]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
15 | #include <linux/slab.h> | |
16 | #include <linux/spinlock.h> | |
17 | #include <linux/interrupt.h> | |
5f6a6a9c | 18 | #include <linux/proc_fs.h> |
a10aa579 | 19 | #include <linux/seq_file.h> |
3ac7fe5a | 20 | #include <linux/debugobjects.h> |
23016969 | 21 | #include <linux/kallsyms.h> |
db64fe02 NP |
22 | #include <linux/list.h> |
23 | #include <linux/rbtree.h> | |
24 | #include <linux/radix-tree.h> | |
25 | #include <linux/rcupdate.h> | |
822c18f2 | 26 | #include <linux/bootmem.h> |
1da177e4 | 27 | |
db64fe02 | 28 | #include <asm/atomic.h> |
1da177e4 LT |
29 | #include <asm/uaccess.h> |
30 | #include <asm/tlbflush.h> | |
31 | ||
32 | ||
db64fe02 | 33 | /*** Page table manipulation functions ***/ |
b221385b | 34 | |
1da177e4 LT |
35 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
36 | { | |
37 | pte_t *pte; | |
38 | ||
39 | pte = pte_offset_kernel(pmd, addr); | |
40 | do { | |
41 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
42 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
43 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
44 | } | |
45 | ||
db64fe02 | 46 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
47 | { |
48 | pmd_t *pmd; | |
49 | unsigned long next; | |
50 | ||
51 | pmd = pmd_offset(pud, addr); | |
52 | do { | |
53 | next = pmd_addr_end(addr, end); | |
54 | if (pmd_none_or_clear_bad(pmd)) | |
55 | continue; | |
56 | vunmap_pte_range(pmd, addr, next); | |
57 | } while (pmd++, addr = next, addr != end); | |
58 | } | |
59 | ||
db64fe02 | 60 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
61 | { |
62 | pud_t *pud; | |
63 | unsigned long next; | |
64 | ||
65 | pud = pud_offset(pgd, addr); | |
66 | do { | |
67 | next = pud_addr_end(addr, end); | |
68 | if (pud_none_or_clear_bad(pud)) | |
69 | continue; | |
70 | vunmap_pmd_range(pud, addr, next); | |
71 | } while (pud++, addr = next, addr != end); | |
72 | } | |
73 | ||
db64fe02 | 74 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
75 | { |
76 | pgd_t *pgd; | |
77 | unsigned long next; | |
1da177e4 LT |
78 | |
79 | BUG_ON(addr >= end); | |
80 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
81 | do { |
82 | next = pgd_addr_end(addr, end); | |
83 | if (pgd_none_or_clear_bad(pgd)) | |
84 | continue; | |
85 | vunmap_pud_range(pgd, addr, next); | |
86 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
87 | } |
88 | ||
89 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 90 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
91 | { |
92 | pte_t *pte; | |
93 | ||
db64fe02 NP |
94 | /* |
95 | * nr is a running index into the array which helps higher level | |
96 | * callers keep track of where we're up to. | |
97 | */ | |
98 | ||
872fec16 | 99 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
100 | if (!pte) |
101 | return -ENOMEM; | |
102 | do { | |
db64fe02 NP |
103 | struct page *page = pages[*nr]; |
104 | ||
105 | if (WARN_ON(!pte_none(*pte))) | |
106 | return -EBUSY; | |
107 | if (WARN_ON(!page)) | |
1da177e4 LT |
108 | return -ENOMEM; |
109 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 110 | (*nr)++; |
1da177e4 LT |
111 | } while (pte++, addr += PAGE_SIZE, addr != end); |
112 | return 0; | |
113 | } | |
114 | ||
db64fe02 NP |
115 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
116 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
117 | { |
118 | pmd_t *pmd; | |
119 | unsigned long next; | |
120 | ||
121 | pmd = pmd_alloc(&init_mm, pud, addr); | |
122 | if (!pmd) | |
123 | return -ENOMEM; | |
124 | do { | |
125 | next = pmd_addr_end(addr, end); | |
db64fe02 | 126 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
127 | return -ENOMEM; |
128 | } while (pmd++, addr = next, addr != end); | |
129 | return 0; | |
130 | } | |
131 | ||
db64fe02 NP |
132 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
133 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
134 | { |
135 | pud_t *pud; | |
136 | unsigned long next; | |
137 | ||
138 | pud = pud_alloc(&init_mm, pgd, addr); | |
139 | if (!pud) | |
140 | return -ENOMEM; | |
141 | do { | |
142 | next = pud_addr_end(addr, end); | |
db64fe02 | 143 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
144 | return -ENOMEM; |
145 | } while (pud++, addr = next, addr != end); | |
146 | return 0; | |
147 | } | |
148 | ||
db64fe02 NP |
149 | /* |
150 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
151 | * will have pfns corresponding to the "pages" array. | |
152 | * | |
153 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
154 | */ | |
2e4e27c7 | 155 | static int vmap_page_range(unsigned long start, unsigned long end, |
db64fe02 | 156 | pgprot_t prot, struct page **pages) |
1da177e4 LT |
157 | { |
158 | pgd_t *pgd; | |
159 | unsigned long next; | |
2e4e27c7 | 160 | unsigned long addr = start; |
db64fe02 NP |
161 | int err = 0; |
162 | int nr = 0; | |
1da177e4 LT |
163 | |
164 | BUG_ON(addr >= end); | |
165 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
166 | do { |
167 | next = pgd_addr_end(addr, end); | |
db64fe02 | 168 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 LT |
169 | if (err) |
170 | break; | |
171 | } while (pgd++, addr = next, addr != end); | |
2e4e27c7 | 172 | flush_cache_vmap(start, end); |
db64fe02 NP |
173 | |
174 | if (unlikely(err)) | |
175 | return err; | |
176 | return nr; | |
1da177e4 LT |
177 | } |
178 | ||
73bdf0a6 LT |
179 | static inline int is_vmalloc_or_module_addr(const void *x) |
180 | { | |
181 | /* | |
ab4f2ee1 | 182 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
183 | * and fall back on vmalloc() if that fails. Others |
184 | * just put it in the vmalloc space. | |
185 | */ | |
186 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
187 | unsigned long addr = (unsigned long)x; | |
188 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
189 | return 1; | |
190 | #endif | |
191 | return is_vmalloc_addr(x); | |
192 | } | |
193 | ||
48667e7a | 194 | /* |
db64fe02 | 195 | * Walk a vmap address to the struct page it maps. |
48667e7a | 196 | */ |
b3bdda02 | 197 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
198 | { |
199 | unsigned long addr = (unsigned long) vmalloc_addr; | |
200 | struct page *page = NULL; | |
201 | pgd_t *pgd = pgd_offset_k(addr); | |
48667e7a | 202 | |
7aa413de IM |
203 | /* |
204 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
205 | * architectures that do not vmalloc module space | |
206 | */ | |
73bdf0a6 | 207 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 208 | |
48667e7a | 209 | if (!pgd_none(*pgd)) { |
db64fe02 | 210 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 211 | if (!pud_none(*pud)) { |
db64fe02 | 212 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 213 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
214 | pte_t *ptep, pte; |
215 | ||
48667e7a CL |
216 | ptep = pte_offset_map(pmd, addr); |
217 | pte = *ptep; | |
218 | if (pte_present(pte)) | |
219 | page = pte_page(pte); | |
220 | pte_unmap(ptep); | |
221 | } | |
222 | } | |
223 | } | |
224 | return page; | |
225 | } | |
226 | EXPORT_SYMBOL(vmalloc_to_page); | |
227 | ||
228 | /* | |
229 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
230 | */ | |
b3bdda02 | 231 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a CL |
232 | { |
233 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
234 | } | |
235 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
236 | ||
db64fe02 NP |
237 | |
238 | /*** Global kva allocator ***/ | |
239 | ||
240 | #define VM_LAZY_FREE 0x01 | |
241 | #define VM_LAZY_FREEING 0x02 | |
242 | #define VM_VM_AREA 0x04 | |
243 | ||
244 | struct vmap_area { | |
245 | unsigned long va_start; | |
246 | unsigned long va_end; | |
247 | unsigned long flags; | |
248 | struct rb_node rb_node; /* address sorted rbtree */ | |
249 | struct list_head list; /* address sorted list */ | |
250 | struct list_head purge_list; /* "lazy purge" list */ | |
251 | void *private; | |
252 | struct rcu_head rcu_head; | |
253 | }; | |
254 | ||
255 | static DEFINE_SPINLOCK(vmap_area_lock); | |
256 | static struct rb_root vmap_area_root = RB_ROOT; | |
257 | static LIST_HEAD(vmap_area_list); | |
258 | ||
259 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 260 | { |
db64fe02 NP |
261 | struct rb_node *n = vmap_area_root.rb_node; |
262 | ||
263 | while (n) { | |
264 | struct vmap_area *va; | |
265 | ||
266 | va = rb_entry(n, struct vmap_area, rb_node); | |
267 | if (addr < va->va_start) | |
268 | n = n->rb_left; | |
269 | else if (addr > va->va_start) | |
270 | n = n->rb_right; | |
271 | else | |
272 | return va; | |
273 | } | |
274 | ||
275 | return NULL; | |
276 | } | |
277 | ||
278 | static void __insert_vmap_area(struct vmap_area *va) | |
279 | { | |
280 | struct rb_node **p = &vmap_area_root.rb_node; | |
281 | struct rb_node *parent = NULL; | |
282 | struct rb_node *tmp; | |
283 | ||
284 | while (*p) { | |
285 | struct vmap_area *tmp; | |
286 | ||
287 | parent = *p; | |
288 | tmp = rb_entry(parent, struct vmap_area, rb_node); | |
289 | if (va->va_start < tmp->va_end) | |
290 | p = &(*p)->rb_left; | |
291 | else if (va->va_end > tmp->va_start) | |
292 | p = &(*p)->rb_right; | |
293 | else | |
294 | BUG(); | |
295 | } | |
296 | ||
297 | rb_link_node(&va->rb_node, parent, p); | |
298 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
299 | ||
300 | /* address-sort this list so it is usable like the vmlist */ | |
301 | tmp = rb_prev(&va->rb_node); | |
302 | if (tmp) { | |
303 | struct vmap_area *prev; | |
304 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
305 | list_add_rcu(&va->list, &prev->list); | |
306 | } else | |
307 | list_add_rcu(&va->list, &vmap_area_list); | |
308 | } | |
309 | ||
310 | static void purge_vmap_area_lazy(void); | |
311 | ||
312 | /* | |
313 | * Allocate a region of KVA of the specified size and alignment, within the | |
314 | * vstart and vend. | |
315 | */ | |
316 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
317 | unsigned long align, | |
318 | unsigned long vstart, unsigned long vend, | |
319 | int node, gfp_t gfp_mask) | |
320 | { | |
321 | struct vmap_area *va; | |
322 | struct rb_node *n; | |
1da177e4 | 323 | unsigned long addr; |
db64fe02 NP |
324 | int purged = 0; |
325 | ||
326 | BUG_ON(size & ~PAGE_MASK); | |
327 | ||
db64fe02 NP |
328 | va = kmalloc_node(sizeof(struct vmap_area), |
329 | gfp_mask & GFP_RECLAIM_MASK, node); | |
330 | if (unlikely(!va)) | |
331 | return ERR_PTR(-ENOMEM); | |
332 | ||
333 | retry: | |
0ae15132 GC |
334 | addr = ALIGN(vstart, align); |
335 | ||
db64fe02 NP |
336 | spin_lock(&vmap_area_lock); |
337 | /* XXX: could have a last_hole cache */ | |
338 | n = vmap_area_root.rb_node; | |
339 | if (n) { | |
340 | struct vmap_area *first = NULL; | |
341 | ||
342 | do { | |
343 | struct vmap_area *tmp; | |
344 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
345 | if (tmp->va_end >= addr) { | |
346 | if (!first && tmp->va_start < addr + size) | |
347 | first = tmp; | |
348 | n = n->rb_left; | |
349 | } else { | |
350 | first = tmp; | |
351 | n = n->rb_right; | |
352 | } | |
353 | } while (n); | |
354 | ||
355 | if (!first) | |
356 | goto found; | |
357 | ||
358 | if (first->va_end < addr) { | |
359 | n = rb_next(&first->rb_node); | |
360 | if (n) | |
361 | first = rb_entry(n, struct vmap_area, rb_node); | |
362 | else | |
363 | goto found; | |
364 | } | |
365 | ||
f011c2da | 366 | while (addr + size > first->va_start && addr + size <= vend) { |
db64fe02 NP |
367 | addr = ALIGN(first->va_end + PAGE_SIZE, align); |
368 | ||
369 | n = rb_next(&first->rb_node); | |
370 | if (n) | |
371 | first = rb_entry(n, struct vmap_area, rb_node); | |
372 | else | |
373 | goto found; | |
374 | } | |
375 | } | |
376 | found: | |
377 | if (addr + size > vend) { | |
378 | spin_unlock(&vmap_area_lock); | |
379 | if (!purged) { | |
380 | purge_vmap_area_lazy(); | |
381 | purged = 1; | |
382 | goto retry; | |
383 | } | |
384 | if (printk_ratelimit()) | |
c1279c4e GC |
385 | printk(KERN_WARNING |
386 | "vmap allocation for size %lu failed: " | |
387 | "use vmalloc=<size> to increase size.\n", size); | |
db64fe02 NP |
388 | return ERR_PTR(-EBUSY); |
389 | } | |
390 | ||
391 | BUG_ON(addr & (align-1)); | |
392 | ||
393 | va->va_start = addr; | |
394 | va->va_end = addr + size; | |
395 | va->flags = 0; | |
396 | __insert_vmap_area(va); | |
397 | spin_unlock(&vmap_area_lock); | |
398 | ||
399 | return va; | |
400 | } | |
401 | ||
402 | static void rcu_free_va(struct rcu_head *head) | |
403 | { | |
404 | struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | |
405 | ||
406 | kfree(va); | |
407 | } | |
408 | ||
409 | static void __free_vmap_area(struct vmap_area *va) | |
410 | { | |
411 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
412 | rb_erase(&va->rb_node, &vmap_area_root); | |
413 | RB_CLEAR_NODE(&va->rb_node); | |
414 | list_del_rcu(&va->list); | |
415 | ||
416 | call_rcu(&va->rcu_head, rcu_free_va); | |
417 | } | |
418 | ||
419 | /* | |
420 | * Free a region of KVA allocated by alloc_vmap_area | |
421 | */ | |
422 | static void free_vmap_area(struct vmap_area *va) | |
423 | { | |
424 | spin_lock(&vmap_area_lock); | |
425 | __free_vmap_area(va); | |
426 | spin_unlock(&vmap_area_lock); | |
427 | } | |
428 | ||
429 | /* | |
430 | * Clear the pagetable entries of a given vmap_area | |
431 | */ | |
432 | static void unmap_vmap_area(struct vmap_area *va) | |
433 | { | |
434 | vunmap_page_range(va->va_start, va->va_end); | |
435 | } | |
436 | ||
cd52858c NP |
437 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
438 | { | |
439 | /* | |
440 | * Unmap page tables and force a TLB flush immediately if | |
441 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
442 | * bugs similarly to those in linear kernel virtual address | |
443 | * space after a page has been freed. | |
444 | * | |
445 | * All the lazy freeing logic is still retained, in order to | |
446 | * minimise intrusiveness of this debugging feature. | |
447 | * | |
448 | * This is going to be *slow* (linear kernel virtual address | |
449 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
450 | * faster). | |
451 | */ | |
452 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
453 | vunmap_page_range(start, end); | |
454 | flush_tlb_kernel_range(start, end); | |
455 | #endif | |
456 | } | |
457 | ||
db64fe02 NP |
458 | /* |
459 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
460 | * before attempting to purge with a TLB flush. | |
461 | * | |
462 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
463 | * and take slightly longer to purge, but it will linearly reduce the number of | |
464 | * global TLB flushes that must be performed. It would seem natural to scale | |
465 | * this number up linearly with the number of CPUs (because vmapping activity | |
466 | * could also scale linearly with the number of CPUs), however it is likely | |
467 | * that in practice, workloads might be constrained in other ways that mean | |
468 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
469 | * conservative and not introduce a big latency on huge systems, so go with | |
470 | * a less aggressive log scale. It will still be an improvement over the old | |
471 | * code, and it will be simple to change the scale factor if we find that it | |
472 | * becomes a problem on bigger systems. | |
473 | */ | |
474 | static unsigned long lazy_max_pages(void) | |
475 | { | |
476 | unsigned int log; | |
477 | ||
478 | log = fls(num_online_cpus()); | |
479 | ||
480 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
481 | } | |
482 | ||
483 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
484 | ||
485 | /* | |
486 | * Purges all lazily-freed vmap areas. | |
487 | * | |
488 | * If sync is 0 then don't purge if there is already a purge in progress. | |
489 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
490 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
491 | * their own TLB flushing). | |
492 | * Returns with *start = min(*start, lowest purged address) | |
493 | * *end = max(*end, highest purged address) | |
494 | */ | |
495 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
496 | int sync, int force_flush) | |
497 | { | |
46666d8a | 498 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
499 | LIST_HEAD(valist); |
500 | struct vmap_area *va; | |
501 | int nr = 0; | |
502 | ||
503 | /* | |
504 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
505 | * should not expect such behaviour. This just simplifies locking for | |
506 | * the case that isn't actually used at the moment anyway. | |
507 | */ | |
508 | if (!sync && !force_flush) { | |
46666d8a | 509 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
510 | return; |
511 | } else | |
46666d8a | 512 | spin_lock(&purge_lock); |
db64fe02 NP |
513 | |
514 | rcu_read_lock(); | |
515 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
516 | if (va->flags & VM_LAZY_FREE) { | |
517 | if (va->va_start < *start) | |
518 | *start = va->va_start; | |
519 | if (va->va_end > *end) | |
520 | *end = va->va_end; | |
521 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
522 | unmap_vmap_area(va); | |
523 | list_add_tail(&va->purge_list, &valist); | |
524 | va->flags |= VM_LAZY_FREEING; | |
525 | va->flags &= ~VM_LAZY_FREE; | |
526 | } | |
527 | } | |
528 | rcu_read_unlock(); | |
529 | ||
530 | if (nr) { | |
531 | BUG_ON(nr > atomic_read(&vmap_lazy_nr)); | |
532 | atomic_sub(nr, &vmap_lazy_nr); | |
533 | } | |
534 | ||
535 | if (nr || force_flush) | |
536 | flush_tlb_kernel_range(*start, *end); | |
537 | ||
538 | if (nr) { | |
539 | spin_lock(&vmap_area_lock); | |
540 | list_for_each_entry(va, &valist, purge_list) | |
541 | __free_vmap_area(va); | |
542 | spin_unlock(&vmap_area_lock); | |
543 | } | |
46666d8a | 544 | spin_unlock(&purge_lock); |
db64fe02 NP |
545 | } |
546 | ||
496850e5 NP |
547 | /* |
548 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
549 | * is already purging. | |
550 | */ | |
551 | static void try_purge_vmap_area_lazy(void) | |
552 | { | |
553 | unsigned long start = ULONG_MAX, end = 0; | |
554 | ||
555 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
556 | } | |
557 | ||
db64fe02 NP |
558 | /* |
559 | * Kick off a purge of the outstanding lazy areas. | |
560 | */ | |
561 | static void purge_vmap_area_lazy(void) | |
562 | { | |
563 | unsigned long start = ULONG_MAX, end = 0; | |
564 | ||
496850e5 | 565 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
566 | } |
567 | ||
568 | /* | |
b29acbdc NP |
569 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been |
570 | * called for the correct range previously. | |
db64fe02 | 571 | */ |
b29acbdc | 572 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
573 | { |
574 | va->flags |= VM_LAZY_FREE; | |
575 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
576 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 577 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
578 | } |
579 | ||
b29acbdc NP |
580 | /* |
581 | * Free and unmap a vmap area | |
582 | */ | |
583 | static void free_unmap_vmap_area(struct vmap_area *va) | |
584 | { | |
585 | flush_cache_vunmap(va->va_start, va->va_end); | |
586 | free_unmap_vmap_area_noflush(va); | |
587 | } | |
588 | ||
db64fe02 NP |
589 | static struct vmap_area *find_vmap_area(unsigned long addr) |
590 | { | |
591 | struct vmap_area *va; | |
592 | ||
593 | spin_lock(&vmap_area_lock); | |
594 | va = __find_vmap_area(addr); | |
595 | spin_unlock(&vmap_area_lock); | |
596 | ||
597 | return va; | |
598 | } | |
599 | ||
600 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
601 | { | |
602 | struct vmap_area *va; | |
603 | ||
604 | va = find_vmap_area(addr); | |
605 | BUG_ON(!va); | |
606 | free_unmap_vmap_area(va); | |
607 | } | |
608 | ||
609 | ||
610 | /*** Per cpu kva allocator ***/ | |
611 | ||
612 | /* | |
613 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
614 | * room for at least 16 percpu vmap blocks per CPU. | |
615 | */ | |
616 | /* | |
617 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
618 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
619 | * instead (we just need a rough idea) | |
620 | */ | |
621 | #if BITS_PER_LONG == 32 | |
622 | #define VMALLOC_SPACE (128UL*1024*1024) | |
623 | #else | |
624 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
625 | #endif | |
626 | ||
627 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
628 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
629 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
630 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
631 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
632 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
633 | #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
634 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
635 | VMALLOC_PAGES / NR_CPUS / 16)) | |
636 | ||
637 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
638 | ||
9b463334 JF |
639 | static bool vmap_initialized __read_mostly = false; |
640 | ||
db64fe02 NP |
641 | struct vmap_block_queue { |
642 | spinlock_t lock; | |
643 | struct list_head free; | |
644 | struct list_head dirty; | |
645 | unsigned int nr_dirty; | |
646 | }; | |
647 | ||
648 | struct vmap_block { | |
649 | spinlock_t lock; | |
650 | struct vmap_area *va; | |
651 | struct vmap_block_queue *vbq; | |
652 | unsigned long free, dirty; | |
653 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | |
654 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | |
655 | union { | |
656 | struct { | |
657 | struct list_head free_list; | |
658 | struct list_head dirty_list; | |
659 | }; | |
660 | struct rcu_head rcu_head; | |
661 | }; | |
662 | }; | |
663 | ||
664 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
665 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
666 | ||
667 | /* | |
668 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
669 | * in the free path. Could get rid of this if we change the API to return a | |
670 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
671 | */ | |
672 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
673 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
674 | ||
675 | /* | |
676 | * We should probably have a fallback mechanism to allocate virtual memory | |
677 | * out of partially filled vmap blocks. However vmap block sizing should be | |
678 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
679 | * big problem. | |
680 | */ | |
681 | ||
682 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
683 | { | |
684 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
685 | addr /= VMAP_BLOCK_SIZE; | |
686 | return addr; | |
687 | } | |
688 | ||
689 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
690 | { | |
691 | struct vmap_block_queue *vbq; | |
692 | struct vmap_block *vb; | |
693 | struct vmap_area *va; | |
694 | unsigned long vb_idx; | |
695 | int node, err; | |
696 | ||
697 | node = numa_node_id(); | |
698 | ||
699 | vb = kmalloc_node(sizeof(struct vmap_block), | |
700 | gfp_mask & GFP_RECLAIM_MASK, node); | |
701 | if (unlikely(!vb)) | |
702 | return ERR_PTR(-ENOMEM); | |
703 | ||
704 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
705 | VMALLOC_START, VMALLOC_END, | |
706 | node, gfp_mask); | |
707 | if (unlikely(IS_ERR(va))) { | |
708 | kfree(vb); | |
709 | return ERR_PTR(PTR_ERR(va)); | |
710 | } | |
711 | ||
712 | err = radix_tree_preload(gfp_mask); | |
713 | if (unlikely(err)) { | |
714 | kfree(vb); | |
715 | free_vmap_area(va); | |
716 | return ERR_PTR(err); | |
717 | } | |
718 | ||
719 | spin_lock_init(&vb->lock); | |
720 | vb->va = va; | |
721 | vb->free = VMAP_BBMAP_BITS; | |
722 | vb->dirty = 0; | |
723 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | |
724 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | |
725 | INIT_LIST_HEAD(&vb->free_list); | |
726 | INIT_LIST_HEAD(&vb->dirty_list); | |
727 | ||
728 | vb_idx = addr_to_vb_idx(va->va_start); | |
729 | spin_lock(&vmap_block_tree_lock); | |
730 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
731 | spin_unlock(&vmap_block_tree_lock); | |
732 | BUG_ON(err); | |
733 | radix_tree_preload_end(); | |
734 | ||
735 | vbq = &get_cpu_var(vmap_block_queue); | |
736 | vb->vbq = vbq; | |
737 | spin_lock(&vbq->lock); | |
738 | list_add(&vb->free_list, &vbq->free); | |
739 | spin_unlock(&vbq->lock); | |
740 | put_cpu_var(vmap_cpu_blocks); | |
741 | ||
742 | return vb; | |
743 | } | |
744 | ||
745 | static void rcu_free_vb(struct rcu_head *head) | |
746 | { | |
747 | struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | |
748 | ||
749 | kfree(vb); | |
750 | } | |
751 | ||
752 | static void free_vmap_block(struct vmap_block *vb) | |
753 | { | |
754 | struct vmap_block *tmp; | |
755 | unsigned long vb_idx; | |
756 | ||
757 | spin_lock(&vb->vbq->lock); | |
758 | if (!list_empty(&vb->free_list)) | |
759 | list_del(&vb->free_list); | |
760 | if (!list_empty(&vb->dirty_list)) | |
761 | list_del(&vb->dirty_list); | |
762 | spin_unlock(&vb->vbq->lock); | |
763 | ||
764 | vb_idx = addr_to_vb_idx(vb->va->va_start); | |
765 | spin_lock(&vmap_block_tree_lock); | |
766 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
767 | spin_unlock(&vmap_block_tree_lock); | |
768 | BUG_ON(tmp != vb); | |
769 | ||
b29acbdc | 770 | free_unmap_vmap_area_noflush(vb->va); |
db64fe02 NP |
771 | call_rcu(&vb->rcu_head, rcu_free_vb); |
772 | } | |
773 | ||
774 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | |
775 | { | |
776 | struct vmap_block_queue *vbq; | |
777 | struct vmap_block *vb; | |
778 | unsigned long addr = 0; | |
779 | unsigned int order; | |
780 | ||
781 | BUG_ON(size & ~PAGE_MASK); | |
782 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
783 | order = get_order(size); | |
784 | ||
785 | again: | |
786 | rcu_read_lock(); | |
787 | vbq = &get_cpu_var(vmap_block_queue); | |
788 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
789 | int i; | |
790 | ||
791 | spin_lock(&vb->lock); | |
792 | i = bitmap_find_free_region(vb->alloc_map, | |
793 | VMAP_BBMAP_BITS, order); | |
794 | ||
795 | if (i >= 0) { | |
796 | addr = vb->va->va_start + (i << PAGE_SHIFT); | |
797 | BUG_ON(addr_to_vb_idx(addr) != | |
798 | addr_to_vb_idx(vb->va->va_start)); | |
799 | vb->free -= 1UL << order; | |
800 | if (vb->free == 0) { | |
801 | spin_lock(&vbq->lock); | |
802 | list_del_init(&vb->free_list); | |
803 | spin_unlock(&vbq->lock); | |
804 | } | |
805 | spin_unlock(&vb->lock); | |
806 | break; | |
807 | } | |
808 | spin_unlock(&vb->lock); | |
809 | } | |
810 | put_cpu_var(vmap_cpu_blocks); | |
811 | rcu_read_unlock(); | |
812 | ||
813 | if (!addr) { | |
814 | vb = new_vmap_block(gfp_mask); | |
815 | if (IS_ERR(vb)) | |
816 | return vb; | |
817 | goto again; | |
818 | } | |
819 | ||
820 | return (void *)addr; | |
821 | } | |
822 | ||
823 | static void vb_free(const void *addr, unsigned long size) | |
824 | { | |
825 | unsigned long offset; | |
826 | unsigned long vb_idx; | |
827 | unsigned int order; | |
828 | struct vmap_block *vb; | |
829 | ||
830 | BUG_ON(size & ~PAGE_MASK); | |
831 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
832 | |
833 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
834 | ||
db64fe02 NP |
835 | order = get_order(size); |
836 | ||
837 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
838 | ||
839 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
840 | rcu_read_lock(); | |
841 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
842 | rcu_read_unlock(); | |
843 | BUG_ON(!vb); | |
844 | ||
845 | spin_lock(&vb->lock); | |
846 | bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); | |
847 | if (!vb->dirty) { | |
848 | spin_lock(&vb->vbq->lock); | |
849 | list_add(&vb->dirty_list, &vb->vbq->dirty); | |
850 | spin_unlock(&vb->vbq->lock); | |
851 | } | |
852 | vb->dirty += 1UL << order; | |
853 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
854 | BUG_ON(vb->free || !list_empty(&vb->free_list)); | |
855 | spin_unlock(&vb->lock); | |
856 | free_vmap_block(vb); | |
857 | } else | |
858 | spin_unlock(&vb->lock); | |
859 | } | |
860 | ||
861 | /** | |
862 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
863 | * | |
864 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
865 | * to amortize TLB flushing overheads. What this means is that any page you | |
866 | * have now, may, in a former life, have been mapped into kernel virtual | |
867 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
868 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
869 | * | |
870 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
871 | * be sure that none of the pages we have control over will have any aliases | |
872 | * from the vmap layer. | |
873 | */ | |
874 | void vm_unmap_aliases(void) | |
875 | { | |
876 | unsigned long start = ULONG_MAX, end = 0; | |
877 | int cpu; | |
878 | int flush = 0; | |
879 | ||
9b463334 JF |
880 | if (unlikely(!vmap_initialized)) |
881 | return; | |
882 | ||
db64fe02 NP |
883 | for_each_possible_cpu(cpu) { |
884 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
885 | struct vmap_block *vb; | |
886 | ||
887 | rcu_read_lock(); | |
888 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
889 | int i; | |
890 | ||
891 | spin_lock(&vb->lock); | |
892 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
893 | while (i < VMAP_BBMAP_BITS) { | |
894 | unsigned long s, e; | |
895 | int j; | |
896 | j = find_next_zero_bit(vb->dirty_map, | |
897 | VMAP_BBMAP_BITS, i); | |
898 | ||
899 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
900 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
901 | vunmap_page_range(s, e); | |
902 | flush = 1; | |
903 | ||
904 | if (s < start) | |
905 | start = s; | |
906 | if (e > end) | |
907 | end = e; | |
908 | ||
909 | i = j; | |
910 | i = find_next_bit(vb->dirty_map, | |
911 | VMAP_BBMAP_BITS, i); | |
912 | } | |
913 | spin_unlock(&vb->lock); | |
914 | } | |
915 | rcu_read_unlock(); | |
916 | } | |
917 | ||
918 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
919 | } | |
920 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
921 | ||
922 | /** | |
923 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
924 | * @mem: the pointer returned by vm_map_ram | |
925 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
926 | */ | |
927 | void vm_unmap_ram(const void *mem, unsigned int count) | |
928 | { | |
929 | unsigned long size = count << PAGE_SHIFT; | |
930 | unsigned long addr = (unsigned long)mem; | |
931 | ||
932 | BUG_ON(!addr); | |
933 | BUG_ON(addr < VMALLOC_START); | |
934 | BUG_ON(addr > VMALLOC_END); | |
935 | BUG_ON(addr & (PAGE_SIZE-1)); | |
936 | ||
937 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 938 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
939 | |
940 | if (likely(count <= VMAP_MAX_ALLOC)) | |
941 | vb_free(mem, size); | |
942 | else | |
943 | free_unmap_vmap_area_addr(addr); | |
944 | } | |
945 | EXPORT_SYMBOL(vm_unmap_ram); | |
946 | ||
947 | /** | |
948 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
949 | * @pages: an array of pointers to the pages to be mapped | |
950 | * @count: number of pages | |
951 | * @node: prefer to allocate data structures on this node | |
952 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
953 | * |
954 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
955 | */ |
956 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
957 | { | |
958 | unsigned long size = count << PAGE_SHIFT; | |
959 | unsigned long addr; | |
960 | void *mem; | |
961 | ||
962 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
963 | mem = vb_alloc(size, GFP_KERNEL); | |
964 | if (IS_ERR(mem)) | |
965 | return NULL; | |
966 | addr = (unsigned long)mem; | |
967 | } else { | |
968 | struct vmap_area *va; | |
969 | va = alloc_vmap_area(size, PAGE_SIZE, | |
970 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
971 | if (IS_ERR(va)) | |
972 | return NULL; | |
973 | ||
974 | addr = va->va_start; | |
975 | mem = (void *)addr; | |
976 | } | |
977 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
978 | vm_unmap_ram(mem, count); | |
979 | return NULL; | |
980 | } | |
981 | return mem; | |
982 | } | |
983 | EXPORT_SYMBOL(vm_map_ram); | |
984 | ||
985 | void __init vmalloc_init(void) | |
986 | { | |
822c18f2 IK |
987 | struct vmap_area *va; |
988 | struct vm_struct *tmp; | |
db64fe02 NP |
989 | int i; |
990 | ||
991 | for_each_possible_cpu(i) { | |
992 | struct vmap_block_queue *vbq; | |
993 | ||
994 | vbq = &per_cpu(vmap_block_queue, i); | |
995 | spin_lock_init(&vbq->lock); | |
996 | INIT_LIST_HEAD(&vbq->free); | |
997 | INIT_LIST_HEAD(&vbq->dirty); | |
998 | vbq->nr_dirty = 0; | |
999 | } | |
9b463334 | 1000 | |
822c18f2 IK |
1001 | /* Import existing vmlist entries. */ |
1002 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
1003 | va = alloc_bootmem(sizeof(struct vmap_area)); | |
1004 | va->flags = tmp->flags | VM_VM_AREA; | |
1005 | va->va_start = (unsigned long)tmp->addr; | |
1006 | va->va_end = va->va_start + tmp->size; | |
1007 | __insert_vmap_area(va); | |
1008 | } | |
9b463334 | 1009 | vmap_initialized = true; |
db64fe02 NP |
1010 | } |
1011 | ||
1012 | void unmap_kernel_range(unsigned long addr, unsigned long size) | |
1013 | { | |
1014 | unsigned long end = addr + size; | |
1015 | vunmap_page_range(addr, end); | |
1016 | flush_tlb_kernel_range(addr, end); | |
1017 | } | |
1018 | ||
1019 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1020 | { | |
1021 | unsigned long addr = (unsigned long)area->addr; | |
1022 | unsigned long end = addr + area->size - PAGE_SIZE; | |
1023 | int err; | |
1024 | ||
1025 | err = vmap_page_range(addr, end, prot, *pages); | |
1026 | if (err > 0) { | |
1027 | *pages += err; | |
1028 | err = 0; | |
1029 | } | |
1030 | ||
1031 | return err; | |
1032 | } | |
1033 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1034 | ||
1035 | /*** Old vmalloc interfaces ***/ | |
1036 | DEFINE_RWLOCK(vmlist_lock); | |
1037 | struct vm_struct *vmlist; | |
1038 | ||
1039 | static struct vm_struct *__get_vm_area_node(unsigned long size, | |
1040 | unsigned long flags, unsigned long start, unsigned long end, | |
1041 | int node, gfp_t gfp_mask, void *caller) | |
1042 | { | |
1043 | static struct vmap_area *va; | |
1044 | struct vm_struct *area; | |
1045 | struct vm_struct *tmp, **p; | |
1046 | unsigned long align = 1; | |
1da177e4 | 1047 | |
52fd24ca | 1048 | BUG_ON(in_interrupt()); |
1da177e4 LT |
1049 | if (flags & VM_IOREMAP) { |
1050 | int bit = fls(size); | |
1051 | ||
1052 | if (bit > IOREMAP_MAX_ORDER) | |
1053 | bit = IOREMAP_MAX_ORDER; | |
1054 | else if (bit < PAGE_SHIFT) | |
1055 | bit = PAGE_SHIFT; | |
1056 | ||
1057 | align = 1ul << bit; | |
1058 | } | |
db64fe02 | 1059 | |
1da177e4 | 1060 | size = PAGE_ALIGN(size); |
31be8309 OH |
1061 | if (unlikely(!size)) |
1062 | return NULL; | |
1da177e4 | 1063 | |
6cb06229 | 1064 | area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1065 | if (unlikely(!area)) |
1066 | return NULL; | |
1067 | ||
1da177e4 LT |
1068 | /* |
1069 | * We always allocate a guard page. | |
1070 | */ | |
1071 | size += PAGE_SIZE; | |
1072 | ||
db64fe02 NP |
1073 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1074 | if (IS_ERR(va)) { | |
1075 | kfree(area); | |
1076 | return NULL; | |
1da177e4 | 1077 | } |
1da177e4 LT |
1078 | |
1079 | area->flags = flags; | |
db64fe02 | 1080 | area->addr = (void *)va->va_start; |
1da177e4 LT |
1081 | area->size = size; |
1082 | area->pages = NULL; | |
1083 | area->nr_pages = 0; | |
1084 | area->phys_addr = 0; | |
23016969 | 1085 | area->caller = caller; |
db64fe02 NP |
1086 | va->private = area; |
1087 | va->flags |= VM_VM_AREA; | |
1088 | ||
1089 | write_lock(&vmlist_lock); | |
1090 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1091 | if (tmp->addr >= area->addr) | |
1092 | break; | |
1093 | } | |
1094 | area->next = *p; | |
1095 | *p = area; | |
1da177e4 LT |
1096 | write_unlock(&vmlist_lock); |
1097 | ||
1098 | return area; | |
1da177e4 LT |
1099 | } |
1100 | ||
930fc45a CL |
1101 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1102 | unsigned long start, unsigned long end) | |
1103 | { | |
23016969 CL |
1104 | return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, |
1105 | __builtin_return_address(0)); | |
930fc45a | 1106 | } |
5992b6da | 1107 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1108 | |
c2968612 BH |
1109 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1110 | unsigned long start, unsigned long end, | |
1111 | void *caller) | |
1112 | { | |
1113 | return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, | |
1114 | caller); | |
1115 | } | |
1116 | ||
1da177e4 | 1117 | /** |
183ff22b | 1118 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1119 | * @size: size of the area |
1120 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1121 | * | |
1122 | * Search an area of @size in the kernel virtual mapping area, | |
1123 | * and reserved it for out purposes. Returns the area descriptor | |
1124 | * on success or %NULL on failure. | |
1125 | */ | |
1126 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1127 | { | |
23016969 CL |
1128 | return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, |
1129 | -1, GFP_KERNEL, __builtin_return_address(0)); | |
1130 | } | |
1131 | ||
1132 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
1133 | void *caller) | |
1134 | { | |
1135 | return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, | |
1136 | -1, GFP_KERNEL, caller); | |
1da177e4 LT |
1137 | } |
1138 | ||
52fd24ca GP |
1139 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, |
1140 | int node, gfp_t gfp_mask) | |
930fc45a | 1141 | { |
52fd24ca | 1142 | return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, |
23016969 | 1143 | gfp_mask, __builtin_return_address(0)); |
930fc45a CL |
1144 | } |
1145 | ||
db64fe02 | 1146 | static struct vm_struct *find_vm_area(const void *addr) |
83342314 | 1147 | { |
db64fe02 | 1148 | struct vmap_area *va; |
83342314 | 1149 | |
db64fe02 NP |
1150 | va = find_vmap_area((unsigned long)addr); |
1151 | if (va && va->flags & VM_VM_AREA) | |
1152 | return va->private; | |
1da177e4 | 1153 | |
1da177e4 | 1154 | return NULL; |
1da177e4 LT |
1155 | } |
1156 | ||
7856dfeb | 1157 | /** |
183ff22b | 1158 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1159 | * @addr: base address |
1160 | * | |
1161 | * Search for the kernel VM area starting at @addr, and remove it. | |
1162 | * This function returns the found VM area, but using it is NOT safe | |
1163 | * on SMP machines, except for its size or flags. | |
1164 | */ | |
b3bdda02 | 1165 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1166 | { |
db64fe02 NP |
1167 | struct vmap_area *va; |
1168 | ||
1169 | va = find_vmap_area((unsigned long)addr); | |
1170 | if (va && va->flags & VM_VM_AREA) { | |
1171 | struct vm_struct *vm = va->private; | |
1172 | struct vm_struct *tmp, **p; | |
cd52858c NP |
1173 | |
1174 | vmap_debug_free_range(va->va_start, va->va_end); | |
db64fe02 NP |
1175 | free_unmap_vmap_area(va); |
1176 | vm->size -= PAGE_SIZE; | |
1177 | ||
1178 | write_lock(&vmlist_lock); | |
1179 | for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | |
1180 | ; | |
1181 | *p = tmp->next; | |
1182 | write_unlock(&vmlist_lock); | |
1183 | ||
1184 | return vm; | |
1185 | } | |
1186 | return NULL; | |
7856dfeb AK |
1187 | } |
1188 | ||
b3bdda02 | 1189 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1190 | { |
1191 | struct vm_struct *area; | |
1192 | ||
1193 | if (!addr) | |
1194 | return; | |
1195 | ||
1196 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | |
4c8573e2 | 1197 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
1da177e4 LT |
1198 | return; |
1199 | } | |
1200 | ||
1201 | area = remove_vm_area(addr); | |
1202 | if (unlikely(!area)) { | |
4c8573e2 | 1203 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1204 | addr); |
1da177e4 LT |
1205 | return; |
1206 | } | |
1207 | ||
9a11b49a | 1208 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1209 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1210 | |
1da177e4 LT |
1211 | if (deallocate_pages) { |
1212 | int i; | |
1213 | ||
1214 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1215 | struct page *page = area->pages[i]; |
1216 | ||
1217 | BUG_ON(!page); | |
1218 | __free_page(page); | |
1da177e4 LT |
1219 | } |
1220 | ||
8757d5fa | 1221 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1222 | vfree(area->pages); |
1223 | else | |
1224 | kfree(area->pages); | |
1225 | } | |
1226 | ||
1227 | kfree(area); | |
1228 | return; | |
1229 | } | |
1230 | ||
1231 | /** | |
1232 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1233 | * @addr: memory base address |
1234 | * | |
183ff22b | 1235 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1236 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1237 | * NULL, no operation is performed. | |
1da177e4 | 1238 | * |
80e93eff | 1239 | * Must not be called in interrupt context. |
1da177e4 | 1240 | */ |
b3bdda02 | 1241 | void vfree(const void *addr) |
1da177e4 LT |
1242 | { |
1243 | BUG_ON(in_interrupt()); | |
1244 | __vunmap(addr, 1); | |
1245 | } | |
1da177e4 LT |
1246 | EXPORT_SYMBOL(vfree); |
1247 | ||
1248 | /** | |
1249 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1250 | * @addr: memory base address |
1251 | * | |
1252 | * Free the virtually contiguous memory area starting at @addr, | |
1253 | * which was created from the page array passed to vmap(). | |
1254 | * | |
80e93eff | 1255 | * Must not be called in interrupt context. |
1da177e4 | 1256 | */ |
b3bdda02 | 1257 | void vunmap(const void *addr) |
1da177e4 LT |
1258 | { |
1259 | BUG_ON(in_interrupt()); | |
1260 | __vunmap(addr, 0); | |
1261 | } | |
1da177e4 LT |
1262 | EXPORT_SYMBOL(vunmap); |
1263 | ||
1264 | /** | |
1265 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1266 | * @pages: array of page pointers |
1267 | * @count: number of pages to map | |
1268 | * @flags: vm_area->flags | |
1269 | * @prot: page protection for the mapping | |
1270 | * | |
1271 | * Maps @count pages from @pages into contiguous kernel virtual | |
1272 | * space. | |
1273 | */ | |
1274 | void *vmap(struct page **pages, unsigned int count, | |
1275 | unsigned long flags, pgprot_t prot) | |
1276 | { | |
1277 | struct vm_struct *area; | |
1278 | ||
1279 | if (count > num_physpages) | |
1280 | return NULL; | |
1281 | ||
23016969 CL |
1282 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1283 | __builtin_return_address(0)); | |
1da177e4 LT |
1284 | if (!area) |
1285 | return NULL; | |
23016969 | 1286 | |
1da177e4 LT |
1287 | if (map_vm_area(area, prot, &pages)) { |
1288 | vunmap(area->addr); | |
1289 | return NULL; | |
1290 | } | |
1291 | ||
1292 | return area->addr; | |
1293 | } | |
1da177e4 LT |
1294 | EXPORT_SYMBOL(vmap); |
1295 | ||
db64fe02 NP |
1296 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, |
1297 | int node, void *caller); | |
e31d9eb5 | 1298 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
23016969 | 1299 | pgprot_t prot, int node, void *caller) |
1da177e4 LT |
1300 | { |
1301 | struct page **pages; | |
1302 | unsigned int nr_pages, array_size, i; | |
1303 | ||
1304 | nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | |
1305 | array_size = (nr_pages * sizeof(struct page *)); | |
1306 | ||
1307 | area->nr_pages = nr_pages; | |
1308 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1309 | if (array_size > PAGE_SIZE) { |
94f6030c | 1310 | pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, |
23016969 | 1311 | PAGE_KERNEL, node, caller); |
8757d5fa | 1312 | area->flags |= VM_VPAGES; |
286e1ea3 AM |
1313 | } else { |
1314 | pages = kmalloc_node(array_size, | |
6cb06229 | 1315 | (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, |
286e1ea3 AM |
1316 | node); |
1317 | } | |
1da177e4 | 1318 | area->pages = pages; |
23016969 | 1319 | area->caller = caller; |
1da177e4 LT |
1320 | if (!area->pages) { |
1321 | remove_vm_area(area->addr); | |
1322 | kfree(area); | |
1323 | return NULL; | |
1324 | } | |
1da177e4 LT |
1325 | |
1326 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1327 | struct page *page; |
1328 | ||
930fc45a | 1329 | if (node < 0) |
bf53d6f8 | 1330 | page = alloc_page(gfp_mask); |
930fc45a | 1331 | else |
bf53d6f8 CL |
1332 | page = alloc_pages_node(node, gfp_mask, 0); |
1333 | ||
1334 | if (unlikely(!page)) { | |
1da177e4 LT |
1335 | /* Successfully allocated i pages, free them in __vunmap() */ |
1336 | area->nr_pages = i; | |
1337 | goto fail; | |
1338 | } | |
bf53d6f8 | 1339 | area->pages[i] = page; |
1da177e4 LT |
1340 | } |
1341 | ||
1342 | if (map_vm_area(area, prot, &pages)) | |
1343 | goto fail; | |
1344 | return area->addr; | |
1345 | ||
1346 | fail: | |
1347 | vfree(area->addr); | |
1348 | return NULL; | |
1349 | } | |
1350 | ||
930fc45a CL |
1351 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) |
1352 | { | |
23016969 CL |
1353 | return __vmalloc_area_node(area, gfp_mask, prot, -1, |
1354 | __builtin_return_address(0)); | |
930fc45a CL |
1355 | } |
1356 | ||
1da177e4 | 1357 | /** |
930fc45a | 1358 | * __vmalloc_node - allocate virtually contiguous memory |
1da177e4 LT |
1359 | * @size: allocation size |
1360 | * @gfp_mask: flags for the page level allocator | |
1361 | * @prot: protection mask for the allocated pages | |
d44e0780 | 1362 | * @node: node to use for allocation or -1 |
c85d194b | 1363 | * @caller: caller's return address |
1da177e4 LT |
1364 | * |
1365 | * Allocate enough pages to cover @size from the page level | |
1366 | * allocator with @gfp_mask flags. Map them into contiguous | |
1367 | * kernel virtual space, using a pagetable protection of @prot. | |
1368 | */ | |
b221385b | 1369 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, |
23016969 | 1370 | int node, void *caller) |
1da177e4 LT |
1371 | { |
1372 | struct vm_struct *area; | |
1373 | ||
1374 | size = PAGE_ALIGN(size); | |
1375 | if (!size || (size >> PAGE_SHIFT) > num_physpages) | |
1376 | return NULL; | |
1377 | ||
23016969 CL |
1378 | area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, |
1379 | node, gfp_mask, caller); | |
1380 | ||
1da177e4 LT |
1381 | if (!area) |
1382 | return NULL; | |
1383 | ||
23016969 | 1384 | return __vmalloc_area_node(area, gfp_mask, prot, node, caller); |
1da177e4 LT |
1385 | } |
1386 | ||
930fc45a CL |
1387 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1388 | { | |
23016969 CL |
1389 | return __vmalloc_node(size, gfp_mask, prot, -1, |
1390 | __builtin_return_address(0)); | |
930fc45a | 1391 | } |
1da177e4 LT |
1392 | EXPORT_SYMBOL(__vmalloc); |
1393 | ||
1394 | /** | |
1395 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1396 | * @size: allocation size |
1da177e4 LT |
1397 | * Allocate enough pages to cover @size from the page level |
1398 | * allocator and map them into contiguous kernel virtual space. | |
1399 | * | |
c1c8897f | 1400 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1401 | * use __vmalloc() instead. |
1402 | */ | |
1403 | void *vmalloc(unsigned long size) | |
1404 | { | |
23016969 CL |
1405 | return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
1406 | -1, __builtin_return_address(0)); | |
1da177e4 | 1407 | } |
1da177e4 LT |
1408 | EXPORT_SYMBOL(vmalloc); |
1409 | ||
83342314 | 1410 | /** |
ead04089 REB |
1411 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1412 | * @size: allocation size | |
83342314 | 1413 | * |
ead04089 REB |
1414 | * The resulting memory area is zeroed so it can be mapped to userspace |
1415 | * without leaking data. | |
83342314 NP |
1416 | */ |
1417 | void *vmalloc_user(unsigned long size) | |
1418 | { | |
1419 | struct vm_struct *area; | |
1420 | void *ret; | |
1421 | ||
84877848 GC |
1422 | ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, |
1423 | PAGE_KERNEL, -1, __builtin_return_address(0)); | |
2b4ac44e | 1424 | if (ret) { |
db64fe02 | 1425 | area = find_vm_area(ret); |
2b4ac44e | 1426 | area->flags |= VM_USERMAP; |
2b4ac44e | 1427 | } |
83342314 NP |
1428 | return ret; |
1429 | } | |
1430 | EXPORT_SYMBOL(vmalloc_user); | |
1431 | ||
930fc45a CL |
1432 | /** |
1433 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1434 | * @size: allocation size |
d44e0780 | 1435 | * @node: numa node |
930fc45a CL |
1436 | * |
1437 | * Allocate enough pages to cover @size from the page level | |
1438 | * allocator and map them into contiguous kernel virtual space. | |
1439 | * | |
c1c8897f | 1440 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1441 | * use __vmalloc() instead. |
1442 | */ | |
1443 | void *vmalloc_node(unsigned long size, int node) | |
1444 | { | |
23016969 CL |
1445 | return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
1446 | node, __builtin_return_address(0)); | |
930fc45a CL |
1447 | } |
1448 | EXPORT_SYMBOL(vmalloc_node); | |
1449 | ||
4dc3b16b PP |
1450 | #ifndef PAGE_KERNEL_EXEC |
1451 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1452 | #endif | |
1453 | ||
1da177e4 LT |
1454 | /** |
1455 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1456 | * @size: allocation size |
1457 | * | |
1458 | * Kernel-internal function to allocate enough pages to cover @size | |
1459 | * the page level allocator and map them into contiguous and | |
1460 | * executable kernel virtual space. | |
1461 | * | |
c1c8897f | 1462 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1463 | * use __vmalloc() instead. |
1464 | */ | |
1465 | ||
1da177e4 LT |
1466 | void *vmalloc_exec(unsigned long size) |
1467 | { | |
84877848 GC |
1468 | return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
1469 | -1, __builtin_return_address(0)); | |
1da177e4 LT |
1470 | } |
1471 | ||
0d08e0d3 | 1472 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1473 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1474 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1475 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1476 | #else |
1477 | #define GFP_VMALLOC32 GFP_KERNEL | |
1478 | #endif | |
1479 | ||
1da177e4 LT |
1480 | /** |
1481 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1482 | * @size: allocation size |
1483 | * | |
1484 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1485 | * page level allocator and map them into contiguous kernel virtual space. | |
1486 | */ | |
1487 | void *vmalloc_32(unsigned long size) | |
1488 | { | |
84877848 GC |
1489 | return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, |
1490 | -1, __builtin_return_address(0)); | |
1da177e4 | 1491 | } |
1da177e4 LT |
1492 | EXPORT_SYMBOL(vmalloc_32); |
1493 | ||
83342314 | 1494 | /** |
ead04089 | 1495 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1496 | * @size: allocation size |
ead04089 REB |
1497 | * |
1498 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1499 | * mapped to userspace without leaking data. | |
83342314 NP |
1500 | */ |
1501 | void *vmalloc_32_user(unsigned long size) | |
1502 | { | |
1503 | struct vm_struct *area; | |
1504 | void *ret; | |
1505 | ||
84877848 GC |
1506 | ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
1507 | -1, __builtin_return_address(0)); | |
2b4ac44e | 1508 | if (ret) { |
db64fe02 | 1509 | area = find_vm_area(ret); |
2b4ac44e | 1510 | area->flags |= VM_USERMAP; |
2b4ac44e | 1511 | } |
83342314 NP |
1512 | return ret; |
1513 | } | |
1514 | EXPORT_SYMBOL(vmalloc_32_user); | |
1515 | ||
1da177e4 LT |
1516 | long vread(char *buf, char *addr, unsigned long count) |
1517 | { | |
1518 | struct vm_struct *tmp; | |
1519 | char *vaddr, *buf_start = buf; | |
1520 | unsigned long n; | |
1521 | ||
1522 | /* Don't allow overflow */ | |
1523 | if ((unsigned long) addr + count < count) | |
1524 | count = -(unsigned long) addr; | |
1525 | ||
1526 | read_lock(&vmlist_lock); | |
1527 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
1528 | vaddr = (char *) tmp->addr; | |
1529 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1530 | continue; | |
1531 | while (addr < vaddr) { | |
1532 | if (count == 0) | |
1533 | goto finished; | |
1534 | *buf = '\0'; | |
1535 | buf++; | |
1536 | addr++; | |
1537 | count--; | |
1538 | } | |
1539 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
1540 | do { | |
1541 | if (count == 0) | |
1542 | goto finished; | |
1543 | *buf = *addr; | |
1544 | buf++; | |
1545 | addr++; | |
1546 | count--; | |
1547 | } while (--n > 0); | |
1548 | } | |
1549 | finished: | |
1550 | read_unlock(&vmlist_lock); | |
1551 | return buf - buf_start; | |
1552 | } | |
1553 | ||
1554 | long vwrite(char *buf, char *addr, unsigned long count) | |
1555 | { | |
1556 | struct vm_struct *tmp; | |
1557 | char *vaddr, *buf_start = buf; | |
1558 | unsigned long n; | |
1559 | ||
1560 | /* Don't allow overflow */ | |
1561 | if ((unsigned long) addr + count < count) | |
1562 | count = -(unsigned long) addr; | |
1563 | ||
1564 | read_lock(&vmlist_lock); | |
1565 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
1566 | vaddr = (char *) tmp->addr; | |
1567 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1568 | continue; | |
1569 | while (addr < vaddr) { | |
1570 | if (count == 0) | |
1571 | goto finished; | |
1572 | buf++; | |
1573 | addr++; | |
1574 | count--; | |
1575 | } | |
1576 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
1577 | do { | |
1578 | if (count == 0) | |
1579 | goto finished; | |
1580 | *addr = *buf; | |
1581 | buf++; | |
1582 | addr++; | |
1583 | count--; | |
1584 | } while (--n > 0); | |
1585 | } | |
1586 | finished: | |
1587 | read_unlock(&vmlist_lock); | |
1588 | return buf - buf_start; | |
1589 | } | |
83342314 NP |
1590 | |
1591 | /** | |
1592 | * remap_vmalloc_range - map vmalloc pages to userspace | |
83342314 NP |
1593 | * @vma: vma to cover (map full range of vma) |
1594 | * @addr: vmalloc memory | |
1595 | * @pgoff: number of pages into addr before first page to map | |
7682486b RD |
1596 | * |
1597 | * Returns: 0 for success, -Exxx on failure | |
83342314 NP |
1598 | * |
1599 | * This function checks that addr is a valid vmalloc'ed area, and | |
1600 | * that it is big enough to cover the vma. Will return failure if | |
1601 | * that criteria isn't met. | |
1602 | * | |
72fd4a35 | 1603 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 NP |
1604 | */ |
1605 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
1606 | unsigned long pgoff) | |
1607 | { | |
1608 | struct vm_struct *area; | |
1609 | unsigned long uaddr = vma->vm_start; | |
1610 | unsigned long usize = vma->vm_end - vma->vm_start; | |
83342314 NP |
1611 | |
1612 | if ((PAGE_SIZE-1) & (unsigned long)addr) | |
1613 | return -EINVAL; | |
1614 | ||
db64fe02 | 1615 | area = find_vm_area(addr); |
83342314 | 1616 | if (!area) |
db64fe02 | 1617 | return -EINVAL; |
83342314 NP |
1618 | |
1619 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 1620 | return -EINVAL; |
83342314 NP |
1621 | |
1622 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | |
db64fe02 | 1623 | return -EINVAL; |
83342314 NP |
1624 | |
1625 | addr += pgoff << PAGE_SHIFT; | |
1626 | do { | |
1627 | struct page *page = vmalloc_to_page(addr); | |
db64fe02 NP |
1628 | int ret; |
1629 | ||
83342314 NP |
1630 | ret = vm_insert_page(vma, uaddr, page); |
1631 | if (ret) | |
1632 | return ret; | |
1633 | ||
1634 | uaddr += PAGE_SIZE; | |
1635 | addr += PAGE_SIZE; | |
1636 | usize -= PAGE_SIZE; | |
1637 | } while (usize > 0); | |
1638 | ||
1639 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ | |
1640 | vma->vm_flags |= VM_RESERVED; | |
1641 | ||
db64fe02 | 1642 | return 0; |
83342314 NP |
1643 | } |
1644 | EXPORT_SYMBOL(remap_vmalloc_range); | |
1645 | ||
1eeb66a1 CH |
1646 | /* |
1647 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
1648 | * have one. | |
1649 | */ | |
1650 | void __attribute__((weak)) vmalloc_sync_all(void) | |
1651 | { | |
1652 | } | |
5f4352fb JF |
1653 | |
1654 | ||
2f569afd | 1655 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb JF |
1656 | { |
1657 | /* apply_to_page_range() does all the hard work. */ | |
1658 | return 0; | |
1659 | } | |
1660 | ||
1661 | /** | |
1662 | * alloc_vm_area - allocate a range of kernel address space | |
1663 | * @size: size of the area | |
7682486b RD |
1664 | * |
1665 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
1666 | * |
1667 | * This function reserves a range of kernel address space, and | |
1668 | * allocates pagetables to map that range. No actual mappings | |
1669 | * are created. If the kernel address space is not shared | |
1670 | * between processes, it syncs the pagetable across all | |
1671 | * processes. | |
1672 | */ | |
1673 | struct vm_struct *alloc_vm_area(size_t size) | |
1674 | { | |
1675 | struct vm_struct *area; | |
1676 | ||
23016969 CL |
1677 | area = get_vm_area_caller(size, VM_IOREMAP, |
1678 | __builtin_return_address(0)); | |
5f4352fb JF |
1679 | if (area == NULL) |
1680 | return NULL; | |
1681 | ||
1682 | /* | |
1683 | * This ensures that page tables are constructed for this region | |
1684 | * of kernel virtual address space and mapped into init_mm. | |
1685 | */ | |
1686 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
1687 | area->size, f, NULL)) { | |
1688 | free_vm_area(area); | |
1689 | return NULL; | |
1690 | } | |
1691 | ||
1692 | /* Make sure the pagetables are constructed in process kernel | |
1693 | mappings */ | |
1694 | vmalloc_sync_all(); | |
1695 | ||
1696 | return area; | |
1697 | } | |
1698 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
1699 | ||
1700 | void free_vm_area(struct vm_struct *area) | |
1701 | { | |
1702 | struct vm_struct *ret; | |
1703 | ret = remove_vm_area(area->addr); | |
1704 | BUG_ON(ret != area); | |
1705 | kfree(area); | |
1706 | } | |
1707 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 CL |
1708 | |
1709 | ||
1710 | #ifdef CONFIG_PROC_FS | |
1711 | static void *s_start(struct seq_file *m, loff_t *pos) | |
1712 | { | |
1713 | loff_t n = *pos; | |
1714 | struct vm_struct *v; | |
1715 | ||
1716 | read_lock(&vmlist_lock); | |
1717 | v = vmlist; | |
1718 | while (n > 0 && v) { | |
1719 | n--; | |
1720 | v = v->next; | |
1721 | } | |
1722 | if (!n) | |
1723 | return v; | |
1724 | ||
1725 | return NULL; | |
1726 | ||
1727 | } | |
1728 | ||
1729 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
1730 | { | |
1731 | struct vm_struct *v = p; | |
1732 | ||
1733 | ++*pos; | |
1734 | return v->next; | |
1735 | } | |
1736 | ||
1737 | static void s_stop(struct seq_file *m, void *p) | |
1738 | { | |
1739 | read_unlock(&vmlist_lock); | |
1740 | } | |
1741 | ||
a47a126a ED |
1742 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
1743 | { | |
1744 | if (NUMA_BUILD) { | |
1745 | unsigned int nr, *counters = m->private; | |
1746 | ||
1747 | if (!counters) | |
1748 | return; | |
1749 | ||
1750 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
1751 | ||
1752 | for (nr = 0; nr < v->nr_pages; nr++) | |
1753 | counters[page_to_nid(v->pages[nr])]++; | |
1754 | ||
1755 | for_each_node_state(nr, N_HIGH_MEMORY) | |
1756 | if (counters[nr]) | |
1757 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
1758 | } | |
1759 | } | |
1760 | ||
a10aa579 CL |
1761 | static int s_show(struct seq_file *m, void *p) |
1762 | { | |
1763 | struct vm_struct *v = p; | |
1764 | ||
1765 | seq_printf(m, "0x%p-0x%p %7ld", | |
1766 | v->addr, v->addr + v->size, v->size); | |
1767 | ||
23016969 | 1768 | if (v->caller) { |
9c246247 | 1769 | char buff[KSYM_SYMBOL_LEN]; |
23016969 CL |
1770 | |
1771 | seq_putc(m, ' '); | |
1772 | sprint_symbol(buff, (unsigned long)v->caller); | |
1773 | seq_puts(m, buff); | |
1774 | } | |
1775 | ||
a10aa579 CL |
1776 | if (v->nr_pages) |
1777 | seq_printf(m, " pages=%d", v->nr_pages); | |
1778 | ||
1779 | if (v->phys_addr) | |
1780 | seq_printf(m, " phys=%lx", v->phys_addr); | |
1781 | ||
1782 | if (v->flags & VM_IOREMAP) | |
1783 | seq_printf(m, " ioremap"); | |
1784 | ||
1785 | if (v->flags & VM_ALLOC) | |
1786 | seq_printf(m, " vmalloc"); | |
1787 | ||
1788 | if (v->flags & VM_MAP) | |
1789 | seq_printf(m, " vmap"); | |
1790 | ||
1791 | if (v->flags & VM_USERMAP) | |
1792 | seq_printf(m, " user"); | |
1793 | ||
1794 | if (v->flags & VM_VPAGES) | |
1795 | seq_printf(m, " vpages"); | |
1796 | ||
a47a126a | 1797 | show_numa_info(m, v); |
a10aa579 CL |
1798 | seq_putc(m, '\n'); |
1799 | return 0; | |
1800 | } | |
1801 | ||
5f6a6a9c | 1802 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
1803 | .start = s_start, |
1804 | .next = s_next, | |
1805 | .stop = s_stop, | |
1806 | .show = s_show, | |
1807 | }; | |
5f6a6a9c AD |
1808 | |
1809 | static int vmalloc_open(struct inode *inode, struct file *file) | |
1810 | { | |
1811 | unsigned int *ptr = NULL; | |
1812 | int ret; | |
1813 | ||
1814 | if (NUMA_BUILD) | |
1815 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | |
1816 | ret = seq_open(file, &vmalloc_op); | |
1817 | if (!ret) { | |
1818 | struct seq_file *m = file->private_data; | |
1819 | m->private = ptr; | |
1820 | } else | |
1821 | kfree(ptr); | |
1822 | return ret; | |
1823 | } | |
1824 | ||
1825 | static const struct file_operations proc_vmalloc_operations = { | |
1826 | .open = vmalloc_open, | |
1827 | .read = seq_read, | |
1828 | .llseek = seq_lseek, | |
1829 | .release = seq_release_private, | |
1830 | }; | |
1831 | ||
1832 | static int __init proc_vmalloc_init(void) | |
1833 | { | |
1834 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
1835 | return 0; | |
1836 | } | |
1837 | module_init(proc_vmalloc_init); | |
a10aa579 CL |
1838 | #endif |
1839 |