]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 NP |
23 | #include <linux/list.h> |
24 | #include <linux/rbtree.h> | |
25 | #include <linux/radix-tree.h> | |
26 | #include <linux/rcupdate.h> | |
f0aa6617 | 27 | #include <linux/pfn.h> |
89219d37 | 28 | #include <linux/kmemleak.h> |
db64fe02 | 29 | #include <asm/atomic.h> |
1da177e4 LT |
30 | #include <asm/uaccess.h> |
31 | #include <asm/tlbflush.h> | |
2dca6999 | 32 | #include <asm/shmparam.h> |
1da177e4 LT |
33 | |
34 | ||
db64fe02 | 35 | /*** Page table manipulation functions ***/ |
b221385b | 36 | |
1da177e4 LT |
37 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
38 | { | |
39 | pte_t *pte; | |
40 | ||
41 | pte = pte_offset_kernel(pmd, addr); | |
42 | do { | |
43 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
44 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
45 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
46 | } | |
47 | ||
db64fe02 | 48 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
49 | { |
50 | pmd_t *pmd; | |
51 | unsigned long next; | |
52 | ||
53 | pmd = pmd_offset(pud, addr); | |
54 | do { | |
55 | next = pmd_addr_end(addr, end); | |
56 | if (pmd_none_or_clear_bad(pmd)) | |
57 | continue; | |
58 | vunmap_pte_range(pmd, addr, next); | |
59 | } while (pmd++, addr = next, addr != end); | |
60 | } | |
61 | ||
db64fe02 | 62 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
63 | { |
64 | pud_t *pud; | |
65 | unsigned long next; | |
66 | ||
67 | pud = pud_offset(pgd, addr); | |
68 | do { | |
69 | next = pud_addr_end(addr, end); | |
70 | if (pud_none_or_clear_bad(pud)) | |
71 | continue; | |
72 | vunmap_pmd_range(pud, addr, next); | |
73 | } while (pud++, addr = next, addr != end); | |
74 | } | |
75 | ||
db64fe02 | 76 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
77 | { |
78 | pgd_t *pgd; | |
79 | unsigned long next; | |
1da177e4 LT |
80 | |
81 | BUG_ON(addr >= end); | |
82 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
83 | do { |
84 | next = pgd_addr_end(addr, end); | |
85 | if (pgd_none_or_clear_bad(pgd)) | |
86 | continue; | |
87 | vunmap_pud_range(pgd, addr, next); | |
88 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
89 | } |
90 | ||
91 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 92 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
93 | { |
94 | pte_t *pte; | |
95 | ||
db64fe02 NP |
96 | /* |
97 | * nr is a running index into the array which helps higher level | |
98 | * callers keep track of where we're up to. | |
99 | */ | |
100 | ||
872fec16 | 101 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
102 | if (!pte) |
103 | return -ENOMEM; | |
104 | do { | |
db64fe02 NP |
105 | struct page *page = pages[*nr]; |
106 | ||
107 | if (WARN_ON(!pte_none(*pte))) | |
108 | return -EBUSY; | |
109 | if (WARN_ON(!page)) | |
1da177e4 LT |
110 | return -ENOMEM; |
111 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 112 | (*nr)++; |
1da177e4 LT |
113 | } while (pte++, addr += PAGE_SIZE, addr != end); |
114 | return 0; | |
115 | } | |
116 | ||
db64fe02 NP |
117 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
118 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
119 | { |
120 | pmd_t *pmd; | |
121 | unsigned long next; | |
122 | ||
123 | pmd = pmd_alloc(&init_mm, pud, addr); | |
124 | if (!pmd) | |
125 | return -ENOMEM; | |
126 | do { | |
127 | next = pmd_addr_end(addr, end); | |
db64fe02 | 128 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
129 | return -ENOMEM; |
130 | } while (pmd++, addr = next, addr != end); | |
131 | return 0; | |
132 | } | |
133 | ||
db64fe02 NP |
134 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
135 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
136 | { |
137 | pud_t *pud; | |
138 | unsigned long next; | |
139 | ||
140 | pud = pud_alloc(&init_mm, pgd, addr); | |
141 | if (!pud) | |
142 | return -ENOMEM; | |
143 | do { | |
144 | next = pud_addr_end(addr, end); | |
db64fe02 | 145 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
146 | return -ENOMEM; |
147 | } while (pud++, addr = next, addr != end); | |
148 | return 0; | |
149 | } | |
150 | ||
db64fe02 NP |
151 | /* |
152 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
153 | * will have pfns corresponding to the "pages" array. | |
154 | * | |
155 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
156 | */ | |
8fc48985 TH |
157 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
158 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
159 | { |
160 | pgd_t *pgd; | |
161 | unsigned long next; | |
2e4e27c7 | 162 | unsigned long addr = start; |
db64fe02 NP |
163 | int err = 0; |
164 | int nr = 0; | |
1da177e4 LT |
165 | |
166 | BUG_ON(addr >= end); | |
167 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
168 | do { |
169 | next = pgd_addr_end(addr, end); | |
db64fe02 | 170 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 171 | if (err) |
bf88c8c8 | 172 | return err; |
1da177e4 | 173 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 174 | |
db64fe02 | 175 | return nr; |
1da177e4 LT |
176 | } |
177 | ||
8fc48985 TH |
178 | static int vmap_page_range(unsigned long start, unsigned long end, |
179 | pgprot_t prot, struct page **pages) | |
180 | { | |
181 | int ret; | |
182 | ||
183 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
184 | flush_cache_vmap(start, end); | |
185 | return ret; | |
186 | } | |
187 | ||
81ac3ad9 | 188 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
189 | { |
190 | /* | |
ab4f2ee1 | 191 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
192 | * and fall back on vmalloc() if that fails. Others |
193 | * just put it in the vmalloc space. | |
194 | */ | |
195 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
196 | unsigned long addr = (unsigned long)x; | |
197 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
198 | return 1; | |
199 | #endif | |
200 | return is_vmalloc_addr(x); | |
201 | } | |
202 | ||
48667e7a | 203 | /* |
db64fe02 | 204 | * Walk a vmap address to the struct page it maps. |
48667e7a | 205 | */ |
b3bdda02 | 206 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
207 | { |
208 | unsigned long addr = (unsigned long) vmalloc_addr; | |
209 | struct page *page = NULL; | |
210 | pgd_t *pgd = pgd_offset_k(addr); | |
48667e7a | 211 | |
7aa413de IM |
212 | /* |
213 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
214 | * architectures that do not vmalloc module space | |
215 | */ | |
73bdf0a6 | 216 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 217 | |
48667e7a | 218 | if (!pgd_none(*pgd)) { |
db64fe02 | 219 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 220 | if (!pud_none(*pud)) { |
db64fe02 | 221 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 222 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
223 | pte_t *ptep, pte; |
224 | ||
48667e7a CL |
225 | ptep = pte_offset_map(pmd, addr); |
226 | pte = *ptep; | |
227 | if (pte_present(pte)) | |
228 | page = pte_page(pte); | |
229 | pte_unmap(ptep); | |
230 | } | |
231 | } | |
232 | } | |
233 | return page; | |
234 | } | |
235 | EXPORT_SYMBOL(vmalloc_to_page); | |
236 | ||
237 | /* | |
238 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
239 | */ | |
b3bdda02 | 240 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a CL |
241 | { |
242 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
243 | } | |
244 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
245 | ||
db64fe02 NP |
246 | |
247 | /*** Global kva allocator ***/ | |
248 | ||
249 | #define VM_LAZY_FREE 0x01 | |
250 | #define VM_LAZY_FREEING 0x02 | |
251 | #define VM_VM_AREA 0x04 | |
252 | ||
253 | struct vmap_area { | |
254 | unsigned long va_start; | |
255 | unsigned long va_end; | |
256 | unsigned long flags; | |
257 | struct rb_node rb_node; /* address sorted rbtree */ | |
258 | struct list_head list; /* address sorted list */ | |
259 | struct list_head purge_list; /* "lazy purge" list */ | |
260 | void *private; | |
261 | struct rcu_head rcu_head; | |
262 | }; | |
263 | ||
264 | static DEFINE_SPINLOCK(vmap_area_lock); | |
265 | static struct rb_root vmap_area_root = RB_ROOT; | |
266 | static LIST_HEAD(vmap_area_list); | |
ca23e405 | 267 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
268 | |
269 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 270 | { |
db64fe02 NP |
271 | struct rb_node *n = vmap_area_root.rb_node; |
272 | ||
273 | while (n) { | |
274 | struct vmap_area *va; | |
275 | ||
276 | va = rb_entry(n, struct vmap_area, rb_node); | |
277 | if (addr < va->va_start) | |
278 | n = n->rb_left; | |
279 | else if (addr > va->va_start) | |
280 | n = n->rb_right; | |
281 | else | |
282 | return va; | |
283 | } | |
284 | ||
285 | return NULL; | |
286 | } | |
287 | ||
288 | static void __insert_vmap_area(struct vmap_area *va) | |
289 | { | |
290 | struct rb_node **p = &vmap_area_root.rb_node; | |
291 | struct rb_node *parent = NULL; | |
292 | struct rb_node *tmp; | |
293 | ||
294 | while (*p) { | |
295 | struct vmap_area *tmp; | |
296 | ||
297 | parent = *p; | |
298 | tmp = rb_entry(parent, struct vmap_area, rb_node); | |
299 | if (va->va_start < tmp->va_end) | |
300 | p = &(*p)->rb_left; | |
301 | else if (va->va_end > tmp->va_start) | |
302 | p = &(*p)->rb_right; | |
303 | else | |
304 | BUG(); | |
305 | } | |
306 | ||
307 | rb_link_node(&va->rb_node, parent, p); | |
308 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
309 | ||
310 | /* address-sort this list so it is usable like the vmlist */ | |
311 | tmp = rb_prev(&va->rb_node); | |
312 | if (tmp) { | |
313 | struct vmap_area *prev; | |
314 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
315 | list_add_rcu(&va->list, &prev->list); | |
316 | } else | |
317 | list_add_rcu(&va->list, &vmap_area_list); | |
318 | } | |
319 | ||
320 | static void purge_vmap_area_lazy(void); | |
321 | ||
322 | /* | |
323 | * Allocate a region of KVA of the specified size and alignment, within the | |
324 | * vstart and vend. | |
325 | */ | |
326 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
327 | unsigned long align, | |
328 | unsigned long vstart, unsigned long vend, | |
329 | int node, gfp_t gfp_mask) | |
330 | { | |
331 | struct vmap_area *va; | |
332 | struct rb_node *n; | |
1da177e4 | 333 | unsigned long addr; |
db64fe02 NP |
334 | int purged = 0; |
335 | ||
7766970c | 336 | BUG_ON(!size); |
db64fe02 NP |
337 | BUG_ON(size & ~PAGE_MASK); |
338 | ||
db64fe02 NP |
339 | va = kmalloc_node(sizeof(struct vmap_area), |
340 | gfp_mask & GFP_RECLAIM_MASK, node); | |
341 | if (unlikely(!va)) | |
342 | return ERR_PTR(-ENOMEM); | |
343 | ||
344 | retry: | |
0ae15132 GC |
345 | addr = ALIGN(vstart, align); |
346 | ||
db64fe02 | 347 | spin_lock(&vmap_area_lock); |
7766970c NP |
348 | if (addr + size - 1 < addr) |
349 | goto overflow; | |
350 | ||
db64fe02 NP |
351 | /* XXX: could have a last_hole cache */ |
352 | n = vmap_area_root.rb_node; | |
353 | if (n) { | |
354 | struct vmap_area *first = NULL; | |
355 | ||
356 | do { | |
357 | struct vmap_area *tmp; | |
358 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
359 | if (tmp->va_end >= addr) { | |
360 | if (!first && tmp->va_start < addr + size) | |
361 | first = tmp; | |
362 | n = n->rb_left; | |
363 | } else { | |
364 | first = tmp; | |
365 | n = n->rb_right; | |
366 | } | |
367 | } while (n); | |
368 | ||
369 | if (!first) | |
370 | goto found; | |
371 | ||
372 | if (first->va_end < addr) { | |
373 | n = rb_next(&first->rb_node); | |
374 | if (n) | |
375 | first = rb_entry(n, struct vmap_area, rb_node); | |
376 | else | |
377 | goto found; | |
378 | } | |
379 | ||
f011c2da | 380 | while (addr + size > first->va_start && addr + size <= vend) { |
db64fe02 | 381 | addr = ALIGN(first->va_end + PAGE_SIZE, align); |
7766970c NP |
382 | if (addr + size - 1 < addr) |
383 | goto overflow; | |
db64fe02 NP |
384 | |
385 | n = rb_next(&first->rb_node); | |
386 | if (n) | |
387 | first = rb_entry(n, struct vmap_area, rb_node); | |
388 | else | |
389 | goto found; | |
390 | } | |
391 | } | |
392 | found: | |
393 | if (addr + size > vend) { | |
7766970c | 394 | overflow: |
db64fe02 NP |
395 | spin_unlock(&vmap_area_lock); |
396 | if (!purged) { | |
397 | purge_vmap_area_lazy(); | |
398 | purged = 1; | |
399 | goto retry; | |
400 | } | |
401 | if (printk_ratelimit()) | |
c1279c4e GC |
402 | printk(KERN_WARNING |
403 | "vmap allocation for size %lu failed: " | |
404 | "use vmalloc=<size> to increase size.\n", size); | |
2498ce42 | 405 | kfree(va); |
db64fe02 NP |
406 | return ERR_PTR(-EBUSY); |
407 | } | |
408 | ||
409 | BUG_ON(addr & (align-1)); | |
410 | ||
411 | va->va_start = addr; | |
412 | va->va_end = addr + size; | |
413 | va->flags = 0; | |
414 | __insert_vmap_area(va); | |
415 | spin_unlock(&vmap_area_lock); | |
416 | ||
417 | return va; | |
418 | } | |
419 | ||
420 | static void rcu_free_va(struct rcu_head *head) | |
421 | { | |
422 | struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | |
423 | ||
424 | kfree(va); | |
425 | } | |
426 | ||
427 | static void __free_vmap_area(struct vmap_area *va) | |
428 | { | |
429 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
430 | rb_erase(&va->rb_node, &vmap_area_root); | |
431 | RB_CLEAR_NODE(&va->rb_node); | |
432 | list_del_rcu(&va->list); | |
433 | ||
ca23e405 TH |
434 | /* |
435 | * Track the highest possible candidate for pcpu area | |
436 | * allocation. Areas outside of vmalloc area can be returned | |
437 | * here too, consider only end addresses which fall inside | |
438 | * vmalloc area proper. | |
439 | */ | |
440 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
441 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
442 | ||
db64fe02 NP |
443 | call_rcu(&va->rcu_head, rcu_free_va); |
444 | } | |
445 | ||
446 | /* | |
447 | * Free a region of KVA allocated by alloc_vmap_area | |
448 | */ | |
449 | static void free_vmap_area(struct vmap_area *va) | |
450 | { | |
451 | spin_lock(&vmap_area_lock); | |
452 | __free_vmap_area(va); | |
453 | spin_unlock(&vmap_area_lock); | |
454 | } | |
455 | ||
456 | /* | |
457 | * Clear the pagetable entries of a given vmap_area | |
458 | */ | |
459 | static void unmap_vmap_area(struct vmap_area *va) | |
460 | { | |
461 | vunmap_page_range(va->va_start, va->va_end); | |
462 | } | |
463 | ||
cd52858c NP |
464 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
465 | { | |
466 | /* | |
467 | * Unmap page tables and force a TLB flush immediately if | |
468 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
469 | * bugs similarly to those in linear kernel virtual address | |
470 | * space after a page has been freed. | |
471 | * | |
472 | * All the lazy freeing logic is still retained, in order to | |
473 | * minimise intrusiveness of this debugging feature. | |
474 | * | |
475 | * This is going to be *slow* (linear kernel virtual address | |
476 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
477 | * faster). | |
478 | */ | |
479 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
480 | vunmap_page_range(start, end); | |
481 | flush_tlb_kernel_range(start, end); | |
482 | #endif | |
483 | } | |
484 | ||
db64fe02 NP |
485 | /* |
486 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
487 | * before attempting to purge with a TLB flush. | |
488 | * | |
489 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
490 | * and take slightly longer to purge, but it will linearly reduce the number of | |
491 | * global TLB flushes that must be performed. It would seem natural to scale | |
492 | * this number up linearly with the number of CPUs (because vmapping activity | |
493 | * could also scale linearly with the number of CPUs), however it is likely | |
494 | * that in practice, workloads might be constrained in other ways that mean | |
495 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
496 | * conservative and not introduce a big latency on huge systems, so go with | |
497 | * a less aggressive log scale. It will still be an improvement over the old | |
498 | * code, and it will be simple to change the scale factor if we find that it | |
499 | * becomes a problem on bigger systems. | |
500 | */ | |
501 | static unsigned long lazy_max_pages(void) | |
502 | { | |
503 | unsigned int log; | |
504 | ||
505 | log = fls(num_online_cpus()); | |
506 | ||
507 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
508 | } | |
509 | ||
510 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
511 | ||
512 | /* | |
513 | * Purges all lazily-freed vmap areas. | |
514 | * | |
515 | * If sync is 0 then don't purge if there is already a purge in progress. | |
516 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
517 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
518 | * their own TLB flushing). | |
519 | * Returns with *start = min(*start, lowest purged address) | |
520 | * *end = max(*end, highest purged address) | |
521 | */ | |
522 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
523 | int sync, int force_flush) | |
524 | { | |
46666d8a | 525 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
526 | LIST_HEAD(valist); |
527 | struct vmap_area *va; | |
cbb76676 | 528 | struct vmap_area *n_va; |
db64fe02 NP |
529 | int nr = 0; |
530 | ||
531 | /* | |
532 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
533 | * should not expect such behaviour. This just simplifies locking for | |
534 | * the case that isn't actually used at the moment anyway. | |
535 | */ | |
536 | if (!sync && !force_flush) { | |
46666d8a | 537 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
538 | return; |
539 | } else | |
46666d8a | 540 | spin_lock(&purge_lock); |
db64fe02 NP |
541 | |
542 | rcu_read_lock(); | |
543 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
544 | if (va->flags & VM_LAZY_FREE) { | |
545 | if (va->va_start < *start) | |
546 | *start = va->va_start; | |
547 | if (va->va_end > *end) | |
548 | *end = va->va_end; | |
549 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
550 | unmap_vmap_area(va); | |
551 | list_add_tail(&va->purge_list, &valist); | |
552 | va->flags |= VM_LAZY_FREEING; | |
553 | va->flags &= ~VM_LAZY_FREE; | |
554 | } | |
555 | } | |
556 | rcu_read_unlock(); | |
557 | ||
88f50044 | 558 | if (nr) |
db64fe02 | 559 | atomic_sub(nr, &vmap_lazy_nr); |
db64fe02 NP |
560 | |
561 | if (nr || force_flush) | |
562 | flush_tlb_kernel_range(*start, *end); | |
563 | ||
564 | if (nr) { | |
565 | spin_lock(&vmap_area_lock); | |
cbb76676 | 566 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
567 | __free_vmap_area(va); |
568 | spin_unlock(&vmap_area_lock); | |
569 | } | |
46666d8a | 570 | spin_unlock(&purge_lock); |
db64fe02 NP |
571 | } |
572 | ||
496850e5 NP |
573 | /* |
574 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
575 | * is already purging. | |
576 | */ | |
577 | static void try_purge_vmap_area_lazy(void) | |
578 | { | |
579 | unsigned long start = ULONG_MAX, end = 0; | |
580 | ||
581 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
582 | } | |
583 | ||
db64fe02 NP |
584 | /* |
585 | * Kick off a purge of the outstanding lazy areas. | |
586 | */ | |
587 | static void purge_vmap_area_lazy(void) | |
588 | { | |
589 | unsigned long start = ULONG_MAX, end = 0; | |
590 | ||
496850e5 | 591 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
592 | } |
593 | ||
594 | /* | |
b29acbdc NP |
595 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been |
596 | * called for the correct range previously. | |
db64fe02 | 597 | */ |
b29acbdc | 598 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
599 | { |
600 | va->flags |= VM_LAZY_FREE; | |
601 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
602 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 603 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
604 | } |
605 | ||
b29acbdc NP |
606 | /* |
607 | * Free and unmap a vmap area | |
608 | */ | |
609 | static void free_unmap_vmap_area(struct vmap_area *va) | |
610 | { | |
611 | flush_cache_vunmap(va->va_start, va->va_end); | |
612 | free_unmap_vmap_area_noflush(va); | |
613 | } | |
614 | ||
db64fe02 NP |
615 | static struct vmap_area *find_vmap_area(unsigned long addr) |
616 | { | |
617 | struct vmap_area *va; | |
618 | ||
619 | spin_lock(&vmap_area_lock); | |
620 | va = __find_vmap_area(addr); | |
621 | spin_unlock(&vmap_area_lock); | |
622 | ||
623 | return va; | |
624 | } | |
625 | ||
626 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
627 | { | |
628 | struct vmap_area *va; | |
629 | ||
630 | va = find_vmap_area(addr); | |
631 | BUG_ON(!va); | |
632 | free_unmap_vmap_area(va); | |
633 | } | |
634 | ||
635 | ||
636 | /*** Per cpu kva allocator ***/ | |
637 | ||
638 | /* | |
639 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
640 | * room for at least 16 percpu vmap blocks per CPU. | |
641 | */ | |
642 | /* | |
643 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
644 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
645 | * instead (we just need a rough idea) | |
646 | */ | |
647 | #if BITS_PER_LONG == 32 | |
648 | #define VMALLOC_SPACE (128UL*1024*1024) | |
649 | #else | |
650 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
651 | #endif | |
652 | ||
653 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
654 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
655 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
656 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
657 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
658 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
659 | #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
660 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
661 | VMALLOC_PAGES / NR_CPUS / 16)) | |
662 | ||
663 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
664 | ||
9b463334 JF |
665 | static bool vmap_initialized __read_mostly = false; |
666 | ||
db64fe02 NP |
667 | struct vmap_block_queue { |
668 | spinlock_t lock; | |
669 | struct list_head free; | |
db64fe02 NP |
670 | }; |
671 | ||
672 | struct vmap_block { | |
673 | spinlock_t lock; | |
674 | struct vmap_area *va; | |
675 | struct vmap_block_queue *vbq; | |
676 | unsigned long free, dirty; | |
677 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | |
678 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | |
de560423 NP |
679 | struct list_head free_list; |
680 | struct rcu_head rcu_head; | |
db64fe02 NP |
681 | }; |
682 | ||
683 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
684 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
685 | ||
686 | /* | |
687 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
688 | * in the free path. Could get rid of this if we change the API to return a | |
689 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
690 | */ | |
691 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
692 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
693 | ||
694 | /* | |
695 | * We should probably have a fallback mechanism to allocate virtual memory | |
696 | * out of partially filled vmap blocks. However vmap block sizing should be | |
697 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
698 | * big problem. | |
699 | */ | |
700 | ||
701 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
702 | { | |
703 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
704 | addr /= VMAP_BLOCK_SIZE; | |
705 | return addr; | |
706 | } | |
707 | ||
708 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
709 | { | |
710 | struct vmap_block_queue *vbq; | |
711 | struct vmap_block *vb; | |
712 | struct vmap_area *va; | |
713 | unsigned long vb_idx; | |
714 | int node, err; | |
715 | ||
716 | node = numa_node_id(); | |
717 | ||
718 | vb = kmalloc_node(sizeof(struct vmap_block), | |
719 | gfp_mask & GFP_RECLAIM_MASK, node); | |
720 | if (unlikely(!vb)) | |
721 | return ERR_PTR(-ENOMEM); | |
722 | ||
723 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
724 | VMALLOC_START, VMALLOC_END, | |
725 | node, gfp_mask); | |
726 | if (unlikely(IS_ERR(va))) { | |
727 | kfree(vb); | |
728 | return ERR_PTR(PTR_ERR(va)); | |
729 | } | |
730 | ||
731 | err = radix_tree_preload(gfp_mask); | |
732 | if (unlikely(err)) { | |
733 | kfree(vb); | |
734 | free_vmap_area(va); | |
735 | return ERR_PTR(err); | |
736 | } | |
737 | ||
738 | spin_lock_init(&vb->lock); | |
739 | vb->va = va; | |
740 | vb->free = VMAP_BBMAP_BITS; | |
741 | vb->dirty = 0; | |
742 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | |
743 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | |
744 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
745 | |
746 | vb_idx = addr_to_vb_idx(va->va_start); | |
747 | spin_lock(&vmap_block_tree_lock); | |
748 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
749 | spin_unlock(&vmap_block_tree_lock); | |
750 | BUG_ON(err); | |
751 | radix_tree_preload_end(); | |
752 | ||
753 | vbq = &get_cpu_var(vmap_block_queue); | |
754 | vb->vbq = vbq; | |
755 | spin_lock(&vbq->lock); | |
de560423 | 756 | list_add_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 757 | spin_unlock(&vbq->lock); |
3f04ba85 | 758 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
759 | |
760 | return vb; | |
761 | } | |
762 | ||
763 | static void rcu_free_vb(struct rcu_head *head) | |
764 | { | |
765 | struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | |
766 | ||
767 | kfree(vb); | |
768 | } | |
769 | ||
770 | static void free_vmap_block(struct vmap_block *vb) | |
771 | { | |
772 | struct vmap_block *tmp; | |
773 | unsigned long vb_idx; | |
774 | ||
db64fe02 NP |
775 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
776 | spin_lock(&vmap_block_tree_lock); | |
777 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
778 | spin_unlock(&vmap_block_tree_lock); | |
779 | BUG_ON(tmp != vb); | |
780 | ||
b29acbdc | 781 | free_unmap_vmap_area_noflush(vb->va); |
db64fe02 NP |
782 | call_rcu(&vb->rcu_head, rcu_free_vb); |
783 | } | |
784 | ||
785 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | |
786 | { | |
787 | struct vmap_block_queue *vbq; | |
788 | struct vmap_block *vb; | |
789 | unsigned long addr = 0; | |
790 | unsigned int order; | |
791 | ||
792 | BUG_ON(size & ~PAGE_MASK); | |
793 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
794 | order = get_order(size); | |
795 | ||
796 | again: | |
797 | rcu_read_lock(); | |
798 | vbq = &get_cpu_var(vmap_block_queue); | |
799 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
800 | int i; | |
801 | ||
802 | spin_lock(&vb->lock); | |
803 | i = bitmap_find_free_region(vb->alloc_map, | |
804 | VMAP_BBMAP_BITS, order); | |
805 | ||
806 | if (i >= 0) { | |
807 | addr = vb->va->va_start + (i << PAGE_SHIFT); | |
808 | BUG_ON(addr_to_vb_idx(addr) != | |
809 | addr_to_vb_idx(vb->va->va_start)); | |
810 | vb->free -= 1UL << order; | |
811 | if (vb->free == 0) { | |
812 | spin_lock(&vbq->lock); | |
de560423 | 813 | list_del_rcu(&vb->free_list); |
db64fe02 NP |
814 | spin_unlock(&vbq->lock); |
815 | } | |
816 | spin_unlock(&vb->lock); | |
817 | break; | |
818 | } | |
819 | spin_unlock(&vb->lock); | |
820 | } | |
3f04ba85 | 821 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
822 | rcu_read_unlock(); |
823 | ||
824 | if (!addr) { | |
825 | vb = new_vmap_block(gfp_mask); | |
826 | if (IS_ERR(vb)) | |
827 | return vb; | |
828 | goto again; | |
829 | } | |
830 | ||
831 | return (void *)addr; | |
832 | } | |
833 | ||
834 | static void vb_free(const void *addr, unsigned long size) | |
835 | { | |
836 | unsigned long offset; | |
837 | unsigned long vb_idx; | |
838 | unsigned int order; | |
839 | struct vmap_block *vb; | |
840 | ||
841 | BUG_ON(size & ~PAGE_MASK); | |
842 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
843 | |
844 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
845 | ||
db64fe02 NP |
846 | order = get_order(size); |
847 | ||
848 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
849 | ||
850 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
851 | rcu_read_lock(); | |
852 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
853 | rcu_read_unlock(); | |
854 | BUG_ON(!vb); | |
855 | ||
856 | spin_lock(&vb->lock); | |
de560423 | 857 | BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); |
d086817d | 858 | |
db64fe02 NP |
859 | vb->dirty += 1UL << order; |
860 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 861 | BUG_ON(vb->free); |
db64fe02 NP |
862 | spin_unlock(&vb->lock); |
863 | free_vmap_block(vb); | |
864 | } else | |
865 | spin_unlock(&vb->lock); | |
866 | } | |
867 | ||
868 | /** | |
869 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
870 | * | |
871 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
872 | * to amortize TLB flushing overheads. What this means is that any page you | |
873 | * have now, may, in a former life, have been mapped into kernel virtual | |
874 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
875 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
876 | * | |
877 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
878 | * be sure that none of the pages we have control over will have any aliases | |
879 | * from the vmap layer. | |
880 | */ | |
881 | void vm_unmap_aliases(void) | |
882 | { | |
883 | unsigned long start = ULONG_MAX, end = 0; | |
884 | int cpu; | |
885 | int flush = 0; | |
886 | ||
9b463334 JF |
887 | if (unlikely(!vmap_initialized)) |
888 | return; | |
889 | ||
db64fe02 NP |
890 | for_each_possible_cpu(cpu) { |
891 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
892 | struct vmap_block *vb; | |
893 | ||
894 | rcu_read_lock(); | |
895 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
896 | int i; | |
897 | ||
898 | spin_lock(&vb->lock); | |
899 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
900 | while (i < VMAP_BBMAP_BITS) { | |
901 | unsigned long s, e; | |
902 | int j; | |
903 | j = find_next_zero_bit(vb->dirty_map, | |
904 | VMAP_BBMAP_BITS, i); | |
905 | ||
906 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
907 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
908 | vunmap_page_range(s, e); | |
909 | flush = 1; | |
910 | ||
911 | if (s < start) | |
912 | start = s; | |
913 | if (e > end) | |
914 | end = e; | |
915 | ||
916 | i = j; | |
917 | i = find_next_bit(vb->dirty_map, | |
918 | VMAP_BBMAP_BITS, i); | |
919 | } | |
920 | spin_unlock(&vb->lock); | |
921 | } | |
922 | rcu_read_unlock(); | |
923 | } | |
924 | ||
925 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
926 | } | |
927 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
928 | ||
929 | /** | |
930 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
931 | * @mem: the pointer returned by vm_map_ram | |
932 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
933 | */ | |
934 | void vm_unmap_ram(const void *mem, unsigned int count) | |
935 | { | |
936 | unsigned long size = count << PAGE_SHIFT; | |
937 | unsigned long addr = (unsigned long)mem; | |
938 | ||
939 | BUG_ON(!addr); | |
940 | BUG_ON(addr < VMALLOC_START); | |
941 | BUG_ON(addr > VMALLOC_END); | |
942 | BUG_ON(addr & (PAGE_SIZE-1)); | |
943 | ||
944 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 945 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
946 | |
947 | if (likely(count <= VMAP_MAX_ALLOC)) | |
948 | vb_free(mem, size); | |
949 | else | |
950 | free_unmap_vmap_area_addr(addr); | |
951 | } | |
952 | EXPORT_SYMBOL(vm_unmap_ram); | |
953 | ||
954 | /** | |
955 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
956 | * @pages: an array of pointers to the pages to be mapped | |
957 | * @count: number of pages | |
958 | * @node: prefer to allocate data structures on this node | |
959 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
960 | * |
961 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
962 | */ |
963 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
964 | { | |
965 | unsigned long size = count << PAGE_SHIFT; | |
966 | unsigned long addr; | |
967 | void *mem; | |
968 | ||
969 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
970 | mem = vb_alloc(size, GFP_KERNEL); | |
971 | if (IS_ERR(mem)) | |
972 | return NULL; | |
973 | addr = (unsigned long)mem; | |
974 | } else { | |
975 | struct vmap_area *va; | |
976 | va = alloc_vmap_area(size, PAGE_SIZE, | |
977 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
978 | if (IS_ERR(va)) | |
979 | return NULL; | |
980 | ||
981 | addr = va->va_start; | |
982 | mem = (void *)addr; | |
983 | } | |
984 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
985 | vm_unmap_ram(mem, count); | |
986 | return NULL; | |
987 | } | |
988 | return mem; | |
989 | } | |
990 | EXPORT_SYMBOL(vm_map_ram); | |
991 | ||
f0aa6617 TH |
992 | /** |
993 | * vm_area_register_early - register vmap area early during boot | |
994 | * @vm: vm_struct to register | |
c0c0a293 | 995 | * @align: requested alignment |
f0aa6617 TH |
996 | * |
997 | * This function is used to register kernel vm area before | |
998 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
999 | * proper values on entry and other fields should be zero. On return, | |
1000 | * vm->addr contains the allocated address. | |
1001 | * | |
1002 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1003 | */ | |
c0c0a293 | 1004 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1005 | { |
1006 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1007 | unsigned long addr; |
1008 | ||
1009 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1010 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1011 | |
c0c0a293 | 1012 | vm->addr = (void *)addr; |
f0aa6617 TH |
1013 | |
1014 | vm->next = vmlist; | |
1015 | vmlist = vm; | |
1016 | } | |
1017 | ||
db64fe02 NP |
1018 | void __init vmalloc_init(void) |
1019 | { | |
822c18f2 IK |
1020 | struct vmap_area *va; |
1021 | struct vm_struct *tmp; | |
db64fe02 NP |
1022 | int i; |
1023 | ||
1024 | for_each_possible_cpu(i) { | |
1025 | struct vmap_block_queue *vbq; | |
1026 | ||
1027 | vbq = &per_cpu(vmap_block_queue, i); | |
1028 | spin_lock_init(&vbq->lock); | |
1029 | INIT_LIST_HEAD(&vbq->free); | |
db64fe02 | 1030 | } |
9b463334 | 1031 | |
822c18f2 IK |
1032 | /* Import existing vmlist entries. */ |
1033 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1034 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
822c18f2 IK |
1035 | va->flags = tmp->flags | VM_VM_AREA; |
1036 | va->va_start = (unsigned long)tmp->addr; | |
1037 | va->va_end = va->va_start + tmp->size; | |
1038 | __insert_vmap_area(va); | |
1039 | } | |
ca23e405 TH |
1040 | |
1041 | vmap_area_pcpu_hole = VMALLOC_END; | |
1042 | ||
9b463334 | 1043 | vmap_initialized = true; |
db64fe02 NP |
1044 | } |
1045 | ||
8fc48985 TH |
1046 | /** |
1047 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1048 | * @addr: start of the VM area to map | |
1049 | * @size: size of the VM area to map | |
1050 | * @prot: page protection flags to use | |
1051 | * @pages: pages to map | |
1052 | * | |
1053 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1054 | * specify should have been allocated using get_vm_area() and its | |
1055 | * friends. | |
1056 | * | |
1057 | * NOTE: | |
1058 | * This function does NOT do any cache flushing. The caller is | |
1059 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1060 | * before calling this function. | |
1061 | * | |
1062 | * RETURNS: | |
1063 | * The number of pages mapped on success, -errno on failure. | |
1064 | */ | |
1065 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1066 | pgprot_t prot, struct page **pages) | |
1067 | { | |
1068 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1069 | } | |
1070 | ||
1071 | /** | |
1072 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1073 | * @addr: start of the VM area to unmap | |
1074 | * @size: size of the VM area to unmap | |
1075 | * | |
1076 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1077 | * specify should have been allocated using get_vm_area() and its | |
1078 | * friends. | |
1079 | * | |
1080 | * NOTE: | |
1081 | * This function does NOT do any cache flushing. The caller is | |
1082 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1083 | * before calling this function and flush_tlb_kernel_range() after. | |
1084 | */ | |
1085 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1086 | { | |
1087 | vunmap_page_range(addr, addr + size); | |
1088 | } | |
1089 | ||
1090 | /** | |
1091 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1092 | * @addr: start of the VM area to unmap | |
1093 | * @size: size of the VM area to unmap | |
1094 | * | |
1095 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1096 | * the unmapping and tlb after. | |
1097 | */ | |
db64fe02 NP |
1098 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1099 | { | |
1100 | unsigned long end = addr + size; | |
f6fcba70 TH |
1101 | |
1102 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1103 | vunmap_page_range(addr, end); |
1104 | flush_tlb_kernel_range(addr, end); | |
1105 | } | |
1106 | ||
1107 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1108 | { | |
1109 | unsigned long addr = (unsigned long)area->addr; | |
1110 | unsigned long end = addr + area->size - PAGE_SIZE; | |
1111 | int err; | |
1112 | ||
1113 | err = vmap_page_range(addr, end, prot, *pages); | |
1114 | if (err > 0) { | |
1115 | *pages += err; | |
1116 | err = 0; | |
1117 | } | |
1118 | ||
1119 | return err; | |
1120 | } | |
1121 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1122 | ||
1123 | /*** Old vmalloc interfaces ***/ | |
1124 | DEFINE_RWLOCK(vmlist_lock); | |
1125 | struct vm_struct *vmlist; | |
1126 | ||
cf88c790 TH |
1127 | static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
1128 | unsigned long flags, void *caller) | |
1129 | { | |
1130 | struct vm_struct *tmp, **p; | |
1131 | ||
1132 | vm->flags = flags; | |
1133 | vm->addr = (void *)va->va_start; | |
1134 | vm->size = va->va_end - va->va_start; | |
1135 | vm->caller = caller; | |
1136 | va->private = vm; | |
1137 | va->flags |= VM_VM_AREA; | |
1138 | ||
1139 | write_lock(&vmlist_lock); | |
1140 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1141 | if (tmp->addr >= vm->addr) | |
1142 | break; | |
1143 | } | |
1144 | vm->next = *p; | |
1145 | *p = vm; | |
1146 | write_unlock(&vmlist_lock); | |
1147 | } | |
1148 | ||
db64fe02 | 1149 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 DM |
1150 | unsigned long align, unsigned long flags, unsigned long start, |
1151 | unsigned long end, int node, gfp_t gfp_mask, void *caller) | |
db64fe02 NP |
1152 | { |
1153 | static struct vmap_area *va; | |
1154 | struct vm_struct *area; | |
1da177e4 | 1155 | |
52fd24ca | 1156 | BUG_ON(in_interrupt()); |
1da177e4 LT |
1157 | if (flags & VM_IOREMAP) { |
1158 | int bit = fls(size); | |
1159 | ||
1160 | if (bit > IOREMAP_MAX_ORDER) | |
1161 | bit = IOREMAP_MAX_ORDER; | |
1162 | else if (bit < PAGE_SHIFT) | |
1163 | bit = PAGE_SHIFT; | |
1164 | ||
1165 | align = 1ul << bit; | |
1166 | } | |
db64fe02 | 1167 | |
1da177e4 | 1168 | size = PAGE_ALIGN(size); |
31be8309 OH |
1169 | if (unlikely(!size)) |
1170 | return NULL; | |
1da177e4 | 1171 | |
cf88c790 | 1172 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1173 | if (unlikely(!area)) |
1174 | return NULL; | |
1175 | ||
1da177e4 LT |
1176 | /* |
1177 | * We always allocate a guard page. | |
1178 | */ | |
1179 | size += PAGE_SIZE; | |
1180 | ||
db64fe02 NP |
1181 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1182 | if (IS_ERR(va)) { | |
1183 | kfree(area); | |
1184 | return NULL; | |
1da177e4 | 1185 | } |
1da177e4 | 1186 | |
cf88c790 | 1187 | insert_vmalloc_vm(area, va, flags, caller); |
1da177e4 | 1188 | return area; |
1da177e4 LT |
1189 | } |
1190 | ||
930fc45a CL |
1191 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1192 | unsigned long start, unsigned long end) | |
1193 | { | |
2dca6999 | 1194 | return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, |
23016969 | 1195 | __builtin_return_address(0)); |
930fc45a | 1196 | } |
5992b6da | 1197 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1198 | |
c2968612 BH |
1199 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1200 | unsigned long start, unsigned long end, | |
1201 | void *caller) | |
1202 | { | |
2dca6999 | 1203 | return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, |
c2968612 BH |
1204 | caller); |
1205 | } | |
1206 | ||
1da177e4 | 1207 | /** |
183ff22b | 1208 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1209 | * @size: size of the area |
1210 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1211 | * | |
1212 | * Search an area of @size in the kernel virtual mapping area, | |
1213 | * and reserved it for out purposes. Returns the area descriptor | |
1214 | * on success or %NULL on failure. | |
1215 | */ | |
1216 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1217 | { | |
2dca6999 | 1218 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
23016969 CL |
1219 | -1, GFP_KERNEL, __builtin_return_address(0)); |
1220 | } | |
1221 | ||
1222 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
1223 | void *caller) | |
1224 | { | |
2dca6999 | 1225 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
23016969 | 1226 | -1, GFP_KERNEL, caller); |
1da177e4 LT |
1227 | } |
1228 | ||
52fd24ca GP |
1229 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, |
1230 | int node, gfp_t gfp_mask) | |
930fc45a | 1231 | { |
2dca6999 DM |
1232 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
1233 | node, gfp_mask, __builtin_return_address(0)); | |
930fc45a CL |
1234 | } |
1235 | ||
db64fe02 | 1236 | static struct vm_struct *find_vm_area(const void *addr) |
83342314 | 1237 | { |
db64fe02 | 1238 | struct vmap_area *va; |
83342314 | 1239 | |
db64fe02 NP |
1240 | va = find_vmap_area((unsigned long)addr); |
1241 | if (va && va->flags & VM_VM_AREA) | |
1242 | return va->private; | |
1da177e4 | 1243 | |
1da177e4 | 1244 | return NULL; |
1da177e4 LT |
1245 | } |
1246 | ||
7856dfeb | 1247 | /** |
183ff22b | 1248 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1249 | * @addr: base address |
1250 | * | |
1251 | * Search for the kernel VM area starting at @addr, and remove it. | |
1252 | * This function returns the found VM area, but using it is NOT safe | |
1253 | * on SMP machines, except for its size or flags. | |
1254 | */ | |
b3bdda02 | 1255 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1256 | { |
db64fe02 NP |
1257 | struct vmap_area *va; |
1258 | ||
1259 | va = find_vmap_area((unsigned long)addr); | |
1260 | if (va && va->flags & VM_VM_AREA) { | |
1261 | struct vm_struct *vm = va->private; | |
1262 | struct vm_struct *tmp, **p; | |
dd32c279 KH |
1263 | /* |
1264 | * remove from list and disallow access to this vm_struct | |
1265 | * before unmap. (address range confliction is maintained by | |
1266 | * vmap.) | |
1267 | */ | |
db64fe02 NP |
1268 | write_lock(&vmlist_lock); |
1269 | for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | |
1270 | ; | |
1271 | *p = tmp->next; | |
1272 | write_unlock(&vmlist_lock); | |
1273 | ||
dd32c279 KH |
1274 | vmap_debug_free_range(va->va_start, va->va_end); |
1275 | free_unmap_vmap_area(va); | |
1276 | vm->size -= PAGE_SIZE; | |
1277 | ||
db64fe02 NP |
1278 | return vm; |
1279 | } | |
1280 | return NULL; | |
7856dfeb AK |
1281 | } |
1282 | ||
b3bdda02 | 1283 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1284 | { |
1285 | struct vm_struct *area; | |
1286 | ||
1287 | if (!addr) | |
1288 | return; | |
1289 | ||
1290 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | |
4c8573e2 | 1291 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
1da177e4 LT |
1292 | return; |
1293 | } | |
1294 | ||
1295 | area = remove_vm_area(addr); | |
1296 | if (unlikely(!area)) { | |
4c8573e2 | 1297 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1298 | addr); |
1da177e4 LT |
1299 | return; |
1300 | } | |
1301 | ||
9a11b49a | 1302 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1303 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1304 | |
1da177e4 LT |
1305 | if (deallocate_pages) { |
1306 | int i; | |
1307 | ||
1308 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1309 | struct page *page = area->pages[i]; |
1310 | ||
1311 | BUG_ON(!page); | |
1312 | __free_page(page); | |
1da177e4 LT |
1313 | } |
1314 | ||
8757d5fa | 1315 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1316 | vfree(area->pages); |
1317 | else | |
1318 | kfree(area->pages); | |
1319 | } | |
1320 | ||
1321 | kfree(area); | |
1322 | return; | |
1323 | } | |
1324 | ||
1325 | /** | |
1326 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1327 | * @addr: memory base address |
1328 | * | |
183ff22b | 1329 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1330 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1331 | * NULL, no operation is performed. | |
1da177e4 | 1332 | * |
80e93eff | 1333 | * Must not be called in interrupt context. |
1da177e4 | 1334 | */ |
b3bdda02 | 1335 | void vfree(const void *addr) |
1da177e4 LT |
1336 | { |
1337 | BUG_ON(in_interrupt()); | |
89219d37 CM |
1338 | |
1339 | kmemleak_free(addr); | |
1340 | ||
1da177e4 LT |
1341 | __vunmap(addr, 1); |
1342 | } | |
1da177e4 LT |
1343 | EXPORT_SYMBOL(vfree); |
1344 | ||
1345 | /** | |
1346 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1347 | * @addr: memory base address |
1348 | * | |
1349 | * Free the virtually contiguous memory area starting at @addr, | |
1350 | * which was created from the page array passed to vmap(). | |
1351 | * | |
80e93eff | 1352 | * Must not be called in interrupt context. |
1da177e4 | 1353 | */ |
b3bdda02 | 1354 | void vunmap(const void *addr) |
1da177e4 LT |
1355 | { |
1356 | BUG_ON(in_interrupt()); | |
34754b69 | 1357 | might_sleep(); |
1da177e4 LT |
1358 | __vunmap(addr, 0); |
1359 | } | |
1da177e4 LT |
1360 | EXPORT_SYMBOL(vunmap); |
1361 | ||
1362 | /** | |
1363 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1364 | * @pages: array of page pointers |
1365 | * @count: number of pages to map | |
1366 | * @flags: vm_area->flags | |
1367 | * @prot: page protection for the mapping | |
1368 | * | |
1369 | * Maps @count pages from @pages into contiguous kernel virtual | |
1370 | * space. | |
1371 | */ | |
1372 | void *vmap(struct page **pages, unsigned int count, | |
1373 | unsigned long flags, pgprot_t prot) | |
1374 | { | |
1375 | struct vm_struct *area; | |
1376 | ||
34754b69 PZ |
1377 | might_sleep(); |
1378 | ||
4481374c | 1379 | if (count > totalram_pages) |
1da177e4 LT |
1380 | return NULL; |
1381 | ||
23016969 CL |
1382 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1383 | __builtin_return_address(0)); | |
1da177e4 LT |
1384 | if (!area) |
1385 | return NULL; | |
23016969 | 1386 | |
1da177e4 LT |
1387 | if (map_vm_area(area, prot, &pages)) { |
1388 | vunmap(area->addr); | |
1389 | return NULL; | |
1390 | } | |
1391 | ||
1392 | return area->addr; | |
1393 | } | |
1da177e4 LT |
1394 | EXPORT_SYMBOL(vmap); |
1395 | ||
2dca6999 DM |
1396 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1397 | gfp_t gfp_mask, pgprot_t prot, | |
db64fe02 | 1398 | int node, void *caller); |
e31d9eb5 | 1399 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
23016969 | 1400 | pgprot_t prot, int node, void *caller) |
1da177e4 LT |
1401 | { |
1402 | struct page **pages; | |
1403 | unsigned int nr_pages, array_size, i; | |
976d6dfb | 1404 | gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1da177e4 LT |
1405 | |
1406 | nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | |
1407 | array_size = (nr_pages * sizeof(struct page *)); | |
1408 | ||
1409 | area->nr_pages = nr_pages; | |
1410 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1411 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1412 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
23016969 | 1413 | PAGE_KERNEL, node, caller); |
8757d5fa | 1414 | area->flags |= VM_VPAGES; |
286e1ea3 | 1415 | } else { |
976d6dfb | 1416 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1417 | } |
1da177e4 | 1418 | area->pages = pages; |
23016969 | 1419 | area->caller = caller; |
1da177e4 LT |
1420 | if (!area->pages) { |
1421 | remove_vm_area(area->addr); | |
1422 | kfree(area); | |
1423 | return NULL; | |
1424 | } | |
1da177e4 LT |
1425 | |
1426 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1427 | struct page *page; |
1428 | ||
930fc45a | 1429 | if (node < 0) |
bf53d6f8 | 1430 | page = alloc_page(gfp_mask); |
930fc45a | 1431 | else |
bf53d6f8 CL |
1432 | page = alloc_pages_node(node, gfp_mask, 0); |
1433 | ||
1434 | if (unlikely(!page)) { | |
1da177e4 LT |
1435 | /* Successfully allocated i pages, free them in __vunmap() */ |
1436 | area->nr_pages = i; | |
1437 | goto fail; | |
1438 | } | |
bf53d6f8 | 1439 | area->pages[i] = page; |
1da177e4 LT |
1440 | } |
1441 | ||
1442 | if (map_vm_area(area, prot, &pages)) | |
1443 | goto fail; | |
1444 | return area->addr; | |
1445 | ||
1446 | fail: | |
1447 | vfree(area->addr); | |
1448 | return NULL; | |
1449 | } | |
1450 | ||
930fc45a CL |
1451 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) |
1452 | { | |
89219d37 CM |
1453 | void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, |
1454 | __builtin_return_address(0)); | |
1455 | ||
1456 | /* | |
1457 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1458 | * structures allocated in the __get_vm_area_node() function contain | |
1459 | * references to the virtual address of the vmalloc'ed block. | |
1460 | */ | |
1461 | kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); | |
1462 | ||
1463 | return addr; | |
930fc45a CL |
1464 | } |
1465 | ||
1da177e4 | 1466 | /** |
930fc45a | 1467 | * __vmalloc_node - allocate virtually contiguous memory |
1da177e4 | 1468 | * @size: allocation size |
2dca6999 | 1469 | * @align: desired alignment |
1da177e4 LT |
1470 | * @gfp_mask: flags for the page level allocator |
1471 | * @prot: protection mask for the allocated pages | |
d44e0780 | 1472 | * @node: node to use for allocation or -1 |
c85d194b | 1473 | * @caller: caller's return address |
1da177e4 LT |
1474 | * |
1475 | * Allocate enough pages to cover @size from the page level | |
1476 | * allocator with @gfp_mask flags. Map them into contiguous | |
1477 | * kernel virtual space, using a pagetable protection of @prot. | |
1478 | */ | |
2dca6999 DM |
1479 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1480 | gfp_t gfp_mask, pgprot_t prot, | |
1481 | int node, void *caller) | |
1da177e4 LT |
1482 | { |
1483 | struct vm_struct *area; | |
89219d37 CM |
1484 | void *addr; |
1485 | unsigned long real_size = size; | |
1da177e4 LT |
1486 | |
1487 | size = PAGE_ALIGN(size); | |
4481374c | 1488 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
1da177e4 LT |
1489 | return NULL; |
1490 | ||
2dca6999 DM |
1491 | area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, |
1492 | VMALLOC_END, node, gfp_mask, caller); | |
23016969 | 1493 | |
1da177e4 LT |
1494 | if (!area) |
1495 | return NULL; | |
1496 | ||
89219d37 CM |
1497 | addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); |
1498 | ||
1499 | /* | |
1500 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1501 | * structures allocated in the __get_vm_area_node() function contain | |
1502 | * references to the virtual address of the vmalloc'ed block. | |
1503 | */ | |
1504 | kmemleak_alloc(addr, real_size, 3, gfp_mask); | |
1505 | ||
1506 | return addr; | |
1da177e4 LT |
1507 | } |
1508 | ||
930fc45a CL |
1509 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1510 | { | |
2dca6999 | 1511 | return __vmalloc_node(size, 1, gfp_mask, prot, -1, |
23016969 | 1512 | __builtin_return_address(0)); |
930fc45a | 1513 | } |
1da177e4 LT |
1514 | EXPORT_SYMBOL(__vmalloc); |
1515 | ||
1516 | /** | |
1517 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1518 | * @size: allocation size |
1da177e4 LT |
1519 | * Allocate enough pages to cover @size from the page level |
1520 | * allocator and map them into contiguous kernel virtual space. | |
1521 | * | |
c1c8897f | 1522 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1523 | * use __vmalloc() instead. |
1524 | */ | |
1525 | void *vmalloc(unsigned long size) | |
1526 | { | |
2dca6999 | 1527 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1528 | -1, __builtin_return_address(0)); |
1da177e4 | 1529 | } |
1da177e4 LT |
1530 | EXPORT_SYMBOL(vmalloc); |
1531 | ||
83342314 | 1532 | /** |
ead04089 REB |
1533 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1534 | * @size: allocation size | |
83342314 | 1535 | * |
ead04089 REB |
1536 | * The resulting memory area is zeroed so it can be mapped to userspace |
1537 | * without leaking data. | |
83342314 NP |
1538 | */ |
1539 | void *vmalloc_user(unsigned long size) | |
1540 | { | |
1541 | struct vm_struct *area; | |
1542 | void *ret; | |
1543 | ||
2dca6999 DM |
1544 | ret = __vmalloc_node(size, SHMLBA, |
1545 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
84877848 | 1546 | PAGE_KERNEL, -1, __builtin_return_address(0)); |
2b4ac44e | 1547 | if (ret) { |
db64fe02 | 1548 | area = find_vm_area(ret); |
2b4ac44e | 1549 | area->flags |= VM_USERMAP; |
2b4ac44e | 1550 | } |
83342314 NP |
1551 | return ret; |
1552 | } | |
1553 | EXPORT_SYMBOL(vmalloc_user); | |
1554 | ||
930fc45a CL |
1555 | /** |
1556 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1557 | * @size: allocation size |
d44e0780 | 1558 | * @node: numa node |
930fc45a CL |
1559 | * |
1560 | * Allocate enough pages to cover @size from the page level | |
1561 | * allocator and map them into contiguous kernel virtual space. | |
1562 | * | |
c1c8897f | 1563 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1564 | * use __vmalloc() instead. |
1565 | */ | |
1566 | void *vmalloc_node(unsigned long size, int node) | |
1567 | { | |
2dca6999 | 1568 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1569 | node, __builtin_return_address(0)); |
930fc45a CL |
1570 | } |
1571 | EXPORT_SYMBOL(vmalloc_node); | |
1572 | ||
4dc3b16b PP |
1573 | #ifndef PAGE_KERNEL_EXEC |
1574 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1575 | #endif | |
1576 | ||
1da177e4 LT |
1577 | /** |
1578 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1579 | * @size: allocation size |
1580 | * | |
1581 | * Kernel-internal function to allocate enough pages to cover @size | |
1582 | * the page level allocator and map them into contiguous and | |
1583 | * executable kernel virtual space. | |
1584 | * | |
c1c8897f | 1585 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1586 | * use __vmalloc() instead. |
1587 | */ | |
1588 | ||
1da177e4 LT |
1589 | void *vmalloc_exec(unsigned long size) |
1590 | { | |
2dca6999 | 1591 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
84877848 | 1592 | -1, __builtin_return_address(0)); |
1da177e4 LT |
1593 | } |
1594 | ||
0d08e0d3 | 1595 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1596 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1597 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1598 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1599 | #else |
1600 | #define GFP_VMALLOC32 GFP_KERNEL | |
1601 | #endif | |
1602 | ||
1da177e4 LT |
1603 | /** |
1604 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1605 | * @size: allocation size |
1606 | * | |
1607 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1608 | * page level allocator and map them into contiguous kernel virtual space. | |
1609 | */ | |
1610 | void *vmalloc_32(unsigned long size) | |
1611 | { | |
2dca6999 | 1612 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
84877848 | 1613 | -1, __builtin_return_address(0)); |
1da177e4 | 1614 | } |
1da177e4 LT |
1615 | EXPORT_SYMBOL(vmalloc_32); |
1616 | ||
83342314 | 1617 | /** |
ead04089 | 1618 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1619 | * @size: allocation size |
ead04089 REB |
1620 | * |
1621 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1622 | * mapped to userspace without leaking data. | |
83342314 NP |
1623 | */ |
1624 | void *vmalloc_32_user(unsigned long size) | |
1625 | { | |
1626 | struct vm_struct *area; | |
1627 | void *ret; | |
1628 | ||
2dca6999 | 1629 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
84877848 | 1630 | -1, __builtin_return_address(0)); |
2b4ac44e | 1631 | if (ret) { |
db64fe02 | 1632 | area = find_vm_area(ret); |
2b4ac44e | 1633 | area->flags |= VM_USERMAP; |
2b4ac44e | 1634 | } |
83342314 NP |
1635 | return ret; |
1636 | } | |
1637 | EXPORT_SYMBOL(vmalloc_32_user); | |
1638 | ||
d0107eb0 KH |
1639 | /* |
1640 | * small helper routine , copy contents to buf from addr. | |
1641 | * If the page is not present, fill zero. | |
1642 | */ | |
1643 | ||
1644 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1645 | { | |
1646 | struct page *p; | |
1647 | int copied = 0; | |
1648 | ||
1649 | while (count) { | |
1650 | unsigned long offset, length; | |
1651 | ||
1652 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1653 | length = PAGE_SIZE - offset; | |
1654 | if (length > count) | |
1655 | length = count; | |
1656 | p = vmalloc_to_page(addr); | |
1657 | /* | |
1658 | * To do safe access to this _mapped_ area, we need | |
1659 | * lock. But adding lock here means that we need to add | |
1660 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1661 | * interface, rarely used. Instead of that, we'll use | |
1662 | * kmap() and get small overhead in this access function. | |
1663 | */ | |
1664 | if (p) { | |
1665 | /* | |
1666 | * we can expect USER0 is not used (see vread/vwrite's | |
1667 | * function description) | |
1668 | */ | |
1669 | void *map = kmap_atomic(p, KM_USER0); | |
1670 | memcpy(buf, map + offset, length); | |
1671 | kunmap_atomic(map, KM_USER0); | |
1672 | } else | |
1673 | memset(buf, 0, length); | |
1674 | ||
1675 | addr += length; | |
1676 | buf += length; | |
1677 | copied += length; | |
1678 | count -= length; | |
1679 | } | |
1680 | return copied; | |
1681 | } | |
1682 | ||
1683 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1684 | { | |
1685 | struct page *p; | |
1686 | int copied = 0; | |
1687 | ||
1688 | while (count) { | |
1689 | unsigned long offset, length; | |
1690 | ||
1691 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1692 | length = PAGE_SIZE - offset; | |
1693 | if (length > count) | |
1694 | length = count; | |
1695 | p = vmalloc_to_page(addr); | |
1696 | /* | |
1697 | * To do safe access to this _mapped_ area, we need | |
1698 | * lock. But adding lock here means that we need to add | |
1699 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1700 | * interface, rarely used. Instead of that, we'll use | |
1701 | * kmap() and get small overhead in this access function. | |
1702 | */ | |
1703 | if (p) { | |
1704 | /* | |
1705 | * we can expect USER0 is not used (see vread/vwrite's | |
1706 | * function description) | |
1707 | */ | |
1708 | void *map = kmap_atomic(p, KM_USER0); | |
1709 | memcpy(map + offset, buf, length); | |
1710 | kunmap_atomic(map, KM_USER0); | |
1711 | } | |
1712 | addr += length; | |
1713 | buf += length; | |
1714 | copied += length; | |
1715 | count -= length; | |
1716 | } | |
1717 | return copied; | |
1718 | } | |
1719 | ||
1720 | /** | |
1721 | * vread() - read vmalloc area in a safe way. | |
1722 | * @buf: buffer for reading data | |
1723 | * @addr: vm address. | |
1724 | * @count: number of bytes to be read. | |
1725 | * | |
1726 | * Returns # of bytes which addr and buf should be increased. | |
1727 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
1728 | * includes any intersect with alive vmalloc area. | |
1729 | * | |
1730 | * This function checks that addr is a valid vmalloc'ed area, and | |
1731 | * copy data from that area to a given buffer. If the given memory range | |
1732 | * of [addr...addr+count) includes some valid address, data is copied to | |
1733 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
1734 | * IOREMAP area is treated as memory hole and no copy is done. | |
1735 | * | |
1736 | * If [addr...addr+count) doesn't includes any intersects with alive | |
1737 | * vm_struct area, returns 0. | |
1738 | * @buf should be kernel's buffer. Because this function uses KM_USER0, | |
1739 | * the caller should guarantee KM_USER0 is not used. | |
1740 | * | |
1741 | * Note: In usual ops, vread() is never necessary because the caller | |
1742 | * should know vmalloc() area is valid and can use memcpy(). | |
1743 | * This is for routines which have to access vmalloc area without | |
1744 | * any informaion, as /dev/kmem. | |
1745 | * | |
1746 | */ | |
1747 | ||
1da177e4 LT |
1748 | long vread(char *buf, char *addr, unsigned long count) |
1749 | { | |
1750 | struct vm_struct *tmp; | |
1751 | char *vaddr, *buf_start = buf; | |
d0107eb0 | 1752 | unsigned long buflen = count; |
1da177e4 LT |
1753 | unsigned long n; |
1754 | ||
1755 | /* Don't allow overflow */ | |
1756 | if ((unsigned long) addr + count < count) | |
1757 | count = -(unsigned long) addr; | |
1758 | ||
1759 | read_lock(&vmlist_lock); | |
d0107eb0 | 1760 | for (tmp = vmlist; count && tmp; tmp = tmp->next) { |
1da177e4 LT |
1761 | vaddr = (char *) tmp->addr; |
1762 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1763 | continue; | |
1764 | while (addr < vaddr) { | |
1765 | if (count == 0) | |
1766 | goto finished; | |
1767 | *buf = '\0'; | |
1768 | buf++; | |
1769 | addr++; | |
1770 | count--; | |
1771 | } | |
1772 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
d0107eb0 KH |
1773 | if (n > count) |
1774 | n = count; | |
1775 | if (!(tmp->flags & VM_IOREMAP)) | |
1776 | aligned_vread(buf, addr, n); | |
1777 | else /* IOREMAP area is treated as memory hole */ | |
1778 | memset(buf, 0, n); | |
1779 | buf += n; | |
1780 | addr += n; | |
1781 | count -= n; | |
1da177e4 LT |
1782 | } |
1783 | finished: | |
1784 | read_unlock(&vmlist_lock); | |
d0107eb0 KH |
1785 | |
1786 | if (buf == buf_start) | |
1787 | return 0; | |
1788 | /* zero-fill memory holes */ | |
1789 | if (buf != buf_start + buflen) | |
1790 | memset(buf, 0, buflen - (buf - buf_start)); | |
1791 | ||
1792 | return buflen; | |
1da177e4 LT |
1793 | } |
1794 | ||
d0107eb0 KH |
1795 | /** |
1796 | * vwrite() - write vmalloc area in a safe way. | |
1797 | * @buf: buffer for source data | |
1798 | * @addr: vm address. | |
1799 | * @count: number of bytes to be read. | |
1800 | * | |
1801 | * Returns # of bytes which addr and buf should be incresed. | |
1802 | * (same number to @count). | |
1803 | * If [addr...addr+count) doesn't includes any intersect with valid | |
1804 | * vmalloc area, returns 0. | |
1805 | * | |
1806 | * This function checks that addr is a valid vmalloc'ed area, and | |
1807 | * copy data from a buffer to the given addr. If specified range of | |
1808 | * [addr...addr+count) includes some valid address, data is copied from | |
1809 | * proper area of @buf. If there are memory holes, no copy to hole. | |
1810 | * IOREMAP area is treated as memory hole and no copy is done. | |
1811 | * | |
1812 | * If [addr...addr+count) doesn't includes any intersects with alive | |
1813 | * vm_struct area, returns 0. | |
1814 | * @buf should be kernel's buffer. Because this function uses KM_USER0, | |
1815 | * the caller should guarantee KM_USER0 is not used. | |
1816 | * | |
1817 | * Note: In usual ops, vwrite() is never necessary because the caller | |
1818 | * should know vmalloc() area is valid and can use memcpy(). | |
1819 | * This is for routines which have to access vmalloc area without | |
1820 | * any informaion, as /dev/kmem. | |
1821 | * | |
1822 | * The caller should guarantee KM_USER1 is not used. | |
1823 | */ | |
1824 | ||
1da177e4 LT |
1825 | long vwrite(char *buf, char *addr, unsigned long count) |
1826 | { | |
1827 | struct vm_struct *tmp; | |
d0107eb0 KH |
1828 | char *vaddr; |
1829 | unsigned long n, buflen; | |
1830 | int copied = 0; | |
1da177e4 LT |
1831 | |
1832 | /* Don't allow overflow */ | |
1833 | if ((unsigned long) addr + count < count) | |
1834 | count = -(unsigned long) addr; | |
d0107eb0 | 1835 | buflen = count; |
1da177e4 LT |
1836 | |
1837 | read_lock(&vmlist_lock); | |
d0107eb0 | 1838 | for (tmp = vmlist; count && tmp; tmp = tmp->next) { |
1da177e4 LT |
1839 | vaddr = (char *) tmp->addr; |
1840 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1841 | continue; | |
1842 | while (addr < vaddr) { | |
1843 | if (count == 0) | |
1844 | goto finished; | |
1845 | buf++; | |
1846 | addr++; | |
1847 | count--; | |
1848 | } | |
1849 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
d0107eb0 KH |
1850 | if (n > count) |
1851 | n = count; | |
1852 | if (!(tmp->flags & VM_IOREMAP)) { | |
1853 | aligned_vwrite(buf, addr, n); | |
1854 | copied++; | |
1855 | } | |
1856 | buf += n; | |
1857 | addr += n; | |
1858 | count -= n; | |
1da177e4 LT |
1859 | } |
1860 | finished: | |
1861 | read_unlock(&vmlist_lock); | |
d0107eb0 KH |
1862 | if (!copied) |
1863 | return 0; | |
1864 | return buflen; | |
1da177e4 | 1865 | } |
83342314 NP |
1866 | |
1867 | /** | |
1868 | * remap_vmalloc_range - map vmalloc pages to userspace | |
83342314 NP |
1869 | * @vma: vma to cover (map full range of vma) |
1870 | * @addr: vmalloc memory | |
1871 | * @pgoff: number of pages into addr before first page to map | |
7682486b RD |
1872 | * |
1873 | * Returns: 0 for success, -Exxx on failure | |
83342314 NP |
1874 | * |
1875 | * This function checks that addr is a valid vmalloc'ed area, and | |
1876 | * that it is big enough to cover the vma. Will return failure if | |
1877 | * that criteria isn't met. | |
1878 | * | |
72fd4a35 | 1879 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 NP |
1880 | */ |
1881 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
1882 | unsigned long pgoff) | |
1883 | { | |
1884 | struct vm_struct *area; | |
1885 | unsigned long uaddr = vma->vm_start; | |
1886 | unsigned long usize = vma->vm_end - vma->vm_start; | |
83342314 NP |
1887 | |
1888 | if ((PAGE_SIZE-1) & (unsigned long)addr) | |
1889 | return -EINVAL; | |
1890 | ||
db64fe02 | 1891 | area = find_vm_area(addr); |
83342314 | 1892 | if (!area) |
db64fe02 | 1893 | return -EINVAL; |
83342314 NP |
1894 | |
1895 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 1896 | return -EINVAL; |
83342314 NP |
1897 | |
1898 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | |
db64fe02 | 1899 | return -EINVAL; |
83342314 NP |
1900 | |
1901 | addr += pgoff << PAGE_SHIFT; | |
1902 | do { | |
1903 | struct page *page = vmalloc_to_page(addr); | |
db64fe02 NP |
1904 | int ret; |
1905 | ||
83342314 NP |
1906 | ret = vm_insert_page(vma, uaddr, page); |
1907 | if (ret) | |
1908 | return ret; | |
1909 | ||
1910 | uaddr += PAGE_SIZE; | |
1911 | addr += PAGE_SIZE; | |
1912 | usize -= PAGE_SIZE; | |
1913 | } while (usize > 0); | |
1914 | ||
1915 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ | |
1916 | vma->vm_flags |= VM_RESERVED; | |
1917 | ||
db64fe02 | 1918 | return 0; |
83342314 NP |
1919 | } |
1920 | EXPORT_SYMBOL(remap_vmalloc_range); | |
1921 | ||
1eeb66a1 CH |
1922 | /* |
1923 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
1924 | * have one. | |
1925 | */ | |
1926 | void __attribute__((weak)) vmalloc_sync_all(void) | |
1927 | { | |
1928 | } | |
5f4352fb JF |
1929 | |
1930 | ||
2f569afd | 1931 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb JF |
1932 | { |
1933 | /* apply_to_page_range() does all the hard work. */ | |
1934 | return 0; | |
1935 | } | |
1936 | ||
1937 | /** | |
1938 | * alloc_vm_area - allocate a range of kernel address space | |
1939 | * @size: size of the area | |
7682486b RD |
1940 | * |
1941 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
1942 | * |
1943 | * This function reserves a range of kernel address space, and | |
1944 | * allocates pagetables to map that range. No actual mappings | |
1945 | * are created. If the kernel address space is not shared | |
1946 | * between processes, it syncs the pagetable across all | |
1947 | * processes. | |
1948 | */ | |
1949 | struct vm_struct *alloc_vm_area(size_t size) | |
1950 | { | |
1951 | struct vm_struct *area; | |
1952 | ||
23016969 CL |
1953 | area = get_vm_area_caller(size, VM_IOREMAP, |
1954 | __builtin_return_address(0)); | |
5f4352fb JF |
1955 | if (area == NULL) |
1956 | return NULL; | |
1957 | ||
1958 | /* | |
1959 | * This ensures that page tables are constructed for this region | |
1960 | * of kernel virtual address space and mapped into init_mm. | |
1961 | */ | |
1962 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
1963 | area->size, f, NULL)) { | |
1964 | free_vm_area(area); | |
1965 | return NULL; | |
1966 | } | |
1967 | ||
1968 | /* Make sure the pagetables are constructed in process kernel | |
1969 | mappings */ | |
1970 | vmalloc_sync_all(); | |
1971 | ||
1972 | return area; | |
1973 | } | |
1974 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
1975 | ||
1976 | void free_vm_area(struct vm_struct *area) | |
1977 | { | |
1978 | struct vm_struct *ret; | |
1979 | ret = remove_vm_area(area->addr); | |
1980 | BUG_ON(ret != area); | |
1981 | kfree(area); | |
1982 | } | |
1983 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 1984 | |
ca23e405 TH |
1985 | static struct vmap_area *node_to_va(struct rb_node *n) |
1986 | { | |
1987 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
1988 | } | |
1989 | ||
1990 | /** | |
1991 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
1992 | * @end: target address | |
1993 | * @pnext: out arg for the next vmap_area | |
1994 | * @pprev: out arg for the previous vmap_area | |
1995 | * | |
1996 | * Returns: %true if either or both of next and prev are found, | |
1997 | * %false if no vmap_area exists | |
1998 | * | |
1999 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2000 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2001 | */ | |
2002 | static bool pvm_find_next_prev(unsigned long end, | |
2003 | struct vmap_area **pnext, | |
2004 | struct vmap_area **pprev) | |
2005 | { | |
2006 | struct rb_node *n = vmap_area_root.rb_node; | |
2007 | struct vmap_area *va = NULL; | |
2008 | ||
2009 | while (n) { | |
2010 | va = rb_entry(n, struct vmap_area, rb_node); | |
2011 | if (end < va->va_end) | |
2012 | n = n->rb_left; | |
2013 | else if (end > va->va_end) | |
2014 | n = n->rb_right; | |
2015 | else | |
2016 | break; | |
2017 | } | |
2018 | ||
2019 | if (!va) | |
2020 | return false; | |
2021 | ||
2022 | if (va->va_end > end) { | |
2023 | *pnext = va; | |
2024 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2025 | } else { | |
2026 | *pprev = va; | |
2027 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2028 | } | |
2029 | return true; | |
2030 | } | |
2031 | ||
2032 | /** | |
2033 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2034 | * @pnext: in/out arg for the next vmap_area | |
2035 | * @pprev: in/out arg for the previous vmap_area | |
2036 | * @align: alignment | |
2037 | * | |
2038 | * Returns: determined end address | |
2039 | * | |
2040 | * Find the highest aligned address between *@pnext and *@pprev below | |
2041 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2042 | * down address is between the end addresses of the two vmap_areas. | |
2043 | * | |
2044 | * Please note that the address returned by this function may fall | |
2045 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2046 | * that. | |
2047 | */ | |
2048 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2049 | struct vmap_area **pprev, | |
2050 | unsigned long align) | |
2051 | { | |
2052 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2053 | unsigned long addr; | |
2054 | ||
2055 | if (*pnext) | |
2056 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2057 | else | |
2058 | addr = vmalloc_end; | |
2059 | ||
2060 | while (*pprev && (*pprev)->va_end > addr) { | |
2061 | *pnext = *pprev; | |
2062 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2063 | } | |
2064 | ||
2065 | return addr; | |
2066 | } | |
2067 | ||
2068 | /** | |
2069 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2070 | * @offsets: array containing offset of each area | |
2071 | * @sizes: array containing size of each area | |
2072 | * @nr_vms: the number of areas to allocate | |
2073 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
2074 | * @gfp_mask: allocation mask | |
2075 | * | |
2076 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2077 | * vm_structs on success, %NULL on failure | |
2078 | * | |
2079 | * Percpu allocator wants to use congruent vm areas so that it can | |
2080 | * maintain the offsets among percpu areas. This function allocates | |
2081 | * congruent vmalloc areas for it. These areas tend to be scattered | |
2082 | * pretty far, distance between two areas easily going up to | |
2083 | * gigabytes. To avoid interacting with regular vmallocs, these areas | |
2084 | * are allocated from top. | |
2085 | * | |
2086 | * Despite its complicated look, this allocator is rather simple. It | |
2087 | * does everything top-down and scans areas from the end looking for | |
2088 | * matching slot. While scanning, if any of the areas overlaps with | |
2089 | * existing vmap_area, the base address is pulled down to fit the | |
2090 | * area. Scanning is repeated till all the areas fit and then all | |
2091 | * necessary data structres are inserted and the result is returned. | |
2092 | */ | |
2093 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2094 | const size_t *sizes, int nr_vms, | |
2095 | size_t align, gfp_t gfp_mask) | |
2096 | { | |
2097 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2098 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2099 | struct vmap_area **vas, *prev, *next; | |
2100 | struct vm_struct **vms; | |
2101 | int area, area2, last_area, term_area; | |
2102 | unsigned long base, start, end, last_end; | |
2103 | bool purged = false; | |
2104 | ||
2105 | gfp_mask &= GFP_RECLAIM_MASK; | |
2106 | ||
2107 | /* verify parameters and allocate data structures */ | |
2108 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | |
2109 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
2110 | start = offsets[area]; | |
2111 | end = start + sizes[area]; | |
2112 | ||
2113 | /* is everything aligned properly? */ | |
2114 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2115 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2116 | ||
2117 | /* detect the area with the highest address */ | |
2118 | if (start > offsets[last_area]) | |
2119 | last_area = area; | |
2120 | ||
2121 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2122 | unsigned long start2 = offsets[area2]; | |
2123 | unsigned long end2 = start2 + sizes[area2]; | |
2124 | ||
2125 | if (area2 == area) | |
2126 | continue; | |
2127 | ||
2128 | BUG_ON(start2 >= start && start2 < end); | |
2129 | BUG_ON(end2 <= end && end2 > start); | |
2130 | } | |
2131 | } | |
2132 | last_end = offsets[last_area] + sizes[last_area]; | |
2133 | ||
2134 | if (vmalloc_end - vmalloc_start < last_end) { | |
2135 | WARN_ON(true); | |
2136 | return NULL; | |
2137 | } | |
2138 | ||
2139 | vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); | |
2140 | vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); | |
2141 | if (!vas || !vms) | |
2142 | goto err_free; | |
2143 | ||
2144 | for (area = 0; area < nr_vms; area++) { | |
2145 | vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); | |
2146 | vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); | |
2147 | if (!vas[area] || !vms[area]) | |
2148 | goto err_free; | |
2149 | } | |
2150 | retry: | |
2151 | spin_lock(&vmap_area_lock); | |
2152 | ||
2153 | /* start scanning - we scan from the top, begin with the last area */ | |
2154 | area = term_area = last_area; | |
2155 | start = offsets[area]; | |
2156 | end = start + sizes[area]; | |
2157 | ||
2158 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2159 | base = vmalloc_end - last_end; | |
2160 | goto found; | |
2161 | } | |
2162 | base = pvm_determine_end(&next, &prev, align) - end; | |
2163 | ||
2164 | while (true) { | |
2165 | BUG_ON(next && next->va_end <= base + end); | |
2166 | BUG_ON(prev && prev->va_end > base + end); | |
2167 | ||
2168 | /* | |
2169 | * base might have underflowed, add last_end before | |
2170 | * comparing. | |
2171 | */ | |
2172 | if (base + last_end < vmalloc_start + last_end) { | |
2173 | spin_unlock(&vmap_area_lock); | |
2174 | if (!purged) { | |
2175 | purge_vmap_area_lazy(); | |
2176 | purged = true; | |
2177 | goto retry; | |
2178 | } | |
2179 | goto err_free; | |
2180 | } | |
2181 | ||
2182 | /* | |
2183 | * If next overlaps, move base downwards so that it's | |
2184 | * right below next and then recheck. | |
2185 | */ | |
2186 | if (next && next->va_start < base + end) { | |
2187 | base = pvm_determine_end(&next, &prev, align) - end; | |
2188 | term_area = area; | |
2189 | continue; | |
2190 | } | |
2191 | ||
2192 | /* | |
2193 | * If prev overlaps, shift down next and prev and move | |
2194 | * base so that it's right below new next and then | |
2195 | * recheck. | |
2196 | */ | |
2197 | if (prev && prev->va_end > base + start) { | |
2198 | next = prev; | |
2199 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2200 | base = pvm_determine_end(&next, &prev, align) - end; | |
2201 | term_area = area; | |
2202 | continue; | |
2203 | } | |
2204 | ||
2205 | /* | |
2206 | * This area fits, move on to the previous one. If | |
2207 | * the previous one is the terminal one, we're done. | |
2208 | */ | |
2209 | area = (area + nr_vms - 1) % nr_vms; | |
2210 | if (area == term_area) | |
2211 | break; | |
2212 | start = offsets[area]; | |
2213 | end = start + sizes[area]; | |
2214 | pvm_find_next_prev(base + end, &next, &prev); | |
2215 | } | |
2216 | found: | |
2217 | /* we've found a fitting base, insert all va's */ | |
2218 | for (area = 0; area < nr_vms; area++) { | |
2219 | struct vmap_area *va = vas[area]; | |
2220 | ||
2221 | va->va_start = base + offsets[area]; | |
2222 | va->va_end = va->va_start + sizes[area]; | |
2223 | __insert_vmap_area(va); | |
2224 | } | |
2225 | ||
2226 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2227 | ||
2228 | spin_unlock(&vmap_area_lock); | |
2229 | ||
2230 | /* insert all vm's */ | |
2231 | for (area = 0; area < nr_vms; area++) | |
2232 | insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | |
2233 | pcpu_get_vm_areas); | |
2234 | ||
2235 | kfree(vas); | |
2236 | return vms; | |
2237 | ||
2238 | err_free: | |
2239 | for (area = 0; area < nr_vms; area++) { | |
2240 | if (vas) | |
2241 | kfree(vas[area]); | |
2242 | if (vms) | |
2243 | kfree(vms[area]); | |
2244 | } | |
2245 | kfree(vas); | |
2246 | kfree(vms); | |
2247 | return NULL; | |
2248 | } | |
2249 | ||
2250 | /** | |
2251 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2252 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2253 | * @nr_vms: the number of allocated areas | |
2254 | * | |
2255 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2256 | */ | |
2257 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2258 | { | |
2259 | int i; | |
2260 | ||
2261 | for (i = 0; i < nr_vms; i++) | |
2262 | free_vm_area(vms[i]); | |
2263 | kfree(vms); | |
2264 | } | |
a10aa579 CL |
2265 | |
2266 | #ifdef CONFIG_PROC_FS | |
2267 | static void *s_start(struct seq_file *m, loff_t *pos) | |
2268 | { | |
2269 | loff_t n = *pos; | |
2270 | struct vm_struct *v; | |
2271 | ||
2272 | read_lock(&vmlist_lock); | |
2273 | v = vmlist; | |
2274 | while (n > 0 && v) { | |
2275 | n--; | |
2276 | v = v->next; | |
2277 | } | |
2278 | if (!n) | |
2279 | return v; | |
2280 | ||
2281 | return NULL; | |
2282 | ||
2283 | } | |
2284 | ||
2285 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2286 | { | |
2287 | struct vm_struct *v = p; | |
2288 | ||
2289 | ++*pos; | |
2290 | return v->next; | |
2291 | } | |
2292 | ||
2293 | static void s_stop(struct seq_file *m, void *p) | |
2294 | { | |
2295 | read_unlock(&vmlist_lock); | |
2296 | } | |
2297 | ||
a47a126a ED |
2298 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2299 | { | |
2300 | if (NUMA_BUILD) { | |
2301 | unsigned int nr, *counters = m->private; | |
2302 | ||
2303 | if (!counters) | |
2304 | return; | |
2305 | ||
2306 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
2307 | ||
2308 | for (nr = 0; nr < v->nr_pages; nr++) | |
2309 | counters[page_to_nid(v->pages[nr])]++; | |
2310 | ||
2311 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2312 | if (counters[nr]) | |
2313 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2314 | } | |
2315 | } | |
2316 | ||
a10aa579 CL |
2317 | static int s_show(struct seq_file *m, void *p) |
2318 | { | |
2319 | struct vm_struct *v = p; | |
2320 | ||
2321 | seq_printf(m, "0x%p-0x%p %7ld", | |
2322 | v->addr, v->addr + v->size, v->size); | |
2323 | ||
23016969 | 2324 | if (v->caller) { |
9c246247 | 2325 | char buff[KSYM_SYMBOL_LEN]; |
23016969 CL |
2326 | |
2327 | seq_putc(m, ' '); | |
2328 | sprint_symbol(buff, (unsigned long)v->caller); | |
2329 | seq_puts(m, buff); | |
2330 | } | |
2331 | ||
a10aa579 CL |
2332 | if (v->nr_pages) |
2333 | seq_printf(m, " pages=%d", v->nr_pages); | |
2334 | ||
2335 | if (v->phys_addr) | |
2336 | seq_printf(m, " phys=%lx", v->phys_addr); | |
2337 | ||
2338 | if (v->flags & VM_IOREMAP) | |
2339 | seq_printf(m, " ioremap"); | |
2340 | ||
2341 | if (v->flags & VM_ALLOC) | |
2342 | seq_printf(m, " vmalloc"); | |
2343 | ||
2344 | if (v->flags & VM_MAP) | |
2345 | seq_printf(m, " vmap"); | |
2346 | ||
2347 | if (v->flags & VM_USERMAP) | |
2348 | seq_printf(m, " user"); | |
2349 | ||
2350 | if (v->flags & VM_VPAGES) | |
2351 | seq_printf(m, " vpages"); | |
2352 | ||
a47a126a | 2353 | show_numa_info(m, v); |
a10aa579 CL |
2354 | seq_putc(m, '\n'); |
2355 | return 0; | |
2356 | } | |
2357 | ||
5f6a6a9c | 2358 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2359 | .start = s_start, |
2360 | .next = s_next, | |
2361 | .stop = s_stop, | |
2362 | .show = s_show, | |
2363 | }; | |
5f6a6a9c AD |
2364 | |
2365 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2366 | { | |
2367 | unsigned int *ptr = NULL; | |
2368 | int ret; | |
2369 | ||
2370 | if (NUMA_BUILD) | |
2371 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | |
2372 | ret = seq_open(file, &vmalloc_op); | |
2373 | if (!ret) { | |
2374 | struct seq_file *m = file->private_data; | |
2375 | m->private = ptr; | |
2376 | } else | |
2377 | kfree(ptr); | |
2378 | return ret; | |
2379 | } | |
2380 | ||
2381 | static const struct file_operations proc_vmalloc_operations = { | |
2382 | .open = vmalloc_open, | |
2383 | .read = seq_read, | |
2384 | .llseek = seq_lseek, | |
2385 | .release = seq_release_private, | |
2386 | }; | |
2387 | ||
2388 | static int __init proc_vmalloc_init(void) | |
2389 | { | |
2390 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2391 | return 0; | |
2392 | } | |
2393 | module_init(proc_vmalloc_init); | |
a10aa579 CL |
2394 | #endif |
2395 |