4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
51 typedef struct kvm_dirty_log KVMDirtyLog;
61 int broken_set_mem_region;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 int irqchip_in_kernel;
70 static KVMState *kvm_state;
72 static KVMSlot *kvm_alloc_slot(KVMState *s)
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77 /* KVM private memory slots */
80 if (s->slots[i].memory_size == 0)
84 fprintf(stderr, "%s: no free slot available\n", __func__);
88 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 target_phys_addr_t start_addr,
90 target_phys_addr_t end_addr)
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
97 if (start_addr == mem->start_addr &&
98 end_addr == mem->start_addr + mem->memory_size) {
107 * Find overlapping slot with lowest start address
109 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110 target_phys_addr_t start_addr,
111 target_phys_addr_t end_addr)
113 KVMSlot *found = NULL;
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117 KVMSlot *mem = &s->slots[i];
119 if (mem->memory_size == 0 ||
120 (found && found->start_addr < mem->start_addr)) {
124 if (end_addr > mem->start_addr &&
125 start_addr < mem->start_addr + mem->memory_size) {
133 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135 struct kvm_userspace_memory_region mem;
137 mem.slot = slot->slot;
138 mem.guest_phys_addr = slot->start_addr;
139 mem.memory_size = slot->memory_size;
140 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141 mem.flags = slot->flags;
142 if (s->migration_log) {
143 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
148 static void kvm_reset_vcpu(void *opaque)
150 CPUState *env = opaque;
152 if (kvm_arch_put_registers(env)) {
153 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
158 int kvm_irqchip_in_kernel(void)
160 return kvm_state->irqchip_in_kernel;
163 int kvm_pit_in_kernel(void)
165 return kvm_state->pit_in_kernel;
169 int kvm_init_vcpu(CPUState *env)
171 KVMState *s = kvm_state;
175 dprintf("kvm_init_vcpu\n");
177 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179 dprintf("kvm_create_vcpu failed\n");
186 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194 if (env->kvm_run == MAP_FAILED) {
196 dprintf("mmap'ing vcpu state failed\n");
200 ret = kvm_arch_init_vcpu(env);
202 qemu_register_reset(kvm_reset_vcpu, env);
203 ret = kvm_arch_put_registers(env);
209 int kvm_put_mp_state(CPUState *env)
211 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
213 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
216 int kvm_get_mp_state(CPUState *env)
218 struct kvm_mp_state mp_state;
221 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
225 env->mp_state = mp_state.mp_state;
230 * dirty pages logging control
232 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
233 ram_addr_t size, int flags, int mask)
235 KVMState *s = kvm_state;
236 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
240 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
241 TARGET_FMT_plx "\n", __func__, phys_addr,
242 (target_phys_addr_t)(phys_addr + size - 1));
246 old_flags = mem->flags;
248 flags = (mem->flags & ~mask) | flags;
251 /* If nothing changed effectively, no need to issue ioctl */
252 if (s->migration_log) {
253 flags |= KVM_MEM_LOG_DIRTY_PAGES;
255 if (flags == old_flags) {
259 return kvm_set_user_memory_region(s, mem);
262 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
264 return kvm_dirty_pages_log_change(phys_addr, size,
265 KVM_MEM_LOG_DIRTY_PAGES,
266 KVM_MEM_LOG_DIRTY_PAGES);
269 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
271 return kvm_dirty_pages_log_change(phys_addr, size,
273 KVM_MEM_LOG_DIRTY_PAGES);
276 int kvm_set_migration_log(int enable)
278 KVMState *s = kvm_state;
282 s->migration_log = enable;
284 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
287 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
290 err = kvm_set_user_memory_region(s, mem);
298 static int test_le_bit(unsigned long nr, unsigned char *addr)
300 return (addr[nr >> 3] >> (nr & 7)) & 1;
304 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
305 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
306 * This means all bits are set to dirty.
308 * @start_add: start of logged region.
309 * @end_addr: end of logged region.
311 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
312 target_phys_addr_t end_addr)
314 KVMState *s = kvm_state;
315 unsigned long size, allocated_size = 0;
316 target_phys_addr_t phys_addr;
322 d.dirty_bitmap = NULL;
323 while (start_addr < end_addr) {
324 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
329 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
330 if (!d.dirty_bitmap) {
331 d.dirty_bitmap = qemu_malloc(size);
332 } else if (size > allocated_size) {
333 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
335 allocated_size = size;
336 memset(d.dirty_bitmap, 0, allocated_size);
340 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
341 dprintf("ioctl failed %d\n", errno);
346 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
347 phys_addr < mem->start_addr + mem->memory_size;
348 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
349 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
350 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
352 if (test_le_bit(nr, bitmap)) {
353 cpu_physical_memory_set_dirty(addr);
356 start_addr = phys_addr;
358 qemu_free(d.dirty_bitmap);
363 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
366 #ifdef KVM_CAP_COALESCED_MMIO
367 KVMState *s = kvm_state;
369 if (s->coalesced_mmio) {
370 struct kvm_coalesced_mmio_zone zone;
375 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
382 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
385 #ifdef KVM_CAP_COALESCED_MMIO
386 KVMState *s = kvm_state;
388 if (s->coalesced_mmio) {
389 struct kvm_coalesced_mmio_zone zone;
394 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
401 int kvm_check_extension(KVMState *s, unsigned int extension)
405 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
413 int kvm_init(int smp_cpus)
415 static const char upgrade_note[] =
416 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
417 "(see http://sourceforge.net/projects/kvm).\n";
423 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
427 s = qemu_mallocz(sizeof(KVMState));
429 #ifdef KVM_CAP_SET_GUEST_DEBUG
430 TAILQ_INIT(&s->kvm_sw_breakpoints);
432 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
433 s->slots[i].slot = i;
436 s->fd = open("/dev/kvm", O_RDWR);
438 fprintf(stderr, "Could not access KVM kernel module: %m\n");
443 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
444 if (ret < KVM_API_VERSION) {
447 fprintf(stderr, "kvm version too old\n");
451 if (ret > KVM_API_VERSION) {
453 fprintf(stderr, "kvm version not supported\n");
457 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
461 /* initially, KVM allocated its own memory and we had to jump through
462 * hooks to make phys_ram_base point to this. Modern versions of KVM
463 * just use a user allocated buffer so we can use regular pages
464 * unmodified. Make sure we have a sufficiently modern version of KVM.
466 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
468 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
473 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
474 * destroyed properly. Since we rely on this capability, refuse to work
475 * with any kernel without this capability. */
476 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
480 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
485 #ifdef KVM_CAP_COALESCED_MMIO
486 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
488 s->coalesced_mmio = 0;
491 s->broken_set_mem_region = 1;
492 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
493 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
495 s->broken_set_mem_region = 0;
499 ret = kvm_arch_init(s, smp_cpus);
519 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
520 int direction, int size, uint32_t count)
525 for (i = 0; i < count; i++) {
526 if (direction == KVM_EXIT_IO_IN) {
529 stb_p(ptr, cpu_inb(env, port));
532 stw_p(ptr, cpu_inw(env, port));
535 stl_p(ptr, cpu_inl(env, port));
541 cpu_outb(env, port, ldub_p(ptr));
544 cpu_outw(env, port, lduw_p(ptr));
547 cpu_outl(env, port, ldl_p(ptr));
558 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
560 #ifdef KVM_CAP_COALESCED_MMIO
561 KVMState *s = kvm_state;
562 if (s->coalesced_mmio) {
563 struct kvm_coalesced_mmio_ring *ring;
565 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
566 while (ring->first != ring->last) {
567 struct kvm_coalesced_mmio *ent;
569 ent = &ring->coalesced_mmio[ring->first];
571 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
572 /* FIXME smp_wmb() */
573 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
579 int kvm_cpu_exec(CPUState *env)
581 struct kvm_run *run = env->kvm_run;
584 dprintf("kvm_cpu_exec()\n");
587 if (env->exit_request) {
588 dprintf("interrupt exit requested\n");
593 kvm_arch_pre_run(env, run);
594 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
595 kvm_arch_post_run(env, run);
597 if (ret == -EINTR || ret == -EAGAIN) {
598 dprintf("io window exit\n");
604 dprintf("kvm run failed %s\n", strerror(-ret));
608 kvm_run_coalesced_mmio(env, run);
610 ret = 0; /* exit loop */
611 switch (run->exit_reason) {
613 dprintf("handle_io\n");
614 ret = kvm_handle_io(env, run->io.port,
615 (uint8_t *)run + run->io.data_offset,
621 dprintf("handle_mmio\n");
622 cpu_physical_memory_rw(run->mmio.phys_addr,
628 case KVM_EXIT_IRQ_WINDOW_OPEN:
629 dprintf("irq_window_open\n");
631 case KVM_EXIT_SHUTDOWN:
632 dprintf("shutdown\n");
633 qemu_system_reset_request();
636 case KVM_EXIT_UNKNOWN:
637 dprintf("kvm_exit_unknown\n");
639 case KVM_EXIT_FAIL_ENTRY:
640 dprintf("kvm_exit_fail_entry\n");
642 case KVM_EXIT_EXCEPTION:
643 dprintf("kvm_exit_exception\n");
646 dprintf("kvm_exit_debug\n");
647 #ifdef KVM_CAP_SET_GUEST_DEBUG
648 if (kvm_arch_debug(&run->debug.arch)) {
649 gdb_set_stop_cpu(env);
651 env->exception_index = EXCP_DEBUG;
654 /* re-enter, this exception was guest-internal */
656 #endif /* KVM_CAP_SET_GUEST_DEBUG */
659 dprintf("kvm_arch_handle_exit\n");
660 ret = kvm_arch_handle_exit(env, run);
665 if (env->exit_request) {
666 env->exit_request = 0;
667 env->exception_index = EXCP_INTERRUPT;
673 void kvm_set_phys_mem(target_phys_addr_t start_addr,
675 ram_addr_t phys_offset)
677 KVMState *s = kvm_state;
678 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
682 if (start_addr & ~TARGET_PAGE_MASK) {
683 if (flags >= IO_MEM_UNASSIGNED) {
684 if (!kvm_lookup_overlapping_slot(s, start_addr,
685 start_addr + size)) {
688 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
690 fprintf(stderr, "Only page-aligned memory slots supported\n");
695 /* KVM does not support read-only slots */
696 phys_offset &= ~IO_MEM_ROM;
699 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
704 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
705 (start_addr + size <= mem->start_addr + mem->memory_size) &&
706 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
707 /* The new slot fits into the existing one and comes with
708 * identical parameters - nothing to be done. */
714 /* unregister the overlapping slot */
715 mem->memory_size = 0;
716 err = kvm_set_user_memory_region(s, mem);
718 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
719 __func__, strerror(-err));
723 /* Workaround for older KVM versions: we can't join slots, even not by
724 * unregistering the previous ones and then registering the larger
725 * slot. We have to maintain the existing fragmentation. Sigh.
727 * This workaround assumes that the new slot starts at the same
728 * address as the first existing one. If not or if some overlapping
729 * slot comes around later, we will fail (not seen in practice so far)
730 * - and actually require a recent KVM version. */
731 if (s->broken_set_mem_region &&
732 old.start_addr == start_addr && old.memory_size < size &&
733 flags < IO_MEM_UNASSIGNED) {
734 mem = kvm_alloc_slot(s);
735 mem->memory_size = old.memory_size;
736 mem->start_addr = old.start_addr;
737 mem->phys_offset = old.phys_offset;
740 err = kvm_set_user_memory_region(s, mem);
742 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
747 start_addr += old.memory_size;
748 phys_offset += old.memory_size;
749 size -= old.memory_size;
753 /* register prefix slot */
754 if (old.start_addr < start_addr) {
755 mem = kvm_alloc_slot(s);
756 mem->memory_size = start_addr - old.start_addr;
757 mem->start_addr = old.start_addr;
758 mem->phys_offset = old.phys_offset;
761 err = kvm_set_user_memory_region(s, mem);
763 fprintf(stderr, "%s: error registering prefix slot: %s\n",
764 __func__, strerror(-err));
769 /* register suffix slot */
770 if (old.start_addr + old.memory_size > start_addr + size) {
771 ram_addr_t size_delta;
773 mem = kvm_alloc_slot(s);
774 mem->start_addr = start_addr + size;
775 size_delta = mem->start_addr - old.start_addr;
776 mem->memory_size = old.memory_size - size_delta;
777 mem->phys_offset = old.phys_offset + size_delta;
780 err = kvm_set_user_memory_region(s, mem);
782 fprintf(stderr, "%s: error registering suffix slot: %s\n",
783 __func__, strerror(-err));
789 /* in case the KVM bug workaround already "consumed" the new slot */
793 /* KVM does not need to know about this memory */
794 if (flags >= IO_MEM_UNASSIGNED)
797 mem = kvm_alloc_slot(s);
798 mem->memory_size = size;
799 mem->start_addr = start_addr;
800 mem->phys_offset = phys_offset;
803 err = kvm_set_user_memory_region(s, mem);
805 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
811 int kvm_ioctl(KVMState *s, int type, ...)
818 arg = va_arg(ap, void *);
821 ret = ioctl(s->fd, type, arg);
828 int kvm_vm_ioctl(KVMState *s, int type, ...)
835 arg = va_arg(ap, void *);
838 ret = ioctl(s->vmfd, type, arg);
845 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
852 arg = va_arg(ap, void *);
855 ret = ioctl(env->kvm_fd, type, arg);
862 int kvm_has_sync_mmu(void)
864 #ifdef KVM_CAP_SYNC_MMU
865 KVMState *s = kvm_state;
867 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
873 void kvm_setup_guest_memory(void *start, size_t size)
875 if (!kvm_has_sync_mmu()) {
877 int ret = madvise(start, size, MADV_DONTFORK);
885 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
891 #ifdef KVM_CAP_SET_GUEST_DEBUG
892 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
894 if (env == cpu_single_env) {
901 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
904 struct kvm_sw_breakpoint *bp;
906 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
913 int kvm_sw_breakpoints_active(CPUState *env)
915 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
918 struct kvm_set_guest_debug_data {
919 struct kvm_guest_debug dbg;
924 static void kvm_invoke_set_guest_debug(void *data)
926 struct kvm_set_guest_debug_data *dbg_data = data;
927 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
930 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
932 struct kvm_set_guest_debug_data data;
934 data.dbg.control = 0;
935 if (env->singlestep_enabled)
936 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
938 kvm_arch_update_guest_debug(env, &data.dbg);
939 data.dbg.control |= reinject_trap;
942 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
946 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
947 target_ulong len, int type)
949 struct kvm_sw_breakpoint *bp;
953 if (type == GDB_BREAKPOINT_SW) {
954 bp = kvm_find_sw_breakpoint(current_env, addr);
960 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
966 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
972 TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
975 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
980 for (env = first_cpu; env != NULL; env = env->next_cpu) {
981 err = kvm_update_guest_debug(env, 0);
988 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
989 target_ulong len, int type)
991 struct kvm_sw_breakpoint *bp;
995 if (type == GDB_BREAKPOINT_SW) {
996 bp = kvm_find_sw_breakpoint(current_env, addr);
1000 if (bp->use_count > 1) {
1005 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1009 TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1012 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1017 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1018 err = kvm_update_guest_debug(env, 0);
1025 void kvm_remove_all_breakpoints(CPUState *current_env)
1027 struct kvm_sw_breakpoint *bp, *next;
1028 KVMState *s = current_env->kvm_state;
1031 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1032 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1033 /* Try harder to find a CPU that currently sees the breakpoint. */
1034 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1035 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1040 kvm_arch_remove_all_hw_breakpoints();
1042 for (env = first_cpu; env != NULL; env = env->next_cpu)
1043 kvm_update_guest_debug(env, 0);
1046 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1048 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1053 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1054 target_ulong len, int type)
1059 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1060 target_ulong len, int type)
1065 void kvm_remove_all_breakpoints(CPUState *current_env)
1068 #endif /* !KVM_CAP_SET_GUEST_DEBUG */