from_dst_file; |
4167 | unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; | |
a725ef9f | 4168 | uint64_t local_size = DIV_ROUND_UP(nbits, 8); |
a335debb PX |
4169 | uint64_t size, end_mark; |
4170 | ||
4171 | trace_ram_dirty_bitmap_reload_begin(block->idstr); | |
4172 | ||
4173 | if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { | |
4174 | error_report("%s: incorrect state %s", __func__, | |
4175 | MigrationStatus_str(s->state)); | |
4176 | return -EINVAL; | |
4177 | } | |
4178 | ||
4179 | /* | |
4180 | * Note: see comments in ramblock_recv_bitmap_send() on why we | |
3a4452d8 | 4181 | * need the endianness conversion, and the paddings. |
a335debb PX |
4182 | */ |
4183 | local_size = ROUND_UP(local_size, 8); | |
4184 | ||
4185 | /* Add paddings */ | |
4186 | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | |
4187 | ||
4188 | size = qemu_get_be64(file); | |
4189 | ||
4190 | /* The size of the bitmap should match with our ramblock */ | |
4191 | if (size != local_size) { | |
4192 | error_report("%s: ramblock '%s' bitmap size mismatch " | |
4193 | "(0x%"PRIx64" != 0x%"PRIx64")", __func__, | |
4194 | block->idstr, size, local_size); | |
4195 | ret = -EINVAL; | |
4196 | goto out; | |
4197 | } | |
4198 | ||
4199 | size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); | |
4200 | end_mark = qemu_get_be64(file); | |
4201 | ||
4202 | ret = qemu_file_get_error(file); | |
4203 | if (ret || size != local_size) { | |
4204 | error_report("%s: read bitmap failed for ramblock '%s': %d" | |
4205 | " (size 0x%"PRIx64", got: 0x%"PRIx64")", | |
4206 | __func__, block->idstr, ret, local_size, size); | |
4207 | ret = -EIO; | |
4208 | goto out; | |
4209 | } | |
4210 | ||
4211 | if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { | |
af3bbbe9 | 4212 | error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, |
a335debb PX |
4213 | __func__, block->idstr, end_mark); |
4214 | ret = -EINVAL; | |
4215 | goto out; | |
4216 | } | |
4217 | ||
4218 | /* | |
3a4452d8 | 4219 | * Endianness conversion. We are during postcopy (though paused). |
a335debb PX |
4220 | * The dirty bitmap won't change. We can directly modify it. |
4221 | */ | |
4222 | bitmap_from_le(block->bmap, le_bitmap, nbits); | |
4223 | ||
4224 | /* | |
4225 | * What we received is "received bitmap". Revert it as the initial | |
4226 | * dirty bitmap for this ramblock. | |
4227 | */ | |
4228 | bitmap_complement(block->bmap, block->bmap, nbits); | |
4229 | ||
be39b4cd DH |
4230 | /* Clear dirty bits of discarded ranges that we don't want to migrate. */ |
4231 | ramblock_dirty_bitmap_clear_discarded_pages(block); | |
4232 | ||
4233 | /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ | |
a335debb PX |
4234 | trace_ram_dirty_bitmap_reload_complete(block->idstr); |
4235 | ||
edd090c7 PX |
4236 | /* |
4237 | * We succeeded to sync bitmap for current ramblock. If this is | |
4238 | * the last one to sync, we need to notify the main send thread. | |
4239 | */ | |
4240 | ram_dirty_bitmap_reload_notify(s); | |
4241 | ||
a335debb PX |
4242 | ret = 0; |
4243 | out: | |
bf269906 | 4244 | g_free(le_bitmap); |
a335debb PX |
4245 | return ret; |
4246 | } | |
4247 | ||
edd090c7 PX |
4248 | static int ram_resume_prepare(MigrationState *s, void *opaque) |
4249 | { | |
4250 | RAMState *rs = *(RAMState **)opaque; | |
08614f34 | 4251 | int ret; |
edd090c7 | 4252 | |
08614f34 PX |
4253 | ret = ram_dirty_bitmap_sync_all(s, rs); |
4254 | if (ret) { | |
4255 | return ret; | |
4256 | } | |
4257 | ||
4258 | ram_state_resume_prepare(rs, s->to_dst_file); | |
4259 | ||
4260 | return 0; | |
edd090c7 PX |
4261 | } |
4262 | ||
56e93d26 | 4263 | static SaveVMHandlers savevm_ram_handlers = { |
9907e842 | 4264 | .save_setup = ram_save_setup, |
56e93d26 | 4265 | .save_live_iterate = ram_save_iterate, |
763c906b | 4266 | .save_live_complete_postcopy = ram_save_complete, |
a3e06c3d | 4267 | .save_live_complete_precopy = ram_save_complete, |
c6467627 | 4268 | .has_postcopy = ram_has_postcopy, |
56e93d26 JQ |
4269 | .save_live_pending = ram_save_pending, |
4270 | .load_state = ram_load, | |
f265e0e4 JQ |
4271 | .save_cleanup = ram_save_cleanup, |
4272 | .load_setup = ram_load_setup, | |
4273 | .load_cleanup = ram_load_cleanup, | |
edd090c7 | 4274 | .resume_prepare = ram_resume_prepare, |
56e93d26 JQ |
4275 | }; |
4276 | ||
c7c0e724 DH |
4277 | static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, |
4278 | size_t old_size, size_t new_size) | |
4279 | { | |
cc61c703 | 4280 | PostcopyState ps = postcopy_state_get(); |
c7c0e724 DH |
4281 | ram_addr_t offset; |
4282 | RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); | |
4283 | Error *err = NULL; | |
4284 | ||
4285 | if (ramblock_is_ignored(rb)) { | |
4286 | return; | |
4287 | } | |
4288 | ||
4289 | if (!migration_is_idle()) { | |
4290 | /* | |
4291 | * Precopy code on the source cannot deal with the size of RAM blocks | |
4292 | * changing at random points in time - especially after sending the | |
4293 | * RAM block sizes in the migration stream, they must no longer change. | |
4294 | * Abort and indicate a proper reason. | |
4295 | */ | |
4296 | error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); | |
458fecca | 4297 | migration_cancel(err); |
c7c0e724 | 4298 | error_free(err); |
c7c0e724 | 4299 | } |
cc61c703 DH |
4300 | |
4301 | switch (ps) { | |
4302 | case POSTCOPY_INCOMING_ADVISE: | |
4303 | /* | |
4304 | * Update what ram_postcopy_incoming_init()->init_range() does at the | |
4305 | * time postcopy was advised. Syncing RAM blocks with the source will | |
4306 | * result in RAM resizes. | |
4307 | */ | |
4308 | if (old_size < new_size) { | |
4309 | if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { | |
4310 | error_report("RAM block '%s' discard of resized RAM failed", | |
4311 | rb->idstr); | |
4312 | } | |
4313 | } | |
898ba906 | 4314 | rb->postcopy_length = new_size; |
cc61c703 DH |
4315 | break; |
4316 | case POSTCOPY_INCOMING_NONE: | |
4317 | case POSTCOPY_INCOMING_RUNNING: | |
4318 | case POSTCOPY_INCOMING_END: | |
4319 | /* | |
4320 | * Once our guest is running, postcopy does no longer care about | |
4321 | * resizes. When growing, the new memory was not available on the | |
4322 | * source, no handler needed. | |
4323 | */ | |
4324 | break; | |
4325 | default: | |
4326 | error_report("RAM block '%s' resized during postcopy state: %d", | |
4327 | rb->idstr, ps); | |
4328 | exit(-1); | |
4329 | } | |
c7c0e724 DH |
4330 | } |
4331 | ||
4332 | static RAMBlockNotifier ram_mig_ram_notifier = { | |
4333 | .ram_block_resized = ram_mig_ram_block_resized, | |
4334 | }; | |
4335 | ||
56e93d26 JQ |
4336 | void ram_mig_init(void) |
4337 | { | |
4338 | qemu_mutex_init(&XBZRLE.lock); | |
ce62df53 | 4339 | register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); |
c7c0e724 | 4340 | ram_block_notifier_add(&ram_mig_ram_notifier); |
56e93d26 | 4341 | } |