]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 | 2 | /* |
1da177e4 LT |
3 | * Copyright (C) 1993 Linus Torvalds |
4 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
5 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
6 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 7 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
d758ffe6 | 8 | * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
c3edc401 | 15 | #include <linux/sched/signal.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
868b104d | 21 | #include <linux/set_memory.h> |
3ac7fe5a | 22 | #include <linux/debugobjects.h> |
23016969 | 23 | #include <linux/kallsyms.h> |
db64fe02 | 24 | #include <linux/list.h> |
4da56b99 | 25 | #include <linux/notifier.h> |
db64fe02 | 26 | #include <linux/rbtree.h> |
0f14599c | 27 | #include <linux/xarray.h> |
5da96bdd | 28 | #include <linux/io.h> |
db64fe02 | 29 | #include <linux/rcupdate.h> |
f0aa6617 | 30 | #include <linux/pfn.h> |
89219d37 | 31 | #include <linux/kmemleak.h> |
60063497 | 32 | #include <linux/atomic.h> |
3b32123d | 33 | #include <linux/compiler.h> |
4e5aa1f4 | 34 | #include <linux/memcontrol.h> |
32fcfd40 | 35 | #include <linux/llist.h> |
0f616be1 | 36 | #include <linux/bitops.h> |
68ad4a33 | 37 | #include <linux/rbtree_augmented.h> |
bdebd6a2 | 38 | #include <linux/overflow.h> |
c0eb315a | 39 | #include <linux/pgtable.h> |
7c0f6ba6 | 40 | #include <linux/uaccess.h> |
f7ee1f13 | 41 | #include <linux/hugetlb.h> |
451769eb | 42 | #include <linux/sched/mm.h> |
1da177e4 | 43 | #include <asm/tlbflush.h> |
2dca6999 | 44 | #include <asm/shmparam.h> |
1da177e4 | 45 | |
cf243da6 URS |
46 | #define CREATE_TRACE_POINTS |
47 | #include <trace/events/vmalloc.h> | |
48 | ||
dd56b046 | 49 | #include "internal.h" |
2a681cfa | 50 | #include "pgalloc-track.h" |
dd56b046 | 51 | |
82a70ce0 CH |
52 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
53 | static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; | |
54 | ||
55 | static int __init set_nohugeiomap(char *str) | |
56 | { | |
57 | ioremap_max_page_shift = PAGE_SHIFT; | |
58 | return 0; | |
59 | } | |
60 | early_param("nohugeiomap", set_nohugeiomap); | |
61 | #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | |
62 | static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; | |
63 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | |
64 | ||
121e6f32 NP |
65 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC |
66 | static bool __ro_after_init vmap_allow_huge = true; | |
67 | ||
68 | static int __init set_nohugevmalloc(char *str) | |
69 | { | |
70 | vmap_allow_huge = false; | |
71 | return 0; | |
72 | } | |
73 | early_param("nohugevmalloc", set_nohugevmalloc); | |
74 | #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
75 | static const bool vmap_allow_huge = false; | |
76 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
77 | ||
186525bd IM |
78 | bool is_vmalloc_addr(const void *x) |
79 | { | |
4aff1dc4 | 80 | unsigned long addr = (unsigned long)kasan_reset_tag(x); |
186525bd IM |
81 | |
82 | return addr >= VMALLOC_START && addr < VMALLOC_END; | |
83 | } | |
84 | EXPORT_SYMBOL(is_vmalloc_addr); | |
85 | ||
32fcfd40 AV |
86 | struct vfree_deferred { |
87 | struct llist_head list; | |
88 | struct work_struct wq; | |
89 | }; | |
90 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
91 | ||
92 | static void __vunmap(const void *, int); | |
93 | ||
94 | static void free_work(struct work_struct *w) | |
95 | { | |
96 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
894e58c1 BP |
97 | struct llist_node *t, *llnode; |
98 | ||
99 | llist_for_each_safe(llnode, t, llist_del_all(&p->list)) | |
100 | __vunmap((void *)llnode, 1); | |
32fcfd40 AV |
101 | } |
102 | ||
db64fe02 | 103 | /*** Page table manipulation functions ***/ |
5e9e3d77 NP |
104 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
105 | phys_addr_t phys_addr, pgprot_t prot, | |
f7ee1f13 | 106 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
5e9e3d77 NP |
107 | { |
108 | pte_t *pte; | |
109 | u64 pfn; | |
f7ee1f13 | 110 | unsigned long size = PAGE_SIZE; |
5e9e3d77 NP |
111 | |
112 | pfn = phys_addr >> PAGE_SHIFT; | |
113 | pte = pte_alloc_kernel_track(pmd, addr, mask); | |
114 | if (!pte) | |
115 | return -ENOMEM; | |
116 | do { | |
117 | BUG_ON(!pte_none(*pte)); | |
f7ee1f13 CL |
118 | |
119 | #ifdef CONFIG_HUGETLB_PAGE | |
120 | size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); | |
121 | if (size != PAGE_SIZE) { | |
122 | pte_t entry = pfn_pte(pfn, prot); | |
123 | ||
f7ee1f13 CL |
124 | entry = arch_make_huge_pte(entry, ilog2(size), 0); |
125 | set_huge_pte_at(&init_mm, addr, pte, entry); | |
126 | pfn += PFN_DOWN(size); | |
127 | continue; | |
128 | } | |
129 | #endif | |
5e9e3d77 NP |
130 | set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); |
131 | pfn++; | |
f7ee1f13 | 132 | } while (pte += PFN_DOWN(size), addr += size, addr != end); |
5e9e3d77 NP |
133 | *mask |= PGTBL_PTE_MODIFIED; |
134 | return 0; | |
135 | } | |
136 | ||
137 | static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, | |
138 | phys_addr_t phys_addr, pgprot_t prot, | |
139 | unsigned int max_page_shift) | |
140 | { | |
141 | if (max_page_shift < PMD_SHIFT) | |
142 | return 0; | |
143 | ||
144 | if (!arch_vmap_pmd_supported(prot)) | |
145 | return 0; | |
146 | ||
147 | if ((end - addr) != PMD_SIZE) | |
148 | return 0; | |
149 | ||
150 | if (!IS_ALIGNED(addr, PMD_SIZE)) | |
151 | return 0; | |
152 | ||
153 | if (!IS_ALIGNED(phys_addr, PMD_SIZE)) | |
154 | return 0; | |
155 | ||
156 | if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) | |
157 | return 0; | |
158 | ||
159 | return pmd_set_huge(pmd, phys_addr, prot); | |
160 | } | |
161 | ||
162 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | |
163 | phys_addr_t phys_addr, pgprot_t prot, | |
164 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
165 | { | |
166 | pmd_t *pmd; | |
167 | unsigned long next; | |
168 | ||
169 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | |
170 | if (!pmd) | |
171 | return -ENOMEM; | |
172 | do { | |
173 | next = pmd_addr_end(addr, end); | |
174 | ||
175 | if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, | |
176 | max_page_shift)) { | |
177 | *mask |= PGTBL_PMD_MODIFIED; | |
178 | continue; | |
179 | } | |
180 | ||
f7ee1f13 | 181 | if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) |
5e9e3d77 NP |
182 | return -ENOMEM; |
183 | } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); | |
184 | return 0; | |
185 | } | |
186 | ||
187 | static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, | |
188 | phys_addr_t phys_addr, pgprot_t prot, | |
189 | unsigned int max_page_shift) | |
190 | { | |
191 | if (max_page_shift < PUD_SHIFT) | |
192 | return 0; | |
193 | ||
194 | if (!arch_vmap_pud_supported(prot)) | |
195 | return 0; | |
196 | ||
197 | if ((end - addr) != PUD_SIZE) | |
198 | return 0; | |
199 | ||
200 | if (!IS_ALIGNED(addr, PUD_SIZE)) | |
201 | return 0; | |
202 | ||
203 | if (!IS_ALIGNED(phys_addr, PUD_SIZE)) | |
204 | return 0; | |
205 | ||
206 | if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) | |
207 | return 0; | |
208 | ||
209 | return pud_set_huge(pud, phys_addr, prot); | |
210 | } | |
211 | ||
212 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | |
213 | phys_addr_t phys_addr, pgprot_t prot, | |
214 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
215 | { | |
216 | pud_t *pud; | |
217 | unsigned long next; | |
218 | ||
219 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); | |
220 | if (!pud) | |
221 | return -ENOMEM; | |
222 | do { | |
223 | next = pud_addr_end(addr, end); | |
224 | ||
225 | if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, | |
226 | max_page_shift)) { | |
227 | *mask |= PGTBL_PUD_MODIFIED; | |
228 | continue; | |
229 | } | |
230 | ||
231 | if (vmap_pmd_range(pud, addr, next, phys_addr, prot, | |
232 | max_page_shift, mask)) | |
233 | return -ENOMEM; | |
234 | } while (pud++, phys_addr += (next - addr), addr = next, addr != end); | |
235 | return 0; | |
236 | } | |
237 | ||
238 | static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, | |
239 | phys_addr_t phys_addr, pgprot_t prot, | |
240 | unsigned int max_page_shift) | |
241 | { | |
242 | if (max_page_shift < P4D_SHIFT) | |
243 | return 0; | |
244 | ||
245 | if (!arch_vmap_p4d_supported(prot)) | |
246 | return 0; | |
247 | ||
248 | if ((end - addr) != P4D_SIZE) | |
249 | return 0; | |
250 | ||
251 | if (!IS_ALIGNED(addr, P4D_SIZE)) | |
252 | return 0; | |
253 | ||
254 | if (!IS_ALIGNED(phys_addr, P4D_SIZE)) | |
255 | return 0; | |
256 | ||
257 | if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) | |
258 | return 0; | |
259 | ||
260 | return p4d_set_huge(p4d, phys_addr, prot); | |
261 | } | |
262 | ||
263 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | |
264 | phys_addr_t phys_addr, pgprot_t prot, | |
265 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
266 | { | |
267 | p4d_t *p4d; | |
268 | unsigned long next; | |
269 | ||
270 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | |
271 | if (!p4d) | |
272 | return -ENOMEM; | |
273 | do { | |
274 | next = p4d_addr_end(addr, end); | |
275 | ||
276 | if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, | |
277 | max_page_shift)) { | |
278 | *mask |= PGTBL_P4D_MODIFIED; | |
279 | continue; | |
280 | } | |
281 | ||
282 | if (vmap_pud_range(p4d, addr, next, phys_addr, prot, | |
283 | max_page_shift, mask)) | |
284 | return -ENOMEM; | |
285 | } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); | |
286 | return 0; | |
287 | } | |
288 | ||
5d87510d | 289 | static int vmap_range_noflush(unsigned long addr, unsigned long end, |
5e9e3d77 NP |
290 | phys_addr_t phys_addr, pgprot_t prot, |
291 | unsigned int max_page_shift) | |
292 | { | |
293 | pgd_t *pgd; | |
294 | unsigned long start; | |
295 | unsigned long next; | |
296 | int err; | |
297 | pgtbl_mod_mask mask = 0; | |
298 | ||
299 | might_sleep(); | |
300 | BUG_ON(addr >= end); | |
301 | ||
302 | start = addr; | |
303 | pgd = pgd_offset_k(addr); | |
304 | do { | |
305 | next = pgd_addr_end(addr, end); | |
306 | err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, | |
307 | max_page_shift, &mask); | |
308 | if (err) | |
309 | break; | |
310 | } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); | |
311 | ||
5e9e3d77 NP |
312 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
313 | arch_sync_kernel_mappings(start, end); | |
314 | ||
315 | return err; | |
316 | } | |
b221385b | 317 | |
82a70ce0 CH |
318 | int ioremap_page_range(unsigned long addr, unsigned long end, |
319 | phys_addr_t phys_addr, pgprot_t prot) | |
5d87510d NP |
320 | { |
321 | int err; | |
322 | ||
8491502f | 323 | err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), |
82a70ce0 | 324 | ioremap_max_page_shift); |
5d87510d | 325 | flush_cache_vmap(addr, end); |
b073d7f8 AP |
326 | if (!err) |
327 | kmsan_ioremap_page_range(addr, end, phys_addr, prot, | |
328 | ioremap_max_page_shift); | |
5d87510d NP |
329 | return err; |
330 | } | |
331 | ||
2ba3e694 JR |
332 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
333 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
334 | { |
335 | pte_t *pte; | |
336 | ||
337 | pte = pte_offset_kernel(pmd, addr); | |
338 | do { | |
339 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
340 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
341 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
2ba3e694 | 342 | *mask |= PGTBL_PTE_MODIFIED; |
1da177e4 LT |
343 | } |
344 | ||
2ba3e694 JR |
345 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
346 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
347 | { |
348 | pmd_t *pmd; | |
349 | unsigned long next; | |
2ba3e694 | 350 | int cleared; |
1da177e4 LT |
351 | |
352 | pmd = pmd_offset(pud, addr); | |
353 | do { | |
354 | next = pmd_addr_end(addr, end); | |
2ba3e694 JR |
355 | |
356 | cleared = pmd_clear_huge(pmd); | |
357 | if (cleared || pmd_bad(*pmd)) | |
358 | *mask |= PGTBL_PMD_MODIFIED; | |
359 | ||
360 | if (cleared) | |
b9820d8f | 361 | continue; |
1da177e4 LT |
362 | if (pmd_none_or_clear_bad(pmd)) |
363 | continue; | |
2ba3e694 | 364 | vunmap_pte_range(pmd, addr, next, mask); |
e47110e9 AK |
365 | |
366 | cond_resched(); | |
1da177e4 LT |
367 | } while (pmd++, addr = next, addr != end); |
368 | } | |
369 | ||
2ba3e694 JR |
370 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
371 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
372 | { |
373 | pud_t *pud; | |
374 | unsigned long next; | |
2ba3e694 | 375 | int cleared; |
1da177e4 | 376 | |
c2febafc | 377 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
378 | do { |
379 | next = pud_addr_end(addr, end); | |
2ba3e694 JR |
380 | |
381 | cleared = pud_clear_huge(pud); | |
382 | if (cleared || pud_bad(*pud)) | |
383 | *mask |= PGTBL_PUD_MODIFIED; | |
384 | ||
385 | if (cleared) | |
b9820d8f | 386 | continue; |
1da177e4 LT |
387 | if (pud_none_or_clear_bad(pud)) |
388 | continue; | |
2ba3e694 | 389 | vunmap_pmd_range(pud, addr, next, mask); |
1da177e4 LT |
390 | } while (pud++, addr = next, addr != end); |
391 | } | |
392 | ||
2ba3e694 JR |
393 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
394 | pgtbl_mod_mask *mask) | |
c2febafc KS |
395 | { |
396 | p4d_t *p4d; | |
397 | unsigned long next; | |
398 | ||
399 | p4d = p4d_offset(pgd, addr); | |
400 | do { | |
401 | next = p4d_addr_end(addr, end); | |
2ba3e694 | 402 | |
c8db8c26 L |
403 | p4d_clear_huge(p4d); |
404 | if (p4d_bad(*p4d)) | |
2ba3e694 JR |
405 | *mask |= PGTBL_P4D_MODIFIED; |
406 | ||
c2febafc KS |
407 | if (p4d_none_or_clear_bad(p4d)) |
408 | continue; | |
2ba3e694 | 409 | vunmap_pud_range(p4d, addr, next, mask); |
c2febafc KS |
410 | } while (p4d++, addr = next, addr != end); |
411 | } | |
412 | ||
4ad0ae8c NP |
413 | /* |
414 | * vunmap_range_noflush is similar to vunmap_range, but does not | |
415 | * flush caches or TLBs. | |
b521c43f | 416 | * |
4ad0ae8c NP |
417 | * The caller is responsible for calling flush_cache_vmap() before calling |
418 | * this function, and flush_tlb_kernel_range after it has returned | |
419 | * successfully (and before the addresses are expected to cause a page fault | |
420 | * or be re-mapped for something else, if TLB flushes are being delayed or | |
421 | * coalesced). | |
b521c43f | 422 | * |
4ad0ae8c | 423 | * This is an internal function only. Do not use outside mm/. |
b521c43f | 424 | */ |
b073d7f8 | 425 | void __vunmap_range_noflush(unsigned long start, unsigned long end) |
1da177e4 | 426 | { |
1da177e4 | 427 | unsigned long next; |
b521c43f | 428 | pgd_t *pgd; |
2ba3e694 JR |
429 | unsigned long addr = start; |
430 | pgtbl_mod_mask mask = 0; | |
1da177e4 LT |
431 | |
432 | BUG_ON(addr >= end); | |
433 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
434 | do { |
435 | next = pgd_addr_end(addr, end); | |
2ba3e694 JR |
436 | if (pgd_bad(*pgd)) |
437 | mask |= PGTBL_PGD_MODIFIED; | |
1da177e4 LT |
438 | if (pgd_none_or_clear_bad(pgd)) |
439 | continue; | |
2ba3e694 | 440 | vunmap_p4d_range(pgd, addr, next, &mask); |
1da177e4 | 441 | } while (pgd++, addr = next, addr != end); |
2ba3e694 JR |
442 | |
443 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
444 | arch_sync_kernel_mappings(start, end); | |
1da177e4 LT |
445 | } |
446 | ||
b073d7f8 AP |
447 | void vunmap_range_noflush(unsigned long start, unsigned long end) |
448 | { | |
449 | kmsan_vunmap_range_noflush(start, end); | |
450 | __vunmap_range_noflush(start, end); | |
451 | } | |
452 | ||
4ad0ae8c NP |
453 | /** |
454 | * vunmap_range - unmap kernel virtual addresses | |
455 | * @addr: start of the VM area to unmap | |
456 | * @end: end of the VM area to unmap (non-inclusive) | |
457 | * | |
458 | * Clears any present PTEs in the virtual address range, flushes TLBs and | |
459 | * caches. Any subsequent access to the address before it has been re-mapped | |
460 | * is a kernel bug. | |
461 | */ | |
462 | void vunmap_range(unsigned long addr, unsigned long end) | |
463 | { | |
464 | flush_cache_vunmap(addr, end); | |
465 | vunmap_range_noflush(addr, end); | |
466 | flush_tlb_kernel_range(addr, end); | |
467 | } | |
468 | ||
0a264884 | 469 | static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, |
2ba3e694 JR |
470 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
471 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
472 | { |
473 | pte_t *pte; | |
474 | ||
db64fe02 NP |
475 | /* |
476 | * nr is a running index into the array which helps higher level | |
477 | * callers keep track of where we're up to. | |
478 | */ | |
479 | ||
2ba3e694 | 480 | pte = pte_alloc_kernel_track(pmd, addr, mask); |
1da177e4 LT |
481 | if (!pte) |
482 | return -ENOMEM; | |
483 | do { | |
db64fe02 NP |
484 | struct page *page = pages[*nr]; |
485 | ||
486 | if (WARN_ON(!pte_none(*pte))) | |
487 | return -EBUSY; | |
488 | if (WARN_ON(!page)) | |
1da177e4 | 489 | return -ENOMEM; |
4fcdcc12 YN |
490 | if (WARN_ON(!pfn_valid(page_to_pfn(page)))) |
491 | return -EINVAL; | |
492 | ||
1da177e4 | 493 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); |
db64fe02 | 494 | (*nr)++; |
1da177e4 | 495 | } while (pte++, addr += PAGE_SIZE, addr != end); |
2ba3e694 | 496 | *mask |= PGTBL_PTE_MODIFIED; |
1da177e4 LT |
497 | return 0; |
498 | } | |
499 | ||
0a264884 | 500 | static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, |
2ba3e694 JR |
501 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
502 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
503 | { |
504 | pmd_t *pmd; | |
505 | unsigned long next; | |
506 | ||
2ba3e694 | 507 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); |
1da177e4 LT |
508 | if (!pmd) |
509 | return -ENOMEM; | |
510 | do { | |
511 | next = pmd_addr_end(addr, end); | |
0a264884 | 512 | if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) |
1da177e4 LT |
513 | return -ENOMEM; |
514 | } while (pmd++, addr = next, addr != end); | |
515 | return 0; | |
516 | } | |
517 | ||
0a264884 | 518 | static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, |
2ba3e694 JR |
519 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
520 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
521 | { |
522 | pud_t *pud; | |
523 | unsigned long next; | |
524 | ||
2ba3e694 | 525 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); |
1da177e4 LT |
526 | if (!pud) |
527 | return -ENOMEM; | |
528 | do { | |
529 | next = pud_addr_end(addr, end); | |
0a264884 | 530 | if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) |
1da177e4 LT |
531 | return -ENOMEM; |
532 | } while (pud++, addr = next, addr != end); | |
533 | return 0; | |
534 | } | |
535 | ||
0a264884 | 536 | static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, |
2ba3e694 JR |
537 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
538 | pgtbl_mod_mask *mask) | |
c2febafc KS |
539 | { |
540 | p4d_t *p4d; | |
541 | unsigned long next; | |
542 | ||
2ba3e694 | 543 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); |
c2febafc KS |
544 | if (!p4d) |
545 | return -ENOMEM; | |
546 | do { | |
547 | next = p4d_addr_end(addr, end); | |
0a264884 | 548 | if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) |
c2febafc KS |
549 | return -ENOMEM; |
550 | } while (p4d++, addr = next, addr != end); | |
551 | return 0; | |
552 | } | |
553 | ||
121e6f32 NP |
554 | static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, |
555 | pgprot_t prot, struct page **pages) | |
1da177e4 | 556 | { |
2ba3e694 | 557 | unsigned long start = addr; |
b521c43f | 558 | pgd_t *pgd; |
121e6f32 | 559 | unsigned long next; |
db64fe02 NP |
560 | int err = 0; |
561 | int nr = 0; | |
2ba3e694 | 562 | pgtbl_mod_mask mask = 0; |
1da177e4 LT |
563 | |
564 | BUG_ON(addr >= end); | |
565 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
566 | do { |
567 | next = pgd_addr_end(addr, end); | |
2ba3e694 JR |
568 | if (pgd_bad(*pgd)) |
569 | mask |= PGTBL_PGD_MODIFIED; | |
0a264884 | 570 | err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); |
1da177e4 | 571 | if (err) |
bf88c8c8 | 572 | return err; |
1da177e4 | 573 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 574 | |
2ba3e694 JR |
575 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
576 | arch_sync_kernel_mappings(start, end); | |
577 | ||
60bb4465 | 578 | return 0; |
1da177e4 LT |
579 | } |
580 | ||
b67177ec NP |
581 | /* |
582 | * vmap_pages_range_noflush is similar to vmap_pages_range, but does not | |
583 | * flush caches. | |
584 | * | |
585 | * The caller is responsible for calling flush_cache_vmap() after this | |
586 | * function returns successfully and before the addresses are accessed. | |
587 | * | |
588 | * This is an internal function only. Do not use outside mm/. | |
589 | */ | |
b073d7f8 | 590 | int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
121e6f32 NP |
591 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
592 | { | |
593 | unsigned int i, nr = (end - addr) >> PAGE_SHIFT; | |
594 | ||
595 | WARN_ON(page_shift < PAGE_SHIFT); | |
596 | ||
597 | if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || | |
598 | page_shift == PAGE_SHIFT) | |
599 | return vmap_small_pages_range_noflush(addr, end, prot, pages); | |
600 | ||
601 | for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { | |
602 | int err; | |
603 | ||
604 | err = vmap_range_noflush(addr, addr + (1UL << page_shift), | |
08262ac5 | 605 | page_to_phys(pages[i]), prot, |
121e6f32 NP |
606 | page_shift); |
607 | if (err) | |
608 | return err; | |
609 | ||
610 | addr += 1UL << page_shift; | |
611 | } | |
612 | ||
613 | return 0; | |
614 | } | |
b073d7f8 AP |
615 | |
616 | int vmap_pages_range_noflush(unsigned long addr, unsigned long end, | |
617 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
618 | { | |
619 | kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); | |
620 | return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); | |
621 | } | |
121e6f32 | 622 | |
121e6f32 | 623 | /** |
b67177ec | 624 | * vmap_pages_range - map pages to a kernel virtual address |
121e6f32 | 625 | * @addr: start of the VM area to map |
b67177ec | 626 | * @end: end of the VM area to map (non-inclusive) |
121e6f32 | 627 | * @prot: page protection flags to use |
b67177ec NP |
628 | * @pages: pages to map (always PAGE_SIZE pages) |
629 | * @page_shift: maximum shift that the pages may be mapped with, @pages must | |
630 | * be aligned and contiguous up to at least this shift. | |
121e6f32 NP |
631 | * |
632 | * RETURNS: | |
633 | * 0 on success, -errno on failure. | |
634 | */ | |
b67177ec NP |
635 | static int vmap_pages_range(unsigned long addr, unsigned long end, |
636 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
8fc48985 | 637 | { |
b67177ec | 638 | int err; |
8fc48985 | 639 | |
b67177ec NP |
640 | err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); |
641 | flush_cache_vmap(addr, end); | |
642 | return err; | |
8fc48985 TH |
643 | } |
644 | ||
81ac3ad9 | 645 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
646 | { |
647 | /* | |
ab4f2ee1 | 648 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
649 | * and fall back on vmalloc() if that fails. Others |
650 | * just put it in the vmalloc space. | |
651 | */ | |
652 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
4aff1dc4 | 653 | unsigned long addr = (unsigned long)kasan_reset_tag(x); |
73bdf0a6 LT |
654 | if (addr >= MODULES_VADDR && addr < MODULES_END) |
655 | return 1; | |
656 | #endif | |
657 | return is_vmalloc_addr(x); | |
658 | } | |
659 | ||
48667e7a | 660 | /* |
c0eb315a NP |
661 | * Walk a vmap address to the struct page it maps. Huge vmap mappings will |
662 | * return the tail page that corresponds to the base page address, which | |
663 | * matches small vmap mappings. | |
48667e7a | 664 | */ |
add688fb | 665 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
666 | { |
667 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 668 | struct page *page = NULL; |
48667e7a | 669 | pgd_t *pgd = pgd_offset_k(addr); |
c2febafc KS |
670 | p4d_t *p4d; |
671 | pud_t *pud; | |
672 | pmd_t *pmd; | |
673 | pte_t *ptep, pte; | |
48667e7a | 674 | |
7aa413de IM |
675 | /* |
676 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
677 | * architectures that do not vmalloc module space | |
678 | */ | |
73bdf0a6 | 679 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 680 | |
c2febafc KS |
681 | if (pgd_none(*pgd)) |
682 | return NULL; | |
c0eb315a NP |
683 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
684 | return NULL; /* XXX: no allowance for huge pgd */ | |
685 | if (WARN_ON_ONCE(pgd_bad(*pgd))) | |
686 | return NULL; | |
687 | ||
c2febafc KS |
688 | p4d = p4d_offset(pgd, addr); |
689 | if (p4d_none(*p4d)) | |
690 | return NULL; | |
c0eb315a NP |
691 | if (p4d_leaf(*p4d)) |
692 | return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); | |
693 | if (WARN_ON_ONCE(p4d_bad(*p4d))) | |
694 | return NULL; | |
029c54b0 | 695 | |
c0eb315a NP |
696 | pud = pud_offset(p4d, addr); |
697 | if (pud_none(*pud)) | |
698 | return NULL; | |
699 | if (pud_leaf(*pud)) | |
700 | return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
701 | if (WARN_ON_ONCE(pud_bad(*pud))) | |
c2febafc | 702 | return NULL; |
c0eb315a | 703 | |
c2febafc | 704 | pmd = pmd_offset(pud, addr); |
c0eb315a NP |
705 | if (pmd_none(*pmd)) |
706 | return NULL; | |
707 | if (pmd_leaf(*pmd)) | |
708 | return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
709 | if (WARN_ON_ONCE(pmd_bad(*pmd))) | |
c2febafc KS |
710 | return NULL; |
711 | ||
712 | ptep = pte_offset_map(pmd, addr); | |
713 | pte = *ptep; | |
714 | if (pte_present(pte)) | |
715 | page = pte_page(pte); | |
716 | pte_unmap(ptep); | |
c0eb315a | 717 | |
add688fb | 718 | return page; |
48667e7a | 719 | } |
add688fb | 720 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
721 | |
722 | /* | |
add688fb | 723 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 724 | */ |
add688fb | 725 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 726 | { |
add688fb | 727 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 728 | } |
add688fb | 729 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 730 | |
db64fe02 NP |
731 | |
732 | /*** Global kva allocator ***/ | |
733 | ||
bb850f4d | 734 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 |
a6cf4e0f | 735 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 |
bb850f4d | 736 | |
db64fe02 | 737 | |
db64fe02 | 738 | static DEFINE_SPINLOCK(vmap_area_lock); |
e36176be | 739 | static DEFINE_SPINLOCK(free_vmap_area_lock); |
f1c4069e JK |
740 | /* Export for kexec only */ |
741 | LIST_HEAD(vmap_area_list); | |
89699605 | 742 | static struct rb_root vmap_area_root = RB_ROOT; |
68ad4a33 | 743 | static bool vmap_initialized __read_mostly; |
89699605 | 744 | |
96e2db45 URS |
745 | static struct rb_root purge_vmap_area_root = RB_ROOT; |
746 | static LIST_HEAD(purge_vmap_area_list); | |
747 | static DEFINE_SPINLOCK(purge_vmap_area_lock); | |
748 | ||
68ad4a33 URS |
749 | /* |
750 | * This kmem_cache is used for vmap_area objects. Instead of | |
751 | * allocating from slab we reuse an object from this cache to | |
752 | * make things faster. Especially in "no edge" splitting of | |
753 | * free block. | |
754 | */ | |
755 | static struct kmem_cache *vmap_area_cachep; | |
756 | ||
757 | /* | |
758 | * This linked list is used in pair with free_vmap_area_root. | |
759 | * It gives O(1) access to prev/next to perform fast coalescing. | |
760 | */ | |
761 | static LIST_HEAD(free_vmap_area_list); | |
762 | ||
763 | /* | |
764 | * This augment red-black tree represents the free vmap space. | |
765 | * All vmap_area objects in this tree are sorted by va->va_start | |
766 | * address. It is used for allocation and merging when a vmap | |
767 | * object is released. | |
768 | * | |
769 | * Each vmap_area node contains a maximum available free block | |
770 | * of its sub-tree, right or left. Therefore it is possible to | |
771 | * find a lowest match of free area. | |
772 | */ | |
773 | static struct rb_root free_vmap_area_root = RB_ROOT; | |
774 | ||
82dd23e8 URS |
775 | /* |
776 | * Preload a CPU with one object for "no edge" split case. The | |
777 | * aim is to get rid of allocations from the atomic context, thus | |
778 | * to use more permissive allocation masks. | |
779 | */ | |
780 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | |
781 | ||
68ad4a33 URS |
782 | static __always_inline unsigned long |
783 | va_size(struct vmap_area *va) | |
784 | { | |
785 | return (va->va_end - va->va_start); | |
786 | } | |
787 | ||
788 | static __always_inline unsigned long | |
789 | get_subtree_max_size(struct rb_node *node) | |
790 | { | |
791 | struct vmap_area *va; | |
792 | ||
793 | va = rb_entry_safe(node, struct vmap_area, rb_node); | |
794 | return va ? va->subtree_max_size : 0; | |
795 | } | |
89699605 | 796 | |
315cc066 ML |
797 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, |
798 | struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | |
68ad4a33 URS |
799 | |
800 | static void purge_vmap_area_lazy(void); | |
801 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); | |
690467c8 URS |
802 | static void drain_vmap_area_work(struct work_struct *work); |
803 | static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); | |
db64fe02 | 804 | |
97105f0a RG |
805 | static atomic_long_t nr_vmalloc_pages; |
806 | ||
807 | unsigned long vmalloc_nr_pages(void) | |
808 | { | |
809 | return atomic_long_read(&nr_vmalloc_pages); | |
810 | } | |
811 | ||
153090f2 | 812 | /* Look up the first VA which satisfies addr < va_end, NULL if none. */ |
f181234a CW |
813 | static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) |
814 | { | |
815 | struct vmap_area *va = NULL; | |
816 | struct rb_node *n = vmap_area_root.rb_node; | |
817 | ||
4aff1dc4 AK |
818 | addr = (unsigned long)kasan_reset_tag((void *)addr); |
819 | ||
f181234a CW |
820 | while (n) { |
821 | struct vmap_area *tmp; | |
822 | ||
823 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
824 | if (tmp->va_end > addr) { | |
825 | va = tmp; | |
826 | if (tmp->va_start <= addr) | |
827 | break; | |
828 | ||
829 | n = n->rb_left; | |
830 | } else | |
831 | n = n->rb_right; | |
832 | } | |
833 | ||
834 | return va; | |
835 | } | |
836 | ||
899c6efe | 837 | static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) |
1da177e4 | 838 | { |
899c6efe | 839 | struct rb_node *n = root->rb_node; |
db64fe02 | 840 | |
4aff1dc4 AK |
841 | addr = (unsigned long)kasan_reset_tag((void *)addr); |
842 | ||
db64fe02 NP |
843 | while (n) { |
844 | struct vmap_area *va; | |
845 | ||
846 | va = rb_entry(n, struct vmap_area, rb_node); | |
847 | if (addr < va->va_start) | |
848 | n = n->rb_left; | |
cef2ac3f | 849 | else if (addr >= va->va_end) |
db64fe02 NP |
850 | n = n->rb_right; |
851 | else | |
852 | return va; | |
853 | } | |
854 | ||
855 | return NULL; | |
856 | } | |
857 | ||
68ad4a33 URS |
858 | /* |
859 | * This function returns back addresses of parent node | |
860 | * and its left or right link for further processing. | |
9c801f61 URS |
861 | * |
862 | * Otherwise NULL is returned. In that case all further | |
863 | * steps regarding inserting of conflicting overlap range | |
864 | * have to be declined and actually considered as a bug. | |
68ad4a33 URS |
865 | */ |
866 | static __always_inline struct rb_node ** | |
867 | find_va_links(struct vmap_area *va, | |
868 | struct rb_root *root, struct rb_node *from, | |
869 | struct rb_node **parent) | |
870 | { | |
871 | struct vmap_area *tmp_va; | |
872 | struct rb_node **link; | |
873 | ||
874 | if (root) { | |
875 | link = &root->rb_node; | |
876 | if (unlikely(!*link)) { | |
877 | *parent = NULL; | |
878 | return link; | |
879 | } | |
880 | } else { | |
881 | link = &from; | |
882 | } | |
db64fe02 | 883 | |
68ad4a33 URS |
884 | /* |
885 | * Go to the bottom of the tree. When we hit the last point | |
886 | * we end up with parent rb_node and correct direction, i name | |
887 | * it link, where the new va->rb_node will be attached to. | |
888 | */ | |
889 | do { | |
890 | tmp_va = rb_entry(*link, struct vmap_area, rb_node); | |
db64fe02 | 891 | |
68ad4a33 URS |
892 | /* |
893 | * During the traversal we also do some sanity check. | |
894 | * Trigger the BUG() if there are sides(left/right) | |
895 | * or full overlaps. | |
896 | */ | |
753df96b | 897 | if (va->va_end <= tmp_va->va_start) |
68ad4a33 | 898 | link = &(*link)->rb_left; |
753df96b | 899 | else if (va->va_start >= tmp_va->va_end) |
68ad4a33 | 900 | link = &(*link)->rb_right; |
9c801f61 URS |
901 | else { |
902 | WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", | |
903 | va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); | |
904 | ||
905 | return NULL; | |
906 | } | |
68ad4a33 URS |
907 | } while (*link); |
908 | ||
909 | *parent = &tmp_va->rb_node; | |
910 | return link; | |
911 | } | |
912 | ||
913 | static __always_inline struct list_head * | |
914 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | |
915 | { | |
916 | struct list_head *list; | |
917 | ||
918 | if (unlikely(!parent)) | |
919 | /* | |
920 | * The red-black tree where we try to find VA neighbors | |
921 | * before merging or inserting is empty, i.e. it means | |
922 | * there is no free vmap space. Normally it does not | |
923 | * happen but we handle this case anyway. | |
924 | */ | |
925 | return NULL; | |
926 | ||
927 | list = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
928 | return (&parent->rb_right == link ? list->next : list); | |
929 | } | |
930 | ||
931 | static __always_inline void | |
8eb510db URS |
932 | __link_va(struct vmap_area *va, struct rb_root *root, |
933 | struct rb_node *parent, struct rb_node **link, | |
934 | struct list_head *head, bool augment) | |
68ad4a33 URS |
935 | { |
936 | /* | |
937 | * VA is still not in the list, but we can | |
938 | * identify its future previous list_head node. | |
939 | */ | |
940 | if (likely(parent)) { | |
941 | head = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
942 | if (&parent->rb_right != link) | |
943 | head = head->prev; | |
db64fe02 NP |
944 | } |
945 | ||
68ad4a33 URS |
946 | /* Insert to the rb-tree */ |
947 | rb_link_node(&va->rb_node, parent, link); | |
8eb510db | 948 | if (augment) { |
68ad4a33 URS |
949 | /* |
950 | * Some explanation here. Just perform simple insertion | |
951 | * to the tree. We do not set va->subtree_max_size to | |
952 | * its current size before calling rb_insert_augmented(). | |
153090f2 | 953 | * It is because we populate the tree from the bottom |
68ad4a33 URS |
954 | * to parent levels when the node _is_ in the tree. |
955 | * | |
956 | * Therefore we set subtree_max_size to zero after insertion, | |
957 | * to let __augment_tree_propagate_from() puts everything to | |
958 | * the correct order later on. | |
959 | */ | |
960 | rb_insert_augmented(&va->rb_node, | |
961 | root, &free_vmap_area_rb_augment_cb); | |
962 | va->subtree_max_size = 0; | |
963 | } else { | |
964 | rb_insert_color(&va->rb_node, root); | |
965 | } | |
db64fe02 | 966 | |
68ad4a33 URS |
967 | /* Address-sort this list */ |
968 | list_add(&va->list, head); | |
db64fe02 NP |
969 | } |
970 | ||
68ad4a33 | 971 | static __always_inline void |
8eb510db URS |
972 | link_va(struct vmap_area *va, struct rb_root *root, |
973 | struct rb_node *parent, struct rb_node **link, | |
974 | struct list_head *head) | |
975 | { | |
976 | __link_va(va, root, parent, link, head, false); | |
977 | } | |
978 | ||
979 | static __always_inline void | |
980 | link_va_augment(struct vmap_area *va, struct rb_root *root, | |
981 | struct rb_node *parent, struct rb_node **link, | |
982 | struct list_head *head) | |
983 | { | |
984 | __link_va(va, root, parent, link, head, true); | |
985 | } | |
986 | ||
987 | static __always_inline void | |
988 | __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) | |
68ad4a33 | 989 | { |
460e42d1 URS |
990 | if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) |
991 | return; | |
db64fe02 | 992 | |
8eb510db | 993 | if (augment) |
460e42d1 URS |
994 | rb_erase_augmented(&va->rb_node, |
995 | root, &free_vmap_area_rb_augment_cb); | |
996 | else | |
997 | rb_erase(&va->rb_node, root); | |
998 | ||
5d7a7c54 | 999 | list_del_init(&va->list); |
460e42d1 | 1000 | RB_CLEAR_NODE(&va->rb_node); |
68ad4a33 URS |
1001 | } |
1002 | ||
8eb510db URS |
1003 | static __always_inline void |
1004 | unlink_va(struct vmap_area *va, struct rb_root *root) | |
1005 | { | |
1006 | __unlink_va(va, root, false); | |
1007 | } | |
1008 | ||
1009 | static __always_inline void | |
1010 | unlink_va_augment(struct vmap_area *va, struct rb_root *root) | |
1011 | { | |
1012 | __unlink_va(va, root, true); | |
1013 | } | |
1014 | ||
bb850f4d | 1015 | #if DEBUG_AUGMENT_PROPAGATE_CHECK |
c3385e84 JC |
1016 | /* |
1017 | * Gets called when remove the node and rotate. | |
1018 | */ | |
1019 | static __always_inline unsigned long | |
1020 | compute_subtree_max_size(struct vmap_area *va) | |
1021 | { | |
1022 | return max3(va_size(va), | |
1023 | get_subtree_max_size(va->rb_node.rb_left), | |
1024 | get_subtree_max_size(va->rb_node.rb_right)); | |
1025 | } | |
1026 | ||
bb850f4d | 1027 | static void |
da27c9ed | 1028 | augment_tree_propagate_check(void) |
bb850f4d URS |
1029 | { |
1030 | struct vmap_area *va; | |
da27c9ed | 1031 | unsigned long computed_size; |
bb850f4d | 1032 | |
da27c9ed URS |
1033 | list_for_each_entry(va, &free_vmap_area_list, list) { |
1034 | computed_size = compute_subtree_max_size(va); | |
1035 | if (computed_size != va->subtree_max_size) | |
1036 | pr_emerg("tree is corrupted: %lu, %lu\n", | |
1037 | va_size(va), va->subtree_max_size); | |
bb850f4d | 1038 | } |
bb850f4d URS |
1039 | } |
1040 | #endif | |
1041 | ||
68ad4a33 URS |
1042 | /* |
1043 | * This function populates subtree_max_size from bottom to upper | |
1044 | * levels starting from VA point. The propagation must be done | |
1045 | * when VA size is modified by changing its va_start/va_end. Or | |
1046 | * in case of newly inserting of VA to the tree. | |
1047 | * | |
1048 | * It means that __augment_tree_propagate_from() must be called: | |
1049 | * - After VA has been inserted to the tree(free path); | |
1050 | * - After VA has been shrunk(allocation path); | |
1051 | * - After VA has been increased(merging path). | |
1052 | * | |
1053 | * Please note that, it does not mean that upper parent nodes | |
1054 | * and their subtree_max_size are recalculated all the time up | |
1055 | * to the root node. | |
1056 | * | |
1057 | * 4--8 | |
1058 | * /\ | |
1059 | * / \ | |
1060 | * / \ | |
1061 | * 2--2 8--8 | |
1062 | * | |
1063 | * For example if we modify the node 4, shrinking it to 2, then | |
1064 | * no any modification is required. If we shrink the node 2 to 1 | |
1065 | * its subtree_max_size is updated only, and set to 1. If we shrink | |
1066 | * the node 8 to 6, then its subtree_max_size is set to 6 and parent | |
1067 | * node becomes 4--6. | |
1068 | */ | |
1069 | static __always_inline void | |
1070 | augment_tree_propagate_from(struct vmap_area *va) | |
1071 | { | |
15ae144f URS |
1072 | /* |
1073 | * Populate the tree from bottom towards the root until | |
1074 | * the calculated maximum available size of checked node | |
1075 | * is equal to its current one. | |
1076 | */ | |
1077 | free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); | |
bb850f4d URS |
1078 | |
1079 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | |
da27c9ed | 1080 | augment_tree_propagate_check(); |
bb850f4d | 1081 | #endif |
68ad4a33 URS |
1082 | } |
1083 | ||
1084 | static void | |
1085 | insert_vmap_area(struct vmap_area *va, | |
1086 | struct rb_root *root, struct list_head *head) | |
1087 | { | |
1088 | struct rb_node **link; | |
1089 | struct rb_node *parent; | |
1090 | ||
1091 | link = find_va_links(va, root, NULL, &parent); | |
9c801f61 URS |
1092 | if (link) |
1093 | link_va(va, root, parent, link, head); | |
68ad4a33 URS |
1094 | } |
1095 | ||
1096 | static void | |
1097 | insert_vmap_area_augment(struct vmap_area *va, | |
1098 | struct rb_node *from, struct rb_root *root, | |
1099 | struct list_head *head) | |
1100 | { | |
1101 | struct rb_node **link; | |
1102 | struct rb_node *parent; | |
1103 | ||
1104 | if (from) | |
1105 | link = find_va_links(va, NULL, from, &parent); | |
1106 | else | |
1107 | link = find_va_links(va, root, NULL, &parent); | |
1108 | ||
9c801f61 | 1109 | if (link) { |
8eb510db | 1110 | link_va_augment(va, root, parent, link, head); |
9c801f61 URS |
1111 | augment_tree_propagate_from(va); |
1112 | } | |
68ad4a33 URS |
1113 | } |
1114 | ||
1115 | /* | |
1116 | * Merge de-allocated chunk of VA memory with previous | |
1117 | * and next free blocks. If coalesce is not done a new | |
1118 | * free area is inserted. If VA has been merged, it is | |
1119 | * freed. | |
9c801f61 URS |
1120 | * |
1121 | * Please note, it can return NULL in case of overlap | |
1122 | * ranges, followed by WARN() report. Despite it is a | |
1123 | * buggy behaviour, a system can be alive and keep | |
1124 | * ongoing. | |
68ad4a33 | 1125 | */ |
3c5c3cfb | 1126 | static __always_inline struct vmap_area * |
8eb510db URS |
1127 | __merge_or_add_vmap_area(struct vmap_area *va, |
1128 | struct rb_root *root, struct list_head *head, bool augment) | |
68ad4a33 URS |
1129 | { |
1130 | struct vmap_area *sibling; | |
1131 | struct list_head *next; | |
1132 | struct rb_node **link; | |
1133 | struct rb_node *parent; | |
1134 | bool merged = false; | |
1135 | ||
1136 | /* | |
1137 | * Find a place in the tree where VA potentially will be | |
1138 | * inserted, unless it is merged with its sibling/siblings. | |
1139 | */ | |
1140 | link = find_va_links(va, root, NULL, &parent); | |
9c801f61 URS |
1141 | if (!link) |
1142 | return NULL; | |
68ad4a33 URS |
1143 | |
1144 | /* | |
1145 | * Get next node of VA to check if merging can be done. | |
1146 | */ | |
1147 | next = get_va_next_sibling(parent, link); | |
1148 | if (unlikely(next == NULL)) | |
1149 | goto insert; | |
1150 | ||
1151 | /* | |
1152 | * start end | |
1153 | * | | | |
1154 | * |<------VA------>|<-----Next----->| | |
1155 | * | | | |
1156 | * start end | |
1157 | */ | |
1158 | if (next != head) { | |
1159 | sibling = list_entry(next, struct vmap_area, list); | |
1160 | if (sibling->va_start == va->va_end) { | |
1161 | sibling->va_start = va->va_start; | |
1162 | ||
68ad4a33 URS |
1163 | /* Free vmap_area object. */ |
1164 | kmem_cache_free(vmap_area_cachep, va); | |
1165 | ||
1166 | /* Point to the new merged area. */ | |
1167 | va = sibling; | |
1168 | merged = true; | |
1169 | } | |
1170 | } | |
1171 | ||
1172 | /* | |
1173 | * start end | |
1174 | * | | | |
1175 | * |<-----Prev----->|<------VA------>| | |
1176 | * | | | |
1177 | * start end | |
1178 | */ | |
1179 | if (next->prev != head) { | |
1180 | sibling = list_entry(next->prev, struct vmap_area, list); | |
1181 | if (sibling->va_end == va->va_start) { | |
5dd78640 URS |
1182 | /* |
1183 | * If both neighbors are coalesced, it is important | |
1184 | * to unlink the "next" node first, followed by merging | |
1185 | * with "previous" one. Otherwise the tree might not be | |
1186 | * fully populated if a sibling's augmented value is | |
1187 | * "normalized" because of rotation operations. | |
1188 | */ | |
54f63d9d | 1189 | if (merged) |
8eb510db | 1190 | __unlink_va(va, root, augment); |
68ad4a33 | 1191 | |
5dd78640 URS |
1192 | sibling->va_end = va->va_end; |
1193 | ||
68ad4a33 URS |
1194 | /* Free vmap_area object. */ |
1195 | kmem_cache_free(vmap_area_cachep, va); | |
3c5c3cfb DA |
1196 | |
1197 | /* Point to the new merged area. */ | |
1198 | va = sibling; | |
1199 | merged = true; | |
68ad4a33 URS |
1200 | } |
1201 | } | |
1202 | ||
1203 | insert: | |
5dd78640 | 1204 | if (!merged) |
8eb510db | 1205 | __link_va(va, root, parent, link, head, augment); |
3c5c3cfb | 1206 | |
96e2db45 URS |
1207 | return va; |
1208 | } | |
1209 | ||
8eb510db URS |
1210 | static __always_inline struct vmap_area * |
1211 | merge_or_add_vmap_area(struct vmap_area *va, | |
1212 | struct rb_root *root, struct list_head *head) | |
1213 | { | |
1214 | return __merge_or_add_vmap_area(va, root, head, false); | |
1215 | } | |
1216 | ||
96e2db45 URS |
1217 | static __always_inline struct vmap_area * |
1218 | merge_or_add_vmap_area_augment(struct vmap_area *va, | |
1219 | struct rb_root *root, struct list_head *head) | |
1220 | { | |
8eb510db | 1221 | va = __merge_or_add_vmap_area(va, root, head, true); |
96e2db45 URS |
1222 | if (va) |
1223 | augment_tree_propagate_from(va); | |
1224 | ||
3c5c3cfb | 1225 | return va; |
68ad4a33 URS |
1226 | } |
1227 | ||
1228 | static __always_inline bool | |
1229 | is_within_this_va(struct vmap_area *va, unsigned long size, | |
1230 | unsigned long align, unsigned long vstart) | |
1231 | { | |
1232 | unsigned long nva_start_addr; | |
1233 | ||
1234 | if (va->va_start > vstart) | |
1235 | nva_start_addr = ALIGN(va->va_start, align); | |
1236 | else | |
1237 | nva_start_addr = ALIGN(vstart, align); | |
1238 | ||
1239 | /* Can be overflowed due to big size or alignment. */ | |
1240 | if (nva_start_addr + size < nva_start_addr || | |
1241 | nva_start_addr < vstart) | |
1242 | return false; | |
1243 | ||
1244 | return (nva_start_addr + size <= va->va_end); | |
1245 | } | |
1246 | ||
1247 | /* | |
1248 | * Find the first free block(lowest start address) in the tree, | |
1249 | * that will accomplish the request corresponding to passing | |
9333fe98 UR |
1250 | * parameters. Please note, with an alignment bigger than PAGE_SIZE, |
1251 | * a search length is adjusted to account for worst case alignment | |
1252 | * overhead. | |
68ad4a33 URS |
1253 | */ |
1254 | static __always_inline struct vmap_area * | |
f9863be4 URS |
1255 | find_vmap_lowest_match(struct rb_root *root, unsigned long size, |
1256 | unsigned long align, unsigned long vstart, bool adjust_search_size) | |
68ad4a33 URS |
1257 | { |
1258 | struct vmap_area *va; | |
1259 | struct rb_node *node; | |
9333fe98 | 1260 | unsigned long length; |
68ad4a33 URS |
1261 | |
1262 | /* Start from the root. */ | |
f9863be4 | 1263 | node = root->rb_node; |
68ad4a33 | 1264 | |
9333fe98 UR |
1265 | /* Adjust the search size for alignment overhead. */ |
1266 | length = adjust_search_size ? size + align - 1 : size; | |
1267 | ||
68ad4a33 URS |
1268 | while (node) { |
1269 | va = rb_entry(node, struct vmap_area, rb_node); | |
1270 | ||
9333fe98 | 1271 | if (get_subtree_max_size(node->rb_left) >= length && |
68ad4a33 URS |
1272 | vstart < va->va_start) { |
1273 | node = node->rb_left; | |
1274 | } else { | |
1275 | if (is_within_this_va(va, size, align, vstart)) | |
1276 | return va; | |
1277 | ||
1278 | /* | |
1279 | * Does not make sense to go deeper towards the right | |
1280 | * sub-tree if it does not have a free block that is | |
9333fe98 | 1281 | * equal or bigger to the requested search length. |
68ad4a33 | 1282 | */ |
9333fe98 | 1283 | if (get_subtree_max_size(node->rb_right) >= length) { |
68ad4a33 URS |
1284 | node = node->rb_right; |
1285 | continue; | |
1286 | } | |
1287 | ||
1288 | /* | |
3806b041 | 1289 | * OK. We roll back and find the first right sub-tree, |
68ad4a33 | 1290 | * that will satisfy the search criteria. It can happen |
9f531973 URS |
1291 | * due to "vstart" restriction or an alignment overhead |
1292 | * that is bigger then PAGE_SIZE. | |
68ad4a33 URS |
1293 | */ |
1294 | while ((node = rb_parent(node))) { | |
1295 | va = rb_entry(node, struct vmap_area, rb_node); | |
1296 | if (is_within_this_va(va, size, align, vstart)) | |
1297 | return va; | |
1298 | ||
9333fe98 | 1299 | if (get_subtree_max_size(node->rb_right) >= length && |
68ad4a33 | 1300 | vstart <= va->va_start) { |
9f531973 URS |
1301 | /* |
1302 | * Shift the vstart forward. Please note, we update it with | |
1303 | * parent's start address adding "1" because we do not want | |
1304 | * to enter same sub-tree after it has already been checked | |
1305 | * and no suitable free block found there. | |
1306 | */ | |
1307 | vstart = va->va_start + 1; | |
68ad4a33 URS |
1308 | node = node->rb_right; |
1309 | break; | |
1310 | } | |
1311 | } | |
1312 | } | |
1313 | } | |
1314 | ||
1315 | return NULL; | |
1316 | } | |
1317 | ||
a6cf4e0f URS |
1318 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
1319 | #include <linux/random.h> | |
1320 | ||
1321 | static struct vmap_area * | |
bd1264c3 | 1322 | find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, |
a6cf4e0f URS |
1323 | unsigned long align, unsigned long vstart) |
1324 | { | |
1325 | struct vmap_area *va; | |
1326 | ||
bd1264c3 | 1327 | list_for_each_entry(va, head, list) { |
a6cf4e0f URS |
1328 | if (!is_within_this_va(va, size, align, vstart)) |
1329 | continue; | |
1330 | ||
1331 | return va; | |
1332 | } | |
1333 | ||
1334 | return NULL; | |
1335 | } | |
1336 | ||
1337 | static void | |
bd1264c3 SL |
1338 | find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, |
1339 | unsigned long size, unsigned long align) | |
a6cf4e0f URS |
1340 | { |
1341 | struct vmap_area *va_1, *va_2; | |
1342 | unsigned long vstart; | |
1343 | unsigned int rnd; | |
1344 | ||
1345 | get_random_bytes(&rnd, sizeof(rnd)); | |
1346 | vstart = VMALLOC_START + rnd; | |
1347 | ||
bd1264c3 SL |
1348 | va_1 = find_vmap_lowest_match(root, size, align, vstart, false); |
1349 | va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); | |
a6cf4e0f URS |
1350 | |
1351 | if (va_1 != va_2) | |
1352 | pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | |
1353 | va_1, va_2, vstart); | |
1354 | } | |
1355 | #endif | |
1356 | ||
68ad4a33 URS |
1357 | enum fit_type { |
1358 | NOTHING_FIT = 0, | |
1359 | FL_FIT_TYPE = 1, /* full fit */ | |
1360 | LE_FIT_TYPE = 2, /* left edge fit */ | |
1361 | RE_FIT_TYPE = 3, /* right edge fit */ | |
1362 | NE_FIT_TYPE = 4 /* no edge fit */ | |
1363 | }; | |
1364 | ||
1365 | static __always_inline enum fit_type | |
1366 | classify_va_fit_type(struct vmap_area *va, | |
1367 | unsigned long nva_start_addr, unsigned long size) | |
1368 | { | |
1369 | enum fit_type type; | |
1370 | ||
1371 | /* Check if it is within VA. */ | |
1372 | if (nva_start_addr < va->va_start || | |
1373 | nva_start_addr + size > va->va_end) | |
1374 | return NOTHING_FIT; | |
1375 | ||
1376 | /* Now classify. */ | |
1377 | if (va->va_start == nva_start_addr) { | |
1378 | if (va->va_end == nva_start_addr + size) | |
1379 | type = FL_FIT_TYPE; | |
1380 | else | |
1381 | type = LE_FIT_TYPE; | |
1382 | } else if (va->va_end == nva_start_addr + size) { | |
1383 | type = RE_FIT_TYPE; | |
1384 | } else { | |
1385 | type = NE_FIT_TYPE; | |
1386 | } | |
1387 | ||
1388 | return type; | |
1389 | } | |
1390 | ||
1391 | static __always_inline int | |
f9863be4 URS |
1392 | adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, |
1393 | struct vmap_area *va, unsigned long nva_start_addr, | |
1394 | unsigned long size) | |
68ad4a33 | 1395 | { |
2c929233 | 1396 | struct vmap_area *lva = NULL; |
1b23ff80 | 1397 | enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); |
68ad4a33 URS |
1398 | |
1399 | if (type == FL_FIT_TYPE) { | |
1400 | /* | |
1401 | * No need to split VA, it fully fits. | |
1402 | * | |
1403 | * | | | |
1404 | * V NVA V | |
1405 | * |---------------| | |
1406 | */ | |
f9863be4 | 1407 | unlink_va_augment(va, root); |
68ad4a33 URS |
1408 | kmem_cache_free(vmap_area_cachep, va); |
1409 | } else if (type == LE_FIT_TYPE) { | |
1410 | /* | |
1411 | * Split left edge of fit VA. | |
1412 | * | |
1413 | * | | | |
1414 | * V NVA V R | |
1415 | * |-------|-------| | |
1416 | */ | |
1417 | va->va_start += size; | |
1418 | } else if (type == RE_FIT_TYPE) { | |
1419 | /* | |
1420 | * Split right edge of fit VA. | |
1421 | * | |
1422 | * | | | |
1423 | * L V NVA V | |
1424 | * |-------|-------| | |
1425 | */ | |
1426 | va->va_end = nva_start_addr; | |
1427 | } else if (type == NE_FIT_TYPE) { | |
1428 | /* | |
1429 | * Split no edge of fit VA. | |
1430 | * | |
1431 | * | | | |
1432 | * L V NVA V R | |
1433 | * |---|-------|---| | |
1434 | */ | |
82dd23e8 URS |
1435 | lva = __this_cpu_xchg(ne_fit_preload_node, NULL); |
1436 | if (unlikely(!lva)) { | |
1437 | /* | |
1438 | * For percpu allocator we do not do any pre-allocation | |
1439 | * and leave it as it is. The reason is it most likely | |
1440 | * never ends up with NE_FIT_TYPE splitting. In case of | |
1441 | * percpu allocations offsets and sizes are aligned to | |
1442 | * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | |
1443 | * are its main fitting cases. | |
1444 | * | |
1445 | * There are a few exceptions though, as an example it is | |
1446 | * a first allocation (early boot up) when we have "one" | |
1447 | * big free space that has to be split. | |
060650a2 URS |
1448 | * |
1449 | * Also we can hit this path in case of regular "vmap" | |
1450 | * allocations, if "this" current CPU was not preloaded. | |
1451 | * See the comment in alloc_vmap_area() why. If so, then | |
1452 | * GFP_NOWAIT is used instead to get an extra object for | |
1453 | * split purpose. That is rare and most time does not | |
1454 | * occur. | |
1455 | * | |
1456 | * What happens if an allocation gets failed. Basically, | |
1457 | * an "overflow" path is triggered to purge lazily freed | |
1458 | * areas to free some memory, then, the "retry" path is | |
1459 | * triggered to repeat one more time. See more details | |
1460 | * in alloc_vmap_area() function. | |
82dd23e8 URS |
1461 | */ |
1462 | lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | |
1463 | if (!lva) | |
1464 | return -1; | |
1465 | } | |
68ad4a33 URS |
1466 | |
1467 | /* | |
1468 | * Build the remainder. | |
1469 | */ | |
1470 | lva->va_start = va->va_start; | |
1471 | lva->va_end = nva_start_addr; | |
1472 | ||
1473 | /* | |
1474 | * Shrink this VA to remaining size. | |
1475 | */ | |
1476 | va->va_start = nva_start_addr + size; | |
1477 | } else { | |
1478 | return -1; | |
1479 | } | |
1480 | ||
1481 | if (type != FL_FIT_TYPE) { | |
1482 | augment_tree_propagate_from(va); | |
1483 | ||
2c929233 | 1484 | if (lva) /* type == NE_FIT_TYPE */ |
f9863be4 | 1485 | insert_vmap_area_augment(lva, &va->rb_node, root, head); |
68ad4a33 URS |
1486 | } |
1487 | ||
1488 | return 0; | |
1489 | } | |
1490 | ||
1491 | /* | |
1492 | * Returns a start address of the newly allocated area, if success. | |
1493 | * Otherwise a vend is returned that indicates failure. | |
1494 | */ | |
1495 | static __always_inline unsigned long | |
f9863be4 URS |
1496 | __alloc_vmap_area(struct rb_root *root, struct list_head *head, |
1497 | unsigned long size, unsigned long align, | |
cacca6ba | 1498 | unsigned long vstart, unsigned long vend) |
68ad4a33 | 1499 | { |
9333fe98 | 1500 | bool adjust_search_size = true; |
68ad4a33 URS |
1501 | unsigned long nva_start_addr; |
1502 | struct vmap_area *va; | |
68ad4a33 URS |
1503 | int ret; |
1504 | ||
9333fe98 UR |
1505 | /* |
1506 | * Do not adjust when: | |
1507 | * a) align <= PAGE_SIZE, because it does not make any sense. | |
1508 | * All blocks(their start addresses) are at least PAGE_SIZE | |
1509 | * aligned anyway; | |
1510 | * b) a short range where a requested size corresponds to exactly | |
1511 | * specified [vstart:vend] interval and an alignment > PAGE_SIZE. | |
1512 | * With adjusted search length an allocation would not succeed. | |
1513 | */ | |
1514 | if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) | |
1515 | adjust_search_size = false; | |
1516 | ||
f9863be4 | 1517 | va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); |
68ad4a33 URS |
1518 | if (unlikely(!va)) |
1519 | return vend; | |
1520 | ||
1521 | if (va->va_start > vstart) | |
1522 | nva_start_addr = ALIGN(va->va_start, align); | |
1523 | else | |
1524 | nva_start_addr = ALIGN(vstart, align); | |
1525 | ||
1526 | /* Check the "vend" restriction. */ | |
1527 | if (nva_start_addr + size > vend) | |
1528 | return vend; | |
1529 | ||
68ad4a33 | 1530 | /* Update the free vmap_area. */ |
f9863be4 | 1531 | ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); |
1b23ff80 | 1532 | if (WARN_ON_ONCE(ret)) |
68ad4a33 URS |
1533 | return vend; |
1534 | ||
a6cf4e0f | 1535 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
bd1264c3 | 1536 | find_vmap_lowest_match_check(root, head, size, align); |
a6cf4e0f URS |
1537 | #endif |
1538 | ||
68ad4a33 URS |
1539 | return nva_start_addr; |
1540 | } | |
4da56b99 | 1541 | |
d98c9e83 AR |
1542 | /* |
1543 | * Free a region of KVA allocated by alloc_vmap_area | |
1544 | */ | |
1545 | static void free_vmap_area(struct vmap_area *va) | |
1546 | { | |
1547 | /* | |
1548 | * Remove from the busy tree/list. | |
1549 | */ | |
1550 | spin_lock(&vmap_area_lock); | |
1551 | unlink_va(va, &vmap_area_root); | |
1552 | spin_unlock(&vmap_area_lock); | |
1553 | ||
1554 | /* | |
1555 | * Insert/Merge it back to the free tree/list. | |
1556 | */ | |
1557 | spin_lock(&free_vmap_area_lock); | |
96e2db45 | 1558 | merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); |
d98c9e83 AR |
1559 | spin_unlock(&free_vmap_area_lock); |
1560 | } | |
1561 | ||
187f8cc4 URS |
1562 | static inline void |
1563 | preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) | |
1564 | { | |
1565 | struct vmap_area *va = NULL; | |
1566 | ||
1567 | /* | |
1568 | * Preload this CPU with one extra vmap_area object. It is used | |
1569 | * when fit type of free area is NE_FIT_TYPE. It guarantees that | |
1570 | * a CPU that does an allocation is preloaded. | |
1571 | * | |
1572 | * We do it in non-atomic context, thus it allows us to use more | |
1573 | * permissive allocation masks to be more stable under low memory | |
1574 | * condition and high memory pressure. | |
1575 | */ | |
1576 | if (!this_cpu_read(ne_fit_preload_node)) | |
1577 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | |
1578 | ||
1579 | spin_lock(lock); | |
1580 | ||
1581 | if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) | |
1582 | kmem_cache_free(vmap_area_cachep, va); | |
1583 | } | |
1584 | ||
db64fe02 NP |
1585 | /* |
1586 | * Allocate a region of KVA of the specified size and alignment, within the | |
1587 | * vstart and vend. | |
1588 | */ | |
1589 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
1590 | unsigned long align, | |
1591 | unsigned long vstart, unsigned long vend, | |
1592 | int node, gfp_t gfp_mask) | |
1593 | { | |
187f8cc4 | 1594 | struct vmap_area *va; |
12e376a6 | 1595 | unsigned long freed; |
1da177e4 | 1596 | unsigned long addr; |
db64fe02 | 1597 | int purged = 0; |
d98c9e83 | 1598 | int ret; |
db64fe02 | 1599 | |
7766970c | 1600 | BUG_ON(!size); |
891c49ab | 1601 | BUG_ON(offset_in_page(size)); |
89699605 | 1602 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 1603 | |
68ad4a33 URS |
1604 | if (unlikely(!vmap_initialized)) |
1605 | return ERR_PTR(-EBUSY); | |
1606 | ||
5803ed29 | 1607 | might_sleep(); |
f07116d7 | 1608 | gfp_mask = gfp_mask & GFP_RECLAIM_MASK; |
4da56b99 | 1609 | |
f07116d7 | 1610 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); |
db64fe02 NP |
1611 | if (unlikely(!va)) |
1612 | return ERR_PTR(-ENOMEM); | |
1613 | ||
7f88f88f CM |
1614 | /* |
1615 | * Only scan the relevant parts containing pointers to other objects | |
1616 | * to avoid false negatives. | |
1617 | */ | |
f07116d7 | 1618 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); |
7f88f88f | 1619 | |
db64fe02 | 1620 | retry: |
187f8cc4 | 1621 | preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); |
f9863be4 URS |
1622 | addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, |
1623 | size, align, vstart, vend); | |
187f8cc4 | 1624 | spin_unlock(&free_vmap_area_lock); |
89699605 | 1625 | |
cf243da6 URS |
1626 | trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); |
1627 | ||
afd07389 | 1628 | /* |
68ad4a33 URS |
1629 | * If an allocation fails, the "vend" address is |
1630 | * returned. Therefore trigger the overflow path. | |
afd07389 | 1631 | */ |
68ad4a33 | 1632 | if (unlikely(addr == vend)) |
89699605 | 1633 | goto overflow; |
db64fe02 NP |
1634 | |
1635 | va->va_start = addr; | |
1636 | va->va_end = addr + size; | |
688fcbfc | 1637 | va->vm = NULL; |
68ad4a33 | 1638 | |
e36176be URS |
1639 | spin_lock(&vmap_area_lock); |
1640 | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | |
db64fe02 NP |
1641 | spin_unlock(&vmap_area_lock); |
1642 | ||
61e16557 | 1643 | BUG_ON(!IS_ALIGNED(va->va_start, align)); |
89699605 NP |
1644 | BUG_ON(va->va_start < vstart); |
1645 | BUG_ON(va->va_end > vend); | |
1646 | ||
d98c9e83 AR |
1647 | ret = kasan_populate_vmalloc(addr, size); |
1648 | if (ret) { | |
1649 | free_vmap_area(va); | |
1650 | return ERR_PTR(ret); | |
1651 | } | |
1652 | ||
db64fe02 | 1653 | return va; |
89699605 NP |
1654 | |
1655 | overflow: | |
89699605 NP |
1656 | if (!purged) { |
1657 | purge_vmap_area_lazy(); | |
1658 | purged = 1; | |
1659 | goto retry; | |
1660 | } | |
4da56b99 | 1661 | |
12e376a6 URS |
1662 | freed = 0; |
1663 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | |
1664 | ||
1665 | if (freed > 0) { | |
1666 | purged = 0; | |
1667 | goto retry; | |
4da56b99 CW |
1668 | } |
1669 | ||
03497d76 | 1670 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) |
756a025f JP |
1671 | pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", |
1672 | size); | |
68ad4a33 URS |
1673 | |
1674 | kmem_cache_free(vmap_area_cachep, va); | |
89699605 | 1675 | return ERR_PTR(-EBUSY); |
db64fe02 NP |
1676 | } |
1677 | ||
4da56b99 CW |
1678 | int register_vmap_purge_notifier(struct notifier_block *nb) |
1679 | { | |
1680 | return blocking_notifier_chain_register(&vmap_notify_list, nb); | |
1681 | } | |
1682 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | |
1683 | ||
1684 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | |
1685 | { | |
1686 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | |
1687 | } | |
1688 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | |
1689 | ||
db64fe02 NP |
1690 | /* |
1691 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
1692 | * before attempting to purge with a TLB flush. | |
1693 | * | |
1694 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
1695 | * and take slightly longer to purge, but it will linearly reduce the number of | |
1696 | * global TLB flushes that must be performed. It would seem natural to scale | |
1697 | * this number up linearly with the number of CPUs (because vmapping activity | |
1698 | * could also scale linearly with the number of CPUs), however it is likely | |
1699 | * that in practice, workloads might be constrained in other ways that mean | |
1700 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
1701 | * conservative and not introduce a big latency on huge systems, so go with | |
1702 | * a less aggressive log scale. It will still be an improvement over the old | |
1703 | * code, and it will be simple to change the scale factor if we find that it | |
1704 | * becomes a problem on bigger systems. | |
1705 | */ | |
1706 | static unsigned long lazy_max_pages(void) | |
1707 | { | |
1708 | unsigned int log; | |
1709 | ||
1710 | log = fls(num_online_cpus()); | |
1711 | ||
1712 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
1713 | } | |
1714 | ||
4d36e6f8 | 1715 | static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); |
db64fe02 | 1716 | |
0574ecd1 | 1717 | /* |
f0953a1b | 1718 | * Serialize vmap purging. There is no actual critical section protected |
153090f2 | 1719 | * by this lock, but we want to avoid concurrent calls for performance |
0574ecd1 CH |
1720 | * reasons and to make the pcpu_get_vm_areas more deterministic. |
1721 | */ | |
f9e09977 | 1722 | static DEFINE_MUTEX(vmap_purge_lock); |
0574ecd1 | 1723 | |
02b709df NP |
1724 | /* for per-CPU blocks */ |
1725 | static void purge_fragmented_blocks_allcpus(void); | |
1726 | ||
db64fe02 NP |
1727 | /* |
1728 | * Purges all lazily-freed vmap areas. | |
db64fe02 | 1729 | */ |
0574ecd1 | 1730 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) |
db64fe02 | 1731 | { |
4d36e6f8 | 1732 | unsigned long resched_threshold; |
6030fd5f | 1733 | unsigned int num_purged_areas = 0; |
baa468a6 | 1734 | struct list_head local_purge_list; |
96e2db45 | 1735 | struct vmap_area *va, *n_va; |
db64fe02 | 1736 | |
0574ecd1 | 1737 | lockdep_assert_held(&vmap_purge_lock); |
02b709df | 1738 | |
96e2db45 URS |
1739 | spin_lock(&purge_vmap_area_lock); |
1740 | purge_vmap_area_root = RB_ROOT; | |
baa468a6 | 1741 | list_replace_init(&purge_vmap_area_list, &local_purge_list); |
96e2db45 URS |
1742 | spin_unlock(&purge_vmap_area_lock); |
1743 | ||
baa468a6 | 1744 | if (unlikely(list_empty(&local_purge_list))) |
6030fd5f | 1745 | goto out; |
68571be9 | 1746 | |
96e2db45 | 1747 | start = min(start, |
baa468a6 | 1748 | list_first_entry(&local_purge_list, |
96e2db45 URS |
1749 | struct vmap_area, list)->va_start); |
1750 | ||
1751 | end = max(end, | |
baa468a6 | 1752 | list_last_entry(&local_purge_list, |
96e2db45 | 1753 | struct vmap_area, list)->va_end); |
db64fe02 | 1754 | |
0574ecd1 | 1755 | flush_tlb_kernel_range(start, end); |
4d36e6f8 | 1756 | resched_threshold = lazy_max_pages() << 1; |
db64fe02 | 1757 | |
e36176be | 1758 | spin_lock(&free_vmap_area_lock); |
baa468a6 | 1759 | list_for_each_entry_safe(va, n_va, &local_purge_list, list) { |
4d36e6f8 | 1760 | unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; |
3c5c3cfb DA |
1761 | unsigned long orig_start = va->va_start; |
1762 | unsigned long orig_end = va->va_end; | |
763b218d | 1763 | |
dd3b8353 URS |
1764 | /* |
1765 | * Finally insert or merge lazily-freed area. It is | |
1766 | * detached and there is no need to "unlink" it from | |
1767 | * anything. | |
1768 | */ | |
96e2db45 URS |
1769 | va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, |
1770 | &free_vmap_area_list); | |
3c5c3cfb | 1771 | |
9c801f61 URS |
1772 | if (!va) |
1773 | continue; | |
1774 | ||
3c5c3cfb DA |
1775 | if (is_vmalloc_or_module_addr((void *)orig_start)) |
1776 | kasan_release_vmalloc(orig_start, orig_end, | |
1777 | va->va_start, va->va_end); | |
dd3b8353 | 1778 | |
4d36e6f8 | 1779 | atomic_long_sub(nr, &vmap_lazy_nr); |
6030fd5f | 1780 | num_purged_areas++; |
68571be9 | 1781 | |
4d36e6f8 | 1782 | if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) |
e36176be | 1783 | cond_resched_lock(&free_vmap_area_lock); |
763b218d | 1784 | } |
e36176be | 1785 | spin_unlock(&free_vmap_area_lock); |
6030fd5f URS |
1786 | |
1787 | out: | |
1788 | trace_purge_vmap_area_lazy(start, end, num_purged_areas); | |
1789 | return num_purged_areas > 0; | |
db64fe02 NP |
1790 | } |
1791 | ||
1792 | /* | |
1793 | * Kick off a purge of the outstanding lazy areas. | |
1794 | */ | |
1795 | static void purge_vmap_area_lazy(void) | |
1796 | { | |
f9e09977 | 1797 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
1798 | purge_fragmented_blocks_allcpus(); |
1799 | __purge_vmap_area_lazy(ULONG_MAX, 0); | |
f9e09977 | 1800 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
1801 | } |
1802 | ||
690467c8 URS |
1803 | static void drain_vmap_area_work(struct work_struct *work) |
1804 | { | |
1805 | unsigned long nr_lazy; | |
1806 | ||
1807 | do { | |
1808 | mutex_lock(&vmap_purge_lock); | |
1809 | __purge_vmap_area_lazy(ULONG_MAX, 0); | |
1810 | mutex_unlock(&vmap_purge_lock); | |
1811 | ||
1812 | /* Recheck if further work is required. */ | |
1813 | nr_lazy = atomic_long_read(&vmap_lazy_nr); | |
1814 | } while (nr_lazy > lazy_max_pages()); | |
1815 | } | |
1816 | ||
db64fe02 | 1817 | /* |
edd89818 URS |
1818 | * Free a vmap area, caller ensuring that the area has been unmapped, |
1819 | * unlinked and flush_cache_vunmap had been called for the correct | |
1820 | * range previously. | |
db64fe02 | 1821 | */ |
64141da5 | 1822 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 | 1823 | { |
8c4196fe URS |
1824 | unsigned long nr_lazy_max = lazy_max_pages(); |
1825 | unsigned long va_start = va->va_start; | |
4d36e6f8 | 1826 | unsigned long nr_lazy; |
80c4bd7a | 1827 | |
edd89818 URS |
1828 | if (WARN_ON_ONCE(!list_empty(&va->list))) |
1829 | return; | |
dd3b8353 | 1830 | |
4d36e6f8 URS |
1831 | nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> |
1832 | PAGE_SHIFT, &vmap_lazy_nr); | |
80c4bd7a | 1833 | |
96e2db45 URS |
1834 | /* |
1835 | * Merge or place it to the purge tree/list. | |
1836 | */ | |
1837 | spin_lock(&purge_vmap_area_lock); | |
1838 | merge_or_add_vmap_area(va, | |
1839 | &purge_vmap_area_root, &purge_vmap_area_list); | |
1840 | spin_unlock(&purge_vmap_area_lock); | |
80c4bd7a | 1841 | |
8c4196fe URS |
1842 | trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); |
1843 | ||
96e2db45 | 1844 | /* After this point, we may free va at any time */ |
8c4196fe | 1845 | if (unlikely(nr_lazy > nr_lazy_max)) |
690467c8 | 1846 | schedule_work(&drain_vmap_work); |
db64fe02 NP |
1847 | } |
1848 | ||
b29acbdc NP |
1849 | /* |
1850 | * Free and unmap a vmap area | |
1851 | */ | |
1852 | static void free_unmap_vmap_area(struct vmap_area *va) | |
1853 | { | |
1854 | flush_cache_vunmap(va->va_start, va->va_end); | |
4ad0ae8c | 1855 | vunmap_range_noflush(va->va_start, va->va_end); |
8e57f8ac | 1856 | if (debug_pagealloc_enabled_static()) |
82a2e924 CP |
1857 | flush_tlb_kernel_range(va->va_start, va->va_end); |
1858 | ||
c8eef01e | 1859 | free_vmap_area_noflush(va); |
b29acbdc NP |
1860 | } |
1861 | ||
993d0b28 | 1862 | struct vmap_area *find_vmap_area(unsigned long addr) |
db64fe02 NP |
1863 | { |
1864 | struct vmap_area *va; | |
1865 | ||
1866 | spin_lock(&vmap_area_lock); | |
899c6efe | 1867 | va = __find_vmap_area(addr, &vmap_area_root); |
db64fe02 NP |
1868 | spin_unlock(&vmap_area_lock); |
1869 | ||
1870 | return va; | |
1871 | } | |
1872 | ||
edd89818 URS |
1873 | static struct vmap_area *find_unlink_vmap_area(unsigned long addr) |
1874 | { | |
1875 | struct vmap_area *va; | |
1876 | ||
1877 | spin_lock(&vmap_area_lock); | |
1878 | va = __find_vmap_area(addr, &vmap_area_root); | |
1879 | if (va) | |
1880 | unlink_va(va, &vmap_area_root); | |
1881 | spin_unlock(&vmap_area_lock); | |
1882 | ||
1883 | return va; | |
1884 | } | |
1885 | ||
db64fe02 NP |
1886 | /*** Per cpu kva allocator ***/ |
1887 | ||
1888 | /* | |
1889 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
1890 | * room for at least 16 percpu vmap blocks per CPU. | |
1891 | */ | |
1892 | /* | |
1893 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
1894 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
1895 | * instead (we just need a rough idea) | |
1896 | */ | |
1897 | #if BITS_PER_LONG == 32 | |
1898 | #define VMALLOC_SPACE (128UL*1024*1024) | |
1899 | #else | |
1900 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
1901 | #endif | |
1902 | ||
1903 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
1904 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
1905 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
1906 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
1907 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
1908 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
1909 | #define VMAP_BBMAP_BITS \ |
1910 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
1911 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
1912 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
1913 | |
1914 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
1915 | ||
1916 | struct vmap_block_queue { | |
1917 | spinlock_t lock; | |
1918 | struct list_head free; | |
db64fe02 NP |
1919 | }; |
1920 | ||
1921 | struct vmap_block { | |
1922 | spinlock_t lock; | |
1923 | struct vmap_area *va; | |
db64fe02 | 1924 | unsigned long free, dirty; |
7d61bfe8 | 1925 | unsigned long dirty_min, dirty_max; /*< dirty range */ |
de560423 NP |
1926 | struct list_head free_list; |
1927 | struct rcu_head rcu_head; | |
02b709df | 1928 | struct list_head purge; |
db64fe02 NP |
1929 | }; |
1930 | ||
1931 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
1932 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
1933 | ||
1934 | /* | |
0f14599c | 1935 | * XArray of vmap blocks, indexed by address, to quickly find a vmap block |
db64fe02 NP |
1936 | * in the free path. Could get rid of this if we change the API to return a |
1937 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
1938 | */ | |
0f14599c | 1939 | static DEFINE_XARRAY(vmap_blocks); |
db64fe02 NP |
1940 | |
1941 | /* | |
1942 | * We should probably have a fallback mechanism to allocate virtual memory | |
1943 | * out of partially filled vmap blocks. However vmap block sizing should be | |
1944 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
1945 | * big problem. | |
1946 | */ | |
1947 | ||
1948 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
1949 | { | |
1950 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
1951 | addr /= VMAP_BLOCK_SIZE; | |
1952 | return addr; | |
1953 | } | |
1954 | ||
cf725ce2 RP |
1955 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) |
1956 | { | |
1957 | unsigned long addr; | |
1958 | ||
1959 | addr = va_start + (pages_off << PAGE_SHIFT); | |
1960 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | |
1961 | return (void *)addr; | |
1962 | } | |
1963 | ||
1964 | /** | |
1965 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | |
1966 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS | |
1967 | * @order: how many 2^order pages should be occupied in newly allocated block | |
1968 | * @gfp_mask: flags for the page level allocator | |
1969 | * | |
a862f68a | 1970 | * Return: virtual address in a newly allocated block or ERR_PTR(-errno) |
cf725ce2 RP |
1971 | */ |
1972 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | |
db64fe02 NP |
1973 | { |
1974 | struct vmap_block_queue *vbq; | |
1975 | struct vmap_block *vb; | |
1976 | struct vmap_area *va; | |
1977 | unsigned long vb_idx; | |
1978 | int node, err; | |
cf725ce2 | 1979 | void *vaddr; |
db64fe02 NP |
1980 | |
1981 | node = numa_node_id(); | |
1982 | ||
1983 | vb = kmalloc_node(sizeof(struct vmap_block), | |
1984 | gfp_mask & GFP_RECLAIM_MASK, node); | |
1985 | if (unlikely(!vb)) | |
1986 | return ERR_PTR(-ENOMEM); | |
1987 | ||
1988 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
1989 | VMALLOC_START, VMALLOC_END, | |
1990 | node, gfp_mask); | |
ddf9c6d4 | 1991 | if (IS_ERR(va)) { |
db64fe02 | 1992 | kfree(vb); |
e7d86340 | 1993 | return ERR_CAST(va); |
db64fe02 NP |
1994 | } |
1995 | ||
cf725ce2 | 1996 | vaddr = vmap_block_vaddr(va->va_start, 0); |
db64fe02 NP |
1997 | spin_lock_init(&vb->lock); |
1998 | vb->va = va; | |
cf725ce2 RP |
1999 | /* At least something should be left free */ |
2000 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | |
2001 | vb->free = VMAP_BBMAP_BITS - (1UL << order); | |
db64fe02 | 2002 | vb->dirty = 0; |
7d61bfe8 RP |
2003 | vb->dirty_min = VMAP_BBMAP_BITS; |
2004 | vb->dirty_max = 0; | |
db64fe02 | 2005 | INIT_LIST_HEAD(&vb->free_list); |
db64fe02 NP |
2006 | |
2007 | vb_idx = addr_to_vb_idx(va->va_start); | |
0f14599c MWO |
2008 | err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); |
2009 | if (err) { | |
2010 | kfree(vb); | |
2011 | free_vmap_area(va); | |
2012 | return ERR_PTR(err); | |
2013 | } | |
db64fe02 | 2014 | |
3f804920 | 2015 | vbq = raw_cpu_ptr(&vmap_block_queue); |
db64fe02 | 2016 | spin_lock(&vbq->lock); |
68ac546f | 2017 | list_add_tail_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 2018 | spin_unlock(&vbq->lock); |
db64fe02 | 2019 | |
cf725ce2 | 2020 | return vaddr; |
db64fe02 NP |
2021 | } |
2022 | ||
db64fe02 NP |
2023 | static void free_vmap_block(struct vmap_block *vb) |
2024 | { | |
2025 | struct vmap_block *tmp; | |
db64fe02 | 2026 | |
0f14599c | 2027 | tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); |
db64fe02 NP |
2028 | BUG_ON(tmp != vb); |
2029 | ||
edd89818 URS |
2030 | spin_lock(&vmap_area_lock); |
2031 | unlink_va(vb->va, &vmap_area_root); | |
2032 | spin_unlock(&vmap_area_lock); | |
2033 | ||
64141da5 | 2034 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 2035 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
2036 | } |
2037 | ||
02b709df NP |
2038 | static void purge_fragmented_blocks(int cpu) |
2039 | { | |
2040 | LIST_HEAD(purge); | |
2041 | struct vmap_block *vb; | |
2042 | struct vmap_block *n_vb; | |
2043 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
2044 | ||
2045 | rcu_read_lock(); | |
2046 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
2047 | ||
2048 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
2049 | continue; | |
2050 | ||
2051 | spin_lock(&vb->lock); | |
2052 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
2053 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
2054 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
7d61bfe8 RP |
2055 | vb->dirty_min = 0; |
2056 | vb->dirty_max = VMAP_BBMAP_BITS; | |
02b709df NP |
2057 | spin_lock(&vbq->lock); |
2058 | list_del_rcu(&vb->free_list); | |
2059 | spin_unlock(&vbq->lock); | |
2060 | spin_unlock(&vb->lock); | |
2061 | list_add_tail(&vb->purge, &purge); | |
2062 | } else | |
2063 | spin_unlock(&vb->lock); | |
2064 | } | |
2065 | rcu_read_unlock(); | |
2066 | ||
2067 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
2068 | list_del(&vb->purge); | |
2069 | free_vmap_block(vb); | |
2070 | } | |
2071 | } | |
2072 | ||
02b709df NP |
2073 | static void purge_fragmented_blocks_allcpus(void) |
2074 | { | |
2075 | int cpu; | |
2076 | ||
2077 | for_each_possible_cpu(cpu) | |
2078 | purge_fragmented_blocks(cpu); | |
2079 | } | |
2080 | ||
db64fe02 NP |
2081 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
2082 | { | |
2083 | struct vmap_block_queue *vbq; | |
2084 | struct vmap_block *vb; | |
cf725ce2 | 2085 | void *vaddr = NULL; |
db64fe02 NP |
2086 | unsigned int order; |
2087 | ||
891c49ab | 2088 | BUG_ON(offset_in_page(size)); |
db64fe02 | 2089 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
aa91c4d8 JK |
2090 | if (WARN_ON(size == 0)) { |
2091 | /* | |
2092 | * Allocating 0 bytes isn't what caller wants since | |
2093 | * get_order(0) returns funny result. Just warn and terminate | |
2094 | * early. | |
2095 | */ | |
2096 | return NULL; | |
2097 | } | |
db64fe02 NP |
2098 | order = get_order(size); |
2099 | ||
db64fe02 | 2100 | rcu_read_lock(); |
3f804920 | 2101 | vbq = raw_cpu_ptr(&vmap_block_queue); |
db64fe02 | 2102 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { |
cf725ce2 | 2103 | unsigned long pages_off; |
db64fe02 NP |
2104 | |
2105 | spin_lock(&vb->lock); | |
cf725ce2 RP |
2106 | if (vb->free < (1UL << order)) { |
2107 | spin_unlock(&vb->lock); | |
2108 | continue; | |
2109 | } | |
02b709df | 2110 | |
cf725ce2 RP |
2111 | pages_off = VMAP_BBMAP_BITS - vb->free; |
2112 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | |
02b709df NP |
2113 | vb->free -= 1UL << order; |
2114 | if (vb->free == 0) { | |
2115 | spin_lock(&vbq->lock); | |
2116 | list_del_rcu(&vb->free_list); | |
2117 | spin_unlock(&vbq->lock); | |
2118 | } | |
cf725ce2 | 2119 | |
02b709df NP |
2120 | spin_unlock(&vb->lock); |
2121 | break; | |
db64fe02 | 2122 | } |
02b709df | 2123 | |
db64fe02 NP |
2124 | rcu_read_unlock(); |
2125 | ||
cf725ce2 RP |
2126 | /* Allocate new block if nothing was found */ |
2127 | if (!vaddr) | |
2128 | vaddr = new_vmap_block(order, gfp_mask); | |
db64fe02 | 2129 | |
cf725ce2 | 2130 | return vaddr; |
db64fe02 NP |
2131 | } |
2132 | ||
78a0e8c4 | 2133 | static void vb_free(unsigned long addr, unsigned long size) |
db64fe02 NP |
2134 | { |
2135 | unsigned long offset; | |
db64fe02 NP |
2136 | unsigned int order; |
2137 | struct vmap_block *vb; | |
2138 | ||
891c49ab | 2139 | BUG_ON(offset_in_page(size)); |
db64fe02 | 2140 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
b29acbdc | 2141 | |
78a0e8c4 | 2142 | flush_cache_vunmap(addr, addr + size); |
b29acbdc | 2143 | |
db64fe02 | 2144 | order = get_order(size); |
78a0e8c4 | 2145 | offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; |
0f14599c | 2146 | vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); |
db64fe02 | 2147 | |
4ad0ae8c | 2148 | vunmap_range_noflush(addr, addr + size); |
64141da5 | 2149 | |
8e57f8ac | 2150 | if (debug_pagealloc_enabled_static()) |
78a0e8c4 | 2151 | flush_tlb_kernel_range(addr, addr + size); |
82a2e924 | 2152 | |
db64fe02 | 2153 | spin_lock(&vb->lock); |
7d61bfe8 RP |
2154 | |
2155 | /* Expand dirty range */ | |
2156 | vb->dirty_min = min(vb->dirty_min, offset); | |
2157 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | |
d086817d | 2158 | |
db64fe02 NP |
2159 | vb->dirty += 1UL << order; |
2160 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 2161 | BUG_ON(vb->free); |
db64fe02 NP |
2162 | spin_unlock(&vb->lock); |
2163 | free_vmap_block(vb); | |
2164 | } else | |
2165 | spin_unlock(&vb->lock); | |
2166 | } | |
2167 | ||
868b104d | 2168 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) |
db64fe02 | 2169 | { |
db64fe02 | 2170 | int cpu; |
db64fe02 | 2171 | |
9b463334 JF |
2172 | if (unlikely(!vmap_initialized)) |
2173 | return; | |
2174 | ||
5803ed29 CH |
2175 | might_sleep(); |
2176 | ||
db64fe02 NP |
2177 | for_each_possible_cpu(cpu) { |
2178 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
2179 | struct vmap_block *vb; | |
2180 | ||
2181 | rcu_read_lock(); | |
2182 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
db64fe02 | 2183 | spin_lock(&vb->lock); |
ad216c03 | 2184 | if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { |
7d61bfe8 | 2185 | unsigned long va_start = vb->va->va_start; |
db64fe02 | 2186 | unsigned long s, e; |
b136be5e | 2187 | |
7d61bfe8 RP |
2188 | s = va_start + (vb->dirty_min << PAGE_SHIFT); |
2189 | e = va_start + (vb->dirty_max << PAGE_SHIFT); | |
db64fe02 | 2190 | |
7d61bfe8 RP |
2191 | start = min(s, start); |
2192 | end = max(e, end); | |
db64fe02 | 2193 | |
7d61bfe8 | 2194 | flush = 1; |
db64fe02 NP |
2195 | } |
2196 | spin_unlock(&vb->lock); | |
2197 | } | |
2198 | rcu_read_unlock(); | |
2199 | } | |
2200 | ||
f9e09977 | 2201 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
2202 | purge_fragmented_blocks_allcpus(); |
2203 | if (!__purge_vmap_area_lazy(start, end) && flush) | |
2204 | flush_tlb_kernel_range(start, end); | |
f9e09977 | 2205 | mutex_unlock(&vmap_purge_lock); |
db64fe02 | 2206 | } |
868b104d RE |
2207 | |
2208 | /** | |
2209 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
2210 | * | |
2211 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
2212 | * to amortize TLB flushing overheads. What this means is that any page you | |
2213 | * have now, may, in a former life, have been mapped into kernel virtual | |
2214 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
2215 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
2216 | * | |
2217 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
2218 | * be sure that none of the pages we have control over will have any aliases | |
2219 | * from the vmap layer. | |
2220 | */ | |
2221 | void vm_unmap_aliases(void) | |
2222 | { | |
2223 | unsigned long start = ULONG_MAX, end = 0; | |
2224 | int flush = 0; | |
2225 | ||
2226 | _vm_unmap_aliases(start, end, flush); | |
2227 | } | |
db64fe02 NP |
2228 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); |
2229 | ||
2230 | /** | |
2231 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
2232 | * @mem: the pointer returned by vm_map_ram | |
2233 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
2234 | */ | |
2235 | void vm_unmap_ram(const void *mem, unsigned int count) | |
2236 | { | |
65ee03c4 | 2237 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
4aff1dc4 | 2238 | unsigned long addr = (unsigned long)kasan_reset_tag(mem); |
9c3acf60 | 2239 | struct vmap_area *va; |
db64fe02 | 2240 | |
5803ed29 | 2241 | might_sleep(); |
db64fe02 NP |
2242 | BUG_ON(!addr); |
2243 | BUG_ON(addr < VMALLOC_START); | |
2244 | BUG_ON(addr > VMALLOC_END); | |
a1c0b1a0 | 2245 | BUG_ON(!PAGE_ALIGNED(addr)); |
db64fe02 | 2246 | |
d98c9e83 AR |
2247 | kasan_poison_vmalloc(mem, size); |
2248 | ||
9c3acf60 | 2249 | if (likely(count <= VMAP_MAX_ALLOC)) { |
05e3ff95 | 2250 | debug_check_no_locks_freed(mem, size); |
78a0e8c4 | 2251 | vb_free(addr, size); |
9c3acf60 CH |
2252 | return; |
2253 | } | |
2254 | ||
edd89818 | 2255 | va = find_unlink_vmap_area(addr); |
14687619 URS |
2256 | if (WARN_ON_ONCE(!va)) |
2257 | return; | |
2258 | ||
05e3ff95 CP |
2259 | debug_check_no_locks_freed((void *)va->va_start, |
2260 | (va->va_end - va->va_start)); | |
9c3acf60 | 2261 | free_unmap_vmap_area(va); |
db64fe02 NP |
2262 | } |
2263 | EXPORT_SYMBOL(vm_unmap_ram); | |
2264 | ||
2265 | /** | |
2266 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
2267 | * @pages: an array of pointers to the pages to be mapped | |
2268 | * @count: number of pages | |
2269 | * @node: prefer to allocate data structures on this node | |
e99c97ad | 2270 | * |
36437638 GK |
2271 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
2272 | * faster than vmap so it's good. But if you mix long-life and short-life | |
2273 | * objects with vm_map_ram(), it could consume lots of address space through | |
2274 | * fragmentation (especially on a 32bit machine). You could see failures in | |
2275 | * the end. Please use this function for short-lived objects. | |
2276 | * | |
e99c97ad | 2277 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
db64fe02 | 2278 | */ |
d4efd79a | 2279 | void *vm_map_ram(struct page **pages, unsigned int count, int node) |
db64fe02 | 2280 | { |
65ee03c4 | 2281 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 NP |
2282 | unsigned long addr; |
2283 | void *mem; | |
2284 | ||
2285 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
2286 | mem = vb_alloc(size, GFP_KERNEL); | |
2287 | if (IS_ERR(mem)) | |
2288 | return NULL; | |
2289 | addr = (unsigned long)mem; | |
2290 | } else { | |
2291 | struct vmap_area *va; | |
2292 | va = alloc_vmap_area(size, PAGE_SIZE, | |
2293 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
2294 | if (IS_ERR(va)) | |
2295 | return NULL; | |
2296 | ||
2297 | addr = va->va_start; | |
2298 | mem = (void *)addr; | |
2299 | } | |
d98c9e83 | 2300 | |
b67177ec NP |
2301 | if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, |
2302 | pages, PAGE_SHIFT) < 0) { | |
db64fe02 NP |
2303 | vm_unmap_ram(mem, count); |
2304 | return NULL; | |
2305 | } | |
b67177ec | 2306 | |
23689e91 AK |
2307 | /* |
2308 | * Mark the pages as accessible, now that they are mapped. | |
2309 | * With hardware tag-based KASAN, marking is skipped for | |
2310 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
2311 | */ | |
f6e39794 | 2312 | mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); |
19f1c3ac | 2313 | |
db64fe02 NP |
2314 | return mem; |
2315 | } | |
2316 | EXPORT_SYMBOL(vm_map_ram); | |
2317 | ||
4341fa45 | 2318 | static struct vm_struct *vmlist __initdata; |
92eac168 | 2319 | |
121e6f32 NP |
2320 | static inline unsigned int vm_area_page_order(struct vm_struct *vm) |
2321 | { | |
2322 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
2323 | return vm->page_order; | |
2324 | #else | |
2325 | return 0; | |
2326 | #endif | |
2327 | } | |
2328 | ||
2329 | static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) | |
2330 | { | |
2331 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
2332 | vm->page_order = order; | |
2333 | #else | |
2334 | BUG_ON(order != 0); | |
2335 | #endif | |
2336 | } | |
2337 | ||
be9b7335 NP |
2338 | /** |
2339 | * vm_area_add_early - add vmap area early during boot | |
2340 | * @vm: vm_struct to add | |
2341 | * | |
2342 | * This function is used to add fixed kernel vm area to vmlist before | |
2343 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
2344 | * should contain proper values and the other fields should be zero. | |
2345 | * | |
2346 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
2347 | */ | |
2348 | void __init vm_area_add_early(struct vm_struct *vm) | |
2349 | { | |
2350 | struct vm_struct *tmp, **p; | |
2351 | ||
2352 | BUG_ON(vmap_initialized); | |
2353 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
2354 | if (tmp->addr >= vm->addr) { | |
2355 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
2356 | break; | |
2357 | } else | |
2358 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
2359 | } | |
2360 | vm->next = *p; | |
2361 | *p = vm; | |
2362 | } | |
2363 | ||
f0aa6617 TH |
2364 | /** |
2365 | * vm_area_register_early - register vmap area early during boot | |
2366 | * @vm: vm_struct to register | |
c0c0a293 | 2367 | * @align: requested alignment |
f0aa6617 TH |
2368 | * |
2369 | * This function is used to register kernel vm area before | |
2370 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
2371 | * proper values on entry and other fields should be zero. On return, | |
2372 | * vm->addr contains the allocated address. | |
2373 | * | |
2374 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
2375 | */ | |
c0c0a293 | 2376 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 | 2377 | { |
0eb68437 KW |
2378 | unsigned long addr = ALIGN(VMALLOC_START, align); |
2379 | struct vm_struct *cur, **p; | |
c0c0a293 | 2380 | |
0eb68437 | 2381 | BUG_ON(vmap_initialized); |
f0aa6617 | 2382 | |
0eb68437 KW |
2383 | for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { |
2384 | if ((unsigned long)cur->addr - addr >= vm->size) | |
2385 | break; | |
2386 | addr = ALIGN((unsigned long)cur->addr + cur->size, align); | |
2387 | } | |
f0aa6617 | 2388 | |
0eb68437 KW |
2389 | BUG_ON(addr > VMALLOC_END - vm->size); |
2390 | vm->addr = (void *)addr; | |
2391 | vm->next = *p; | |
2392 | *p = vm; | |
3252b1d8 | 2393 | kasan_populate_early_vm_area_shadow(vm->addr, vm->size); |
f0aa6617 TH |
2394 | } |
2395 | ||
68ad4a33 URS |
2396 | static void vmap_init_free_space(void) |
2397 | { | |
2398 | unsigned long vmap_start = 1; | |
2399 | const unsigned long vmap_end = ULONG_MAX; | |
2400 | struct vmap_area *busy, *free; | |
2401 | ||
2402 | /* | |
2403 | * B F B B B F | |
2404 | * -|-----|.....|-----|-----|-----|.....|- | |
2405 | * | The KVA space | | |
2406 | * |<--------------------------------->| | |
2407 | */ | |
2408 | list_for_each_entry(busy, &vmap_area_list, list) { | |
2409 | if (busy->va_start - vmap_start > 0) { | |
2410 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
2411 | if (!WARN_ON_ONCE(!free)) { | |
2412 | free->va_start = vmap_start; | |
2413 | free->va_end = busy->va_start; | |
2414 | ||
2415 | insert_vmap_area_augment(free, NULL, | |
2416 | &free_vmap_area_root, | |
2417 | &free_vmap_area_list); | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | vmap_start = busy->va_end; | |
2422 | } | |
2423 | ||
2424 | if (vmap_end - vmap_start > 0) { | |
2425 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
2426 | if (!WARN_ON_ONCE(!free)) { | |
2427 | free->va_start = vmap_start; | |
2428 | free->va_end = vmap_end; | |
2429 | ||
2430 | insert_vmap_area_augment(free, NULL, | |
2431 | &free_vmap_area_root, | |
2432 | &free_vmap_area_list); | |
2433 | } | |
2434 | } | |
2435 | } | |
2436 | ||
db64fe02 NP |
2437 | void __init vmalloc_init(void) |
2438 | { | |
822c18f2 IK |
2439 | struct vmap_area *va; |
2440 | struct vm_struct *tmp; | |
db64fe02 NP |
2441 | int i; |
2442 | ||
68ad4a33 URS |
2443 | /* |
2444 | * Create the cache for vmap_area objects. | |
2445 | */ | |
2446 | vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | |
2447 | ||
db64fe02 NP |
2448 | for_each_possible_cpu(i) { |
2449 | struct vmap_block_queue *vbq; | |
32fcfd40 | 2450 | struct vfree_deferred *p; |
db64fe02 NP |
2451 | |
2452 | vbq = &per_cpu(vmap_block_queue, i); | |
2453 | spin_lock_init(&vbq->lock); | |
2454 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
2455 | p = &per_cpu(vfree_deferred, i); |
2456 | init_llist_head(&p->list); | |
2457 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 2458 | } |
9b463334 | 2459 | |
822c18f2 IK |
2460 | /* Import existing vmlist entries. */ |
2461 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
68ad4a33 URS |
2462 | va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); |
2463 | if (WARN_ON_ONCE(!va)) | |
2464 | continue; | |
2465 | ||
822c18f2 IK |
2466 | va->va_start = (unsigned long)tmp->addr; |
2467 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 2468 | va->vm = tmp; |
68ad4a33 | 2469 | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); |
822c18f2 | 2470 | } |
ca23e405 | 2471 | |
68ad4a33 URS |
2472 | /* |
2473 | * Now we can initialize a free vmap space. | |
2474 | */ | |
2475 | vmap_init_free_space(); | |
9b463334 | 2476 | vmap_initialized = true; |
db64fe02 NP |
2477 | } |
2478 | ||
e36176be URS |
2479 | static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, |
2480 | struct vmap_area *va, unsigned long flags, const void *caller) | |
cf88c790 | 2481 | { |
cf88c790 TH |
2482 | vm->flags = flags; |
2483 | vm->addr = (void *)va->va_start; | |
2484 | vm->size = va->va_end - va->va_start; | |
2485 | vm->caller = caller; | |
db1aecaf | 2486 | va->vm = vm; |
e36176be URS |
2487 | } |
2488 | ||
2489 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | |
2490 | unsigned long flags, const void *caller) | |
2491 | { | |
2492 | spin_lock(&vmap_area_lock); | |
2493 | setup_vmalloc_vm_locked(vm, va, flags, caller); | |
c69480ad | 2494 | spin_unlock(&vmap_area_lock); |
f5252e00 | 2495 | } |
cf88c790 | 2496 | |
20fc02b4 | 2497 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 2498 | { |
d4033afd | 2499 | /* |
20fc02b4 | 2500 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
2501 | * we should make sure that vm has proper values. |
2502 | * Pair with smp_rmb() in show_numa_info(). | |
2503 | */ | |
2504 | smp_wmb(); | |
20fc02b4 | 2505 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
2506 | } |
2507 | ||
db64fe02 | 2508 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
7ca3027b DA |
2509 | unsigned long align, unsigned long shift, unsigned long flags, |
2510 | unsigned long start, unsigned long end, int node, | |
2511 | gfp_t gfp_mask, const void *caller) | |
db64fe02 | 2512 | { |
0006526d | 2513 | struct vmap_area *va; |
db64fe02 | 2514 | struct vm_struct *area; |
d98c9e83 | 2515 | unsigned long requested_size = size; |
1da177e4 | 2516 | |
52fd24ca | 2517 | BUG_ON(in_interrupt()); |
7ca3027b | 2518 | size = ALIGN(size, 1ul << shift); |
31be8309 OH |
2519 | if (unlikely(!size)) |
2520 | return NULL; | |
1da177e4 | 2521 | |
252e5c6e | 2522 | if (flags & VM_IOREMAP) |
2523 | align = 1ul << clamp_t(int, get_count_order_long(size), | |
2524 | PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
2525 | ||
cf88c790 | 2526 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
2527 | if (unlikely(!area)) |
2528 | return NULL; | |
2529 | ||
71394fe5 AR |
2530 | if (!(flags & VM_NO_GUARD)) |
2531 | size += PAGE_SIZE; | |
1da177e4 | 2532 | |
db64fe02 NP |
2533 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
2534 | if (IS_ERR(va)) { | |
2535 | kfree(area); | |
2536 | return NULL; | |
1da177e4 | 2537 | } |
1da177e4 | 2538 | |
d98c9e83 | 2539 | setup_vmalloc_vm(area, va, flags, caller); |
3c5c3cfb | 2540 | |
19f1c3ac AK |
2541 | /* |
2542 | * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a | |
2543 | * best-effort approach, as they can be mapped outside of vmalloc code. | |
2544 | * For VM_ALLOC mappings, the pages are marked as accessible after | |
2545 | * getting mapped in __vmalloc_node_range(). | |
23689e91 AK |
2546 | * With hardware tag-based KASAN, marking is skipped for |
2547 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
19f1c3ac AK |
2548 | */ |
2549 | if (!(flags & VM_ALLOC)) | |
23689e91 | 2550 | area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, |
f6e39794 | 2551 | KASAN_VMALLOC_PROT_NORMAL); |
1d96320f | 2552 | |
1da177e4 | 2553 | return area; |
1da177e4 LT |
2554 | } |
2555 | ||
c2968612 BH |
2556 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
2557 | unsigned long start, unsigned long end, | |
5e6cafc8 | 2558 | const void *caller) |
c2968612 | 2559 | { |
7ca3027b DA |
2560 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, |
2561 | NUMA_NO_NODE, GFP_KERNEL, caller); | |
c2968612 BH |
2562 | } |
2563 | ||
1da177e4 | 2564 | /** |
92eac168 MR |
2565 | * get_vm_area - reserve a contiguous kernel virtual area |
2566 | * @size: size of the area | |
2567 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1da177e4 | 2568 | * |
92eac168 MR |
2569 | * Search an area of @size in the kernel virtual mapping area, |
2570 | * and reserved it for out purposes. Returns the area descriptor | |
2571 | * on success or %NULL on failure. | |
a862f68a MR |
2572 | * |
2573 | * Return: the area descriptor on success or %NULL on failure. | |
1da177e4 LT |
2574 | */ |
2575 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
2576 | { | |
7ca3027b DA |
2577 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
2578 | VMALLOC_START, VMALLOC_END, | |
00ef2d2f DR |
2579 | NUMA_NO_NODE, GFP_KERNEL, |
2580 | __builtin_return_address(0)); | |
23016969 CL |
2581 | } |
2582 | ||
2583 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 2584 | const void *caller) |
23016969 | 2585 | { |
7ca3027b DA |
2586 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
2587 | VMALLOC_START, VMALLOC_END, | |
00ef2d2f | 2588 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
2589 | } |
2590 | ||
e9da6e99 | 2591 | /** |
92eac168 MR |
2592 | * find_vm_area - find a continuous kernel virtual area |
2593 | * @addr: base address | |
e9da6e99 | 2594 | * |
92eac168 MR |
2595 | * Search for the kernel VM area starting at @addr, and return it. |
2596 | * It is up to the caller to do all required locking to keep the returned | |
2597 | * pointer valid. | |
a862f68a | 2598 | * |
74640617 | 2599 | * Return: the area descriptor on success or %NULL on failure. |
e9da6e99 MS |
2600 | */ |
2601 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 2602 | { |
db64fe02 | 2603 | struct vmap_area *va; |
83342314 | 2604 | |
db64fe02 | 2605 | va = find_vmap_area((unsigned long)addr); |
688fcbfc PL |
2606 | if (!va) |
2607 | return NULL; | |
1da177e4 | 2608 | |
688fcbfc | 2609 | return va->vm; |
1da177e4 LT |
2610 | } |
2611 | ||
edd89818 URS |
2612 | static struct vm_struct *__remove_vm_area(struct vmap_area *va) |
2613 | { | |
2614 | struct vm_struct *vm; | |
2615 | ||
2616 | if (!va || !va->vm) | |
2617 | return NULL; | |
2618 | ||
2619 | vm = va->vm; | |
2620 | kasan_free_module_shadow(vm); | |
2621 | free_unmap_vmap_area(va); | |
2622 | ||
2623 | return vm; | |
2624 | } | |
2625 | ||
7856dfeb | 2626 | /** |
92eac168 MR |
2627 | * remove_vm_area - find and remove a continuous kernel virtual area |
2628 | * @addr: base address | |
7856dfeb | 2629 | * |
92eac168 MR |
2630 | * Search for the kernel VM area starting at @addr, and remove it. |
2631 | * This function returns the found VM area, but using it is NOT safe | |
2632 | * on SMP machines, except for its size or flags. | |
a862f68a | 2633 | * |
74640617 | 2634 | * Return: the area descriptor on success or %NULL on failure. |
7856dfeb | 2635 | */ |
b3bdda02 | 2636 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 2637 | { |
5803ed29 CH |
2638 | might_sleep(); |
2639 | ||
edd89818 URS |
2640 | return __remove_vm_area( |
2641 | find_unlink_vmap_area((unsigned long) addr)); | |
7856dfeb AK |
2642 | } |
2643 | ||
868b104d RE |
2644 | static inline void set_area_direct_map(const struct vm_struct *area, |
2645 | int (*set_direct_map)(struct page *page)) | |
2646 | { | |
2647 | int i; | |
2648 | ||
121e6f32 | 2649 | /* HUGE_VMALLOC passes small pages to set_direct_map */ |
868b104d RE |
2650 | for (i = 0; i < area->nr_pages; i++) |
2651 | if (page_address(area->pages[i])) | |
2652 | set_direct_map(area->pages[i]); | |
2653 | } | |
2654 | ||
edd89818 URS |
2655 | /* Handle removing and resetting vm mappings related to the VA's vm_struct. */ |
2656 | static void va_remove_mappings(struct vmap_area *va, int deallocate_pages) | |
868b104d | 2657 | { |
edd89818 | 2658 | struct vm_struct *area = va->vm; |
868b104d | 2659 | unsigned long start = ULONG_MAX, end = 0; |
121e6f32 | 2660 | unsigned int page_order = vm_area_page_order(area); |
868b104d | 2661 | int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; |
31e67340 | 2662 | int flush_dmap = 0; |
868b104d RE |
2663 | int i; |
2664 | ||
edd89818 | 2665 | __remove_vm_area(va); |
868b104d RE |
2666 | |
2667 | /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ | |
2668 | if (!flush_reset) | |
2669 | return; | |
2670 | ||
2671 | /* | |
2672 | * If not deallocating pages, just do the flush of the VM area and | |
2673 | * return. | |
2674 | */ | |
2675 | if (!deallocate_pages) { | |
2676 | vm_unmap_aliases(); | |
2677 | return; | |
2678 | } | |
2679 | ||
2680 | /* | |
2681 | * If execution gets here, flush the vm mapping and reset the direct | |
2682 | * map. Find the start and end range of the direct mappings to make sure | |
2683 | * the vm_unmap_aliases() flush includes the direct map. | |
2684 | */ | |
121e6f32 | 2685 | for (i = 0; i < area->nr_pages; i += 1U << page_order) { |
8e41f872 RE |
2686 | unsigned long addr = (unsigned long)page_address(area->pages[i]); |
2687 | if (addr) { | |
121e6f32 NP |
2688 | unsigned long page_size; |
2689 | ||
2690 | page_size = PAGE_SIZE << page_order; | |
868b104d | 2691 | start = min(addr, start); |
121e6f32 | 2692 | end = max(addr + page_size, end); |
31e67340 | 2693 | flush_dmap = 1; |
868b104d RE |
2694 | } |
2695 | } | |
2696 | ||
2697 | /* | |
2698 | * Set direct map to something invalid so that it won't be cached if | |
2699 | * there are any accesses after the TLB flush, then flush the TLB and | |
2700 | * reset the direct map permissions to the default. | |
2701 | */ | |
2702 | set_area_direct_map(area, set_direct_map_invalid_noflush); | |
31e67340 | 2703 | _vm_unmap_aliases(start, end, flush_dmap); |
868b104d RE |
2704 | set_area_direct_map(area, set_direct_map_default_noflush); |
2705 | } | |
2706 | ||
b3bdda02 | 2707 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
2708 | { |
2709 | struct vm_struct *area; | |
edd89818 | 2710 | struct vmap_area *va; |
1da177e4 LT |
2711 | |
2712 | if (!addr) | |
2713 | return; | |
2714 | ||
e69e9d4a | 2715 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 2716 | addr)) |
1da177e4 | 2717 | return; |
1da177e4 | 2718 | |
edd89818 URS |
2719 | va = find_unlink_vmap_area((unsigned long)addr); |
2720 | if (unlikely(!va)) { | |
4c8573e2 | 2721 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 2722 | addr); |
1da177e4 LT |
2723 | return; |
2724 | } | |
2725 | ||
edd89818 | 2726 | area = va->vm; |
05e3ff95 CP |
2727 | debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); |
2728 | debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); | |
9a11b49a | 2729 | |
c041098c | 2730 | kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); |
3c5c3cfb | 2731 | |
edd89818 | 2732 | va_remove_mappings(va, deallocate_pages); |
868b104d | 2733 | |
1da177e4 | 2734 | if (deallocate_pages) { |
3b8000ae | 2735 | int i; |
1da177e4 | 2736 | |
3b8000ae | 2737 | for (i = 0; i < area->nr_pages; i++) { |
bf53d6f8 CL |
2738 | struct page *page = area->pages[i]; |
2739 | ||
2740 | BUG_ON(!page); | |
3b8000ae NP |
2741 | mod_memcg_page_state(page, MEMCG_VMALLOC, -1); |
2742 | /* | |
2743 | * High-order allocs for huge vmallocs are split, so | |
2744 | * can be freed as an array of order-0 allocations | |
2745 | */ | |
2746 | __free_pages(page, 0); | |
a850e932 | 2747 | cond_resched(); |
1da177e4 | 2748 | } |
97105f0a | 2749 | atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); |
1da177e4 | 2750 | |
244d63ee | 2751 | kvfree(area->pages); |
1da177e4 LT |
2752 | } |
2753 | ||
2754 | kfree(area); | |
1da177e4 | 2755 | } |
bf22e37a AR |
2756 | |
2757 | static inline void __vfree_deferred(const void *addr) | |
2758 | { | |
2759 | /* | |
2760 | * Use raw_cpu_ptr() because this can be called from preemptible | |
2761 | * context. Preemption is absolutely fine here, because the llist_add() | |
2762 | * implementation is lockless, so it works even if we are adding to | |
73221d88 | 2763 | * another cpu's list. schedule_work() should be fine with this too. |
bf22e37a AR |
2764 | */ |
2765 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | |
2766 | ||
2767 | if (llist_add((struct llist_node *)addr, &p->list)) | |
2768 | schedule_work(&p->wq); | |
2769 | } | |
2770 | ||
2771 | /** | |
92eac168 MR |
2772 | * vfree_atomic - release memory allocated by vmalloc() |
2773 | * @addr: memory base address | |
bf22e37a | 2774 | * |
92eac168 MR |
2775 | * This one is just like vfree() but can be called in any atomic context |
2776 | * except NMIs. | |
bf22e37a AR |
2777 | */ |
2778 | void vfree_atomic(const void *addr) | |
2779 | { | |
2780 | BUG_ON(in_nmi()); | |
2781 | ||
2782 | kmemleak_free(addr); | |
2783 | ||
2784 | if (!addr) | |
2785 | return; | |
2786 | __vfree_deferred(addr); | |
2787 | } | |
2788 | ||
1da177e4 | 2789 | /** |
fa307474 MWO |
2790 | * vfree - Release memory allocated by vmalloc() |
2791 | * @addr: Memory base address | |
1da177e4 | 2792 | * |
fa307474 MWO |
2793 | * Free the virtually continuous memory area starting at @addr, as obtained |
2794 | * from one of the vmalloc() family of APIs. This will usually also free the | |
2795 | * physical memory underlying the virtual allocation, but that memory is | |
2796 | * reference counted, so it will not be freed until the last user goes away. | |
1da177e4 | 2797 | * |
fa307474 | 2798 | * If @addr is NULL, no operation is performed. |
c9fcee51 | 2799 | * |
fa307474 | 2800 | * Context: |
92eac168 | 2801 | * May sleep if called *not* from interrupt context. |
fa307474 MWO |
2802 | * Must not be called in NMI context (strictly speaking, it could be |
2803 | * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
f0953a1b | 2804 | * conventions for vfree() arch-dependent would be a really bad idea). |
1da177e4 | 2805 | */ |
b3bdda02 | 2806 | void vfree(const void *addr) |
1da177e4 | 2807 | { |
32fcfd40 | 2808 | BUG_ON(in_nmi()); |
89219d37 CM |
2809 | |
2810 | kmemleak_free(addr); | |
2811 | ||
a8dda165 AR |
2812 | might_sleep_if(!in_interrupt()); |
2813 | ||
32fcfd40 AV |
2814 | if (!addr) |
2815 | return; | |
f41f036b CH |
2816 | if (unlikely(in_interrupt())) |
2817 | __vfree_deferred(addr); | |
2818 | else | |
2819 | __vunmap(addr, 1); | |
1da177e4 | 2820 | } |
1da177e4 LT |
2821 | EXPORT_SYMBOL(vfree); |
2822 | ||
2823 | /** | |
92eac168 MR |
2824 | * vunmap - release virtual mapping obtained by vmap() |
2825 | * @addr: memory base address | |
1da177e4 | 2826 | * |
92eac168 MR |
2827 | * Free the virtually contiguous memory area starting at @addr, |
2828 | * which was created from the page array passed to vmap(). | |
1da177e4 | 2829 | * |
92eac168 | 2830 | * Must not be called in interrupt context. |
1da177e4 | 2831 | */ |
b3bdda02 | 2832 | void vunmap(const void *addr) |
1da177e4 LT |
2833 | { |
2834 | BUG_ON(in_interrupt()); | |
34754b69 | 2835 | might_sleep(); |
32fcfd40 AV |
2836 | if (addr) |
2837 | __vunmap(addr, 0); | |
1da177e4 | 2838 | } |
1da177e4 LT |
2839 | EXPORT_SYMBOL(vunmap); |
2840 | ||
2841 | /** | |
92eac168 MR |
2842 | * vmap - map an array of pages into virtually contiguous space |
2843 | * @pages: array of page pointers | |
2844 | * @count: number of pages to map | |
2845 | * @flags: vm_area->flags | |
2846 | * @prot: page protection for the mapping | |
2847 | * | |
b944afc9 CH |
2848 | * Maps @count pages from @pages into contiguous kernel virtual space. |
2849 | * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself | |
2850 | * (which must be kmalloc or vmalloc memory) and one reference per pages in it | |
2851 | * are transferred from the caller to vmap(), and will be freed / dropped when | |
2852 | * vfree() is called on the return value. | |
a862f68a MR |
2853 | * |
2854 | * Return: the address of the area or %NULL on failure | |
1da177e4 LT |
2855 | */ |
2856 | void *vmap(struct page **pages, unsigned int count, | |
92eac168 | 2857 | unsigned long flags, pgprot_t prot) |
1da177e4 LT |
2858 | { |
2859 | struct vm_struct *area; | |
b67177ec | 2860 | unsigned long addr; |
65ee03c4 | 2861 | unsigned long size; /* In bytes */ |
1da177e4 | 2862 | |
34754b69 PZ |
2863 | might_sleep(); |
2864 | ||
37f3605e CH |
2865 | if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) |
2866 | return NULL; | |
2867 | ||
bd1a8fb2 PZ |
2868 | /* |
2869 | * Your top guard is someone else's bottom guard. Not having a top | |
2870 | * guard compromises someone else's mappings too. | |
2871 | */ | |
2872 | if (WARN_ON_ONCE(flags & VM_NO_GUARD)) | |
2873 | flags &= ~VM_NO_GUARD; | |
2874 | ||
ca79b0c2 | 2875 | if (count > totalram_pages()) |
1da177e4 LT |
2876 | return NULL; |
2877 | ||
65ee03c4 GJM |
2878 | size = (unsigned long)count << PAGE_SHIFT; |
2879 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | |
1da177e4 LT |
2880 | if (!area) |
2881 | return NULL; | |
23016969 | 2882 | |
b67177ec NP |
2883 | addr = (unsigned long)area->addr; |
2884 | if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), | |
2885 | pages, PAGE_SHIFT) < 0) { | |
1da177e4 LT |
2886 | vunmap(area->addr); |
2887 | return NULL; | |
2888 | } | |
2889 | ||
c22ee528 | 2890 | if (flags & VM_MAP_PUT_PAGES) { |
b944afc9 | 2891 | area->pages = pages; |
c22ee528 ML |
2892 | area->nr_pages = count; |
2893 | } | |
1da177e4 LT |
2894 | return area->addr; |
2895 | } | |
1da177e4 LT |
2896 | EXPORT_SYMBOL(vmap); |
2897 | ||
3e9a9e25 CH |
2898 | #ifdef CONFIG_VMAP_PFN |
2899 | struct vmap_pfn_data { | |
2900 | unsigned long *pfns; | |
2901 | pgprot_t prot; | |
2902 | unsigned int idx; | |
2903 | }; | |
2904 | ||
2905 | static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) | |
2906 | { | |
2907 | struct vmap_pfn_data *data = private; | |
2908 | ||
2909 | if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) | |
2910 | return -EINVAL; | |
2911 | *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); | |
2912 | return 0; | |
2913 | } | |
2914 | ||
2915 | /** | |
2916 | * vmap_pfn - map an array of PFNs into virtually contiguous space | |
2917 | * @pfns: array of PFNs | |
2918 | * @count: number of pages to map | |
2919 | * @prot: page protection for the mapping | |
2920 | * | |
2921 | * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns | |
2922 | * the start address of the mapping. | |
2923 | */ | |
2924 | void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) | |
2925 | { | |
2926 | struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; | |
2927 | struct vm_struct *area; | |
2928 | ||
2929 | area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, | |
2930 | __builtin_return_address(0)); | |
2931 | if (!area) | |
2932 | return NULL; | |
2933 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
2934 | count * PAGE_SIZE, vmap_pfn_apply, &data)) { | |
2935 | free_vm_area(area); | |
2936 | return NULL; | |
2937 | } | |
2938 | return area->addr; | |
2939 | } | |
2940 | EXPORT_SYMBOL_GPL(vmap_pfn); | |
2941 | #endif /* CONFIG_VMAP_PFN */ | |
2942 | ||
12b9f873 UR |
2943 | static inline unsigned int |
2944 | vm_area_alloc_pages(gfp_t gfp, int nid, | |
343ab817 | 2945 | unsigned int order, unsigned int nr_pages, struct page **pages) |
12b9f873 UR |
2946 | { |
2947 | unsigned int nr_allocated = 0; | |
ffb29b1c CW |
2948 | struct page *page; |
2949 | int i; | |
12b9f873 UR |
2950 | |
2951 | /* | |
2952 | * For order-0 pages we make use of bulk allocator, if | |
2953 | * the page array is partly or not at all populated due | |
2954 | * to fails, fallback to a single page allocator that is | |
2955 | * more permissive. | |
2956 | */ | |
c00b6b96 | 2957 | if (!order) { |
9376130c MH |
2958 | gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; |
2959 | ||
343ab817 URS |
2960 | while (nr_allocated < nr_pages) { |
2961 | unsigned int nr, nr_pages_request; | |
2962 | ||
2963 | /* | |
2964 | * A maximum allowed request is hard-coded and is 100 | |
2965 | * pages per call. That is done in order to prevent a | |
2966 | * long preemption off scenario in the bulk-allocator | |
2967 | * so the range is [1:100]. | |
2968 | */ | |
2969 | nr_pages_request = min(100U, nr_pages - nr_allocated); | |
2970 | ||
c00b6b96 CW |
2971 | /* memory allocation should consider mempolicy, we can't |
2972 | * wrongly use nearest node when nid == NUMA_NO_NODE, | |
2973 | * otherwise memory may be allocated in only one node, | |
98af39d5 | 2974 | * but mempolicy wants to alloc memory by interleaving. |
c00b6b96 CW |
2975 | */ |
2976 | if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) | |
9376130c | 2977 | nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, |
c00b6b96 CW |
2978 | nr_pages_request, |
2979 | pages + nr_allocated); | |
2980 | ||
2981 | else | |
9376130c | 2982 | nr = alloc_pages_bulk_array_node(bulk_gfp, nid, |
c00b6b96 CW |
2983 | nr_pages_request, |
2984 | pages + nr_allocated); | |
343ab817 URS |
2985 | |
2986 | nr_allocated += nr; | |
2987 | cond_resched(); | |
2988 | ||
2989 | /* | |
2990 | * If zero or pages were obtained partly, | |
2991 | * fallback to a single page allocator. | |
2992 | */ | |
2993 | if (nr != nr_pages_request) | |
2994 | break; | |
2995 | } | |
3b8000ae | 2996 | } |
12b9f873 UR |
2997 | |
2998 | /* High-order pages or fallback path if "bulk" fails. */ | |
12b9f873 | 2999 | |
ffb29b1c | 3000 | while (nr_allocated < nr_pages) { |
dd544141 VA |
3001 | if (fatal_signal_pending(current)) |
3002 | break; | |
3003 | ||
ffb29b1c CW |
3004 | if (nid == NUMA_NO_NODE) |
3005 | page = alloc_pages(gfp, order); | |
3006 | else | |
3007 | page = alloc_pages_node(nid, gfp, order); | |
12b9f873 UR |
3008 | if (unlikely(!page)) |
3009 | break; | |
3b8000ae NP |
3010 | /* |
3011 | * Higher order allocations must be able to be treated as | |
3012 | * indepdenent small pages by callers (as they can with | |
3013 | * small-page vmallocs). Some drivers do their own refcounting | |
3014 | * on vmalloc_to_page() pages, some use page->mapping, | |
3015 | * page->lru, etc. | |
3016 | */ | |
3017 | if (order) | |
3018 | split_page(page, order); | |
12b9f873 UR |
3019 | |
3020 | /* | |
3021 | * Careful, we allocate and map page-order pages, but | |
3022 | * tracking is done per PAGE_SIZE page so as to keep the | |
3023 | * vm_struct APIs independent of the physical/mapped size. | |
3024 | */ | |
3025 | for (i = 0; i < (1U << order); i++) | |
3026 | pages[nr_allocated + i] = page + i; | |
3027 | ||
12e376a6 | 3028 | cond_resched(); |
12b9f873 UR |
3029 | nr_allocated += 1U << order; |
3030 | } | |
3031 | ||
3032 | return nr_allocated; | |
3033 | } | |
3034 | ||
e31d9eb5 | 3035 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
121e6f32 NP |
3036 | pgprot_t prot, unsigned int page_shift, |
3037 | int node) | |
1da177e4 | 3038 | { |
930f036b | 3039 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
9376130c | 3040 | bool nofail = gfp_mask & __GFP_NOFAIL; |
121e6f32 NP |
3041 | unsigned long addr = (unsigned long)area->addr; |
3042 | unsigned long size = get_vm_area_size(area); | |
34fe6537 | 3043 | unsigned long array_size; |
121e6f32 NP |
3044 | unsigned int nr_small_pages = size >> PAGE_SHIFT; |
3045 | unsigned int page_order; | |
451769eb MH |
3046 | unsigned int flags; |
3047 | int ret; | |
1da177e4 | 3048 | |
121e6f32 | 3049 | array_size = (unsigned long)nr_small_pages * sizeof(struct page *); |
80b1d8fd | 3050 | |
f255935b CH |
3051 | if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) |
3052 | gfp_mask |= __GFP_HIGHMEM; | |
1da177e4 | 3053 | |
1da177e4 | 3054 | /* Please note that the recursion is strictly bounded. */ |
8757d5fa | 3055 | if (array_size > PAGE_SIZE) { |
5c1f4e69 | 3056 | area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, |
f255935b | 3057 | area->caller); |
286e1ea3 | 3058 | } else { |
5c1f4e69 | 3059 | area->pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 3060 | } |
7ea36242 | 3061 | |
5c1f4e69 | 3062 | if (!area->pages) { |
c3d77172 | 3063 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf URS |
3064 | "vmalloc error: size %lu, failed to allocated page array size %lu", |
3065 | nr_small_pages * PAGE_SIZE, array_size); | |
cd61413b | 3066 | free_vm_area(area); |
1da177e4 LT |
3067 | return NULL; |
3068 | } | |
1da177e4 | 3069 | |
121e6f32 | 3070 | set_vm_area_page_order(area, page_shift - PAGE_SHIFT); |
121e6f32 | 3071 | page_order = vm_area_page_order(area); |
bf53d6f8 | 3072 | |
c3d77172 URS |
3073 | area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, |
3074 | node, page_order, nr_small_pages, area->pages); | |
5c1f4e69 | 3075 | |
97105f0a | 3076 | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); |
4e5aa1f4 | 3077 | if (gfp_mask & __GFP_ACCOUNT) { |
3b8000ae | 3078 | int i; |
4e5aa1f4 | 3079 | |
3b8000ae NP |
3080 | for (i = 0; i < area->nr_pages; i++) |
3081 | mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); | |
4e5aa1f4 | 3082 | } |
1da177e4 | 3083 | |
5c1f4e69 URS |
3084 | /* |
3085 | * If not enough pages were obtained to accomplish an | |
f41f036b | 3086 | * allocation request, free them via vfree() if any. |
5c1f4e69 URS |
3087 | */ |
3088 | if (area->nr_pages != nr_small_pages) { | |
c3d77172 | 3089 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf | 3090 | "vmalloc error: size %lu, page order %u, failed to allocate pages", |
5c1f4e69 URS |
3091 | area->nr_pages * PAGE_SIZE, page_order); |
3092 | goto fail; | |
3093 | } | |
3094 | ||
451769eb MH |
3095 | /* |
3096 | * page tables allocations ignore external gfp mask, enforce it | |
3097 | * by the scope API | |
3098 | */ | |
3099 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | |
3100 | flags = memalloc_nofs_save(); | |
3101 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | |
3102 | flags = memalloc_noio_save(); | |
3103 | ||
9376130c MH |
3104 | do { |
3105 | ret = vmap_pages_range(addr, addr + size, prot, area->pages, | |
451769eb | 3106 | page_shift); |
9376130c MH |
3107 | if (nofail && (ret < 0)) |
3108 | schedule_timeout_uninterruptible(1); | |
3109 | } while (nofail && (ret < 0)); | |
451769eb MH |
3110 | |
3111 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | |
3112 | memalloc_nofs_restore(flags); | |
3113 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | |
3114 | memalloc_noio_restore(flags); | |
3115 | ||
3116 | if (ret < 0) { | |
c3d77172 | 3117 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf URS |
3118 | "vmalloc error: size %lu, failed to map pages", |
3119 | area->nr_pages * PAGE_SIZE); | |
1da177e4 | 3120 | goto fail; |
d70bec8c | 3121 | } |
ed1f324c | 3122 | |
1da177e4 LT |
3123 | return area->addr; |
3124 | ||
3125 | fail: | |
f41f036b | 3126 | vfree(area->addr); |
1da177e4 LT |
3127 | return NULL; |
3128 | } | |
3129 | ||
3130 | /** | |
92eac168 MR |
3131 | * __vmalloc_node_range - allocate virtually contiguous memory |
3132 | * @size: allocation size | |
3133 | * @align: desired alignment | |
3134 | * @start: vm area range start | |
3135 | * @end: vm area range end | |
3136 | * @gfp_mask: flags for the page level allocator | |
3137 | * @prot: protection mask for the allocated pages | |
3138 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) | |
3139 | * @node: node to use for allocation or NUMA_NO_NODE | |
3140 | * @caller: caller's return address | |
3141 | * | |
3142 | * Allocate enough pages to cover @size from the page level | |
b7d90e7a | 3143 | * allocator with @gfp_mask flags. Please note that the full set of gfp |
30d3f011 MH |
3144 | * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all |
3145 | * supported. | |
3146 | * Zone modifiers are not supported. From the reclaim modifiers | |
3147 | * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) | |
3148 | * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and | |
3149 | * __GFP_RETRY_MAYFAIL are not supported). | |
3150 | * | |
3151 | * __GFP_NOWARN can be used to suppress failures messages. | |
b7d90e7a MH |
3152 | * |
3153 | * Map them into contiguous kernel virtual space, using a pagetable | |
3154 | * protection of @prot. | |
a862f68a MR |
3155 | * |
3156 | * Return: the address of the area or %NULL on failure | |
1da177e4 | 3157 | */ |
d0a21265 DR |
3158 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
3159 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
cb9e3c29 AR |
3160 | pgprot_t prot, unsigned long vm_flags, int node, |
3161 | const void *caller) | |
1da177e4 LT |
3162 | { |
3163 | struct vm_struct *area; | |
19f1c3ac | 3164 | void *ret; |
f6e39794 | 3165 | kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; |
89219d37 | 3166 | unsigned long real_size = size; |
121e6f32 NP |
3167 | unsigned long real_align = align; |
3168 | unsigned int shift = PAGE_SHIFT; | |
1da177e4 | 3169 | |
d70bec8c NP |
3170 | if (WARN_ON_ONCE(!size)) |
3171 | return NULL; | |
3172 | ||
3173 | if ((size >> PAGE_SHIFT) > totalram_pages()) { | |
3174 | warn_alloc(gfp_mask, NULL, | |
f4bdfeaf URS |
3175 | "vmalloc error: size %lu, exceeds total pages", |
3176 | real_size); | |
d70bec8c | 3177 | return NULL; |
121e6f32 NP |
3178 | } |
3179 | ||
559089e0 | 3180 | if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { |
121e6f32 | 3181 | unsigned long size_per_node; |
1da177e4 | 3182 | |
121e6f32 NP |
3183 | /* |
3184 | * Try huge pages. Only try for PAGE_KERNEL allocations, | |
3185 | * others like modules don't yet expect huge pages in | |
3186 | * their allocations due to apply_to_page_range not | |
3187 | * supporting them. | |
3188 | */ | |
3189 | ||
3190 | size_per_node = size; | |
3191 | if (node == NUMA_NO_NODE) | |
3192 | size_per_node /= num_online_nodes(); | |
3382bbee | 3193 | if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) |
121e6f32 | 3194 | shift = PMD_SHIFT; |
3382bbee CL |
3195 | else |
3196 | shift = arch_vmap_pte_supported_shift(size_per_node); | |
3197 | ||
3198 | align = max(real_align, 1UL << shift); | |
3199 | size = ALIGN(real_size, 1UL << shift); | |
121e6f32 NP |
3200 | } |
3201 | ||
3202 | again: | |
7ca3027b DA |
3203 | area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | |
3204 | VM_UNINITIALIZED | vm_flags, start, end, node, | |
3205 | gfp_mask, caller); | |
d70bec8c | 3206 | if (!area) { |
9376130c | 3207 | bool nofail = gfp_mask & __GFP_NOFAIL; |
d70bec8c | 3208 | warn_alloc(gfp_mask, NULL, |
9376130c MH |
3209 | "vmalloc error: size %lu, vm_struct allocation failed%s", |
3210 | real_size, (nofail) ? ". Retrying." : ""); | |
3211 | if (nofail) { | |
3212 | schedule_timeout_uninterruptible(1); | |
3213 | goto again; | |
3214 | } | |
de7d2b56 | 3215 | goto fail; |
d70bec8c | 3216 | } |
1da177e4 | 3217 | |
f6e39794 AK |
3218 | /* |
3219 | * Prepare arguments for __vmalloc_area_node() and | |
3220 | * kasan_unpoison_vmalloc(). | |
3221 | */ | |
3222 | if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { | |
3223 | if (kasan_hw_tags_enabled()) { | |
3224 | /* | |
3225 | * Modify protection bits to allow tagging. | |
3226 | * This must be done before mapping. | |
3227 | */ | |
3228 | prot = arch_vmap_pgprot_tagged(prot); | |
01d92c7f | 3229 | |
f6e39794 AK |
3230 | /* |
3231 | * Skip page_alloc poisoning and zeroing for physical | |
3232 | * pages backing VM_ALLOC mapping. Memory is instead | |
3233 | * poisoned and zeroed by kasan_unpoison_vmalloc(). | |
3234 | */ | |
3235 | gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; | |
3236 | } | |
3237 | ||
3238 | /* Take note that the mapping is PAGE_KERNEL. */ | |
3239 | kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; | |
23689e91 AK |
3240 | } |
3241 | ||
01d92c7f | 3242 | /* Allocate physical pages and map them into vmalloc space. */ |
19f1c3ac AK |
3243 | ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); |
3244 | if (!ret) | |
121e6f32 | 3245 | goto fail; |
89219d37 | 3246 | |
23689e91 AK |
3247 | /* |
3248 | * Mark the pages as accessible, now that they are mapped. | |
6c2f761d AK |
3249 | * The condition for setting KASAN_VMALLOC_INIT should complement the |
3250 | * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check | |
3251 | * to make sure that memory is initialized under the same conditions. | |
f6e39794 AK |
3252 | * Tag-based KASAN modes only assign tags to normal non-executable |
3253 | * allocations, see __kasan_unpoison_vmalloc(). | |
23689e91 | 3254 | */ |
f6e39794 | 3255 | kasan_flags |= KASAN_VMALLOC_VM_ALLOC; |
6c2f761d AK |
3256 | if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && |
3257 | (gfp_mask & __GFP_SKIP_ZERO)) | |
23689e91 | 3258 | kasan_flags |= KASAN_VMALLOC_INIT; |
f6e39794 | 3259 | /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ |
23689e91 | 3260 | area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); |
19f1c3ac | 3261 | |
f5252e00 | 3262 | /* |
20fc02b4 ZY |
3263 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
3264 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 3265 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 3266 | */ |
20fc02b4 | 3267 | clear_vm_uninitialized_flag(area); |
f5252e00 | 3268 | |
7ca3027b | 3269 | size = PAGE_ALIGN(size); |
60115fa5 KW |
3270 | if (!(vm_flags & VM_DEFER_KMEMLEAK)) |
3271 | kmemleak_vmalloc(area, size, gfp_mask); | |
89219d37 | 3272 | |
19f1c3ac | 3273 | return area->addr; |
de7d2b56 JP |
3274 | |
3275 | fail: | |
121e6f32 NP |
3276 | if (shift > PAGE_SHIFT) { |
3277 | shift = PAGE_SHIFT; | |
3278 | align = real_align; | |
3279 | size = real_size; | |
3280 | goto again; | |
3281 | } | |
3282 | ||
de7d2b56 | 3283 | return NULL; |
1da177e4 LT |
3284 | } |
3285 | ||
d0a21265 | 3286 | /** |
92eac168 MR |
3287 | * __vmalloc_node - allocate virtually contiguous memory |
3288 | * @size: allocation size | |
3289 | * @align: desired alignment | |
3290 | * @gfp_mask: flags for the page level allocator | |
92eac168 MR |
3291 | * @node: node to use for allocation or NUMA_NO_NODE |
3292 | * @caller: caller's return address | |
a7c3e901 | 3293 | * |
f38fcb9c CH |
3294 | * Allocate enough pages to cover @size from the page level allocator with |
3295 | * @gfp_mask flags. Map them into contiguous kernel virtual space. | |
a7c3e901 | 3296 | * |
92eac168 MR |
3297 | * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL |
3298 | * and __GFP_NOFAIL are not supported | |
a7c3e901 | 3299 | * |
92eac168 MR |
3300 | * Any use of gfp flags outside of GFP_KERNEL should be consulted |
3301 | * with mm people. | |
a862f68a MR |
3302 | * |
3303 | * Return: pointer to the allocated memory or %NULL on error | |
d0a21265 | 3304 | */ |
2b905948 | 3305 | void *__vmalloc_node(unsigned long size, unsigned long align, |
f38fcb9c | 3306 | gfp_t gfp_mask, int node, const void *caller) |
d0a21265 DR |
3307 | { |
3308 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
f38fcb9c | 3309 | gfp_mask, PAGE_KERNEL, 0, node, caller); |
d0a21265 | 3310 | } |
c3f896dc CH |
3311 | /* |
3312 | * This is only for performance analysis of vmalloc and stress purpose. | |
3313 | * It is required by vmalloc test module, therefore do not use it other | |
3314 | * than that. | |
3315 | */ | |
3316 | #ifdef CONFIG_TEST_VMALLOC_MODULE | |
3317 | EXPORT_SYMBOL_GPL(__vmalloc_node); | |
3318 | #endif | |
d0a21265 | 3319 | |
88dca4ca | 3320 | void *__vmalloc(unsigned long size, gfp_t gfp_mask) |
930fc45a | 3321 | { |
f38fcb9c | 3322 | return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, |
23016969 | 3323 | __builtin_return_address(0)); |
930fc45a | 3324 | } |
1da177e4 LT |
3325 | EXPORT_SYMBOL(__vmalloc); |
3326 | ||
3327 | /** | |
92eac168 MR |
3328 | * vmalloc - allocate virtually contiguous memory |
3329 | * @size: allocation size | |
3330 | * | |
3331 | * Allocate enough pages to cover @size from the page level | |
3332 | * allocator and map them into contiguous kernel virtual space. | |
1da177e4 | 3333 | * |
92eac168 MR |
3334 | * For tight control over page level allocator and protection flags |
3335 | * use __vmalloc() instead. | |
a862f68a MR |
3336 | * |
3337 | * Return: pointer to the allocated memory or %NULL on error | |
1da177e4 LT |
3338 | */ |
3339 | void *vmalloc(unsigned long size) | |
3340 | { | |
4d39d728 CH |
3341 | return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, |
3342 | __builtin_return_address(0)); | |
1da177e4 | 3343 | } |
1da177e4 LT |
3344 | EXPORT_SYMBOL(vmalloc); |
3345 | ||
15a64f5a | 3346 | /** |
559089e0 SL |
3347 | * vmalloc_huge - allocate virtually contiguous memory, allow huge pages |
3348 | * @size: allocation size | |
3349 | * @gfp_mask: flags for the page level allocator | |
15a64f5a | 3350 | * |
559089e0 | 3351 | * Allocate enough pages to cover @size from the page level |
15a64f5a | 3352 | * allocator and map them into contiguous kernel virtual space. |
559089e0 SL |
3353 | * If @size is greater than or equal to PMD_SIZE, allow using |
3354 | * huge pages for the memory | |
15a64f5a CI |
3355 | * |
3356 | * Return: pointer to the allocated memory or %NULL on error | |
3357 | */ | |
559089e0 | 3358 | void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) |
15a64f5a CI |
3359 | { |
3360 | return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | |
559089e0 | 3361 | gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, |
15a64f5a CI |
3362 | NUMA_NO_NODE, __builtin_return_address(0)); |
3363 | } | |
559089e0 | 3364 | EXPORT_SYMBOL_GPL(vmalloc_huge); |
15a64f5a | 3365 | |
e1ca7788 | 3366 | /** |
92eac168 MR |
3367 | * vzalloc - allocate virtually contiguous memory with zero fill |
3368 | * @size: allocation size | |
3369 | * | |
3370 | * Allocate enough pages to cover @size from the page level | |
3371 | * allocator and map them into contiguous kernel virtual space. | |
3372 | * The memory allocated is set to zero. | |
3373 | * | |
3374 | * For tight control over page level allocator and protection flags | |
3375 | * use __vmalloc() instead. | |
a862f68a MR |
3376 | * |
3377 | * Return: pointer to the allocated memory or %NULL on error | |
e1ca7788 DY |
3378 | */ |
3379 | void *vzalloc(unsigned long size) | |
3380 | { | |
4d39d728 CH |
3381 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, |
3382 | __builtin_return_address(0)); | |
e1ca7788 DY |
3383 | } |
3384 | EXPORT_SYMBOL(vzalloc); | |
3385 | ||
83342314 | 3386 | /** |
ead04089 REB |
3387 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
3388 | * @size: allocation size | |
83342314 | 3389 | * |
ead04089 REB |
3390 | * The resulting memory area is zeroed so it can be mapped to userspace |
3391 | * without leaking data. | |
a862f68a MR |
3392 | * |
3393 | * Return: pointer to the allocated memory or %NULL on error | |
83342314 NP |
3394 | */ |
3395 | void *vmalloc_user(unsigned long size) | |
3396 | { | |
bc84c535 RP |
3397 | return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
3398 | GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, | |
3399 | VM_USERMAP, NUMA_NO_NODE, | |
3400 | __builtin_return_address(0)); | |
83342314 NP |
3401 | } |
3402 | EXPORT_SYMBOL(vmalloc_user); | |
3403 | ||
930fc45a | 3404 | /** |
92eac168 MR |
3405 | * vmalloc_node - allocate memory on a specific node |
3406 | * @size: allocation size | |
3407 | * @node: numa node | |
930fc45a | 3408 | * |
92eac168 MR |
3409 | * Allocate enough pages to cover @size from the page level |
3410 | * allocator and map them into contiguous kernel virtual space. | |
930fc45a | 3411 | * |
92eac168 MR |
3412 | * For tight control over page level allocator and protection flags |
3413 | * use __vmalloc() instead. | |
a862f68a MR |
3414 | * |
3415 | * Return: pointer to the allocated memory or %NULL on error | |
930fc45a CL |
3416 | */ |
3417 | void *vmalloc_node(unsigned long size, int node) | |
3418 | { | |
f38fcb9c CH |
3419 | return __vmalloc_node(size, 1, GFP_KERNEL, node, |
3420 | __builtin_return_address(0)); | |
930fc45a CL |
3421 | } |
3422 | EXPORT_SYMBOL(vmalloc_node); | |
3423 | ||
e1ca7788 DY |
3424 | /** |
3425 | * vzalloc_node - allocate memory on a specific node with zero fill | |
3426 | * @size: allocation size | |
3427 | * @node: numa node | |
3428 | * | |
3429 | * Allocate enough pages to cover @size from the page level | |
3430 | * allocator and map them into contiguous kernel virtual space. | |
3431 | * The memory allocated is set to zero. | |
3432 | * | |
a862f68a | 3433 | * Return: pointer to the allocated memory or %NULL on error |
e1ca7788 DY |
3434 | */ |
3435 | void *vzalloc_node(unsigned long size, int node) | |
3436 | { | |
4d39d728 CH |
3437 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, |
3438 | __builtin_return_address(0)); | |
e1ca7788 DY |
3439 | } |
3440 | EXPORT_SYMBOL(vzalloc_node); | |
3441 | ||
0d08e0d3 | 3442 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
698d0831 | 3443 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
0d08e0d3 | 3444 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
698d0831 | 3445 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) |
0d08e0d3 | 3446 | #else |
698d0831 MH |
3447 | /* |
3448 | * 64b systems should always have either DMA or DMA32 zones. For others | |
3449 | * GFP_DMA32 should do the right thing and use the normal zone. | |
3450 | */ | |
68d68ff6 | 3451 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
0d08e0d3 AK |
3452 | #endif |
3453 | ||
1da177e4 | 3454 | /** |
92eac168 MR |
3455 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
3456 | * @size: allocation size | |
1da177e4 | 3457 | * |
92eac168 MR |
3458 | * Allocate enough 32bit PA addressable pages to cover @size from the |
3459 | * page level allocator and map them into contiguous kernel virtual space. | |
a862f68a MR |
3460 | * |
3461 | * Return: pointer to the allocated memory or %NULL on error | |
1da177e4 LT |
3462 | */ |
3463 | void *vmalloc_32(unsigned long size) | |
3464 | { | |
f38fcb9c CH |
3465 | return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, |
3466 | __builtin_return_address(0)); | |
1da177e4 | 3467 | } |
1da177e4 LT |
3468 | EXPORT_SYMBOL(vmalloc_32); |
3469 | ||
83342314 | 3470 | /** |
ead04089 | 3471 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
92eac168 | 3472 | * @size: allocation size |
ead04089 REB |
3473 | * |
3474 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
3475 | * mapped to userspace without leaking data. | |
a862f68a MR |
3476 | * |
3477 | * Return: pointer to the allocated memory or %NULL on error | |
83342314 NP |
3478 | */ |
3479 | void *vmalloc_32_user(unsigned long size) | |
3480 | { | |
bc84c535 RP |
3481 | return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
3482 | GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | |
3483 | VM_USERMAP, NUMA_NO_NODE, | |
3484 | __builtin_return_address(0)); | |
83342314 NP |
3485 | } |
3486 | EXPORT_SYMBOL(vmalloc_32_user); | |
3487 | ||
d0107eb0 KH |
3488 | /* |
3489 | * small helper routine , copy contents to buf from addr. | |
3490 | * If the page is not present, fill zero. | |
3491 | */ | |
3492 | ||
3493 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
3494 | { | |
3495 | struct page *p; | |
3496 | int copied = 0; | |
3497 | ||
3498 | while (count) { | |
3499 | unsigned long offset, length; | |
3500 | ||
891c49ab | 3501 | offset = offset_in_page(addr); |
d0107eb0 KH |
3502 | length = PAGE_SIZE - offset; |
3503 | if (length > count) | |
3504 | length = count; | |
3505 | p = vmalloc_to_page(addr); | |
3506 | /* | |
3507 | * To do safe access to this _mapped_ area, we need | |
3508 | * lock. But adding lock here means that we need to add | |
f0953a1b | 3509 | * overhead of vmalloc()/vfree() calls for this _debug_ |
d0107eb0 KH |
3510 | * interface, rarely used. Instead of that, we'll use |
3511 | * kmap() and get small overhead in this access function. | |
3512 | */ | |
3513 | if (p) { | |
f7c8ce44 | 3514 | /* We can expect USER0 is not used -- see vread() */ |
9b04c5fe | 3515 | void *map = kmap_atomic(p); |
d0107eb0 | 3516 | memcpy(buf, map + offset, length); |
9b04c5fe | 3517 | kunmap_atomic(map); |
d0107eb0 KH |
3518 | } else |
3519 | memset(buf, 0, length); | |
3520 | ||
3521 | addr += length; | |
3522 | buf += length; | |
3523 | copied += length; | |
3524 | count -= length; | |
3525 | } | |
3526 | return copied; | |
3527 | } | |
3528 | ||
d0107eb0 | 3529 | /** |
92eac168 MR |
3530 | * vread() - read vmalloc area in a safe way. |
3531 | * @buf: buffer for reading data | |
3532 | * @addr: vm address. | |
3533 | * @count: number of bytes to be read. | |
3534 | * | |
92eac168 MR |
3535 | * This function checks that addr is a valid vmalloc'ed area, and |
3536 | * copy data from that area to a given buffer. If the given memory range | |
3537 | * of [addr...addr+count) includes some valid address, data is copied to | |
3538 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
3539 | * IOREMAP area is treated as memory hole and no copy is done. | |
3540 | * | |
3541 | * If [addr...addr+count) doesn't includes any intersects with alive | |
3542 | * vm_struct area, returns 0. @buf should be kernel's buffer. | |
3543 | * | |
3544 | * Note: In usual ops, vread() is never necessary because the caller | |
3545 | * should know vmalloc() area is valid and can use memcpy(). | |
3546 | * This is for routines which have to access vmalloc area without | |
bbcd53c9 | 3547 | * any information, as /proc/kcore. |
a862f68a MR |
3548 | * |
3549 | * Return: number of bytes for which addr and buf should be increased | |
3550 | * (same number as @count) or %0 if [addr...addr+count) doesn't | |
3551 | * include any intersection with valid vmalloc area | |
d0107eb0 | 3552 | */ |
1da177e4 LT |
3553 | long vread(char *buf, char *addr, unsigned long count) |
3554 | { | |
e81ce85f JK |
3555 | struct vmap_area *va; |
3556 | struct vm_struct *vm; | |
1da177e4 | 3557 | char *vaddr, *buf_start = buf; |
d0107eb0 | 3558 | unsigned long buflen = count; |
1da177e4 LT |
3559 | unsigned long n; |
3560 | ||
4aff1dc4 AK |
3561 | addr = kasan_reset_tag(addr); |
3562 | ||
1da177e4 LT |
3563 | /* Don't allow overflow */ |
3564 | if ((unsigned long) addr + count < count) | |
3565 | count = -(unsigned long) addr; | |
3566 | ||
e81ce85f | 3567 | spin_lock(&vmap_area_lock); |
f181234a | 3568 | va = find_vmap_area_exceed_addr((unsigned long)addr); |
f608788c SD |
3569 | if (!va) |
3570 | goto finished; | |
f181234a CW |
3571 | |
3572 | /* no intersects with alive vmap_area */ | |
3573 | if ((unsigned long)addr + count <= va->va_start) | |
3574 | goto finished; | |
3575 | ||
f608788c | 3576 | list_for_each_entry_from(va, &vmap_area_list, list) { |
e81ce85f JK |
3577 | if (!count) |
3578 | break; | |
3579 | ||
688fcbfc | 3580 | if (!va->vm) |
e81ce85f JK |
3581 | continue; |
3582 | ||
3583 | vm = va->vm; | |
3584 | vaddr = (char *) vm->addr; | |
762216ab | 3585 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
3586 | continue; |
3587 | while (addr < vaddr) { | |
3588 | if (count == 0) | |
3589 | goto finished; | |
3590 | *buf = '\0'; | |
3591 | buf++; | |
3592 | addr++; | |
3593 | count--; | |
3594 | } | |
762216ab | 3595 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
3596 | if (n > count) |
3597 | n = count; | |
e81ce85f | 3598 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
3599 | aligned_vread(buf, addr, n); |
3600 | else /* IOREMAP area is treated as memory hole */ | |
3601 | memset(buf, 0, n); | |
3602 | buf += n; | |
3603 | addr += n; | |
3604 | count -= n; | |
1da177e4 LT |
3605 | } |
3606 | finished: | |
e81ce85f | 3607 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
3608 | |
3609 | if (buf == buf_start) | |
3610 | return 0; | |
3611 | /* zero-fill memory holes */ | |
3612 | if (buf != buf_start + buflen) | |
3613 | memset(buf, 0, buflen - (buf - buf_start)); | |
3614 | ||
3615 | return buflen; | |
1da177e4 LT |
3616 | } |
3617 | ||
83342314 | 3618 | /** |
92eac168 MR |
3619 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
3620 | * @vma: vma to cover | |
3621 | * @uaddr: target user address to start at | |
3622 | * @kaddr: virtual address of vmalloc kernel memory | |
bdebd6a2 | 3623 | * @pgoff: offset from @kaddr to start at |
92eac168 | 3624 | * @size: size of map area |
7682486b | 3625 | * |
92eac168 | 3626 | * Returns: 0 for success, -Exxx on failure |
83342314 | 3627 | * |
92eac168 MR |
3628 | * This function checks that @kaddr is a valid vmalloc'ed area, |
3629 | * and that it is big enough to cover the range starting at | |
3630 | * @uaddr in @vma. Will return failure if that criteria isn't | |
3631 | * met. | |
83342314 | 3632 | * |
92eac168 | 3633 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 3634 | */ |
e69e9d4a | 3635 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
bdebd6a2 JH |
3636 | void *kaddr, unsigned long pgoff, |
3637 | unsigned long size) | |
83342314 NP |
3638 | { |
3639 | struct vm_struct *area; | |
bdebd6a2 JH |
3640 | unsigned long off; |
3641 | unsigned long end_index; | |
3642 | ||
3643 | if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | |
3644 | return -EINVAL; | |
83342314 | 3645 | |
e69e9d4a HD |
3646 | size = PAGE_ALIGN(size); |
3647 | ||
3648 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
3649 | return -EINVAL; |
3650 | ||
e69e9d4a | 3651 | area = find_vm_area(kaddr); |
83342314 | 3652 | if (!area) |
db64fe02 | 3653 | return -EINVAL; |
83342314 | 3654 | |
fe9041c2 | 3655 | if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) |
db64fe02 | 3656 | return -EINVAL; |
83342314 | 3657 | |
bdebd6a2 JH |
3658 | if (check_add_overflow(size, off, &end_index) || |
3659 | end_index > get_vm_area_size(area)) | |
db64fe02 | 3660 | return -EINVAL; |
bdebd6a2 | 3661 | kaddr += off; |
83342314 | 3662 | |
83342314 | 3663 | do { |
e69e9d4a | 3664 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
3665 | int ret; |
3666 | ||
83342314 NP |
3667 | ret = vm_insert_page(vma, uaddr, page); |
3668 | if (ret) | |
3669 | return ret; | |
3670 | ||
3671 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
3672 | kaddr += PAGE_SIZE; |
3673 | size -= PAGE_SIZE; | |
3674 | } while (size > 0); | |
83342314 | 3675 | |
314e51b9 | 3676 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 3677 | |
db64fe02 | 3678 | return 0; |
83342314 | 3679 | } |
e69e9d4a HD |
3680 | |
3681 | /** | |
92eac168 MR |
3682 | * remap_vmalloc_range - map vmalloc pages to userspace |
3683 | * @vma: vma to cover (map full range of vma) | |
3684 | * @addr: vmalloc memory | |
3685 | * @pgoff: number of pages into addr before first page to map | |
e69e9d4a | 3686 | * |
92eac168 | 3687 | * Returns: 0 for success, -Exxx on failure |
e69e9d4a | 3688 | * |
92eac168 MR |
3689 | * This function checks that addr is a valid vmalloc'ed area, and |
3690 | * that it is big enough to cover the vma. Will return failure if | |
3691 | * that criteria isn't met. | |
e69e9d4a | 3692 | * |
92eac168 | 3693 | * Similar to remap_pfn_range() (see mm/memory.c) |
e69e9d4a HD |
3694 | */ |
3695 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
3696 | unsigned long pgoff) | |
3697 | { | |
3698 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
bdebd6a2 | 3699 | addr, pgoff, |
e69e9d4a HD |
3700 | vma->vm_end - vma->vm_start); |
3701 | } | |
83342314 NP |
3702 | EXPORT_SYMBOL(remap_vmalloc_range); |
3703 | ||
5f4352fb JF |
3704 | void free_vm_area(struct vm_struct *area) |
3705 | { | |
3706 | struct vm_struct *ret; | |
3707 | ret = remove_vm_area(area->addr); | |
3708 | BUG_ON(ret != area); | |
3709 | kfree(area); | |
3710 | } | |
3711 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 3712 | |
4f8b02b4 | 3713 | #ifdef CONFIG_SMP |
ca23e405 TH |
3714 | static struct vmap_area *node_to_va(struct rb_node *n) |
3715 | { | |
4583e773 | 3716 | return rb_entry_safe(n, struct vmap_area, rb_node); |
ca23e405 TH |
3717 | } |
3718 | ||
3719 | /** | |
68ad4a33 URS |
3720 | * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to |
3721 | * @addr: target address | |
ca23e405 | 3722 | * |
68ad4a33 URS |
3723 | * Returns: vmap_area if it is found. If there is no such area |
3724 | * the first highest(reverse order) vmap_area is returned | |
3725 | * i.e. va->va_start < addr && va->va_end < addr or NULL | |
3726 | * if there are no any areas before @addr. | |
ca23e405 | 3727 | */ |
68ad4a33 URS |
3728 | static struct vmap_area * |
3729 | pvm_find_va_enclose_addr(unsigned long addr) | |
ca23e405 | 3730 | { |
68ad4a33 URS |
3731 | struct vmap_area *va, *tmp; |
3732 | struct rb_node *n; | |
3733 | ||
3734 | n = free_vmap_area_root.rb_node; | |
3735 | va = NULL; | |
ca23e405 TH |
3736 | |
3737 | while (n) { | |
68ad4a33 URS |
3738 | tmp = rb_entry(n, struct vmap_area, rb_node); |
3739 | if (tmp->va_start <= addr) { | |
3740 | va = tmp; | |
3741 | if (tmp->va_end >= addr) | |
3742 | break; | |
3743 | ||
ca23e405 | 3744 | n = n->rb_right; |
68ad4a33 URS |
3745 | } else { |
3746 | n = n->rb_left; | |
3747 | } | |
ca23e405 TH |
3748 | } |
3749 | ||
68ad4a33 | 3750 | return va; |
ca23e405 TH |
3751 | } |
3752 | ||
3753 | /** | |
68ad4a33 URS |
3754 | * pvm_determine_end_from_reverse - find the highest aligned address |
3755 | * of free block below VMALLOC_END | |
3756 | * @va: | |
3757 | * in - the VA we start the search(reverse order); | |
3758 | * out - the VA with the highest aligned end address. | |
799fa85d | 3759 | * @align: alignment for required highest address |
ca23e405 | 3760 | * |
68ad4a33 | 3761 | * Returns: determined end address within vmap_area |
ca23e405 | 3762 | */ |
68ad4a33 URS |
3763 | static unsigned long |
3764 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | |
ca23e405 | 3765 | { |
68ad4a33 | 3766 | unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); |
ca23e405 TH |
3767 | unsigned long addr; |
3768 | ||
68ad4a33 URS |
3769 | if (likely(*va)) { |
3770 | list_for_each_entry_from_reverse((*va), | |
3771 | &free_vmap_area_list, list) { | |
3772 | addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | |
3773 | if ((*va)->va_start < addr) | |
3774 | return addr; | |
3775 | } | |
ca23e405 TH |
3776 | } |
3777 | ||
68ad4a33 | 3778 | return 0; |
ca23e405 TH |
3779 | } |
3780 | ||
3781 | /** | |
3782 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
3783 | * @offsets: array containing offset of each area | |
3784 | * @sizes: array containing size of each area | |
3785 | * @nr_vms: the number of areas to allocate | |
3786 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
3787 | * |
3788 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
3789 | * vm_structs on success, %NULL on failure | |
3790 | * | |
3791 | * Percpu allocator wants to use congruent vm areas so that it can | |
3792 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
3793 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
3794 | * be scattered pretty far, distance between two areas easily going up | |
3795 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
3796 | * areas are allocated from top. | |
ca23e405 | 3797 | * |
68ad4a33 URS |
3798 | * Despite its complicated look, this allocator is rather simple. It |
3799 | * does everything top-down and scans free blocks from the end looking | |
3800 | * for matching base. While scanning, if any of the areas do not fit the | |
3801 | * base address is pulled down to fit the area. Scanning is repeated till | |
3802 | * all the areas fit and then all necessary data structures are inserted | |
3803 | * and the result is returned. | |
ca23e405 TH |
3804 | */ |
3805 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
3806 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 3807 | size_t align) |
ca23e405 TH |
3808 | { |
3809 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
3810 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
68ad4a33 | 3811 | struct vmap_area **vas, *va; |
ca23e405 TH |
3812 | struct vm_struct **vms; |
3813 | int area, area2, last_area, term_area; | |
253a496d | 3814 | unsigned long base, start, size, end, last_end, orig_start, orig_end; |
ca23e405 TH |
3815 | bool purged = false; |
3816 | ||
ca23e405 | 3817 | /* verify parameters and allocate data structures */ |
891c49ab | 3818 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); |
ca23e405 TH |
3819 | for (last_area = 0, area = 0; area < nr_vms; area++) { |
3820 | start = offsets[area]; | |
3821 | end = start + sizes[area]; | |
3822 | ||
3823 | /* is everything aligned properly? */ | |
3824 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
3825 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
3826 | ||
3827 | /* detect the area with the highest address */ | |
3828 | if (start > offsets[last_area]) | |
3829 | last_area = area; | |
3830 | ||
c568da28 | 3831 | for (area2 = area + 1; area2 < nr_vms; area2++) { |
ca23e405 TH |
3832 | unsigned long start2 = offsets[area2]; |
3833 | unsigned long end2 = start2 + sizes[area2]; | |
3834 | ||
c568da28 | 3835 | BUG_ON(start2 < end && start < end2); |
ca23e405 TH |
3836 | } |
3837 | } | |
3838 | last_end = offsets[last_area] + sizes[last_area]; | |
3839 | ||
3840 | if (vmalloc_end - vmalloc_start < last_end) { | |
3841 | WARN_ON(true); | |
3842 | return NULL; | |
3843 | } | |
3844 | ||
4d67d860 TM |
3845 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
3846 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 3847 | if (!vas || !vms) |
f1db7afd | 3848 | goto err_free2; |
ca23e405 TH |
3849 | |
3850 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 | 3851 | vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); |
ec3f64fc | 3852 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); |
ca23e405 TH |
3853 | if (!vas[area] || !vms[area]) |
3854 | goto err_free; | |
3855 | } | |
3856 | retry: | |
e36176be | 3857 | spin_lock(&free_vmap_area_lock); |
ca23e405 TH |
3858 | |
3859 | /* start scanning - we scan from the top, begin with the last area */ | |
3860 | area = term_area = last_area; | |
3861 | start = offsets[area]; | |
3862 | end = start + sizes[area]; | |
3863 | ||
68ad4a33 URS |
3864 | va = pvm_find_va_enclose_addr(vmalloc_end); |
3865 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
ca23e405 TH |
3866 | |
3867 | while (true) { | |
ca23e405 TH |
3868 | /* |
3869 | * base might have underflowed, add last_end before | |
3870 | * comparing. | |
3871 | */ | |
68ad4a33 URS |
3872 | if (base + last_end < vmalloc_start + last_end) |
3873 | goto overflow; | |
ca23e405 TH |
3874 | |
3875 | /* | |
68ad4a33 | 3876 | * Fitting base has not been found. |
ca23e405 | 3877 | */ |
68ad4a33 URS |
3878 | if (va == NULL) |
3879 | goto overflow; | |
ca23e405 | 3880 | |
5336e52c | 3881 | /* |
d8cc323d | 3882 | * If required width exceeds current VA block, move |
5336e52c KS |
3883 | * base downwards and then recheck. |
3884 | */ | |
3885 | if (base + end > va->va_end) { | |
3886 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
3887 | term_area = area; | |
3888 | continue; | |
3889 | } | |
3890 | ||
ca23e405 | 3891 | /* |
68ad4a33 | 3892 | * If this VA does not fit, move base downwards and recheck. |
ca23e405 | 3893 | */ |
5336e52c | 3894 | if (base + start < va->va_start) { |
68ad4a33 URS |
3895 | va = node_to_va(rb_prev(&va->rb_node)); |
3896 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
ca23e405 TH |
3897 | term_area = area; |
3898 | continue; | |
3899 | } | |
3900 | ||
3901 | /* | |
3902 | * This area fits, move on to the previous one. If | |
3903 | * the previous one is the terminal one, we're done. | |
3904 | */ | |
3905 | area = (area + nr_vms - 1) % nr_vms; | |
3906 | if (area == term_area) | |
3907 | break; | |
68ad4a33 | 3908 | |
ca23e405 TH |
3909 | start = offsets[area]; |
3910 | end = start + sizes[area]; | |
68ad4a33 | 3911 | va = pvm_find_va_enclose_addr(base + end); |
ca23e405 | 3912 | } |
68ad4a33 | 3913 | |
ca23e405 TH |
3914 | /* we've found a fitting base, insert all va's */ |
3915 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 | 3916 | int ret; |
ca23e405 | 3917 | |
68ad4a33 URS |
3918 | start = base + offsets[area]; |
3919 | size = sizes[area]; | |
ca23e405 | 3920 | |
68ad4a33 URS |
3921 | va = pvm_find_va_enclose_addr(start); |
3922 | if (WARN_ON_ONCE(va == NULL)) | |
3923 | /* It is a BUG(), but trigger recovery instead. */ | |
3924 | goto recovery; | |
3925 | ||
f9863be4 URS |
3926 | ret = adjust_va_to_fit_type(&free_vmap_area_root, |
3927 | &free_vmap_area_list, | |
3928 | va, start, size); | |
1b23ff80 | 3929 | if (WARN_ON_ONCE(unlikely(ret))) |
68ad4a33 URS |
3930 | /* It is a BUG(), but trigger recovery instead. */ |
3931 | goto recovery; | |
3932 | ||
68ad4a33 URS |
3933 | /* Allocated area. */ |
3934 | va = vas[area]; | |
3935 | va->va_start = start; | |
3936 | va->va_end = start + size; | |
68ad4a33 | 3937 | } |
ca23e405 | 3938 | |
e36176be | 3939 | spin_unlock(&free_vmap_area_lock); |
ca23e405 | 3940 | |
253a496d DA |
3941 | /* populate the kasan shadow space */ |
3942 | for (area = 0; area < nr_vms; area++) { | |
3943 | if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) | |
3944 | goto err_free_shadow; | |
253a496d DA |
3945 | } |
3946 | ||
ca23e405 | 3947 | /* insert all vm's */ |
e36176be URS |
3948 | spin_lock(&vmap_area_lock); |
3949 | for (area = 0; area < nr_vms; area++) { | |
3950 | insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); | |
3951 | ||
3952 | setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, | |
3645cb4a | 3953 | pcpu_get_vm_areas); |
e36176be URS |
3954 | } |
3955 | spin_unlock(&vmap_area_lock); | |
ca23e405 | 3956 | |
19f1c3ac AK |
3957 | /* |
3958 | * Mark allocated areas as accessible. Do it now as a best-effort | |
3959 | * approach, as they can be mapped outside of vmalloc code. | |
23689e91 AK |
3960 | * With hardware tag-based KASAN, marking is skipped for |
3961 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
19f1c3ac | 3962 | */ |
1d96320f AK |
3963 | for (area = 0; area < nr_vms; area++) |
3964 | vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, | |
f6e39794 | 3965 | vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); |
1d96320f | 3966 | |
ca23e405 TH |
3967 | kfree(vas); |
3968 | return vms; | |
3969 | ||
68ad4a33 | 3970 | recovery: |
e36176be URS |
3971 | /* |
3972 | * Remove previously allocated areas. There is no | |
3973 | * need in removing these areas from the busy tree, | |
3974 | * because they are inserted only on the final step | |
3975 | * and when pcpu_get_vm_areas() is success. | |
3976 | */ | |
68ad4a33 | 3977 | while (area--) { |
253a496d DA |
3978 | orig_start = vas[area]->va_start; |
3979 | orig_end = vas[area]->va_end; | |
96e2db45 URS |
3980 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
3981 | &free_vmap_area_list); | |
9c801f61 URS |
3982 | if (va) |
3983 | kasan_release_vmalloc(orig_start, orig_end, | |
3984 | va->va_start, va->va_end); | |
68ad4a33 URS |
3985 | vas[area] = NULL; |
3986 | } | |
3987 | ||
3988 | overflow: | |
e36176be | 3989 | spin_unlock(&free_vmap_area_lock); |
68ad4a33 URS |
3990 | if (!purged) { |
3991 | purge_vmap_area_lazy(); | |
3992 | purged = true; | |
3993 | ||
3994 | /* Before "retry", check if we recover. */ | |
3995 | for (area = 0; area < nr_vms; area++) { | |
3996 | if (vas[area]) | |
3997 | continue; | |
3998 | ||
3999 | vas[area] = kmem_cache_zalloc( | |
4000 | vmap_area_cachep, GFP_KERNEL); | |
4001 | if (!vas[area]) | |
4002 | goto err_free; | |
4003 | } | |
4004 | ||
4005 | goto retry; | |
4006 | } | |
4007 | ||
ca23e405 TH |
4008 | err_free: |
4009 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 URS |
4010 | if (vas[area]) |
4011 | kmem_cache_free(vmap_area_cachep, vas[area]); | |
4012 | ||
f1db7afd | 4013 | kfree(vms[area]); |
ca23e405 | 4014 | } |
f1db7afd | 4015 | err_free2: |
ca23e405 TH |
4016 | kfree(vas); |
4017 | kfree(vms); | |
4018 | return NULL; | |
253a496d DA |
4019 | |
4020 | err_free_shadow: | |
4021 | spin_lock(&free_vmap_area_lock); | |
4022 | /* | |
4023 | * We release all the vmalloc shadows, even the ones for regions that | |
4024 | * hadn't been successfully added. This relies on kasan_release_vmalloc | |
4025 | * being able to tolerate this case. | |
4026 | */ | |
4027 | for (area = 0; area < nr_vms; area++) { | |
4028 | orig_start = vas[area]->va_start; | |
4029 | orig_end = vas[area]->va_end; | |
96e2db45 URS |
4030 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
4031 | &free_vmap_area_list); | |
9c801f61 URS |
4032 | if (va) |
4033 | kasan_release_vmalloc(orig_start, orig_end, | |
4034 | va->va_start, va->va_end); | |
253a496d DA |
4035 | vas[area] = NULL; |
4036 | kfree(vms[area]); | |
4037 | } | |
4038 | spin_unlock(&free_vmap_area_lock); | |
4039 | kfree(vas); | |
4040 | kfree(vms); | |
4041 | return NULL; | |
ca23e405 TH |
4042 | } |
4043 | ||
4044 | /** | |
4045 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
4046 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
4047 | * @nr_vms: the number of allocated areas | |
4048 | * | |
4049 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
4050 | */ | |
4051 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
4052 | { | |
4053 | int i; | |
4054 | ||
4055 | for (i = 0; i < nr_vms; i++) | |
4056 | free_vm_area(vms[i]); | |
4057 | kfree(vms); | |
4058 | } | |
4f8b02b4 | 4059 | #endif /* CONFIG_SMP */ |
a10aa579 | 4060 | |
5bb1bb35 | 4061 | #ifdef CONFIG_PRINTK |
98f18083 PM |
4062 | bool vmalloc_dump_obj(void *object) |
4063 | { | |
4064 | struct vm_struct *vm; | |
4065 | void *objp = (void *)PAGE_ALIGN((unsigned long)object); | |
4066 | ||
4067 | vm = find_vm_area(objp); | |
4068 | if (!vm) | |
4069 | return false; | |
bd34dcd4 PM |
4070 | pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", |
4071 | vm->nr_pages, (unsigned long)vm->addr, vm->caller); | |
98f18083 PM |
4072 | return true; |
4073 | } | |
5bb1bb35 | 4074 | #endif |
98f18083 | 4075 | |
a10aa579 CL |
4076 | #ifdef CONFIG_PROC_FS |
4077 | static void *s_start(struct seq_file *m, loff_t *pos) | |
e36176be | 4078 | __acquires(&vmap_purge_lock) |
d4033afd | 4079 | __acquires(&vmap_area_lock) |
a10aa579 | 4080 | { |
e36176be | 4081 | mutex_lock(&vmap_purge_lock); |
d4033afd | 4082 | spin_lock(&vmap_area_lock); |
e36176be | 4083 | |
3f500069 | 4084 | return seq_list_start(&vmap_area_list, *pos); |
a10aa579 CL |
4085 | } |
4086 | ||
4087 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4088 | { | |
3f500069 | 4089 | return seq_list_next(p, &vmap_area_list, pos); |
a10aa579 CL |
4090 | } |
4091 | ||
4092 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 4093 | __releases(&vmap_area_lock) |
0a7dd4e9 | 4094 | __releases(&vmap_purge_lock) |
a10aa579 | 4095 | { |
d4033afd | 4096 | spin_unlock(&vmap_area_lock); |
0a7dd4e9 | 4097 | mutex_unlock(&vmap_purge_lock); |
a10aa579 CL |
4098 | } |
4099 | ||
a47a126a ED |
4100 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
4101 | { | |
e5adfffc | 4102 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a | 4103 | unsigned int nr, *counters = m->private; |
51e50b3a | 4104 | unsigned int step = 1U << vm_area_page_order(v); |
a47a126a ED |
4105 | |
4106 | if (!counters) | |
4107 | return; | |
4108 | ||
af12346c WL |
4109 | if (v->flags & VM_UNINITIALIZED) |
4110 | return; | |
7e5b528b DV |
4111 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
4112 | smp_rmb(); | |
af12346c | 4113 | |
a47a126a ED |
4114 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
4115 | ||
51e50b3a ED |
4116 | for (nr = 0; nr < v->nr_pages; nr += step) |
4117 | counters[page_to_nid(v->pages[nr])] += step; | |
a47a126a ED |
4118 | for_each_node_state(nr, N_HIGH_MEMORY) |
4119 | if (counters[nr]) | |
4120 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
4121 | } | |
4122 | } | |
4123 | ||
dd3b8353 URS |
4124 | static void show_purge_info(struct seq_file *m) |
4125 | { | |
dd3b8353 URS |
4126 | struct vmap_area *va; |
4127 | ||
96e2db45 URS |
4128 | spin_lock(&purge_vmap_area_lock); |
4129 | list_for_each_entry(va, &purge_vmap_area_list, list) { | |
dd3b8353 URS |
4130 | seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", |
4131 | (void *)va->va_start, (void *)va->va_end, | |
4132 | va->va_end - va->va_start); | |
4133 | } | |
96e2db45 | 4134 | spin_unlock(&purge_vmap_area_lock); |
dd3b8353 URS |
4135 | } |
4136 | ||
a10aa579 CL |
4137 | static int s_show(struct seq_file *m, void *p) |
4138 | { | |
3f500069 | 4139 | struct vmap_area *va; |
d4033afd JK |
4140 | struct vm_struct *v; |
4141 | ||
3f500069 | 4142 | va = list_entry(p, struct vmap_area, list); |
4143 | ||
c2ce8c14 | 4144 | /* |
688fcbfc PL |
4145 | * s_show can encounter race with remove_vm_area, !vm on behalf |
4146 | * of vmap area is being tear down or vm_map_ram allocation. | |
c2ce8c14 | 4147 | */ |
688fcbfc | 4148 | if (!va->vm) { |
dd3b8353 | 4149 | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", |
78c72746 | 4150 | (void *)va->va_start, (void *)va->va_end, |
dd3b8353 | 4151 | va->va_end - va->va_start); |
78c72746 | 4152 | |
7cc7913e | 4153 | goto final; |
78c72746 | 4154 | } |
d4033afd JK |
4155 | |
4156 | v = va->vm; | |
a10aa579 | 4157 | |
45ec1690 | 4158 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
4159 | v->addr, v->addr + v->size, v->size); |
4160 | ||
62c70bce JP |
4161 | if (v->caller) |
4162 | seq_printf(m, " %pS", v->caller); | |
23016969 | 4163 | |
a10aa579 CL |
4164 | if (v->nr_pages) |
4165 | seq_printf(m, " pages=%d", v->nr_pages); | |
4166 | ||
4167 | if (v->phys_addr) | |
199eaa05 | 4168 | seq_printf(m, " phys=%pa", &v->phys_addr); |
a10aa579 CL |
4169 | |
4170 | if (v->flags & VM_IOREMAP) | |
f4527c90 | 4171 | seq_puts(m, " ioremap"); |
a10aa579 CL |
4172 | |
4173 | if (v->flags & VM_ALLOC) | |
f4527c90 | 4174 | seq_puts(m, " vmalloc"); |
a10aa579 CL |
4175 | |
4176 | if (v->flags & VM_MAP) | |
f4527c90 | 4177 | seq_puts(m, " vmap"); |
a10aa579 CL |
4178 | |
4179 | if (v->flags & VM_USERMAP) | |
f4527c90 | 4180 | seq_puts(m, " user"); |
a10aa579 | 4181 | |
fe9041c2 CH |
4182 | if (v->flags & VM_DMA_COHERENT) |
4183 | seq_puts(m, " dma-coherent"); | |
4184 | ||
244d63ee | 4185 | if (is_vmalloc_addr(v->pages)) |
f4527c90 | 4186 | seq_puts(m, " vpages"); |
a10aa579 | 4187 | |
a47a126a | 4188 | show_numa_info(m, v); |
a10aa579 | 4189 | seq_putc(m, '\n'); |
dd3b8353 URS |
4190 | |
4191 | /* | |
96e2db45 | 4192 | * As a final step, dump "unpurged" areas. |
dd3b8353 | 4193 | */ |
7cc7913e | 4194 | final: |
dd3b8353 URS |
4195 | if (list_is_last(&va->list, &vmap_area_list)) |
4196 | show_purge_info(m); | |
4197 | ||
a10aa579 CL |
4198 | return 0; |
4199 | } | |
4200 | ||
5f6a6a9c | 4201 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
4202 | .start = s_start, |
4203 | .next = s_next, | |
4204 | .stop = s_stop, | |
4205 | .show = s_show, | |
4206 | }; | |
5f6a6a9c | 4207 | |
5f6a6a9c AD |
4208 | static int __init proc_vmalloc_init(void) |
4209 | { | |
fddda2b7 | 4210 | if (IS_ENABLED(CONFIG_NUMA)) |
0825a6f9 | 4211 | proc_create_seq_private("vmallocinfo", 0400, NULL, |
44414d82 CH |
4212 | &vmalloc_op, |
4213 | nr_node_ids * sizeof(unsigned int), NULL); | |
fddda2b7 | 4214 | else |
0825a6f9 | 4215 | proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); |
5f6a6a9c AD |
4216 | return 0; |
4217 | } | |
4218 | module_init(proc_vmalloc_init); | |
db3808c1 | 4219 | |
a10aa579 | 4220 | #endif |