]> Git Repo - linux.git/blame - mm/vmalloc.c
mm: remove __vfree
[linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
0f616be1 36#include <linux/bitops.h>
68ad4a33 37#include <linux/rbtree_augmented.h>
bdebd6a2 38#include <linux/overflow.h>
c0eb315a 39#include <linux/pgtable.h>
7c0f6ba6 40#include <linux/uaccess.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
cf243da6
URS
46#define CREATE_TRACE_POINTS
47#include <trace/events/vmalloc.h>
48
dd56b046 49#include "internal.h"
2a681cfa 50#include "pgalloc-track.h"
dd56b046 51
82a70ce0
CH
52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55static int __init set_nohugeiomap(char *str)
56{
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59}
60early_param("nohugeiomap", set_nohugeiomap);
61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
121e6f32
NP
65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66static bool __ro_after_init vmap_allow_huge = true;
67
68static int __init set_nohugevmalloc(char *str)
69{
70 vmap_allow_huge = false;
71 return 0;
72}
73early_param("nohugevmalloc", set_nohugevmalloc);
74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75static const bool vmap_allow_huge = false;
76#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
186525bd
IM
78bool is_vmalloc_addr(const void *x)
79{
4aff1dc4 80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83}
84EXPORT_SYMBOL(is_vmalloc_addr);
85
32fcfd40
AV
86struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89};
90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
92static void __vunmap(const void *, int);
93
94static void free_work(struct work_struct *w)
95{
96 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
97 struct llist_node *t, *llnode;
98
99 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
100 __vunmap((void *)llnode, 1);
32fcfd40
AV
101}
102
db64fe02 103/*** Page table manipulation functions ***/
5e9e3d77
NP
104static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
105 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 106 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
107{
108 pte_t *pte;
109 u64 pfn;
f7ee1f13 110 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
111
112 pfn = phys_addr >> PAGE_SHIFT;
113 pte = pte_alloc_kernel_track(pmd, addr, mask);
114 if (!pte)
115 return -ENOMEM;
116 do {
117 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
118
119#ifdef CONFIG_HUGETLB_PAGE
120 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 if (size != PAGE_SIZE) {
122 pte_t entry = pfn_pte(pfn, prot);
123
f7ee1f13
CL
124 entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 set_huge_pte_at(&init_mm, addr, pte, entry);
126 pfn += PFN_DOWN(size);
127 continue;
128 }
129#endif
5e9e3d77
NP
130 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
131 pfn++;
f7ee1f13 132 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
133 *mask |= PGTBL_PTE_MODIFIED;
134 return 0;
135}
136
137static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
138 phys_addr_t phys_addr, pgprot_t prot,
139 unsigned int max_page_shift)
140{
141 if (max_page_shift < PMD_SHIFT)
142 return 0;
143
144 if (!arch_vmap_pmd_supported(prot))
145 return 0;
146
147 if ((end - addr) != PMD_SIZE)
148 return 0;
149
150 if (!IS_ALIGNED(addr, PMD_SIZE))
151 return 0;
152
153 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
154 return 0;
155
156 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
157 return 0;
158
159 return pmd_set_huge(pmd, phys_addr, prot);
160}
161
162static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
163 phys_addr_t phys_addr, pgprot_t prot,
164 unsigned int max_page_shift, pgtbl_mod_mask *mask)
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
174
175 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
176 max_page_shift)) {
177 *mask |= PGTBL_PMD_MODIFIED;
178 continue;
179 }
180
f7ee1f13 181 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
182 return -ENOMEM;
183 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
184 return 0;
185}
186
187static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
188 phys_addr_t phys_addr, pgprot_t prot,
189 unsigned int max_page_shift)
190{
191 if (max_page_shift < PUD_SHIFT)
192 return 0;
193
194 if (!arch_vmap_pud_supported(prot))
195 return 0;
196
197 if ((end - addr) != PUD_SIZE)
198 return 0;
199
200 if (!IS_ALIGNED(addr, PUD_SIZE))
201 return 0;
202
203 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
204 return 0;
205
206 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
207 return 0;
208
209 return pud_set_huge(pud, phys_addr, prot);
210}
211
212static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
213 phys_addr_t phys_addr, pgprot_t prot,
214 unsigned int max_page_shift, pgtbl_mod_mask *mask)
215{
216 pud_t *pud;
217 unsigned long next;
218
219 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
220 if (!pud)
221 return -ENOMEM;
222 do {
223 next = pud_addr_end(addr, end);
224
225 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
226 max_page_shift)) {
227 *mask |= PGTBL_PUD_MODIFIED;
228 continue;
229 }
230
231 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
232 max_page_shift, mask))
233 return -ENOMEM;
234 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
235 return 0;
236}
237
238static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
239 phys_addr_t phys_addr, pgprot_t prot,
240 unsigned int max_page_shift)
241{
242 if (max_page_shift < P4D_SHIFT)
243 return 0;
244
245 if (!arch_vmap_p4d_supported(prot))
246 return 0;
247
248 if ((end - addr) != P4D_SIZE)
249 return 0;
250
251 if (!IS_ALIGNED(addr, P4D_SIZE))
252 return 0;
253
254 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
255 return 0;
256
257 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
258 return 0;
259
260 return p4d_set_huge(p4d, phys_addr, prot);
261}
262
263static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
264 phys_addr_t phys_addr, pgprot_t prot,
265 unsigned int max_page_shift, pgtbl_mod_mask *mask)
266{
267 p4d_t *p4d;
268 unsigned long next;
269
270 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
271 if (!p4d)
272 return -ENOMEM;
273 do {
274 next = p4d_addr_end(addr, end);
275
276 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
277 max_page_shift)) {
278 *mask |= PGTBL_P4D_MODIFIED;
279 continue;
280 }
281
282 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
283 max_page_shift, mask))
284 return -ENOMEM;
285 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
286 return 0;
287}
288
5d87510d 289static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
290 phys_addr_t phys_addr, pgprot_t prot,
291 unsigned int max_page_shift)
292{
293 pgd_t *pgd;
294 unsigned long start;
295 unsigned long next;
296 int err;
297 pgtbl_mod_mask mask = 0;
298
299 might_sleep();
300 BUG_ON(addr >= end);
301
302 start = addr;
303 pgd = pgd_offset_k(addr);
304 do {
305 next = pgd_addr_end(addr, end);
306 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
307 max_page_shift, &mask);
308 if (err)
309 break;
310 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
311
5e9e3d77
NP
312 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
313 arch_sync_kernel_mappings(start, end);
314
315 return err;
316}
b221385b 317
82a70ce0
CH
318int ioremap_page_range(unsigned long addr, unsigned long end,
319 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
320{
321 int err;
322
8491502f 323 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 324 ioremap_max_page_shift);
5d87510d 325 flush_cache_vmap(addr, end);
b073d7f8
AP
326 if (!err)
327 kmsan_ioremap_page_range(addr, end, phys_addr, prot,
328 ioremap_max_page_shift);
5d87510d
NP
329 return err;
330}
331
2ba3e694
JR
332static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
333 pgtbl_mod_mask *mask)
1da177e4
LT
334{
335 pte_t *pte;
336
337 pte = pte_offset_kernel(pmd, addr);
338 do {
339 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
340 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
341 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 342 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
343}
344
2ba3e694
JR
345static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
346 pgtbl_mod_mask *mask)
1da177e4
LT
347{
348 pmd_t *pmd;
349 unsigned long next;
2ba3e694 350 int cleared;
1da177e4
LT
351
352 pmd = pmd_offset(pud, addr);
353 do {
354 next = pmd_addr_end(addr, end);
2ba3e694
JR
355
356 cleared = pmd_clear_huge(pmd);
357 if (cleared || pmd_bad(*pmd))
358 *mask |= PGTBL_PMD_MODIFIED;
359
360 if (cleared)
b9820d8f 361 continue;
1da177e4
LT
362 if (pmd_none_or_clear_bad(pmd))
363 continue;
2ba3e694 364 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
365
366 cond_resched();
1da177e4
LT
367 } while (pmd++, addr = next, addr != end);
368}
369
2ba3e694
JR
370static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
371 pgtbl_mod_mask *mask)
1da177e4
LT
372{
373 pud_t *pud;
374 unsigned long next;
2ba3e694 375 int cleared;
1da177e4 376
c2febafc 377 pud = pud_offset(p4d, addr);
1da177e4
LT
378 do {
379 next = pud_addr_end(addr, end);
2ba3e694
JR
380
381 cleared = pud_clear_huge(pud);
382 if (cleared || pud_bad(*pud))
383 *mask |= PGTBL_PUD_MODIFIED;
384
385 if (cleared)
b9820d8f 386 continue;
1da177e4
LT
387 if (pud_none_or_clear_bad(pud))
388 continue;
2ba3e694 389 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
390 } while (pud++, addr = next, addr != end);
391}
392
2ba3e694
JR
393static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
394 pgtbl_mod_mask *mask)
c2febafc
KS
395{
396 p4d_t *p4d;
397 unsigned long next;
398
399 p4d = p4d_offset(pgd, addr);
400 do {
401 next = p4d_addr_end(addr, end);
2ba3e694 402
c8db8c26
L
403 p4d_clear_huge(p4d);
404 if (p4d_bad(*p4d))
2ba3e694
JR
405 *mask |= PGTBL_P4D_MODIFIED;
406
c2febafc
KS
407 if (p4d_none_or_clear_bad(p4d))
408 continue;
2ba3e694 409 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
410 } while (p4d++, addr = next, addr != end);
411}
412
4ad0ae8c
NP
413/*
414 * vunmap_range_noflush is similar to vunmap_range, but does not
415 * flush caches or TLBs.
b521c43f 416 *
4ad0ae8c
NP
417 * The caller is responsible for calling flush_cache_vmap() before calling
418 * this function, and flush_tlb_kernel_range after it has returned
419 * successfully (and before the addresses are expected to cause a page fault
420 * or be re-mapped for something else, if TLB flushes are being delayed or
421 * coalesced).
b521c43f 422 *
4ad0ae8c 423 * This is an internal function only. Do not use outside mm/.
b521c43f 424 */
b073d7f8 425void __vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 426{
1da177e4 427 unsigned long next;
b521c43f 428 pgd_t *pgd;
2ba3e694
JR
429 unsigned long addr = start;
430 pgtbl_mod_mask mask = 0;
1da177e4
LT
431
432 BUG_ON(addr >= end);
433 pgd = pgd_offset_k(addr);
1da177e4
LT
434 do {
435 next = pgd_addr_end(addr, end);
2ba3e694
JR
436 if (pgd_bad(*pgd))
437 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
438 if (pgd_none_or_clear_bad(pgd))
439 continue;
2ba3e694 440 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 441 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
442
443 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
444 arch_sync_kernel_mappings(start, end);
1da177e4
LT
445}
446
b073d7f8
AP
447void vunmap_range_noflush(unsigned long start, unsigned long end)
448{
449 kmsan_vunmap_range_noflush(start, end);
450 __vunmap_range_noflush(start, end);
451}
452
4ad0ae8c
NP
453/**
454 * vunmap_range - unmap kernel virtual addresses
455 * @addr: start of the VM area to unmap
456 * @end: end of the VM area to unmap (non-inclusive)
457 *
458 * Clears any present PTEs in the virtual address range, flushes TLBs and
459 * caches. Any subsequent access to the address before it has been re-mapped
460 * is a kernel bug.
461 */
462void vunmap_range(unsigned long addr, unsigned long end)
463{
464 flush_cache_vunmap(addr, end);
465 vunmap_range_noflush(addr, end);
466 flush_tlb_kernel_range(addr, end);
467}
468
0a264884 469static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
470 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
471 pgtbl_mod_mask *mask)
1da177e4
LT
472{
473 pte_t *pte;
474
db64fe02
NP
475 /*
476 * nr is a running index into the array which helps higher level
477 * callers keep track of where we're up to.
478 */
479
2ba3e694 480 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
481 if (!pte)
482 return -ENOMEM;
483 do {
db64fe02
NP
484 struct page *page = pages[*nr];
485
486 if (WARN_ON(!pte_none(*pte)))
487 return -EBUSY;
488 if (WARN_ON(!page))
1da177e4 489 return -ENOMEM;
4fcdcc12
YN
490 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
491 return -EINVAL;
492
1da177e4 493 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 494 (*nr)++;
1da177e4 495 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 496 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
497 return 0;
498}
499
0a264884 500static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
501 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
502 pgtbl_mod_mask *mask)
1da177e4
LT
503{
504 pmd_t *pmd;
505 unsigned long next;
506
2ba3e694 507 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
508 if (!pmd)
509 return -ENOMEM;
510 do {
511 next = pmd_addr_end(addr, end);
0a264884 512 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
513 return -ENOMEM;
514 } while (pmd++, addr = next, addr != end);
515 return 0;
516}
517
0a264884 518static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
519 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
520 pgtbl_mod_mask *mask)
1da177e4
LT
521{
522 pud_t *pud;
523 unsigned long next;
524
2ba3e694 525 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
526 if (!pud)
527 return -ENOMEM;
528 do {
529 next = pud_addr_end(addr, end);
0a264884 530 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
531 return -ENOMEM;
532 } while (pud++, addr = next, addr != end);
533 return 0;
534}
535
0a264884 536static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
537 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
538 pgtbl_mod_mask *mask)
c2febafc
KS
539{
540 p4d_t *p4d;
541 unsigned long next;
542
2ba3e694 543 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
544 if (!p4d)
545 return -ENOMEM;
546 do {
547 next = p4d_addr_end(addr, end);
0a264884 548 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
549 return -ENOMEM;
550 } while (p4d++, addr = next, addr != end);
551 return 0;
552}
553
121e6f32
NP
554static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
555 pgprot_t prot, struct page **pages)
1da177e4 556{
2ba3e694 557 unsigned long start = addr;
b521c43f 558 pgd_t *pgd;
121e6f32 559 unsigned long next;
db64fe02
NP
560 int err = 0;
561 int nr = 0;
2ba3e694 562 pgtbl_mod_mask mask = 0;
1da177e4
LT
563
564 BUG_ON(addr >= end);
565 pgd = pgd_offset_k(addr);
1da177e4
LT
566 do {
567 next = pgd_addr_end(addr, end);
2ba3e694
JR
568 if (pgd_bad(*pgd))
569 mask |= PGTBL_PGD_MODIFIED;
0a264884 570 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 571 if (err)
bf88c8c8 572 return err;
1da177e4 573 } while (pgd++, addr = next, addr != end);
db64fe02 574
2ba3e694
JR
575 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
576 arch_sync_kernel_mappings(start, end);
577
60bb4465 578 return 0;
1da177e4
LT
579}
580
b67177ec
NP
581/*
582 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
583 * flush caches.
584 *
585 * The caller is responsible for calling flush_cache_vmap() after this
586 * function returns successfully and before the addresses are accessed.
587 *
588 * This is an internal function only. Do not use outside mm/.
589 */
b073d7f8 590int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
591 pgprot_t prot, struct page **pages, unsigned int page_shift)
592{
593 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
594
595 WARN_ON(page_shift < PAGE_SHIFT);
596
597 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
598 page_shift == PAGE_SHIFT)
599 return vmap_small_pages_range_noflush(addr, end, prot, pages);
600
601 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
602 int err;
603
604 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
08262ac5 605 page_to_phys(pages[i]), prot,
121e6f32
NP
606 page_shift);
607 if (err)
608 return err;
609
610 addr += 1UL << page_shift;
611 }
612
613 return 0;
614}
b073d7f8
AP
615
616int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
617 pgprot_t prot, struct page **pages, unsigned int page_shift)
618{
619 kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
620 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621}
121e6f32 622
121e6f32 623/**
b67177ec 624 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 625 * @addr: start of the VM area to map
b67177ec 626 * @end: end of the VM area to map (non-inclusive)
121e6f32 627 * @prot: page protection flags to use
b67177ec
NP
628 * @pages: pages to map (always PAGE_SIZE pages)
629 * @page_shift: maximum shift that the pages may be mapped with, @pages must
630 * be aligned and contiguous up to at least this shift.
121e6f32
NP
631 *
632 * RETURNS:
633 * 0 on success, -errno on failure.
634 */
b67177ec
NP
635static int vmap_pages_range(unsigned long addr, unsigned long end,
636 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 637{
b67177ec 638 int err;
8fc48985 639
b67177ec
NP
640 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
641 flush_cache_vmap(addr, end);
642 return err;
8fc48985
TH
643}
644
81ac3ad9 645int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
646{
647 /*
ab4f2ee1 648 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
649 * and fall back on vmalloc() if that fails. Others
650 * just put it in the vmalloc space.
651 */
652#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 653 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
654 if (addr >= MODULES_VADDR && addr < MODULES_END)
655 return 1;
656#endif
657 return is_vmalloc_addr(x);
658}
659
48667e7a 660/*
c0eb315a
NP
661 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
662 * return the tail page that corresponds to the base page address, which
663 * matches small vmap mappings.
48667e7a 664 */
add688fb 665struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
666{
667 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 668 struct page *page = NULL;
48667e7a 669 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
670 p4d_t *p4d;
671 pud_t *pud;
672 pmd_t *pmd;
673 pte_t *ptep, pte;
48667e7a 674
7aa413de
IM
675 /*
676 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
677 * architectures that do not vmalloc module space
678 */
73bdf0a6 679 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 680
c2febafc
KS
681 if (pgd_none(*pgd))
682 return NULL;
c0eb315a
NP
683 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
684 return NULL; /* XXX: no allowance for huge pgd */
685 if (WARN_ON_ONCE(pgd_bad(*pgd)))
686 return NULL;
687
c2febafc
KS
688 p4d = p4d_offset(pgd, addr);
689 if (p4d_none(*p4d))
690 return NULL;
c0eb315a
NP
691 if (p4d_leaf(*p4d))
692 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
693 if (WARN_ON_ONCE(p4d_bad(*p4d)))
694 return NULL;
029c54b0 695
c0eb315a
NP
696 pud = pud_offset(p4d, addr);
697 if (pud_none(*pud))
698 return NULL;
699 if (pud_leaf(*pud))
700 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
701 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 702 return NULL;
c0eb315a 703
c2febafc 704 pmd = pmd_offset(pud, addr);
c0eb315a
NP
705 if (pmd_none(*pmd))
706 return NULL;
707 if (pmd_leaf(*pmd))
708 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
709 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
710 return NULL;
711
712 ptep = pte_offset_map(pmd, addr);
713 pte = *ptep;
714 if (pte_present(pte))
715 page = pte_page(pte);
716 pte_unmap(ptep);
c0eb315a 717
add688fb 718 return page;
48667e7a 719}
add688fb 720EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
721
722/*
add688fb 723 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 724 */
add688fb 725unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 726{
add688fb 727 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 728}
add688fb 729EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 730
db64fe02
NP
731
732/*** Global kva allocator ***/
733
bb850f4d 734#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 735#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 736
db64fe02 737
db64fe02 738static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 739static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
740/* Export for kexec only */
741LIST_HEAD(vmap_area_list);
89699605 742static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 743static bool vmap_initialized __read_mostly;
89699605 744
96e2db45
URS
745static struct rb_root purge_vmap_area_root = RB_ROOT;
746static LIST_HEAD(purge_vmap_area_list);
747static DEFINE_SPINLOCK(purge_vmap_area_lock);
748
68ad4a33
URS
749/*
750 * This kmem_cache is used for vmap_area objects. Instead of
751 * allocating from slab we reuse an object from this cache to
752 * make things faster. Especially in "no edge" splitting of
753 * free block.
754 */
755static struct kmem_cache *vmap_area_cachep;
756
757/*
758 * This linked list is used in pair with free_vmap_area_root.
759 * It gives O(1) access to prev/next to perform fast coalescing.
760 */
761static LIST_HEAD(free_vmap_area_list);
762
763/*
764 * This augment red-black tree represents the free vmap space.
765 * All vmap_area objects in this tree are sorted by va->va_start
766 * address. It is used for allocation and merging when a vmap
767 * object is released.
768 *
769 * Each vmap_area node contains a maximum available free block
770 * of its sub-tree, right or left. Therefore it is possible to
771 * find a lowest match of free area.
772 */
773static struct rb_root free_vmap_area_root = RB_ROOT;
774
82dd23e8
URS
775/*
776 * Preload a CPU with one object for "no edge" split case. The
777 * aim is to get rid of allocations from the atomic context, thus
778 * to use more permissive allocation masks.
779 */
780static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
781
68ad4a33
URS
782static __always_inline unsigned long
783va_size(struct vmap_area *va)
784{
785 return (va->va_end - va->va_start);
786}
787
788static __always_inline unsigned long
789get_subtree_max_size(struct rb_node *node)
790{
791 struct vmap_area *va;
792
793 va = rb_entry_safe(node, struct vmap_area, rb_node);
794 return va ? va->subtree_max_size : 0;
795}
89699605 796
315cc066
ML
797RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
798 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
799
800static void purge_vmap_area_lazy(void);
801static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
802static void drain_vmap_area_work(struct work_struct *work);
803static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 804
97105f0a
RG
805static atomic_long_t nr_vmalloc_pages;
806
807unsigned long vmalloc_nr_pages(void)
808{
809 return atomic_long_read(&nr_vmalloc_pages);
810}
811
153090f2 812/* Look up the first VA which satisfies addr < va_end, NULL if none. */
f181234a
CW
813static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
814{
815 struct vmap_area *va = NULL;
816 struct rb_node *n = vmap_area_root.rb_node;
817
4aff1dc4
AK
818 addr = (unsigned long)kasan_reset_tag((void *)addr);
819
f181234a
CW
820 while (n) {
821 struct vmap_area *tmp;
822
823 tmp = rb_entry(n, struct vmap_area, rb_node);
824 if (tmp->va_end > addr) {
825 va = tmp;
826 if (tmp->va_start <= addr)
827 break;
828
829 n = n->rb_left;
830 } else
831 n = n->rb_right;
832 }
833
834 return va;
835}
836
899c6efe 837static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1da177e4 838{
899c6efe 839 struct rb_node *n = root->rb_node;
db64fe02 840
4aff1dc4
AK
841 addr = (unsigned long)kasan_reset_tag((void *)addr);
842
db64fe02
NP
843 while (n) {
844 struct vmap_area *va;
845
846 va = rb_entry(n, struct vmap_area, rb_node);
847 if (addr < va->va_start)
848 n = n->rb_left;
cef2ac3f 849 else if (addr >= va->va_end)
db64fe02
NP
850 n = n->rb_right;
851 else
852 return va;
853 }
854
855 return NULL;
856}
857
68ad4a33
URS
858/*
859 * This function returns back addresses of parent node
860 * and its left or right link for further processing.
9c801f61
URS
861 *
862 * Otherwise NULL is returned. In that case all further
863 * steps regarding inserting of conflicting overlap range
864 * have to be declined and actually considered as a bug.
68ad4a33
URS
865 */
866static __always_inline struct rb_node **
867find_va_links(struct vmap_area *va,
868 struct rb_root *root, struct rb_node *from,
869 struct rb_node **parent)
870{
871 struct vmap_area *tmp_va;
872 struct rb_node **link;
873
874 if (root) {
875 link = &root->rb_node;
876 if (unlikely(!*link)) {
877 *parent = NULL;
878 return link;
879 }
880 } else {
881 link = &from;
882 }
db64fe02 883
68ad4a33
URS
884 /*
885 * Go to the bottom of the tree. When we hit the last point
886 * we end up with parent rb_node and correct direction, i name
887 * it link, where the new va->rb_node will be attached to.
888 */
889 do {
890 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 891
68ad4a33
URS
892 /*
893 * During the traversal we also do some sanity check.
894 * Trigger the BUG() if there are sides(left/right)
895 * or full overlaps.
896 */
753df96b 897 if (va->va_end <= tmp_va->va_start)
68ad4a33 898 link = &(*link)->rb_left;
753df96b 899 else if (va->va_start >= tmp_va->va_end)
68ad4a33 900 link = &(*link)->rb_right;
9c801f61
URS
901 else {
902 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
903 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
904
905 return NULL;
906 }
68ad4a33
URS
907 } while (*link);
908
909 *parent = &tmp_va->rb_node;
910 return link;
911}
912
913static __always_inline struct list_head *
914get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
915{
916 struct list_head *list;
917
918 if (unlikely(!parent))
919 /*
920 * The red-black tree where we try to find VA neighbors
921 * before merging or inserting is empty, i.e. it means
922 * there is no free vmap space. Normally it does not
923 * happen but we handle this case anyway.
924 */
925 return NULL;
926
927 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 return (&parent->rb_right == link ? list->next : list);
929}
930
931static __always_inline void
8eb510db
URS
932__link_va(struct vmap_area *va, struct rb_root *root,
933 struct rb_node *parent, struct rb_node **link,
934 struct list_head *head, bool augment)
68ad4a33
URS
935{
936 /*
937 * VA is still not in the list, but we can
938 * identify its future previous list_head node.
939 */
940 if (likely(parent)) {
941 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
942 if (&parent->rb_right != link)
943 head = head->prev;
db64fe02
NP
944 }
945
68ad4a33
URS
946 /* Insert to the rb-tree */
947 rb_link_node(&va->rb_node, parent, link);
8eb510db 948 if (augment) {
68ad4a33
URS
949 /*
950 * Some explanation here. Just perform simple insertion
951 * to the tree. We do not set va->subtree_max_size to
952 * its current size before calling rb_insert_augmented().
153090f2 953 * It is because we populate the tree from the bottom
68ad4a33
URS
954 * to parent levels when the node _is_ in the tree.
955 *
956 * Therefore we set subtree_max_size to zero after insertion,
957 * to let __augment_tree_propagate_from() puts everything to
958 * the correct order later on.
959 */
960 rb_insert_augmented(&va->rb_node,
961 root, &free_vmap_area_rb_augment_cb);
962 va->subtree_max_size = 0;
963 } else {
964 rb_insert_color(&va->rb_node, root);
965 }
db64fe02 966
68ad4a33
URS
967 /* Address-sort this list */
968 list_add(&va->list, head);
db64fe02
NP
969}
970
68ad4a33 971static __always_inline void
8eb510db
URS
972link_va(struct vmap_area *va, struct rb_root *root,
973 struct rb_node *parent, struct rb_node **link,
974 struct list_head *head)
975{
976 __link_va(va, root, parent, link, head, false);
977}
978
979static __always_inline void
980link_va_augment(struct vmap_area *va, struct rb_root *root,
981 struct rb_node *parent, struct rb_node **link,
982 struct list_head *head)
983{
984 __link_va(va, root, parent, link, head, true);
985}
986
987static __always_inline void
988__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
68ad4a33 989{
460e42d1
URS
990 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
991 return;
db64fe02 992
8eb510db 993 if (augment)
460e42d1
URS
994 rb_erase_augmented(&va->rb_node,
995 root, &free_vmap_area_rb_augment_cb);
996 else
997 rb_erase(&va->rb_node, root);
998
5d7a7c54 999 list_del_init(&va->list);
460e42d1 1000 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
1001}
1002
8eb510db
URS
1003static __always_inline void
1004unlink_va(struct vmap_area *va, struct rb_root *root)
1005{
1006 __unlink_va(va, root, false);
1007}
1008
1009static __always_inline void
1010unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1011{
1012 __unlink_va(va, root, true);
1013}
1014
bb850f4d 1015#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
1016/*
1017 * Gets called when remove the node and rotate.
1018 */
1019static __always_inline unsigned long
1020compute_subtree_max_size(struct vmap_area *va)
1021{
1022 return max3(va_size(va),
1023 get_subtree_max_size(va->rb_node.rb_left),
1024 get_subtree_max_size(va->rb_node.rb_right));
1025}
1026
bb850f4d 1027static void
da27c9ed 1028augment_tree_propagate_check(void)
bb850f4d
URS
1029{
1030 struct vmap_area *va;
da27c9ed 1031 unsigned long computed_size;
bb850f4d 1032
da27c9ed
URS
1033 list_for_each_entry(va, &free_vmap_area_list, list) {
1034 computed_size = compute_subtree_max_size(va);
1035 if (computed_size != va->subtree_max_size)
1036 pr_emerg("tree is corrupted: %lu, %lu\n",
1037 va_size(va), va->subtree_max_size);
bb850f4d 1038 }
bb850f4d
URS
1039}
1040#endif
1041
68ad4a33
URS
1042/*
1043 * This function populates subtree_max_size from bottom to upper
1044 * levels starting from VA point. The propagation must be done
1045 * when VA size is modified by changing its va_start/va_end. Or
1046 * in case of newly inserting of VA to the tree.
1047 *
1048 * It means that __augment_tree_propagate_from() must be called:
1049 * - After VA has been inserted to the tree(free path);
1050 * - After VA has been shrunk(allocation path);
1051 * - After VA has been increased(merging path).
1052 *
1053 * Please note that, it does not mean that upper parent nodes
1054 * and their subtree_max_size are recalculated all the time up
1055 * to the root node.
1056 *
1057 * 4--8
1058 * /\
1059 * / \
1060 * / \
1061 * 2--2 8--8
1062 *
1063 * For example if we modify the node 4, shrinking it to 2, then
1064 * no any modification is required. If we shrink the node 2 to 1
1065 * its subtree_max_size is updated only, and set to 1. If we shrink
1066 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1067 * node becomes 4--6.
1068 */
1069static __always_inline void
1070augment_tree_propagate_from(struct vmap_area *va)
1071{
15ae144f
URS
1072 /*
1073 * Populate the tree from bottom towards the root until
1074 * the calculated maximum available size of checked node
1075 * is equal to its current one.
1076 */
1077 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1078
1079#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1080 augment_tree_propagate_check();
bb850f4d 1081#endif
68ad4a33
URS
1082}
1083
1084static void
1085insert_vmap_area(struct vmap_area *va,
1086 struct rb_root *root, struct list_head *head)
1087{
1088 struct rb_node **link;
1089 struct rb_node *parent;
1090
1091 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1092 if (link)
1093 link_va(va, root, parent, link, head);
68ad4a33
URS
1094}
1095
1096static void
1097insert_vmap_area_augment(struct vmap_area *va,
1098 struct rb_node *from, struct rb_root *root,
1099 struct list_head *head)
1100{
1101 struct rb_node **link;
1102 struct rb_node *parent;
1103
1104 if (from)
1105 link = find_va_links(va, NULL, from, &parent);
1106 else
1107 link = find_va_links(va, root, NULL, &parent);
1108
9c801f61 1109 if (link) {
8eb510db 1110 link_va_augment(va, root, parent, link, head);
9c801f61
URS
1111 augment_tree_propagate_from(va);
1112 }
68ad4a33
URS
1113}
1114
1115/*
1116 * Merge de-allocated chunk of VA memory with previous
1117 * and next free blocks. If coalesce is not done a new
1118 * free area is inserted. If VA has been merged, it is
1119 * freed.
9c801f61
URS
1120 *
1121 * Please note, it can return NULL in case of overlap
1122 * ranges, followed by WARN() report. Despite it is a
1123 * buggy behaviour, a system can be alive and keep
1124 * ongoing.
68ad4a33 1125 */
3c5c3cfb 1126static __always_inline struct vmap_area *
8eb510db
URS
1127__merge_or_add_vmap_area(struct vmap_area *va,
1128 struct rb_root *root, struct list_head *head, bool augment)
68ad4a33
URS
1129{
1130 struct vmap_area *sibling;
1131 struct list_head *next;
1132 struct rb_node **link;
1133 struct rb_node *parent;
1134 bool merged = false;
1135
1136 /*
1137 * Find a place in the tree where VA potentially will be
1138 * inserted, unless it is merged with its sibling/siblings.
1139 */
1140 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1141 if (!link)
1142 return NULL;
68ad4a33
URS
1143
1144 /*
1145 * Get next node of VA to check if merging can be done.
1146 */
1147 next = get_va_next_sibling(parent, link);
1148 if (unlikely(next == NULL))
1149 goto insert;
1150
1151 /*
1152 * start end
1153 * | |
1154 * |<------VA------>|<-----Next----->|
1155 * | |
1156 * start end
1157 */
1158 if (next != head) {
1159 sibling = list_entry(next, struct vmap_area, list);
1160 if (sibling->va_start == va->va_end) {
1161 sibling->va_start = va->va_start;
1162
68ad4a33
URS
1163 /* Free vmap_area object. */
1164 kmem_cache_free(vmap_area_cachep, va);
1165
1166 /* Point to the new merged area. */
1167 va = sibling;
1168 merged = true;
1169 }
1170 }
1171
1172 /*
1173 * start end
1174 * | |
1175 * |<-----Prev----->|<------VA------>|
1176 * | |
1177 * start end
1178 */
1179 if (next->prev != head) {
1180 sibling = list_entry(next->prev, struct vmap_area, list);
1181 if (sibling->va_end == va->va_start) {
5dd78640
URS
1182 /*
1183 * If both neighbors are coalesced, it is important
1184 * to unlink the "next" node first, followed by merging
1185 * with "previous" one. Otherwise the tree might not be
1186 * fully populated if a sibling's augmented value is
1187 * "normalized" because of rotation operations.
1188 */
54f63d9d 1189 if (merged)
8eb510db 1190 __unlink_va(va, root, augment);
68ad4a33 1191
5dd78640
URS
1192 sibling->va_end = va->va_end;
1193
68ad4a33
URS
1194 /* Free vmap_area object. */
1195 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1196
1197 /* Point to the new merged area. */
1198 va = sibling;
1199 merged = true;
68ad4a33
URS
1200 }
1201 }
1202
1203insert:
5dd78640 1204 if (!merged)
8eb510db 1205 __link_va(va, root, parent, link, head, augment);
3c5c3cfb 1206
96e2db45
URS
1207 return va;
1208}
1209
8eb510db
URS
1210static __always_inline struct vmap_area *
1211merge_or_add_vmap_area(struct vmap_area *va,
1212 struct rb_root *root, struct list_head *head)
1213{
1214 return __merge_or_add_vmap_area(va, root, head, false);
1215}
1216
96e2db45
URS
1217static __always_inline struct vmap_area *
1218merge_or_add_vmap_area_augment(struct vmap_area *va,
1219 struct rb_root *root, struct list_head *head)
1220{
8eb510db 1221 va = __merge_or_add_vmap_area(va, root, head, true);
96e2db45
URS
1222 if (va)
1223 augment_tree_propagate_from(va);
1224
3c5c3cfb 1225 return va;
68ad4a33
URS
1226}
1227
1228static __always_inline bool
1229is_within_this_va(struct vmap_area *va, unsigned long size,
1230 unsigned long align, unsigned long vstart)
1231{
1232 unsigned long nva_start_addr;
1233
1234 if (va->va_start > vstart)
1235 nva_start_addr = ALIGN(va->va_start, align);
1236 else
1237 nva_start_addr = ALIGN(vstart, align);
1238
1239 /* Can be overflowed due to big size or alignment. */
1240 if (nva_start_addr + size < nva_start_addr ||
1241 nva_start_addr < vstart)
1242 return false;
1243
1244 return (nva_start_addr + size <= va->va_end);
1245}
1246
1247/*
1248 * Find the first free block(lowest start address) in the tree,
1249 * that will accomplish the request corresponding to passing
9333fe98
UR
1250 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1251 * a search length is adjusted to account for worst case alignment
1252 * overhead.
68ad4a33
URS
1253 */
1254static __always_inline struct vmap_area *
f9863be4
URS
1255find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1256 unsigned long align, unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1257{
1258 struct vmap_area *va;
1259 struct rb_node *node;
9333fe98 1260 unsigned long length;
68ad4a33
URS
1261
1262 /* Start from the root. */
f9863be4 1263 node = root->rb_node;
68ad4a33 1264
9333fe98
UR
1265 /* Adjust the search size for alignment overhead. */
1266 length = adjust_search_size ? size + align - 1 : size;
1267
68ad4a33
URS
1268 while (node) {
1269 va = rb_entry(node, struct vmap_area, rb_node);
1270
9333fe98 1271 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1272 vstart < va->va_start) {
1273 node = node->rb_left;
1274 } else {
1275 if (is_within_this_va(va, size, align, vstart))
1276 return va;
1277
1278 /*
1279 * Does not make sense to go deeper towards the right
1280 * sub-tree if it does not have a free block that is
9333fe98 1281 * equal or bigger to the requested search length.
68ad4a33 1282 */
9333fe98 1283 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1284 node = node->rb_right;
1285 continue;
1286 }
1287
1288 /*
3806b041 1289 * OK. We roll back and find the first right sub-tree,
68ad4a33 1290 * that will satisfy the search criteria. It can happen
9f531973
URS
1291 * due to "vstart" restriction or an alignment overhead
1292 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1293 */
1294 while ((node = rb_parent(node))) {
1295 va = rb_entry(node, struct vmap_area, rb_node);
1296 if (is_within_this_va(va, size, align, vstart))
1297 return va;
1298
9333fe98 1299 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1300 vstart <= va->va_start) {
9f531973
URS
1301 /*
1302 * Shift the vstart forward. Please note, we update it with
1303 * parent's start address adding "1" because we do not want
1304 * to enter same sub-tree after it has already been checked
1305 * and no suitable free block found there.
1306 */
1307 vstart = va->va_start + 1;
68ad4a33
URS
1308 node = node->rb_right;
1309 break;
1310 }
1311 }
1312 }
1313 }
1314
1315 return NULL;
1316}
1317
a6cf4e0f
URS
1318#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1319#include <linux/random.h>
1320
1321static struct vmap_area *
bd1264c3 1322find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
a6cf4e0f
URS
1323 unsigned long align, unsigned long vstart)
1324{
1325 struct vmap_area *va;
1326
bd1264c3 1327 list_for_each_entry(va, head, list) {
a6cf4e0f
URS
1328 if (!is_within_this_va(va, size, align, vstart))
1329 continue;
1330
1331 return va;
1332 }
1333
1334 return NULL;
1335}
1336
1337static void
bd1264c3
SL
1338find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1339 unsigned long size, unsigned long align)
a6cf4e0f
URS
1340{
1341 struct vmap_area *va_1, *va_2;
1342 unsigned long vstart;
1343 unsigned int rnd;
1344
1345 get_random_bytes(&rnd, sizeof(rnd));
1346 vstart = VMALLOC_START + rnd;
1347
bd1264c3
SL
1348 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1349 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
a6cf4e0f
URS
1350
1351 if (va_1 != va_2)
1352 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1353 va_1, va_2, vstart);
1354}
1355#endif
1356
68ad4a33
URS
1357enum fit_type {
1358 NOTHING_FIT = 0,
1359 FL_FIT_TYPE = 1, /* full fit */
1360 LE_FIT_TYPE = 2, /* left edge fit */
1361 RE_FIT_TYPE = 3, /* right edge fit */
1362 NE_FIT_TYPE = 4 /* no edge fit */
1363};
1364
1365static __always_inline enum fit_type
1366classify_va_fit_type(struct vmap_area *va,
1367 unsigned long nva_start_addr, unsigned long size)
1368{
1369 enum fit_type type;
1370
1371 /* Check if it is within VA. */
1372 if (nva_start_addr < va->va_start ||
1373 nva_start_addr + size > va->va_end)
1374 return NOTHING_FIT;
1375
1376 /* Now classify. */
1377 if (va->va_start == nva_start_addr) {
1378 if (va->va_end == nva_start_addr + size)
1379 type = FL_FIT_TYPE;
1380 else
1381 type = LE_FIT_TYPE;
1382 } else if (va->va_end == nva_start_addr + size) {
1383 type = RE_FIT_TYPE;
1384 } else {
1385 type = NE_FIT_TYPE;
1386 }
1387
1388 return type;
1389}
1390
1391static __always_inline int
f9863be4
URS
1392adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1393 struct vmap_area *va, unsigned long nva_start_addr,
1394 unsigned long size)
68ad4a33 1395{
2c929233 1396 struct vmap_area *lva = NULL;
1b23ff80 1397 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
68ad4a33
URS
1398
1399 if (type == FL_FIT_TYPE) {
1400 /*
1401 * No need to split VA, it fully fits.
1402 *
1403 * | |
1404 * V NVA V
1405 * |---------------|
1406 */
f9863be4 1407 unlink_va_augment(va, root);
68ad4a33
URS
1408 kmem_cache_free(vmap_area_cachep, va);
1409 } else if (type == LE_FIT_TYPE) {
1410 /*
1411 * Split left edge of fit VA.
1412 *
1413 * | |
1414 * V NVA V R
1415 * |-------|-------|
1416 */
1417 va->va_start += size;
1418 } else if (type == RE_FIT_TYPE) {
1419 /*
1420 * Split right edge of fit VA.
1421 *
1422 * | |
1423 * L V NVA V
1424 * |-------|-------|
1425 */
1426 va->va_end = nva_start_addr;
1427 } else if (type == NE_FIT_TYPE) {
1428 /*
1429 * Split no edge of fit VA.
1430 *
1431 * | |
1432 * L V NVA V R
1433 * |---|-------|---|
1434 */
82dd23e8
URS
1435 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1436 if (unlikely(!lva)) {
1437 /*
1438 * For percpu allocator we do not do any pre-allocation
1439 * and leave it as it is. The reason is it most likely
1440 * never ends up with NE_FIT_TYPE splitting. In case of
1441 * percpu allocations offsets and sizes are aligned to
1442 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1443 * are its main fitting cases.
1444 *
1445 * There are a few exceptions though, as an example it is
1446 * a first allocation (early boot up) when we have "one"
1447 * big free space that has to be split.
060650a2
URS
1448 *
1449 * Also we can hit this path in case of regular "vmap"
1450 * allocations, if "this" current CPU was not preloaded.
1451 * See the comment in alloc_vmap_area() why. If so, then
1452 * GFP_NOWAIT is used instead to get an extra object for
1453 * split purpose. That is rare and most time does not
1454 * occur.
1455 *
1456 * What happens if an allocation gets failed. Basically,
1457 * an "overflow" path is triggered to purge lazily freed
1458 * areas to free some memory, then, the "retry" path is
1459 * triggered to repeat one more time. See more details
1460 * in alloc_vmap_area() function.
82dd23e8
URS
1461 */
1462 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1463 if (!lva)
1464 return -1;
1465 }
68ad4a33
URS
1466
1467 /*
1468 * Build the remainder.
1469 */
1470 lva->va_start = va->va_start;
1471 lva->va_end = nva_start_addr;
1472
1473 /*
1474 * Shrink this VA to remaining size.
1475 */
1476 va->va_start = nva_start_addr + size;
1477 } else {
1478 return -1;
1479 }
1480
1481 if (type != FL_FIT_TYPE) {
1482 augment_tree_propagate_from(va);
1483
2c929233 1484 if (lva) /* type == NE_FIT_TYPE */
f9863be4 1485 insert_vmap_area_augment(lva, &va->rb_node, root, head);
68ad4a33
URS
1486 }
1487
1488 return 0;
1489}
1490
1491/*
1492 * Returns a start address of the newly allocated area, if success.
1493 * Otherwise a vend is returned that indicates failure.
1494 */
1495static __always_inline unsigned long
f9863be4
URS
1496__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1497 unsigned long size, unsigned long align,
cacca6ba 1498 unsigned long vstart, unsigned long vend)
68ad4a33 1499{
9333fe98 1500 bool adjust_search_size = true;
68ad4a33
URS
1501 unsigned long nva_start_addr;
1502 struct vmap_area *va;
68ad4a33
URS
1503 int ret;
1504
9333fe98
UR
1505 /*
1506 * Do not adjust when:
1507 * a) align <= PAGE_SIZE, because it does not make any sense.
1508 * All blocks(their start addresses) are at least PAGE_SIZE
1509 * aligned anyway;
1510 * b) a short range where a requested size corresponds to exactly
1511 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1512 * With adjusted search length an allocation would not succeed.
1513 */
1514 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1515 adjust_search_size = false;
1516
f9863be4 1517 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
68ad4a33
URS
1518 if (unlikely(!va))
1519 return vend;
1520
1521 if (va->va_start > vstart)
1522 nva_start_addr = ALIGN(va->va_start, align);
1523 else
1524 nva_start_addr = ALIGN(vstart, align);
1525
1526 /* Check the "vend" restriction. */
1527 if (nva_start_addr + size > vend)
1528 return vend;
1529
68ad4a33 1530 /* Update the free vmap_area. */
f9863be4 1531 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1b23ff80 1532 if (WARN_ON_ONCE(ret))
68ad4a33
URS
1533 return vend;
1534
a6cf4e0f 1535#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
bd1264c3 1536 find_vmap_lowest_match_check(root, head, size, align);
a6cf4e0f
URS
1537#endif
1538
68ad4a33
URS
1539 return nva_start_addr;
1540}
4da56b99 1541
d98c9e83
AR
1542/*
1543 * Free a region of KVA allocated by alloc_vmap_area
1544 */
1545static void free_vmap_area(struct vmap_area *va)
1546{
1547 /*
1548 * Remove from the busy tree/list.
1549 */
1550 spin_lock(&vmap_area_lock);
1551 unlink_va(va, &vmap_area_root);
1552 spin_unlock(&vmap_area_lock);
1553
1554 /*
1555 * Insert/Merge it back to the free tree/list.
1556 */
1557 spin_lock(&free_vmap_area_lock);
96e2db45 1558 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1559 spin_unlock(&free_vmap_area_lock);
1560}
1561
187f8cc4
URS
1562static inline void
1563preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1564{
1565 struct vmap_area *va = NULL;
1566
1567 /*
1568 * Preload this CPU with one extra vmap_area object. It is used
1569 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1570 * a CPU that does an allocation is preloaded.
1571 *
1572 * We do it in non-atomic context, thus it allows us to use more
1573 * permissive allocation masks to be more stable under low memory
1574 * condition and high memory pressure.
1575 */
1576 if (!this_cpu_read(ne_fit_preload_node))
1577 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1578
1579 spin_lock(lock);
1580
1581 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1582 kmem_cache_free(vmap_area_cachep, va);
1583}
1584
db64fe02
NP
1585/*
1586 * Allocate a region of KVA of the specified size and alignment, within the
1587 * vstart and vend.
1588 */
1589static struct vmap_area *alloc_vmap_area(unsigned long size,
1590 unsigned long align,
1591 unsigned long vstart, unsigned long vend,
1592 int node, gfp_t gfp_mask)
1593{
187f8cc4 1594 struct vmap_area *va;
12e376a6 1595 unsigned long freed;
1da177e4 1596 unsigned long addr;
db64fe02 1597 int purged = 0;
d98c9e83 1598 int ret;
db64fe02 1599
7766970c 1600 BUG_ON(!size);
891c49ab 1601 BUG_ON(offset_in_page(size));
89699605 1602 BUG_ON(!is_power_of_2(align));
db64fe02 1603
68ad4a33
URS
1604 if (unlikely(!vmap_initialized))
1605 return ERR_PTR(-EBUSY);
1606
5803ed29 1607 might_sleep();
f07116d7 1608 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1609
f07116d7 1610 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1611 if (unlikely(!va))
1612 return ERR_PTR(-ENOMEM);
1613
7f88f88f
CM
1614 /*
1615 * Only scan the relevant parts containing pointers to other objects
1616 * to avoid false negatives.
1617 */
f07116d7 1618 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1619
db64fe02 1620retry:
187f8cc4 1621 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
f9863be4
URS
1622 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1623 size, align, vstart, vend);
187f8cc4 1624 spin_unlock(&free_vmap_area_lock);
89699605 1625
cf243da6
URS
1626 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1627
afd07389 1628 /*
68ad4a33
URS
1629 * If an allocation fails, the "vend" address is
1630 * returned. Therefore trigger the overflow path.
afd07389 1631 */
68ad4a33 1632 if (unlikely(addr == vend))
89699605 1633 goto overflow;
db64fe02
NP
1634
1635 va->va_start = addr;
1636 va->va_end = addr + size;
688fcbfc 1637 va->vm = NULL;
68ad4a33 1638
e36176be
URS
1639 spin_lock(&vmap_area_lock);
1640 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1641 spin_unlock(&vmap_area_lock);
1642
61e16557 1643 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1644 BUG_ON(va->va_start < vstart);
1645 BUG_ON(va->va_end > vend);
1646
d98c9e83
AR
1647 ret = kasan_populate_vmalloc(addr, size);
1648 if (ret) {
1649 free_vmap_area(va);
1650 return ERR_PTR(ret);
1651 }
1652
db64fe02 1653 return va;
89699605
NP
1654
1655overflow:
89699605
NP
1656 if (!purged) {
1657 purge_vmap_area_lazy();
1658 purged = 1;
1659 goto retry;
1660 }
4da56b99 1661
12e376a6
URS
1662 freed = 0;
1663 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1664
1665 if (freed > 0) {
1666 purged = 0;
1667 goto retry;
4da56b99
CW
1668 }
1669
03497d76 1670 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1671 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1672 size);
68ad4a33
URS
1673
1674 kmem_cache_free(vmap_area_cachep, va);
89699605 1675 return ERR_PTR(-EBUSY);
db64fe02
NP
1676}
1677
4da56b99
CW
1678int register_vmap_purge_notifier(struct notifier_block *nb)
1679{
1680 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1681}
1682EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1683
1684int unregister_vmap_purge_notifier(struct notifier_block *nb)
1685{
1686 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1687}
1688EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1689
db64fe02
NP
1690/*
1691 * lazy_max_pages is the maximum amount of virtual address space we gather up
1692 * before attempting to purge with a TLB flush.
1693 *
1694 * There is a tradeoff here: a larger number will cover more kernel page tables
1695 * and take slightly longer to purge, but it will linearly reduce the number of
1696 * global TLB flushes that must be performed. It would seem natural to scale
1697 * this number up linearly with the number of CPUs (because vmapping activity
1698 * could also scale linearly with the number of CPUs), however it is likely
1699 * that in practice, workloads might be constrained in other ways that mean
1700 * vmap activity will not scale linearly with CPUs. Also, I want to be
1701 * conservative and not introduce a big latency on huge systems, so go with
1702 * a less aggressive log scale. It will still be an improvement over the old
1703 * code, and it will be simple to change the scale factor if we find that it
1704 * becomes a problem on bigger systems.
1705 */
1706static unsigned long lazy_max_pages(void)
1707{
1708 unsigned int log;
1709
1710 log = fls(num_online_cpus());
1711
1712 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1713}
1714
4d36e6f8 1715static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1716
0574ecd1 1717/*
f0953a1b 1718 * Serialize vmap purging. There is no actual critical section protected
153090f2 1719 * by this lock, but we want to avoid concurrent calls for performance
0574ecd1
CH
1720 * reasons and to make the pcpu_get_vm_areas more deterministic.
1721 */
f9e09977 1722static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1723
02b709df
NP
1724/* for per-CPU blocks */
1725static void purge_fragmented_blocks_allcpus(void);
1726
db64fe02
NP
1727/*
1728 * Purges all lazily-freed vmap areas.
db64fe02 1729 */
0574ecd1 1730static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1731{
4d36e6f8 1732 unsigned long resched_threshold;
6030fd5f 1733 unsigned int num_purged_areas = 0;
baa468a6 1734 struct list_head local_purge_list;
96e2db45 1735 struct vmap_area *va, *n_va;
db64fe02 1736
0574ecd1 1737 lockdep_assert_held(&vmap_purge_lock);
02b709df 1738
96e2db45
URS
1739 spin_lock(&purge_vmap_area_lock);
1740 purge_vmap_area_root = RB_ROOT;
baa468a6 1741 list_replace_init(&purge_vmap_area_list, &local_purge_list);
96e2db45
URS
1742 spin_unlock(&purge_vmap_area_lock);
1743
baa468a6 1744 if (unlikely(list_empty(&local_purge_list)))
6030fd5f 1745 goto out;
68571be9 1746
96e2db45 1747 start = min(start,
baa468a6 1748 list_first_entry(&local_purge_list,
96e2db45
URS
1749 struct vmap_area, list)->va_start);
1750
1751 end = max(end,
baa468a6 1752 list_last_entry(&local_purge_list,
96e2db45 1753 struct vmap_area, list)->va_end);
db64fe02 1754
0574ecd1 1755 flush_tlb_kernel_range(start, end);
4d36e6f8 1756 resched_threshold = lazy_max_pages() << 1;
db64fe02 1757
e36176be 1758 spin_lock(&free_vmap_area_lock);
baa468a6 1759 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
4d36e6f8 1760 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1761 unsigned long orig_start = va->va_start;
1762 unsigned long orig_end = va->va_end;
763b218d 1763
dd3b8353
URS
1764 /*
1765 * Finally insert or merge lazily-freed area. It is
1766 * detached and there is no need to "unlink" it from
1767 * anything.
1768 */
96e2db45
URS
1769 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1770 &free_vmap_area_list);
3c5c3cfb 1771
9c801f61
URS
1772 if (!va)
1773 continue;
1774
3c5c3cfb
DA
1775 if (is_vmalloc_or_module_addr((void *)orig_start))
1776 kasan_release_vmalloc(orig_start, orig_end,
1777 va->va_start, va->va_end);
dd3b8353 1778
4d36e6f8 1779 atomic_long_sub(nr, &vmap_lazy_nr);
6030fd5f 1780 num_purged_areas++;
68571be9 1781
4d36e6f8 1782 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1783 cond_resched_lock(&free_vmap_area_lock);
763b218d 1784 }
e36176be 1785 spin_unlock(&free_vmap_area_lock);
6030fd5f
URS
1786
1787out:
1788 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1789 return num_purged_areas > 0;
db64fe02
NP
1790}
1791
1792/*
1793 * Kick off a purge of the outstanding lazy areas.
1794 */
1795static void purge_vmap_area_lazy(void)
1796{
f9e09977 1797 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1798 purge_fragmented_blocks_allcpus();
1799 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1800 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1801}
1802
690467c8
URS
1803static void drain_vmap_area_work(struct work_struct *work)
1804{
1805 unsigned long nr_lazy;
1806
1807 do {
1808 mutex_lock(&vmap_purge_lock);
1809 __purge_vmap_area_lazy(ULONG_MAX, 0);
1810 mutex_unlock(&vmap_purge_lock);
1811
1812 /* Recheck if further work is required. */
1813 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1814 } while (nr_lazy > lazy_max_pages());
1815}
1816
db64fe02 1817/*
edd89818
URS
1818 * Free a vmap area, caller ensuring that the area has been unmapped,
1819 * unlinked and flush_cache_vunmap had been called for the correct
1820 * range previously.
db64fe02 1821 */
64141da5 1822static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1823{
8c4196fe
URS
1824 unsigned long nr_lazy_max = lazy_max_pages();
1825 unsigned long va_start = va->va_start;
4d36e6f8 1826 unsigned long nr_lazy;
80c4bd7a 1827
edd89818
URS
1828 if (WARN_ON_ONCE(!list_empty(&va->list)))
1829 return;
dd3b8353 1830
4d36e6f8
URS
1831 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1832 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1833
96e2db45
URS
1834 /*
1835 * Merge or place it to the purge tree/list.
1836 */
1837 spin_lock(&purge_vmap_area_lock);
1838 merge_or_add_vmap_area(va,
1839 &purge_vmap_area_root, &purge_vmap_area_list);
1840 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1841
8c4196fe
URS
1842 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1843
96e2db45 1844 /* After this point, we may free va at any time */
8c4196fe 1845 if (unlikely(nr_lazy > nr_lazy_max))
690467c8 1846 schedule_work(&drain_vmap_work);
db64fe02
NP
1847}
1848
b29acbdc
NP
1849/*
1850 * Free and unmap a vmap area
1851 */
1852static void free_unmap_vmap_area(struct vmap_area *va)
1853{
1854 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1855 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1856 if (debug_pagealloc_enabled_static())
82a2e924
CP
1857 flush_tlb_kernel_range(va->va_start, va->va_end);
1858
c8eef01e 1859 free_vmap_area_noflush(va);
b29acbdc
NP
1860}
1861
993d0b28 1862struct vmap_area *find_vmap_area(unsigned long addr)
db64fe02
NP
1863{
1864 struct vmap_area *va;
1865
1866 spin_lock(&vmap_area_lock);
899c6efe 1867 va = __find_vmap_area(addr, &vmap_area_root);
db64fe02
NP
1868 spin_unlock(&vmap_area_lock);
1869
1870 return va;
1871}
1872
edd89818
URS
1873static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1874{
1875 struct vmap_area *va;
1876
1877 spin_lock(&vmap_area_lock);
1878 va = __find_vmap_area(addr, &vmap_area_root);
1879 if (va)
1880 unlink_va(va, &vmap_area_root);
1881 spin_unlock(&vmap_area_lock);
1882
1883 return va;
1884}
1885
db64fe02
NP
1886/*** Per cpu kva allocator ***/
1887
1888/*
1889 * vmap space is limited especially on 32 bit architectures. Ensure there is
1890 * room for at least 16 percpu vmap blocks per CPU.
1891 */
1892/*
1893 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1894 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1895 * instead (we just need a rough idea)
1896 */
1897#if BITS_PER_LONG == 32
1898#define VMALLOC_SPACE (128UL*1024*1024)
1899#else
1900#define VMALLOC_SPACE (128UL*1024*1024*1024)
1901#endif
1902
1903#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1904#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1905#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1906#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1907#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1908#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1909#define VMAP_BBMAP_BITS \
1910 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1911 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1912 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1913
1914#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1915
1916struct vmap_block_queue {
1917 spinlock_t lock;
1918 struct list_head free;
db64fe02
NP
1919};
1920
1921struct vmap_block {
1922 spinlock_t lock;
1923 struct vmap_area *va;
db64fe02 1924 unsigned long free, dirty;
7d61bfe8 1925 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1926 struct list_head free_list;
1927 struct rcu_head rcu_head;
02b709df 1928 struct list_head purge;
db64fe02
NP
1929};
1930
1931/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1932static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1933
1934/*
0f14599c 1935 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1936 * in the free path. Could get rid of this if we change the API to return a
1937 * "cookie" from alloc, to be passed to free. But no big deal yet.
1938 */
0f14599c 1939static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1940
1941/*
1942 * We should probably have a fallback mechanism to allocate virtual memory
1943 * out of partially filled vmap blocks. However vmap block sizing should be
1944 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1945 * big problem.
1946 */
1947
1948static unsigned long addr_to_vb_idx(unsigned long addr)
1949{
1950 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1951 addr /= VMAP_BLOCK_SIZE;
1952 return addr;
1953}
1954
cf725ce2
RP
1955static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1956{
1957 unsigned long addr;
1958
1959 addr = va_start + (pages_off << PAGE_SHIFT);
1960 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1961 return (void *)addr;
1962}
1963
1964/**
1965 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1966 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1967 * @order: how many 2^order pages should be occupied in newly allocated block
1968 * @gfp_mask: flags for the page level allocator
1969 *
a862f68a 1970 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1971 */
1972static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1973{
1974 struct vmap_block_queue *vbq;
1975 struct vmap_block *vb;
1976 struct vmap_area *va;
1977 unsigned long vb_idx;
1978 int node, err;
cf725ce2 1979 void *vaddr;
db64fe02
NP
1980
1981 node = numa_node_id();
1982
1983 vb = kmalloc_node(sizeof(struct vmap_block),
1984 gfp_mask & GFP_RECLAIM_MASK, node);
1985 if (unlikely(!vb))
1986 return ERR_PTR(-ENOMEM);
1987
1988 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1989 VMALLOC_START, VMALLOC_END,
1990 node, gfp_mask);
ddf9c6d4 1991 if (IS_ERR(va)) {
db64fe02 1992 kfree(vb);
e7d86340 1993 return ERR_CAST(va);
db64fe02
NP
1994 }
1995
cf725ce2 1996 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1997 spin_lock_init(&vb->lock);
1998 vb->va = va;
cf725ce2
RP
1999 /* At least something should be left free */
2000 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2001 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 2002 vb->dirty = 0;
7d61bfe8
RP
2003 vb->dirty_min = VMAP_BBMAP_BITS;
2004 vb->dirty_max = 0;
db64fe02 2005 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
2006
2007 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
2008 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
2009 if (err) {
2010 kfree(vb);
2011 free_vmap_area(va);
2012 return ERR_PTR(err);
2013 }
db64fe02 2014
3f804920 2015 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2016 spin_lock(&vbq->lock);
68ac546f 2017 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 2018 spin_unlock(&vbq->lock);
db64fe02 2019
cf725ce2 2020 return vaddr;
db64fe02
NP
2021}
2022
db64fe02
NP
2023static void free_vmap_block(struct vmap_block *vb)
2024{
2025 struct vmap_block *tmp;
db64fe02 2026
0f14599c 2027 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
2028 BUG_ON(tmp != vb);
2029
edd89818
URS
2030 spin_lock(&vmap_area_lock);
2031 unlink_va(vb->va, &vmap_area_root);
2032 spin_unlock(&vmap_area_lock);
2033
64141da5 2034 free_vmap_area_noflush(vb->va);
22a3c7d1 2035 kfree_rcu(vb, rcu_head);
db64fe02
NP
2036}
2037
02b709df
NP
2038static void purge_fragmented_blocks(int cpu)
2039{
2040 LIST_HEAD(purge);
2041 struct vmap_block *vb;
2042 struct vmap_block *n_vb;
2043 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2044
2045 rcu_read_lock();
2046 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2047
2048 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2049 continue;
2050
2051 spin_lock(&vb->lock);
2052 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2053 vb->free = 0; /* prevent further allocs after releasing lock */
2054 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
2055 vb->dirty_min = 0;
2056 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
2057 spin_lock(&vbq->lock);
2058 list_del_rcu(&vb->free_list);
2059 spin_unlock(&vbq->lock);
2060 spin_unlock(&vb->lock);
2061 list_add_tail(&vb->purge, &purge);
2062 } else
2063 spin_unlock(&vb->lock);
2064 }
2065 rcu_read_unlock();
2066
2067 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2068 list_del(&vb->purge);
2069 free_vmap_block(vb);
2070 }
2071}
2072
02b709df
NP
2073static void purge_fragmented_blocks_allcpus(void)
2074{
2075 int cpu;
2076
2077 for_each_possible_cpu(cpu)
2078 purge_fragmented_blocks(cpu);
2079}
2080
db64fe02
NP
2081static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2082{
2083 struct vmap_block_queue *vbq;
2084 struct vmap_block *vb;
cf725ce2 2085 void *vaddr = NULL;
db64fe02
NP
2086 unsigned int order;
2087
891c49ab 2088 BUG_ON(offset_in_page(size));
db64fe02 2089 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2090 if (WARN_ON(size == 0)) {
2091 /*
2092 * Allocating 0 bytes isn't what caller wants since
2093 * get_order(0) returns funny result. Just warn and terminate
2094 * early.
2095 */
2096 return NULL;
2097 }
db64fe02
NP
2098 order = get_order(size);
2099
db64fe02 2100 rcu_read_lock();
3f804920 2101 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2102 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2103 unsigned long pages_off;
db64fe02
NP
2104
2105 spin_lock(&vb->lock);
cf725ce2
RP
2106 if (vb->free < (1UL << order)) {
2107 spin_unlock(&vb->lock);
2108 continue;
2109 }
02b709df 2110
cf725ce2
RP
2111 pages_off = VMAP_BBMAP_BITS - vb->free;
2112 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
2113 vb->free -= 1UL << order;
2114 if (vb->free == 0) {
2115 spin_lock(&vbq->lock);
2116 list_del_rcu(&vb->free_list);
2117 spin_unlock(&vbq->lock);
2118 }
cf725ce2 2119
02b709df
NP
2120 spin_unlock(&vb->lock);
2121 break;
db64fe02 2122 }
02b709df 2123
db64fe02
NP
2124 rcu_read_unlock();
2125
cf725ce2
RP
2126 /* Allocate new block if nothing was found */
2127 if (!vaddr)
2128 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2129
cf725ce2 2130 return vaddr;
db64fe02
NP
2131}
2132
78a0e8c4 2133static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2134{
2135 unsigned long offset;
db64fe02
NP
2136 unsigned int order;
2137 struct vmap_block *vb;
2138
891c49ab 2139 BUG_ON(offset_in_page(size));
db64fe02 2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2141
78a0e8c4 2142 flush_cache_vunmap(addr, addr + size);
b29acbdc 2143
db64fe02 2144 order = get_order(size);
78a0e8c4 2145 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2146 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2147
4ad0ae8c 2148 vunmap_range_noflush(addr, addr + size);
64141da5 2149
8e57f8ac 2150 if (debug_pagealloc_enabled_static())
78a0e8c4 2151 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2152
db64fe02 2153 spin_lock(&vb->lock);
7d61bfe8
RP
2154
2155 /* Expand dirty range */
2156 vb->dirty_min = min(vb->dirty_min, offset);
2157 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2158
db64fe02
NP
2159 vb->dirty += 1UL << order;
2160 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2161 BUG_ON(vb->free);
db64fe02
NP
2162 spin_unlock(&vb->lock);
2163 free_vmap_block(vb);
2164 } else
2165 spin_unlock(&vb->lock);
2166}
2167
868b104d 2168static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2169{
db64fe02 2170 int cpu;
db64fe02 2171
9b463334
JF
2172 if (unlikely(!vmap_initialized))
2173 return;
2174
5803ed29
CH
2175 might_sleep();
2176
db64fe02
NP
2177 for_each_possible_cpu(cpu) {
2178 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2179 struct vmap_block *vb;
2180
2181 rcu_read_lock();
2182 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2183 spin_lock(&vb->lock);
ad216c03 2184 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2185 unsigned long va_start = vb->va->va_start;
db64fe02 2186 unsigned long s, e;
b136be5e 2187
7d61bfe8
RP
2188 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2189 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2190
7d61bfe8
RP
2191 start = min(s, start);
2192 end = max(e, end);
db64fe02 2193
7d61bfe8 2194 flush = 1;
db64fe02
NP
2195 }
2196 spin_unlock(&vb->lock);
2197 }
2198 rcu_read_unlock();
2199 }
2200
f9e09977 2201 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2202 purge_fragmented_blocks_allcpus();
2203 if (!__purge_vmap_area_lazy(start, end) && flush)
2204 flush_tlb_kernel_range(start, end);
f9e09977 2205 mutex_unlock(&vmap_purge_lock);
db64fe02 2206}
868b104d
RE
2207
2208/**
2209 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2210 *
2211 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2212 * to amortize TLB flushing overheads. What this means is that any page you
2213 * have now, may, in a former life, have been mapped into kernel virtual
2214 * address by the vmap layer and so there might be some CPUs with TLB entries
2215 * still referencing that page (additional to the regular 1:1 kernel mapping).
2216 *
2217 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2218 * be sure that none of the pages we have control over will have any aliases
2219 * from the vmap layer.
2220 */
2221void vm_unmap_aliases(void)
2222{
2223 unsigned long start = ULONG_MAX, end = 0;
2224 int flush = 0;
2225
2226 _vm_unmap_aliases(start, end, flush);
2227}
db64fe02
NP
2228EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2229
2230/**
2231 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2232 * @mem: the pointer returned by vm_map_ram
2233 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2234 */
2235void vm_unmap_ram(const void *mem, unsigned int count)
2236{
65ee03c4 2237 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2238 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2239 struct vmap_area *va;
db64fe02 2240
5803ed29 2241 might_sleep();
db64fe02
NP
2242 BUG_ON(!addr);
2243 BUG_ON(addr < VMALLOC_START);
2244 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2245 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2246
d98c9e83
AR
2247 kasan_poison_vmalloc(mem, size);
2248
9c3acf60 2249 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2250 debug_check_no_locks_freed(mem, size);
78a0e8c4 2251 vb_free(addr, size);
9c3acf60
CH
2252 return;
2253 }
2254
edd89818 2255 va = find_unlink_vmap_area(addr);
14687619
URS
2256 if (WARN_ON_ONCE(!va))
2257 return;
2258
05e3ff95
CP
2259 debug_check_no_locks_freed((void *)va->va_start,
2260 (va->va_end - va->va_start));
9c3acf60 2261 free_unmap_vmap_area(va);
db64fe02
NP
2262}
2263EXPORT_SYMBOL(vm_unmap_ram);
2264
2265/**
2266 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2267 * @pages: an array of pointers to the pages to be mapped
2268 * @count: number of pages
2269 * @node: prefer to allocate data structures on this node
e99c97ad 2270 *
36437638
GK
2271 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2272 * faster than vmap so it's good. But if you mix long-life and short-life
2273 * objects with vm_map_ram(), it could consume lots of address space through
2274 * fragmentation (especially on a 32bit machine). You could see failures in
2275 * the end. Please use this function for short-lived objects.
2276 *
e99c97ad 2277 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2278 */
d4efd79a 2279void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2280{
65ee03c4 2281 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2282 unsigned long addr;
2283 void *mem;
2284
2285 if (likely(count <= VMAP_MAX_ALLOC)) {
2286 mem = vb_alloc(size, GFP_KERNEL);
2287 if (IS_ERR(mem))
2288 return NULL;
2289 addr = (unsigned long)mem;
2290 } else {
2291 struct vmap_area *va;
2292 va = alloc_vmap_area(size, PAGE_SIZE,
2293 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2294 if (IS_ERR(va))
2295 return NULL;
2296
2297 addr = va->va_start;
2298 mem = (void *)addr;
2299 }
d98c9e83 2300
b67177ec
NP
2301 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2302 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2303 vm_unmap_ram(mem, count);
2304 return NULL;
2305 }
b67177ec 2306
23689e91
AK
2307 /*
2308 * Mark the pages as accessible, now that they are mapped.
2309 * With hardware tag-based KASAN, marking is skipped for
2310 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2311 */
f6e39794 2312 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
19f1c3ac 2313
db64fe02
NP
2314 return mem;
2315}
2316EXPORT_SYMBOL(vm_map_ram);
2317
4341fa45 2318static struct vm_struct *vmlist __initdata;
92eac168 2319
121e6f32
NP
2320static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2321{
2322#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2323 return vm->page_order;
2324#else
2325 return 0;
2326#endif
2327}
2328
2329static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2330{
2331#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2332 vm->page_order = order;
2333#else
2334 BUG_ON(order != 0);
2335#endif
2336}
2337
be9b7335
NP
2338/**
2339 * vm_area_add_early - add vmap area early during boot
2340 * @vm: vm_struct to add
2341 *
2342 * This function is used to add fixed kernel vm area to vmlist before
2343 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2344 * should contain proper values and the other fields should be zero.
2345 *
2346 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2347 */
2348void __init vm_area_add_early(struct vm_struct *vm)
2349{
2350 struct vm_struct *tmp, **p;
2351
2352 BUG_ON(vmap_initialized);
2353 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2354 if (tmp->addr >= vm->addr) {
2355 BUG_ON(tmp->addr < vm->addr + vm->size);
2356 break;
2357 } else
2358 BUG_ON(tmp->addr + tmp->size > vm->addr);
2359 }
2360 vm->next = *p;
2361 *p = vm;
2362}
2363
f0aa6617
TH
2364/**
2365 * vm_area_register_early - register vmap area early during boot
2366 * @vm: vm_struct to register
c0c0a293 2367 * @align: requested alignment
f0aa6617
TH
2368 *
2369 * This function is used to register kernel vm area before
2370 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2371 * proper values on entry and other fields should be zero. On return,
2372 * vm->addr contains the allocated address.
2373 *
2374 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2375 */
c0c0a293 2376void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2377{
0eb68437
KW
2378 unsigned long addr = ALIGN(VMALLOC_START, align);
2379 struct vm_struct *cur, **p;
c0c0a293 2380
0eb68437 2381 BUG_ON(vmap_initialized);
f0aa6617 2382
0eb68437
KW
2383 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2384 if ((unsigned long)cur->addr - addr >= vm->size)
2385 break;
2386 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2387 }
f0aa6617 2388
0eb68437
KW
2389 BUG_ON(addr > VMALLOC_END - vm->size);
2390 vm->addr = (void *)addr;
2391 vm->next = *p;
2392 *p = vm;
3252b1d8 2393 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2394}
2395
68ad4a33
URS
2396static void vmap_init_free_space(void)
2397{
2398 unsigned long vmap_start = 1;
2399 const unsigned long vmap_end = ULONG_MAX;
2400 struct vmap_area *busy, *free;
2401
2402 /*
2403 * B F B B B F
2404 * -|-----|.....|-----|-----|-----|.....|-
2405 * | The KVA space |
2406 * |<--------------------------------->|
2407 */
2408 list_for_each_entry(busy, &vmap_area_list, list) {
2409 if (busy->va_start - vmap_start > 0) {
2410 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2411 if (!WARN_ON_ONCE(!free)) {
2412 free->va_start = vmap_start;
2413 free->va_end = busy->va_start;
2414
2415 insert_vmap_area_augment(free, NULL,
2416 &free_vmap_area_root,
2417 &free_vmap_area_list);
2418 }
2419 }
2420
2421 vmap_start = busy->va_end;
2422 }
2423
2424 if (vmap_end - vmap_start > 0) {
2425 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2426 if (!WARN_ON_ONCE(!free)) {
2427 free->va_start = vmap_start;
2428 free->va_end = vmap_end;
2429
2430 insert_vmap_area_augment(free, NULL,
2431 &free_vmap_area_root,
2432 &free_vmap_area_list);
2433 }
2434 }
2435}
2436
db64fe02
NP
2437void __init vmalloc_init(void)
2438{
822c18f2
IK
2439 struct vmap_area *va;
2440 struct vm_struct *tmp;
db64fe02
NP
2441 int i;
2442
68ad4a33
URS
2443 /*
2444 * Create the cache for vmap_area objects.
2445 */
2446 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2447
db64fe02
NP
2448 for_each_possible_cpu(i) {
2449 struct vmap_block_queue *vbq;
32fcfd40 2450 struct vfree_deferred *p;
db64fe02
NP
2451
2452 vbq = &per_cpu(vmap_block_queue, i);
2453 spin_lock_init(&vbq->lock);
2454 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2455 p = &per_cpu(vfree_deferred, i);
2456 init_llist_head(&p->list);
2457 INIT_WORK(&p->wq, free_work);
db64fe02 2458 }
9b463334 2459
822c18f2
IK
2460 /* Import existing vmlist entries. */
2461 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2462 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2463 if (WARN_ON_ONCE(!va))
2464 continue;
2465
822c18f2
IK
2466 va->va_start = (unsigned long)tmp->addr;
2467 va->va_end = va->va_start + tmp->size;
dbda591d 2468 va->vm = tmp;
68ad4a33 2469 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2470 }
ca23e405 2471
68ad4a33
URS
2472 /*
2473 * Now we can initialize a free vmap space.
2474 */
2475 vmap_init_free_space();
9b463334 2476 vmap_initialized = true;
db64fe02
NP
2477}
2478
e36176be
URS
2479static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2480 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2481{
cf88c790
TH
2482 vm->flags = flags;
2483 vm->addr = (void *)va->va_start;
2484 vm->size = va->va_end - va->va_start;
2485 vm->caller = caller;
db1aecaf 2486 va->vm = vm;
e36176be
URS
2487}
2488
2489static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2490 unsigned long flags, const void *caller)
2491{
2492 spin_lock(&vmap_area_lock);
2493 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2494 spin_unlock(&vmap_area_lock);
f5252e00 2495}
cf88c790 2496
20fc02b4 2497static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2498{
d4033afd 2499 /*
20fc02b4 2500 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2501 * we should make sure that vm has proper values.
2502 * Pair with smp_rmb() in show_numa_info().
2503 */
2504 smp_wmb();
20fc02b4 2505 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2506}
2507
db64fe02 2508static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2509 unsigned long align, unsigned long shift, unsigned long flags,
2510 unsigned long start, unsigned long end, int node,
2511 gfp_t gfp_mask, const void *caller)
db64fe02 2512{
0006526d 2513 struct vmap_area *va;
db64fe02 2514 struct vm_struct *area;
d98c9e83 2515 unsigned long requested_size = size;
1da177e4 2516
52fd24ca 2517 BUG_ON(in_interrupt());
7ca3027b 2518 size = ALIGN(size, 1ul << shift);
31be8309
OH
2519 if (unlikely(!size))
2520 return NULL;
1da177e4 2521
252e5c6e 2522 if (flags & VM_IOREMAP)
2523 align = 1ul << clamp_t(int, get_count_order_long(size),
2524 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2525
cf88c790 2526 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2527 if (unlikely(!area))
2528 return NULL;
2529
71394fe5
AR
2530 if (!(flags & VM_NO_GUARD))
2531 size += PAGE_SIZE;
1da177e4 2532
db64fe02
NP
2533 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2534 if (IS_ERR(va)) {
2535 kfree(area);
2536 return NULL;
1da177e4 2537 }
1da177e4 2538
d98c9e83 2539 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2540
19f1c3ac
AK
2541 /*
2542 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2543 * best-effort approach, as they can be mapped outside of vmalloc code.
2544 * For VM_ALLOC mappings, the pages are marked as accessible after
2545 * getting mapped in __vmalloc_node_range().
23689e91
AK
2546 * With hardware tag-based KASAN, marking is skipped for
2547 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac
AK
2548 */
2549 if (!(flags & VM_ALLOC))
23689e91 2550 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
f6e39794 2551 KASAN_VMALLOC_PROT_NORMAL);
1d96320f 2552
1da177e4 2553 return area;
1da177e4
LT
2554}
2555
c2968612
BH
2556struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2557 unsigned long start, unsigned long end,
5e6cafc8 2558 const void *caller)
c2968612 2559{
7ca3027b
DA
2560 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2561 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2562}
2563
1da177e4 2564/**
92eac168
MR
2565 * get_vm_area - reserve a contiguous kernel virtual area
2566 * @size: size of the area
2567 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2568 *
92eac168
MR
2569 * Search an area of @size in the kernel virtual mapping area,
2570 * and reserved it for out purposes. Returns the area descriptor
2571 * on success or %NULL on failure.
a862f68a
MR
2572 *
2573 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2574 */
2575struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2576{
7ca3027b
DA
2577 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2578 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2579 NUMA_NO_NODE, GFP_KERNEL,
2580 __builtin_return_address(0));
23016969
CL
2581}
2582
2583struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2584 const void *caller)
23016969 2585{
7ca3027b
DA
2586 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2587 VMALLOC_START, VMALLOC_END,
00ef2d2f 2588 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2589}
2590
e9da6e99 2591/**
92eac168
MR
2592 * find_vm_area - find a continuous kernel virtual area
2593 * @addr: base address
e9da6e99 2594 *
92eac168
MR
2595 * Search for the kernel VM area starting at @addr, and return it.
2596 * It is up to the caller to do all required locking to keep the returned
2597 * pointer valid.
a862f68a 2598 *
74640617 2599 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2600 */
2601struct vm_struct *find_vm_area(const void *addr)
83342314 2602{
db64fe02 2603 struct vmap_area *va;
83342314 2604
db64fe02 2605 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2606 if (!va)
2607 return NULL;
1da177e4 2608
688fcbfc 2609 return va->vm;
1da177e4
LT
2610}
2611
edd89818
URS
2612static struct vm_struct *__remove_vm_area(struct vmap_area *va)
2613{
2614 struct vm_struct *vm;
2615
2616 if (!va || !va->vm)
2617 return NULL;
2618
2619 vm = va->vm;
2620 kasan_free_module_shadow(vm);
2621 free_unmap_vmap_area(va);
2622
2623 return vm;
2624}
2625
7856dfeb 2626/**
92eac168
MR
2627 * remove_vm_area - find and remove a continuous kernel virtual area
2628 * @addr: base address
7856dfeb 2629 *
92eac168
MR
2630 * Search for the kernel VM area starting at @addr, and remove it.
2631 * This function returns the found VM area, but using it is NOT safe
2632 * on SMP machines, except for its size or flags.
a862f68a 2633 *
74640617 2634 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2635 */
b3bdda02 2636struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2637{
5803ed29
CH
2638 might_sleep();
2639
edd89818
URS
2640 return __remove_vm_area(
2641 find_unlink_vmap_area((unsigned long) addr));
7856dfeb
AK
2642}
2643
868b104d
RE
2644static inline void set_area_direct_map(const struct vm_struct *area,
2645 int (*set_direct_map)(struct page *page))
2646{
2647 int i;
2648
121e6f32 2649 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2650 for (i = 0; i < area->nr_pages; i++)
2651 if (page_address(area->pages[i]))
2652 set_direct_map(area->pages[i]);
2653}
2654
edd89818
URS
2655/* Handle removing and resetting vm mappings related to the VA's vm_struct. */
2656static void va_remove_mappings(struct vmap_area *va, int deallocate_pages)
868b104d 2657{
edd89818 2658 struct vm_struct *area = va->vm;
868b104d 2659 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2660 unsigned int page_order = vm_area_page_order(area);
868b104d 2661 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2662 int flush_dmap = 0;
868b104d
RE
2663 int i;
2664
edd89818 2665 __remove_vm_area(va);
868b104d
RE
2666
2667 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2668 if (!flush_reset)
2669 return;
2670
2671 /*
2672 * If not deallocating pages, just do the flush of the VM area and
2673 * return.
2674 */
2675 if (!deallocate_pages) {
2676 vm_unmap_aliases();
2677 return;
2678 }
2679
2680 /*
2681 * If execution gets here, flush the vm mapping and reset the direct
2682 * map. Find the start and end range of the direct mappings to make sure
2683 * the vm_unmap_aliases() flush includes the direct map.
2684 */
121e6f32 2685 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2686 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2687 if (addr) {
121e6f32
NP
2688 unsigned long page_size;
2689
2690 page_size = PAGE_SIZE << page_order;
868b104d 2691 start = min(addr, start);
121e6f32 2692 end = max(addr + page_size, end);
31e67340 2693 flush_dmap = 1;
868b104d
RE
2694 }
2695 }
2696
2697 /*
2698 * Set direct map to something invalid so that it won't be cached if
2699 * there are any accesses after the TLB flush, then flush the TLB and
2700 * reset the direct map permissions to the default.
2701 */
2702 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2703 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2704 set_area_direct_map(area, set_direct_map_default_noflush);
2705}
2706
b3bdda02 2707static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2708{
2709 struct vm_struct *area;
edd89818 2710 struct vmap_area *va;
1da177e4
LT
2711
2712 if (!addr)
2713 return;
2714
e69e9d4a 2715 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2716 addr))
1da177e4 2717 return;
1da177e4 2718
edd89818
URS
2719 va = find_unlink_vmap_area((unsigned long)addr);
2720 if (unlikely(!va)) {
4c8573e2 2721 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2722 addr);
1da177e4
LT
2723 return;
2724 }
2725
edd89818 2726 area = va->vm;
05e3ff95
CP
2727 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2728 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2729
c041098c 2730 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2731
edd89818 2732 va_remove_mappings(va, deallocate_pages);
868b104d 2733
1da177e4 2734 if (deallocate_pages) {
3b8000ae 2735 int i;
1da177e4 2736
3b8000ae 2737 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2738 struct page *page = area->pages[i];
2739
2740 BUG_ON(!page);
3b8000ae
NP
2741 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2742 /*
2743 * High-order allocs for huge vmallocs are split, so
2744 * can be freed as an array of order-0 allocations
2745 */
2746 __free_pages(page, 0);
a850e932 2747 cond_resched();
1da177e4 2748 }
97105f0a 2749 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2750
244d63ee 2751 kvfree(area->pages);
1da177e4
LT
2752 }
2753
2754 kfree(area);
1da177e4 2755}
bf22e37a
AR
2756
2757static inline void __vfree_deferred(const void *addr)
2758{
2759 /*
2760 * Use raw_cpu_ptr() because this can be called from preemptible
2761 * context. Preemption is absolutely fine here, because the llist_add()
2762 * implementation is lockless, so it works even if we are adding to
73221d88 2763 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2764 */
2765 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2766
2767 if (llist_add((struct llist_node *)addr, &p->list))
2768 schedule_work(&p->wq);
2769}
2770
2771/**
92eac168
MR
2772 * vfree_atomic - release memory allocated by vmalloc()
2773 * @addr: memory base address
bf22e37a 2774 *
92eac168
MR
2775 * This one is just like vfree() but can be called in any atomic context
2776 * except NMIs.
bf22e37a
AR
2777 */
2778void vfree_atomic(const void *addr)
2779{
2780 BUG_ON(in_nmi());
2781
2782 kmemleak_free(addr);
2783
2784 if (!addr)
2785 return;
2786 __vfree_deferred(addr);
2787}
2788
1da177e4 2789/**
fa307474
MWO
2790 * vfree - Release memory allocated by vmalloc()
2791 * @addr: Memory base address
1da177e4 2792 *
fa307474
MWO
2793 * Free the virtually continuous memory area starting at @addr, as obtained
2794 * from one of the vmalloc() family of APIs. This will usually also free the
2795 * physical memory underlying the virtual allocation, but that memory is
2796 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2797 *
fa307474 2798 * If @addr is NULL, no operation is performed.
c9fcee51 2799 *
fa307474 2800 * Context:
92eac168 2801 * May sleep if called *not* from interrupt context.
fa307474
MWO
2802 * Must not be called in NMI context (strictly speaking, it could be
2803 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2804 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2805 */
b3bdda02 2806void vfree(const void *addr)
1da177e4 2807{
32fcfd40 2808 BUG_ON(in_nmi());
89219d37
CM
2809
2810 kmemleak_free(addr);
2811
a8dda165
AR
2812 might_sleep_if(!in_interrupt());
2813
32fcfd40
AV
2814 if (!addr)
2815 return;
f41f036b
CH
2816 if (unlikely(in_interrupt()))
2817 __vfree_deferred(addr);
2818 else
2819 __vunmap(addr, 1);
1da177e4 2820}
1da177e4
LT
2821EXPORT_SYMBOL(vfree);
2822
2823/**
92eac168
MR
2824 * vunmap - release virtual mapping obtained by vmap()
2825 * @addr: memory base address
1da177e4 2826 *
92eac168
MR
2827 * Free the virtually contiguous memory area starting at @addr,
2828 * which was created from the page array passed to vmap().
1da177e4 2829 *
92eac168 2830 * Must not be called in interrupt context.
1da177e4 2831 */
b3bdda02 2832void vunmap(const void *addr)
1da177e4
LT
2833{
2834 BUG_ON(in_interrupt());
34754b69 2835 might_sleep();
32fcfd40
AV
2836 if (addr)
2837 __vunmap(addr, 0);
1da177e4 2838}
1da177e4
LT
2839EXPORT_SYMBOL(vunmap);
2840
2841/**
92eac168
MR
2842 * vmap - map an array of pages into virtually contiguous space
2843 * @pages: array of page pointers
2844 * @count: number of pages to map
2845 * @flags: vm_area->flags
2846 * @prot: page protection for the mapping
2847 *
b944afc9
CH
2848 * Maps @count pages from @pages into contiguous kernel virtual space.
2849 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2850 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2851 * are transferred from the caller to vmap(), and will be freed / dropped when
2852 * vfree() is called on the return value.
a862f68a
MR
2853 *
2854 * Return: the address of the area or %NULL on failure
1da177e4
LT
2855 */
2856void *vmap(struct page **pages, unsigned int count,
92eac168 2857 unsigned long flags, pgprot_t prot)
1da177e4
LT
2858{
2859 struct vm_struct *area;
b67177ec 2860 unsigned long addr;
65ee03c4 2861 unsigned long size; /* In bytes */
1da177e4 2862
34754b69
PZ
2863 might_sleep();
2864
37f3605e
CH
2865 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2866 return NULL;
2867
bd1a8fb2
PZ
2868 /*
2869 * Your top guard is someone else's bottom guard. Not having a top
2870 * guard compromises someone else's mappings too.
2871 */
2872 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2873 flags &= ~VM_NO_GUARD;
2874
ca79b0c2 2875 if (count > totalram_pages())
1da177e4
LT
2876 return NULL;
2877
65ee03c4
GJM
2878 size = (unsigned long)count << PAGE_SHIFT;
2879 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2880 if (!area)
2881 return NULL;
23016969 2882
b67177ec
NP
2883 addr = (unsigned long)area->addr;
2884 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2885 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2886 vunmap(area->addr);
2887 return NULL;
2888 }
2889
c22ee528 2890 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2891 area->pages = pages;
c22ee528
ML
2892 area->nr_pages = count;
2893 }
1da177e4
LT
2894 return area->addr;
2895}
1da177e4
LT
2896EXPORT_SYMBOL(vmap);
2897
3e9a9e25
CH
2898#ifdef CONFIG_VMAP_PFN
2899struct vmap_pfn_data {
2900 unsigned long *pfns;
2901 pgprot_t prot;
2902 unsigned int idx;
2903};
2904
2905static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2906{
2907 struct vmap_pfn_data *data = private;
2908
2909 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2910 return -EINVAL;
2911 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2912 return 0;
2913}
2914
2915/**
2916 * vmap_pfn - map an array of PFNs into virtually contiguous space
2917 * @pfns: array of PFNs
2918 * @count: number of pages to map
2919 * @prot: page protection for the mapping
2920 *
2921 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2922 * the start address of the mapping.
2923 */
2924void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2925{
2926 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2927 struct vm_struct *area;
2928
2929 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2930 __builtin_return_address(0));
2931 if (!area)
2932 return NULL;
2933 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2934 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2935 free_vm_area(area);
2936 return NULL;
2937 }
2938 return area->addr;
2939}
2940EXPORT_SYMBOL_GPL(vmap_pfn);
2941#endif /* CONFIG_VMAP_PFN */
2942
12b9f873
UR
2943static inline unsigned int
2944vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2945 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2946{
2947 unsigned int nr_allocated = 0;
ffb29b1c
CW
2948 struct page *page;
2949 int i;
12b9f873
UR
2950
2951 /*
2952 * For order-0 pages we make use of bulk allocator, if
2953 * the page array is partly or not at all populated due
2954 * to fails, fallback to a single page allocator that is
2955 * more permissive.
2956 */
c00b6b96 2957 if (!order) {
9376130c
MH
2958 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2959
343ab817
URS
2960 while (nr_allocated < nr_pages) {
2961 unsigned int nr, nr_pages_request;
2962
2963 /*
2964 * A maximum allowed request is hard-coded and is 100
2965 * pages per call. That is done in order to prevent a
2966 * long preemption off scenario in the bulk-allocator
2967 * so the range is [1:100].
2968 */
2969 nr_pages_request = min(100U, nr_pages - nr_allocated);
2970
c00b6b96
CW
2971 /* memory allocation should consider mempolicy, we can't
2972 * wrongly use nearest node when nid == NUMA_NO_NODE,
2973 * otherwise memory may be allocated in only one node,
98af39d5 2974 * but mempolicy wants to alloc memory by interleaving.
c00b6b96
CW
2975 */
2976 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 2977 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
2978 nr_pages_request,
2979 pages + nr_allocated);
2980
2981 else
9376130c 2982 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
2983 nr_pages_request,
2984 pages + nr_allocated);
343ab817
URS
2985
2986 nr_allocated += nr;
2987 cond_resched();
2988
2989 /*
2990 * If zero or pages were obtained partly,
2991 * fallback to a single page allocator.
2992 */
2993 if (nr != nr_pages_request)
2994 break;
2995 }
3b8000ae 2996 }
12b9f873
UR
2997
2998 /* High-order pages or fallback path if "bulk" fails. */
12b9f873 2999
ffb29b1c 3000 while (nr_allocated < nr_pages) {
dd544141
VA
3001 if (fatal_signal_pending(current))
3002 break;
3003
ffb29b1c
CW
3004 if (nid == NUMA_NO_NODE)
3005 page = alloc_pages(gfp, order);
3006 else
3007 page = alloc_pages_node(nid, gfp, order);
12b9f873
UR
3008 if (unlikely(!page))
3009 break;
3b8000ae
NP
3010 /*
3011 * Higher order allocations must be able to be treated as
3012 * indepdenent small pages by callers (as they can with
3013 * small-page vmallocs). Some drivers do their own refcounting
3014 * on vmalloc_to_page() pages, some use page->mapping,
3015 * page->lru, etc.
3016 */
3017 if (order)
3018 split_page(page, order);
12b9f873
UR
3019
3020 /*
3021 * Careful, we allocate and map page-order pages, but
3022 * tracking is done per PAGE_SIZE page so as to keep the
3023 * vm_struct APIs independent of the physical/mapped size.
3024 */
3025 for (i = 0; i < (1U << order); i++)
3026 pages[nr_allocated + i] = page + i;
3027
12e376a6 3028 cond_resched();
12b9f873
UR
3029 nr_allocated += 1U << order;
3030 }
3031
3032 return nr_allocated;
3033}
3034
e31d9eb5 3035static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
3036 pgprot_t prot, unsigned int page_shift,
3037 int node)
1da177e4 3038{
930f036b 3039 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 3040 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
3041 unsigned long addr = (unsigned long)area->addr;
3042 unsigned long size = get_vm_area_size(area);
34fe6537 3043 unsigned long array_size;
121e6f32
NP
3044 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3045 unsigned int page_order;
451769eb
MH
3046 unsigned int flags;
3047 int ret;
1da177e4 3048
121e6f32 3049 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
80b1d8fd 3050
f255935b
CH
3051 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3052 gfp_mask |= __GFP_HIGHMEM;
1da177e4 3053
1da177e4 3054 /* Please note that the recursion is strictly bounded. */
8757d5fa 3055 if (array_size > PAGE_SIZE) {
5c1f4e69 3056 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 3057 area->caller);
286e1ea3 3058 } else {
5c1f4e69 3059 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 3060 }
7ea36242 3061
5c1f4e69 3062 if (!area->pages) {
c3d77172 3063 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3064 "vmalloc error: size %lu, failed to allocated page array size %lu",
3065 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 3066 free_vm_area(area);
1da177e4
LT
3067 return NULL;
3068 }
1da177e4 3069
121e6f32 3070 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 3071 page_order = vm_area_page_order(area);
bf53d6f8 3072
c3d77172
URS
3073 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3074 node, page_order, nr_small_pages, area->pages);
5c1f4e69 3075
97105f0a 3076 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4 3077 if (gfp_mask & __GFP_ACCOUNT) {
3b8000ae 3078 int i;
4e5aa1f4 3079
3b8000ae
NP
3080 for (i = 0; i < area->nr_pages; i++)
3081 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
4e5aa1f4 3082 }
1da177e4 3083
5c1f4e69
URS
3084 /*
3085 * If not enough pages were obtained to accomplish an
f41f036b 3086 * allocation request, free them via vfree() if any.
5c1f4e69
URS
3087 */
3088 if (area->nr_pages != nr_small_pages) {
c3d77172 3089 warn_alloc(gfp_mask, NULL,
f4bdfeaf 3090 "vmalloc error: size %lu, page order %u, failed to allocate pages",
5c1f4e69
URS
3091 area->nr_pages * PAGE_SIZE, page_order);
3092 goto fail;
3093 }
3094
451769eb
MH
3095 /*
3096 * page tables allocations ignore external gfp mask, enforce it
3097 * by the scope API
3098 */
3099 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3100 flags = memalloc_nofs_save();
3101 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3102 flags = memalloc_noio_save();
3103
9376130c
MH
3104 do {
3105 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3106 page_shift);
9376130c
MH
3107 if (nofail && (ret < 0))
3108 schedule_timeout_uninterruptible(1);
3109 } while (nofail && (ret < 0));
451769eb
MH
3110
3111 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3112 memalloc_nofs_restore(flags);
3113 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3114 memalloc_noio_restore(flags);
3115
3116 if (ret < 0) {
c3d77172 3117 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3118 "vmalloc error: size %lu, failed to map pages",
3119 area->nr_pages * PAGE_SIZE);
1da177e4 3120 goto fail;
d70bec8c 3121 }
ed1f324c 3122
1da177e4
LT
3123 return area->addr;
3124
3125fail:
f41f036b 3126 vfree(area->addr);
1da177e4
LT
3127 return NULL;
3128}
3129
3130/**
92eac168
MR
3131 * __vmalloc_node_range - allocate virtually contiguous memory
3132 * @size: allocation size
3133 * @align: desired alignment
3134 * @start: vm area range start
3135 * @end: vm area range end
3136 * @gfp_mask: flags for the page level allocator
3137 * @prot: protection mask for the allocated pages
3138 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3139 * @node: node to use for allocation or NUMA_NO_NODE
3140 * @caller: caller's return address
3141 *
3142 * Allocate enough pages to cover @size from the page level
b7d90e7a 3143 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3144 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3145 * supported.
3146 * Zone modifiers are not supported. From the reclaim modifiers
3147 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3148 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3149 * __GFP_RETRY_MAYFAIL are not supported).
3150 *
3151 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3152 *
3153 * Map them into contiguous kernel virtual space, using a pagetable
3154 * protection of @prot.
a862f68a
MR
3155 *
3156 * Return: the address of the area or %NULL on failure
1da177e4 3157 */
d0a21265
DR
3158void *__vmalloc_node_range(unsigned long size, unsigned long align,
3159 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3160 pgprot_t prot, unsigned long vm_flags, int node,
3161 const void *caller)
1da177e4
LT
3162{
3163 struct vm_struct *area;
19f1c3ac 3164 void *ret;
f6e39794 3165 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
89219d37 3166 unsigned long real_size = size;
121e6f32
NP
3167 unsigned long real_align = align;
3168 unsigned int shift = PAGE_SHIFT;
1da177e4 3169
d70bec8c
NP
3170 if (WARN_ON_ONCE(!size))
3171 return NULL;
3172
3173 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3174 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3175 "vmalloc error: size %lu, exceeds total pages",
3176 real_size);
d70bec8c 3177 return NULL;
121e6f32
NP
3178 }
3179
559089e0 3180 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
121e6f32 3181 unsigned long size_per_node;
1da177e4 3182
121e6f32
NP
3183 /*
3184 * Try huge pages. Only try for PAGE_KERNEL allocations,
3185 * others like modules don't yet expect huge pages in
3186 * their allocations due to apply_to_page_range not
3187 * supporting them.
3188 */
3189
3190 size_per_node = size;
3191 if (node == NUMA_NO_NODE)
3192 size_per_node /= num_online_nodes();
3382bbee 3193 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3194 shift = PMD_SHIFT;
3382bbee
CL
3195 else
3196 shift = arch_vmap_pte_supported_shift(size_per_node);
3197
3198 align = max(real_align, 1UL << shift);
3199 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3200 }
3201
3202again:
7ca3027b
DA
3203 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3204 VM_UNINITIALIZED | vm_flags, start, end, node,
3205 gfp_mask, caller);
d70bec8c 3206 if (!area) {
9376130c 3207 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3208 warn_alloc(gfp_mask, NULL,
9376130c
MH
3209 "vmalloc error: size %lu, vm_struct allocation failed%s",
3210 real_size, (nofail) ? ". Retrying." : "");
3211 if (nofail) {
3212 schedule_timeout_uninterruptible(1);
3213 goto again;
3214 }
de7d2b56 3215 goto fail;
d70bec8c 3216 }
1da177e4 3217
f6e39794
AK
3218 /*
3219 * Prepare arguments for __vmalloc_area_node() and
3220 * kasan_unpoison_vmalloc().
3221 */
3222 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3223 if (kasan_hw_tags_enabled()) {
3224 /*
3225 * Modify protection bits to allow tagging.
3226 * This must be done before mapping.
3227 */
3228 prot = arch_vmap_pgprot_tagged(prot);
01d92c7f 3229
f6e39794
AK
3230 /*
3231 * Skip page_alloc poisoning and zeroing for physical
3232 * pages backing VM_ALLOC mapping. Memory is instead
3233 * poisoned and zeroed by kasan_unpoison_vmalloc().
3234 */
3235 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3236 }
3237
3238 /* Take note that the mapping is PAGE_KERNEL. */
3239 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
23689e91
AK
3240 }
3241
01d92c7f 3242 /* Allocate physical pages and map them into vmalloc space. */
19f1c3ac
AK
3243 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3244 if (!ret)
121e6f32 3245 goto fail;
89219d37 3246
23689e91
AK
3247 /*
3248 * Mark the pages as accessible, now that they are mapped.
6c2f761d
AK
3249 * The condition for setting KASAN_VMALLOC_INIT should complement the
3250 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3251 * to make sure that memory is initialized under the same conditions.
f6e39794
AK
3252 * Tag-based KASAN modes only assign tags to normal non-executable
3253 * allocations, see __kasan_unpoison_vmalloc().
23689e91 3254 */
f6e39794 3255 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
6c2f761d
AK
3256 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3257 (gfp_mask & __GFP_SKIP_ZERO))
23689e91 3258 kasan_flags |= KASAN_VMALLOC_INIT;
f6e39794 3259 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
23689e91 3260 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
19f1c3ac 3261
f5252e00 3262 /*
20fc02b4
ZY
3263 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3264 * flag. It means that vm_struct is not fully initialized.
4341fa45 3265 * Now, it is fully initialized, so remove this flag here.
f5252e00 3266 */
20fc02b4 3267 clear_vm_uninitialized_flag(area);
f5252e00 3268
7ca3027b 3269 size = PAGE_ALIGN(size);
60115fa5
KW
3270 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3271 kmemleak_vmalloc(area, size, gfp_mask);
89219d37 3272
19f1c3ac 3273 return area->addr;
de7d2b56
JP
3274
3275fail:
121e6f32
NP
3276 if (shift > PAGE_SHIFT) {
3277 shift = PAGE_SHIFT;
3278 align = real_align;
3279 size = real_size;
3280 goto again;
3281 }
3282
de7d2b56 3283 return NULL;
1da177e4
LT
3284}
3285
d0a21265 3286/**
92eac168
MR
3287 * __vmalloc_node - allocate virtually contiguous memory
3288 * @size: allocation size
3289 * @align: desired alignment
3290 * @gfp_mask: flags for the page level allocator
92eac168
MR
3291 * @node: node to use for allocation or NUMA_NO_NODE
3292 * @caller: caller's return address
a7c3e901 3293 *
f38fcb9c
CH
3294 * Allocate enough pages to cover @size from the page level allocator with
3295 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3296 *
92eac168
MR
3297 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3298 * and __GFP_NOFAIL are not supported
a7c3e901 3299 *
92eac168
MR
3300 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3301 * with mm people.
a862f68a
MR
3302 *
3303 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3304 */
2b905948 3305void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3306 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3307{
3308 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3309 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3310}
c3f896dc
CH
3311/*
3312 * This is only for performance analysis of vmalloc and stress purpose.
3313 * It is required by vmalloc test module, therefore do not use it other
3314 * than that.
3315 */
3316#ifdef CONFIG_TEST_VMALLOC_MODULE
3317EXPORT_SYMBOL_GPL(__vmalloc_node);
3318#endif
d0a21265 3319
88dca4ca 3320void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3321{
f38fcb9c 3322 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3323 __builtin_return_address(0));
930fc45a 3324}
1da177e4
LT
3325EXPORT_SYMBOL(__vmalloc);
3326
3327/**
92eac168
MR
3328 * vmalloc - allocate virtually contiguous memory
3329 * @size: allocation size
3330 *
3331 * Allocate enough pages to cover @size from the page level
3332 * allocator and map them into contiguous kernel virtual space.
1da177e4 3333 *
92eac168
MR
3334 * For tight control over page level allocator and protection flags
3335 * use __vmalloc() instead.
a862f68a
MR
3336 *
3337 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3338 */
3339void *vmalloc(unsigned long size)
3340{
4d39d728
CH
3341 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3342 __builtin_return_address(0));
1da177e4 3343}
1da177e4
LT
3344EXPORT_SYMBOL(vmalloc);
3345
15a64f5a 3346/**
559089e0
SL
3347 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3348 * @size: allocation size
3349 * @gfp_mask: flags for the page level allocator
15a64f5a 3350 *
559089e0 3351 * Allocate enough pages to cover @size from the page level
15a64f5a 3352 * allocator and map them into contiguous kernel virtual space.
559089e0
SL
3353 * If @size is greater than or equal to PMD_SIZE, allow using
3354 * huge pages for the memory
15a64f5a
CI
3355 *
3356 * Return: pointer to the allocated memory or %NULL on error
3357 */
559089e0 3358void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
15a64f5a
CI
3359{
3360 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
559089e0 3361 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
15a64f5a
CI
3362 NUMA_NO_NODE, __builtin_return_address(0));
3363}
559089e0 3364EXPORT_SYMBOL_GPL(vmalloc_huge);
15a64f5a 3365
e1ca7788 3366/**
92eac168
MR
3367 * vzalloc - allocate virtually contiguous memory with zero fill
3368 * @size: allocation size
3369 *
3370 * Allocate enough pages to cover @size from the page level
3371 * allocator and map them into contiguous kernel virtual space.
3372 * The memory allocated is set to zero.
3373 *
3374 * For tight control over page level allocator and protection flags
3375 * use __vmalloc() instead.
a862f68a
MR
3376 *
3377 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3378 */
3379void *vzalloc(unsigned long size)
3380{
4d39d728
CH
3381 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3382 __builtin_return_address(0));
e1ca7788
DY
3383}
3384EXPORT_SYMBOL(vzalloc);
3385
83342314 3386/**
ead04089
REB
3387 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3388 * @size: allocation size
83342314 3389 *
ead04089
REB
3390 * The resulting memory area is zeroed so it can be mapped to userspace
3391 * without leaking data.
a862f68a
MR
3392 *
3393 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3394 */
3395void *vmalloc_user(unsigned long size)
3396{
bc84c535
RP
3397 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3398 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3399 VM_USERMAP, NUMA_NO_NODE,
3400 __builtin_return_address(0));
83342314
NP
3401}
3402EXPORT_SYMBOL(vmalloc_user);
3403
930fc45a 3404/**
92eac168
MR
3405 * vmalloc_node - allocate memory on a specific node
3406 * @size: allocation size
3407 * @node: numa node
930fc45a 3408 *
92eac168
MR
3409 * Allocate enough pages to cover @size from the page level
3410 * allocator and map them into contiguous kernel virtual space.
930fc45a 3411 *
92eac168
MR
3412 * For tight control over page level allocator and protection flags
3413 * use __vmalloc() instead.
a862f68a
MR
3414 *
3415 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3416 */
3417void *vmalloc_node(unsigned long size, int node)
3418{
f38fcb9c
CH
3419 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3420 __builtin_return_address(0));
930fc45a
CL
3421}
3422EXPORT_SYMBOL(vmalloc_node);
3423
e1ca7788
DY
3424/**
3425 * vzalloc_node - allocate memory on a specific node with zero fill
3426 * @size: allocation size
3427 * @node: numa node
3428 *
3429 * Allocate enough pages to cover @size from the page level
3430 * allocator and map them into contiguous kernel virtual space.
3431 * The memory allocated is set to zero.
3432 *
a862f68a 3433 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3434 */
3435void *vzalloc_node(unsigned long size, int node)
3436{
4d39d728
CH
3437 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3438 __builtin_return_address(0));
e1ca7788
DY
3439}
3440EXPORT_SYMBOL(vzalloc_node);
3441
0d08e0d3 3442#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3443#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3444#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3445#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3446#else
698d0831
MH
3447/*
3448 * 64b systems should always have either DMA or DMA32 zones. For others
3449 * GFP_DMA32 should do the right thing and use the normal zone.
3450 */
68d68ff6 3451#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3452#endif
3453
1da177e4 3454/**
92eac168
MR
3455 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3456 * @size: allocation size
1da177e4 3457 *
92eac168
MR
3458 * Allocate enough 32bit PA addressable pages to cover @size from the
3459 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3460 *
3461 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3462 */
3463void *vmalloc_32(unsigned long size)
3464{
f38fcb9c
CH
3465 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3466 __builtin_return_address(0));
1da177e4 3467}
1da177e4
LT
3468EXPORT_SYMBOL(vmalloc_32);
3469
83342314 3470/**
ead04089 3471 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3472 * @size: allocation size
ead04089
REB
3473 *
3474 * The resulting memory area is 32bit addressable and zeroed so it can be
3475 * mapped to userspace without leaking data.
a862f68a
MR
3476 *
3477 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3478 */
3479void *vmalloc_32_user(unsigned long size)
3480{
bc84c535
RP
3481 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3482 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3483 VM_USERMAP, NUMA_NO_NODE,
3484 __builtin_return_address(0));
83342314
NP
3485}
3486EXPORT_SYMBOL(vmalloc_32_user);
3487
d0107eb0
KH
3488/*
3489 * small helper routine , copy contents to buf from addr.
3490 * If the page is not present, fill zero.
3491 */
3492
3493static int aligned_vread(char *buf, char *addr, unsigned long count)
3494{
3495 struct page *p;
3496 int copied = 0;
3497
3498 while (count) {
3499 unsigned long offset, length;
3500
891c49ab 3501 offset = offset_in_page(addr);
d0107eb0
KH
3502 length = PAGE_SIZE - offset;
3503 if (length > count)
3504 length = count;
3505 p = vmalloc_to_page(addr);
3506 /*
3507 * To do safe access to this _mapped_ area, we need
3508 * lock. But adding lock here means that we need to add
f0953a1b 3509 * overhead of vmalloc()/vfree() calls for this _debug_
d0107eb0
KH
3510 * interface, rarely used. Instead of that, we'll use
3511 * kmap() and get small overhead in this access function.
3512 */
3513 if (p) {
f7c8ce44 3514 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3515 void *map = kmap_atomic(p);
d0107eb0 3516 memcpy(buf, map + offset, length);
9b04c5fe 3517 kunmap_atomic(map);
d0107eb0
KH
3518 } else
3519 memset(buf, 0, length);
3520
3521 addr += length;
3522 buf += length;
3523 copied += length;
3524 count -= length;
3525 }
3526 return copied;
3527}
3528
d0107eb0 3529/**
92eac168
MR
3530 * vread() - read vmalloc area in a safe way.
3531 * @buf: buffer for reading data
3532 * @addr: vm address.
3533 * @count: number of bytes to be read.
3534 *
92eac168
MR
3535 * This function checks that addr is a valid vmalloc'ed area, and
3536 * copy data from that area to a given buffer. If the given memory range
3537 * of [addr...addr+count) includes some valid address, data is copied to
3538 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3539 * IOREMAP area is treated as memory hole and no copy is done.
3540 *
3541 * If [addr...addr+count) doesn't includes any intersects with alive
3542 * vm_struct area, returns 0. @buf should be kernel's buffer.
3543 *
3544 * Note: In usual ops, vread() is never necessary because the caller
3545 * should know vmalloc() area is valid and can use memcpy().
3546 * This is for routines which have to access vmalloc area without
bbcd53c9 3547 * any information, as /proc/kcore.
a862f68a
MR
3548 *
3549 * Return: number of bytes for which addr and buf should be increased
3550 * (same number as @count) or %0 if [addr...addr+count) doesn't
3551 * include any intersection with valid vmalloc area
d0107eb0 3552 */
1da177e4
LT
3553long vread(char *buf, char *addr, unsigned long count)
3554{
e81ce85f
JK
3555 struct vmap_area *va;
3556 struct vm_struct *vm;
1da177e4 3557 char *vaddr, *buf_start = buf;
d0107eb0 3558 unsigned long buflen = count;
1da177e4
LT
3559 unsigned long n;
3560
4aff1dc4
AK
3561 addr = kasan_reset_tag(addr);
3562
1da177e4
LT
3563 /* Don't allow overflow */
3564 if ((unsigned long) addr + count < count)
3565 count = -(unsigned long) addr;
3566
e81ce85f 3567 spin_lock(&vmap_area_lock);
f181234a 3568 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c
SD
3569 if (!va)
3570 goto finished;
f181234a
CW
3571
3572 /* no intersects with alive vmap_area */
3573 if ((unsigned long)addr + count <= va->va_start)
3574 goto finished;
3575
f608788c 3576 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3577 if (!count)
3578 break;
3579
688fcbfc 3580 if (!va->vm)
e81ce85f
JK
3581 continue;
3582
3583 vm = va->vm;
3584 vaddr = (char *) vm->addr;
762216ab 3585 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3586 continue;
3587 while (addr < vaddr) {
3588 if (count == 0)
3589 goto finished;
3590 *buf = '\0';
3591 buf++;
3592 addr++;
3593 count--;
3594 }
762216ab 3595 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3596 if (n > count)
3597 n = count;
e81ce85f 3598 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3599 aligned_vread(buf, addr, n);
3600 else /* IOREMAP area is treated as memory hole */
3601 memset(buf, 0, n);
3602 buf += n;
3603 addr += n;
3604 count -= n;
1da177e4
LT
3605 }
3606finished:
e81ce85f 3607 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3608
3609 if (buf == buf_start)
3610 return 0;
3611 /* zero-fill memory holes */
3612 if (buf != buf_start + buflen)
3613 memset(buf, 0, buflen - (buf - buf_start));
3614
3615 return buflen;
1da177e4
LT
3616}
3617
83342314 3618/**
92eac168
MR
3619 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3620 * @vma: vma to cover
3621 * @uaddr: target user address to start at
3622 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3623 * @pgoff: offset from @kaddr to start at
92eac168 3624 * @size: size of map area
7682486b 3625 *
92eac168 3626 * Returns: 0 for success, -Exxx on failure
83342314 3627 *
92eac168
MR
3628 * This function checks that @kaddr is a valid vmalloc'ed area,
3629 * and that it is big enough to cover the range starting at
3630 * @uaddr in @vma. Will return failure if that criteria isn't
3631 * met.
83342314 3632 *
92eac168 3633 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3634 */
e69e9d4a 3635int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3636 void *kaddr, unsigned long pgoff,
3637 unsigned long size)
83342314
NP
3638{
3639 struct vm_struct *area;
bdebd6a2
JH
3640 unsigned long off;
3641 unsigned long end_index;
3642
3643 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3644 return -EINVAL;
83342314 3645
e69e9d4a
HD
3646 size = PAGE_ALIGN(size);
3647
3648 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3649 return -EINVAL;
3650
e69e9d4a 3651 area = find_vm_area(kaddr);
83342314 3652 if (!area)
db64fe02 3653 return -EINVAL;
83342314 3654
fe9041c2 3655 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3656 return -EINVAL;
83342314 3657
bdebd6a2
JH
3658 if (check_add_overflow(size, off, &end_index) ||
3659 end_index > get_vm_area_size(area))
db64fe02 3660 return -EINVAL;
bdebd6a2 3661 kaddr += off;
83342314 3662
83342314 3663 do {
e69e9d4a 3664 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3665 int ret;
3666
83342314
NP
3667 ret = vm_insert_page(vma, uaddr, page);
3668 if (ret)
3669 return ret;
3670
3671 uaddr += PAGE_SIZE;
e69e9d4a
HD
3672 kaddr += PAGE_SIZE;
3673 size -= PAGE_SIZE;
3674 } while (size > 0);
83342314 3675
314e51b9 3676 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3677
db64fe02 3678 return 0;
83342314 3679}
e69e9d4a
HD
3680
3681/**
92eac168
MR
3682 * remap_vmalloc_range - map vmalloc pages to userspace
3683 * @vma: vma to cover (map full range of vma)
3684 * @addr: vmalloc memory
3685 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3686 *
92eac168 3687 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3688 *
92eac168
MR
3689 * This function checks that addr is a valid vmalloc'ed area, and
3690 * that it is big enough to cover the vma. Will return failure if
3691 * that criteria isn't met.
e69e9d4a 3692 *
92eac168 3693 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3694 */
3695int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3696 unsigned long pgoff)
3697{
3698 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3699 addr, pgoff,
e69e9d4a
HD
3700 vma->vm_end - vma->vm_start);
3701}
83342314
NP
3702EXPORT_SYMBOL(remap_vmalloc_range);
3703
5f4352fb
JF
3704void free_vm_area(struct vm_struct *area)
3705{
3706 struct vm_struct *ret;
3707 ret = remove_vm_area(area->addr);
3708 BUG_ON(ret != area);
3709 kfree(area);
3710}
3711EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3712
4f8b02b4 3713#ifdef CONFIG_SMP
ca23e405
TH
3714static struct vmap_area *node_to_va(struct rb_node *n)
3715{
4583e773 3716 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3717}
3718
3719/**
68ad4a33
URS
3720 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3721 * @addr: target address
ca23e405 3722 *
68ad4a33
URS
3723 * Returns: vmap_area if it is found. If there is no such area
3724 * the first highest(reverse order) vmap_area is returned
3725 * i.e. va->va_start < addr && va->va_end < addr or NULL
3726 * if there are no any areas before @addr.
ca23e405 3727 */
68ad4a33
URS
3728static struct vmap_area *
3729pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3730{
68ad4a33
URS
3731 struct vmap_area *va, *tmp;
3732 struct rb_node *n;
3733
3734 n = free_vmap_area_root.rb_node;
3735 va = NULL;
ca23e405
TH
3736
3737 while (n) {
68ad4a33
URS
3738 tmp = rb_entry(n, struct vmap_area, rb_node);
3739 if (tmp->va_start <= addr) {
3740 va = tmp;
3741 if (tmp->va_end >= addr)
3742 break;
3743
ca23e405 3744 n = n->rb_right;
68ad4a33
URS
3745 } else {
3746 n = n->rb_left;
3747 }
ca23e405
TH
3748 }
3749
68ad4a33 3750 return va;
ca23e405
TH
3751}
3752
3753/**
68ad4a33
URS
3754 * pvm_determine_end_from_reverse - find the highest aligned address
3755 * of free block below VMALLOC_END
3756 * @va:
3757 * in - the VA we start the search(reverse order);
3758 * out - the VA with the highest aligned end address.
799fa85d 3759 * @align: alignment for required highest address
ca23e405 3760 *
68ad4a33 3761 * Returns: determined end address within vmap_area
ca23e405 3762 */
68ad4a33
URS
3763static unsigned long
3764pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3765{
68ad4a33 3766 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3767 unsigned long addr;
3768
68ad4a33
URS
3769 if (likely(*va)) {
3770 list_for_each_entry_from_reverse((*va),
3771 &free_vmap_area_list, list) {
3772 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3773 if ((*va)->va_start < addr)
3774 return addr;
3775 }
ca23e405
TH
3776 }
3777
68ad4a33 3778 return 0;
ca23e405
TH
3779}
3780
3781/**
3782 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3783 * @offsets: array containing offset of each area
3784 * @sizes: array containing size of each area
3785 * @nr_vms: the number of areas to allocate
3786 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3787 *
3788 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3789 * vm_structs on success, %NULL on failure
3790 *
3791 * Percpu allocator wants to use congruent vm areas so that it can
3792 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3793 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3794 * be scattered pretty far, distance between two areas easily going up
3795 * to gigabytes. To avoid interacting with regular vmallocs, these
3796 * areas are allocated from top.
ca23e405 3797 *
68ad4a33
URS
3798 * Despite its complicated look, this allocator is rather simple. It
3799 * does everything top-down and scans free blocks from the end looking
3800 * for matching base. While scanning, if any of the areas do not fit the
3801 * base address is pulled down to fit the area. Scanning is repeated till
3802 * all the areas fit and then all necessary data structures are inserted
3803 * and the result is returned.
ca23e405
TH
3804 */
3805struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3806 const size_t *sizes, int nr_vms,
ec3f64fc 3807 size_t align)
ca23e405
TH
3808{
3809 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3810 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3811 struct vmap_area **vas, *va;
ca23e405
TH
3812 struct vm_struct **vms;
3813 int area, area2, last_area, term_area;
253a496d 3814 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405
TH
3815 bool purged = false;
3816
ca23e405 3817 /* verify parameters and allocate data structures */
891c49ab 3818 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3819 for (last_area = 0, area = 0; area < nr_vms; area++) {
3820 start = offsets[area];
3821 end = start + sizes[area];
3822
3823 /* is everything aligned properly? */
3824 BUG_ON(!IS_ALIGNED(offsets[area], align));
3825 BUG_ON(!IS_ALIGNED(sizes[area], align));
3826
3827 /* detect the area with the highest address */
3828 if (start > offsets[last_area])
3829 last_area = area;
3830
c568da28 3831 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3832 unsigned long start2 = offsets[area2];
3833 unsigned long end2 = start2 + sizes[area2];
3834
c568da28 3835 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3836 }
3837 }
3838 last_end = offsets[last_area] + sizes[last_area];
3839
3840 if (vmalloc_end - vmalloc_start < last_end) {
3841 WARN_ON(true);
3842 return NULL;
3843 }
3844
4d67d860
TM
3845 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3846 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3847 if (!vas || !vms)
f1db7afd 3848 goto err_free2;
ca23e405
TH
3849
3850 for (area = 0; area < nr_vms; area++) {
68ad4a33 3851 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3852 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3853 if (!vas[area] || !vms[area])
3854 goto err_free;
3855 }
3856retry:
e36176be 3857 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3858
3859 /* start scanning - we scan from the top, begin with the last area */
3860 area = term_area = last_area;
3861 start = offsets[area];
3862 end = start + sizes[area];
3863
68ad4a33
URS
3864 va = pvm_find_va_enclose_addr(vmalloc_end);
3865 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3866
3867 while (true) {
ca23e405
TH
3868 /*
3869 * base might have underflowed, add last_end before
3870 * comparing.
3871 */
68ad4a33
URS
3872 if (base + last_end < vmalloc_start + last_end)
3873 goto overflow;
ca23e405
TH
3874
3875 /*
68ad4a33 3876 * Fitting base has not been found.
ca23e405 3877 */
68ad4a33
URS
3878 if (va == NULL)
3879 goto overflow;
ca23e405 3880
5336e52c 3881 /*
d8cc323d 3882 * If required width exceeds current VA block, move
5336e52c
KS
3883 * base downwards and then recheck.
3884 */
3885 if (base + end > va->va_end) {
3886 base = pvm_determine_end_from_reverse(&va, align) - end;
3887 term_area = area;
3888 continue;
3889 }
3890
ca23e405 3891 /*
68ad4a33 3892 * If this VA does not fit, move base downwards and recheck.
ca23e405 3893 */
5336e52c 3894 if (base + start < va->va_start) {
68ad4a33
URS
3895 va = node_to_va(rb_prev(&va->rb_node));
3896 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3897 term_area = area;
3898 continue;
3899 }
3900
3901 /*
3902 * This area fits, move on to the previous one. If
3903 * the previous one is the terminal one, we're done.
3904 */
3905 area = (area + nr_vms - 1) % nr_vms;
3906 if (area == term_area)
3907 break;
68ad4a33 3908
ca23e405
TH
3909 start = offsets[area];
3910 end = start + sizes[area];
68ad4a33 3911 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3912 }
68ad4a33 3913
ca23e405
TH
3914 /* we've found a fitting base, insert all va's */
3915 for (area = 0; area < nr_vms; area++) {
68ad4a33 3916 int ret;
ca23e405 3917
68ad4a33
URS
3918 start = base + offsets[area];
3919 size = sizes[area];
ca23e405 3920
68ad4a33
URS
3921 va = pvm_find_va_enclose_addr(start);
3922 if (WARN_ON_ONCE(va == NULL))
3923 /* It is a BUG(), but trigger recovery instead. */
3924 goto recovery;
3925
f9863be4
URS
3926 ret = adjust_va_to_fit_type(&free_vmap_area_root,
3927 &free_vmap_area_list,
3928 va, start, size);
1b23ff80 3929 if (WARN_ON_ONCE(unlikely(ret)))
68ad4a33
URS
3930 /* It is a BUG(), but trigger recovery instead. */
3931 goto recovery;
3932
68ad4a33
URS
3933 /* Allocated area. */
3934 va = vas[area];
3935 va->va_start = start;
3936 va->va_end = start + size;
68ad4a33 3937 }
ca23e405 3938
e36176be 3939 spin_unlock(&free_vmap_area_lock);
ca23e405 3940
253a496d
DA
3941 /* populate the kasan shadow space */
3942 for (area = 0; area < nr_vms; area++) {
3943 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3944 goto err_free_shadow;
253a496d
DA
3945 }
3946
ca23e405 3947 /* insert all vm's */
e36176be
URS
3948 spin_lock(&vmap_area_lock);
3949 for (area = 0; area < nr_vms; area++) {
3950 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3951
3952 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3953 pcpu_get_vm_areas);
e36176be
URS
3954 }
3955 spin_unlock(&vmap_area_lock);
ca23e405 3956
19f1c3ac
AK
3957 /*
3958 * Mark allocated areas as accessible. Do it now as a best-effort
3959 * approach, as they can be mapped outside of vmalloc code.
23689e91
AK
3960 * With hardware tag-based KASAN, marking is skipped for
3961 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac 3962 */
1d96320f
AK
3963 for (area = 0; area < nr_vms; area++)
3964 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
f6e39794 3965 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
1d96320f 3966
ca23e405
TH
3967 kfree(vas);
3968 return vms;
3969
68ad4a33 3970recovery:
e36176be
URS
3971 /*
3972 * Remove previously allocated areas. There is no
3973 * need in removing these areas from the busy tree,
3974 * because they are inserted only on the final step
3975 * and when pcpu_get_vm_areas() is success.
3976 */
68ad4a33 3977 while (area--) {
253a496d
DA
3978 orig_start = vas[area]->va_start;
3979 orig_end = vas[area]->va_end;
96e2db45
URS
3980 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3981 &free_vmap_area_list);
9c801f61
URS
3982 if (va)
3983 kasan_release_vmalloc(orig_start, orig_end,
3984 va->va_start, va->va_end);
68ad4a33
URS
3985 vas[area] = NULL;
3986 }
3987
3988overflow:
e36176be 3989 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3990 if (!purged) {
3991 purge_vmap_area_lazy();
3992 purged = true;
3993
3994 /* Before "retry", check if we recover. */
3995 for (area = 0; area < nr_vms; area++) {
3996 if (vas[area])
3997 continue;
3998
3999 vas[area] = kmem_cache_zalloc(
4000 vmap_area_cachep, GFP_KERNEL);
4001 if (!vas[area])
4002 goto err_free;
4003 }
4004
4005 goto retry;
4006 }
4007
ca23e405
TH
4008err_free:
4009 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
4010 if (vas[area])
4011 kmem_cache_free(vmap_area_cachep, vas[area]);
4012
f1db7afd 4013 kfree(vms[area]);
ca23e405 4014 }
f1db7afd 4015err_free2:
ca23e405
TH
4016 kfree(vas);
4017 kfree(vms);
4018 return NULL;
253a496d
DA
4019
4020err_free_shadow:
4021 spin_lock(&free_vmap_area_lock);
4022 /*
4023 * We release all the vmalloc shadows, even the ones for regions that
4024 * hadn't been successfully added. This relies on kasan_release_vmalloc
4025 * being able to tolerate this case.
4026 */
4027 for (area = 0; area < nr_vms; area++) {
4028 orig_start = vas[area]->va_start;
4029 orig_end = vas[area]->va_end;
96e2db45
URS
4030 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4031 &free_vmap_area_list);
9c801f61
URS
4032 if (va)
4033 kasan_release_vmalloc(orig_start, orig_end,
4034 va->va_start, va->va_end);
253a496d
DA
4035 vas[area] = NULL;
4036 kfree(vms[area]);
4037 }
4038 spin_unlock(&free_vmap_area_lock);
4039 kfree(vas);
4040 kfree(vms);
4041 return NULL;
ca23e405
TH
4042}
4043
4044/**
4045 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4046 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4047 * @nr_vms: the number of allocated areas
4048 *
4049 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4050 */
4051void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4052{
4053 int i;
4054
4055 for (i = 0; i < nr_vms; i++)
4056 free_vm_area(vms[i]);
4057 kfree(vms);
4058}
4f8b02b4 4059#endif /* CONFIG_SMP */
a10aa579 4060
5bb1bb35 4061#ifdef CONFIG_PRINTK
98f18083
PM
4062bool vmalloc_dump_obj(void *object)
4063{
4064 struct vm_struct *vm;
4065 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4066
4067 vm = find_vm_area(objp);
4068 if (!vm)
4069 return false;
bd34dcd4
PM
4070 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4071 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
4072 return true;
4073}
5bb1bb35 4074#endif
98f18083 4075
a10aa579
CL
4076#ifdef CONFIG_PROC_FS
4077static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 4078 __acquires(&vmap_purge_lock)
d4033afd 4079 __acquires(&vmap_area_lock)
a10aa579 4080{
e36176be 4081 mutex_lock(&vmap_purge_lock);
d4033afd 4082 spin_lock(&vmap_area_lock);
e36176be 4083
3f500069 4084 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
4085}
4086
4087static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4088{
3f500069 4089 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
4090}
4091
4092static void s_stop(struct seq_file *m, void *p)
d4033afd 4093 __releases(&vmap_area_lock)
0a7dd4e9 4094 __releases(&vmap_purge_lock)
a10aa579 4095{
d4033afd 4096 spin_unlock(&vmap_area_lock);
0a7dd4e9 4097 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
4098}
4099
a47a126a
ED
4100static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4101{
e5adfffc 4102 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 4103 unsigned int nr, *counters = m->private;
51e50b3a 4104 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
4105
4106 if (!counters)
4107 return;
4108
af12346c
WL
4109 if (v->flags & VM_UNINITIALIZED)
4110 return;
7e5b528b
DV
4111 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4112 smp_rmb();
af12346c 4113
a47a126a
ED
4114 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4115
51e50b3a
ED
4116 for (nr = 0; nr < v->nr_pages; nr += step)
4117 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
4118 for_each_node_state(nr, N_HIGH_MEMORY)
4119 if (counters[nr])
4120 seq_printf(m, " N%u=%u", nr, counters[nr]);
4121 }
4122}
4123
dd3b8353
URS
4124static void show_purge_info(struct seq_file *m)
4125{
dd3b8353
URS
4126 struct vmap_area *va;
4127
96e2db45
URS
4128 spin_lock(&purge_vmap_area_lock);
4129 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
4130 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4131 (void *)va->va_start, (void *)va->va_end,
4132 va->va_end - va->va_start);
4133 }
96e2db45 4134 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
4135}
4136
a10aa579
CL
4137static int s_show(struct seq_file *m, void *p)
4138{
3f500069 4139 struct vmap_area *va;
d4033afd
JK
4140 struct vm_struct *v;
4141
3f500069 4142 va = list_entry(p, struct vmap_area, list);
4143
c2ce8c14 4144 /*
688fcbfc
PL
4145 * s_show can encounter race with remove_vm_area, !vm on behalf
4146 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 4147 */
688fcbfc 4148 if (!va->vm) {
dd3b8353 4149 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 4150 (void *)va->va_start, (void *)va->va_end,
dd3b8353 4151 va->va_end - va->va_start);
78c72746 4152
7cc7913e 4153 goto final;
78c72746 4154 }
d4033afd
JK
4155
4156 v = va->vm;
a10aa579 4157
45ec1690 4158 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4159 v->addr, v->addr + v->size, v->size);
4160
62c70bce
JP
4161 if (v->caller)
4162 seq_printf(m, " %pS", v->caller);
23016969 4163
a10aa579
CL
4164 if (v->nr_pages)
4165 seq_printf(m, " pages=%d", v->nr_pages);
4166
4167 if (v->phys_addr)
199eaa05 4168 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4169
4170 if (v->flags & VM_IOREMAP)
f4527c90 4171 seq_puts(m, " ioremap");
a10aa579
CL
4172
4173 if (v->flags & VM_ALLOC)
f4527c90 4174 seq_puts(m, " vmalloc");
a10aa579
CL
4175
4176 if (v->flags & VM_MAP)
f4527c90 4177 seq_puts(m, " vmap");
a10aa579
CL
4178
4179 if (v->flags & VM_USERMAP)
f4527c90 4180 seq_puts(m, " user");
a10aa579 4181
fe9041c2
CH
4182 if (v->flags & VM_DMA_COHERENT)
4183 seq_puts(m, " dma-coherent");
4184
244d63ee 4185 if (is_vmalloc_addr(v->pages))
f4527c90 4186 seq_puts(m, " vpages");
a10aa579 4187
a47a126a 4188 show_numa_info(m, v);
a10aa579 4189 seq_putc(m, '\n');
dd3b8353
URS
4190
4191 /*
96e2db45 4192 * As a final step, dump "unpurged" areas.
dd3b8353 4193 */
7cc7913e 4194final:
dd3b8353
URS
4195 if (list_is_last(&va->list, &vmap_area_list))
4196 show_purge_info(m);
4197
a10aa579
CL
4198 return 0;
4199}
4200
5f6a6a9c 4201static const struct seq_operations vmalloc_op = {
a10aa579
CL
4202 .start = s_start,
4203 .next = s_next,
4204 .stop = s_stop,
4205 .show = s_show,
4206};
5f6a6a9c 4207
5f6a6a9c
AD
4208static int __init proc_vmalloc_init(void)
4209{
fddda2b7 4210 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4211 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4212 &vmalloc_op,
4213 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4214 else
0825a6f9 4215 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4216 return 0;
4217}
4218module_init(proc_vmalloc_init);
db3808c1 4219
a10aa579 4220#endif
This page took 2.187399 seconds and 4 git commands to generate.