]> Git Repo - linux.git/blame - mm/vmalloc.c
kasan, vmalloc, arm64: mark vmalloc mappings as pgprot_tagged
[linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
0f616be1 36#include <linux/bitops.h>
68ad4a33 37#include <linux/rbtree_augmented.h>
bdebd6a2 38#include <linux/overflow.h>
c0eb315a 39#include <linux/pgtable.h>
7c0f6ba6 40#include <linux/uaccess.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
dd56b046 46#include "internal.h"
2a681cfa 47#include "pgalloc-track.h"
dd56b046 48
82a70ce0
CH
49#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51
52static int __init set_nohugeiomap(char *str)
53{
54 ioremap_max_page_shift = PAGE_SHIFT;
55 return 0;
56}
57early_param("nohugeiomap", set_nohugeiomap);
58#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
61
121e6f32
NP
62#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63static bool __ro_after_init vmap_allow_huge = true;
64
65static int __init set_nohugevmalloc(char *str)
66{
67 vmap_allow_huge = false;
68 return 0;
69}
70early_param("nohugevmalloc", set_nohugevmalloc);
71#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72static const bool vmap_allow_huge = false;
73#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74
186525bd
IM
75bool is_vmalloc_addr(const void *x)
76{
4aff1dc4 77 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
78
79 return addr >= VMALLOC_START && addr < VMALLOC_END;
80}
81EXPORT_SYMBOL(is_vmalloc_addr);
82
32fcfd40
AV
83struct vfree_deferred {
84 struct llist_head list;
85 struct work_struct wq;
86};
87static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88
89static void __vunmap(const void *, int);
90
91static void free_work(struct work_struct *w)
92{
93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
94 struct llist_node *t, *llnode;
95
96 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 __vunmap((void *)llnode, 1);
32fcfd40
AV
98}
99
db64fe02 100/*** Page table manipulation functions ***/
5e9e3d77
NP
101static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 103 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
104{
105 pte_t *pte;
106 u64 pfn;
f7ee1f13 107 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
108
109 pfn = phys_addr >> PAGE_SHIFT;
110 pte = pte_alloc_kernel_track(pmd, addr, mask);
111 if (!pte)
112 return -ENOMEM;
113 do {
114 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
115
116#ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
120
f7ee1f13
CL
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry);
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126#endif
5e9e3d77
NP
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
f7ee1f13 129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132}
133
134static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137{
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157}
158
159static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
f7ee1f13 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182}
183
184static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187{
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207}
208
209static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212{
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233}
234
235static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238{
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258}
259
260static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263{
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284}
285
5d87510d 286static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289{
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
5e9e3d77
NP
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313}
b221385b 314
82a70ce0
CH
315int ioremap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
317{
318 int err;
319
8491502f 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 321 ioremap_max_page_shift);
5d87510d 322 flush_cache_vmap(addr, end);
5d87510d
NP
323 return err;
324}
325
2ba3e694
JR
326static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 pgtbl_mod_mask *mask)
1da177e4
LT
328{
329 pte_t *pte;
330
331 pte = pte_offset_kernel(pmd, addr);
332 do {
333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 336 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
337}
338
2ba3e694
JR
339static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 pgtbl_mod_mask *mask)
1da177e4
LT
341{
342 pmd_t *pmd;
343 unsigned long next;
2ba3e694 344 int cleared;
1da177e4
LT
345
346 pmd = pmd_offset(pud, addr);
347 do {
348 next = pmd_addr_end(addr, end);
2ba3e694
JR
349
350 cleared = pmd_clear_huge(pmd);
351 if (cleared || pmd_bad(*pmd))
352 *mask |= PGTBL_PMD_MODIFIED;
353
354 if (cleared)
b9820d8f 355 continue;
1da177e4
LT
356 if (pmd_none_or_clear_bad(pmd))
357 continue;
2ba3e694 358 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
359
360 cond_resched();
1da177e4
LT
361 } while (pmd++, addr = next, addr != end);
362}
363
2ba3e694
JR
364static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 pgtbl_mod_mask *mask)
1da177e4
LT
366{
367 pud_t *pud;
368 unsigned long next;
2ba3e694 369 int cleared;
1da177e4 370
c2febafc 371 pud = pud_offset(p4d, addr);
1da177e4
LT
372 do {
373 next = pud_addr_end(addr, end);
2ba3e694
JR
374
375 cleared = pud_clear_huge(pud);
376 if (cleared || pud_bad(*pud))
377 *mask |= PGTBL_PUD_MODIFIED;
378
379 if (cleared)
b9820d8f 380 continue;
1da177e4
LT
381 if (pud_none_or_clear_bad(pud))
382 continue;
2ba3e694 383 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
384 } while (pud++, addr = next, addr != end);
385}
386
2ba3e694
JR
387static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
c2febafc
KS
389{
390 p4d_t *p4d;
391 unsigned long next;
2ba3e694 392 int cleared;
c2febafc
KS
393
394 p4d = p4d_offset(pgd, addr);
395 do {
396 next = p4d_addr_end(addr, end);
2ba3e694
JR
397
398 cleared = p4d_clear_huge(p4d);
399 if (cleared || p4d_bad(*p4d))
400 *mask |= PGTBL_P4D_MODIFIED;
401
402 if (cleared)
c2febafc
KS
403 continue;
404 if (p4d_none_or_clear_bad(p4d))
405 continue;
2ba3e694 406 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
407 } while (p4d++, addr = next, addr != end);
408}
409
4ad0ae8c
NP
410/*
411 * vunmap_range_noflush is similar to vunmap_range, but does not
412 * flush caches or TLBs.
b521c43f 413 *
4ad0ae8c
NP
414 * The caller is responsible for calling flush_cache_vmap() before calling
415 * this function, and flush_tlb_kernel_range after it has returned
416 * successfully (and before the addresses are expected to cause a page fault
417 * or be re-mapped for something else, if TLB flushes are being delayed or
418 * coalesced).
b521c43f 419 *
4ad0ae8c 420 * This is an internal function only. Do not use outside mm/.
b521c43f 421 */
4ad0ae8c 422void vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 423{
1da177e4 424 unsigned long next;
b521c43f 425 pgd_t *pgd;
2ba3e694
JR
426 unsigned long addr = start;
427 pgtbl_mod_mask mask = 0;
1da177e4
LT
428
429 BUG_ON(addr >= end);
430 pgd = pgd_offset_k(addr);
1da177e4
LT
431 do {
432 next = pgd_addr_end(addr, end);
2ba3e694
JR
433 if (pgd_bad(*pgd))
434 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
435 if (pgd_none_or_clear_bad(pgd))
436 continue;
2ba3e694 437 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 438 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
439
440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 arch_sync_kernel_mappings(start, end);
1da177e4
LT
442}
443
4ad0ae8c
NP
444/**
445 * vunmap_range - unmap kernel virtual addresses
446 * @addr: start of the VM area to unmap
447 * @end: end of the VM area to unmap (non-inclusive)
448 *
449 * Clears any present PTEs in the virtual address range, flushes TLBs and
450 * caches. Any subsequent access to the address before it has been re-mapped
451 * is a kernel bug.
452 */
453void vunmap_range(unsigned long addr, unsigned long end)
454{
455 flush_cache_vunmap(addr, end);
456 vunmap_range_noflush(addr, end);
457 flush_tlb_kernel_range(addr, end);
458}
459
0a264884 460static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
461 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462 pgtbl_mod_mask *mask)
1da177e4
LT
463{
464 pte_t *pte;
465
db64fe02
NP
466 /*
467 * nr is a running index into the array which helps higher level
468 * callers keep track of where we're up to.
469 */
470
2ba3e694 471 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
472 if (!pte)
473 return -ENOMEM;
474 do {
db64fe02
NP
475 struct page *page = pages[*nr];
476
477 if (WARN_ON(!pte_none(*pte)))
478 return -EBUSY;
479 if (WARN_ON(!page))
1da177e4
LT
480 return -ENOMEM;
481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 482 (*nr)++;
1da177e4 483 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 484 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
485 return 0;
486}
487
0a264884 488static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
489 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 pgtbl_mod_mask *mask)
1da177e4
LT
491{
492 pmd_t *pmd;
493 unsigned long next;
494
2ba3e694 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
496 if (!pmd)
497 return -ENOMEM;
498 do {
499 next = pmd_addr_end(addr, end);
0a264884 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
501 return -ENOMEM;
502 } while (pmd++, addr = next, addr != end);
503 return 0;
504}
505
0a264884 506static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
507 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 pgtbl_mod_mask *mask)
1da177e4
LT
509{
510 pud_t *pud;
511 unsigned long next;
512
2ba3e694 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
514 if (!pud)
515 return -ENOMEM;
516 do {
517 next = pud_addr_end(addr, end);
0a264884 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
519 return -ENOMEM;
520 } while (pud++, addr = next, addr != end);
521 return 0;
522}
523
0a264884 524static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
525 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 pgtbl_mod_mask *mask)
c2febafc
KS
527{
528 p4d_t *p4d;
529 unsigned long next;
530
2ba3e694 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
532 if (!p4d)
533 return -ENOMEM;
534 do {
535 next = p4d_addr_end(addr, end);
0a264884 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
537 return -ENOMEM;
538 } while (p4d++, addr = next, addr != end);
539 return 0;
540}
541
121e6f32
NP
542static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 pgprot_t prot, struct page **pages)
1da177e4 544{
2ba3e694 545 unsigned long start = addr;
b521c43f 546 pgd_t *pgd;
121e6f32 547 unsigned long next;
db64fe02
NP
548 int err = 0;
549 int nr = 0;
2ba3e694 550 pgtbl_mod_mask mask = 0;
1da177e4
LT
551
552 BUG_ON(addr >= end);
553 pgd = pgd_offset_k(addr);
1da177e4
LT
554 do {
555 next = pgd_addr_end(addr, end);
2ba3e694
JR
556 if (pgd_bad(*pgd))
557 mask |= PGTBL_PGD_MODIFIED;
0a264884 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 559 if (err)
bf88c8c8 560 return err;
1da177e4 561 } while (pgd++, addr = next, addr != end);
db64fe02 562
2ba3e694
JR
563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 arch_sync_kernel_mappings(start, end);
565
60bb4465 566 return 0;
1da177e4
LT
567}
568
b67177ec
NP
569/*
570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571 * flush caches.
572 *
573 * The caller is responsible for calling flush_cache_vmap() after this
574 * function returns successfully and before the addresses are accessed.
575 *
576 * This is an internal function only. Do not use outside mm/.
577 */
578int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
579 pgprot_t prot, struct page **pages, unsigned int page_shift)
580{
581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582
583 WARN_ON(page_shift < PAGE_SHIFT);
584
585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 page_shift == PAGE_SHIFT)
587 return vmap_small_pages_range_noflush(addr, end, prot, pages);
588
589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 int err;
591
592 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 __pa(page_address(pages[i])), prot,
594 page_shift);
595 if (err)
596 return err;
597
598 addr += 1UL << page_shift;
599 }
600
601 return 0;
602}
603
121e6f32 604/**
b67177ec 605 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 606 * @addr: start of the VM area to map
b67177ec 607 * @end: end of the VM area to map (non-inclusive)
121e6f32 608 * @prot: page protection flags to use
b67177ec
NP
609 * @pages: pages to map (always PAGE_SIZE pages)
610 * @page_shift: maximum shift that the pages may be mapped with, @pages must
611 * be aligned and contiguous up to at least this shift.
121e6f32
NP
612 *
613 * RETURNS:
614 * 0 on success, -errno on failure.
615 */
b67177ec
NP
616static int vmap_pages_range(unsigned long addr, unsigned long end,
617 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 618{
b67177ec 619 int err;
8fc48985 620
b67177ec
NP
621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 flush_cache_vmap(addr, end);
623 return err;
8fc48985
TH
624}
625
81ac3ad9 626int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
627{
628 /*
ab4f2ee1 629 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
630 * and fall back on vmalloc() if that fails. Others
631 * just put it in the vmalloc space.
632 */
633#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 634 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
635 if (addr >= MODULES_VADDR && addr < MODULES_END)
636 return 1;
637#endif
638 return is_vmalloc_addr(x);
639}
640
48667e7a 641/*
c0eb315a
NP
642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643 * return the tail page that corresponds to the base page address, which
644 * matches small vmap mappings.
48667e7a 645 */
add688fb 646struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
647{
648 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 649 struct page *page = NULL;
48667e7a 650 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
651 p4d_t *p4d;
652 pud_t *pud;
653 pmd_t *pmd;
654 pte_t *ptep, pte;
48667e7a 655
7aa413de
IM
656 /*
657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 * architectures that do not vmalloc module space
659 */
73bdf0a6 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 661
c2febafc
KS
662 if (pgd_none(*pgd))
663 return NULL;
c0eb315a
NP
664 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 return NULL; /* XXX: no allowance for huge pgd */
666 if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 return NULL;
668
c2febafc
KS
669 p4d = p4d_offset(pgd, addr);
670 if (p4d_none(*p4d))
671 return NULL;
c0eb315a
NP
672 if (p4d_leaf(*p4d))
673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 return NULL;
029c54b0 676
c0eb315a
NP
677 pud = pud_offset(p4d, addr);
678 if (pud_none(*pud))
679 return NULL;
680 if (pud_leaf(*pud))
681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 683 return NULL;
c0eb315a 684
c2febafc 685 pmd = pmd_offset(pud, addr);
c0eb315a
NP
686 if (pmd_none(*pmd))
687 return NULL;
688 if (pmd_leaf(*pmd))
689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
691 return NULL;
692
693 ptep = pte_offset_map(pmd, addr);
694 pte = *ptep;
695 if (pte_present(pte))
696 page = pte_page(pte);
697 pte_unmap(ptep);
c0eb315a 698
add688fb 699 return page;
48667e7a 700}
add688fb 701EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
702
703/*
add688fb 704 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 705 */
add688fb 706unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 707{
add688fb 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 709}
add688fb 710EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 711
db64fe02
NP
712
713/*** Global kva allocator ***/
714
bb850f4d 715#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 716#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 717
db64fe02 718
db64fe02 719static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 720static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
721/* Export for kexec only */
722LIST_HEAD(vmap_area_list);
89699605 723static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 724static bool vmap_initialized __read_mostly;
89699605 725
96e2db45
URS
726static struct rb_root purge_vmap_area_root = RB_ROOT;
727static LIST_HEAD(purge_vmap_area_list);
728static DEFINE_SPINLOCK(purge_vmap_area_lock);
729
68ad4a33
URS
730/*
731 * This kmem_cache is used for vmap_area objects. Instead of
732 * allocating from slab we reuse an object from this cache to
733 * make things faster. Especially in "no edge" splitting of
734 * free block.
735 */
736static struct kmem_cache *vmap_area_cachep;
737
738/*
739 * This linked list is used in pair with free_vmap_area_root.
740 * It gives O(1) access to prev/next to perform fast coalescing.
741 */
742static LIST_HEAD(free_vmap_area_list);
743
744/*
745 * This augment red-black tree represents the free vmap space.
746 * All vmap_area objects in this tree are sorted by va->va_start
747 * address. It is used for allocation and merging when a vmap
748 * object is released.
749 *
750 * Each vmap_area node contains a maximum available free block
751 * of its sub-tree, right or left. Therefore it is possible to
752 * find a lowest match of free area.
753 */
754static struct rb_root free_vmap_area_root = RB_ROOT;
755
82dd23e8
URS
756/*
757 * Preload a CPU with one object for "no edge" split case. The
758 * aim is to get rid of allocations from the atomic context, thus
759 * to use more permissive allocation masks.
760 */
761static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762
68ad4a33
URS
763static __always_inline unsigned long
764va_size(struct vmap_area *va)
765{
766 return (va->va_end - va->va_start);
767}
768
769static __always_inline unsigned long
770get_subtree_max_size(struct rb_node *node)
771{
772 struct vmap_area *va;
773
774 va = rb_entry_safe(node, struct vmap_area, rb_node);
775 return va ? va->subtree_max_size : 0;
776}
89699605 777
315cc066
ML
778RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
780
781static void purge_vmap_area_lazy(void);
782static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
783static void drain_vmap_area_work(struct work_struct *work);
784static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 785
97105f0a
RG
786static atomic_long_t nr_vmalloc_pages;
787
788unsigned long vmalloc_nr_pages(void)
789{
790 return atomic_long_read(&nr_vmalloc_pages);
791}
792
f181234a
CW
793static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
794{
795 struct vmap_area *va = NULL;
796 struct rb_node *n = vmap_area_root.rb_node;
797
4aff1dc4
AK
798 addr = (unsigned long)kasan_reset_tag((void *)addr);
799
f181234a
CW
800 while (n) {
801 struct vmap_area *tmp;
802
803 tmp = rb_entry(n, struct vmap_area, rb_node);
804 if (tmp->va_end > addr) {
805 va = tmp;
806 if (tmp->va_start <= addr)
807 break;
808
809 n = n->rb_left;
810 } else
811 n = n->rb_right;
812 }
813
814 return va;
815}
816
db64fe02 817static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 818{
db64fe02
NP
819 struct rb_node *n = vmap_area_root.rb_node;
820
4aff1dc4
AK
821 addr = (unsigned long)kasan_reset_tag((void *)addr);
822
db64fe02
NP
823 while (n) {
824 struct vmap_area *va;
825
826 va = rb_entry(n, struct vmap_area, rb_node);
827 if (addr < va->va_start)
828 n = n->rb_left;
cef2ac3f 829 else if (addr >= va->va_end)
db64fe02
NP
830 n = n->rb_right;
831 else
832 return va;
833 }
834
835 return NULL;
836}
837
68ad4a33
URS
838/*
839 * This function returns back addresses of parent node
840 * and its left or right link for further processing.
9c801f61
URS
841 *
842 * Otherwise NULL is returned. In that case all further
843 * steps regarding inserting of conflicting overlap range
844 * have to be declined and actually considered as a bug.
68ad4a33
URS
845 */
846static __always_inline struct rb_node **
847find_va_links(struct vmap_area *va,
848 struct rb_root *root, struct rb_node *from,
849 struct rb_node **parent)
850{
851 struct vmap_area *tmp_va;
852 struct rb_node **link;
853
854 if (root) {
855 link = &root->rb_node;
856 if (unlikely(!*link)) {
857 *parent = NULL;
858 return link;
859 }
860 } else {
861 link = &from;
862 }
db64fe02 863
68ad4a33
URS
864 /*
865 * Go to the bottom of the tree. When we hit the last point
866 * we end up with parent rb_node and correct direction, i name
867 * it link, where the new va->rb_node will be attached to.
868 */
869 do {
870 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 871
68ad4a33
URS
872 /*
873 * During the traversal we also do some sanity check.
874 * Trigger the BUG() if there are sides(left/right)
875 * or full overlaps.
876 */
877 if (va->va_start < tmp_va->va_end &&
878 va->va_end <= tmp_va->va_start)
879 link = &(*link)->rb_left;
880 else if (va->va_end > tmp_va->va_start &&
881 va->va_start >= tmp_va->va_end)
882 link = &(*link)->rb_right;
9c801f61
URS
883 else {
884 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
885 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
886
887 return NULL;
888 }
68ad4a33
URS
889 } while (*link);
890
891 *parent = &tmp_va->rb_node;
892 return link;
893}
894
895static __always_inline struct list_head *
896get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
897{
898 struct list_head *list;
899
900 if (unlikely(!parent))
901 /*
902 * The red-black tree where we try to find VA neighbors
903 * before merging or inserting is empty, i.e. it means
904 * there is no free vmap space. Normally it does not
905 * happen but we handle this case anyway.
906 */
907 return NULL;
908
909 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
910 return (&parent->rb_right == link ? list->next : list);
911}
912
913static __always_inline void
914link_va(struct vmap_area *va, struct rb_root *root,
915 struct rb_node *parent, struct rb_node **link, struct list_head *head)
916{
917 /*
918 * VA is still not in the list, but we can
919 * identify its future previous list_head node.
920 */
921 if (likely(parent)) {
922 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923 if (&parent->rb_right != link)
924 head = head->prev;
db64fe02
NP
925 }
926
68ad4a33
URS
927 /* Insert to the rb-tree */
928 rb_link_node(&va->rb_node, parent, link);
929 if (root == &free_vmap_area_root) {
930 /*
931 * Some explanation here. Just perform simple insertion
932 * to the tree. We do not set va->subtree_max_size to
933 * its current size before calling rb_insert_augmented().
934 * It is because of we populate the tree from the bottom
935 * to parent levels when the node _is_ in the tree.
936 *
937 * Therefore we set subtree_max_size to zero after insertion,
938 * to let __augment_tree_propagate_from() puts everything to
939 * the correct order later on.
940 */
941 rb_insert_augmented(&va->rb_node,
942 root, &free_vmap_area_rb_augment_cb);
943 va->subtree_max_size = 0;
944 } else {
945 rb_insert_color(&va->rb_node, root);
946 }
db64fe02 947
68ad4a33
URS
948 /* Address-sort this list */
949 list_add(&va->list, head);
db64fe02
NP
950}
951
68ad4a33
URS
952static __always_inline void
953unlink_va(struct vmap_area *va, struct rb_root *root)
954{
460e42d1
URS
955 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
956 return;
db64fe02 957
460e42d1
URS
958 if (root == &free_vmap_area_root)
959 rb_erase_augmented(&va->rb_node,
960 root, &free_vmap_area_rb_augment_cb);
961 else
962 rb_erase(&va->rb_node, root);
963
964 list_del(&va->list);
965 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
966}
967
bb850f4d 968#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
969/*
970 * Gets called when remove the node and rotate.
971 */
972static __always_inline unsigned long
973compute_subtree_max_size(struct vmap_area *va)
974{
975 return max3(va_size(va),
976 get_subtree_max_size(va->rb_node.rb_left),
977 get_subtree_max_size(va->rb_node.rb_right));
978}
979
bb850f4d 980static void
da27c9ed 981augment_tree_propagate_check(void)
bb850f4d
URS
982{
983 struct vmap_area *va;
da27c9ed 984 unsigned long computed_size;
bb850f4d 985
da27c9ed
URS
986 list_for_each_entry(va, &free_vmap_area_list, list) {
987 computed_size = compute_subtree_max_size(va);
988 if (computed_size != va->subtree_max_size)
989 pr_emerg("tree is corrupted: %lu, %lu\n",
990 va_size(va), va->subtree_max_size);
bb850f4d 991 }
bb850f4d
URS
992}
993#endif
994
68ad4a33
URS
995/*
996 * This function populates subtree_max_size from bottom to upper
997 * levels starting from VA point. The propagation must be done
998 * when VA size is modified by changing its va_start/va_end. Or
999 * in case of newly inserting of VA to the tree.
1000 *
1001 * It means that __augment_tree_propagate_from() must be called:
1002 * - After VA has been inserted to the tree(free path);
1003 * - After VA has been shrunk(allocation path);
1004 * - After VA has been increased(merging path).
1005 *
1006 * Please note that, it does not mean that upper parent nodes
1007 * and their subtree_max_size are recalculated all the time up
1008 * to the root node.
1009 *
1010 * 4--8
1011 * /\
1012 * / \
1013 * / \
1014 * 2--2 8--8
1015 *
1016 * For example if we modify the node 4, shrinking it to 2, then
1017 * no any modification is required. If we shrink the node 2 to 1
1018 * its subtree_max_size is updated only, and set to 1. If we shrink
1019 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1020 * node becomes 4--6.
1021 */
1022static __always_inline void
1023augment_tree_propagate_from(struct vmap_area *va)
1024{
15ae144f
URS
1025 /*
1026 * Populate the tree from bottom towards the root until
1027 * the calculated maximum available size of checked node
1028 * is equal to its current one.
1029 */
1030 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1031
1032#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1033 augment_tree_propagate_check();
bb850f4d 1034#endif
68ad4a33
URS
1035}
1036
1037static void
1038insert_vmap_area(struct vmap_area *va,
1039 struct rb_root *root, struct list_head *head)
1040{
1041 struct rb_node **link;
1042 struct rb_node *parent;
1043
1044 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1045 if (link)
1046 link_va(va, root, parent, link, head);
68ad4a33
URS
1047}
1048
1049static void
1050insert_vmap_area_augment(struct vmap_area *va,
1051 struct rb_node *from, struct rb_root *root,
1052 struct list_head *head)
1053{
1054 struct rb_node **link;
1055 struct rb_node *parent;
1056
1057 if (from)
1058 link = find_va_links(va, NULL, from, &parent);
1059 else
1060 link = find_va_links(va, root, NULL, &parent);
1061
9c801f61
URS
1062 if (link) {
1063 link_va(va, root, parent, link, head);
1064 augment_tree_propagate_from(va);
1065 }
68ad4a33
URS
1066}
1067
1068/*
1069 * Merge de-allocated chunk of VA memory with previous
1070 * and next free blocks. If coalesce is not done a new
1071 * free area is inserted. If VA has been merged, it is
1072 * freed.
9c801f61
URS
1073 *
1074 * Please note, it can return NULL in case of overlap
1075 * ranges, followed by WARN() report. Despite it is a
1076 * buggy behaviour, a system can be alive and keep
1077 * ongoing.
68ad4a33 1078 */
3c5c3cfb 1079static __always_inline struct vmap_area *
68ad4a33
URS
1080merge_or_add_vmap_area(struct vmap_area *va,
1081 struct rb_root *root, struct list_head *head)
1082{
1083 struct vmap_area *sibling;
1084 struct list_head *next;
1085 struct rb_node **link;
1086 struct rb_node *parent;
1087 bool merged = false;
1088
1089 /*
1090 * Find a place in the tree where VA potentially will be
1091 * inserted, unless it is merged with its sibling/siblings.
1092 */
1093 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1094 if (!link)
1095 return NULL;
68ad4a33
URS
1096
1097 /*
1098 * Get next node of VA to check if merging can be done.
1099 */
1100 next = get_va_next_sibling(parent, link);
1101 if (unlikely(next == NULL))
1102 goto insert;
1103
1104 /*
1105 * start end
1106 * | |
1107 * |<------VA------>|<-----Next----->|
1108 * | |
1109 * start end
1110 */
1111 if (next != head) {
1112 sibling = list_entry(next, struct vmap_area, list);
1113 if (sibling->va_start == va->va_end) {
1114 sibling->va_start = va->va_start;
1115
68ad4a33
URS
1116 /* Free vmap_area object. */
1117 kmem_cache_free(vmap_area_cachep, va);
1118
1119 /* Point to the new merged area. */
1120 va = sibling;
1121 merged = true;
1122 }
1123 }
1124
1125 /*
1126 * start end
1127 * | |
1128 * |<-----Prev----->|<------VA------>|
1129 * | |
1130 * start end
1131 */
1132 if (next->prev != head) {
1133 sibling = list_entry(next->prev, struct vmap_area, list);
1134 if (sibling->va_end == va->va_start) {
5dd78640
URS
1135 /*
1136 * If both neighbors are coalesced, it is important
1137 * to unlink the "next" node first, followed by merging
1138 * with "previous" one. Otherwise the tree might not be
1139 * fully populated if a sibling's augmented value is
1140 * "normalized" because of rotation operations.
1141 */
54f63d9d
URS
1142 if (merged)
1143 unlink_va(va, root);
68ad4a33 1144
5dd78640
URS
1145 sibling->va_end = va->va_end;
1146
68ad4a33
URS
1147 /* Free vmap_area object. */
1148 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1149
1150 /* Point to the new merged area. */
1151 va = sibling;
1152 merged = true;
68ad4a33
URS
1153 }
1154 }
1155
1156insert:
5dd78640 1157 if (!merged)
68ad4a33 1158 link_va(va, root, parent, link, head);
3c5c3cfb 1159
96e2db45
URS
1160 return va;
1161}
1162
1163static __always_inline struct vmap_area *
1164merge_or_add_vmap_area_augment(struct vmap_area *va,
1165 struct rb_root *root, struct list_head *head)
1166{
1167 va = merge_or_add_vmap_area(va, root, head);
1168 if (va)
1169 augment_tree_propagate_from(va);
1170
3c5c3cfb 1171 return va;
68ad4a33
URS
1172}
1173
1174static __always_inline bool
1175is_within_this_va(struct vmap_area *va, unsigned long size,
1176 unsigned long align, unsigned long vstart)
1177{
1178 unsigned long nva_start_addr;
1179
1180 if (va->va_start > vstart)
1181 nva_start_addr = ALIGN(va->va_start, align);
1182 else
1183 nva_start_addr = ALIGN(vstart, align);
1184
1185 /* Can be overflowed due to big size or alignment. */
1186 if (nva_start_addr + size < nva_start_addr ||
1187 nva_start_addr < vstart)
1188 return false;
1189
1190 return (nva_start_addr + size <= va->va_end);
1191}
1192
1193/*
1194 * Find the first free block(lowest start address) in the tree,
1195 * that will accomplish the request corresponding to passing
9333fe98
UR
1196 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1197 * a search length is adjusted to account for worst case alignment
1198 * overhead.
68ad4a33
URS
1199 */
1200static __always_inline struct vmap_area *
9333fe98
UR
1201find_vmap_lowest_match(unsigned long size, unsigned long align,
1202 unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1203{
1204 struct vmap_area *va;
1205 struct rb_node *node;
9333fe98 1206 unsigned long length;
68ad4a33
URS
1207
1208 /* Start from the root. */
1209 node = free_vmap_area_root.rb_node;
1210
9333fe98
UR
1211 /* Adjust the search size for alignment overhead. */
1212 length = adjust_search_size ? size + align - 1 : size;
1213
68ad4a33
URS
1214 while (node) {
1215 va = rb_entry(node, struct vmap_area, rb_node);
1216
9333fe98 1217 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1218 vstart < va->va_start) {
1219 node = node->rb_left;
1220 } else {
1221 if (is_within_this_va(va, size, align, vstart))
1222 return va;
1223
1224 /*
1225 * Does not make sense to go deeper towards the right
1226 * sub-tree if it does not have a free block that is
9333fe98 1227 * equal or bigger to the requested search length.
68ad4a33 1228 */
9333fe98 1229 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1230 node = node->rb_right;
1231 continue;
1232 }
1233
1234 /*
3806b041 1235 * OK. We roll back and find the first right sub-tree,
68ad4a33 1236 * that will satisfy the search criteria. It can happen
9f531973
URS
1237 * due to "vstart" restriction or an alignment overhead
1238 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1239 */
1240 while ((node = rb_parent(node))) {
1241 va = rb_entry(node, struct vmap_area, rb_node);
1242 if (is_within_this_va(va, size, align, vstart))
1243 return va;
1244
9333fe98 1245 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1246 vstart <= va->va_start) {
9f531973
URS
1247 /*
1248 * Shift the vstart forward. Please note, we update it with
1249 * parent's start address adding "1" because we do not want
1250 * to enter same sub-tree after it has already been checked
1251 * and no suitable free block found there.
1252 */
1253 vstart = va->va_start + 1;
68ad4a33
URS
1254 node = node->rb_right;
1255 break;
1256 }
1257 }
1258 }
1259 }
1260
1261 return NULL;
1262}
1263
a6cf4e0f
URS
1264#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1265#include <linux/random.h>
1266
1267static struct vmap_area *
1268find_vmap_lowest_linear_match(unsigned long size,
1269 unsigned long align, unsigned long vstart)
1270{
1271 struct vmap_area *va;
1272
1273 list_for_each_entry(va, &free_vmap_area_list, list) {
1274 if (!is_within_this_va(va, size, align, vstart))
1275 continue;
1276
1277 return va;
1278 }
1279
1280 return NULL;
1281}
1282
1283static void
066fed59 1284find_vmap_lowest_match_check(unsigned long size, unsigned long align)
a6cf4e0f
URS
1285{
1286 struct vmap_area *va_1, *va_2;
1287 unsigned long vstart;
1288 unsigned int rnd;
1289
1290 get_random_bytes(&rnd, sizeof(rnd));
1291 vstart = VMALLOC_START + rnd;
1292
9333fe98 1293 va_1 = find_vmap_lowest_match(size, align, vstart, false);
066fed59 1294 va_2 = find_vmap_lowest_linear_match(size, align, vstart);
a6cf4e0f
URS
1295
1296 if (va_1 != va_2)
1297 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1298 va_1, va_2, vstart);
1299}
1300#endif
1301
68ad4a33
URS
1302enum fit_type {
1303 NOTHING_FIT = 0,
1304 FL_FIT_TYPE = 1, /* full fit */
1305 LE_FIT_TYPE = 2, /* left edge fit */
1306 RE_FIT_TYPE = 3, /* right edge fit */
1307 NE_FIT_TYPE = 4 /* no edge fit */
1308};
1309
1310static __always_inline enum fit_type
1311classify_va_fit_type(struct vmap_area *va,
1312 unsigned long nva_start_addr, unsigned long size)
1313{
1314 enum fit_type type;
1315
1316 /* Check if it is within VA. */
1317 if (nva_start_addr < va->va_start ||
1318 nva_start_addr + size > va->va_end)
1319 return NOTHING_FIT;
1320
1321 /* Now classify. */
1322 if (va->va_start == nva_start_addr) {
1323 if (va->va_end == nva_start_addr + size)
1324 type = FL_FIT_TYPE;
1325 else
1326 type = LE_FIT_TYPE;
1327 } else if (va->va_end == nva_start_addr + size) {
1328 type = RE_FIT_TYPE;
1329 } else {
1330 type = NE_FIT_TYPE;
1331 }
1332
1333 return type;
1334}
1335
1336static __always_inline int
1337adjust_va_to_fit_type(struct vmap_area *va,
1338 unsigned long nva_start_addr, unsigned long size,
1339 enum fit_type type)
1340{
2c929233 1341 struct vmap_area *lva = NULL;
68ad4a33
URS
1342
1343 if (type == FL_FIT_TYPE) {
1344 /*
1345 * No need to split VA, it fully fits.
1346 *
1347 * | |
1348 * V NVA V
1349 * |---------------|
1350 */
1351 unlink_va(va, &free_vmap_area_root);
1352 kmem_cache_free(vmap_area_cachep, va);
1353 } else if (type == LE_FIT_TYPE) {
1354 /*
1355 * Split left edge of fit VA.
1356 *
1357 * | |
1358 * V NVA V R
1359 * |-------|-------|
1360 */
1361 va->va_start += size;
1362 } else if (type == RE_FIT_TYPE) {
1363 /*
1364 * Split right edge of fit VA.
1365 *
1366 * | |
1367 * L V NVA V
1368 * |-------|-------|
1369 */
1370 va->va_end = nva_start_addr;
1371 } else if (type == NE_FIT_TYPE) {
1372 /*
1373 * Split no edge of fit VA.
1374 *
1375 * | |
1376 * L V NVA V R
1377 * |---|-------|---|
1378 */
82dd23e8
URS
1379 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1380 if (unlikely(!lva)) {
1381 /*
1382 * For percpu allocator we do not do any pre-allocation
1383 * and leave it as it is. The reason is it most likely
1384 * never ends up with NE_FIT_TYPE splitting. In case of
1385 * percpu allocations offsets and sizes are aligned to
1386 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1387 * are its main fitting cases.
1388 *
1389 * There are a few exceptions though, as an example it is
1390 * a first allocation (early boot up) when we have "one"
1391 * big free space that has to be split.
060650a2
URS
1392 *
1393 * Also we can hit this path in case of regular "vmap"
1394 * allocations, if "this" current CPU was not preloaded.
1395 * See the comment in alloc_vmap_area() why. If so, then
1396 * GFP_NOWAIT is used instead to get an extra object for
1397 * split purpose. That is rare and most time does not
1398 * occur.
1399 *
1400 * What happens if an allocation gets failed. Basically,
1401 * an "overflow" path is triggered to purge lazily freed
1402 * areas to free some memory, then, the "retry" path is
1403 * triggered to repeat one more time. See more details
1404 * in alloc_vmap_area() function.
82dd23e8
URS
1405 */
1406 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1407 if (!lva)
1408 return -1;
1409 }
68ad4a33
URS
1410
1411 /*
1412 * Build the remainder.
1413 */
1414 lva->va_start = va->va_start;
1415 lva->va_end = nva_start_addr;
1416
1417 /*
1418 * Shrink this VA to remaining size.
1419 */
1420 va->va_start = nva_start_addr + size;
1421 } else {
1422 return -1;
1423 }
1424
1425 if (type != FL_FIT_TYPE) {
1426 augment_tree_propagate_from(va);
1427
2c929233 1428 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1429 insert_vmap_area_augment(lva, &va->rb_node,
1430 &free_vmap_area_root, &free_vmap_area_list);
1431 }
1432
1433 return 0;
1434}
1435
1436/*
1437 * Returns a start address of the newly allocated area, if success.
1438 * Otherwise a vend is returned that indicates failure.
1439 */
1440static __always_inline unsigned long
1441__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1442 unsigned long vstart, unsigned long vend)
68ad4a33 1443{
9333fe98 1444 bool adjust_search_size = true;
68ad4a33
URS
1445 unsigned long nva_start_addr;
1446 struct vmap_area *va;
1447 enum fit_type type;
1448 int ret;
1449
9333fe98
UR
1450 /*
1451 * Do not adjust when:
1452 * a) align <= PAGE_SIZE, because it does not make any sense.
1453 * All blocks(their start addresses) are at least PAGE_SIZE
1454 * aligned anyway;
1455 * b) a short range where a requested size corresponds to exactly
1456 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1457 * With adjusted search length an allocation would not succeed.
1458 */
1459 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1460 adjust_search_size = false;
1461
1462 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
68ad4a33
URS
1463 if (unlikely(!va))
1464 return vend;
1465
1466 if (va->va_start > vstart)
1467 nva_start_addr = ALIGN(va->va_start, align);
1468 else
1469 nva_start_addr = ALIGN(vstart, align);
1470
1471 /* Check the "vend" restriction. */
1472 if (nva_start_addr + size > vend)
1473 return vend;
1474
1475 /* Classify what we have found. */
1476 type = classify_va_fit_type(va, nva_start_addr, size);
1477 if (WARN_ON_ONCE(type == NOTHING_FIT))
1478 return vend;
1479
1480 /* Update the free vmap_area. */
1481 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1482 if (ret)
1483 return vend;
1484
a6cf4e0f 1485#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
066fed59 1486 find_vmap_lowest_match_check(size, align);
a6cf4e0f
URS
1487#endif
1488
68ad4a33
URS
1489 return nva_start_addr;
1490}
4da56b99 1491
d98c9e83
AR
1492/*
1493 * Free a region of KVA allocated by alloc_vmap_area
1494 */
1495static void free_vmap_area(struct vmap_area *va)
1496{
1497 /*
1498 * Remove from the busy tree/list.
1499 */
1500 spin_lock(&vmap_area_lock);
1501 unlink_va(va, &vmap_area_root);
1502 spin_unlock(&vmap_area_lock);
1503
1504 /*
1505 * Insert/Merge it back to the free tree/list.
1506 */
1507 spin_lock(&free_vmap_area_lock);
96e2db45 1508 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1509 spin_unlock(&free_vmap_area_lock);
1510}
1511
187f8cc4
URS
1512static inline void
1513preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1514{
1515 struct vmap_area *va = NULL;
1516
1517 /*
1518 * Preload this CPU with one extra vmap_area object. It is used
1519 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1520 * a CPU that does an allocation is preloaded.
1521 *
1522 * We do it in non-atomic context, thus it allows us to use more
1523 * permissive allocation masks to be more stable under low memory
1524 * condition and high memory pressure.
1525 */
1526 if (!this_cpu_read(ne_fit_preload_node))
1527 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1528
1529 spin_lock(lock);
1530
1531 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1532 kmem_cache_free(vmap_area_cachep, va);
1533}
1534
db64fe02
NP
1535/*
1536 * Allocate a region of KVA of the specified size and alignment, within the
1537 * vstart and vend.
1538 */
1539static struct vmap_area *alloc_vmap_area(unsigned long size,
1540 unsigned long align,
1541 unsigned long vstart, unsigned long vend,
1542 int node, gfp_t gfp_mask)
1543{
187f8cc4 1544 struct vmap_area *va;
12e376a6 1545 unsigned long freed;
1da177e4 1546 unsigned long addr;
db64fe02 1547 int purged = 0;
d98c9e83 1548 int ret;
db64fe02 1549
7766970c 1550 BUG_ON(!size);
891c49ab 1551 BUG_ON(offset_in_page(size));
89699605 1552 BUG_ON(!is_power_of_2(align));
db64fe02 1553
68ad4a33
URS
1554 if (unlikely(!vmap_initialized))
1555 return ERR_PTR(-EBUSY);
1556
5803ed29 1557 might_sleep();
f07116d7 1558 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1559
f07116d7 1560 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1561 if (unlikely(!va))
1562 return ERR_PTR(-ENOMEM);
1563
7f88f88f
CM
1564 /*
1565 * Only scan the relevant parts containing pointers to other objects
1566 * to avoid false negatives.
1567 */
f07116d7 1568 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1569
db64fe02 1570retry:
187f8cc4
URS
1571 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1572 addr = __alloc_vmap_area(size, align, vstart, vend);
1573 spin_unlock(&free_vmap_area_lock);
89699605 1574
afd07389 1575 /*
68ad4a33
URS
1576 * If an allocation fails, the "vend" address is
1577 * returned. Therefore trigger the overflow path.
afd07389 1578 */
68ad4a33 1579 if (unlikely(addr == vend))
89699605 1580 goto overflow;
db64fe02
NP
1581
1582 va->va_start = addr;
1583 va->va_end = addr + size;
688fcbfc 1584 va->vm = NULL;
68ad4a33 1585
e36176be
URS
1586 spin_lock(&vmap_area_lock);
1587 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1588 spin_unlock(&vmap_area_lock);
1589
61e16557 1590 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1591 BUG_ON(va->va_start < vstart);
1592 BUG_ON(va->va_end > vend);
1593
d98c9e83
AR
1594 ret = kasan_populate_vmalloc(addr, size);
1595 if (ret) {
1596 free_vmap_area(va);
1597 return ERR_PTR(ret);
1598 }
1599
db64fe02 1600 return va;
89699605
NP
1601
1602overflow:
89699605
NP
1603 if (!purged) {
1604 purge_vmap_area_lazy();
1605 purged = 1;
1606 goto retry;
1607 }
4da56b99 1608
12e376a6
URS
1609 freed = 0;
1610 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1611
1612 if (freed > 0) {
1613 purged = 0;
1614 goto retry;
4da56b99
CW
1615 }
1616
03497d76 1617 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1618 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1619 size);
68ad4a33
URS
1620
1621 kmem_cache_free(vmap_area_cachep, va);
89699605 1622 return ERR_PTR(-EBUSY);
db64fe02
NP
1623}
1624
4da56b99
CW
1625int register_vmap_purge_notifier(struct notifier_block *nb)
1626{
1627 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1628}
1629EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1630
1631int unregister_vmap_purge_notifier(struct notifier_block *nb)
1632{
1633 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1634}
1635EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1636
db64fe02
NP
1637/*
1638 * lazy_max_pages is the maximum amount of virtual address space we gather up
1639 * before attempting to purge with a TLB flush.
1640 *
1641 * There is a tradeoff here: a larger number will cover more kernel page tables
1642 * and take slightly longer to purge, but it will linearly reduce the number of
1643 * global TLB flushes that must be performed. It would seem natural to scale
1644 * this number up linearly with the number of CPUs (because vmapping activity
1645 * could also scale linearly with the number of CPUs), however it is likely
1646 * that in practice, workloads might be constrained in other ways that mean
1647 * vmap activity will not scale linearly with CPUs. Also, I want to be
1648 * conservative and not introduce a big latency on huge systems, so go with
1649 * a less aggressive log scale. It will still be an improvement over the old
1650 * code, and it will be simple to change the scale factor if we find that it
1651 * becomes a problem on bigger systems.
1652 */
1653static unsigned long lazy_max_pages(void)
1654{
1655 unsigned int log;
1656
1657 log = fls(num_online_cpus());
1658
1659 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1660}
1661
4d36e6f8 1662static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1663
0574ecd1 1664/*
f0953a1b 1665 * Serialize vmap purging. There is no actual critical section protected
0574ecd1
CH
1666 * by this look, but we want to avoid concurrent calls for performance
1667 * reasons and to make the pcpu_get_vm_areas more deterministic.
1668 */
f9e09977 1669static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1670
02b709df
NP
1671/* for per-CPU blocks */
1672static void purge_fragmented_blocks_allcpus(void);
1673
5da96bdd 1674#ifdef CONFIG_X86_64
3ee48b6a
CW
1675/*
1676 * called before a call to iounmap() if the caller wants vm_area_struct's
1677 * immediately freed.
1678 */
1679void set_iounmap_nonlazy(void)
1680{
4d36e6f8 1681 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a 1682}
5da96bdd 1683#endif /* CONFIG_X86_64 */
3ee48b6a 1684
db64fe02
NP
1685/*
1686 * Purges all lazily-freed vmap areas.
db64fe02 1687 */
0574ecd1 1688static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1689{
4d36e6f8 1690 unsigned long resched_threshold;
96e2db45
URS
1691 struct list_head local_pure_list;
1692 struct vmap_area *va, *n_va;
db64fe02 1693
0574ecd1 1694 lockdep_assert_held(&vmap_purge_lock);
02b709df 1695
96e2db45
URS
1696 spin_lock(&purge_vmap_area_lock);
1697 purge_vmap_area_root = RB_ROOT;
1698 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1699 spin_unlock(&purge_vmap_area_lock);
1700
1701 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1702 return false;
1703
96e2db45
URS
1704 start = min(start,
1705 list_first_entry(&local_pure_list,
1706 struct vmap_area, list)->va_start);
1707
1708 end = max(end,
1709 list_last_entry(&local_pure_list,
1710 struct vmap_area, list)->va_end);
db64fe02 1711
0574ecd1 1712 flush_tlb_kernel_range(start, end);
4d36e6f8 1713 resched_threshold = lazy_max_pages() << 1;
db64fe02 1714
e36176be 1715 spin_lock(&free_vmap_area_lock);
96e2db45 1716 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1717 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1718 unsigned long orig_start = va->va_start;
1719 unsigned long orig_end = va->va_end;
763b218d 1720
dd3b8353
URS
1721 /*
1722 * Finally insert or merge lazily-freed area. It is
1723 * detached and there is no need to "unlink" it from
1724 * anything.
1725 */
96e2db45
URS
1726 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1727 &free_vmap_area_list);
3c5c3cfb 1728
9c801f61
URS
1729 if (!va)
1730 continue;
1731
3c5c3cfb
DA
1732 if (is_vmalloc_or_module_addr((void *)orig_start))
1733 kasan_release_vmalloc(orig_start, orig_end,
1734 va->va_start, va->va_end);
dd3b8353 1735
4d36e6f8 1736 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1737
4d36e6f8 1738 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1739 cond_resched_lock(&free_vmap_area_lock);
763b218d 1740 }
e36176be 1741 spin_unlock(&free_vmap_area_lock);
0574ecd1 1742 return true;
db64fe02
NP
1743}
1744
1745/*
1746 * Kick off a purge of the outstanding lazy areas.
1747 */
1748static void purge_vmap_area_lazy(void)
1749{
f9e09977 1750 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1751 purge_fragmented_blocks_allcpus();
1752 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1753 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1754}
1755
690467c8
URS
1756static void drain_vmap_area_work(struct work_struct *work)
1757{
1758 unsigned long nr_lazy;
1759
1760 do {
1761 mutex_lock(&vmap_purge_lock);
1762 __purge_vmap_area_lazy(ULONG_MAX, 0);
1763 mutex_unlock(&vmap_purge_lock);
1764
1765 /* Recheck if further work is required. */
1766 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1767 } while (nr_lazy > lazy_max_pages());
1768}
1769
db64fe02 1770/*
64141da5
JF
1771 * Free a vmap area, caller ensuring that the area has been unmapped
1772 * and flush_cache_vunmap had been called for the correct range
1773 * previously.
db64fe02 1774 */
64141da5 1775static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1776{
4d36e6f8 1777 unsigned long nr_lazy;
80c4bd7a 1778
dd3b8353
URS
1779 spin_lock(&vmap_area_lock);
1780 unlink_va(va, &vmap_area_root);
1781 spin_unlock(&vmap_area_lock);
1782
4d36e6f8
URS
1783 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1784 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1785
96e2db45
URS
1786 /*
1787 * Merge or place it to the purge tree/list.
1788 */
1789 spin_lock(&purge_vmap_area_lock);
1790 merge_or_add_vmap_area(va,
1791 &purge_vmap_area_root, &purge_vmap_area_list);
1792 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1793
96e2db45 1794 /* After this point, we may free va at any time */
80c4bd7a 1795 if (unlikely(nr_lazy > lazy_max_pages()))
690467c8 1796 schedule_work(&drain_vmap_work);
db64fe02
NP
1797}
1798
b29acbdc
NP
1799/*
1800 * Free and unmap a vmap area
1801 */
1802static void free_unmap_vmap_area(struct vmap_area *va)
1803{
1804 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1805 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1806 if (debug_pagealloc_enabled_static())
82a2e924
CP
1807 flush_tlb_kernel_range(va->va_start, va->va_end);
1808
c8eef01e 1809 free_vmap_area_noflush(va);
b29acbdc
NP
1810}
1811
db64fe02
NP
1812static struct vmap_area *find_vmap_area(unsigned long addr)
1813{
1814 struct vmap_area *va;
1815
1816 spin_lock(&vmap_area_lock);
1817 va = __find_vmap_area(addr);
1818 spin_unlock(&vmap_area_lock);
1819
1820 return va;
1821}
1822
db64fe02
NP
1823/*** Per cpu kva allocator ***/
1824
1825/*
1826 * vmap space is limited especially on 32 bit architectures. Ensure there is
1827 * room for at least 16 percpu vmap blocks per CPU.
1828 */
1829/*
1830 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1831 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1832 * instead (we just need a rough idea)
1833 */
1834#if BITS_PER_LONG == 32
1835#define VMALLOC_SPACE (128UL*1024*1024)
1836#else
1837#define VMALLOC_SPACE (128UL*1024*1024*1024)
1838#endif
1839
1840#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1841#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1842#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1843#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1844#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1845#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1846#define VMAP_BBMAP_BITS \
1847 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1848 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1849 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1850
1851#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1852
1853struct vmap_block_queue {
1854 spinlock_t lock;
1855 struct list_head free;
db64fe02
NP
1856};
1857
1858struct vmap_block {
1859 spinlock_t lock;
1860 struct vmap_area *va;
db64fe02 1861 unsigned long free, dirty;
7d61bfe8 1862 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1863 struct list_head free_list;
1864 struct rcu_head rcu_head;
02b709df 1865 struct list_head purge;
db64fe02
NP
1866};
1867
1868/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1869static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1870
1871/*
0f14599c 1872 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1873 * in the free path. Could get rid of this if we change the API to return a
1874 * "cookie" from alloc, to be passed to free. But no big deal yet.
1875 */
0f14599c 1876static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1877
1878/*
1879 * We should probably have a fallback mechanism to allocate virtual memory
1880 * out of partially filled vmap blocks. However vmap block sizing should be
1881 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1882 * big problem.
1883 */
1884
1885static unsigned long addr_to_vb_idx(unsigned long addr)
1886{
1887 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1888 addr /= VMAP_BLOCK_SIZE;
1889 return addr;
1890}
1891
cf725ce2
RP
1892static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1893{
1894 unsigned long addr;
1895
1896 addr = va_start + (pages_off << PAGE_SHIFT);
1897 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1898 return (void *)addr;
1899}
1900
1901/**
1902 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1903 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1904 * @order: how many 2^order pages should be occupied in newly allocated block
1905 * @gfp_mask: flags for the page level allocator
1906 *
a862f68a 1907 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1908 */
1909static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1910{
1911 struct vmap_block_queue *vbq;
1912 struct vmap_block *vb;
1913 struct vmap_area *va;
1914 unsigned long vb_idx;
1915 int node, err;
cf725ce2 1916 void *vaddr;
db64fe02
NP
1917
1918 node = numa_node_id();
1919
1920 vb = kmalloc_node(sizeof(struct vmap_block),
1921 gfp_mask & GFP_RECLAIM_MASK, node);
1922 if (unlikely(!vb))
1923 return ERR_PTR(-ENOMEM);
1924
1925 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1926 VMALLOC_START, VMALLOC_END,
1927 node, gfp_mask);
ddf9c6d4 1928 if (IS_ERR(va)) {
db64fe02 1929 kfree(vb);
e7d86340 1930 return ERR_CAST(va);
db64fe02
NP
1931 }
1932
cf725ce2 1933 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1934 spin_lock_init(&vb->lock);
1935 vb->va = va;
cf725ce2
RP
1936 /* At least something should be left free */
1937 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1938 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1939 vb->dirty = 0;
7d61bfe8
RP
1940 vb->dirty_min = VMAP_BBMAP_BITS;
1941 vb->dirty_max = 0;
db64fe02 1942 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1943
1944 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1945 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1946 if (err) {
1947 kfree(vb);
1948 free_vmap_area(va);
1949 return ERR_PTR(err);
1950 }
db64fe02
NP
1951
1952 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1953 spin_lock(&vbq->lock);
68ac546f 1954 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1955 spin_unlock(&vbq->lock);
3f04ba85 1956 put_cpu_var(vmap_block_queue);
db64fe02 1957
cf725ce2 1958 return vaddr;
db64fe02
NP
1959}
1960
db64fe02
NP
1961static void free_vmap_block(struct vmap_block *vb)
1962{
1963 struct vmap_block *tmp;
db64fe02 1964
0f14599c 1965 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1966 BUG_ON(tmp != vb);
1967
64141da5 1968 free_vmap_area_noflush(vb->va);
22a3c7d1 1969 kfree_rcu(vb, rcu_head);
db64fe02
NP
1970}
1971
02b709df
NP
1972static void purge_fragmented_blocks(int cpu)
1973{
1974 LIST_HEAD(purge);
1975 struct vmap_block *vb;
1976 struct vmap_block *n_vb;
1977 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1978
1979 rcu_read_lock();
1980 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1981
1982 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1983 continue;
1984
1985 spin_lock(&vb->lock);
1986 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1987 vb->free = 0; /* prevent further allocs after releasing lock */
1988 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1989 vb->dirty_min = 0;
1990 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1991 spin_lock(&vbq->lock);
1992 list_del_rcu(&vb->free_list);
1993 spin_unlock(&vbq->lock);
1994 spin_unlock(&vb->lock);
1995 list_add_tail(&vb->purge, &purge);
1996 } else
1997 spin_unlock(&vb->lock);
1998 }
1999 rcu_read_unlock();
2000
2001 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2002 list_del(&vb->purge);
2003 free_vmap_block(vb);
2004 }
2005}
2006
02b709df
NP
2007static void purge_fragmented_blocks_allcpus(void)
2008{
2009 int cpu;
2010
2011 for_each_possible_cpu(cpu)
2012 purge_fragmented_blocks(cpu);
2013}
2014
db64fe02
NP
2015static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2016{
2017 struct vmap_block_queue *vbq;
2018 struct vmap_block *vb;
cf725ce2 2019 void *vaddr = NULL;
db64fe02
NP
2020 unsigned int order;
2021
891c49ab 2022 BUG_ON(offset_in_page(size));
db64fe02 2023 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2024 if (WARN_ON(size == 0)) {
2025 /*
2026 * Allocating 0 bytes isn't what caller wants since
2027 * get_order(0) returns funny result. Just warn and terminate
2028 * early.
2029 */
2030 return NULL;
2031 }
db64fe02
NP
2032 order = get_order(size);
2033
db64fe02
NP
2034 rcu_read_lock();
2035 vbq = &get_cpu_var(vmap_block_queue);
2036 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2037 unsigned long pages_off;
db64fe02
NP
2038
2039 spin_lock(&vb->lock);
cf725ce2
RP
2040 if (vb->free < (1UL << order)) {
2041 spin_unlock(&vb->lock);
2042 continue;
2043 }
02b709df 2044
cf725ce2
RP
2045 pages_off = VMAP_BBMAP_BITS - vb->free;
2046 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
2047 vb->free -= 1UL << order;
2048 if (vb->free == 0) {
2049 spin_lock(&vbq->lock);
2050 list_del_rcu(&vb->free_list);
2051 spin_unlock(&vbq->lock);
2052 }
cf725ce2 2053
02b709df
NP
2054 spin_unlock(&vb->lock);
2055 break;
db64fe02 2056 }
02b709df 2057
3f04ba85 2058 put_cpu_var(vmap_block_queue);
db64fe02
NP
2059 rcu_read_unlock();
2060
cf725ce2
RP
2061 /* Allocate new block if nothing was found */
2062 if (!vaddr)
2063 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2064
cf725ce2 2065 return vaddr;
db64fe02
NP
2066}
2067
78a0e8c4 2068static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2069{
2070 unsigned long offset;
db64fe02
NP
2071 unsigned int order;
2072 struct vmap_block *vb;
2073
891c49ab 2074 BUG_ON(offset_in_page(size));
db64fe02 2075 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2076
78a0e8c4 2077 flush_cache_vunmap(addr, addr + size);
b29acbdc 2078
db64fe02 2079 order = get_order(size);
78a0e8c4 2080 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2081 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2082
4ad0ae8c 2083 vunmap_range_noflush(addr, addr + size);
64141da5 2084
8e57f8ac 2085 if (debug_pagealloc_enabled_static())
78a0e8c4 2086 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2087
db64fe02 2088 spin_lock(&vb->lock);
7d61bfe8
RP
2089
2090 /* Expand dirty range */
2091 vb->dirty_min = min(vb->dirty_min, offset);
2092 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2093
db64fe02
NP
2094 vb->dirty += 1UL << order;
2095 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2096 BUG_ON(vb->free);
db64fe02
NP
2097 spin_unlock(&vb->lock);
2098 free_vmap_block(vb);
2099 } else
2100 spin_unlock(&vb->lock);
2101}
2102
868b104d 2103static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2104{
db64fe02 2105 int cpu;
db64fe02 2106
9b463334
JF
2107 if (unlikely(!vmap_initialized))
2108 return;
2109
5803ed29
CH
2110 might_sleep();
2111
db64fe02
NP
2112 for_each_possible_cpu(cpu) {
2113 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2114 struct vmap_block *vb;
2115
2116 rcu_read_lock();
2117 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2118 spin_lock(&vb->lock);
ad216c03 2119 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2120 unsigned long va_start = vb->va->va_start;
db64fe02 2121 unsigned long s, e;
b136be5e 2122
7d61bfe8
RP
2123 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2124 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2125
7d61bfe8
RP
2126 start = min(s, start);
2127 end = max(e, end);
db64fe02 2128
7d61bfe8 2129 flush = 1;
db64fe02
NP
2130 }
2131 spin_unlock(&vb->lock);
2132 }
2133 rcu_read_unlock();
2134 }
2135
f9e09977 2136 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2137 purge_fragmented_blocks_allcpus();
2138 if (!__purge_vmap_area_lazy(start, end) && flush)
2139 flush_tlb_kernel_range(start, end);
f9e09977 2140 mutex_unlock(&vmap_purge_lock);
db64fe02 2141}
868b104d
RE
2142
2143/**
2144 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2145 *
2146 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2147 * to amortize TLB flushing overheads. What this means is that any page you
2148 * have now, may, in a former life, have been mapped into kernel virtual
2149 * address by the vmap layer and so there might be some CPUs with TLB entries
2150 * still referencing that page (additional to the regular 1:1 kernel mapping).
2151 *
2152 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2153 * be sure that none of the pages we have control over will have any aliases
2154 * from the vmap layer.
2155 */
2156void vm_unmap_aliases(void)
2157{
2158 unsigned long start = ULONG_MAX, end = 0;
2159 int flush = 0;
2160
2161 _vm_unmap_aliases(start, end, flush);
2162}
db64fe02
NP
2163EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2164
2165/**
2166 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2167 * @mem: the pointer returned by vm_map_ram
2168 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2169 */
2170void vm_unmap_ram(const void *mem, unsigned int count)
2171{
65ee03c4 2172 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2173 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2174 struct vmap_area *va;
db64fe02 2175
5803ed29 2176 might_sleep();
db64fe02
NP
2177 BUG_ON(!addr);
2178 BUG_ON(addr < VMALLOC_START);
2179 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2180 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2181
d98c9e83
AR
2182 kasan_poison_vmalloc(mem, size);
2183
9c3acf60 2184 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2185 debug_check_no_locks_freed(mem, size);
78a0e8c4 2186 vb_free(addr, size);
9c3acf60
CH
2187 return;
2188 }
2189
2190 va = find_vmap_area(addr);
2191 BUG_ON(!va);
05e3ff95
CP
2192 debug_check_no_locks_freed((void *)va->va_start,
2193 (va->va_end - va->va_start));
9c3acf60 2194 free_unmap_vmap_area(va);
db64fe02
NP
2195}
2196EXPORT_SYMBOL(vm_unmap_ram);
2197
2198/**
2199 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2200 * @pages: an array of pointers to the pages to be mapped
2201 * @count: number of pages
2202 * @node: prefer to allocate data structures on this node
e99c97ad 2203 *
36437638
GK
2204 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2205 * faster than vmap so it's good. But if you mix long-life and short-life
2206 * objects with vm_map_ram(), it could consume lots of address space through
2207 * fragmentation (especially on a 32bit machine). You could see failures in
2208 * the end. Please use this function for short-lived objects.
2209 *
e99c97ad 2210 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2211 */
d4efd79a 2212void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2213{
65ee03c4 2214 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2215 unsigned long addr;
2216 void *mem;
2217
2218 if (likely(count <= VMAP_MAX_ALLOC)) {
2219 mem = vb_alloc(size, GFP_KERNEL);
2220 if (IS_ERR(mem))
2221 return NULL;
2222 addr = (unsigned long)mem;
2223 } else {
2224 struct vmap_area *va;
2225 va = alloc_vmap_area(size, PAGE_SIZE,
2226 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2227 if (IS_ERR(va))
2228 return NULL;
2229
2230 addr = va->va_start;
2231 mem = (void *)addr;
2232 }
d98c9e83 2233
1d96320f 2234 mem = kasan_unpoison_vmalloc(mem, size);
d98c9e83 2235
b67177ec
NP
2236 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2237 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2238 vm_unmap_ram(mem, count);
2239 return NULL;
2240 }
b67177ec 2241
db64fe02
NP
2242 return mem;
2243}
2244EXPORT_SYMBOL(vm_map_ram);
2245
4341fa45 2246static struct vm_struct *vmlist __initdata;
92eac168 2247
121e6f32
NP
2248static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2249{
2250#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2251 return vm->page_order;
2252#else
2253 return 0;
2254#endif
2255}
2256
2257static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2258{
2259#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2260 vm->page_order = order;
2261#else
2262 BUG_ON(order != 0);
2263#endif
2264}
2265
be9b7335
NP
2266/**
2267 * vm_area_add_early - add vmap area early during boot
2268 * @vm: vm_struct to add
2269 *
2270 * This function is used to add fixed kernel vm area to vmlist before
2271 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2272 * should contain proper values and the other fields should be zero.
2273 *
2274 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2275 */
2276void __init vm_area_add_early(struct vm_struct *vm)
2277{
2278 struct vm_struct *tmp, **p;
2279
2280 BUG_ON(vmap_initialized);
2281 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2282 if (tmp->addr >= vm->addr) {
2283 BUG_ON(tmp->addr < vm->addr + vm->size);
2284 break;
2285 } else
2286 BUG_ON(tmp->addr + tmp->size > vm->addr);
2287 }
2288 vm->next = *p;
2289 *p = vm;
2290}
2291
f0aa6617
TH
2292/**
2293 * vm_area_register_early - register vmap area early during boot
2294 * @vm: vm_struct to register
c0c0a293 2295 * @align: requested alignment
f0aa6617
TH
2296 *
2297 * This function is used to register kernel vm area before
2298 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2299 * proper values on entry and other fields should be zero. On return,
2300 * vm->addr contains the allocated address.
2301 *
2302 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2303 */
c0c0a293 2304void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2305{
0eb68437
KW
2306 unsigned long addr = ALIGN(VMALLOC_START, align);
2307 struct vm_struct *cur, **p;
c0c0a293 2308
0eb68437 2309 BUG_ON(vmap_initialized);
f0aa6617 2310
0eb68437
KW
2311 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2312 if ((unsigned long)cur->addr - addr >= vm->size)
2313 break;
2314 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2315 }
f0aa6617 2316
0eb68437
KW
2317 BUG_ON(addr > VMALLOC_END - vm->size);
2318 vm->addr = (void *)addr;
2319 vm->next = *p;
2320 *p = vm;
3252b1d8 2321 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2322}
2323
68ad4a33
URS
2324static void vmap_init_free_space(void)
2325{
2326 unsigned long vmap_start = 1;
2327 const unsigned long vmap_end = ULONG_MAX;
2328 struct vmap_area *busy, *free;
2329
2330 /*
2331 * B F B B B F
2332 * -|-----|.....|-----|-----|-----|.....|-
2333 * | The KVA space |
2334 * |<--------------------------------->|
2335 */
2336 list_for_each_entry(busy, &vmap_area_list, list) {
2337 if (busy->va_start - vmap_start > 0) {
2338 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2339 if (!WARN_ON_ONCE(!free)) {
2340 free->va_start = vmap_start;
2341 free->va_end = busy->va_start;
2342
2343 insert_vmap_area_augment(free, NULL,
2344 &free_vmap_area_root,
2345 &free_vmap_area_list);
2346 }
2347 }
2348
2349 vmap_start = busy->va_end;
2350 }
2351
2352 if (vmap_end - vmap_start > 0) {
2353 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2354 if (!WARN_ON_ONCE(!free)) {
2355 free->va_start = vmap_start;
2356 free->va_end = vmap_end;
2357
2358 insert_vmap_area_augment(free, NULL,
2359 &free_vmap_area_root,
2360 &free_vmap_area_list);
2361 }
2362 }
2363}
2364
db64fe02
NP
2365void __init vmalloc_init(void)
2366{
822c18f2
IK
2367 struct vmap_area *va;
2368 struct vm_struct *tmp;
db64fe02
NP
2369 int i;
2370
68ad4a33
URS
2371 /*
2372 * Create the cache for vmap_area objects.
2373 */
2374 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2375
db64fe02
NP
2376 for_each_possible_cpu(i) {
2377 struct vmap_block_queue *vbq;
32fcfd40 2378 struct vfree_deferred *p;
db64fe02
NP
2379
2380 vbq = &per_cpu(vmap_block_queue, i);
2381 spin_lock_init(&vbq->lock);
2382 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2383 p = &per_cpu(vfree_deferred, i);
2384 init_llist_head(&p->list);
2385 INIT_WORK(&p->wq, free_work);
db64fe02 2386 }
9b463334 2387
822c18f2
IK
2388 /* Import existing vmlist entries. */
2389 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2390 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2391 if (WARN_ON_ONCE(!va))
2392 continue;
2393
822c18f2
IK
2394 va->va_start = (unsigned long)tmp->addr;
2395 va->va_end = va->va_start + tmp->size;
dbda591d 2396 va->vm = tmp;
68ad4a33 2397 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2398 }
ca23e405 2399
68ad4a33
URS
2400 /*
2401 * Now we can initialize a free vmap space.
2402 */
2403 vmap_init_free_space();
9b463334 2404 vmap_initialized = true;
db64fe02
NP
2405}
2406
e36176be
URS
2407static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2408 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2409{
cf88c790
TH
2410 vm->flags = flags;
2411 vm->addr = (void *)va->va_start;
2412 vm->size = va->va_end - va->va_start;
2413 vm->caller = caller;
db1aecaf 2414 va->vm = vm;
e36176be
URS
2415}
2416
2417static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2418 unsigned long flags, const void *caller)
2419{
2420 spin_lock(&vmap_area_lock);
2421 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2422 spin_unlock(&vmap_area_lock);
f5252e00 2423}
cf88c790 2424
20fc02b4 2425static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2426{
d4033afd 2427 /*
20fc02b4 2428 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2429 * we should make sure that vm has proper values.
2430 * Pair with smp_rmb() in show_numa_info().
2431 */
2432 smp_wmb();
20fc02b4 2433 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2434}
2435
db64fe02 2436static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2437 unsigned long align, unsigned long shift, unsigned long flags,
2438 unsigned long start, unsigned long end, int node,
2439 gfp_t gfp_mask, const void *caller)
db64fe02 2440{
0006526d 2441 struct vmap_area *va;
db64fe02 2442 struct vm_struct *area;
d98c9e83 2443 unsigned long requested_size = size;
1da177e4 2444
52fd24ca 2445 BUG_ON(in_interrupt());
7ca3027b 2446 size = ALIGN(size, 1ul << shift);
31be8309
OH
2447 if (unlikely(!size))
2448 return NULL;
1da177e4 2449
252e5c6e 2450 if (flags & VM_IOREMAP)
2451 align = 1ul << clamp_t(int, get_count_order_long(size),
2452 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2453
cf88c790 2454 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2455 if (unlikely(!area))
2456 return NULL;
2457
71394fe5
AR
2458 if (!(flags & VM_NO_GUARD))
2459 size += PAGE_SIZE;
1da177e4 2460
db64fe02
NP
2461 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2462 if (IS_ERR(va)) {
2463 kfree(area);
2464 return NULL;
1da177e4 2465 }
1da177e4 2466
d98c9e83 2467 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2468
1d96320f
AK
2469 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size);
2470
1da177e4 2471 return area;
1da177e4
LT
2472}
2473
c2968612
BH
2474struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2475 unsigned long start, unsigned long end,
5e6cafc8 2476 const void *caller)
c2968612 2477{
7ca3027b
DA
2478 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2479 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2480}
2481
1da177e4 2482/**
92eac168
MR
2483 * get_vm_area - reserve a contiguous kernel virtual area
2484 * @size: size of the area
2485 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2486 *
92eac168
MR
2487 * Search an area of @size in the kernel virtual mapping area,
2488 * and reserved it for out purposes. Returns the area descriptor
2489 * on success or %NULL on failure.
a862f68a
MR
2490 *
2491 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2492 */
2493struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2494{
7ca3027b
DA
2495 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2496 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2497 NUMA_NO_NODE, GFP_KERNEL,
2498 __builtin_return_address(0));
23016969
CL
2499}
2500
2501struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2502 const void *caller)
23016969 2503{
7ca3027b
DA
2504 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2505 VMALLOC_START, VMALLOC_END,
00ef2d2f 2506 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2507}
2508
e9da6e99 2509/**
92eac168
MR
2510 * find_vm_area - find a continuous kernel virtual area
2511 * @addr: base address
e9da6e99 2512 *
92eac168
MR
2513 * Search for the kernel VM area starting at @addr, and return it.
2514 * It is up to the caller to do all required locking to keep the returned
2515 * pointer valid.
a862f68a 2516 *
74640617 2517 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2518 */
2519struct vm_struct *find_vm_area(const void *addr)
83342314 2520{
db64fe02 2521 struct vmap_area *va;
83342314 2522
db64fe02 2523 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2524 if (!va)
2525 return NULL;
1da177e4 2526
688fcbfc 2527 return va->vm;
1da177e4
LT
2528}
2529
7856dfeb 2530/**
92eac168
MR
2531 * remove_vm_area - find and remove a continuous kernel virtual area
2532 * @addr: base address
7856dfeb 2533 *
92eac168
MR
2534 * Search for the kernel VM area starting at @addr, and remove it.
2535 * This function returns the found VM area, but using it is NOT safe
2536 * on SMP machines, except for its size or flags.
a862f68a 2537 *
74640617 2538 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2539 */
b3bdda02 2540struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2541{
db64fe02
NP
2542 struct vmap_area *va;
2543
5803ed29
CH
2544 might_sleep();
2545
dd3b8353
URS
2546 spin_lock(&vmap_area_lock);
2547 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2548 if (va && va->vm) {
db1aecaf 2549 struct vm_struct *vm = va->vm;
f5252e00 2550
c69480ad 2551 va->vm = NULL;
c69480ad
JK
2552 spin_unlock(&vmap_area_lock);
2553
63840de2 2554 kasan_free_module_shadow(vm);
dd32c279 2555 free_unmap_vmap_area(va);
dd32c279 2556
db64fe02
NP
2557 return vm;
2558 }
dd3b8353
URS
2559
2560 spin_unlock(&vmap_area_lock);
db64fe02 2561 return NULL;
7856dfeb
AK
2562}
2563
868b104d
RE
2564static inline void set_area_direct_map(const struct vm_struct *area,
2565 int (*set_direct_map)(struct page *page))
2566{
2567 int i;
2568
121e6f32 2569 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2570 for (i = 0; i < area->nr_pages; i++)
2571 if (page_address(area->pages[i]))
2572 set_direct_map(area->pages[i]);
2573}
2574
2575/* Handle removing and resetting vm mappings related to the vm_struct. */
2576static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2577{
868b104d 2578 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2579 unsigned int page_order = vm_area_page_order(area);
868b104d 2580 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2581 int flush_dmap = 0;
868b104d
RE
2582 int i;
2583
868b104d
RE
2584 remove_vm_area(area->addr);
2585
2586 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2587 if (!flush_reset)
2588 return;
2589
2590 /*
2591 * If not deallocating pages, just do the flush of the VM area and
2592 * return.
2593 */
2594 if (!deallocate_pages) {
2595 vm_unmap_aliases();
2596 return;
2597 }
2598
2599 /*
2600 * If execution gets here, flush the vm mapping and reset the direct
2601 * map. Find the start and end range of the direct mappings to make sure
2602 * the vm_unmap_aliases() flush includes the direct map.
2603 */
121e6f32 2604 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2605 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2606 if (addr) {
121e6f32
NP
2607 unsigned long page_size;
2608
2609 page_size = PAGE_SIZE << page_order;
868b104d 2610 start = min(addr, start);
121e6f32 2611 end = max(addr + page_size, end);
31e67340 2612 flush_dmap = 1;
868b104d
RE
2613 }
2614 }
2615
2616 /*
2617 * Set direct map to something invalid so that it won't be cached if
2618 * there are any accesses after the TLB flush, then flush the TLB and
2619 * reset the direct map permissions to the default.
2620 */
2621 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2622 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2623 set_area_direct_map(area, set_direct_map_default_noflush);
2624}
2625
b3bdda02 2626static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2627{
2628 struct vm_struct *area;
2629
2630 if (!addr)
2631 return;
2632
e69e9d4a 2633 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2634 addr))
1da177e4 2635 return;
1da177e4 2636
6ade2032 2637 area = find_vm_area(addr);
1da177e4 2638 if (unlikely(!area)) {
4c8573e2 2639 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2640 addr);
1da177e4
LT
2641 return;
2642 }
2643
05e3ff95
CP
2644 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2645 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2646
c041098c 2647 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2648
868b104d
RE
2649 vm_remove_mappings(area, deallocate_pages);
2650
1da177e4 2651 if (deallocate_pages) {
121e6f32 2652 unsigned int page_order = vm_area_page_order(area);
4e5aa1f4 2653 int i, step = 1U << page_order;
1da177e4 2654
4e5aa1f4 2655 for (i = 0; i < area->nr_pages; i += step) {
bf53d6f8
CL
2656 struct page *page = area->pages[i];
2657
2658 BUG_ON(!page);
4e5aa1f4 2659 mod_memcg_page_state(page, MEMCG_VMALLOC, -step);
121e6f32 2660 __free_pages(page, page_order);
a850e932 2661 cond_resched();
1da177e4 2662 }
97105f0a 2663 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2664
244d63ee 2665 kvfree(area->pages);
1da177e4
LT
2666 }
2667
2668 kfree(area);
1da177e4 2669}
bf22e37a
AR
2670
2671static inline void __vfree_deferred(const void *addr)
2672{
2673 /*
2674 * Use raw_cpu_ptr() because this can be called from preemptible
2675 * context. Preemption is absolutely fine here, because the llist_add()
2676 * implementation is lockless, so it works even if we are adding to
73221d88 2677 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2678 */
2679 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2680
2681 if (llist_add((struct llist_node *)addr, &p->list))
2682 schedule_work(&p->wq);
2683}
2684
2685/**
92eac168
MR
2686 * vfree_atomic - release memory allocated by vmalloc()
2687 * @addr: memory base address
bf22e37a 2688 *
92eac168
MR
2689 * This one is just like vfree() but can be called in any atomic context
2690 * except NMIs.
bf22e37a
AR
2691 */
2692void vfree_atomic(const void *addr)
2693{
2694 BUG_ON(in_nmi());
2695
2696 kmemleak_free(addr);
2697
2698 if (!addr)
2699 return;
2700 __vfree_deferred(addr);
2701}
2702
c67dc624
RP
2703static void __vfree(const void *addr)
2704{
2705 if (unlikely(in_interrupt()))
2706 __vfree_deferred(addr);
2707 else
2708 __vunmap(addr, 1);
2709}
2710
1da177e4 2711/**
fa307474
MWO
2712 * vfree - Release memory allocated by vmalloc()
2713 * @addr: Memory base address
1da177e4 2714 *
fa307474
MWO
2715 * Free the virtually continuous memory area starting at @addr, as obtained
2716 * from one of the vmalloc() family of APIs. This will usually also free the
2717 * physical memory underlying the virtual allocation, but that memory is
2718 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2719 *
fa307474 2720 * If @addr is NULL, no operation is performed.
c9fcee51 2721 *
fa307474 2722 * Context:
92eac168 2723 * May sleep if called *not* from interrupt context.
fa307474
MWO
2724 * Must not be called in NMI context (strictly speaking, it could be
2725 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2726 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2727 */
b3bdda02 2728void vfree(const void *addr)
1da177e4 2729{
32fcfd40 2730 BUG_ON(in_nmi());
89219d37
CM
2731
2732 kmemleak_free(addr);
2733
a8dda165
AR
2734 might_sleep_if(!in_interrupt());
2735
32fcfd40
AV
2736 if (!addr)
2737 return;
c67dc624
RP
2738
2739 __vfree(addr);
1da177e4 2740}
1da177e4
LT
2741EXPORT_SYMBOL(vfree);
2742
2743/**
92eac168
MR
2744 * vunmap - release virtual mapping obtained by vmap()
2745 * @addr: memory base address
1da177e4 2746 *
92eac168
MR
2747 * Free the virtually contiguous memory area starting at @addr,
2748 * which was created from the page array passed to vmap().
1da177e4 2749 *
92eac168 2750 * Must not be called in interrupt context.
1da177e4 2751 */
b3bdda02 2752void vunmap(const void *addr)
1da177e4
LT
2753{
2754 BUG_ON(in_interrupt());
34754b69 2755 might_sleep();
32fcfd40
AV
2756 if (addr)
2757 __vunmap(addr, 0);
1da177e4 2758}
1da177e4
LT
2759EXPORT_SYMBOL(vunmap);
2760
2761/**
92eac168
MR
2762 * vmap - map an array of pages into virtually contiguous space
2763 * @pages: array of page pointers
2764 * @count: number of pages to map
2765 * @flags: vm_area->flags
2766 * @prot: page protection for the mapping
2767 *
b944afc9
CH
2768 * Maps @count pages from @pages into contiguous kernel virtual space.
2769 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2770 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2771 * are transferred from the caller to vmap(), and will be freed / dropped when
2772 * vfree() is called on the return value.
a862f68a
MR
2773 *
2774 * Return: the address of the area or %NULL on failure
1da177e4
LT
2775 */
2776void *vmap(struct page **pages, unsigned int count,
92eac168 2777 unsigned long flags, pgprot_t prot)
1da177e4
LT
2778{
2779 struct vm_struct *area;
b67177ec 2780 unsigned long addr;
65ee03c4 2781 unsigned long size; /* In bytes */
1da177e4 2782
34754b69
PZ
2783 might_sleep();
2784
bd1a8fb2
PZ
2785 /*
2786 * Your top guard is someone else's bottom guard. Not having a top
2787 * guard compromises someone else's mappings too.
2788 */
2789 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2790 flags &= ~VM_NO_GUARD;
2791
ca79b0c2 2792 if (count > totalram_pages())
1da177e4
LT
2793 return NULL;
2794
65ee03c4
GJM
2795 size = (unsigned long)count << PAGE_SHIFT;
2796 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2797 if (!area)
2798 return NULL;
23016969 2799
b67177ec
NP
2800 addr = (unsigned long)area->addr;
2801 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2802 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2803 vunmap(area->addr);
2804 return NULL;
2805 }
2806
c22ee528 2807 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2808 area->pages = pages;
c22ee528
ML
2809 area->nr_pages = count;
2810 }
1da177e4
LT
2811 return area->addr;
2812}
1da177e4
LT
2813EXPORT_SYMBOL(vmap);
2814
3e9a9e25
CH
2815#ifdef CONFIG_VMAP_PFN
2816struct vmap_pfn_data {
2817 unsigned long *pfns;
2818 pgprot_t prot;
2819 unsigned int idx;
2820};
2821
2822static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2823{
2824 struct vmap_pfn_data *data = private;
2825
2826 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2827 return -EINVAL;
2828 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2829 return 0;
2830}
2831
2832/**
2833 * vmap_pfn - map an array of PFNs into virtually contiguous space
2834 * @pfns: array of PFNs
2835 * @count: number of pages to map
2836 * @prot: page protection for the mapping
2837 *
2838 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2839 * the start address of the mapping.
2840 */
2841void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2842{
2843 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2844 struct vm_struct *area;
2845
2846 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2847 __builtin_return_address(0));
2848 if (!area)
2849 return NULL;
2850 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2851 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2852 free_vm_area(area);
2853 return NULL;
2854 }
2855 return area->addr;
2856}
2857EXPORT_SYMBOL_GPL(vmap_pfn);
2858#endif /* CONFIG_VMAP_PFN */
2859
12b9f873
UR
2860static inline unsigned int
2861vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2862 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2863{
2864 unsigned int nr_allocated = 0;
ffb29b1c
CW
2865 struct page *page;
2866 int i;
12b9f873
UR
2867
2868 /*
2869 * For order-0 pages we make use of bulk allocator, if
2870 * the page array is partly or not at all populated due
2871 * to fails, fallback to a single page allocator that is
2872 * more permissive.
2873 */
c00b6b96 2874 if (!order) {
9376130c
MH
2875 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2876
343ab817
URS
2877 while (nr_allocated < nr_pages) {
2878 unsigned int nr, nr_pages_request;
2879
2880 /*
2881 * A maximum allowed request is hard-coded and is 100
2882 * pages per call. That is done in order to prevent a
2883 * long preemption off scenario in the bulk-allocator
2884 * so the range is [1:100].
2885 */
2886 nr_pages_request = min(100U, nr_pages - nr_allocated);
2887
c00b6b96
CW
2888 /* memory allocation should consider mempolicy, we can't
2889 * wrongly use nearest node when nid == NUMA_NO_NODE,
2890 * otherwise memory may be allocated in only one node,
2891 * but mempolcy want to alloc memory by interleaving.
2892 */
2893 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 2894 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
2895 nr_pages_request,
2896 pages + nr_allocated);
2897
2898 else
9376130c 2899 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
2900 nr_pages_request,
2901 pages + nr_allocated);
343ab817
URS
2902
2903 nr_allocated += nr;
2904 cond_resched();
2905
2906 /*
2907 * If zero or pages were obtained partly,
2908 * fallback to a single page allocator.
2909 */
2910 if (nr != nr_pages_request)
2911 break;
2912 }
c00b6b96 2913 } else
12b9f873
UR
2914 /*
2915 * Compound pages required for remap_vmalloc_page if
2916 * high-order pages.
2917 */
2918 gfp |= __GFP_COMP;
2919
2920 /* High-order pages or fallback path if "bulk" fails. */
12b9f873 2921
ffb29b1c 2922 while (nr_allocated < nr_pages) {
dd544141
VA
2923 if (fatal_signal_pending(current))
2924 break;
2925
ffb29b1c
CW
2926 if (nid == NUMA_NO_NODE)
2927 page = alloc_pages(gfp, order);
2928 else
2929 page = alloc_pages_node(nid, gfp, order);
12b9f873
UR
2930 if (unlikely(!page))
2931 break;
2932
2933 /*
2934 * Careful, we allocate and map page-order pages, but
2935 * tracking is done per PAGE_SIZE page so as to keep the
2936 * vm_struct APIs independent of the physical/mapped size.
2937 */
2938 for (i = 0; i < (1U << order); i++)
2939 pages[nr_allocated + i] = page + i;
2940
12e376a6 2941 cond_resched();
12b9f873
UR
2942 nr_allocated += 1U << order;
2943 }
2944
2945 return nr_allocated;
2946}
2947
e31d9eb5 2948static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2949 pgprot_t prot, unsigned int page_shift,
2950 int node)
1da177e4 2951{
930f036b 2952 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 2953 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
2954 unsigned long addr = (unsigned long)area->addr;
2955 unsigned long size = get_vm_area_size(area);
34fe6537 2956 unsigned long array_size;
121e6f32
NP
2957 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2958 unsigned int page_order;
451769eb
MH
2959 unsigned int flags;
2960 int ret;
1da177e4 2961
121e6f32 2962 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
2963 gfp_mask |= __GFP_NOWARN;
2964 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2965 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2966
1da177e4 2967 /* Please note that the recursion is strictly bounded. */
8757d5fa 2968 if (array_size > PAGE_SIZE) {
5c1f4e69 2969 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 2970 area->caller);
286e1ea3 2971 } else {
5c1f4e69 2972 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2973 }
7ea36242 2974
5c1f4e69 2975 if (!area->pages) {
c3d77172 2976 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
2977 "vmalloc error: size %lu, failed to allocated page array size %lu",
2978 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 2979 free_vm_area(area);
1da177e4
LT
2980 return NULL;
2981 }
1da177e4 2982
121e6f32 2983 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 2984 page_order = vm_area_page_order(area);
bf53d6f8 2985
c3d77172
URS
2986 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
2987 node, page_order, nr_small_pages, area->pages);
5c1f4e69 2988
97105f0a 2989 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4
SB
2990 if (gfp_mask & __GFP_ACCOUNT) {
2991 int i, step = 1U << page_order;
2992
2993 for (i = 0; i < area->nr_pages; i += step)
2994 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC,
2995 step);
2996 }
1da177e4 2997
5c1f4e69
URS
2998 /*
2999 * If not enough pages were obtained to accomplish an
3000 * allocation request, free them via __vfree() if any.
3001 */
3002 if (area->nr_pages != nr_small_pages) {
c3d77172 3003 warn_alloc(gfp_mask, NULL,
f4bdfeaf 3004 "vmalloc error: size %lu, page order %u, failed to allocate pages",
5c1f4e69
URS
3005 area->nr_pages * PAGE_SIZE, page_order);
3006 goto fail;
3007 }
3008
451769eb
MH
3009 /*
3010 * page tables allocations ignore external gfp mask, enforce it
3011 * by the scope API
3012 */
3013 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3014 flags = memalloc_nofs_save();
3015 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3016 flags = memalloc_noio_save();
3017
9376130c
MH
3018 do {
3019 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3020 page_shift);
9376130c
MH
3021 if (nofail && (ret < 0))
3022 schedule_timeout_uninterruptible(1);
3023 } while (nofail && (ret < 0));
451769eb
MH
3024
3025 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3026 memalloc_nofs_restore(flags);
3027 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3028 memalloc_noio_restore(flags);
3029
3030 if (ret < 0) {
c3d77172 3031 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3032 "vmalloc error: size %lu, failed to map pages",
3033 area->nr_pages * PAGE_SIZE);
1da177e4 3034 goto fail;
d70bec8c 3035 }
ed1f324c 3036
1da177e4
LT
3037 return area->addr;
3038
3039fail:
c67dc624 3040 __vfree(area->addr);
1da177e4
LT
3041 return NULL;
3042}
3043
3044/**
92eac168
MR
3045 * __vmalloc_node_range - allocate virtually contiguous memory
3046 * @size: allocation size
3047 * @align: desired alignment
3048 * @start: vm area range start
3049 * @end: vm area range end
3050 * @gfp_mask: flags for the page level allocator
3051 * @prot: protection mask for the allocated pages
3052 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3053 * @node: node to use for allocation or NUMA_NO_NODE
3054 * @caller: caller's return address
3055 *
3056 * Allocate enough pages to cover @size from the page level
b7d90e7a 3057 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3058 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3059 * supported.
3060 * Zone modifiers are not supported. From the reclaim modifiers
3061 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3062 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3063 * __GFP_RETRY_MAYFAIL are not supported).
3064 *
3065 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3066 *
3067 * Map them into contiguous kernel virtual space, using a pagetable
3068 * protection of @prot.
a862f68a
MR
3069 *
3070 * Return: the address of the area or %NULL on failure
1da177e4 3071 */
d0a21265
DR
3072void *__vmalloc_node_range(unsigned long size, unsigned long align,
3073 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3074 pgprot_t prot, unsigned long vm_flags, int node,
3075 const void *caller)
1da177e4
LT
3076{
3077 struct vm_struct *area;
89219d37
CM
3078 void *addr;
3079 unsigned long real_size = size;
121e6f32
NP
3080 unsigned long real_align = align;
3081 unsigned int shift = PAGE_SHIFT;
1da177e4 3082
d70bec8c
NP
3083 if (WARN_ON_ONCE(!size))
3084 return NULL;
3085
3086 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3087 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3088 "vmalloc error: size %lu, exceeds total pages",
3089 real_size);
d70bec8c 3090 return NULL;
121e6f32
NP
3091 }
3092
3382bbee 3093 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
121e6f32 3094 unsigned long size_per_node;
1da177e4 3095
121e6f32
NP
3096 /*
3097 * Try huge pages. Only try for PAGE_KERNEL allocations,
3098 * others like modules don't yet expect huge pages in
3099 * their allocations due to apply_to_page_range not
3100 * supporting them.
3101 */
3102
3103 size_per_node = size;
3104 if (node == NUMA_NO_NODE)
3105 size_per_node /= num_online_nodes();
3382bbee 3106 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3107 shift = PMD_SHIFT;
3382bbee
CL
3108 else
3109 shift = arch_vmap_pte_supported_shift(size_per_node);
3110
3111 align = max(real_align, 1UL << shift);
3112 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3113 }
3114
3115again:
7ca3027b
DA
3116 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3117 VM_UNINITIALIZED | vm_flags, start, end, node,
3118 gfp_mask, caller);
d70bec8c 3119 if (!area) {
9376130c 3120 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3121 warn_alloc(gfp_mask, NULL,
9376130c
MH
3122 "vmalloc error: size %lu, vm_struct allocation failed%s",
3123 real_size, (nofail) ? ". Retrying." : "");
3124 if (nofail) {
3125 schedule_timeout_uninterruptible(1);
3126 goto again;
3127 }
de7d2b56 3128 goto fail;
d70bec8c 3129 }
1da177e4 3130
01d92c7f
AK
3131 /*
3132 * Modify protection bits to allow tagging.
3133 * This must be done before mapping by __vmalloc_area_node().
3134 */
3135 if (kasan_hw_tags_enabled() &&
3136 pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
3137 prot = arch_vmap_pgprot_tagged(prot);
3138
3139 /* Allocate physical pages and map them into vmalloc space. */
121e6f32 3140 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
1368edf0 3141 if (!addr)
121e6f32 3142 goto fail;
89219d37 3143
f5252e00 3144 /*
20fc02b4
ZY
3145 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3146 * flag. It means that vm_struct is not fully initialized.
4341fa45 3147 * Now, it is fully initialized, so remove this flag here.
f5252e00 3148 */
20fc02b4 3149 clear_vm_uninitialized_flag(area);
f5252e00 3150
7ca3027b 3151 size = PAGE_ALIGN(size);
60115fa5
KW
3152 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3153 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
3154
3155 return addr;
de7d2b56
JP
3156
3157fail:
121e6f32
NP
3158 if (shift > PAGE_SHIFT) {
3159 shift = PAGE_SHIFT;
3160 align = real_align;
3161 size = real_size;
3162 goto again;
3163 }
3164
de7d2b56 3165 return NULL;
1da177e4
LT
3166}
3167
d0a21265 3168/**
92eac168
MR
3169 * __vmalloc_node - allocate virtually contiguous memory
3170 * @size: allocation size
3171 * @align: desired alignment
3172 * @gfp_mask: flags for the page level allocator
92eac168
MR
3173 * @node: node to use for allocation or NUMA_NO_NODE
3174 * @caller: caller's return address
a7c3e901 3175 *
f38fcb9c
CH
3176 * Allocate enough pages to cover @size from the page level allocator with
3177 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3178 *
92eac168
MR
3179 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3180 * and __GFP_NOFAIL are not supported
a7c3e901 3181 *
92eac168
MR
3182 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3183 * with mm people.
a862f68a
MR
3184 *
3185 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3186 */
2b905948 3187void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3188 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3189{
3190 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3191 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3192}
c3f896dc
CH
3193/*
3194 * This is only for performance analysis of vmalloc and stress purpose.
3195 * It is required by vmalloc test module, therefore do not use it other
3196 * than that.
3197 */
3198#ifdef CONFIG_TEST_VMALLOC_MODULE
3199EXPORT_SYMBOL_GPL(__vmalloc_node);
3200#endif
d0a21265 3201
88dca4ca 3202void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3203{
f38fcb9c 3204 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3205 __builtin_return_address(0));
930fc45a 3206}
1da177e4
LT
3207EXPORT_SYMBOL(__vmalloc);
3208
3209/**
92eac168
MR
3210 * vmalloc - allocate virtually contiguous memory
3211 * @size: allocation size
3212 *
3213 * Allocate enough pages to cover @size from the page level
3214 * allocator and map them into contiguous kernel virtual space.
1da177e4 3215 *
92eac168
MR
3216 * For tight control over page level allocator and protection flags
3217 * use __vmalloc() instead.
a862f68a
MR
3218 *
3219 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3220 */
3221void *vmalloc(unsigned long size)
3222{
4d39d728
CH
3223 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3224 __builtin_return_address(0));
1da177e4 3225}
1da177e4
LT
3226EXPORT_SYMBOL(vmalloc);
3227
15a64f5a
CI
3228/**
3229 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3230 * @size: allocation size
3231 *
3232 * Allocate enough non-huge pages to cover @size from the page level
3233 * allocator and map them into contiguous kernel virtual space.
3234 *
3235 * Return: pointer to the allocated memory or %NULL on error
3236 */
3237void *vmalloc_no_huge(unsigned long size)
3238{
3239 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3240 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3241 NUMA_NO_NODE, __builtin_return_address(0));
3242}
3243EXPORT_SYMBOL(vmalloc_no_huge);
3244
e1ca7788 3245/**
92eac168
MR
3246 * vzalloc - allocate virtually contiguous memory with zero fill
3247 * @size: allocation size
3248 *
3249 * Allocate enough pages to cover @size from the page level
3250 * allocator and map them into contiguous kernel virtual space.
3251 * The memory allocated is set to zero.
3252 *
3253 * For tight control over page level allocator and protection flags
3254 * use __vmalloc() instead.
a862f68a
MR
3255 *
3256 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3257 */
3258void *vzalloc(unsigned long size)
3259{
4d39d728
CH
3260 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3261 __builtin_return_address(0));
e1ca7788
DY
3262}
3263EXPORT_SYMBOL(vzalloc);
3264
83342314 3265/**
ead04089
REB
3266 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3267 * @size: allocation size
83342314 3268 *
ead04089
REB
3269 * The resulting memory area is zeroed so it can be mapped to userspace
3270 * without leaking data.
a862f68a
MR
3271 *
3272 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3273 */
3274void *vmalloc_user(unsigned long size)
3275{
bc84c535
RP
3276 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3277 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3278 VM_USERMAP, NUMA_NO_NODE,
3279 __builtin_return_address(0));
83342314
NP
3280}
3281EXPORT_SYMBOL(vmalloc_user);
3282
930fc45a 3283/**
92eac168
MR
3284 * vmalloc_node - allocate memory on a specific node
3285 * @size: allocation size
3286 * @node: numa node
930fc45a 3287 *
92eac168
MR
3288 * Allocate enough pages to cover @size from the page level
3289 * allocator and map them into contiguous kernel virtual space.
930fc45a 3290 *
92eac168
MR
3291 * For tight control over page level allocator and protection flags
3292 * use __vmalloc() instead.
a862f68a
MR
3293 *
3294 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3295 */
3296void *vmalloc_node(unsigned long size, int node)
3297{
f38fcb9c
CH
3298 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3299 __builtin_return_address(0));
930fc45a
CL
3300}
3301EXPORT_SYMBOL(vmalloc_node);
3302
e1ca7788
DY
3303/**
3304 * vzalloc_node - allocate memory on a specific node with zero fill
3305 * @size: allocation size
3306 * @node: numa node
3307 *
3308 * Allocate enough pages to cover @size from the page level
3309 * allocator and map them into contiguous kernel virtual space.
3310 * The memory allocated is set to zero.
3311 *
a862f68a 3312 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3313 */
3314void *vzalloc_node(unsigned long size, int node)
3315{
4d39d728
CH
3316 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3317 __builtin_return_address(0));
e1ca7788
DY
3318}
3319EXPORT_SYMBOL(vzalloc_node);
3320
0d08e0d3 3321#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3322#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3323#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3324#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3325#else
698d0831
MH
3326/*
3327 * 64b systems should always have either DMA or DMA32 zones. For others
3328 * GFP_DMA32 should do the right thing and use the normal zone.
3329 */
68d68ff6 3330#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3331#endif
3332
1da177e4 3333/**
92eac168
MR
3334 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3335 * @size: allocation size
1da177e4 3336 *
92eac168
MR
3337 * Allocate enough 32bit PA addressable pages to cover @size from the
3338 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3339 *
3340 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3341 */
3342void *vmalloc_32(unsigned long size)
3343{
f38fcb9c
CH
3344 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3345 __builtin_return_address(0));
1da177e4 3346}
1da177e4
LT
3347EXPORT_SYMBOL(vmalloc_32);
3348
83342314 3349/**
ead04089 3350 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3351 * @size: allocation size
ead04089
REB
3352 *
3353 * The resulting memory area is 32bit addressable and zeroed so it can be
3354 * mapped to userspace without leaking data.
a862f68a
MR
3355 *
3356 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3357 */
3358void *vmalloc_32_user(unsigned long size)
3359{
bc84c535
RP
3360 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3361 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3362 VM_USERMAP, NUMA_NO_NODE,
3363 __builtin_return_address(0));
83342314
NP
3364}
3365EXPORT_SYMBOL(vmalloc_32_user);
3366
d0107eb0
KH
3367/*
3368 * small helper routine , copy contents to buf from addr.
3369 * If the page is not present, fill zero.
3370 */
3371
3372static int aligned_vread(char *buf, char *addr, unsigned long count)
3373{
3374 struct page *p;
3375 int copied = 0;
3376
3377 while (count) {
3378 unsigned long offset, length;
3379
891c49ab 3380 offset = offset_in_page(addr);
d0107eb0
KH
3381 length = PAGE_SIZE - offset;
3382 if (length > count)
3383 length = count;
3384 p = vmalloc_to_page(addr);
3385 /*
3386 * To do safe access to this _mapped_ area, we need
3387 * lock. But adding lock here means that we need to add
f0953a1b 3388 * overhead of vmalloc()/vfree() calls for this _debug_
d0107eb0
KH
3389 * interface, rarely used. Instead of that, we'll use
3390 * kmap() and get small overhead in this access function.
3391 */
3392 if (p) {
f7c8ce44 3393 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3394 void *map = kmap_atomic(p);
d0107eb0 3395 memcpy(buf, map + offset, length);
9b04c5fe 3396 kunmap_atomic(map);
d0107eb0
KH
3397 } else
3398 memset(buf, 0, length);
3399
3400 addr += length;
3401 buf += length;
3402 copied += length;
3403 count -= length;
3404 }
3405 return copied;
3406}
3407
d0107eb0 3408/**
92eac168
MR
3409 * vread() - read vmalloc area in a safe way.
3410 * @buf: buffer for reading data
3411 * @addr: vm address.
3412 * @count: number of bytes to be read.
3413 *
92eac168
MR
3414 * This function checks that addr is a valid vmalloc'ed area, and
3415 * copy data from that area to a given buffer. If the given memory range
3416 * of [addr...addr+count) includes some valid address, data is copied to
3417 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3418 * IOREMAP area is treated as memory hole and no copy is done.
3419 *
3420 * If [addr...addr+count) doesn't includes any intersects with alive
3421 * vm_struct area, returns 0. @buf should be kernel's buffer.
3422 *
3423 * Note: In usual ops, vread() is never necessary because the caller
3424 * should know vmalloc() area is valid and can use memcpy().
3425 * This is for routines which have to access vmalloc area without
bbcd53c9 3426 * any information, as /proc/kcore.
a862f68a
MR
3427 *
3428 * Return: number of bytes for which addr and buf should be increased
3429 * (same number as @count) or %0 if [addr...addr+count) doesn't
3430 * include any intersection with valid vmalloc area
d0107eb0 3431 */
1da177e4
LT
3432long vread(char *buf, char *addr, unsigned long count)
3433{
e81ce85f
JK
3434 struct vmap_area *va;
3435 struct vm_struct *vm;
1da177e4 3436 char *vaddr, *buf_start = buf;
d0107eb0 3437 unsigned long buflen = count;
1da177e4
LT
3438 unsigned long n;
3439
4aff1dc4
AK
3440 addr = kasan_reset_tag(addr);
3441
1da177e4
LT
3442 /* Don't allow overflow */
3443 if ((unsigned long) addr + count < count)
3444 count = -(unsigned long) addr;
3445
e81ce85f 3446 spin_lock(&vmap_area_lock);
f181234a 3447 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c
SD
3448 if (!va)
3449 goto finished;
f181234a
CW
3450
3451 /* no intersects with alive vmap_area */
3452 if ((unsigned long)addr + count <= va->va_start)
3453 goto finished;
3454
f608788c 3455 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3456 if (!count)
3457 break;
3458
688fcbfc 3459 if (!va->vm)
e81ce85f
JK
3460 continue;
3461
3462 vm = va->vm;
3463 vaddr = (char *) vm->addr;
762216ab 3464 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3465 continue;
3466 while (addr < vaddr) {
3467 if (count == 0)
3468 goto finished;
3469 *buf = '\0';
3470 buf++;
3471 addr++;
3472 count--;
3473 }
762216ab 3474 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3475 if (n > count)
3476 n = count;
e81ce85f 3477 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3478 aligned_vread(buf, addr, n);
3479 else /* IOREMAP area is treated as memory hole */
3480 memset(buf, 0, n);
3481 buf += n;
3482 addr += n;
3483 count -= n;
1da177e4
LT
3484 }
3485finished:
e81ce85f 3486 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3487
3488 if (buf == buf_start)
3489 return 0;
3490 /* zero-fill memory holes */
3491 if (buf != buf_start + buflen)
3492 memset(buf, 0, buflen - (buf - buf_start));
3493
3494 return buflen;
1da177e4
LT
3495}
3496
83342314 3497/**
92eac168
MR
3498 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3499 * @vma: vma to cover
3500 * @uaddr: target user address to start at
3501 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3502 * @pgoff: offset from @kaddr to start at
92eac168 3503 * @size: size of map area
7682486b 3504 *
92eac168 3505 * Returns: 0 for success, -Exxx on failure
83342314 3506 *
92eac168
MR
3507 * This function checks that @kaddr is a valid vmalloc'ed area,
3508 * and that it is big enough to cover the range starting at
3509 * @uaddr in @vma. Will return failure if that criteria isn't
3510 * met.
83342314 3511 *
92eac168 3512 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3513 */
e69e9d4a 3514int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3515 void *kaddr, unsigned long pgoff,
3516 unsigned long size)
83342314
NP
3517{
3518 struct vm_struct *area;
bdebd6a2
JH
3519 unsigned long off;
3520 unsigned long end_index;
3521
3522 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3523 return -EINVAL;
83342314 3524
e69e9d4a
HD
3525 size = PAGE_ALIGN(size);
3526
3527 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3528 return -EINVAL;
3529
e69e9d4a 3530 area = find_vm_area(kaddr);
83342314 3531 if (!area)
db64fe02 3532 return -EINVAL;
83342314 3533
fe9041c2 3534 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3535 return -EINVAL;
83342314 3536
bdebd6a2
JH
3537 if (check_add_overflow(size, off, &end_index) ||
3538 end_index > get_vm_area_size(area))
db64fe02 3539 return -EINVAL;
bdebd6a2 3540 kaddr += off;
83342314 3541
83342314 3542 do {
e69e9d4a 3543 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3544 int ret;
3545
83342314
NP
3546 ret = vm_insert_page(vma, uaddr, page);
3547 if (ret)
3548 return ret;
3549
3550 uaddr += PAGE_SIZE;
e69e9d4a
HD
3551 kaddr += PAGE_SIZE;
3552 size -= PAGE_SIZE;
3553 } while (size > 0);
83342314 3554
314e51b9 3555 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3556
db64fe02 3557 return 0;
83342314 3558}
e69e9d4a
HD
3559
3560/**
92eac168
MR
3561 * remap_vmalloc_range - map vmalloc pages to userspace
3562 * @vma: vma to cover (map full range of vma)
3563 * @addr: vmalloc memory
3564 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3565 *
92eac168 3566 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3567 *
92eac168
MR
3568 * This function checks that addr is a valid vmalloc'ed area, and
3569 * that it is big enough to cover the vma. Will return failure if
3570 * that criteria isn't met.
e69e9d4a 3571 *
92eac168 3572 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3573 */
3574int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3575 unsigned long pgoff)
3576{
3577 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3578 addr, pgoff,
e69e9d4a
HD
3579 vma->vm_end - vma->vm_start);
3580}
83342314
NP
3581EXPORT_SYMBOL(remap_vmalloc_range);
3582
5f4352fb
JF
3583void free_vm_area(struct vm_struct *area)
3584{
3585 struct vm_struct *ret;
3586 ret = remove_vm_area(area->addr);
3587 BUG_ON(ret != area);
3588 kfree(area);
3589}
3590EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3591
4f8b02b4 3592#ifdef CONFIG_SMP
ca23e405
TH
3593static struct vmap_area *node_to_va(struct rb_node *n)
3594{
4583e773 3595 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3596}
3597
3598/**
68ad4a33
URS
3599 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3600 * @addr: target address
ca23e405 3601 *
68ad4a33
URS
3602 * Returns: vmap_area if it is found. If there is no such area
3603 * the first highest(reverse order) vmap_area is returned
3604 * i.e. va->va_start < addr && va->va_end < addr or NULL
3605 * if there are no any areas before @addr.
ca23e405 3606 */
68ad4a33
URS
3607static struct vmap_area *
3608pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3609{
68ad4a33
URS
3610 struct vmap_area *va, *tmp;
3611 struct rb_node *n;
3612
3613 n = free_vmap_area_root.rb_node;
3614 va = NULL;
ca23e405
TH
3615
3616 while (n) {
68ad4a33
URS
3617 tmp = rb_entry(n, struct vmap_area, rb_node);
3618 if (tmp->va_start <= addr) {
3619 va = tmp;
3620 if (tmp->va_end >= addr)
3621 break;
3622
ca23e405 3623 n = n->rb_right;
68ad4a33
URS
3624 } else {
3625 n = n->rb_left;
3626 }
ca23e405
TH
3627 }
3628
68ad4a33 3629 return va;
ca23e405
TH
3630}
3631
3632/**
68ad4a33
URS
3633 * pvm_determine_end_from_reverse - find the highest aligned address
3634 * of free block below VMALLOC_END
3635 * @va:
3636 * in - the VA we start the search(reverse order);
3637 * out - the VA with the highest aligned end address.
799fa85d 3638 * @align: alignment for required highest address
ca23e405 3639 *
68ad4a33 3640 * Returns: determined end address within vmap_area
ca23e405 3641 */
68ad4a33
URS
3642static unsigned long
3643pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3644{
68ad4a33 3645 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3646 unsigned long addr;
3647
68ad4a33
URS
3648 if (likely(*va)) {
3649 list_for_each_entry_from_reverse((*va),
3650 &free_vmap_area_list, list) {
3651 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3652 if ((*va)->va_start < addr)
3653 return addr;
3654 }
ca23e405
TH
3655 }
3656
68ad4a33 3657 return 0;
ca23e405
TH
3658}
3659
3660/**
3661 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3662 * @offsets: array containing offset of each area
3663 * @sizes: array containing size of each area
3664 * @nr_vms: the number of areas to allocate
3665 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3666 *
3667 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3668 * vm_structs on success, %NULL on failure
3669 *
3670 * Percpu allocator wants to use congruent vm areas so that it can
3671 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3672 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3673 * be scattered pretty far, distance between two areas easily going up
3674 * to gigabytes. To avoid interacting with regular vmallocs, these
3675 * areas are allocated from top.
ca23e405 3676 *
68ad4a33
URS
3677 * Despite its complicated look, this allocator is rather simple. It
3678 * does everything top-down and scans free blocks from the end looking
3679 * for matching base. While scanning, if any of the areas do not fit the
3680 * base address is pulled down to fit the area. Scanning is repeated till
3681 * all the areas fit and then all necessary data structures are inserted
3682 * and the result is returned.
ca23e405
TH
3683 */
3684struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3685 const size_t *sizes, int nr_vms,
ec3f64fc 3686 size_t align)
ca23e405
TH
3687{
3688 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3689 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3690 struct vmap_area **vas, *va;
ca23e405
TH
3691 struct vm_struct **vms;
3692 int area, area2, last_area, term_area;
253a496d 3693 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3694 bool purged = false;
68ad4a33 3695 enum fit_type type;
ca23e405 3696
ca23e405 3697 /* verify parameters and allocate data structures */
891c49ab 3698 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3699 for (last_area = 0, area = 0; area < nr_vms; area++) {
3700 start = offsets[area];
3701 end = start + sizes[area];
3702
3703 /* is everything aligned properly? */
3704 BUG_ON(!IS_ALIGNED(offsets[area], align));
3705 BUG_ON(!IS_ALIGNED(sizes[area], align));
3706
3707 /* detect the area with the highest address */
3708 if (start > offsets[last_area])
3709 last_area = area;
3710
c568da28 3711 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3712 unsigned long start2 = offsets[area2];
3713 unsigned long end2 = start2 + sizes[area2];
3714
c568da28 3715 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3716 }
3717 }
3718 last_end = offsets[last_area] + sizes[last_area];
3719
3720 if (vmalloc_end - vmalloc_start < last_end) {
3721 WARN_ON(true);
3722 return NULL;
3723 }
3724
4d67d860
TM
3725 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3726 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3727 if (!vas || !vms)
f1db7afd 3728 goto err_free2;
ca23e405
TH
3729
3730 for (area = 0; area < nr_vms; area++) {
68ad4a33 3731 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3732 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3733 if (!vas[area] || !vms[area])
3734 goto err_free;
3735 }
3736retry:
e36176be 3737 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3738
3739 /* start scanning - we scan from the top, begin with the last area */
3740 area = term_area = last_area;
3741 start = offsets[area];
3742 end = start + sizes[area];
3743
68ad4a33
URS
3744 va = pvm_find_va_enclose_addr(vmalloc_end);
3745 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3746
3747 while (true) {
ca23e405
TH
3748 /*
3749 * base might have underflowed, add last_end before
3750 * comparing.
3751 */
68ad4a33
URS
3752 if (base + last_end < vmalloc_start + last_end)
3753 goto overflow;
ca23e405
TH
3754
3755 /*
68ad4a33 3756 * Fitting base has not been found.
ca23e405 3757 */
68ad4a33
URS
3758 if (va == NULL)
3759 goto overflow;
ca23e405 3760
5336e52c 3761 /*
d8cc323d 3762 * If required width exceeds current VA block, move
5336e52c
KS
3763 * base downwards and then recheck.
3764 */
3765 if (base + end > va->va_end) {
3766 base = pvm_determine_end_from_reverse(&va, align) - end;
3767 term_area = area;
3768 continue;
3769 }
3770
ca23e405 3771 /*
68ad4a33 3772 * If this VA does not fit, move base downwards and recheck.
ca23e405 3773 */
5336e52c 3774 if (base + start < va->va_start) {
68ad4a33
URS
3775 va = node_to_va(rb_prev(&va->rb_node));
3776 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3777 term_area = area;
3778 continue;
3779 }
3780
3781 /*
3782 * This area fits, move on to the previous one. If
3783 * the previous one is the terminal one, we're done.
3784 */
3785 area = (area + nr_vms - 1) % nr_vms;
3786 if (area == term_area)
3787 break;
68ad4a33 3788
ca23e405
TH
3789 start = offsets[area];
3790 end = start + sizes[area];
68ad4a33 3791 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3792 }
68ad4a33 3793
ca23e405
TH
3794 /* we've found a fitting base, insert all va's */
3795 for (area = 0; area < nr_vms; area++) {
68ad4a33 3796 int ret;
ca23e405 3797
68ad4a33
URS
3798 start = base + offsets[area];
3799 size = sizes[area];
ca23e405 3800
68ad4a33
URS
3801 va = pvm_find_va_enclose_addr(start);
3802 if (WARN_ON_ONCE(va == NULL))
3803 /* It is a BUG(), but trigger recovery instead. */
3804 goto recovery;
3805
3806 type = classify_va_fit_type(va, start, size);
3807 if (WARN_ON_ONCE(type == NOTHING_FIT))
3808 /* It is a BUG(), but trigger recovery instead. */
3809 goto recovery;
3810
3811 ret = adjust_va_to_fit_type(va, start, size, type);
3812 if (unlikely(ret))
3813 goto recovery;
3814
3815 /* Allocated area. */
3816 va = vas[area];
3817 va->va_start = start;
3818 va->va_end = start + size;
68ad4a33 3819 }
ca23e405 3820
e36176be 3821 spin_unlock(&free_vmap_area_lock);
ca23e405 3822
253a496d
DA
3823 /* populate the kasan shadow space */
3824 for (area = 0; area < nr_vms; area++) {
3825 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3826 goto err_free_shadow;
253a496d
DA
3827 }
3828
ca23e405 3829 /* insert all vm's */
e36176be
URS
3830 spin_lock(&vmap_area_lock);
3831 for (area = 0; area < nr_vms; area++) {
3832 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3833
3834 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3835 pcpu_get_vm_areas);
e36176be
URS
3836 }
3837 spin_unlock(&vmap_area_lock);
ca23e405 3838
1d96320f
AK
3839 /* mark allocated areas as accessible */
3840 for (area = 0; area < nr_vms; area++)
3841 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3842 vms[area]->size);
3843
ca23e405
TH
3844 kfree(vas);
3845 return vms;
3846
68ad4a33 3847recovery:
e36176be
URS
3848 /*
3849 * Remove previously allocated areas. There is no
3850 * need in removing these areas from the busy tree,
3851 * because they are inserted only on the final step
3852 * and when pcpu_get_vm_areas() is success.
3853 */
68ad4a33 3854 while (area--) {
253a496d
DA
3855 orig_start = vas[area]->va_start;
3856 orig_end = vas[area]->va_end;
96e2db45
URS
3857 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3858 &free_vmap_area_list);
9c801f61
URS
3859 if (va)
3860 kasan_release_vmalloc(orig_start, orig_end,
3861 va->va_start, va->va_end);
68ad4a33
URS
3862 vas[area] = NULL;
3863 }
3864
3865overflow:
e36176be 3866 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3867 if (!purged) {
3868 purge_vmap_area_lazy();
3869 purged = true;
3870
3871 /* Before "retry", check if we recover. */
3872 for (area = 0; area < nr_vms; area++) {
3873 if (vas[area])
3874 continue;
3875
3876 vas[area] = kmem_cache_zalloc(
3877 vmap_area_cachep, GFP_KERNEL);
3878 if (!vas[area])
3879 goto err_free;
3880 }
3881
3882 goto retry;
3883 }
3884
ca23e405
TH
3885err_free:
3886 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3887 if (vas[area])
3888 kmem_cache_free(vmap_area_cachep, vas[area]);
3889
f1db7afd 3890 kfree(vms[area]);
ca23e405 3891 }
f1db7afd 3892err_free2:
ca23e405
TH
3893 kfree(vas);
3894 kfree(vms);
3895 return NULL;
253a496d
DA
3896
3897err_free_shadow:
3898 spin_lock(&free_vmap_area_lock);
3899 /*
3900 * We release all the vmalloc shadows, even the ones for regions that
3901 * hadn't been successfully added. This relies on kasan_release_vmalloc
3902 * being able to tolerate this case.
3903 */
3904 for (area = 0; area < nr_vms; area++) {
3905 orig_start = vas[area]->va_start;
3906 orig_end = vas[area]->va_end;
96e2db45
URS
3907 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3908 &free_vmap_area_list);
9c801f61
URS
3909 if (va)
3910 kasan_release_vmalloc(orig_start, orig_end,
3911 va->va_start, va->va_end);
253a496d
DA
3912 vas[area] = NULL;
3913 kfree(vms[area]);
3914 }
3915 spin_unlock(&free_vmap_area_lock);
3916 kfree(vas);
3917 kfree(vms);
3918 return NULL;
ca23e405
TH
3919}
3920
3921/**
3922 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3923 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3924 * @nr_vms: the number of allocated areas
3925 *
3926 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3927 */
3928void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3929{
3930 int i;
3931
3932 for (i = 0; i < nr_vms; i++)
3933 free_vm_area(vms[i]);
3934 kfree(vms);
3935}
4f8b02b4 3936#endif /* CONFIG_SMP */
a10aa579 3937
5bb1bb35 3938#ifdef CONFIG_PRINTK
98f18083
PM
3939bool vmalloc_dump_obj(void *object)
3940{
3941 struct vm_struct *vm;
3942 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3943
3944 vm = find_vm_area(objp);
3945 if (!vm)
3946 return false;
bd34dcd4
PM
3947 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3948 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
3949 return true;
3950}
5bb1bb35 3951#endif
98f18083 3952
a10aa579
CL
3953#ifdef CONFIG_PROC_FS
3954static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3955 __acquires(&vmap_purge_lock)
d4033afd 3956 __acquires(&vmap_area_lock)
a10aa579 3957{
e36176be 3958 mutex_lock(&vmap_purge_lock);
d4033afd 3959 spin_lock(&vmap_area_lock);
e36176be 3960
3f500069 3961 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3962}
3963
3964static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3965{
3f500069 3966 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3967}
3968
3969static void s_stop(struct seq_file *m, void *p)
d4033afd 3970 __releases(&vmap_area_lock)
0a7dd4e9 3971 __releases(&vmap_purge_lock)
a10aa579 3972{
d4033afd 3973 spin_unlock(&vmap_area_lock);
0a7dd4e9 3974 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3975}
3976
a47a126a
ED
3977static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3978{
e5adfffc 3979 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 3980 unsigned int nr, *counters = m->private;
51e50b3a 3981 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
3982
3983 if (!counters)
3984 return;
3985
af12346c
WL
3986 if (v->flags & VM_UNINITIALIZED)
3987 return;
7e5b528b
DV
3988 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3989 smp_rmb();
af12346c 3990
a47a126a
ED
3991 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3992
51e50b3a
ED
3993 for (nr = 0; nr < v->nr_pages; nr += step)
3994 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
3995 for_each_node_state(nr, N_HIGH_MEMORY)
3996 if (counters[nr])
3997 seq_printf(m, " N%u=%u", nr, counters[nr]);
3998 }
3999}
4000
dd3b8353
URS
4001static void show_purge_info(struct seq_file *m)
4002{
dd3b8353
URS
4003 struct vmap_area *va;
4004
96e2db45
URS
4005 spin_lock(&purge_vmap_area_lock);
4006 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
4007 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4008 (void *)va->va_start, (void *)va->va_end,
4009 va->va_end - va->va_start);
4010 }
96e2db45 4011 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
4012}
4013
a10aa579
CL
4014static int s_show(struct seq_file *m, void *p)
4015{
3f500069 4016 struct vmap_area *va;
d4033afd
JK
4017 struct vm_struct *v;
4018
3f500069 4019 va = list_entry(p, struct vmap_area, list);
4020
c2ce8c14 4021 /*
688fcbfc
PL
4022 * s_show can encounter race with remove_vm_area, !vm on behalf
4023 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 4024 */
688fcbfc 4025 if (!va->vm) {
dd3b8353 4026 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 4027 (void *)va->va_start, (void *)va->va_end,
dd3b8353 4028 va->va_end - va->va_start);
78c72746 4029
7cc7913e 4030 goto final;
78c72746 4031 }
d4033afd
JK
4032
4033 v = va->vm;
a10aa579 4034
45ec1690 4035 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4036 v->addr, v->addr + v->size, v->size);
4037
62c70bce
JP
4038 if (v->caller)
4039 seq_printf(m, " %pS", v->caller);
23016969 4040
a10aa579
CL
4041 if (v->nr_pages)
4042 seq_printf(m, " pages=%d", v->nr_pages);
4043
4044 if (v->phys_addr)
199eaa05 4045 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4046
4047 if (v->flags & VM_IOREMAP)
f4527c90 4048 seq_puts(m, " ioremap");
a10aa579
CL
4049
4050 if (v->flags & VM_ALLOC)
f4527c90 4051 seq_puts(m, " vmalloc");
a10aa579
CL
4052
4053 if (v->flags & VM_MAP)
f4527c90 4054 seq_puts(m, " vmap");
a10aa579
CL
4055
4056 if (v->flags & VM_USERMAP)
f4527c90 4057 seq_puts(m, " user");
a10aa579 4058
fe9041c2
CH
4059 if (v->flags & VM_DMA_COHERENT)
4060 seq_puts(m, " dma-coherent");
4061
244d63ee 4062 if (is_vmalloc_addr(v->pages))
f4527c90 4063 seq_puts(m, " vpages");
a10aa579 4064
a47a126a 4065 show_numa_info(m, v);
a10aa579 4066 seq_putc(m, '\n');
dd3b8353
URS
4067
4068 /*
96e2db45 4069 * As a final step, dump "unpurged" areas.
dd3b8353 4070 */
7cc7913e 4071final:
dd3b8353
URS
4072 if (list_is_last(&va->list, &vmap_area_list))
4073 show_purge_info(m);
4074
a10aa579
CL
4075 return 0;
4076}
4077
5f6a6a9c 4078static const struct seq_operations vmalloc_op = {
a10aa579
CL
4079 .start = s_start,
4080 .next = s_next,
4081 .stop = s_stop,
4082 .show = s_show,
4083};
5f6a6a9c 4084
5f6a6a9c
AD
4085static int __init proc_vmalloc_init(void)
4086{
fddda2b7 4087 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4088 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4089 &vmalloc_op,
4090 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4091 else
0825a6f9 4092 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4093 return 0;
4094}
4095module_init(proc_vmalloc_init);
db3808c1 4096
a10aa579 4097#endif
This page took 2.012309 seconds and 4 git commands to generate.