]>
Commit | Line | Data |
---|---|---|
9fdf0c29 DG |
1 | /* |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
83c9f4ca | 28 | #include "hw/hw.h" |
71461b0f | 29 | #include "hw/fw-path-provider.h" |
9fdf0c29 | 30 | #include "elf.h" |
1422e32d | 31 | #include "net/net.h" |
9c17d615 PB |
32 | #include "sysemu/blockdev.h" |
33 | #include "sysemu/cpus.h" | |
34 | #include "sysemu/kvm.h" | |
e97c3636 | 35 | #include "kvm_ppc.h" |
4be21d56 | 36 | #include "mmu-hash64.h" |
3794d548 | 37 | #include "qom/cpu.h" |
9fdf0c29 DG |
38 | |
39 | #include "hw/boards.h" | |
0d09e41a | 40 | #include "hw/ppc/ppc.h" |
9fdf0c29 DG |
41 | #include "hw/loader.h" |
42 | ||
0d09e41a PB |
43 | #include "hw/ppc/spapr.h" |
44 | #include "hw/ppc/spapr_vio.h" | |
45 | #include "hw/pci-host/spapr.h" | |
46 | #include "hw/ppc/xics.h" | |
a2cb15b0 | 47 | #include "hw/pci/msi.h" |
9fdf0c29 | 48 | |
83c9f4ca | 49 | #include "hw/pci/pci.h" |
71461b0f AK |
50 | #include "hw/scsi/scsi.h" |
51 | #include "hw/virtio/virtio-scsi.h" | |
f61b4bed | 52 | |
022c62cb | 53 | #include "exec/address-spaces.h" |
35139a59 | 54 | #include "hw/usb.h" |
1de7afc9 | 55 | #include "qemu/config-file.h" |
135a129a | 56 | #include "qemu/error-report.h" |
2a6593cb | 57 | #include "trace.h" |
890c2b77 | 58 | |
9fdf0c29 DG |
59 | #include <libfdt.h> |
60 | ||
4d8d5467 BH |
61 | /* SLOF memory layout: |
62 | * | |
63 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
64 | * device-tree, then position SLOF itself 31M below that | |
65 | * | |
66 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
67 | * and more | |
68 | * | |
69 | * We load our kernel at 4M, leaving space for SLOF initial image | |
70 | */ | |
3bf6eedd | 71 | #define FDT_MAX_SIZE 0x40000 |
39ac8455 | 72 | #define RTAS_MAX_SIZE 0x10000 |
a9f8ad8f DG |
73 | #define FW_MAX_SIZE 0x400000 |
74 | #define FW_FILE_NAME "slof.bin" | |
4d8d5467 BH |
75 | #define FW_OVERHEAD 0x2800000 |
76 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
a9f8ad8f | 77 | |
4d8d5467 | 78 | #define MIN_RMA_SLOF 128UL |
9fdf0c29 DG |
79 | |
80 | #define TIMEBASE_FREQ 512000000ULL | |
81 | ||
41019fec | 82 | #define MAX_CPUS 256 |
4d8d5467 | 83 | #define XICS_IRQS 1024 |
9fdf0c29 | 84 | |
0c103f8e DG |
85 | #define PHANDLE_XICP 0x00001111 |
86 | ||
7f763a5d DG |
87 | #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) |
88 | ||
29ee3247 AK |
89 | #define TYPE_SPAPR_MACHINE "spapr-machine" |
90 | ||
9fdf0c29 DG |
91 | sPAPREnvironment *spapr; |
92 | ||
ff9d2afa | 93 | int spapr_allocate_irq(int hint, bool lsi) |
e6c866d4 | 94 | { |
a307d594 | 95 | int irq; |
e6c866d4 DG |
96 | |
97 | if (hint) { | |
98 | irq = hint; | |
f1c2dc7c AK |
99 | if (hint >= spapr->next_irq) { |
100 | spapr->next_irq = hint + 1; | |
101 | } | |
e6c866d4 DG |
102 | /* FIXME: we should probably check for collisions somehow */ |
103 | } else { | |
104 | irq = spapr->next_irq++; | |
105 | } | |
106 | ||
a307d594 AK |
107 | /* Configure irq type */ |
108 | if (!xics_get_qirq(spapr->icp, irq)) { | |
109 | return 0; | |
e6c866d4 DG |
110 | } |
111 | ||
ff9d2afa | 112 | xics_set_irq_type(spapr->icp, irq, lsi); |
e6c866d4 | 113 | |
a307d594 | 114 | return irq; |
e6c866d4 DG |
115 | } |
116 | ||
f1c2dc7c AK |
117 | /* |
118 | * Allocate block of consequtive IRQs, returns a number of the first. | |
119 | * If msi==true, aligns the first IRQ number to num. | |
120 | */ | |
121 | int spapr_allocate_irq_block(int num, bool lsi, bool msi) | |
f4b9523b AK |
122 | { |
123 | int first = -1; | |
f1c2dc7c AK |
124 | int i, hint = 0; |
125 | ||
126 | /* | |
127 | * MSIMesage::data is used for storing VIRQ so | |
128 | * it has to be aligned to num to support multiple | |
129 | * MSI vectors. MSI-X is not affected by this. | |
130 | * The hint is used for the first IRQ, the rest should | |
73f395fa | 131 | * be allocated continuously. |
f1c2dc7c AK |
132 | */ |
133 | if (msi) { | |
134 | assert((num == 1) || (num == 2) || (num == 4) || | |
135 | (num == 8) || (num == 16) || (num == 32)); | |
136 | hint = (spapr->next_irq + num - 1) & ~(num - 1); | |
137 | } | |
f4b9523b AK |
138 | |
139 | for (i = 0; i < num; ++i) { | |
140 | int irq; | |
141 | ||
f1c2dc7c | 142 | irq = spapr_allocate_irq(hint, lsi); |
f4b9523b AK |
143 | if (!irq) { |
144 | return -1; | |
145 | } | |
146 | ||
147 | if (0 == i) { | |
148 | first = irq; | |
f1c2dc7c | 149 | hint = 0; |
f4b9523b AK |
150 | } |
151 | ||
152 | /* If the above doesn't create a consecutive block then that's | |
153 | * an internal bug */ | |
154 | assert(irq == (first + i)); | |
155 | } | |
156 | ||
157 | return first; | |
158 | } | |
159 | ||
c04d6cfa AL |
160 | static XICSState *try_create_xics(const char *type, int nr_servers, |
161 | int nr_irqs) | |
162 | { | |
163 | DeviceState *dev; | |
164 | ||
165 | dev = qdev_create(NULL, type); | |
166 | qdev_prop_set_uint32(dev, "nr_servers", nr_servers); | |
167 | qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); | |
168 | if (qdev_init(dev) < 0) { | |
169 | return NULL; | |
170 | } | |
171 | ||
5a3d7b23 | 172 | return XICS_COMMON(dev); |
c04d6cfa AL |
173 | } |
174 | ||
175 | static XICSState *xics_system_init(int nr_servers, int nr_irqs) | |
176 | { | |
177 | XICSState *icp = NULL; | |
178 | ||
11ad93f6 DG |
179 | if (kvm_enabled()) { |
180 | QemuOpts *machine_opts = qemu_get_machine_opts(); | |
181 | bool irqchip_allowed = qemu_opt_get_bool(machine_opts, | |
182 | "kernel_irqchip", true); | |
183 | bool irqchip_required = qemu_opt_get_bool(machine_opts, | |
184 | "kernel_irqchip", false); | |
185 | if (irqchip_allowed) { | |
186 | icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs); | |
187 | } | |
188 | ||
189 | if (irqchip_required && !icp) { | |
190 | perror("Failed to create in-kernel XICS\n"); | |
191 | abort(); | |
192 | } | |
193 | } | |
194 | ||
195 | if (!icp) { | |
196 | icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs); | |
197 | } | |
198 | ||
c04d6cfa AL |
199 | if (!icp) { |
200 | perror("Failed to create XICS\n"); | |
201 | abort(); | |
202 | } | |
203 | ||
204 | return icp; | |
205 | } | |
206 | ||
833d4668 AK |
207 | static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, |
208 | int smt_threads) | |
209 | { | |
210 | int i, ret = 0; | |
211 | uint32_t servers_prop[smt_threads]; | |
212 | uint32_t gservers_prop[smt_threads * 2]; | |
213 | int index = ppc_get_vcpu_dt_id(cpu); | |
214 | ||
6d9412ea AK |
215 | if (cpu->cpu_version) { |
216 | ret = fdt_setprop(fdt, offset, "cpu-version", | |
217 | &cpu->cpu_version, sizeof(cpu->cpu_version)); | |
218 | if (ret < 0) { | |
219 | return ret; | |
220 | } | |
221 | } | |
222 | ||
833d4668 AK |
223 | /* Build interrupt servers and gservers properties */ |
224 | for (i = 0; i < smt_threads; i++) { | |
225 | servers_prop[i] = cpu_to_be32(index + i); | |
226 | /* Hack, direct the group queues back to cpu 0 */ | |
227 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
228 | gservers_prop[i*2 + 1] = 0; | |
229 | } | |
230 | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", | |
231 | servers_prop, sizeof(servers_prop)); | |
232 | if (ret < 0) { | |
233 | return ret; | |
234 | } | |
235 | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", | |
236 | gservers_prop, sizeof(gservers_prop)); | |
237 | ||
238 | return ret; | |
239 | } | |
240 | ||
7f763a5d | 241 | static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) |
6e806cc3 | 242 | { |
82677ed2 AK |
243 | int ret = 0, offset, cpus_offset; |
244 | CPUState *cs; | |
6e806cc3 BR |
245 | char cpu_model[32]; |
246 | int smt = kvmppc_smt_threads(); | |
7f763a5d | 247 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
6e806cc3 | 248 | |
82677ed2 AK |
249 | CPU_FOREACH(cs) { |
250 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
251 | DeviceClass *dc = DEVICE_GET_CLASS(cs); | |
252 | int index = ppc_get_vcpu_dt_id(cpu); | |
6e806cc3 BR |
253 | uint32_t associativity[] = {cpu_to_be32(0x5), |
254 | cpu_to_be32(0x0), | |
255 | cpu_to_be32(0x0), | |
256 | cpu_to_be32(0x0), | |
82677ed2 | 257 | cpu_to_be32(cs->numa_node), |
0f20ba62 | 258 | cpu_to_be32(index)}; |
6e806cc3 | 259 | |
0f20ba62 | 260 | if ((index % smt) != 0) { |
6e806cc3 BR |
261 | continue; |
262 | } | |
263 | ||
82677ed2 | 264 | snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); |
6e806cc3 | 265 | |
82677ed2 AK |
266 | cpus_offset = fdt_path_offset(fdt, "/cpus"); |
267 | if (cpus_offset < 0) { | |
268 | cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), | |
269 | "cpus"); | |
270 | if (cpus_offset < 0) { | |
271 | return cpus_offset; | |
272 | } | |
273 | } | |
274 | offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); | |
6e806cc3 | 275 | if (offset < 0) { |
82677ed2 AK |
276 | offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); |
277 | if (offset < 0) { | |
278 | return offset; | |
279 | } | |
6e806cc3 BR |
280 | } |
281 | ||
7f763a5d DG |
282 | if (nb_numa_nodes > 1) { |
283 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
284 | sizeof(associativity)); | |
285 | if (ret < 0) { | |
286 | return ret; | |
287 | } | |
288 | } | |
289 | ||
290 | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | |
291 | pft_size_prop, sizeof(pft_size_prop)); | |
6e806cc3 BR |
292 | if (ret < 0) { |
293 | return ret; | |
294 | } | |
833d4668 | 295 | |
82677ed2 | 296 | ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, |
2a48d993 | 297 | ppc_get_compat_smt_threads(cpu)); |
833d4668 AK |
298 | if (ret < 0) { |
299 | return ret; | |
300 | } | |
6e806cc3 BR |
301 | } |
302 | return ret; | |
303 | } | |
304 | ||
5af9873d BH |
305 | |
306 | static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, | |
307 | size_t maxsize) | |
308 | { | |
309 | size_t maxcells = maxsize / sizeof(uint32_t); | |
310 | int i, j, count; | |
311 | uint32_t *p = prop; | |
312 | ||
313 | for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { | |
314 | struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; | |
315 | ||
316 | if (!sps->page_shift) { | |
317 | break; | |
318 | } | |
319 | for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { | |
320 | if (sps->enc[count].page_shift == 0) { | |
321 | break; | |
322 | } | |
323 | } | |
324 | if ((p - prop) >= (maxcells - 3 - count * 2)) { | |
325 | break; | |
326 | } | |
327 | *(p++) = cpu_to_be32(sps->page_shift); | |
328 | *(p++) = cpu_to_be32(sps->slb_enc); | |
329 | *(p++) = cpu_to_be32(count); | |
330 | for (j = 0; j < count; j++) { | |
331 | *(p++) = cpu_to_be32(sps->enc[j].page_shift); | |
332 | *(p++) = cpu_to_be32(sps->enc[j].pte_enc); | |
333 | } | |
334 | } | |
335 | ||
336 | return (p - prop) * sizeof(uint32_t); | |
337 | } | |
338 | ||
7f763a5d DG |
339 | #define _FDT(exp) \ |
340 | do { \ | |
341 | int ret = (exp); \ | |
342 | if (ret < 0) { \ | |
343 | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | |
344 | #exp, fdt_strerror(ret)); \ | |
345 | exit(1); \ | |
346 | } \ | |
347 | } while (0) | |
348 | ||
349 | ||
3bbf37f2 | 350 | static void *spapr_create_fdt_skel(hwaddr initrd_base, |
a8170e5e AK |
351 | hwaddr initrd_size, |
352 | hwaddr kernel_size, | |
16457e7f | 353 | bool little_endian, |
a3467baa | 354 | const char *boot_device, |
74d042e5 DG |
355 | const char *kernel_cmdline, |
356 | uint32_t epow_irq) | |
9fdf0c29 DG |
357 | { |
358 | void *fdt; | |
182735ef | 359 | CPUState *cs; |
9fdf0c29 DG |
360 | uint32_t start_prop = cpu_to_be32(initrd_base); |
361 | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | |
ee86dfee | 362 | char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
42561bf2 | 363 | "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode"; |
c73e3771 | 364 | char qemu_hypertas_prop[] = "hcall-memop1"; |
7f763a5d | 365 | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; |
b5cec4c5 | 366 | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
833d4668 | 367 | int smt = kvmppc_smt_threads(); |
6e806cc3 | 368 | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
10582ff8 AK |
369 | QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL); |
370 | unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0; | |
371 | uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1; | |
9fdf0c29 | 372 | |
7267c094 | 373 | fdt = g_malloc0(FDT_MAX_SIZE); |
9fdf0c29 DG |
374 | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
375 | ||
4d8d5467 BH |
376 | if (kernel_size) { |
377 | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | |
378 | } | |
379 | if (initrd_size) { | |
380 | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | |
381 | } | |
9fdf0c29 DG |
382 | _FDT((fdt_finish_reservemap(fdt))); |
383 | ||
384 | /* Root node */ | |
385 | _FDT((fdt_begin_node(fdt, ""))); | |
386 | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | |
5d73dd66 | 387 | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
d63919c9 | 388 | _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); |
9fdf0c29 DG |
389 | |
390 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | |
391 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | |
392 | ||
393 | /* /chosen */ | |
394 | _FDT((fdt_begin_node(fdt, "chosen"))); | |
395 | ||
6e806cc3 BR |
396 | /* Set Form1_affinity */ |
397 | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | |
398 | ||
9fdf0c29 DG |
399 | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
400 | _FDT((fdt_property(fdt, "linux,initrd-start", | |
401 | &start_prop, sizeof(start_prop)))); | |
402 | _FDT((fdt_property(fdt, "linux,initrd-end", | |
403 | &end_prop, sizeof(end_prop)))); | |
4d8d5467 BH |
404 | if (kernel_size) { |
405 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
406 | cpu_to_be64(kernel_size) }; | |
9fdf0c29 | 407 | |
4d8d5467 | 408 | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
16457e7f BH |
409 | if (little_endian) { |
410 | _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); | |
411 | } | |
4d8d5467 | 412 | } |
2c9ee029 AS |
413 | if (boot_device) { |
414 | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | |
415 | } | |
f28359d8 LZ |
416 | _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); |
417 | _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); | |
418 | _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); | |
3384f95c | 419 | |
9fdf0c29 DG |
420 | _FDT((fdt_end_node(fdt))); |
421 | ||
9fdf0c29 DG |
422 | /* cpus */ |
423 | _FDT((fdt_begin_node(fdt, "cpus"))); | |
424 | ||
425 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
426 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
427 | ||
bdc44640 | 428 | CPU_FOREACH(cs) { |
182735ef AF |
429 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
430 | CPUPPCState *env = &cpu->env; | |
3bbf37f2 | 431 | DeviceClass *dc = DEVICE_GET_CLASS(cs); |
182735ef | 432 | PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
0f20ba62 | 433 | int index = ppc_get_vcpu_dt_id(cpu); |
9fdf0c29 DG |
434 | char *nodename; |
435 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
436 | 0xffffffff, 0xffffffff}; | |
0a8b2938 AG |
437 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
438 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
5af9873d BH |
439 | uint32_t page_sizes_prop[64]; |
440 | size_t page_sizes_prop_size; | |
9fdf0c29 | 441 | |
e97c3636 DG |
442 | if ((index % smt) != 0) { |
443 | continue; | |
444 | } | |
445 | ||
3bbf37f2 | 446 | nodename = g_strdup_printf("%s@%x", dc->fw_name, index); |
9fdf0c29 DG |
447 | |
448 | _FDT((fdt_begin_node(fdt, nodename))); | |
449 | ||
4ecf8aa5 | 450 | g_free(nodename); |
9fdf0c29 | 451 | |
c7a5c0c9 | 452 | _FDT((fdt_property_cell(fdt, "reg", index))); |
9fdf0c29 DG |
453 | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
454 | ||
455 | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | |
0cbad81f | 456 | _FDT((fdt_property_cell(fdt, "d-cache-block-size", |
9fdf0c29 | 457 | env->dcache_line_size))); |
0cbad81f DG |
458 | _FDT((fdt_property_cell(fdt, "d-cache-line-size", |
459 | env->dcache_line_size))); | |
460 | _FDT((fdt_property_cell(fdt, "i-cache-block-size", | |
461 | env->icache_line_size))); | |
462 | _FDT((fdt_property_cell(fdt, "i-cache-line-size", | |
9fdf0c29 | 463 | env->icache_line_size))); |
0cbad81f DG |
464 | |
465 | if (pcc->l1_dcache_size) { | |
466 | _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size))); | |
467 | } else { | |
468 | fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); | |
469 | } | |
470 | if (pcc->l1_icache_size) { | |
471 | _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size))); | |
472 | } else { | |
473 | fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); | |
474 | } | |
475 | ||
0a8b2938 AG |
476 | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
477 | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | |
9fdf0c29 DG |
478 | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
479 | _FDT((fdt_property_string(fdt, "status", "okay"))); | |
480 | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | |
e97c3636 | 481 | |
dcb861cb AK |
482 | if (env->spr_cb[SPR_PURR].oea_read) { |
483 | _FDT((fdt_property(fdt, "ibm,purr", NULL, 0))); | |
484 | } | |
485 | ||
c7a5c0c9 | 486 | if (env->mmu_model & POWERPC_MMU_1TSEG) { |
9fdf0c29 DG |
487 | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
488 | segs, sizeof(segs)))); | |
489 | } | |
490 | ||
6659394f DG |
491 | /* Advertise VMX/VSX (vector extensions) if available |
492 | * 0 / no property == no vector extensions | |
493 | * 1 == VMX / Altivec available | |
494 | * 2 == VSX available */ | |
a7342588 DG |
495 | if (env->insns_flags & PPC_ALTIVEC) { |
496 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
497 | ||
6659394f DG |
498 | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
499 | } | |
500 | ||
501 | /* Advertise DFP (Decimal Floating Point) if available | |
502 | * 0 / no property == no DFP | |
503 | * 1 == DFP available */ | |
a7342588 DG |
504 | if (env->insns_flags2 & PPC2_DFP) { |
505 | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | |
6659394f DG |
506 | } |
507 | ||
5af9873d BH |
508 | page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, |
509 | sizeof(page_sizes_prop)); | |
510 | if (page_sizes_prop_size) { | |
511 | _FDT((fdt_property(fdt, "ibm,segment-page-sizes", | |
512 | page_sizes_prop, page_sizes_prop_size))); | |
513 | } | |
514 | ||
10582ff8 AK |
515 | _FDT((fdt_property_cell(fdt, "ibm,chip-id", |
516 | cs->cpu_index / cpus_per_socket))); | |
517 | ||
9fdf0c29 DG |
518 | _FDT((fdt_end_node(fdt))); |
519 | } | |
520 | ||
9fdf0c29 DG |
521 | _FDT((fdt_end_node(fdt))); |
522 | ||
f43e3525 DG |
523 | /* RTAS */ |
524 | _FDT((fdt_begin_node(fdt, "rtas"))); | |
525 | ||
526 | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, | |
527 | sizeof(hypertas_prop)))); | |
c73e3771 BH |
528 | _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, |
529 | sizeof(qemu_hypertas_prop)))); | |
f43e3525 | 530 | |
6e806cc3 BR |
531 | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
532 | refpoints, sizeof(refpoints)))); | |
533 | ||
74d042e5 DG |
534 | _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); |
535 | ||
f43e3525 DG |
536 | _FDT((fdt_end_node(fdt))); |
537 | ||
b5cec4c5 | 538 | /* interrupt controller */ |
9dfef5aa | 539 | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
b5cec4c5 DG |
540 | |
541 | _FDT((fdt_property_string(fdt, "device_type", | |
542 | "PowerPC-External-Interrupt-Presentation"))); | |
543 | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | |
b5cec4c5 DG |
544 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
545 | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | |
546 | interrupt_server_ranges_prop, | |
547 | sizeof(interrupt_server_ranges_prop)))); | |
0c103f8e DG |
548 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
549 | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | |
550 | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | |
b5cec4c5 DG |
551 | |
552 | _FDT((fdt_end_node(fdt))); | |
553 | ||
4040ab72 DG |
554 | /* vdevice */ |
555 | _FDT((fdt_begin_node(fdt, "vdevice"))); | |
556 | ||
557 | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | |
558 | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | |
559 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
560 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
b5cec4c5 DG |
561 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
562 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
4040ab72 DG |
563 | |
564 | _FDT((fdt_end_node(fdt))); | |
565 | ||
74d042e5 DG |
566 | /* event-sources */ |
567 | spapr_events_fdt_skel(fdt, epow_irq); | |
568 | ||
9fdf0c29 DG |
569 | _FDT((fdt_end_node(fdt))); /* close root node */ |
570 | _FDT((fdt_finish(fdt))); | |
571 | ||
a3467baa DG |
572 | return fdt; |
573 | } | |
574 | ||
2a6593cb AK |
575 | int spapr_h_cas_compose_response(target_ulong addr, target_ulong size) |
576 | { | |
577 | void *fdt, *fdt_skel; | |
578 | sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; | |
579 | ||
580 | size -= sizeof(hdr); | |
581 | ||
582 | /* Create sceleton */ | |
583 | fdt_skel = g_malloc0(size); | |
584 | _FDT((fdt_create(fdt_skel, size))); | |
585 | _FDT((fdt_begin_node(fdt_skel, ""))); | |
586 | _FDT((fdt_end_node(fdt_skel))); | |
587 | _FDT((fdt_finish(fdt_skel))); | |
588 | fdt = g_malloc0(size); | |
589 | _FDT((fdt_open_into(fdt_skel, fdt, size))); | |
590 | g_free(fdt_skel); | |
591 | ||
3794d548 AK |
592 | /* Fix skeleton up */ |
593 | _FDT((spapr_fixup_cpu_dt(fdt, spapr))); | |
2a6593cb AK |
594 | |
595 | /* Pack resulting tree */ | |
596 | _FDT((fdt_pack(fdt))); | |
597 | ||
598 | if (fdt_totalsize(fdt) + sizeof(hdr) > size) { | |
599 | trace_spapr_cas_failed(size); | |
600 | return -1; | |
601 | } | |
602 | ||
603 | cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); | |
604 | cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); | |
605 | trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); | |
606 | g_free(fdt); | |
607 | ||
608 | return 0; | |
609 | } | |
610 | ||
7f763a5d DG |
611 | static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) |
612 | { | |
613 | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | |
614 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
615 | cpu_to_be32(0x0)}; | |
616 | char mem_name[32]; | |
5fe269b1 | 617 | hwaddr node0_size, mem_start, node_size; |
7f763a5d DG |
618 | uint64_t mem_reg_property[2]; |
619 | int i, off; | |
620 | ||
621 | /* memory node(s) */ | |
5fe269b1 PM |
622 | if (nb_numa_nodes > 1 && node_mem[0] < ram_size) { |
623 | node0_size = node_mem[0]; | |
624 | } else { | |
625 | node0_size = ram_size; | |
626 | } | |
7f763a5d DG |
627 | |
628 | /* RMA */ | |
629 | mem_reg_property[0] = 0; | |
630 | mem_reg_property[1] = cpu_to_be64(spapr->rma_size); | |
631 | off = fdt_add_subnode(fdt, 0, "memory@0"); | |
632 | _FDT(off); | |
633 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
634 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
635 | sizeof(mem_reg_property)))); | |
636 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
637 | sizeof(associativity)))); | |
638 | ||
639 | /* RAM: Node 0 */ | |
640 | if (node0_size > spapr->rma_size) { | |
641 | mem_reg_property[0] = cpu_to_be64(spapr->rma_size); | |
642 | mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); | |
643 | ||
644 | sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); | |
645 | off = fdt_add_subnode(fdt, 0, mem_name); | |
646 | _FDT(off); | |
647 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
648 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
649 | sizeof(mem_reg_property)))); | |
650 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
651 | sizeof(associativity)))); | |
652 | } | |
653 | ||
654 | /* RAM: Node 1 and beyond */ | |
655 | mem_start = node0_size; | |
656 | for (i = 1; i < nb_numa_nodes; i++) { | |
657 | mem_reg_property[0] = cpu_to_be64(mem_start); | |
5fe269b1 PM |
658 | if (mem_start >= ram_size) { |
659 | node_size = 0; | |
660 | } else { | |
661 | node_size = node_mem[i]; | |
662 | if (node_size > ram_size - mem_start) { | |
663 | node_size = ram_size - mem_start; | |
664 | } | |
665 | } | |
666 | mem_reg_property[1] = cpu_to_be64(node_size); | |
7f763a5d DG |
667 | associativity[3] = associativity[4] = cpu_to_be32(i); |
668 | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | |
669 | off = fdt_add_subnode(fdt, 0, mem_name); | |
670 | _FDT(off); | |
671 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
672 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
673 | sizeof(mem_reg_property)))); | |
674 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
675 | sizeof(associativity)))); | |
5fe269b1 | 676 | mem_start += node_size; |
7f763a5d DG |
677 | } |
678 | ||
679 | return 0; | |
680 | } | |
681 | ||
a3467baa | 682 | static void spapr_finalize_fdt(sPAPREnvironment *spapr, |
a8170e5e AK |
683 | hwaddr fdt_addr, |
684 | hwaddr rtas_addr, | |
685 | hwaddr rtas_size) | |
a3467baa | 686 | { |
71461b0f AK |
687 | int ret, i; |
688 | size_t cb = 0; | |
689 | char *bootlist; | |
a3467baa | 690 | void *fdt; |
3384f95c | 691 | sPAPRPHBState *phb; |
a3467baa | 692 | |
7267c094 | 693 | fdt = g_malloc(FDT_MAX_SIZE); |
a3467baa DG |
694 | |
695 | /* open out the base tree into a temp buffer for the final tweaks */ | |
696 | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | |
4040ab72 | 697 | |
7f763a5d DG |
698 | ret = spapr_populate_memory(spapr, fdt); |
699 | if (ret < 0) { | |
700 | fprintf(stderr, "couldn't setup memory nodes in fdt\n"); | |
701 | exit(1); | |
702 | } | |
703 | ||
4040ab72 DG |
704 | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); |
705 | if (ret < 0) { | |
706 | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | |
707 | exit(1); | |
708 | } | |
709 | ||
3384f95c | 710 | QLIST_FOREACH(phb, &spapr->phbs, list) { |
e0fdbd7c | 711 | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); |
3384f95c DG |
712 | } |
713 | ||
714 | if (ret < 0) { | |
715 | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | |
716 | exit(1); | |
717 | } | |
718 | ||
39ac8455 DG |
719 | /* RTAS */ |
720 | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | |
721 | if (ret < 0) { | |
722 | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | |
723 | } | |
724 | ||
6e806cc3 | 725 | /* Advertise NUMA via ibm,associativity */ |
7f763a5d DG |
726 | ret = spapr_fixup_cpu_dt(fdt, spapr); |
727 | if (ret < 0) { | |
728 | fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); | |
6e806cc3 BR |
729 | } |
730 | ||
71461b0f AK |
731 | bootlist = get_boot_devices_list(&cb, true); |
732 | if (cb && bootlist) { | |
733 | int offset = fdt_path_offset(fdt, "/chosen"); | |
734 | if (offset < 0) { | |
735 | exit(1); | |
736 | } | |
737 | for (i = 0; i < cb; i++) { | |
738 | if (bootlist[i] == '\n') { | |
739 | bootlist[i] = ' '; | |
740 | } | |
741 | ||
742 | } | |
743 | ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); | |
744 | } | |
745 | ||
3fc5acde | 746 | if (!spapr->has_graphics) { |
f28359d8 LZ |
747 | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
748 | } | |
68f3a94c | 749 | |
4040ab72 DG |
750 | _FDT((fdt_pack(fdt))); |
751 | ||
4d8d5467 BH |
752 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
753 | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | |
754 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
755 | exit(1); | |
756 | } | |
757 | ||
a3467baa | 758 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
9fdf0c29 | 759 | |
7267c094 | 760 | g_free(fdt); |
9fdf0c29 DG |
761 | } |
762 | ||
763 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
764 | { | |
765 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
766 | } | |
767 | ||
1b14670a | 768 | static void emulate_spapr_hypercall(PowerPCCPU *cpu) |
9fdf0c29 | 769 | { |
1b14670a AF |
770 | CPUPPCState *env = &cpu->env; |
771 | ||
efcb9383 DG |
772 | if (msr_pr) { |
773 | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | |
774 | env->gpr[3] = H_PRIVILEGE; | |
775 | } else { | |
aa100fa4 | 776 | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); |
efcb9383 | 777 | } |
9fdf0c29 DG |
778 | } |
779 | ||
7f763a5d DG |
780 | static void spapr_reset_htab(sPAPREnvironment *spapr) |
781 | { | |
782 | long shift; | |
783 | ||
784 | /* allocate hash page table. For now we always make this 16mb, | |
785 | * later we should probably make it scale to the size of guest | |
786 | * RAM */ | |
787 | ||
788 | shift = kvmppc_reset_htab(spapr->htab_shift); | |
789 | ||
790 | if (shift > 0) { | |
791 | /* Kernel handles htab, we don't need to allocate one */ | |
792 | spapr->htab_shift = shift; | |
7c43bca0 | 793 | kvmppc_kern_htab = true; |
7f763a5d DG |
794 | } else { |
795 | if (!spapr->htab) { | |
796 | /* Allocate an htab if we don't yet have one */ | |
797 | spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); | |
798 | } | |
799 | ||
800 | /* And clear it */ | |
801 | memset(spapr->htab, 0, HTAB_SIZE(spapr)); | |
802 | } | |
803 | ||
804 | /* Update the RMA size if necessary */ | |
805 | if (spapr->vrma_adjust) { | |
c4177479 AK |
806 | hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
807 | spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift); | |
7f763a5d | 808 | } |
9fdf0c29 DG |
809 | } |
810 | ||
c8787ad4 | 811 | static void ppc_spapr_reset(void) |
a3467baa | 812 | { |
182735ef | 813 | PowerPCCPU *first_ppc_cpu; |
259186a7 | 814 | |
7f763a5d DG |
815 | /* Reset the hash table & recalc the RMA */ |
816 | spapr_reset_htab(spapr); | |
a3467baa | 817 | |
c8787ad4 | 818 | qemu_devices_reset(); |
a3467baa DG |
819 | |
820 | /* Load the fdt */ | |
821 | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | |
822 | spapr->rtas_size); | |
823 | ||
824 | /* Set up the entry state */ | |
182735ef AF |
825 | first_ppc_cpu = POWERPC_CPU(first_cpu); |
826 | first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; | |
827 | first_ppc_cpu->env.gpr[5] = 0; | |
828 | first_cpu->halted = 0; | |
829 | first_ppc_cpu->env.nip = spapr->entry_point; | |
a3467baa DG |
830 | |
831 | } | |
832 | ||
1bba0dc9 AF |
833 | static void spapr_cpu_reset(void *opaque) |
834 | { | |
5b2038e0 | 835 | PowerPCCPU *cpu = opaque; |
259186a7 | 836 | CPUState *cs = CPU(cpu); |
048706d9 | 837 | CPUPPCState *env = &cpu->env; |
1bba0dc9 | 838 | |
259186a7 | 839 | cpu_reset(cs); |
048706d9 DG |
840 | |
841 | /* All CPUs start halted. CPU0 is unhalted from the machine level | |
842 | * reset code and the rest are explicitly started up by the guest | |
843 | * using an RTAS call */ | |
259186a7 | 844 | cs->halted = 1; |
048706d9 DG |
845 | |
846 | env->spr[SPR_HIOR] = 0; | |
7f763a5d | 847 | |
4be21d56 | 848 | env->external_htab = (uint8_t *)spapr->htab; |
5736245c AK |
849 | if (kvm_enabled() && !env->external_htab) { |
850 | /* | |
851 | * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* | |
852 | * functions do the right thing. | |
853 | */ | |
854 | env->external_htab = (void *)1; | |
855 | } | |
7f763a5d | 856 | env->htab_base = -1; |
f3c75d42 AK |
857 | /* |
858 | * htab_mask is the mask used to normalize hash value to PTEG index. | |
859 | * htab_shift is log2 of hash table size. | |
860 | * We have 8 hpte per group, and each hpte is 16 bytes. | |
861 | * ie have 128 bytes per hpte entry. | |
862 | */ | |
863 | env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1; | |
ec4936e1 | 864 | env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | |
7f763a5d | 865 | (spapr->htab_shift - 18); |
1bba0dc9 AF |
866 | } |
867 | ||
639e8102 DG |
868 | static void spapr_create_nvram(sPAPREnvironment *spapr) |
869 | { | |
2ff3de68 | 870 | DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); |
3978b863 | 871 | DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); |
639e8102 | 872 | |
3978b863 PB |
873 | if (dinfo) { |
874 | qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); | |
639e8102 DG |
875 | } |
876 | ||
877 | qdev_init_nofail(dev); | |
878 | ||
879 | spapr->nvram = (struct sPAPRNVRAM *)dev; | |
880 | } | |
881 | ||
8c57b867 | 882 | /* Returns whether we want to use VGA or not */ |
f28359d8 LZ |
883 | static int spapr_vga_init(PCIBus *pci_bus) |
884 | { | |
8c57b867 | 885 | switch (vga_interface_type) { |
8c57b867 | 886 | case VGA_NONE: |
7effdaa3 MW |
887 | return false; |
888 | case VGA_DEVICE: | |
889 | return true; | |
1ddcae82 AJ |
890 | case VGA_STD: |
891 | return pci_vga_init(pci_bus) != NULL; | |
8c57b867 | 892 | default: |
f28359d8 LZ |
893 | fprintf(stderr, "This vga model is not supported," |
894 | "currently it only supports -vga std\n"); | |
8c57b867 | 895 | exit(0); |
f28359d8 | 896 | } |
f28359d8 LZ |
897 | } |
898 | ||
4be21d56 DG |
899 | static const VMStateDescription vmstate_spapr = { |
900 | .name = "spapr", | |
98a8b524 | 901 | .version_id = 2, |
4be21d56 | 902 | .minimum_version_id = 1, |
3aff6c2f | 903 | .fields = (VMStateField[]) { |
4be21d56 DG |
904 | VMSTATE_UINT32(next_irq, sPAPREnvironment), |
905 | ||
906 | /* RTC offset */ | |
907 | VMSTATE_UINT64(rtc_offset, sPAPREnvironment), | |
98a8b524 | 908 | VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2), |
4be21d56 DG |
909 | VMSTATE_END_OF_LIST() |
910 | }, | |
911 | }; | |
912 | ||
913 | #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) | |
914 | #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) | |
915 | #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) | |
916 | #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) | |
917 | ||
918 | static int htab_save_setup(QEMUFile *f, void *opaque) | |
919 | { | |
920 | sPAPREnvironment *spapr = opaque; | |
921 | ||
4be21d56 DG |
922 | /* "Iteration" header */ |
923 | qemu_put_be32(f, spapr->htab_shift); | |
924 | ||
e68cb8b4 AK |
925 | if (spapr->htab) { |
926 | spapr->htab_save_index = 0; | |
927 | spapr->htab_first_pass = true; | |
928 | } else { | |
929 | assert(kvm_enabled()); | |
930 | ||
931 | spapr->htab_fd = kvmppc_get_htab_fd(false); | |
932 | if (spapr->htab_fd < 0) { | |
933 | fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", | |
934 | strerror(errno)); | |
935 | return -1; | |
936 | } | |
937 | } | |
938 | ||
939 | ||
4be21d56 DG |
940 | return 0; |
941 | } | |
942 | ||
4be21d56 DG |
943 | static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr, |
944 | int64_t max_ns) | |
945 | { | |
946 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
947 | int index = spapr->htab_save_index; | |
bc72ad67 | 948 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
4be21d56 DG |
949 | |
950 | assert(spapr->htab_first_pass); | |
951 | ||
952 | do { | |
953 | int chunkstart; | |
954 | ||
955 | /* Consume invalid HPTEs */ | |
956 | while ((index < htabslots) | |
957 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
958 | index++; | |
959 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
960 | } | |
961 | ||
962 | /* Consume valid HPTEs */ | |
963 | chunkstart = index; | |
964 | while ((index < htabslots) | |
965 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
966 | index++; | |
967 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
968 | } | |
969 | ||
970 | if (index > chunkstart) { | |
971 | int n_valid = index - chunkstart; | |
972 | ||
973 | qemu_put_be32(f, chunkstart); | |
974 | qemu_put_be16(f, n_valid); | |
975 | qemu_put_be16(f, 0); | |
976 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
977 | HASH_PTE_SIZE_64 * n_valid); | |
978 | ||
bc72ad67 | 979 | if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
4be21d56 DG |
980 | break; |
981 | } | |
982 | } | |
983 | } while ((index < htabslots) && !qemu_file_rate_limit(f)); | |
984 | ||
985 | if (index >= htabslots) { | |
986 | assert(index == htabslots); | |
987 | index = 0; | |
988 | spapr->htab_first_pass = false; | |
989 | } | |
990 | spapr->htab_save_index = index; | |
991 | } | |
992 | ||
e68cb8b4 AK |
993 | static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr, |
994 | int64_t max_ns) | |
4be21d56 DG |
995 | { |
996 | bool final = max_ns < 0; | |
997 | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | |
998 | int examined = 0, sent = 0; | |
999 | int index = spapr->htab_save_index; | |
bc72ad67 | 1000 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
4be21d56 DG |
1001 | |
1002 | assert(!spapr->htab_first_pass); | |
1003 | ||
1004 | do { | |
1005 | int chunkstart, invalidstart; | |
1006 | ||
1007 | /* Consume non-dirty HPTEs */ | |
1008 | while ((index < htabslots) | |
1009 | && !HPTE_DIRTY(HPTE(spapr->htab, index))) { | |
1010 | index++; | |
1011 | examined++; | |
1012 | } | |
1013 | ||
1014 | chunkstart = index; | |
1015 | /* Consume valid dirty HPTEs */ | |
1016 | while ((index < htabslots) | |
1017 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
1018 | && HPTE_VALID(HPTE(spapr->htab, index))) { | |
1019 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1020 | index++; | |
1021 | examined++; | |
1022 | } | |
1023 | ||
1024 | invalidstart = index; | |
1025 | /* Consume invalid dirty HPTEs */ | |
1026 | while ((index < htabslots) | |
1027 | && HPTE_DIRTY(HPTE(spapr->htab, index)) | |
1028 | && !HPTE_VALID(HPTE(spapr->htab, index))) { | |
1029 | CLEAN_HPTE(HPTE(spapr->htab, index)); | |
1030 | index++; | |
1031 | examined++; | |
1032 | } | |
1033 | ||
1034 | if (index > chunkstart) { | |
1035 | int n_valid = invalidstart - chunkstart; | |
1036 | int n_invalid = index - invalidstart; | |
1037 | ||
1038 | qemu_put_be32(f, chunkstart); | |
1039 | qemu_put_be16(f, n_valid); | |
1040 | qemu_put_be16(f, n_invalid); | |
1041 | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | |
1042 | HASH_PTE_SIZE_64 * n_valid); | |
1043 | sent += index - chunkstart; | |
1044 | ||
bc72ad67 | 1045 | if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
4be21d56 DG |
1046 | break; |
1047 | } | |
1048 | } | |
1049 | ||
1050 | if (examined >= htabslots) { | |
1051 | break; | |
1052 | } | |
1053 | ||
1054 | if (index >= htabslots) { | |
1055 | assert(index == htabslots); | |
1056 | index = 0; | |
1057 | } | |
1058 | } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); | |
1059 | ||
1060 | if (index >= htabslots) { | |
1061 | assert(index == htabslots); | |
1062 | index = 0; | |
1063 | } | |
1064 | ||
1065 | spapr->htab_save_index = index; | |
1066 | ||
e68cb8b4 | 1067 | return (examined >= htabslots) && (sent == 0) ? 1 : 0; |
4be21d56 DG |
1068 | } |
1069 | ||
e68cb8b4 AK |
1070 | #define MAX_ITERATION_NS 5000000 /* 5 ms */ |
1071 | #define MAX_KVM_BUF_SIZE 2048 | |
1072 | ||
4be21d56 DG |
1073 | static int htab_save_iterate(QEMUFile *f, void *opaque) |
1074 | { | |
1075 | sPAPREnvironment *spapr = opaque; | |
e68cb8b4 | 1076 | int rc = 0; |
4be21d56 DG |
1077 | |
1078 | /* Iteration header */ | |
1079 | qemu_put_be32(f, 0); | |
1080 | ||
e68cb8b4 AK |
1081 | if (!spapr->htab) { |
1082 | assert(kvm_enabled()); | |
1083 | ||
1084 | rc = kvmppc_save_htab(f, spapr->htab_fd, | |
1085 | MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | |
1086 | if (rc < 0) { | |
1087 | return rc; | |
1088 | } | |
1089 | } else if (spapr->htab_first_pass) { | |
4be21d56 DG |
1090 | htab_save_first_pass(f, spapr, MAX_ITERATION_NS); |
1091 | } else { | |
e68cb8b4 | 1092 | rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); |
4be21d56 DG |
1093 | } |
1094 | ||
1095 | /* End marker */ | |
1096 | qemu_put_be32(f, 0); | |
1097 | qemu_put_be16(f, 0); | |
1098 | qemu_put_be16(f, 0); | |
1099 | ||
e68cb8b4 | 1100 | return rc; |
4be21d56 DG |
1101 | } |
1102 | ||
1103 | static int htab_save_complete(QEMUFile *f, void *opaque) | |
1104 | { | |
1105 | sPAPREnvironment *spapr = opaque; | |
1106 | ||
1107 | /* Iteration header */ | |
1108 | qemu_put_be32(f, 0); | |
1109 | ||
e68cb8b4 AK |
1110 | if (!spapr->htab) { |
1111 | int rc; | |
1112 | ||
1113 | assert(kvm_enabled()); | |
1114 | ||
1115 | rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); | |
1116 | if (rc < 0) { | |
1117 | return rc; | |
1118 | } | |
1119 | close(spapr->htab_fd); | |
1120 | spapr->htab_fd = -1; | |
1121 | } else { | |
1122 | htab_save_later_pass(f, spapr, -1); | |
1123 | } | |
4be21d56 DG |
1124 | |
1125 | /* End marker */ | |
1126 | qemu_put_be32(f, 0); | |
1127 | qemu_put_be16(f, 0); | |
1128 | qemu_put_be16(f, 0); | |
1129 | ||
1130 | return 0; | |
1131 | } | |
1132 | ||
1133 | static int htab_load(QEMUFile *f, void *opaque, int version_id) | |
1134 | { | |
1135 | sPAPREnvironment *spapr = opaque; | |
1136 | uint32_t section_hdr; | |
e68cb8b4 | 1137 | int fd = -1; |
4be21d56 DG |
1138 | |
1139 | if (version_id < 1 || version_id > 1) { | |
1140 | fprintf(stderr, "htab_load() bad version\n"); | |
1141 | return -EINVAL; | |
1142 | } | |
1143 | ||
1144 | section_hdr = qemu_get_be32(f); | |
1145 | ||
1146 | if (section_hdr) { | |
1147 | /* First section, just the hash shift */ | |
1148 | if (spapr->htab_shift != section_hdr) { | |
1149 | return -EINVAL; | |
1150 | } | |
1151 | return 0; | |
1152 | } | |
1153 | ||
e68cb8b4 AK |
1154 | if (!spapr->htab) { |
1155 | assert(kvm_enabled()); | |
1156 | ||
1157 | fd = kvmppc_get_htab_fd(true); | |
1158 | if (fd < 0) { | |
1159 | fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", | |
1160 | strerror(errno)); | |
1161 | } | |
1162 | } | |
1163 | ||
4be21d56 DG |
1164 | while (true) { |
1165 | uint32_t index; | |
1166 | uint16_t n_valid, n_invalid; | |
1167 | ||
1168 | index = qemu_get_be32(f); | |
1169 | n_valid = qemu_get_be16(f); | |
1170 | n_invalid = qemu_get_be16(f); | |
1171 | ||
1172 | if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | |
1173 | /* End of Stream */ | |
1174 | break; | |
1175 | } | |
1176 | ||
e68cb8b4 | 1177 | if ((index + n_valid + n_invalid) > |
4be21d56 DG |
1178 | (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { |
1179 | /* Bad index in stream */ | |
1180 | fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " | |
e68cb8b4 AK |
1181 | "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, |
1182 | spapr->htab_shift); | |
4be21d56 DG |
1183 | return -EINVAL; |
1184 | } | |
1185 | ||
e68cb8b4 AK |
1186 | if (spapr->htab) { |
1187 | if (n_valid) { | |
1188 | qemu_get_buffer(f, HPTE(spapr->htab, index), | |
1189 | HASH_PTE_SIZE_64 * n_valid); | |
1190 | } | |
1191 | if (n_invalid) { | |
1192 | memset(HPTE(spapr->htab, index + n_valid), 0, | |
1193 | HASH_PTE_SIZE_64 * n_invalid); | |
1194 | } | |
1195 | } else { | |
1196 | int rc; | |
1197 | ||
1198 | assert(fd >= 0); | |
1199 | ||
1200 | rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); | |
1201 | if (rc < 0) { | |
1202 | return rc; | |
1203 | } | |
4be21d56 DG |
1204 | } |
1205 | } | |
1206 | ||
e68cb8b4 AK |
1207 | if (!spapr->htab) { |
1208 | assert(fd >= 0); | |
1209 | close(fd); | |
1210 | } | |
1211 | ||
4be21d56 DG |
1212 | return 0; |
1213 | } | |
1214 | ||
1215 | static SaveVMHandlers savevm_htab_handlers = { | |
1216 | .save_live_setup = htab_save_setup, | |
1217 | .save_live_iterate = htab_save_iterate, | |
1218 | .save_live_complete = htab_save_complete, | |
1219 | .load_state = htab_load, | |
1220 | }; | |
1221 | ||
9fdf0c29 | 1222 | /* pSeries LPAR / sPAPR hardware init */ |
3ef96221 | 1223 | static void ppc_spapr_init(MachineState *machine) |
9fdf0c29 | 1224 | { |
3ef96221 MA |
1225 | ram_addr_t ram_size = machine->ram_size; |
1226 | const char *cpu_model = machine->cpu_model; | |
1227 | const char *kernel_filename = machine->kernel_filename; | |
1228 | const char *kernel_cmdline = machine->kernel_cmdline; | |
1229 | const char *initrd_filename = machine->initrd_filename; | |
1230 | const char *boot_device = machine->boot_order; | |
05769733 | 1231 | PowerPCCPU *cpu; |
e2684c0b | 1232 | CPUPPCState *env; |
8c9f64df | 1233 | PCIHostState *phb; |
9fdf0c29 | 1234 | int i; |
890c2b77 AK |
1235 | MemoryRegion *sysmem = get_system_memory(); |
1236 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
a8170e5e | 1237 | hwaddr rma_alloc_size; |
c4177479 | 1238 | hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
4d8d5467 BH |
1239 | uint32_t initrd_base = 0; |
1240 | long kernel_size = 0, initrd_size = 0; | |
1241 | long load_limit, rtas_limit, fw_size; | |
16457e7f | 1242 | bool kernel_le = false; |
39ac8455 | 1243 | char *filename; |
9fdf0c29 | 1244 | |
0ee2c058 AK |
1245 | msi_supported = true; |
1246 | ||
d43b45e2 DG |
1247 | spapr = g_malloc0(sizeof(*spapr)); |
1248 | QLIST_INIT(&spapr->phbs); | |
1249 | ||
9fdf0c29 DG |
1250 | cpu_ppc_hypercall = emulate_spapr_hypercall; |
1251 | ||
354ac20a DG |
1252 | /* Allocate RMA if necessary */ |
1253 | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | |
1254 | ||
1255 | if (rma_alloc_size == -1) { | |
1256 | hw_error("qemu: Unable to create RMA\n"); | |
1257 | exit(1); | |
1258 | } | |
7f763a5d | 1259 | |
c4177479 | 1260 | if (rma_alloc_size && (rma_alloc_size < node0_size)) { |
7f763a5d | 1261 | spapr->rma_size = rma_alloc_size; |
354ac20a | 1262 | } else { |
c4177479 | 1263 | spapr->rma_size = node0_size; |
7f763a5d DG |
1264 | |
1265 | /* With KVM, we don't actually know whether KVM supports an | |
1266 | * unbounded RMA (PR KVM) or is limited by the hash table size | |
1267 | * (HV KVM using VRMA), so we always assume the latter | |
1268 | * | |
1269 | * In that case, we also limit the initial allocations for RTAS | |
1270 | * etc... to 256M since we have no way to know what the VRMA size | |
1271 | * is going to be as it depends on the size of the hash table | |
1272 | * isn't determined yet. | |
1273 | */ | |
1274 | if (kvm_enabled()) { | |
1275 | spapr->vrma_adjust = 1; | |
1276 | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | |
1277 | } | |
354ac20a DG |
1278 | } |
1279 | ||
c4177479 AK |
1280 | if (spapr->rma_size > node0_size) { |
1281 | fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", | |
1282 | spapr->rma_size); | |
1283 | exit(1); | |
1284 | } | |
1285 | ||
4d8d5467 | 1286 | /* We place the device tree and RTAS just below either the top of the RMA, |
354ac20a DG |
1287 | * or just below 2GB, whichever is lowere, so that it can be |
1288 | * processed with 32-bit real mode code if necessary */ | |
7f763a5d | 1289 | rtas_limit = MIN(spapr->rma_size, 0x80000000); |
4d8d5467 BH |
1290 | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; |
1291 | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | |
1292 | load_limit = spapr->fdt_addr - FW_OVERHEAD; | |
9fdf0c29 | 1293 | |
382be75d DG |
1294 | /* We aim for a hash table of size 1/128 the size of RAM. The |
1295 | * normal rule of thumb is 1/64 the size of RAM, but that's much | |
1296 | * more than needed for the Linux guests we support. */ | |
1297 | spapr->htab_shift = 18; /* Minimum architected size */ | |
1298 | while (spapr->htab_shift <= 46) { | |
1299 | if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { | |
1300 | break; | |
1301 | } | |
1302 | spapr->htab_shift++; | |
1303 | } | |
7f763a5d | 1304 | |
7b565160 DG |
1305 | /* Set up Interrupt Controller before we create the VCPUs */ |
1306 | spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads, | |
1307 | XICS_IRQS); | |
1308 | spapr->next_irq = XICS_IRQ_BASE; | |
1309 | ||
9fdf0c29 DG |
1310 | /* init CPUs */ |
1311 | if (cpu_model == NULL) { | |
6b7a2cf6 | 1312 | cpu_model = kvm_enabled() ? "host" : "POWER7"; |
9fdf0c29 DG |
1313 | } |
1314 | for (i = 0; i < smp_cpus; i++) { | |
05769733 AF |
1315 | cpu = cpu_ppc_init(cpu_model); |
1316 | if (cpu == NULL) { | |
9fdf0c29 DG |
1317 | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
1318 | exit(1); | |
1319 | } | |
05769733 AF |
1320 | env = &cpu->env; |
1321 | ||
9fdf0c29 DG |
1322 | /* Set time-base frequency to 512 MHz */ |
1323 | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | |
9fdf0c29 | 1324 | |
2cf3eb6d FC |
1325 | /* PAPR always has exception vectors in RAM not ROM. To ensure this, |
1326 | * MSR[IP] should never be set. | |
1327 | */ | |
1328 | env->msr_mask &= ~(1 << 6); | |
048706d9 DG |
1329 | |
1330 | /* Tell KVM that we're in PAPR mode */ | |
1331 | if (kvm_enabled()) { | |
1bc22652 | 1332 | kvmppc_set_papr(cpu); |
048706d9 DG |
1333 | } |
1334 | ||
6d9412ea AK |
1335 | if (cpu->max_compat) { |
1336 | if (ppc_set_compat(cpu, cpu->max_compat) < 0) { | |
1337 | exit(1); | |
1338 | } | |
1339 | } | |
1340 | ||
24408a7d AK |
1341 | xics_cpu_setup(spapr->icp, cpu); |
1342 | ||
048706d9 | 1343 | qemu_register_reset(spapr_cpu_reset, cpu); |
9fdf0c29 DG |
1344 | } |
1345 | ||
1346 | /* allocate RAM */ | |
f73a2575 | 1347 | spapr->ram_limit = ram_size; |
354ac20a DG |
1348 | if (spapr->ram_limit > rma_alloc_size) { |
1349 | ram_addr_t nonrma_base = rma_alloc_size; | |
1350 | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | |
1351 | ||
2c9b15ca | 1352 | memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size); |
c5705a77 | 1353 | vmstate_register_ram_global(ram); |
354ac20a DG |
1354 | memory_region_add_subregion(sysmem, nonrma_base, ram); |
1355 | } | |
9fdf0c29 | 1356 | |
39ac8455 | 1357 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
a3467baa | 1358 | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
4d8d5467 | 1359 | rtas_limit - spapr->rtas_addr); |
a3467baa | 1360 | if (spapr->rtas_size < 0) { |
39ac8455 DG |
1361 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
1362 | exit(1); | |
1363 | } | |
4d8d5467 BH |
1364 | if (spapr->rtas_size > RTAS_MAX_SIZE) { |
1365 | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | |
1366 | spapr->rtas_size, RTAS_MAX_SIZE); | |
1367 | exit(1); | |
1368 | } | |
7267c094 | 1369 | g_free(filename); |
39ac8455 | 1370 | |
74d042e5 DG |
1371 | /* Set up EPOW events infrastructure */ |
1372 | spapr_events_init(spapr); | |
1373 | ||
b5cec4c5 | 1374 | /* Set up VIO bus */ |
4040ab72 DG |
1375 | spapr->vio_bus = spapr_vio_bus_init(); |
1376 | ||
277f9acf | 1377 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
4040ab72 | 1378 | if (serial_hds[i]) { |
d601fac4 | 1379 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); |
4040ab72 DG |
1380 | } |
1381 | } | |
9fdf0c29 | 1382 | |
639e8102 DG |
1383 | /* We always have at least the nvram device on VIO */ |
1384 | spapr_create_nvram(spapr); | |
1385 | ||
3384f95c | 1386 | /* Set up PCI */ |
f1c2dc7c | 1387 | spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW); |
fa28f71b AK |
1388 | spapr_pci_rtas_init(); |
1389 | ||
89dfd6e1 | 1390 | phb = spapr_create_phb(spapr, 0); |
3384f95c | 1391 | |
277f9acf | 1392 | for (i = 0; i < nb_nics; i++) { |
8d90ad90 DG |
1393 | NICInfo *nd = &nd_table[i]; |
1394 | ||
1395 | if (!nd->model) { | |
7267c094 | 1396 | nd->model = g_strdup("ibmveth"); |
8d90ad90 DG |
1397 | } |
1398 | ||
1399 | if (strcmp(nd->model, "ibmveth") == 0) { | |
d601fac4 | 1400 | spapr_vlan_create(spapr->vio_bus, nd); |
8d90ad90 | 1401 | } else { |
29b358f9 | 1402 | pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); |
8d90ad90 DG |
1403 | } |
1404 | } | |
1405 | ||
6e270446 | 1406 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
d601fac4 | 1407 | spapr_vscsi_create(spapr->vio_bus); |
6e270446 BH |
1408 | } |
1409 | ||
f28359d8 | 1410 | /* Graphics */ |
8c9f64df | 1411 | if (spapr_vga_init(phb->bus)) { |
3fc5acde | 1412 | spapr->has_graphics = true; |
f28359d8 LZ |
1413 | } |
1414 | ||
094b287f | 1415 | if (usb_enabled(spapr->has_graphics)) { |
8c9f64df | 1416 | pci_create_simple(phb->bus, -1, "pci-ohci"); |
35139a59 DG |
1417 | if (spapr->has_graphics) { |
1418 | usbdevice_create("keyboard"); | |
1419 | usbdevice_create("mouse"); | |
1420 | } | |
1421 | } | |
1422 | ||
7f763a5d | 1423 | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { |
4d8d5467 BH |
1424 | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " |
1425 | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | |
1426 | exit(1); | |
1427 | } | |
1428 | ||
9fdf0c29 DG |
1429 | if (kernel_filename) { |
1430 | uint64_t lowaddr = 0; | |
1431 | ||
9fdf0c29 DG |
1432 | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
1433 | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | |
3b66da82 | 1434 | if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { |
16457e7f BH |
1435 | kernel_size = load_elf(kernel_filename, |
1436 | translate_kernel_address, NULL, | |
1437 | NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0); | |
1438 | kernel_le = kernel_size > 0; | |
1439 | } | |
9fdf0c29 | 1440 | if (kernel_size < 0) { |
3b66da82 AK |
1441 | fprintf(stderr, "qemu: error loading %s: %s\n", |
1442 | kernel_filename, load_elf_strerror(kernel_size)); | |
9fdf0c29 DG |
1443 | exit(1); |
1444 | } | |
1445 | ||
1446 | /* load initrd */ | |
1447 | if (initrd_filename) { | |
4d8d5467 BH |
1448 | /* Try to locate the initrd in the gap between the kernel |
1449 | * and the firmware. Add a bit of space just in case | |
1450 | */ | |
1451 | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | |
9fdf0c29 | 1452 | initrd_size = load_image_targphys(initrd_filename, initrd_base, |
4d8d5467 | 1453 | load_limit - initrd_base); |
9fdf0c29 DG |
1454 | if (initrd_size < 0) { |
1455 | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | |
1456 | initrd_filename); | |
1457 | exit(1); | |
1458 | } | |
1459 | } else { | |
1460 | initrd_base = 0; | |
1461 | initrd_size = 0; | |
1462 | } | |
4d8d5467 | 1463 | } |
a3467baa | 1464 | |
8e7ea787 AF |
1465 | if (bios_name == NULL) { |
1466 | bios_name = FW_FILE_NAME; | |
1467 | } | |
1468 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | |
4d8d5467 BH |
1469 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); |
1470 | if (fw_size < 0) { | |
1471 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
1472 | exit(1); | |
1473 | } | |
1474 | g_free(filename); | |
4d8d5467 BH |
1475 | |
1476 | spapr->entry_point = 0x100; | |
1477 | ||
4be21d56 DG |
1478 | vmstate_register(NULL, 0, &vmstate_spapr, spapr); |
1479 | register_savevm_live(NULL, "spapr/htab", -1, 1, | |
1480 | &savevm_htab_handlers, spapr); | |
1481 | ||
9fdf0c29 | 1482 | /* Prepare the device tree */ |
3bbf37f2 | 1483 | spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, |
16457e7f | 1484 | kernel_size, kernel_le, |
74d042e5 DG |
1485 | boot_device, kernel_cmdline, |
1486 | spapr->epow_irq); | |
a3467baa | 1487 | assert(spapr->fdt_skel != NULL); |
9fdf0c29 DG |
1488 | } |
1489 | ||
135a129a AK |
1490 | static int spapr_kvm_type(const char *vm_type) |
1491 | { | |
1492 | if (!vm_type) { | |
1493 | return 0; | |
1494 | } | |
1495 | ||
1496 | if (!strcmp(vm_type, "HV")) { | |
1497 | return 1; | |
1498 | } | |
1499 | ||
1500 | if (!strcmp(vm_type, "PR")) { | |
1501 | return 2; | |
1502 | } | |
1503 | ||
1504 | error_report("Unknown kvm-type specified '%s'", vm_type); | |
1505 | exit(1); | |
1506 | } | |
1507 | ||
71461b0f AK |
1508 | /* |
1509 | * Implementation of an interface to adjust firmware patch | |
1510 | * for the bootindex property handling. | |
1511 | */ | |
1512 | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, | |
1513 | DeviceState *dev) | |
1514 | { | |
1515 | #define CAST(type, obj, name) \ | |
1516 | ((type *)object_dynamic_cast(OBJECT(obj), (name))) | |
1517 | SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); | |
1518 | sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); | |
1519 | ||
1520 | if (d) { | |
1521 | void *spapr = CAST(void, bus->parent, "spapr-vscsi"); | |
1522 | VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); | |
1523 | USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); | |
1524 | ||
1525 | if (spapr) { | |
1526 | /* | |
1527 | * Replace "channel@0/disk@0,0" with "disk@8000000000000000": | |
1528 | * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun | |
1529 | * in the top 16 bits of the 64-bit LUN | |
1530 | */ | |
1531 | unsigned id = 0x8000 | (d->id << 8) | d->lun; | |
1532 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
1533 | (uint64_t)id << 48); | |
1534 | } else if (virtio) { | |
1535 | /* | |
1536 | * We use SRP luns of the form 01000000 | (target << 8) | lun | |
1537 | * in the top 32 bits of the 64-bit LUN | |
1538 | * Note: the quote above is from SLOF and it is wrong, | |
1539 | * the actual binding is: | |
1540 | * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) | |
1541 | */ | |
1542 | unsigned id = 0x1000000 | (d->id << 16) | d->lun; | |
1543 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
1544 | (uint64_t)id << 32); | |
1545 | } else if (usb) { | |
1546 | /* | |
1547 | * We use SRP luns of the form 01000000 | (usb-port << 16) | lun | |
1548 | * in the top 32 bits of the 64-bit LUN | |
1549 | */ | |
1550 | unsigned usb_port = atoi(usb->port->path); | |
1551 | unsigned id = 0x1000000 | (usb_port << 16) | d->lun; | |
1552 | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | |
1553 | (uint64_t)id << 32); | |
1554 | } | |
1555 | } | |
1556 | ||
1557 | if (phb) { | |
1558 | /* Replace "pci" with "pci@800000020000000" */ | |
1559 | return g_strdup_printf("pci@%"PRIX64, phb->buid); | |
1560 | } | |
1561 | ||
1562 | return NULL; | |
1563 | } | |
1564 | ||
29ee3247 AK |
1565 | static void spapr_machine_class_init(ObjectClass *oc, void *data) |
1566 | { | |
1567 | MachineClass *mc = MACHINE_CLASS(oc); | |
71461b0f | 1568 | FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); |
958db90c MA |
1569 | |
1570 | mc->name = "pseries"; | |
1571 | mc->desc = "pSeries Logical Partition (PAPR compliant)"; | |
1572 | mc->is_default = 1; | |
1573 | mc->init = ppc_spapr_init; | |
1574 | mc->reset = ppc_spapr_reset; | |
1575 | mc->block_default_type = IF_SCSI; | |
1576 | mc->max_cpus = MAX_CPUS; | |
1577 | mc->no_parallel = 1; | |
1578 | mc->default_boot_order = NULL; | |
1579 | mc->kvm_type = spapr_kvm_type; | |
00b4fbe2 | 1580 | |
71461b0f | 1581 | fwc->get_dev_path = spapr_get_fw_dev_path; |
29ee3247 AK |
1582 | } |
1583 | ||
1584 | static const TypeInfo spapr_machine_info = { | |
1585 | .name = TYPE_SPAPR_MACHINE, | |
1586 | .parent = TYPE_MACHINE, | |
1587 | .class_init = spapr_machine_class_init, | |
71461b0f AK |
1588 | .interfaces = (InterfaceInfo[]) { |
1589 | { TYPE_FW_PATH_PROVIDER }, | |
1590 | { } | |
1591 | }, | |
29ee3247 AK |
1592 | }; |
1593 | ||
1594 | static void spapr_machine_register_types(void) | |
9fdf0c29 | 1595 | { |
29ee3247 | 1596 | type_register_static(&spapr_machine_info); |
9fdf0c29 DG |
1597 | } |
1598 | ||
29ee3247 | 1599 | type_init(spapr_machine_register_types) |