]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "sysemu.h" | |
d33a1810 | 25 | #include "hw/hw.h" |
e22a25c9 | 26 | #include "gdbstub.h" |
05330448 AL |
27 | #include "kvm.h" |
28 | ||
f65ed4c1 AL |
29 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
30 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
31 | ||
05330448 AL |
32 | //#define DEBUG_KVM |
33 | ||
34 | #ifdef DEBUG_KVM | |
35 | #define dprintf(fmt, ...) \ | |
36 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
37 | #else | |
38 | #define dprintf(fmt, ...) \ | |
39 | do { } while (0) | |
40 | #endif | |
41 | ||
34fc643f AL |
42 | typedef struct KVMSlot |
43 | { | |
44 | target_phys_addr_t start_addr; | |
45 | ram_addr_t memory_size; | |
46 | ram_addr_t phys_offset; | |
47 | int slot; | |
48 | int flags; | |
49 | } KVMSlot; | |
05330448 | 50 | |
5832d1f2 AL |
51 | typedef struct kvm_dirty_log KVMDirtyLog; |
52 | ||
05330448 AL |
53 | int kvm_allowed = 0; |
54 | ||
55 | struct KVMState | |
56 | { | |
57 | KVMSlot slots[32]; | |
58 | int fd; | |
59 | int vmfd; | |
f65ed4c1 | 60 | int coalesced_mmio; |
e69917e2 | 61 | int broken_set_mem_region; |
4495d6a7 | 62 | int migration_log; |
e22a25c9 AL |
63 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
64 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
65 | #endif | |
6f725c13 GC |
66 | int irqchip_in_kernel; |
67 | int pit_in_kernel; | |
05330448 AL |
68 | }; |
69 | ||
70 | static KVMState *kvm_state; | |
71 | ||
72 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
73 | { | |
74 | int i; | |
75 | ||
76 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
62d60e8c AL |
77 | /* KVM private memory slots */ |
78 | if (i >= 8 && i < 12) | |
79 | continue; | |
05330448 AL |
80 | if (s->slots[i].memory_size == 0) |
81 | return &s->slots[i]; | |
82 | } | |
83 | ||
d3f8d37f AL |
84 | fprintf(stderr, "%s: no free slot available\n", __func__); |
85 | abort(); | |
86 | } | |
87 | ||
88 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
89 | target_phys_addr_t start_addr, | |
90 | target_phys_addr_t end_addr) | |
91 | { | |
92 | int i; | |
93 | ||
94 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
95 | KVMSlot *mem = &s->slots[i]; | |
96 | ||
97 | if (start_addr == mem->start_addr && | |
98 | end_addr == mem->start_addr + mem->memory_size) { | |
99 | return mem; | |
100 | } | |
101 | } | |
102 | ||
05330448 AL |
103 | return NULL; |
104 | } | |
105 | ||
6152e2ae AL |
106 | /* |
107 | * Find overlapping slot with lowest start address | |
108 | */ | |
109 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
110 | target_phys_addr_t start_addr, | |
111 | target_phys_addr_t end_addr) | |
05330448 | 112 | { |
6152e2ae | 113 | KVMSlot *found = NULL; |
05330448 AL |
114 | int i; |
115 | ||
116 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
117 | KVMSlot *mem = &s->slots[i]; | |
118 | ||
6152e2ae AL |
119 | if (mem->memory_size == 0 || |
120 | (found && found->start_addr < mem->start_addr)) { | |
121 | continue; | |
122 | } | |
123 | ||
124 | if (end_addr > mem->start_addr && | |
125 | start_addr < mem->start_addr + mem->memory_size) { | |
126 | found = mem; | |
127 | } | |
05330448 AL |
128 | } |
129 | ||
6152e2ae | 130 | return found; |
05330448 AL |
131 | } |
132 | ||
5832d1f2 AL |
133 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
134 | { | |
135 | struct kvm_userspace_memory_region mem; | |
136 | ||
137 | mem.slot = slot->slot; | |
138 | mem.guest_phys_addr = slot->start_addr; | |
139 | mem.memory_size = slot->memory_size; | |
5579c7f3 | 140 | mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); |
5832d1f2 | 141 | mem.flags = slot->flags; |
4495d6a7 JK |
142 | if (s->migration_log) { |
143 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
144 | } | |
5832d1f2 AL |
145 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
146 | } | |
147 | ||
8d2ba1fb JK |
148 | static void kvm_reset_vcpu(void *opaque) |
149 | { | |
150 | CPUState *env = opaque; | |
151 | ||
152 | if (kvm_arch_put_registers(env)) { | |
153 | fprintf(stderr, "Fatal: kvm vcpu reset failed\n"); | |
154 | abort(); | |
155 | } | |
156 | } | |
5832d1f2 | 157 | |
6f725c13 GC |
158 | int kvm_irqchip_in_kernel(void) |
159 | { | |
160 | return kvm_state->irqchip_in_kernel; | |
161 | } | |
162 | ||
163 | int kvm_pit_in_kernel(void) | |
164 | { | |
165 | return kvm_state->pit_in_kernel; | |
166 | } | |
167 | ||
168 | ||
05330448 AL |
169 | int kvm_init_vcpu(CPUState *env) |
170 | { | |
171 | KVMState *s = kvm_state; | |
172 | long mmap_size; | |
173 | int ret; | |
174 | ||
175 | dprintf("kvm_init_vcpu\n"); | |
176 | ||
984b5181 | 177 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
05330448 AL |
178 | if (ret < 0) { |
179 | dprintf("kvm_create_vcpu failed\n"); | |
180 | goto err; | |
181 | } | |
182 | ||
183 | env->kvm_fd = ret; | |
184 | env->kvm_state = s; | |
185 | ||
186 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
187 | if (mmap_size < 0) { | |
188 | dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
189 | goto err; | |
190 | } | |
191 | ||
192 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
193 | env->kvm_fd, 0); | |
194 | if (env->kvm_run == MAP_FAILED) { | |
195 | ret = -errno; | |
196 | dprintf("mmap'ing vcpu state failed\n"); | |
197 | goto err; | |
198 | } | |
199 | ||
200 | ret = kvm_arch_init_vcpu(env); | |
8d2ba1fb | 201 | if (ret == 0) { |
a08d4367 | 202 | qemu_register_reset(kvm_reset_vcpu, env); |
8d2ba1fb JK |
203 | ret = kvm_arch_put_registers(env); |
204 | } | |
05330448 AL |
205 | err: |
206 | return ret; | |
207 | } | |
208 | ||
f8d926e9 JK |
209 | int kvm_put_mp_state(CPUState *env) |
210 | { | |
211 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | |
212 | ||
213 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | |
214 | } | |
215 | ||
216 | int kvm_get_mp_state(CPUState *env) | |
217 | { | |
218 | struct kvm_mp_state mp_state; | |
219 | int ret; | |
220 | ||
221 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | |
222 | if (ret < 0) { | |
223 | return ret; | |
224 | } | |
225 | env->mp_state = mp_state.mp_state; | |
226 | return 0; | |
227 | } | |
228 | ||
5832d1f2 AL |
229 | /* |
230 | * dirty pages logging control | |
231 | */ | |
d3f8d37f | 232 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, |
4495d6a7 | 233 | ram_addr_t size, int flags, int mask) |
5832d1f2 AL |
234 | { |
235 | KVMState *s = kvm_state; | |
d3f8d37f | 236 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); |
4495d6a7 JK |
237 | int old_flags; |
238 | ||
5832d1f2 | 239 | if (mem == NULL) { |
d3f8d37f AL |
240 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" |
241 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
b80a55e6 | 242 | (target_phys_addr_t)(phys_addr + size - 1)); |
5832d1f2 AL |
243 | return -EINVAL; |
244 | } | |
245 | ||
4495d6a7 | 246 | old_flags = mem->flags; |
5832d1f2 | 247 | |
4495d6a7 | 248 | flags = (mem->flags & ~mask) | flags; |
5832d1f2 AL |
249 | mem->flags = flags; |
250 | ||
4495d6a7 JK |
251 | /* If nothing changed effectively, no need to issue ioctl */ |
252 | if (s->migration_log) { | |
253 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
254 | } | |
255 | if (flags == old_flags) { | |
256 | return 0; | |
257 | } | |
258 | ||
5832d1f2 AL |
259 | return kvm_set_user_memory_region(s, mem); |
260 | } | |
261 | ||
d3f8d37f | 262 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 263 | { |
d3f8d37f | 264 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
265 | KVM_MEM_LOG_DIRTY_PAGES, |
266 | KVM_MEM_LOG_DIRTY_PAGES); | |
267 | } | |
268 | ||
d3f8d37f | 269 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) |
5832d1f2 | 270 | { |
d3f8d37f | 271 | return kvm_dirty_pages_log_change(phys_addr, size, |
5832d1f2 AL |
272 | 0, |
273 | KVM_MEM_LOG_DIRTY_PAGES); | |
274 | } | |
275 | ||
4495d6a7 JK |
276 | int kvm_set_migration_log(int enable) |
277 | { | |
278 | KVMState *s = kvm_state; | |
279 | KVMSlot *mem; | |
280 | int i, err; | |
281 | ||
282 | s->migration_log = enable; | |
283 | ||
284 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
285 | mem = &s->slots[i]; | |
286 | ||
287 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
288 | continue; | |
289 | } | |
290 | err = kvm_set_user_memory_region(s, mem); | |
291 | if (err) { | |
292 | return err; | |
293 | } | |
294 | } | |
295 | return 0; | |
296 | } | |
297 | ||
96c1606b AG |
298 | static int test_le_bit(unsigned long nr, unsigned char *addr) |
299 | { | |
300 | return (addr[nr >> 3] >> (nr & 7)) & 1; | |
301 | } | |
302 | ||
5832d1f2 AL |
303 | /** |
304 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
305 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
306 | * This means all bits are set to dirty. | |
307 | * | |
d3f8d37f | 308 | * @start_add: start of logged region. |
5832d1f2 AL |
309 | * @end_addr: end of logged region. |
310 | */ | |
151f7749 JK |
311 | int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, |
312 | target_phys_addr_t end_addr) | |
5832d1f2 AL |
313 | { |
314 | KVMState *s = kvm_state; | |
151f7749 JK |
315 | unsigned long size, allocated_size = 0; |
316 | target_phys_addr_t phys_addr; | |
5832d1f2 | 317 | ram_addr_t addr; |
151f7749 JK |
318 | KVMDirtyLog d; |
319 | KVMSlot *mem; | |
320 | int ret = 0; | |
5832d1f2 | 321 | |
151f7749 JK |
322 | d.dirty_bitmap = NULL; |
323 | while (start_addr < end_addr) { | |
324 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
325 | if (mem == NULL) { | |
326 | break; | |
327 | } | |
5832d1f2 | 328 | |
151f7749 JK |
329 | size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8; |
330 | if (!d.dirty_bitmap) { | |
331 | d.dirty_bitmap = qemu_malloc(size); | |
332 | } else if (size > allocated_size) { | |
333 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
334 | } | |
335 | allocated_size = size; | |
336 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 337 | |
151f7749 | 338 | d.slot = mem->slot; |
5832d1f2 | 339 | |
6e489f3f | 340 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
151f7749 JK |
341 | dprintf("ioctl failed %d\n", errno); |
342 | ret = -1; | |
343 | break; | |
344 | } | |
5832d1f2 | 345 | |
151f7749 JK |
346 | for (phys_addr = mem->start_addr, addr = mem->phys_offset; |
347 | phys_addr < mem->start_addr + mem->memory_size; | |
348 | phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
96c1606b | 349 | unsigned char *bitmap = (unsigned char *)d.dirty_bitmap; |
151f7749 | 350 | unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS; |
151f7749 | 351 | |
96c1606b | 352 | if (test_le_bit(nr, bitmap)) { |
151f7749 JK |
353 | cpu_physical_memory_set_dirty(addr); |
354 | } | |
355 | } | |
356 | start_addr = phys_addr; | |
5832d1f2 | 357 | } |
5832d1f2 | 358 | qemu_free(d.dirty_bitmap); |
151f7749 JK |
359 | |
360 | return ret; | |
5832d1f2 AL |
361 | } |
362 | ||
f65ed4c1 AL |
363 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
364 | { | |
365 | int ret = -ENOSYS; | |
366 | #ifdef KVM_CAP_COALESCED_MMIO | |
367 | KVMState *s = kvm_state; | |
368 | ||
369 | if (s->coalesced_mmio) { | |
370 | struct kvm_coalesced_mmio_zone zone; | |
371 | ||
372 | zone.addr = start; | |
373 | zone.size = size; | |
374 | ||
375 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
376 | } | |
377 | #endif | |
378 | ||
379 | return ret; | |
380 | } | |
381 | ||
382 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
383 | { | |
384 | int ret = -ENOSYS; | |
385 | #ifdef KVM_CAP_COALESCED_MMIO | |
386 | KVMState *s = kvm_state; | |
387 | ||
388 | if (s->coalesced_mmio) { | |
389 | struct kvm_coalesced_mmio_zone zone; | |
390 | ||
391 | zone.addr = start; | |
392 | zone.size = size; | |
393 | ||
394 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
395 | } | |
396 | #endif | |
397 | ||
398 | return ret; | |
399 | } | |
400 | ||
ad7b8b33 AL |
401 | int kvm_check_extension(KVMState *s, unsigned int extension) |
402 | { | |
403 | int ret; | |
404 | ||
405 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
406 | if (ret < 0) { | |
407 | ret = 0; | |
408 | } | |
409 | ||
410 | return ret; | |
411 | } | |
412 | ||
05330448 AL |
413 | int kvm_init(int smp_cpus) |
414 | { | |
168ccc11 JK |
415 | static const char upgrade_note[] = |
416 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
417 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 AL |
418 | KVMState *s; |
419 | int ret; | |
420 | int i; | |
421 | ||
9f8fd694 MM |
422 | if (smp_cpus > 1) { |
423 | fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); | |
05330448 | 424 | return -EINVAL; |
9f8fd694 | 425 | } |
05330448 AL |
426 | |
427 | s = qemu_mallocz(sizeof(KVMState)); | |
05330448 | 428 | |
e22a25c9 AL |
429 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
430 | TAILQ_INIT(&s->kvm_sw_breakpoints); | |
431 | #endif | |
05330448 AL |
432 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
433 | s->slots[i].slot = i; | |
434 | ||
435 | s->vmfd = -1; | |
436 | s->fd = open("/dev/kvm", O_RDWR); | |
437 | if (s->fd == -1) { | |
438 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
439 | ret = -errno; | |
440 | goto err; | |
441 | } | |
442 | ||
443 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
444 | if (ret < KVM_API_VERSION) { | |
445 | if (ret > 0) | |
446 | ret = -EINVAL; | |
447 | fprintf(stderr, "kvm version too old\n"); | |
448 | goto err; | |
449 | } | |
450 | ||
451 | if (ret > KVM_API_VERSION) { | |
452 | ret = -EINVAL; | |
453 | fprintf(stderr, "kvm version not supported\n"); | |
454 | goto err; | |
455 | } | |
456 | ||
457 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
458 | if (s->vmfd < 0) | |
459 | goto err; | |
460 | ||
461 | /* initially, KVM allocated its own memory and we had to jump through | |
462 | * hooks to make phys_ram_base point to this. Modern versions of KVM | |
5579c7f3 | 463 | * just use a user allocated buffer so we can use regular pages |
05330448 AL |
464 | * unmodified. Make sure we have a sufficiently modern version of KVM. |
465 | */ | |
ad7b8b33 AL |
466 | if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { |
467 | ret = -EINVAL; | |
168ccc11 JK |
468 | fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", |
469 | upgrade_note); | |
05330448 AL |
470 | goto err; |
471 | } | |
472 | ||
d85dc283 AL |
473 | /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
474 | * destroyed properly. Since we rely on this capability, refuse to work | |
475 | * with any kernel without this capability. */ | |
ad7b8b33 AL |
476 | if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { |
477 | ret = -EINVAL; | |
d85dc283 AL |
478 | |
479 | fprintf(stderr, | |
168ccc11 JK |
480 | "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", |
481 | upgrade_note); | |
d85dc283 AL |
482 | goto err; |
483 | } | |
484 | ||
f65ed4c1 | 485 | #ifdef KVM_CAP_COALESCED_MMIO |
ad7b8b33 AL |
486 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
487 | #else | |
488 | s->coalesced_mmio = 0; | |
f65ed4c1 AL |
489 | #endif |
490 | ||
e69917e2 JK |
491 | s->broken_set_mem_region = 1; |
492 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | |
493 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
494 | if (ret > 0) { | |
495 | s->broken_set_mem_region = 0; | |
496 | } | |
497 | #endif | |
498 | ||
05330448 AL |
499 | ret = kvm_arch_init(s, smp_cpus); |
500 | if (ret < 0) | |
501 | goto err; | |
502 | ||
503 | kvm_state = s; | |
504 | ||
505 | return 0; | |
506 | ||
507 | err: | |
508 | if (s) { | |
509 | if (s->vmfd != -1) | |
510 | close(s->vmfd); | |
511 | if (s->fd != -1) | |
512 | close(s->fd); | |
513 | } | |
514 | qemu_free(s); | |
515 | ||
516 | return ret; | |
517 | } | |
518 | ||
519 | static int kvm_handle_io(CPUState *env, uint16_t port, void *data, | |
520 | int direction, int size, uint32_t count) | |
521 | { | |
522 | int i; | |
523 | uint8_t *ptr = data; | |
524 | ||
525 | for (i = 0; i < count; i++) { | |
526 | if (direction == KVM_EXIT_IO_IN) { | |
527 | switch (size) { | |
528 | case 1: | |
529 | stb_p(ptr, cpu_inb(env, port)); | |
530 | break; | |
531 | case 2: | |
532 | stw_p(ptr, cpu_inw(env, port)); | |
533 | break; | |
534 | case 4: | |
535 | stl_p(ptr, cpu_inl(env, port)); | |
536 | break; | |
537 | } | |
538 | } else { | |
539 | switch (size) { | |
540 | case 1: | |
541 | cpu_outb(env, port, ldub_p(ptr)); | |
542 | break; | |
543 | case 2: | |
544 | cpu_outw(env, port, lduw_p(ptr)); | |
545 | break; | |
546 | case 4: | |
547 | cpu_outl(env, port, ldl_p(ptr)); | |
548 | break; | |
549 | } | |
550 | } | |
551 | ||
552 | ptr += size; | |
553 | } | |
554 | ||
555 | return 1; | |
556 | } | |
557 | ||
f65ed4c1 AL |
558 | static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) |
559 | { | |
560 | #ifdef KVM_CAP_COALESCED_MMIO | |
561 | KVMState *s = kvm_state; | |
562 | if (s->coalesced_mmio) { | |
563 | struct kvm_coalesced_mmio_ring *ring; | |
564 | ||
565 | ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); | |
566 | while (ring->first != ring->last) { | |
567 | struct kvm_coalesced_mmio *ent; | |
568 | ||
569 | ent = &ring->coalesced_mmio[ring->first]; | |
570 | ||
571 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
572 | /* FIXME smp_wmb() */ | |
573 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
574 | } | |
575 | } | |
576 | #endif | |
577 | } | |
578 | ||
05330448 AL |
579 | int kvm_cpu_exec(CPUState *env) |
580 | { | |
581 | struct kvm_run *run = env->kvm_run; | |
582 | int ret; | |
583 | ||
584 | dprintf("kvm_cpu_exec()\n"); | |
585 | ||
586 | do { | |
be214e6c | 587 | if (env->exit_request) { |
05330448 AL |
588 | dprintf("interrupt exit requested\n"); |
589 | ret = 0; | |
590 | break; | |
591 | } | |
592 | ||
8c14c173 | 593 | kvm_arch_pre_run(env, run); |
05330448 AL |
594 | ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
595 | kvm_arch_post_run(env, run); | |
596 | ||
597 | if (ret == -EINTR || ret == -EAGAIN) { | |
598 | dprintf("io window exit\n"); | |
599 | ret = 0; | |
600 | break; | |
601 | } | |
602 | ||
603 | if (ret < 0) { | |
604 | dprintf("kvm run failed %s\n", strerror(-ret)); | |
605 | abort(); | |
606 | } | |
607 | ||
f65ed4c1 AL |
608 | kvm_run_coalesced_mmio(env, run); |
609 | ||
05330448 AL |
610 | ret = 0; /* exit loop */ |
611 | switch (run->exit_reason) { | |
612 | case KVM_EXIT_IO: | |
613 | dprintf("handle_io\n"); | |
614 | ret = kvm_handle_io(env, run->io.port, | |
615 | (uint8_t *)run + run->io.data_offset, | |
616 | run->io.direction, | |
617 | run->io.size, | |
618 | run->io.count); | |
619 | break; | |
620 | case KVM_EXIT_MMIO: | |
621 | dprintf("handle_mmio\n"); | |
622 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
623 | run->mmio.data, | |
624 | run->mmio.len, | |
625 | run->mmio.is_write); | |
626 | ret = 1; | |
627 | break; | |
628 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
629 | dprintf("irq_window_open\n"); | |
630 | break; | |
631 | case KVM_EXIT_SHUTDOWN: | |
632 | dprintf("shutdown\n"); | |
633 | qemu_system_reset_request(); | |
634 | ret = 1; | |
635 | break; | |
636 | case KVM_EXIT_UNKNOWN: | |
637 | dprintf("kvm_exit_unknown\n"); | |
638 | break; | |
639 | case KVM_EXIT_FAIL_ENTRY: | |
640 | dprintf("kvm_exit_fail_entry\n"); | |
641 | break; | |
642 | case KVM_EXIT_EXCEPTION: | |
643 | dprintf("kvm_exit_exception\n"); | |
644 | break; | |
645 | case KVM_EXIT_DEBUG: | |
646 | dprintf("kvm_exit_debug\n"); | |
e22a25c9 AL |
647 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
648 | if (kvm_arch_debug(&run->debug.arch)) { | |
649 | gdb_set_stop_cpu(env); | |
650 | vm_stop(EXCP_DEBUG); | |
651 | env->exception_index = EXCP_DEBUG; | |
652 | return 0; | |
653 | } | |
654 | /* re-enter, this exception was guest-internal */ | |
655 | ret = 1; | |
656 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | |
05330448 AL |
657 | break; |
658 | default: | |
659 | dprintf("kvm_arch_handle_exit\n"); | |
660 | ret = kvm_arch_handle_exit(env, run); | |
661 | break; | |
662 | } | |
663 | } while (ret > 0); | |
664 | ||
be214e6c AJ |
665 | if (env->exit_request) { |
666 | env->exit_request = 0; | |
becfc390 AL |
667 | env->exception_index = EXCP_INTERRUPT; |
668 | } | |
669 | ||
05330448 AL |
670 | return ret; |
671 | } | |
672 | ||
673 | void kvm_set_phys_mem(target_phys_addr_t start_addr, | |
674 | ram_addr_t size, | |
675 | ram_addr_t phys_offset) | |
676 | { | |
677 | KVMState *s = kvm_state; | |
678 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
6152e2ae AL |
679 | KVMSlot *mem, old; |
680 | int err; | |
05330448 | 681 | |
d3f8d37f | 682 | if (start_addr & ~TARGET_PAGE_MASK) { |
e6f4afe0 JK |
683 | if (flags >= IO_MEM_UNASSIGNED) { |
684 | if (!kvm_lookup_overlapping_slot(s, start_addr, | |
685 | start_addr + size)) { | |
686 | return; | |
687 | } | |
688 | fprintf(stderr, "Unaligned split of a KVM memory slot\n"); | |
689 | } else { | |
690 | fprintf(stderr, "Only page-aligned memory slots supported\n"); | |
691 | } | |
d3f8d37f AL |
692 | abort(); |
693 | } | |
694 | ||
05330448 AL |
695 | /* KVM does not support read-only slots */ |
696 | phys_offset &= ~IO_MEM_ROM; | |
697 | ||
6152e2ae AL |
698 | while (1) { |
699 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
700 | if (!mem) { | |
701 | break; | |
702 | } | |
62d60e8c | 703 | |
6152e2ae AL |
704 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && |
705 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
706 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
707 | /* The new slot fits into the existing one and comes with | |
708 | * identical parameters - nothing to be done. */ | |
05330448 | 709 | return; |
6152e2ae AL |
710 | } |
711 | ||
712 | old = *mem; | |
713 | ||
714 | /* unregister the overlapping slot */ | |
715 | mem->memory_size = 0; | |
716 | err = kvm_set_user_memory_region(s, mem); | |
717 | if (err) { | |
718 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
719 | __func__, strerror(-err)); | |
62d60e8c AL |
720 | abort(); |
721 | } | |
6152e2ae AL |
722 | |
723 | /* Workaround for older KVM versions: we can't join slots, even not by | |
724 | * unregistering the previous ones and then registering the larger | |
725 | * slot. We have to maintain the existing fragmentation. Sigh. | |
726 | * | |
727 | * This workaround assumes that the new slot starts at the same | |
728 | * address as the first existing one. If not or if some overlapping | |
729 | * slot comes around later, we will fail (not seen in practice so far) | |
730 | * - and actually require a recent KVM version. */ | |
e69917e2 JK |
731 | if (s->broken_set_mem_region && |
732 | old.start_addr == start_addr && old.memory_size < size && | |
6152e2ae AL |
733 | flags < IO_MEM_UNASSIGNED) { |
734 | mem = kvm_alloc_slot(s); | |
735 | mem->memory_size = old.memory_size; | |
736 | mem->start_addr = old.start_addr; | |
737 | mem->phys_offset = old.phys_offset; | |
738 | mem->flags = 0; | |
739 | ||
740 | err = kvm_set_user_memory_region(s, mem); | |
741 | if (err) { | |
742 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
743 | strerror(-err)); | |
744 | abort(); | |
745 | } | |
746 | ||
747 | start_addr += old.memory_size; | |
748 | phys_offset += old.memory_size; | |
749 | size -= old.memory_size; | |
750 | continue; | |
751 | } | |
752 | ||
753 | /* register prefix slot */ | |
754 | if (old.start_addr < start_addr) { | |
755 | mem = kvm_alloc_slot(s); | |
756 | mem->memory_size = start_addr - old.start_addr; | |
757 | mem->start_addr = old.start_addr; | |
758 | mem->phys_offset = old.phys_offset; | |
759 | mem->flags = 0; | |
760 | ||
761 | err = kvm_set_user_memory_region(s, mem); | |
762 | if (err) { | |
763 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
764 | __func__, strerror(-err)); | |
765 | abort(); | |
766 | } | |
767 | } | |
768 | ||
769 | /* register suffix slot */ | |
770 | if (old.start_addr + old.memory_size > start_addr + size) { | |
771 | ram_addr_t size_delta; | |
772 | ||
773 | mem = kvm_alloc_slot(s); | |
774 | mem->start_addr = start_addr + size; | |
775 | size_delta = mem->start_addr - old.start_addr; | |
776 | mem->memory_size = old.memory_size - size_delta; | |
777 | mem->phys_offset = old.phys_offset + size_delta; | |
778 | mem->flags = 0; | |
779 | ||
780 | err = kvm_set_user_memory_region(s, mem); | |
781 | if (err) { | |
782 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
783 | __func__, strerror(-err)); | |
784 | abort(); | |
785 | } | |
786 | } | |
05330448 | 787 | } |
6152e2ae AL |
788 | |
789 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
790 | if (!size) | |
791 | return; | |
792 | ||
05330448 AL |
793 | /* KVM does not need to know about this memory */ |
794 | if (flags >= IO_MEM_UNASSIGNED) | |
795 | return; | |
796 | ||
797 | mem = kvm_alloc_slot(s); | |
798 | mem->memory_size = size; | |
34fc643f AL |
799 | mem->start_addr = start_addr; |
800 | mem->phys_offset = phys_offset; | |
05330448 AL |
801 | mem->flags = 0; |
802 | ||
6152e2ae AL |
803 | err = kvm_set_user_memory_region(s, mem); |
804 | if (err) { | |
805 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
806 | strerror(-err)); | |
807 | abort(); | |
808 | } | |
05330448 AL |
809 | } |
810 | ||
984b5181 | 811 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
812 | { |
813 | int ret; | |
984b5181 AL |
814 | void *arg; |
815 | va_list ap; | |
05330448 | 816 | |
984b5181 AL |
817 | va_start(ap, type); |
818 | arg = va_arg(ap, void *); | |
819 | va_end(ap); | |
820 | ||
821 | ret = ioctl(s->fd, type, arg); | |
05330448 AL |
822 | if (ret == -1) |
823 | ret = -errno; | |
824 | ||
825 | return ret; | |
826 | } | |
827 | ||
984b5181 | 828 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
829 | { |
830 | int ret; | |
984b5181 AL |
831 | void *arg; |
832 | va_list ap; | |
833 | ||
834 | va_start(ap, type); | |
835 | arg = va_arg(ap, void *); | |
836 | va_end(ap); | |
05330448 | 837 | |
984b5181 | 838 | ret = ioctl(s->vmfd, type, arg); |
05330448 AL |
839 | if (ret == -1) |
840 | ret = -errno; | |
841 | ||
842 | return ret; | |
843 | } | |
844 | ||
984b5181 | 845 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
05330448 AL |
846 | { |
847 | int ret; | |
984b5181 AL |
848 | void *arg; |
849 | va_list ap; | |
850 | ||
851 | va_start(ap, type); | |
852 | arg = va_arg(ap, void *); | |
853 | va_end(ap); | |
05330448 | 854 | |
984b5181 | 855 | ret = ioctl(env->kvm_fd, type, arg); |
05330448 AL |
856 | if (ret == -1) |
857 | ret = -errno; | |
858 | ||
859 | return ret; | |
860 | } | |
bd322087 AL |
861 | |
862 | int kvm_has_sync_mmu(void) | |
863 | { | |
a9c11522 | 864 | #ifdef KVM_CAP_SYNC_MMU |
bd322087 AL |
865 | KVMState *s = kvm_state; |
866 | ||
ad7b8b33 AL |
867 | return kvm_check_extension(s, KVM_CAP_SYNC_MMU); |
868 | #else | |
bd322087 | 869 | return 0; |
ad7b8b33 | 870 | #endif |
bd322087 | 871 | } |
e22a25c9 | 872 | |
6f0437e8 JK |
873 | void kvm_setup_guest_memory(void *start, size_t size) |
874 | { | |
875 | if (!kvm_has_sync_mmu()) { | |
876 | #ifdef MADV_DONTFORK | |
877 | int ret = madvise(start, size, MADV_DONTFORK); | |
878 | ||
879 | if (ret) { | |
880 | perror("madvice"); | |
881 | exit(1); | |
882 | } | |
883 | #else | |
884 | fprintf(stderr, | |
885 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
886 | exit(1); | |
887 | #endif | |
888 | } | |
889 | } | |
890 | ||
e22a25c9 | 891 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
fc5d642f LC |
892 | static void on_vcpu(CPUState *env, void (*func)(void *data), void *data) |
893 | { | |
894 | if (env == cpu_single_env) { | |
895 | func(data); | |
896 | return; | |
897 | } | |
898 | abort(); | |
899 | } | |
900 | ||
e22a25c9 AL |
901 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, |
902 | target_ulong pc) | |
903 | { | |
904 | struct kvm_sw_breakpoint *bp; | |
905 | ||
906 | TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | |
907 | if (bp->pc == pc) | |
908 | return bp; | |
909 | } | |
910 | return NULL; | |
911 | } | |
912 | ||
913 | int kvm_sw_breakpoints_active(CPUState *env) | |
914 | { | |
915 | return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | |
916 | } | |
917 | ||
452e4751 GC |
918 | struct kvm_set_guest_debug_data { |
919 | struct kvm_guest_debug dbg; | |
920 | CPUState *env; | |
921 | int err; | |
922 | }; | |
923 | ||
924 | static void kvm_invoke_set_guest_debug(void *data) | |
925 | { | |
926 | struct kvm_set_guest_debug_data *dbg_data = data; | |
927 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
928 | } | |
929 | ||
e22a25c9 AL |
930 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) |
931 | { | |
452e4751 | 932 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 933 | |
452e4751 | 934 | data.dbg.control = 0; |
e22a25c9 | 935 | if (env->singlestep_enabled) |
452e4751 | 936 | data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; |
e22a25c9 | 937 | |
452e4751 GC |
938 | kvm_arch_update_guest_debug(env, &data.dbg); |
939 | data.dbg.control |= reinject_trap; | |
940 | data.env = env; | |
e22a25c9 | 941 | |
452e4751 GC |
942 | on_vcpu(env, kvm_invoke_set_guest_debug, &data); |
943 | return data.err; | |
e22a25c9 AL |
944 | } |
945 | ||
946 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
947 | target_ulong len, int type) | |
948 | { | |
949 | struct kvm_sw_breakpoint *bp; | |
950 | CPUState *env; | |
951 | int err; | |
952 | ||
953 | if (type == GDB_BREAKPOINT_SW) { | |
954 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
955 | if (bp) { | |
956 | bp->use_count++; | |
957 | return 0; | |
958 | } | |
959 | ||
960 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
961 | if (!bp) | |
962 | return -ENOMEM; | |
963 | ||
964 | bp->pc = addr; | |
965 | bp->use_count = 1; | |
966 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
967 | if (err) { | |
968 | free(bp); | |
969 | return err; | |
970 | } | |
971 | ||
972 | TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | |
973 | bp, entry); | |
974 | } else { | |
975 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
976 | if (err) | |
977 | return err; | |
978 | } | |
979 | ||
980 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
981 | err = kvm_update_guest_debug(env, 0); | |
982 | if (err) | |
983 | return err; | |
984 | } | |
985 | return 0; | |
986 | } | |
987 | ||
988 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
989 | target_ulong len, int type) | |
990 | { | |
991 | struct kvm_sw_breakpoint *bp; | |
992 | CPUState *env; | |
993 | int err; | |
994 | ||
995 | if (type == GDB_BREAKPOINT_SW) { | |
996 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
997 | if (!bp) | |
998 | return -ENOENT; | |
999 | ||
1000 | if (bp->use_count > 1) { | |
1001 | bp->use_count--; | |
1002 | return 0; | |
1003 | } | |
1004 | ||
1005 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1006 | if (err) | |
1007 | return err; | |
1008 | ||
1009 | TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1010 | qemu_free(bp); | |
1011 | } else { | |
1012 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1013 | if (err) | |
1014 | return err; | |
1015 | } | |
1016 | ||
1017 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1018 | err = kvm_update_guest_debug(env, 0); | |
1019 | if (err) | |
1020 | return err; | |
1021 | } | |
1022 | return 0; | |
1023 | } | |
1024 | ||
1025 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1026 | { | |
1027 | struct kvm_sw_breakpoint *bp, *next; | |
1028 | KVMState *s = current_env->kvm_state; | |
1029 | CPUState *env; | |
1030 | ||
1031 | TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1032 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | |
1033 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1034 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1035 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | |
1036 | break; | |
1037 | } | |
1038 | } | |
1039 | } | |
1040 | kvm_arch_remove_all_hw_breakpoints(); | |
1041 | ||
1042 | for (env = first_cpu; env != NULL; env = env->next_cpu) | |
1043 | kvm_update_guest_debug(env, 0); | |
1044 | } | |
1045 | ||
1046 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1047 | ||
1048 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1049 | { | |
1050 | return -EINVAL; | |
1051 | } | |
1052 | ||
1053 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1054 | target_ulong len, int type) | |
1055 | { | |
1056 | return -EINVAL; | |
1057 | } | |
1058 | ||
1059 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1060 | target_ulong len, int type) | |
1061 | { | |
1062 | return -EINVAL; | |
1063 | } | |
1064 | ||
1065 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1066 | { | |
1067 | } | |
1068 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ |