]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
b95f1b31 | 12 | #include <linux/export.h> |
1da177e4 | 13 | #include <linux/compiler.h> |
f9fe48be | 14 | #include <linux/dax.h> |
1da177e4 | 15 | #include <linux/fs.h> |
3f07c014 | 16 | #include <linux/sched/signal.h> |
c22ce143 | 17 | #include <linux/uaccess.h> |
c59ede7b | 18 | #include <linux/capability.h> |
1da177e4 | 19 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 20 | #include <linux/gfp.h> |
1da177e4 LT |
21 | #include <linux/mm.h> |
22 | #include <linux/swap.h> | |
23 | #include <linux/mman.h> | |
24 | #include <linux/pagemap.h> | |
25 | #include <linux/file.h> | |
26 | #include <linux/uio.h> | |
27 | #include <linux/hash.h> | |
28 | #include <linux/writeback.h> | |
53253383 | 29 | #include <linux/backing-dev.h> |
1da177e4 LT |
30 | #include <linux/pagevec.h> |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/security.h> | |
44110fe3 | 33 | #include <linux/cpuset.h> |
2f718ffc | 34 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
00501b53 | 35 | #include <linux/hugetlb.h> |
8a9f3ccd | 36 | #include <linux/memcontrol.h> |
c515e1fd | 37 | #include <linux/cleancache.h> |
f1820361 | 38 | #include <linux/rmap.h> |
0f8053a5 NP |
39 | #include "internal.h" |
40 | ||
fe0bfaaf RJ |
41 | #define CREATE_TRACE_POINTS |
42 | #include <trace/events/filemap.h> | |
43 | ||
1da177e4 | 44 | /* |
1da177e4 LT |
45 | * FIXME: remove all knowledge of the buffer layer from the core VM |
46 | */ | |
148f948b | 47 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 48 | |
1da177e4 LT |
49 | #include <asm/mman.h> |
50 | ||
51 | /* | |
52 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
53 | * though. | |
54 | * | |
55 | * Shared mappings now work. 15.8.1995 Bruno. | |
56 | * | |
57 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
58 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
59 | * | |
60 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
61 | */ | |
62 | ||
63 | /* | |
64 | * Lock ordering: | |
65 | * | |
c8c06efa | 66 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 67 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 HD |
68 | * ->swap_lock (exclusive_swap_page, others) |
69 | * ->mapping->tree_lock | |
1da177e4 | 70 | * |
1b1dcc1b | 71 | * ->i_mutex |
c8c06efa | 72 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
73 | * |
74 | * ->mmap_sem | |
c8c06efa | 75 | * ->i_mmap_rwsem |
b8072f09 | 76 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
77 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
78 | * | |
79 | * ->mmap_sem | |
80 | * ->lock_page (access_process_vm) | |
81 | * | |
ccad2365 | 82 | * ->i_mutex (generic_perform_write) |
82591e6e | 83 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 84 | * |
f758eeab | 85 | * bdi->wb.list_lock |
a66979ab | 86 | * sb_lock (fs/fs-writeback.c) |
1da177e4 LT |
87 | * ->mapping->tree_lock (__sync_single_inode) |
88 | * | |
c8c06efa | 89 | * ->i_mmap_rwsem |
1da177e4 LT |
90 | * ->anon_vma.lock (vma_adjust) |
91 | * | |
92 | * ->anon_vma.lock | |
b8072f09 | 93 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 94 | * |
b8072f09 | 95 | * ->page_table_lock or pte_lock |
5d337b91 | 96 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
97 | * ->private_lock (try_to_unmap_one) |
98 | * ->tree_lock (try_to_unmap_one) | |
a52633d8 MG |
99 | * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) |
100 | * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) | |
1da177e4 LT |
101 | * ->private_lock (page_remove_rmap->set_page_dirty) |
102 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
f758eeab | 103 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 104 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 105 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 106 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 107 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
108 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
109 | * | |
c8c06efa | 110 | * ->i_mmap_rwsem |
9a3c531d | 111 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
112 | */ |
113 | ||
22f2ac51 JW |
114 | static int page_cache_tree_insert(struct address_space *mapping, |
115 | struct page *page, void **shadowp) | |
116 | { | |
117 | struct radix_tree_node *node; | |
118 | void **slot; | |
119 | int error; | |
120 | ||
121 | error = __radix_tree_create(&mapping->page_tree, page->index, 0, | |
122 | &node, &slot); | |
123 | if (error) | |
124 | return error; | |
125 | if (*slot) { | |
126 | void *p; | |
127 | ||
128 | p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
129 | if (!radix_tree_exceptional_entry(p)) | |
130 | return -EEXIST; | |
131 | ||
132 | mapping->nrexceptional--; | |
133 | if (!dax_mapping(mapping)) { | |
134 | if (shadowp) | |
135 | *shadowp = p; | |
22f2ac51 JW |
136 | } else { |
137 | /* DAX can replace empty locked entry with a hole */ | |
138 | WARN_ON_ONCE(p != | |
642261ac | 139 | dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); |
22f2ac51 | 140 | /* Wakeup waiters for exceptional entry lock */ |
63e95b5c | 141 | dax_wake_mapping_entry_waiter(mapping, page->index, p, |
965d004a | 142 | true); |
22f2ac51 JW |
143 | } |
144 | } | |
14b46879 JW |
145 | __radix_tree_replace(&mapping->page_tree, node, slot, page, |
146 | workingset_update_node, mapping); | |
22f2ac51 | 147 | mapping->nrpages++; |
22f2ac51 JW |
148 | return 0; |
149 | } | |
150 | ||
91b0abe3 JW |
151 | static void page_cache_tree_delete(struct address_space *mapping, |
152 | struct page *page, void *shadow) | |
153 | { | |
c70b647d KS |
154 | int i, nr; |
155 | ||
156 | /* hugetlb pages are represented by one entry in the radix tree */ | |
157 | nr = PageHuge(page) ? 1 : hpage_nr_pages(page); | |
91b0abe3 | 158 | |
83929372 KS |
159 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
160 | VM_BUG_ON_PAGE(PageTail(page), page); | |
161 | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | |
449dd698 | 162 | |
83929372 | 163 | for (i = 0; i < nr; i++) { |
d3798ae8 JW |
164 | struct radix_tree_node *node; |
165 | void **slot; | |
166 | ||
167 | __radix_tree_lookup(&mapping->page_tree, page->index + i, | |
168 | &node, &slot); | |
169 | ||
dbc446b8 | 170 | VM_BUG_ON_PAGE(!node && nr != 1, page); |
449dd698 | 171 | |
14b46879 JW |
172 | radix_tree_clear_tags(&mapping->page_tree, node, slot); |
173 | __radix_tree_replace(&mapping->page_tree, node, slot, shadow, | |
174 | workingset_update_node, mapping); | |
449dd698 | 175 | } |
d3798ae8 JW |
176 | |
177 | if (shadow) { | |
178 | mapping->nrexceptional += nr; | |
179 | /* | |
180 | * Make sure the nrexceptional update is committed before | |
181 | * the nrpages update so that final truncate racing | |
182 | * with reclaim does not see both counters 0 at the | |
183 | * same time and miss a shadow entry. | |
184 | */ | |
185 | smp_wmb(); | |
186 | } | |
187 | mapping->nrpages -= nr; | |
91b0abe3 JW |
188 | } |
189 | ||
1da177e4 | 190 | /* |
e64a782f | 191 | * Delete a page from the page cache and free it. Caller has to make |
1da177e4 | 192 | * sure the page is locked and that nobody else uses it - or that usage |
fdf1cdb9 | 193 | * is safe. The caller must hold the mapping's tree_lock. |
1da177e4 | 194 | */ |
62cccb8c | 195 | void __delete_from_page_cache(struct page *page, void *shadow) |
1da177e4 LT |
196 | { |
197 | struct address_space *mapping = page->mapping; | |
83929372 | 198 | int nr = hpage_nr_pages(page); |
1da177e4 | 199 | |
fe0bfaaf | 200 | trace_mm_filemap_delete_from_page_cache(page); |
c515e1fd DM |
201 | /* |
202 | * if we're uptodate, flush out into the cleancache, otherwise | |
203 | * invalidate any existing cleancache entries. We can't leave | |
204 | * stale data around in the cleancache once our page is gone | |
205 | */ | |
206 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
207 | cleancache_put_page(page); | |
208 | else | |
3167760f | 209 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 210 | |
83929372 | 211 | VM_BUG_ON_PAGE(PageTail(page), page); |
06b241f3 HD |
212 | VM_BUG_ON_PAGE(page_mapped(page), page); |
213 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
214 | int mapcount; | |
215 | ||
216 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
217 | current->comm, page_to_pfn(page)); | |
218 | dump_page(page, "still mapped when deleted"); | |
219 | dump_stack(); | |
220 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
221 | ||
222 | mapcount = page_mapcount(page); | |
223 | if (mapping_exiting(mapping) && | |
224 | page_count(page) >= mapcount + 2) { | |
225 | /* | |
226 | * All vmas have already been torn down, so it's | |
227 | * a good bet that actually the page is unmapped, | |
228 | * and we'd prefer not to leak it: if we're wrong, | |
229 | * some other bad page check should catch it later. | |
230 | */ | |
231 | page_mapcount_reset(page); | |
6d061f9f | 232 | page_ref_sub(page, mapcount); |
06b241f3 HD |
233 | } |
234 | } | |
235 | ||
91b0abe3 JW |
236 | page_cache_tree_delete(mapping, page, shadow); |
237 | ||
1da177e4 | 238 | page->mapping = NULL; |
b85e0eff | 239 | /* Leave page->index set: truncation lookup relies upon it */ |
91b0abe3 | 240 | |
4165b9b4 | 241 | /* hugetlb pages do not participate in page cache accounting. */ |
09612fa6 NH |
242 | if (PageHuge(page)) |
243 | return; | |
244 | ||
245 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
800d8c63 | 246 | if (PageSwapBacked(page)) { |
11fb9989 | 247 | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); |
800d8c63 | 248 | if (PageTransHuge(page)) |
11fb9989 | 249 | __dec_node_page_state(page, NR_SHMEM_THPS); |
800d8c63 | 250 | } else { |
09612fa6 | 251 | VM_BUG_ON_PAGE(PageTransHuge(page), page); |
800d8c63 | 252 | } |
3a692790 LT |
253 | |
254 | /* | |
b9ea2515 KK |
255 | * At this point page must be either written or cleaned by truncate. |
256 | * Dirty page here signals a bug and loss of unwritten data. | |
3a692790 | 257 | * |
b9ea2515 KK |
258 | * This fixes dirty accounting after removing the page entirely but |
259 | * leaves PageDirty set: it has no effect for truncated page and | |
260 | * anyway will be cleared before returning page into buddy allocator. | |
3a692790 | 261 | */ |
b9ea2515 | 262 | if (WARN_ON_ONCE(PageDirty(page))) |
62cccb8c | 263 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); |
1da177e4 LT |
264 | } |
265 | ||
702cfbf9 MK |
266 | /** |
267 | * delete_from_page_cache - delete page from page cache | |
268 | * @page: the page which the kernel is trying to remove from page cache | |
269 | * | |
270 | * This must be called only on pages that have been verified to be in the page | |
271 | * cache and locked. It will never put the page into the free list, the caller | |
272 | * has a reference on the page. | |
273 | */ | |
274 | void delete_from_page_cache(struct page *page) | |
1da177e4 | 275 | { |
83929372 | 276 | struct address_space *mapping = page_mapping(page); |
c4843a75 | 277 | unsigned long flags; |
6072d13c | 278 | void (*freepage)(struct page *); |
1da177e4 | 279 | |
cd7619d6 | 280 | BUG_ON(!PageLocked(page)); |
1da177e4 | 281 | |
6072d13c | 282 | freepage = mapping->a_ops->freepage; |
c4843a75 | 283 | |
c4843a75 | 284 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 285 | __delete_from_page_cache(page, NULL); |
c4843a75 | 286 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6072d13c LT |
287 | |
288 | if (freepage) | |
289 | freepage(page); | |
83929372 KS |
290 | |
291 | if (PageTransHuge(page) && !PageHuge(page)) { | |
292 | page_ref_sub(page, HPAGE_PMD_NR); | |
293 | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | |
294 | } else { | |
295 | put_page(page); | |
296 | } | |
97cecb5a MK |
297 | } |
298 | EXPORT_SYMBOL(delete_from_page_cache); | |
299 | ||
d72d9e2a | 300 | int filemap_check_errors(struct address_space *mapping) |
865ffef3 DM |
301 | { |
302 | int ret = 0; | |
303 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
304 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
305 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 306 | ret = -ENOSPC; |
7fcbbaf1 JA |
307 | if (test_bit(AS_EIO, &mapping->flags) && |
308 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
309 | ret = -EIO; |
310 | return ret; | |
311 | } | |
d72d9e2a | 312 | EXPORT_SYMBOL(filemap_check_errors); |
865ffef3 | 313 | |
76341cab JL |
314 | static int filemap_check_and_keep_errors(struct address_space *mapping) |
315 | { | |
316 | /* Check for outstanding write errors */ | |
317 | if (test_bit(AS_EIO, &mapping->flags)) | |
318 | return -EIO; | |
319 | if (test_bit(AS_ENOSPC, &mapping->flags)) | |
320 | return -ENOSPC; | |
321 | return 0; | |
322 | } | |
323 | ||
1da177e4 | 324 | /** |
485bb99b | 325 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
326 | * @mapping: address space structure to write |
327 | * @start: offset in bytes where the range starts | |
469eb4d0 | 328 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 329 | * @sync_mode: enable synchronous operation |
1da177e4 | 330 | * |
485bb99b RD |
331 | * Start writeback against all of a mapping's dirty pages that lie |
332 | * within the byte offsets <start, end> inclusive. | |
333 | * | |
1da177e4 | 334 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 335 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
336 | * these two operations is that if a dirty page/buffer is encountered, it must |
337 | * be waited upon, and not just skipped over. | |
338 | */ | |
ebcf28e1 AM |
339 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
340 | loff_t end, int sync_mode) | |
1da177e4 LT |
341 | { |
342 | int ret; | |
343 | struct writeback_control wbc = { | |
344 | .sync_mode = sync_mode, | |
05fe478d | 345 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
346 | .range_start = start, |
347 | .range_end = end, | |
1da177e4 LT |
348 | }; |
349 | ||
350 | if (!mapping_cap_writeback_dirty(mapping)) | |
351 | return 0; | |
352 | ||
b16b1deb | 353 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 354 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 355 | wbc_detach_inode(&wbc); |
1da177e4 LT |
356 | return ret; |
357 | } | |
358 | ||
359 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
360 | int sync_mode) | |
361 | { | |
111ebb6e | 362 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
363 | } |
364 | ||
365 | int filemap_fdatawrite(struct address_space *mapping) | |
366 | { | |
367 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
368 | } | |
369 | EXPORT_SYMBOL(filemap_fdatawrite); | |
370 | ||
f4c0a0fd | 371 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 372 | loff_t end) |
1da177e4 LT |
373 | { |
374 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
375 | } | |
f4c0a0fd | 376 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 377 | |
485bb99b RD |
378 | /** |
379 | * filemap_flush - mostly a non-blocking flush | |
380 | * @mapping: target address_space | |
381 | * | |
1da177e4 LT |
382 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
383 | * purposes - I/O may not be started against all dirty pages. | |
384 | */ | |
385 | int filemap_flush(struct address_space *mapping) | |
386 | { | |
387 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
388 | } | |
389 | EXPORT_SYMBOL(filemap_flush); | |
390 | ||
7fc9e472 GR |
391 | /** |
392 | * filemap_range_has_page - check if a page exists in range. | |
393 | * @mapping: address space within which to check | |
394 | * @start_byte: offset in bytes where the range starts | |
395 | * @end_byte: offset in bytes where the range ends (inclusive) | |
396 | * | |
397 | * Find at least one page in the range supplied, usually used to check if | |
398 | * direct writing in this range will trigger a writeback. | |
399 | */ | |
400 | bool filemap_range_has_page(struct address_space *mapping, | |
401 | loff_t start_byte, loff_t end_byte) | |
402 | { | |
403 | pgoff_t index = start_byte >> PAGE_SHIFT; | |
404 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
405 | struct pagevec pvec; | |
406 | bool ret; | |
407 | ||
408 | if (end_byte < start_byte) | |
409 | return false; | |
410 | ||
411 | if (mapping->nrpages == 0) | |
412 | return false; | |
413 | ||
414 | pagevec_init(&pvec, 0); | |
415 | if (!pagevec_lookup(&pvec, mapping, index, 1)) | |
416 | return false; | |
417 | ret = (pvec.pages[0]->index <= end); | |
418 | pagevec_release(&pvec); | |
419 | return ret; | |
420 | } | |
421 | EXPORT_SYMBOL(filemap_range_has_page); | |
422 | ||
5e8fcc1a | 423 | static void __filemap_fdatawait_range(struct address_space *mapping, |
aa750fd7 | 424 | loff_t start_byte, loff_t end_byte) |
1da177e4 | 425 | { |
09cbfeaf KS |
426 | pgoff_t index = start_byte >> PAGE_SHIFT; |
427 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
428 | struct pagevec pvec; |
429 | int nr_pages; | |
1da177e4 | 430 | |
94004ed7 | 431 | if (end_byte < start_byte) |
5e8fcc1a | 432 | return; |
1da177e4 LT |
433 | |
434 | pagevec_init(&pvec, 0); | |
1da177e4 LT |
435 | while ((index <= end) && |
436 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
437 | PAGECACHE_TAG_WRITEBACK, | |
438 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | |
439 | unsigned i; | |
440 | ||
441 | for (i = 0; i < nr_pages; i++) { | |
442 | struct page *page = pvec.pages[i]; | |
443 | ||
444 | /* until radix tree lookup accepts end_index */ | |
445 | if (page->index > end) | |
446 | continue; | |
447 | ||
448 | wait_on_page_writeback(page); | |
5e8fcc1a | 449 | ClearPageError(page); |
1da177e4 LT |
450 | } |
451 | pagevec_release(&pvec); | |
452 | cond_resched(); | |
453 | } | |
aa750fd7 JN |
454 | } |
455 | ||
456 | /** | |
457 | * filemap_fdatawait_range - wait for writeback to complete | |
458 | * @mapping: address space structure to wait for | |
459 | * @start_byte: offset in bytes where the range starts | |
460 | * @end_byte: offset in bytes where the range ends (inclusive) | |
461 | * | |
462 | * Walk the list of under-writeback pages of the given address space | |
463 | * in the given range and wait for all of them. Check error status of | |
464 | * the address space and return it. | |
465 | * | |
466 | * Since the error status of the address space is cleared by this function, | |
467 | * callers are responsible for checking the return value and handling and/or | |
468 | * reporting the error. | |
469 | */ | |
470 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
471 | loff_t end_byte) | |
472 | { | |
5e8fcc1a JL |
473 | __filemap_fdatawait_range(mapping, start_byte, end_byte); |
474 | return filemap_check_errors(mapping); | |
1da177e4 | 475 | } |
d3bccb6f JK |
476 | EXPORT_SYMBOL(filemap_fdatawait_range); |
477 | ||
aa750fd7 JN |
478 | /** |
479 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
480 | * @mapping: address space structure to wait for | |
481 | * | |
482 | * Walk the list of under-writeback pages of the given address space | |
483 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
484 | * does not clear error status of the address space. | |
485 | * | |
486 | * Use this function if callers don't handle errors themselves. Expected | |
487 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
488 | * fsfreeze(8) | |
489 | */ | |
76341cab | 490 | int filemap_fdatawait_keep_errors(struct address_space *mapping) |
aa750fd7 JN |
491 | { |
492 | loff_t i_size = i_size_read(mapping->host); | |
493 | ||
494 | if (i_size == 0) | |
76341cab | 495 | return 0; |
aa750fd7 JN |
496 | |
497 | __filemap_fdatawait_range(mapping, 0, i_size - 1); | |
76341cab | 498 | return filemap_check_and_keep_errors(mapping); |
aa750fd7 | 499 | } |
76341cab | 500 | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); |
aa750fd7 | 501 | |
1da177e4 | 502 | /** |
485bb99b | 503 | * filemap_fdatawait - wait for all under-writeback pages to complete |
1da177e4 | 504 | * @mapping: address space structure to wait for |
485bb99b RD |
505 | * |
506 | * Walk the list of under-writeback pages of the given address space | |
aa750fd7 JN |
507 | * and wait for all of them. Check error status of the address space |
508 | * and return it. | |
509 | * | |
510 | * Since the error status of the address space is cleared by this function, | |
511 | * callers are responsible for checking the return value and handling and/or | |
512 | * reporting the error. | |
1da177e4 LT |
513 | */ |
514 | int filemap_fdatawait(struct address_space *mapping) | |
515 | { | |
516 | loff_t i_size = i_size_read(mapping->host); | |
517 | ||
518 | if (i_size == 0) | |
519 | return 0; | |
520 | ||
94004ed7 | 521 | return filemap_fdatawait_range(mapping, 0, i_size - 1); |
1da177e4 LT |
522 | } |
523 | EXPORT_SYMBOL(filemap_fdatawait); | |
524 | ||
525 | int filemap_write_and_wait(struct address_space *mapping) | |
526 | { | |
28fd1298 | 527 | int err = 0; |
1da177e4 | 528 | |
7f6d5b52 RZ |
529 | if ((!dax_mapping(mapping) && mapping->nrpages) || |
530 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
28fd1298 OH |
531 | err = filemap_fdatawrite(mapping); |
532 | /* | |
533 | * Even if the above returned error, the pages may be | |
534 | * written partially (e.g. -ENOSPC), so we wait for it. | |
535 | * But the -EIO is special case, it may indicate the worst | |
536 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
537 | */ | |
538 | if (err != -EIO) { | |
539 | int err2 = filemap_fdatawait(mapping); | |
540 | if (!err) | |
541 | err = err2; | |
cbeaf951 JL |
542 | } else { |
543 | /* Clear any previously stored errors */ | |
544 | filemap_check_errors(mapping); | |
28fd1298 | 545 | } |
865ffef3 DM |
546 | } else { |
547 | err = filemap_check_errors(mapping); | |
1da177e4 | 548 | } |
28fd1298 | 549 | return err; |
1da177e4 | 550 | } |
28fd1298 | 551 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 552 | |
485bb99b RD |
553 | /** |
554 | * filemap_write_and_wait_range - write out & wait on a file range | |
555 | * @mapping: the address_space for the pages | |
556 | * @lstart: offset in bytes where the range starts | |
557 | * @lend: offset in bytes where the range ends (inclusive) | |
558 | * | |
469eb4d0 AM |
559 | * Write out and wait upon file offsets lstart->lend, inclusive. |
560 | * | |
0e056eb5 | 561 | * Note that @lend is inclusive (describes the last byte to be written) so |
469eb4d0 AM |
562 | * that this function can be used to write to the very end-of-file (end = -1). |
563 | */ | |
1da177e4 LT |
564 | int filemap_write_and_wait_range(struct address_space *mapping, |
565 | loff_t lstart, loff_t lend) | |
566 | { | |
28fd1298 | 567 | int err = 0; |
1da177e4 | 568 | |
7f6d5b52 RZ |
569 | if ((!dax_mapping(mapping) && mapping->nrpages) || |
570 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
28fd1298 OH |
571 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
572 | WB_SYNC_ALL); | |
573 | /* See comment of filemap_write_and_wait() */ | |
574 | if (err != -EIO) { | |
94004ed7 CH |
575 | int err2 = filemap_fdatawait_range(mapping, |
576 | lstart, lend); | |
28fd1298 OH |
577 | if (!err) |
578 | err = err2; | |
cbeaf951 JL |
579 | } else { |
580 | /* Clear any previously stored errors */ | |
581 | filemap_check_errors(mapping); | |
28fd1298 | 582 | } |
865ffef3 DM |
583 | } else { |
584 | err = filemap_check_errors(mapping); | |
1da177e4 | 585 | } |
28fd1298 | 586 | return err; |
1da177e4 | 587 | } |
f6995585 | 588 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 589 | |
5660e13d JL |
590 | void __filemap_set_wb_err(struct address_space *mapping, int err) |
591 | { | |
592 | errseq_t eseq = __errseq_set(&mapping->wb_err, err); | |
593 | ||
594 | trace_filemap_set_wb_err(mapping, eseq); | |
595 | } | |
596 | EXPORT_SYMBOL(__filemap_set_wb_err); | |
597 | ||
598 | /** | |
599 | * file_check_and_advance_wb_err - report wb error (if any) that was previously | |
600 | * and advance wb_err to current one | |
601 | * @file: struct file on which the error is being reported | |
602 | * | |
603 | * When userland calls fsync (or something like nfsd does the equivalent), we | |
604 | * want to report any writeback errors that occurred since the last fsync (or | |
605 | * since the file was opened if there haven't been any). | |
606 | * | |
607 | * Grab the wb_err from the mapping. If it matches what we have in the file, | |
608 | * then just quickly return 0. The file is all caught up. | |
609 | * | |
610 | * If it doesn't match, then take the mapping value, set the "seen" flag in | |
611 | * it and try to swap it into place. If it works, or another task beat us | |
612 | * to it with the new value, then update the f_wb_err and return the error | |
613 | * portion. The error at this point must be reported via proper channels | |
614 | * (a'la fsync, or NFS COMMIT operation, etc.). | |
615 | * | |
616 | * While we handle mapping->wb_err with atomic operations, the f_wb_err | |
617 | * value is protected by the f_lock since we must ensure that it reflects | |
618 | * the latest value swapped in for this file descriptor. | |
619 | */ | |
620 | int file_check_and_advance_wb_err(struct file *file) | |
621 | { | |
622 | int err = 0; | |
623 | errseq_t old = READ_ONCE(file->f_wb_err); | |
624 | struct address_space *mapping = file->f_mapping; | |
625 | ||
626 | /* Locklessly handle the common case where nothing has changed */ | |
627 | if (errseq_check(&mapping->wb_err, old)) { | |
628 | /* Something changed, must use slow path */ | |
629 | spin_lock(&file->f_lock); | |
630 | old = file->f_wb_err; | |
631 | err = errseq_check_and_advance(&mapping->wb_err, | |
632 | &file->f_wb_err); | |
633 | trace_file_check_and_advance_wb_err(file, old); | |
634 | spin_unlock(&file->f_lock); | |
635 | } | |
636 | return err; | |
637 | } | |
638 | EXPORT_SYMBOL(file_check_and_advance_wb_err); | |
639 | ||
640 | /** | |
641 | * file_write_and_wait_range - write out & wait on a file range | |
642 | * @file: file pointing to address_space with pages | |
643 | * @lstart: offset in bytes where the range starts | |
644 | * @lend: offset in bytes where the range ends (inclusive) | |
645 | * | |
646 | * Write out and wait upon file offsets lstart->lend, inclusive. | |
647 | * | |
648 | * Note that @lend is inclusive (describes the last byte to be written) so | |
649 | * that this function can be used to write to the very end-of-file (end = -1). | |
650 | * | |
651 | * After writing out and waiting on the data, we check and advance the | |
652 | * f_wb_err cursor to the latest value, and return any errors detected there. | |
653 | */ | |
654 | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | |
655 | { | |
656 | int err = 0, err2; | |
657 | struct address_space *mapping = file->f_mapping; | |
658 | ||
659 | if ((!dax_mapping(mapping) && mapping->nrpages) || | |
660 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
661 | err = __filemap_fdatawrite_range(mapping, lstart, lend, | |
662 | WB_SYNC_ALL); | |
663 | /* See comment of filemap_write_and_wait() */ | |
664 | if (err != -EIO) | |
665 | __filemap_fdatawait_range(mapping, lstart, lend); | |
666 | } | |
667 | err2 = file_check_and_advance_wb_err(file); | |
668 | if (!err) | |
669 | err = err2; | |
670 | return err; | |
671 | } | |
672 | EXPORT_SYMBOL(file_write_and_wait_range); | |
673 | ||
ef6a3c63 MS |
674 | /** |
675 | * replace_page_cache_page - replace a pagecache page with a new one | |
676 | * @old: page to be replaced | |
677 | * @new: page to replace with | |
678 | * @gfp_mask: allocation mode | |
679 | * | |
680 | * This function replaces a page in the pagecache with a new one. On | |
681 | * success it acquires the pagecache reference for the new page and | |
682 | * drops it for the old page. Both the old and new pages must be | |
683 | * locked. This function does not add the new page to the LRU, the | |
684 | * caller must do that. | |
685 | * | |
686 | * The remove + add is atomic. The only way this function can fail is | |
687 | * memory allocation failure. | |
688 | */ | |
689 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
690 | { | |
691 | int error; | |
ef6a3c63 | 692 | |
309381fe SL |
693 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
694 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
695 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 696 | |
ef6a3c63 MS |
697 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
698 | if (!error) { | |
699 | struct address_space *mapping = old->mapping; | |
700 | void (*freepage)(struct page *); | |
c4843a75 | 701 | unsigned long flags; |
ef6a3c63 MS |
702 | |
703 | pgoff_t offset = old->index; | |
704 | freepage = mapping->a_ops->freepage; | |
705 | ||
09cbfeaf | 706 | get_page(new); |
ef6a3c63 MS |
707 | new->mapping = mapping; |
708 | new->index = offset; | |
709 | ||
c4843a75 | 710 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 711 | __delete_from_page_cache(old, NULL); |
22f2ac51 | 712 | error = page_cache_tree_insert(mapping, new, NULL); |
ef6a3c63 | 713 | BUG_ON(error); |
4165b9b4 MH |
714 | |
715 | /* | |
716 | * hugetlb pages do not participate in page cache accounting. | |
717 | */ | |
718 | if (!PageHuge(new)) | |
11fb9989 | 719 | __inc_node_page_state(new, NR_FILE_PAGES); |
ef6a3c63 | 720 | if (PageSwapBacked(new)) |
11fb9989 | 721 | __inc_node_page_state(new, NR_SHMEM); |
c4843a75 | 722 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6a93ca8f | 723 | mem_cgroup_migrate(old, new); |
ef6a3c63 MS |
724 | radix_tree_preload_end(); |
725 | if (freepage) | |
726 | freepage(old); | |
09cbfeaf | 727 | put_page(old); |
ef6a3c63 MS |
728 | } |
729 | ||
730 | return error; | |
731 | } | |
732 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
733 | ||
a528910e JW |
734 | static int __add_to_page_cache_locked(struct page *page, |
735 | struct address_space *mapping, | |
736 | pgoff_t offset, gfp_t gfp_mask, | |
737 | void **shadowp) | |
1da177e4 | 738 | { |
00501b53 JW |
739 | int huge = PageHuge(page); |
740 | struct mem_cgroup *memcg; | |
e286781d NP |
741 | int error; |
742 | ||
309381fe SL |
743 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
744 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
e286781d | 745 | |
00501b53 JW |
746 | if (!huge) { |
747 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 748 | gfp_mask, &memcg, false); |
00501b53 JW |
749 | if (error) |
750 | return error; | |
751 | } | |
1da177e4 | 752 | |
5e4c0d97 | 753 | error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); |
66a0c8ee | 754 | if (error) { |
00501b53 | 755 | if (!huge) |
f627c2f5 | 756 | mem_cgroup_cancel_charge(page, memcg, false); |
66a0c8ee KS |
757 | return error; |
758 | } | |
759 | ||
09cbfeaf | 760 | get_page(page); |
66a0c8ee KS |
761 | page->mapping = mapping; |
762 | page->index = offset; | |
763 | ||
764 | spin_lock_irq(&mapping->tree_lock); | |
a528910e | 765 | error = page_cache_tree_insert(mapping, page, shadowp); |
66a0c8ee KS |
766 | radix_tree_preload_end(); |
767 | if (unlikely(error)) | |
768 | goto err_insert; | |
4165b9b4 MH |
769 | |
770 | /* hugetlb pages do not participate in page cache accounting. */ | |
771 | if (!huge) | |
11fb9989 | 772 | __inc_node_page_state(page, NR_FILE_PAGES); |
66a0c8ee | 773 | spin_unlock_irq(&mapping->tree_lock); |
00501b53 | 774 | if (!huge) |
f627c2f5 | 775 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
776 | trace_mm_filemap_add_to_page_cache(page); |
777 | return 0; | |
778 | err_insert: | |
779 | page->mapping = NULL; | |
780 | /* Leave page->index set: truncation relies upon it */ | |
781 | spin_unlock_irq(&mapping->tree_lock); | |
00501b53 | 782 | if (!huge) |
f627c2f5 | 783 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 784 | put_page(page); |
1da177e4 LT |
785 | return error; |
786 | } | |
a528910e JW |
787 | |
788 | /** | |
789 | * add_to_page_cache_locked - add a locked page to the pagecache | |
790 | * @page: page to add | |
791 | * @mapping: the page's address_space | |
792 | * @offset: page index | |
793 | * @gfp_mask: page allocation mode | |
794 | * | |
795 | * This function is used to add a page to the pagecache. It must be locked. | |
796 | * This function does not add the page to the LRU. The caller must do that. | |
797 | */ | |
798 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
799 | pgoff_t offset, gfp_t gfp_mask) | |
800 | { | |
801 | return __add_to_page_cache_locked(page, mapping, offset, | |
802 | gfp_mask, NULL); | |
803 | } | |
e286781d | 804 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
805 | |
806 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 807 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 808 | { |
a528910e | 809 | void *shadow = NULL; |
4f98a2fe RR |
810 | int ret; |
811 | ||
48c935ad | 812 | __SetPageLocked(page); |
a528910e JW |
813 | ret = __add_to_page_cache_locked(page, mapping, offset, |
814 | gfp_mask, &shadow); | |
815 | if (unlikely(ret)) | |
48c935ad | 816 | __ClearPageLocked(page); |
a528910e JW |
817 | else { |
818 | /* | |
819 | * The page might have been evicted from cache only | |
820 | * recently, in which case it should be activated like | |
821 | * any other repeatedly accessed page. | |
f0281a00 RR |
822 | * The exception is pages getting rewritten; evicting other |
823 | * data from the working set, only to cache data that will | |
824 | * get overwritten with something else, is a waste of memory. | |
a528910e | 825 | */ |
f0281a00 RR |
826 | if (!(gfp_mask & __GFP_WRITE) && |
827 | shadow && workingset_refault(shadow)) { | |
a528910e JW |
828 | SetPageActive(page); |
829 | workingset_activation(page); | |
830 | } else | |
831 | ClearPageActive(page); | |
832 | lru_cache_add(page); | |
833 | } | |
1da177e4 LT |
834 | return ret; |
835 | } | |
18bc0bbd | 836 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 837 | |
44110fe3 | 838 | #ifdef CONFIG_NUMA |
2ae88149 | 839 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 840 | { |
c0ff7453 MX |
841 | int n; |
842 | struct page *page; | |
843 | ||
44110fe3 | 844 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
845 | unsigned int cpuset_mems_cookie; |
846 | do { | |
d26914d1 | 847 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 848 | n = cpuset_mem_spread_node(); |
96db800f | 849 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 850 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 851 | |
c0ff7453 | 852 | return page; |
44110fe3 | 853 | } |
2ae88149 | 854 | return alloc_pages(gfp, 0); |
44110fe3 | 855 | } |
2ae88149 | 856 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
857 | #endif |
858 | ||
1da177e4 LT |
859 | /* |
860 | * In order to wait for pages to become available there must be | |
861 | * waitqueues associated with pages. By using a hash table of | |
862 | * waitqueues where the bucket discipline is to maintain all | |
863 | * waiters on the same queue and wake all when any of the pages | |
864 | * become available, and for the woken contexts to check to be | |
865 | * sure the appropriate page became available, this saves space | |
866 | * at a cost of "thundering herd" phenomena during rare hash | |
867 | * collisions. | |
868 | */ | |
62906027 NP |
869 | #define PAGE_WAIT_TABLE_BITS 8 |
870 | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | |
871 | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | |
872 | ||
873 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
1da177e4 | 874 | { |
62906027 | 875 | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; |
1da177e4 | 876 | } |
1da177e4 | 877 | |
62906027 | 878 | void __init pagecache_init(void) |
1da177e4 | 879 | { |
62906027 | 880 | int i; |
1da177e4 | 881 | |
62906027 NP |
882 | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) |
883 | init_waitqueue_head(&page_wait_table[i]); | |
884 | ||
885 | page_writeback_init(); | |
1da177e4 | 886 | } |
1da177e4 | 887 | |
62906027 NP |
888 | struct wait_page_key { |
889 | struct page *page; | |
890 | int bit_nr; | |
891 | int page_match; | |
892 | }; | |
893 | ||
894 | struct wait_page_queue { | |
895 | struct page *page; | |
896 | int bit_nr; | |
ac6424b9 | 897 | wait_queue_entry_t wait; |
62906027 NP |
898 | }; |
899 | ||
ac6424b9 | 900 | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) |
f62e00cc | 901 | { |
62906027 NP |
902 | struct wait_page_key *key = arg; |
903 | struct wait_page_queue *wait_page | |
904 | = container_of(wait, struct wait_page_queue, wait); | |
905 | ||
906 | if (wait_page->page != key->page) | |
907 | return 0; | |
908 | key->page_match = 1; | |
f62e00cc | 909 | |
62906027 NP |
910 | if (wait_page->bit_nr != key->bit_nr) |
911 | return 0; | |
912 | if (test_bit(key->bit_nr, &key->page->flags)) | |
f62e00cc KM |
913 | return 0; |
914 | ||
62906027 | 915 | return autoremove_wake_function(wait, mode, sync, key); |
f62e00cc KM |
916 | } |
917 | ||
74d81bfa | 918 | static void wake_up_page_bit(struct page *page, int bit_nr) |
cbbce822 | 919 | { |
62906027 NP |
920 | wait_queue_head_t *q = page_waitqueue(page); |
921 | struct wait_page_key key; | |
922 | unsigned long flags; | |
cbbce822 | 923 | |
62906027 NP |
924 | key.page = page; |
925 | key.bit_nr = bit_nr; | |
926 | key.page_match = 0; | |
927 | ||
928 | spin_lock_irqsave(&q->lock, flags); | |
929 | __wake_up_locked_key(q, TASK_NORMAL, &key); | |
930 | /* | |
931 | * It is possible for other pages to have collided on the waitqueue | |
932 | * hash, so in that case check for a page match. That prevents a long- | |
933 | * term waiter | |
934 | * | |
935 | * It is still possible to miss a case here, when we woke page waiters | |
936 | * and removed them from the waitqueue, but there are still other | |
937 | * page waiters. | |
938 | */ | |
939 | if (!waitqueue_active(q) || !key.page_match) { | |
940 | ClearPageWaiters(page); | |
941 | /* | |
942 | * It's possible to miss clearing Waiters here, when we woke | |
943 | * our page waiters, but the hashed waitqueue has waiters for | |
944 | * other pages on it. | |
945 | * | |
946 | * That's okay, it's a rare case. The next waker will clear it. | |
947 | */ | |
948 | } | |
949 | spin_unlock_irqrestore(&q->lock, flags); | |
950 | } | |
74d81bfa NP |
951 | |
952 | static void wake_up_page(struct page *page, int bit) | |
953 | { | |
954 | if (!PageWaiters(page)) | |
955 | return; | |
956 | wake_up_page_bit(page, bit); | |
957 | } | |
62906027 NP |
958 | |
959 | static inline int wait_on_page_bit_common(wait_queue_head_t *q, | |
960 | struct page *page, int bit_nr, int state, bool lock) | |
961 | { | |
962 | struct wait_page_queue wait_page; | |
ac6424b9 | 963 | wait_queue_entry_t *wait = &wait_page.wait; |
62906027 NP |
964 | int ret = 0; |
965 | ||
966 | init_wait(wait); | |
967 | wait->func = wake_page_function; | |
968 | wait_page.page = page; | |
969 | wait_page.bit_nr = bit_nr; | |
970 | ||
971 | for (;;) { | |
972 | spin_lock_irq(&q->lock); | |
973 | ||
2055da97 | 974 | if (likely(list_empty(&wait->entry))) { |
62906027 | 975 | if (lock) |
ac6424b9 | 976 | __add_wait_queue_entry_tail_exclusive(q, wait); |
62906027 NP |
977 | else |
978 | __add_wait_queue(q, wait); | |
979 | SetPageWaiters(page); | |
980 | } | |
981 | ||
982 | set_current_state(state); | |
983 | ||
984 | spin_unlock_irq(&q->lock); | |
985 | ||
986 | if (likely(test_bit(bit_nr, &page->flags))) { | |
987 | io_schedule(); | |
988 | if (unlikely(signal_pending_state(state, current))) { | |
989 | ret = -EINTR; | |
990 | break; | |
991 | } | |
992 | } | |
993 | ||
994 | if (lock) { | |
995 | if (!test_and_set_bit_lock(bit_nr, &page->flags)) | |
996 | break; | |
997 | } else { | |
998 | if (!test_bit(bit_nr, &page->flags)) | |
999 | break; | |
1000 | } | |
1001 | } | |
1002 | ||
1003 | finish_wait(q, wait); | |
1004 | ||
1005 | /* | |
1006 | * A signal could leave PageWaiters set. Clearing it here if | |
1007 | * !waitqueue_active would be possible (by open-coding finish_wait), | |
1008 | * but still fail to catch it in the case of wait hash collision. We | |
1009 | * already can fail to clear wait hash collision cases, so don't | |
1010 | * bother with signals either. | |
1011 | */ | |
1012 | ||
1013 | return ret; | |
1014 | } | |
1015 | ||
1016 | void wait_on_page_bit(struct page *page, int bit_nr) | |
1017 | { | |
1018 | wait_queue_head_t *q = page_waitqueue(page); | |
1019 | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); | |
1020 | } | |
1021 | EXPORT_SYMBOL(wait_on_page_bit); | |
1022 | ||
1023 | int wait_on_page_bit_killable(struct page *page, int bit_nr) | |
1024 | { | |
1025 | wait_queue_head_t *q = page_waitqueue(page); | |
1026 | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); | |
cbbce822 | 1027 | } |
cbbce822 | 1028 | |
385e1ca5 DH |
1029 | /** |
1030 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
1031 | * @page: Page defining the wait queue of interest |
1032 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
1033 | * |
1034 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
1035 | */ | |
ac6424b9 | 1036 | void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) |
385e1ca5 DH |
1037 | { |
1038 | wait_queue_head_t *q = page_waitqueue(page); | |
1039 | unsigned long flags; | |
1040 | ||
1041 | spin_lock_irqsave(&q->lock, flags); | |
1042 | __add_wait_queue(q, waiter); | |
62906027 | 1043 | SetPageWaiters(page); |
385e1ca5 DH |
1044 | spin_unlock_irqrestore(&q->lock, flags); |
1045 | } | |
1046 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
1047 | ||
b91e1302 LT |
1048 | #ifndef clear_bit_unlock_is_negative_byte |
1049 | ||
1050 | /* | |
1051 | * PG_waiters is the high bit in the same byte as PG_lock. | |
1052 | * | |
1053 | * On x86 (and on many other architectures), we can clear PG_lock and | |
1054 | * test the sign bit at the same time. But if the architecture does | |
1055 | * not support that special operation, we just do this all by hand | |
1056 | * instead. | |
1057 | * | |
1058 | * The read of PG_waiters has to be after (or concurrently with) PG_locked | |
1059 | * being cleared, but a memory barrier should be unneccssary since it is | |
1060 | * in the same byte as PG_locked. | |
1061 | */ | |
1062 | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | |
1063 | { | |
1064 | clear_bit_unlock(nr, mem); | |
1065 | /* smp_mb__after_atomic(); */ | |
98473f9f | 1066 | return test_bit(PG_waiters, mem); |
b91e1302 LT |
1067 | } |
1068 | ||
1069 | #endif | |
1070 | ||
1da177e4 | 1071 | /** |
485bb99b | 1072 | * unlock_page - unlock a locked page |
1da177e4 LT |
1073 | * @page: the page |
1074 | * | |
1075 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
1076 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 1077 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
1078 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
1079 | * | |
b91e1302 LT |
1080 | * Note that this depends on PG_waiters being the sign bit in the byte |
1081 | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | |
1082 | * clear the PG_locked bit and test PG_waiters at the same time fairly | |
1083 | * portably (architectures that do LL/SC can test any bit, while x86 can | |
1084 | * test the sign bit). | |
1da177e4 | 1085 | */ |
920c7a5d | 1086 | void unlock_page(struct page *page) |
1da177e4 | 1087 | { |
b91e1302 | 1088 | BUILD_BUG_ON(PG_waiters != 7); |
48c935ad | 1089 | page = compound_head(page); |
309381fe | 1090 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
b91e1302 LT |
1091 | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) |
1092 | wake_up_page_bit(page, PG_locked); | |
1da177e4 LT |
1093 | } |
1094 | EXPORT_SYMBOL(unlock_page); | |
1095 | ||
485bb99b RD |
1096 | /** |
1097 | * end_page_writeback - end writeback against a page | |
1098 | * @page: the page | |
1da177e4 LT |
1099 | */ |
1100 | void end_page_writeback(struct page *page) | |
1101 | { | |
888cf2db MG |
1102 | /* |
1103 | * TestClearPageReclaim could be used here but it is an atomic | |
1104 | * operation and overkill in this particular case. Failing to | |
1105 | * shuffle a page marked for immediate reclaim is too mild to | |
1106 | * justify taking an atomic operation penalty at the end of | |
1107 | * ever page writeback. | |
1108 | */ | |
1109 | if (PageReclaim(page)) { | |
1110 | ClearPageReclaim(page); | |
ac6aadb2 | 1111 | rotate_reclaimable_page(page); |
888cf2db | 1112 | } |
ac6aadb2 MS |
1113 | |
1114 | if (!test_clear_page_writeback(page)) | |
1115 | BUG(); | |
1116 | ||
4e857c58 | 1117 | smp_mb__after_atomic(); |
1da177e4 LT |
1118 | wake_up_page(page, PG_writeback); |
1119 | } | |
1120 | EXPORT_SYMBOL(end_page_writeback); | |
1121 | ||
57d99845 MW |
1122 | /* |
1123 | * After completing I/O on a page, call this routine to update the page | |
1124 | * flags appropriately | |
1125 | */ | |
c11f0c0b | 1126 | void page_endio(struct page *page, bool is_write, int err) |
57d99845 | 1127 | { |
c11f0c0b | 1128 | if (!is_write) { |
57d99845 MW |
1129 | if (!err) { |
1130 | SetPageUptodate(page); | |
1131 | } else { | |
1132 | ClearPageUptodate(page); | |
1133 | SetPageError(page); | |
1134 | } | |
1135 | unlock_page(page); | |
abf54548 | 1136 | } else { |
57d99845 | 1137 | if (err) { |
dd8416c4 MK |
1138 | struct address_space *mapping; |
1139 | ||
57d99845 | 1140 | SetPageError(page); |
dd8416c4 MK |
1141 | mapping = page_mapping(page); |
1142 | if (mapping) | |
1143 | mapping_set_error(mapping, err); | |
57d99845 MW |
1144 | } |
1145 | end_page_writeback(page); | |
1146 | } | |
1147 | } | |
1148 | EXPORT_SYMBOL_GPL(page_endio); | |
1149 | ||
485bb99b RD |
1150 | /** |
1151 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
87066755 | 1152 | * @__page: the page to lock |
1da177e4 | 1153 | */ |
62906027 | 1154 | void __lock_page(struct page *__page) |
1da177e4 | 1155 | { |
62906027 NP |
1156 | struct page *page = compound_head(__page); |
1157 | wait_queue_head_t *q = page_waitqueue(page); | |
1158 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); | |
1da177e4 LT |
1159 | } |
1160 | EXPORT_SYMBOL(__lock_page); | |
1161 | ||
62906027 | 1162 | int __lock_page_killable(struct page *__page) |
2687a356 | 1163 | { |
62906027 NP |
1164 | struct page *page = compound_head(__page); |
1165 | wait_queue_head_t *q = page_waitqueue(page); | |
1166 | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); | |
2687a356 | 1167 | } |
18bc0bbd | 1168 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 1169 | |
9a95f3cf PC |
1170 | /* |
1171 | * Return values: | |
1172 | * 1 - page is locked; mmap_sem is still held. | |
1173 | * 0 - page is not locked. | |
1174 | * mmap_sem has been released (up_read()), unless flags had both | |
1175 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
1176 | * which case mmap_sem is still held. | |
1177 | * | |
1178 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
1179 | * with the page locked and the mmap_sem unperturbed. | |
1180 | */ | |
d065bd81 ML |
1181 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
1182 | unsigned int flags) | |
1183 | { | |
37b23e05 KM |
1184 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
1185 | /* | |
1186 | * CAUTION! In this case, mmap_sem is not released | |
1187 | * even though return 0. | |
1188 | */ | |
1189 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
1190 | return 0; | |
1191 | ||
1192 | up_read(&mm->mmap_sem); | |
1193 | if (flags & FAULT_FLAG_KILLABLE) | |
1194 | wait_on_page_locked_killable(page); | |
1195 | else | |
318b275f | 1196 | wait_on_page_locked(page); |
d065bd81 | 1197 | return 0; |
37b23e05 KM |
1198 | } else { |
1199 | if (flags & FAULT_FLAG_KILLABLE) { | |
1200 | int ret; | |
1201 | ||
1202 | ret = __lock_page_killable(page); | |
1203 | if (ret) { | |
1204 | up_read(&mm->mmap_sem); | |
1205 | return 0; | |
1206 | } | |
1207 | } else | |
1208 | __lock_page(page); | |
1209 | return 1; | |
d065bd81 ML |
1210 | } |
1211 | } | |
1212 | ||
e7b563bb JW |
1213 | /** |
1214 | * page_cache_next_hole - find the next hole (not-present entry) | |
1215 | * @mapping: mapping | |
1216 | * @index: index | |
1217 | * @max_scan: maximum range to search | |
1218 | * | |
1219 | * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the | |
1220 | * lowest indexed hole. | |
1221 | * | |
1222 | * Returns: the index of the hole if found, otherwise returns an index | |
1223 | * outside of the set specified (in which case 'return - index >= | |
1224 | * max_scan' will be true). In rare cases of index wrap-around, 0 will | |
1225 | * be returned. | |
1226 | * | |
1227 | * page_cache_next_hole may be called under rcu_read_lock. However, | |
1228 | * like radix_tree_gang_lookup, this will not atomically search a | |
1229 | * snapshot of the tree at a single point in time. For example, if a | |
1230 | * hole is created at index 5, then subsequently a hole is created at | |
1231 | * index 10, page_cache_next_hole covering both indexes may return 10 | |
1232 | * if called under rcu_read_lock. | |
1233 | */ | |
1234 | pgoff_t page_cache_next_hole(struct address_space *mapping, | |
1235 | pgoff_t index, unsigned long max_scan) | |
1236 | { | |
1237 | unsigned long i; | |
1238 | ||
1239 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1240 | struct page *page; |
1241 | ||
1242 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1243 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1244 | break; |
1245 | index++; | |
1246 | if (index == 0) | |
1247 | break; | |
1248 | } | |
1249 | ||
1250 | return index; | |
1251 | } | |
1252 | EXPORT_SYMBOL(page_cache_next_hole); | |
1253 | ||
1254 | /** | |
1255 | * page_cache_prev_hole - find the prev hole (not-present entry) | |
1256 | * @mapping: mapping | |
1257 | * @index: index | |
1258 | * @max_scan: maximum range to search | |
1259 | * | |
1260 | * Search backwards in the range [max(index-max_scan+1, 0), index] for | |
1261 | * the first hole. | |
1262 | * | |
1263 | * Returns: the index of the hole if found, otherwise returns an index | |
1264 | * outside of the set specified (in which case 'index - return >= | |
1265 | * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX | |
1266 | * will be returned. | |
1267 | * | |
1268 | * page_cache_prev_hole may be called under rcu_read_lock. However, | |
1269 | * like radix_tree_gang_lookup, this will not atomically search a | |
1270 | * snapshot of the tree at a single point in time. For example, if a | |
1271 | * hole is created at index 10, then subsequently a hole is created at | |
1272 | * index 5, page_cache_prev_hole covering both indexes may return 5 if | |
1273 | * called under rcu_read_lock. | |
1274 | */ | |
1275 | pgoff_t page_cache_prev_hole(struct address_space *mapping, | |
1276 | pgoff_t index, unsigned long max_scan) | |
1277 | { | |
1278 | unsigned long i; | |
1279 | ||
1280 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1281 | struct page *page; |
1282 | ||
1283 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1284 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1285 | break; |
1286 | index--; | |
1287 | if (index == ULONG_MAX) | |
1288 | break; | |
1289 | } | |
1290 | ||
1291 | return index; | |
1292 | } | |
1293 | EXPORT_SYMBOL(page_cache_prev_hole); | |
1294 | ||
485bb99b | 1295 | /** |
0cd6144a | 1296 | * find_get_entry - find and get a page cache entry |
485bb99b | 1297 | * @mapping: the address_space to search |
0cd6144a JW |
1298 | * @offset: the page cache index |
1299 | * | |
1300 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1301 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1302 | * |
139b6a6f JW |
1303 | * If the slot holds a shadow entry of a previously evicted page, or a |
1304 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1305 | * |
1306 | * Otherwise, %NULL is returned. | |
1da177e4 | 1307 | */ |
0cd6144a | 1308 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1309 | { |
a60637c8 | 1310 | void **pagep; |
83929372 | 1311 | struct page *head, *page; |
1da177e4 | 1312 | |
a60637c8 NP |
1313 | rcu_read_lock(); |
1314 | repeat: | |
1315 | page = NULL; | |
1316 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | |
1317 | if (pagep) { | |
1318 | page = radix_tree_deref_slot(pagep); | |
27d20fdd NP |
1319 | if (unlikely(!page)) |
1320 | goto out; | |
a2c16d6c | 1321 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1322 | if (radix_tree_deref_retry(page)) |
1323 | goto repeat; | |
1324 | /* | |
139b6a6f JW |
1325 | * A shadow entry of a recently evicted page, |
1326 | * or a swap entry from shmem/tmpfs. Return | |
1327 | * it without attempting to raise page count. | |
8079b1c8 HD |
1328 | */ |
1329 | goto out; | |
a2c16d6c | 1330 | } |
83929372 KS |
1331 | |
1332 | head = compound_head(page); | |
1333 | if (!page_cache_get_speculative(head)) | |
1334 | goto repeat; | |
1335 | ||
1336 | /* The page was split under us? */ | |
1337 | if (compound_head(page) != head) { | |
1338 | put_page(head); | |
a60637c8 | 1339 | goto repeat; |
83929372 | 1340 | } |
a60637c8 NP |
1341 | |
1342 | /* | |
1343 | * Has the page moved? | |
1344 | * This is part of the lockless pagecache protocol. See | |
1345 | * include/linux/pagemap.h for details. | |
1346 | */ | |
1347 | if (unlikely(page != *pagep)) { | |
83929372 | 1348 | put_page(head); |
a60637c8 NP |
1349 | goto repeat; |
1350 | } | |
1351 | } | |
27d20fdd | 1352 | out: |
a60637c8 NP |
1353 | rcu_read_unlock(); |
1354 | ||
1da177e4 LT |
1355 | return page; |
1356 | } | |
0cd6144a | 1357 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1358 | |
0cd6144a JW |
1359 | /** |
1360 | * find_lock_entry - locate, pin and lock a page cache entry | |
1361 | * @mapping: the address_space to search | |
1362 | * @offset: the page cache index | |
1363 | * | |
1364 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1365 | * page cache page, it is returned locked and with an increased | |
1366 | * refcount. | |
1367 | * | |
139b6a6f JW |
1368 | * If the slot holds a shadow entry of a previously evicted page, or a |
1369 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1370 | * |
1371 | * Otherwise, %NULL is returned. | |
1372 | * | |
1373 | * find_lock_entry() may sleep. | |
1374 | */ | |
1375 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1376 | { |
1377 | struct page *page; | |
1378 | ||
1da177e4 | 1379 | repeat: |
0cd6144a | 1380 | page = find_get_entry(mapping, offset); |
a2c16d6c | 1381 | if (page && !radix_tree_exception(page)) { |
a60637c8 NP |
1382 | lock_page(page); |
1383 | /* Has the page been truncated? */ | |
83929372 | 1384 | if (unlikely(page_mapping(page) != mapping)) { |
a60637c8 | 1385 | unlock_page(page); |
09cbfeaf | 1386 | put_page(page); |
a60637c8 | 1387 | goto repeat; |
1da177e4 | 1388 | } |
83929372 | 1389 | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); |
1da177e4 | 1390 | } |
1da177e4 LT |
1391 | return page; |
1392 | } | |
0cd6144a JW |
1393 | EXPORT_SYMBOL(find_lock_entry); |
1394 | ||
1395 | /** | |
2457aec6 | 1396 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1397 | * @mapping: the address_space to search |
1398 | * @offset: the page index | |
2457aec6 | 1399 | * @fgp_flags: PCG flags |
45f87de5 | 1400 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1401 | * |
2457aec6 | 1402 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1403 | * |
75325189 | 1404 | * PCG flags modify how the page is returned. |
0cd6144a | 1405 | * |
0e056eb5 MCC |
1406 | * @fgp_flags can be: |
1407 | * | |
1408 | * - FGP_ACCESSED: the page will be marked accessed | |
1409 | * - FGP_LOCK: Page is return locked | |
1410 | * - FGP_CREAT: If page is not present then a new page is allocated using | |
1411 | * @gfp_mask and added to the page cache and the VM's LRU | |
1412 | * list. The page is returned locked and with an increased | |
1413 | * refcount. Otherwise, NULL is returned. | |
1da177e4 | 1414 | * |
2457aec6 MG |
1415 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1416 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1417 | * |
2457aec6 | 1418 | * If there is a page cache page, it is returned with an increased refcount. |
1da177e4 | 1419 | */ |
2457aec6 | 1420 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1421 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1422 | { |
eb2be189 | 1423 | struct page *page; |
2457aec6 | 1424 | |
1da177e4 | 1425 | repeat: |
2457aec6 MG |
1426 | page = find_get_entry(mapping, offset); |
1427 | if (radix_tree_exceptional_entry(page)) | |
1428 | page = NULL; | |
1429 | if (!page) | |
1430 | goto no_page; | |
1431 | ||
1432 | if (fgp_flags & FGP_LOCK) { | |
1433 | if (fgp_flags & FGP_NOWAIT) { | |
1434 | if (!trylock_page(page)) { | |
09cbfeaf | 1435 | put_page(page); |
2457aec6 MG |
1436 | return NULL; |
1437 | } | |
1438 | } else { | |
1439 | lock_page(page); | |
1440 | } | |
1441 | ||
1442 | /* Has the page been truncated? */ | |
1443 | if (unlikely(page->mapping != mapping)) { | |
1444 | unlock_page(page); | |
09cbfeaf | 1445 | put_page(page); |
2457aec6 MG |
1446 | goto repeat; |
1447 | } | |
1448 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1449 | } | |
1450 | ||
1451 | if (page && (fgp_flags & FGP_ACCESSED)) | |
1452 | mark_page_accessed(page); | |
1453 | ||
1454 | no_page: | |
1455 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1456 | int err; | |
1457 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1458 | gfp_mask |= __GFP_WRITE; |
1459 | if (fgp_flags & FGP_NOFS) | |
1460 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1461 | |
45f87de5 | 1462 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1463 | if (!page) |
1464 | return NULL; | |
2457aec6 MG |
1465 | |
1466 | if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) | |
1467 | fgp_flags |= FGP_LOCK; | |
1468 | ||
eb39d618 | 1469 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1470 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1471 | __SetPageReferenced(page); |
2457aec6 | 1472 | |
45f87de5 MH |
1473 | err = add_to_page_cache_lru(page, mapping, offset, |
1474 | gfp_mask & GFP_RECLAIM_MASK); | |
eb2be189 | 1475 | if (unlikely(err)) { |
09cbfeaf | 1476 | put_page(page); |
eb2be189 NP |
1477 | page = NULL; |
1478 | if (err == -EEXIST) | |
1479 | goto repeat; | |
1da177e4 | 1480 | } |
1da177e4 | 1481 | } |
2457aec6 | 1482 | |
1da177e4 LT |
1483 | return page; |
1484 | } | |
2457aec6 | 1485 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1486 | |
0cd6144a JW |
1487 | /** |
1488 | * find_get_entries - gang pagecache lookup | |
1489 | * @mapping: The address_space to search | |
1490 | * @start: The starting page cache index | |
1491 | * @nr_entries: The maximum number of entries | |
1492 | * @entries: Where the resulting entries are placed | |
1493 | * @indices: The cache indices corresponding to the entries in @entries | |
1494 | * | |
1495 | * find_get_entries() will search for and return a group of up to | |
1496 | * @nr_entries entries in the mapping. The entries are placed at | |
1497 | * @entries. find_get_entries() takes a reference against any actual | |
1498 | * pages it returns. | |
1499 | * | |
1500 | * The search returns a group of mapping-contiguous page cache entries | |
1501 | * with ascending indexes. There may be holes in the indices due to | |
1502 | * not-present pages. | |
1503 | * | |
139b6a6f JW |
1504 | * Any shadow entries of evicted pages, or swap entries from |
1505 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a JW |
1506 | * |
1507 | * find_get_entries() returns the number of pages and shadow entries | |
1508 | * which were found. | |
1509 | */ | |
1510 | unsigned find_get_entries(struct address_space *mapping, | |
1511 | pgoff_t start, unsigned int nr_entries, | |
1512 | struct page **entries, pgoff_t *indices) | |
1513 | { | |
1514 | void **slot; | |
1515 | unsigned int ret = 0; | |
1516 | struct radix_tree_iter iter; | |
1517 | ||
1518 | if (!nr_entries) | |
1519 | return 0; | |
1520 | ||
1521 | rcu_read_lock(); | |
0cd6144a | 1522 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
83929372 | 1523 | struct page *head, *page; |
0cd6144a JW |
1524 | repeat: |
1525 | page = radix_tree_deref_slot(slot); | |
1526 | if (unlikely(!page)) | |
1527 | continue; | |
1528 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
1529 | if (radix_tree_deref_retry(page)) { |
1530 | slot = radix_tree_iter_retry(&iter); | |
1531 | continue; | |
1532 | } | |
0cd6144a | 1533 | /* |
f9fe48be RZ |
1534 | * A shadow entry of a recently evicted page, a swap |
1535 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1536 | * without attempting to raise page count. | |
0cd6144a JW |
1537 | */ |
1538 | goto export; | |
1539 | } | |
83929372 KS |
1540 | |
1541 | head = compound_head(page); | |
1542 | if (!page_cache_get_speculative(head)) | |
1543 | goto repeat; | |
1544 | ||
1545 | /* The page was split under us? */ | |
1546 | if (compound_head(page) != head) { | |
1547 | put_page(head); | |
0cd6144a | 1548 | goto repeat; |
83929372 | 1549 | } |
0cd6144a JW |
1550 | |
1551 | /* Has the page moved? */ | |
1552 | if (unlikely(page != *slot)) { | |
83929372 | 1553 | put_page(head); |
0cd6144a JW |
1554 | goto repeat; |
1555 | } | |
1556 | export: | |
1557 | indices[ret] = iter.index; | |
1558 | entries[ret] = page; | |
1559 | if (++ret == nr_entries) | |
1560 | break; | |
1561 | } | |
1562 | rcu_read_unlock(); | |
1563 | return ret; | |
1564 | } | |
1565 | ||
1da177e4 LT |
1566 | /** |
1567 | * find_get_pages - gang pagecache lookup | |
1568 | * @mapping: The address_space to search | |
1569 | * @start: The starting page index | |
1570 | * @nr_pages: The maximum number of pages | |
1571 | * @pages: Where the resulting pages are placed | |
1572 | * | |
1573 | * find_get_pages() will search for and return a group of up to | |
1574 | * @nr_pages pages in the mapping. The pages are placed at @pages. | |
1575 | * find_get_pages() takes a reference against the returned pages. | |
1576 | * | |
1577 | * The search returns a group of mapping-contiguous pages with ascending | |
1578 | * indexes. There may be holes in the indices due to not-present pages. | |
1579 | * | |
1580 | * find_get_pages() returns the number of pages which were found. | |
1581 | */ | |
1582 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |
1583 | unsigned int nr_pages, struct page **pages) | |
1584 | { | |
0fc9d104 KK |
1585 | struct radix_tree_iter iter; |
1586 | void **slot; | |
1587 | unsigned ret = 0; | |
1588 | ||
1589 | if (unlikely(!nr_pages)) | |
1590 | return 0; | |
a60637c8 NP |
1591 | |
1592 | rcu_read_lock(); | |
0fc9d104 | 1593 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
83929372 | 1594 | struct page *head, *page; |
a60637c8 | 1595 | repeat: |
0fc9d104 | 1596 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1597 | if (unlikely(!page)) |
1598 | continue; | |
9d8aa4ea | 1599 | |
a2c16d6c | 1600 | if (radix_tree_exception(page)) { |
8079b1c8 | 1601 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1602 | slot = radix_tree_iter_retry(&iter); |
1603 | continue; | |
8079b1c8 | 1604 | } |
a2c16d6c | 1605 | /* |
139b6a6f JW |
1606 | * A shadow entry of a recently evicted page, |
1607 | * or a swap entry from shmem/tmpfs. Skip | |
1608 | * over it. | |
a2c16d6c | 1609 | */ |
8079b1c8 | 1610 | continue; |
27d20fdd | 1611 | } |
a60637c8 | 1612 | |
83929372 KS |
1613 | head = compound_head(page); |
1614 | if (!page_cache_get_speculative(head)) | |
1615 | goto repeat; | |
1616 | ||
1617 | /* The page was split under us? */ | |
1618 | if (compound_head(page) != head) { | |
1619 | put_page(head); | |
a60637c8 | 1620 | goto repeat; |
83929372 | 1621 | } |
a60637c8 NP |
1622 | |
1623 | /* Has the page moved? */ | |
0fc9d104 | 1624 | if (unlikely(page != *slot)) { |
83929372 | 1625 | put_page(head); |
a60637c8 NP |
1626 | goto repeat; |
1627 | } | |
1da177e4 | 1628 | |
a60637c8 | 1629 | pages[ret] = page; |
0fc9d104 KK |
1630 | if (++ret == nr_pages) |
1631 | break; | |
a60637c8 | 1632 | } |
5b280c0c | 1633 | |
a60637c8 | 1634 | rcu_read_unlock(); |
1da177e4 LT |
1635 | return ret; |
1636 | } | |
1637 | ||
ebf43500 JA |
1638 | /** |
1639 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1640 | * @mapping: The address_space to search | |
1641 | * @index: The starting page index | |
1642 | * @nr_pages: The maximum number of pages | |
1643 | * @pages: Where the resulting pages are placed | |
1644 | * | |
1645 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1646 | * that the returned number of pages are guaranteed to be contiguous. | |
1647 | * | |
1648 | * find_get_pages_contig() returns the number of pages which were found. | |
1649 | */ | |
1650 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1651 | unsigned int nr_pages, struct page **pages) | |
1652 | { | |
0fc9d104 KK |
1653 | struct radix_tree_iter iter; |
1654 | void **slot; | |
1655 | unsigned int ret = 0; | |
1656 | ||
1657 | if (unlikely(!nr_pages)) | |
1658 | return 0; | |
a60637c8 NP |
1659 | |
1660 | rcu_read_lock(); | |
0fc9d104 | 1661 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
83929372 | 1662 | struct page *head, *page; |
a60637c8 | 1663 | repeat: |
0fc9d104 KK |
1664 | page = radix_tree_deref_slot(slot); |
1665 | /* The hole, there no reason to continue */ | |
a60637c8 | 1666 | if (unlikely(!page)) |
0fc9d104 | 1667 | break; |
9d8aa4ea | 1668 | |
a2c16d6c | 1669 | if (radix_tree_exception(page)) { |
8079b1c8 | 1670 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1671 | slot = radix_tree_iter_retry(&iter); |
1672 | continue; | |
8079b1c8 | 1673 | } |
a2c16d6c | 1674 | /* |
139b6a6f JW |
1675 | * A shadow entry of a recently evicted page, |
1676 | * or a swap entry from shmem/tmpfs. Stop | |
1677 | * looking for contiguous pages. | |
a2c16d6c | 1678 | */ |
8079b1c8 | 1679 | break; |
a2c16d6c | 1680 | } |
ebf43500 | 1681 | |
83929372 KS |
1682 | head = compound_head(page); |
1683 | if (!page_cache_get_speculative(head)) | |
1684 | goto repeat; | |
1685 | ||
1686 | /* The page was split under us? */ | |
1687 | if (compound_head(page) != head) { | |
1688 | put_page(head); | |
a60637c8 | 1689 | goto repeat; |
83929372 | 1690 | } |
a60637c8 NP |
1691 | |
1692 | /* Has the page moved? */ | |
0fc9d104 | 1693 | if (unlikely(page != *slot)) { |
83929372 | 1694 | put_page(head); |
a60637c8 NP |
1695 | goto repeat; |
1696 | } | |
1697 | ||
9cbb4cb2 NP |
1698 | /* |
1699 | * must check mapping and index after taking the ref. | |
1700 | * otherwise we can get both false positives and false | |
1701 | * negatives, which is just confusing to the caller. | |
1702 | */ | |
83929372 | 1703 | if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { |
09cbfeaf | 1704 | put_page(page); |
9cbb4cb2 NP |
1705 | break; |
1706 | } | |
1707 | ||
a60637c8 | 1708 | pages[ret] = page; |
0fc9d104 KK |
1709 | if (++ret == nr_pages) |
1710 | break; | |
ebf43500 | 1711 | } |
a60637c8 NP |
1712 | rcu_read_unlock(); |
1713 | return ret; | |
ebf43500 | 1714 | } |
ef71c15c | 1715 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1716 | |
485bb99b RD |
1717 | /** |
1718 | * find_get_pages_tag - find and return pages that match @tag | |
1719 | * @mapping: the address_space to search | |
1720 | * @index: the starting page index | |
1721 | * @tag: the tag index | |
1722 | * @nr_pages: the maximum number of pages | |
1723 | * @pages: where the resulting pages are placed | |
1724 | * | |
1da177e4 | 1725 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1726 | * @tag. We update @index to index the next page for the traversal. |
1da177e4 LT |
1727 | */ |
1728 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |
1729 | int tag, unsigned int nr_pages, struct page **pages) | |
1730 | { | |
0fc9d104 KK |
1731 | struct radix_tree_iter iter; |
1732 | void **slot; | |
1733 | unsigned ret = 0; | |
1734 | ||
1735 | if (unlikely(!nr_pages)) | |
1736 | return 0; | |
a60637c8 NP |
1737 | |
1738 | rcu_read_lock(); | |
0fc9d104 KK |
1739 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1740 | &iter, *index, tag) { | |
83929372 | 1741 | struct page *head, *page; |
a60637c8 | 1742 | repeat: |
0fc9d104 | 1743 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1744 | if (unlikely(!page)) |
1745 | continue; | |
9d8aa4ea | 1746 | |
a2c16d6c | 1747 | if (radix_tree_exception(page)) { |
8079b1c8 | 1748 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1749 | slot = radix_tree_iter_retry(&iter); |
1750 | continue; | |
8079b1c8 | 1751 | } |
a2c16d6c | 1752 | /* |
139b6a6f JW |
1753 | * A shadow entry of a recently evicted page. |
1754 | * | |
1755 | * Those entries should never be tagged, but | |
1756 | * this tree walk is lockless and the tags are | |
1757 | * looked up in bulk, one radix tree node at a | |
1758 | * time, so there is a sizable window for page | |
1759 | * reclaim to evict a page we saw tagged. | |
1760 | * | |
1761 | * Skip over it. | |
a2c16d6c | 1762 | */ |
139b6a6f | 1763 | continue; |
a2c16d6c | 1764 | } |
a60637c8 | 1765 | |
83929372 KS |
1766 | head = compound_head(page); |
1767 | if (!page_cache_get_speculative(head)) | |
a60637c8 NP |
1768 | goto repeat; |
1769 | ||
83929372 KS |
1770 | /* The page was split under us? */ |
1771 | if (compound_head(page) != head) { | |
1772 | put_page(head); | |
1773 | goto repeat; | |
1774 | } | |
1775 | ||
a60637c8 | 1776 | /* Has the page moved? */ |
0fc9d104 | 1777 | if (unlikely(page != *slot)) { |
83929372 | 1778 | put_page(head); |
a60637c8 NP |
1779 | goto repeat; |
1780 | } | |
1781 | ||
1782 | pages[ret] = page; | |
0fc9d104 KK |
1783 | if (++ret == nr_pages) |
1784 | break; | |
a60637c8 | 1785 | } |
5b280c0c | 1786 | |
a60637c8 | 1787 | rcu_read_unlock(); |
1da177e4 | 1788 | |
1da177e4 LT |
1789 | if (ret) |
1790 | *index = pages[ret - 1]->index + 1; | |
a60637c8 | 1791 | |
1da177e4 LT |
1792 | return ret; |
1793 | } | |
ef71c15c | 1794 | EXPORT_SYMBOL(find_get_pages_tag); |
1da177e4 | 1795 | |
7e7f7749 RZ |
1796 | /** |
1797 | * find_get_entries_tag - find and return entries that match @tag | |
1798 | * @mapping: the address_space to search | |
1799 | * @start: the starting page cache index | |
1800 | * @tag: the tag index | |
1801 | * @nr_entries: the maximum number of entries | |
1802 | * @entries: where the resulting entries are placed | |
1803 | * @indices: the cache indices corresponding to the entries in @entries | |
1804 | * | |
1805 | * Like find_get_entries, except we only return entries which are tagged with | |
1806 | * @tag. | |
1807 | */ | |
1808 | unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, | |
1809 | int tag, unsigned int nr_entries, | |
1810 | struct page **entries, pgoff_t *indices) | |
1811 | { | |
1812 | void **slot; | |
1813 | unsigned int ret = 0; | |
1814 | struct radix_tree_iter iter; | |
1815 | ||
1816 | if (!nr_entries) | |
1817 | return 0; | |
1818 | ||
1819 | rcu_read_lock(); | |
7e7f7749 RZ |
1820 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1821 | &iter, start, tag) { | |
83929372 | 1822 | struct page *head, *page; |
7e7f7749 RZ |
1823 | repeat: |
1824 | page = radix_tree_deref_slot(slot); | |
1825 | if (unlikely(!page)) | |
1826 | continue; | |
1827 | if (radix_tree_exception(page)) { | |
1828 | if (radix_tree_deref_retry(page)) { | |
2cf938aa MW |
1829 | slot = radix_tree_iter_retry(&iter); |
1830 | continue; | |
7e7f7749 RZ |
1831 | } |
1832 | ||
1833 | /* | |
1834 | * A shadow entry of a recently evicted page, a swap | |
1835 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1836 | * without attempting to raise page count. | |
1837 | */ | |
1838 | goto export; | |
1839 | } | |
83929372 KS |
1840 | |
1841 | head = compound_head(page); | |
1842 | if (!page_cache_get_speculative(head)) | |
7e7f7749 RZ |
1843 | goto repeat; |
1844 | ||
83929372 KS |
1845 | /* The page was split under us? */ |
1846 | if (compound_head(page) != head) { | |
1847 | put_page(head); | |
1848 | goto repeat; | |
1849 | } | |
1850 | ||
7e7f7749 RZ |
1851 | /* Has the page moved? */ |
1852 | if (unlikely(page != *slot)) { | |
83929372 | 1853 | put_page(head); |
7e7f7749 RZ |
1854 | goto repeat; |
1855 | } | |
1856 | export: | |
1857 | indices[ret] = iter.index; | |
1858 | entries[ret] = page; | |
1859 | if (++ret == nr_entries) | |
1860 | break; | |
1861 | } | |
1862 | rcu_read_unlock(); | |
1863 | return ret; | |
1864 | } | |
1865 | EXPORT_SYMBOL(find_get_entries_tag); | |
1866 | ||
76d42bd9 WF |
1867 | /* |
1868 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1869 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1870 | * | |
1871 | * ---R__________________________________________B__________ | |
1872 | * ^ reading here ^ bad block(assume 4k) | |
1873 | * | |
1874 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
1875 | * => failing the whole request => read(R) => read(R+1) => | |
1876 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
1877 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
1878 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
1879 | * | |
1880 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
1881 | */ | |
1882 | static void shrink_readahead_size_eio(struct file *filp, | |
1883 | struct file_ra_state *ra) | |
1884 | { | |
76d42bd9 | 1885 | ra->ra_pages /= 4; |
76d42bd9 WF |
1886 | } |
1887 | ||
485bb99b | 1888 | /** |
36e78914 | 1889 | * do_generic_file_read - generic file read routine |
485bb99b RD |
1890 | * @filp: the file to read |
1891 | * @ppos: current file position | |
6e58e79d AV |
1892 | * @iter: data destination |
1893 | * @written: already copied | |
485bb99b | 1894 | * |
1da177e4 | 1895 | * This is a generic file read routine, and uses the |
485bb99b | 1896 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
1897 | * |
1898 | * This is really ugly. But the goto's actually try to clarify some | |
1899 | * of the logic when it comes to error handling etc. | |
1da177e4 | 1900 | */ |
6e58e79d AV |
1901 | static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, |
1902 | struct iov_iter *iter, ssize_t written) | |
1da177e4 | 1903 | { |
36e78914 | 1904 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 1905 | struct inode *inode = mapping->host; |
36e78914 | 1906 | struct file_ra_state *ra = &filp->f_ra; |
57f6b96c FW |
1907 | pgoff_t index; |
1908 | pgoff_t last_index; | |
1909 | pgoff_t prev_index; | |
1910 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 1911 | unsigned int prev_offset; |
6e58e79d | 1912 | int error = 0; |
1da177e4 | 1913 | |
c2a9737f | 1914 | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) |
d05c5f7b | 1915 | return 0; |
c2a9737f WF |
1916 | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); |
1917 | ||
09cbfeaf KS |
1918 | index = *ppos >> PAGE_SHIFT; |
1919 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
1920 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
1921 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
1922 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 1923 | |
1da177e4 LT |
1924 | for (;;) { |
1925 | struct page *page; | |
57f6b96c | 1926 | pgoff_t end_index; |
a32ea1e1 | 1927 | loff_t isize; |
1da177e4 LT |
1928 | unsigned long nr, ret; |
1929 | ||
1da177e4 | 1930 | cond_resched(); |
1da177e4 | 1931 | find_page: |
5abf186a MH |
1932 | if (fatal_signal_pending(current)) { |
1933 | error = -EINTR; | |
1934 | goto out; | |
1935 | } | |
1936 | ||
1da177e4 | 1937 | page = find_get_page(mapping, index); |
3ea89ee8 | 1938 | if (!page) { |
cf914a7d | 1939 | page_cache_sync_readahead(mapping, |
7ff81078 | 1940 | ra, filp, |
3ea89ee8 FW |
1941 | index, last_index - index); |
1942 | page = find_get_page(mapping, index); | |
1943 | if (unlikely(page == NULL)) | |
1944 | goto no_cached_page; | |
1945 | } | |
1946 | if (PageReadahead(page)) { | |
cf914a7d | 1947 | page_cache_async_readahead(mapping, |
7ff81078 | 1948 | ra, filp, page, |
3ea89ee8 | 1949 | index, last_index - index); |
1da177e4 | 1950 | } |
8ab22b9a | 1951 | if (!PageUptodate(page)) { |
ebded027 MG |
1952 | /* |
1953 | * See comment in do_read_cache_page on why | |
1954 | * wait_on_page_locked is used to avoid unnecessarily | |
1955 | * serialisations and why it's safe. | |
1956 | */ | |
c4b209a4 BVA |
1957 | error = wait_on_page_locked_killable(page); |
1958 | if (unlikely(error)) | |
1959 | goto readpage_error; | |
ebded027 MG |
1960 | if (PageUptodate(page)) |
1961 | goto page_ok; | |
1962 | ||
09cbfeaf | 1963 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
1964 | !mapping->a_ops->is_partially_uptodate) |
1965 | goto page_not_up_to_date; | |
6d6d36bc EG |
1966 | /* pipes can't handle partially uptodate pages */ |
1967 | if (unlikely(iter->type & ITER_PIPE)) | |
1968 | goto page_not_up_to_date; | |
529ae9aa | 1969 | if (!trylock_page(page)) |
8ab22b9a | 1970 | goto page_not_up_to_date; |
8d056cb9 DH |
1971 | /* Did it get truncated before we got the lock? */ |
1972 | if (!page->mapping) | |
1973 | goto page_not_up_to_date_locked; | |
8ab22b9a | 1974 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 1975 | offset, iter->count)) |
8ab22b9a HH |
1976 | goto page_not_up_to_date_locked; |
1977 | unlock_page(page); | |
1978 | } | |
1da177e4 | 1979 | page_ok: |
a32ea1e1 N |
1980 | /* |
1981 | * i_size must be checked after we know the page is Uptodate. | |
1982 | * | |
1983 | * Checking i_size after the check allows us to calculate | |
1984 | * the correct value for "nr", which means the zero-filled | |
1985 | * part of the page is not copied back to userspace (unless | |
1986 | * another truncate extends the file - this is desired though). | |
1987 | */ | |
1988 | ||
1989 | isize = i_size_read(inode); | |
09cbfeaf | 1990 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 1991 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 1992 | put_page(page); |
a32ea1e1 N |
1993 | goto out; |
1994 | } | |
1995 | ||
1996 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 1997 | nr = PAGE_SIZE; |
a32ea1e1 | 1998 | if (index == end_index) { |
09cbfeaf | 1999 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 2000 | if (nr <= offset) { |
09cbfeaf | 2001 | put_page(page); |
a32ea1e1 N |
2002 | goto out; |
2003 | } | |
2004 | } | |
2005 | nr = nr - offset; | |
1da177e4 LT |
2006 | |
2007 | /* If users can be writing to this page using arbitrary | |
2008 | * virtual addresses, take care about potential aliasing | |
2009 | * before reading the page on the kernel side. | |
2010 | */ | |
2011 | if (mapping_writably_mapped(mapping)) | |
2012 | flush_dcache_page(page); | |
2013 | ||
2014 | /* | |
ec0f1637 JK |
2015 | * When a sequential read accesses a page several times, |
2016 | * only mark it as accessed the first time. | |
1da177e4 | 2017 | */ |
ec0f1637 | 2018 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
2019 | mark_page_accessed(page); |
2020 | prev_index = index; | |
2021 | ||
2022 | /* | |
2023 | * Ok, we have the page, and it's up-to-date, so | |
2024 | * now we can copy it to user space... | |
1da177e4 | 2025 | */ |
6e58e79d AV |
2026 | |
2027 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 2028 | offset += ret; |
09cbfeaf KS |
2029 | index += offset >> PAGE_SHIFT; |
2030 | offset &= ~PAGE_MASK; | |
6ce745ed | 2031 | prev_offset = offset; |
1da177e4 | 2032 | |
09cbfeaf | 2033 | put_page(page); |
6e58e79d AV |
2034 | written += ret; |
2035 | if (!iov_iter_count(iter)) | |
2036 | goto out; | |
2037 | if (ret < nr) { | |
2038 | error = -EFAULT; | |
2039 | goto out; | |
2040 | } | |
2041 | continue; | |
1da177e4 LT |
2042 | |
2043 | page_not_up_to_date: | |
2044 | /* Get exclusive access to the page ... */ | |
85462323 ON |
2045 | error = lock_page_killable(page); |
2046 | if (unlikely(error)) | |
2047 | goto readpage_error; | |
1da177e4 | 2048 | |
8ab22b9a | 2049 | page_not_up_to_date_locked: |
da6052f7 | 2050 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
2051 | if (!page->mapping) { |
2052 | unlock_page(page); | |
09cbfeaf | 2053 | put_page(page); |
1da177e4 LT |
2054 | continue; |
2055 | } | |
2056 | ||
2057 | /* Did somebody else fill it already? */ | |
2058 | if (PageUptodate(page)) { | |
2059 | unlock_page(page); | |
2060 | goto page_ok; | |
2061 | } | |
2062 | ||
2063 | readpage: | |
91803b49 JM |
2064 | /* |
2065 | * A previous I/O error may have been due to temporary | |
2066 | * failures, eg. multipath errors. | |
2067 | * PG_error will be set again if readpage fails. | |
2068 | */ | |
2069 | ClearPageError(page); | |
1da177e4 LT |
2070 | /* Start the actual read. The read will unlock the page. */ |
2071 | error = mapping->a_ops->readpage(filp, page); | |
2072 | ||
994fc28c ZB |
2073 | if (unlikely(error)) { |
2074 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 2075 | put_page(page); |
6e58e79d | 2076 | error = 0; |
994fc28c ZB |
2077 | goto find_page; |
2078 | } | |
1da177e4 | 2079 | goto readpage_error; |
994fc28c | 2080 | } |
1da177e4 LT |
2081 | |
2082 | if (!PageUptodate(page)) { | |
85462323 ON |
2083 | error = lock_page_killable(page); |
2084 | if (unlikely(error)) | |
2085 | goto readpage_error; | |
1da177e4 LT |
2086 | if (!PageUptodate(page)) { |
2087 | if (page->mapping == NULL) { | |
2088 | /* | |
2ecdc82e | 2089 | * invalidate_mapping_pages got it |
1da177e4 LT |
2090 | */ |
2091 | unlock_page(page); | |
09cbfeaf | 2092 | put_page(page); |
1da177e4 LT |
2093 | goto find_page; |
2094 | } | |
2095 | unlock_page(page); | |
7ff81078 | 2096 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
2097 | error = -EIO; |
2098 | goto readpage_error; | |
1da177e4 LT |
2099 | } |
2100 | unlock_page(page); | |
2101 | } | |
2102 | ||
1da177e4 LT |
2103 | goto page_ok; |
2104 | ||
2105 | readpage_error: | |
2106 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 2107 | put_page(page); |
1da177e4 LT |
2108 | goto out; |
2109 | ||
2110 | no_cached_page: | |
2111 | /* | |
2112 | * Ok, it wasn't cached, so we need to create a new | |
2113 | * page.. | |
2114 | */ | |
eb2be189 NP |
2115 | page = page_cache_alloc_cold(mapping); |
2116 | if (!page) { | |
6e58e79d | 2117 | error = -ENOMEM; |
eb2be189 | 2118 | goto out; |
1da177e4 | 2119 | } |
6afdb859 | 2120 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 2121 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 2122 | if (error) { |
09cbfeaf | 2123 | put_page(page); |
6e58e79d AV |
2124 | if (error == -EEXIST) { |
2125 | error = 0; | |
1da177e4 | 2126 | goto find_page; |
6e58e79d | 2127 | } |
1da177e4 LT |
2128 | goto out; |
2129 | } | |
1da177e4 LT |
2130 | goto readpage; |
2131 | } | |
2132 | ||
2133 | out: | |
7ff81078 | 2134 | ra->prev_pos = prev_index; |
09cbfeaf | 2135 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 2136 | ra->prev_pos |= prev_offset; |
1da177e4 | 2137 | |
09cbfeaf | 2138 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 2139 | file_accessed(filp); |
6e58e79d | 2140 | return written ? written : error; |
1da177e4 LT |
2141 | } |
2142 | ||
485bb99b | 2143 | /** |
6abd2322 | 2144 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 2145 | * @iocb: kernel I/O control block |
6abd2322 | 2146 | * @iter: destination for the data read |
485bb99b | 2147 | * |
6abd2322 | 2148 | * This is the "read_iter()" routine for all filesystems |
1da177e4 LT |
2149 | * that can use the page cache directly. |
2150 | */ | |
2151 | ssize_t | |
ed978a81 | 2152 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 2153 | { |
ed978a81 | 2154 | struct file *file = iocb->ki_filp; |
cb66a7a1 | 2155 | ssize_t retval = 0; |
e7080a43 NS |
2156 | size_t count = iov_iter_count(iter); |
2157 | ||
2158 | if (!count) | |
2159 | goto out; /* skip atime */ | |
1da177e4 | 2160 | |
2ba48ce5 | 2161 | if (iocb->ki_flags & IOCB_DIRECT) { |
ed978a81 AV |
2162 | struct address_space *mapping = file->f_mapping; |
2163 | struct inode *inode = mapping->host; | |
543ade1f | 2164 | loff_t size; |
1da177e4 | 2165 | |
1da177e4 | 2166 | size = i_size_read(inode); |
6be96d3a GR |
2167 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2168 | if (filemap_range_has_page(mapping, iocb->ki_pos, | |
2169 | iocb->ki_pos + count - 1)) | |
2170 | return -EAGAIN; | |
2171 | } else { | |
2172 | retval = filemap_write_and_wait_range(mapping, | |
2173 | iocb->ki_pos, | |
2174 | iocb->ki_pos + count - 1); | |
2175 | if (retval < 0) | |
2176 | goto out; | |
2177 | } | |
d8d3d94b | 2178 | |
0d5b0cf2 CH |
2179 | file_accessed(file); |
2180 | ||
5ecda137 | 2181 | retval = mapping->a_ops->direct_IO(iocb, iter); |
c3a69024 | 2182 | if (retval >= 0) { |
c64fb5c7 | 2183 | iocb->ki_pos += retval; |
5ecda137 | 2184 | count -= retval; |
9fe55eea | 2185 | } |
5b47d59a | 2186 | iov_iter_revert(iter, count - iov_iter_count(iter)); |
66f998f6 | 2187 | |
9fe55eea SW |
2188 | /* |
2189 | * Btrfs can have a short DIO read if we encounter | |
2190 | * compressed extents, so if there was an error, or if | |
2191 | * we've already read everything we wanted to, or if | |
2192 | * there was a short read because we hit EOF, go ahead | |
2193 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
2194 | * the rest of the read. Buffered reads will not work for |
2195 | * DAX files, so don't bother trying. | |
9fe55eea | 2196 | */ |
5ecda137 | 2197 | if (retval < 0 || !count || iocb->ki_pos >= size || |
0d5b0cf2 | 2198 | IS_DAX(inode)) |
9fe55eea | 2199 | goto out; |
1da177e4 LT |
2200 | } |
2201 | ||
c64fb5c7 | 2202 | retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); |
1da177e4 LT |
2203 | out: |
2204 | return retval; | |
2205 | } | |
ed978a81 | 2206 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 2207 | |
1da177e4 | 2208 | #ifdef CONFIG_MMU |
485bb99b RD |
2209 | /** |
2210 | * page_cache_read - adds requested page to the page cache if not already there | |
2211 | * @file: file to read | |
2212 | * @offset: page index | |
62eb320a | 2213 | * @gfp_mask: memory allocation flags |
485bb99b | 2214 | * |
1da177e4 LT |
2215 | * This adds the requested page to the page cache if it isn't already there, |
2216 | * and schedules an I/O to read in its contents from disk. | |
2217 | */ | |
c20cd45e | 2218 | static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) |
1da177e4 LT |
2219 | { |
2220 | struct address_space *mapping = file->f_mapping; | |
99dadfdd | 2221 | struct page *page; |
994fc28c | 2222 | int ret; |
1da177e4 | 2223 | |
994fc28c | 2224 | do { |
c20cd45e | 2225 | page = __page_cache_alloc(gfp_mask|__GFP_COLD); |
994fc28c ZB |
2226 | if (!page) |
2227 | return -ENOMEM; | |
2228 | ||
c20cd45e | 2229 | ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); |
994fc28c ZB |
2230 | if (ret == 0) |
2231 | ret = mapping->a_ops->readpage(file, page); | |
2232 | else if (ret == -EEXIST) | |
2233 | ret = 0; /* losing race to add is OK */ | |
1da177e4 | 2234 | |
09cbfeaf | 2235 | put_page(page); |
1da177e4 | 2236 | |
994fc28c | 2237 | } while (ret == AOP_TRUNCATED_PAGE); |
99dadfdd | 2238 | |
994fc28c | 2239 | return ret; |
1da177e4 LT |
2240 | } |
2241 | ||
2242 | #define MMAP_LOTSAMISS (100) | |
2243 | ||
ef00e08e LT |
2244 | /* |
2245 | * Synchronous readahead happens when we don't even find | |
2246 | * a page in the page cache at all. | |
2247 | */ | |
2248 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | |
2249 | struct file_ra_state *ra, | |
2250 | struct file *file, | |
2251 | pgoff_t offset) | |
2252 | { | |
ef00e08e LT |
2253 | struct address_space *mapping = file->f_mapping; |
2254 | ||
2255 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 2256 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e | 2257 | return; |
275b12bf WF |
2258 | if (!ra->ra_pages) |
2259 | return; | |
ef00e08e | 2260 | |
64363aad | 2261 | if (vma->vm_flags & VM_SEQ_READ) { |
7ffc59b4 WF |
2262 | page_cache_sync_readahead(mapping, ra, file, offset, |
2263 | ra->ra_pages); | |
ef00e08e LT |
2264 | return; |
2265 | } | |
2266 | ||
207d04ba AK |
2267 | /* Avoid banging the cache line if not needed */ |
2268 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
2269 | ra->mmap_miss++; |
2270 | ||
2271 | /* | |
2272 | * Do we miss much more than hit in this file? If so, | |
2273 | * stop bothering with read-ahead. It will only hurt. | |
2274 | */ | |
2275 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
2276 | return; | |
2277 | ||
d30a1100 WF |
2278 | /* |
2279 | * mmap read-around | |
2280 | */ | |
600e19af RG |
2281 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
2282 | ra->size = ra->ra_pages; | |
2283 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 2284 | ra_submit(ra, mapping, file); |
ef00e08e LT |
2285 | } |
2286 | ||
2287 | /* | |
2288 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
2289 | * so we want to possibly extend the readahead further.. | |
2290 | */ | |
2291 | static void do_async_mmap_readahead(struct vm_area_struct *vma, | |
2292 | struct file_ra_state *ra, | |
2293 | struct file *file, | |
2294 | struct page *page, | |
2295 | pgoff_t offset) | |
2296 | { | |
2297 | struct address_space *mapping = file->f_mapping; | |
2298 | ||
2299 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 2300 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e LT |
2301 | return; |
2302 | if (ra->mmap_miss > 0) | |
2303 | ra->mmap_miss--; | |
2304 | if (PageReadahead(page)) | |
2fad6f5d WF |
2305 | page_cache_async_readahead(mapping, ra, file, |
2306 | page, offset, ra->ra_pages); | |
ef00e08e LT |
2307 | } |
2308 | ||
485bb99b | 2309 | /** |
54cb8821 | 2310 | * filemap_fault - read in file data for page fault handling |
d0217ac0 | 2311 | * @vmf: struct vm_fault containing details of the fault |
485bb99b | 2312 | * |
54cb8821 | 2313 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
2314 | * mapped memory region to read in file data during a page fault. |
2315 | * | |
2316 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
2317 | * it in the page cache, and handles the special cases reasonably without | |
2318 | * having a lot of duplicated code. | |
9a95f3cf PC |
2319 | * |
2320 | * vma->vm_mm->mmap_sem must be held on entry. | |
2321 | * | |
2322 | * If our return value has VM_FAULT_RETRY set, it's because | |
2323 | * lock_page_or_retry() returned 0. | |
2324 | * The mmap_sem has usually been released in this case. | |
2325 | * See __lock_page_or_retry() for the exception. | |
2326 | * | |
2327 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2328 | * has not been released. | |
2329 | * | |
2330 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
1da177e4 | 2331 | */ |
11bac800 | 2332 | int filemap_fault(struct vm_fault *vmf) |
1da177e4 LT |
2333 | { |
2334 | int error; | |
11bac800 | 2335 | struct file *file = vmf->vma->vm_file; |
1da177e4 LT |
2336 | struct address_space *mapping = file->f_mapping; |
2337 | struct file_ra_state *ra = &file->f_ra; | |
2338 | struct inode *inode = mapping->host; | |
ef00e08e | 2339 | pgoff_t offset = vmf->pgoff; |
9ab2594f | 2340 | pgoff_t max_off; |
1da177e4 | 2341 | struct page *page; |
83c54070 | 2342 | int ret = 0; |
1da177e4 | 2343 | |
9ab2594f MW |
2344 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2345 | if (unlikely(offset >= max_off)) | |
5307cc1a | 2346 | return VM_FAULT_SIGBUS; |
1da177e4 | 2347 | |
1da177e4 | 2348 | /* |
49426420 | 2349 | * Do we have something in the page cache already? |
1da177e4 | 2350 | */ |
ef00e08e | 2351 | page = find_get_page(mapping, offset); |
45cac65b | 2352 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2353 | /* |
ef00e08e LT |
2354 | * We found the page, so try async readahead before |
2355 | * waiting for the lock. | |
1da177e4 | 2356 | */ |
11bac800 | 2357 | do_async_mmap_readahead(vmf->vma, ra, file, page, offset); |
45cac65b | 2358 | } else if (!page) { |
ef00e08e | 2359 | /* No page in the page cache at all */ |
11bac800 | 2360 | do_sync_mmap_readahead(vmf->vma, ra, file, offset); |
ef00e08e | 2361 | count_vm_event(PGMAJFAULT); |
2262185c | 2362 | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); |
ef00e08e LT |
2363 | ret = VM_FAULT_MAJOR; |
2364 | retry_find: | |
b522c94d | 2365 | page = find_get_page(mapping, offset); |
1da177e4 LT |
2366 | if (!page) |
2367 | goto no_cached_page; | |
2368 | } | |
2369 | ||
11bac800 | 2370 | if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { |
09cbfeaf | 2371 | put_page(page); |
d065bd81 | 2372 | return ret | VM_FAULT_RETRY; |
d88c0922 | 2373 | } |
b522c94d ML |
2374 | |
2375 | /* Did it get truncated? */ | |
2376 | if (unlikely(page->mapping != mapping)) { | |
2377 | unlock_page(page); | |
2378 | put_page(page); | |
2379 | goto retry_find; | |
2380 | } | |
309381fe | 2381 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2382 | |
1da177e4 | 2383 | /* |
d00806b1 NP |
2384 | * We have a locked page in the page cache, now we need to check |
2385 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2386 | */ |
d00806b1 | 2387 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2388 | goto page_not_uptodate; |
2389 | ||
ef00e08e LT |
2390 | /* |
2391 | * Found the page and have a reference on it. | |
2392 | * We must recheck i_size under page lock. | |
2393 | */ | |
9ab2594f MW |
2394 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2395 | if (unlikely(offset >= max_off)) { | |
d00806b1 | 2396 | unlock_page(page); |
09cbfeaf | 2397 | put_page(page); |
5307cc1a | 2398 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2399 | } |
2400 | ||
d0217ac0 | 2401 | vmf->page = page; |
83c54070 | 2402 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2403 | |
1da177e4 LT |
2404 | no_cached_page: |
2405 | /* | |
2406 | * We're only likely to ever get here if MADV_RANDOM is in | |
2407 | * effect. | |
2408 | */ | |
c20cd45e | 2409 | error = page_cache_read(file, offset, vmf->gfp_mask); |
1da177e4 LT |
2410 | |
2411 | /* | |
2412 | * The page we want has now been added to the page cache. | |
2413 | * In the unlikely event that someone removed it in the | |
2414 | * meantime, we'll just come back here and read it again. | |
2415 | */ | |
2416 | if (error >= 0) | |
2417 | goto retry_find; | |
2418 | ||
2419 | /* | |
2420 | * An error return from page_cache_read can result if the | |
2421 | * system is low on memory, or a problem occurs while trying | |
2422 | * to schedule I/O. | |
2423 | */ | |
2424 | if (error == -ENOMEM) | |
d0217ac0 NP |
2425 | return VM_FAULT_OOM; |
2426 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
2427 | |
2428 | page_not_uptodate: | |
1da177e4 LT |
2429 | /* |
2430 | * Umm, take care of errors if the page isn't up-to-date. | |
2431 | * Try to re-read it _once_. We do this synchronously, | |
2432 | * because there really aren't any performance issues here | |
2433 | * and we need to check for errors. | |
2434 | */ | |
1da177e4 | 2435 | ClearPageError(page); |
994fc28c | 2436 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2437 | if (!error) { |
2438 | wait_on_page_locked(page); | |
2439 | if (!PageUptodate(page)) | |
2440 | error = -EIO; | |
2441 | } | |
09cbfeaf | 2442 | put_page(page); |
d00806b1 NP |
2443 | |
2444 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2445 | goto retry_find; |
1da177e4 | 2446 | |
d00806b1 | 2447 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2448 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2449 | return VM_FAULT_SIGBUS; |
54cb8821 NP |
2450 | } |
2451 | EXPORT_SYMBOL(filemap_fault); | |
2452 | ||
82b0f8c3 | 2453 | void filemap_map_pages(struct vm_fault *vmf, |
bae473a4 | 2454 | pgoff_t start_pgoff, pgoff_t end_pgoff) |
f1820361 KS |
2455 | { |
2456 | struct radix_tree_iter iter; | |
2457 | void **slot; | |
82b0f8c3 | 2458 | struct file *file = vmf->vma->vm_file; |
f1820361 | 2459 | struct address_space *mapping = file->f_mapping; |
bae473a4 | 2460 | pgoff_t last_pgoff = start_pgoff; |
9ab2594f | 2461 | unsigned long max_idx; |
83929372 | 2462 | struct page *head, *page; |
f1820361 KS |
2463 | |
2464 | rcu_read_lock(); | |
bae473a4 KS |
2465 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, |
2466 | start_pgoff) { | |
2467 | if (iter.index > end_pgoff) | |
f1820361 KS |
2468 | break; |
2469 | repeat: | |
2470 | page = radix_tree_deref_slot(slot); | |
2471 | if (unlikely(!page)) | |
2472 | goto next; | |
2473 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
2474 | if (radix_tree_deref_retry(page)) { |
2475 | slot = radix_tree_iter_retry(&iter); | |
2476 | continue; | |
2477 | } | |
2478 | goto next; | |
f1820361 KS |
2479 | } |
2480 | ||
83929372 KS |
2481 | head = compound_head(page); |
2482 | if (!page_cache_get_speculative(head)) | |
f1820361 KS |
2483 | goto repeat; |
2484 | ||
83929372 KS |
2485 | /* The page was split under us? */ |
2486 | if (compound_head(page) != head) { | |
2487 | put_page(head); | |
2488 | goto repeat; | |
2489 | } | |
2490 | ||
f1820361 KS |
2491 | /* Has the page moved? */ |
2492 | if (unlikely(page != *slot)) { | |
83929372 | 2493 | put_page(head); |
f1820361 KS |
2494 | goto repeat; |
2495 | } | |
2496 | ||
2497 | if (!PageUptodate(page) || | |
2498 | PageReadahead(page) || | |
2499 | PageHWPoison(page)) | |
2500 | goto skip; | |
2501 | if (!trylock_page(page)) | |
2502 | goto skip; | |
2503 | ||
2504 | if (page->mapping != mapping || !PageUptodate(page)) | |
2505 | goto unlock; | |
2506 | ||
9ab2594f MW |
2507 | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
2508 | if (page->index >= max_idx) | |
f1820361 KS |
2509 | goto unlock; |
2510 | ||
f1820361 KS |
2511 | if (file->f_ra.mmap_miss > 0) |
2512 | file->f_ra.mmap_miss--; | |
7267ec00 | 2513 | |
82b0f8c3 JK |
2514 | vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; |
2515 | if (vmf->pte) | |
2516 | vmf->pte += iter.index - last_pgoff; | |
7267ec00 | 2517 | last_pgoff = iter.index; |
82b0f8c3 | 2518 | if (alloc_set_pte(vmf, NULL, page)) |
7267ec00 | 2519 | goto unlock; |
f1820361 KS |
2520 | unlock_page(page); |
2521 | goto next; | |
2522 | unlock: | |
2523 | unlock_page(page); | |
2524 | skip: | |
09cbfeaf | 2525 | put_page(page); |
f1820361 | 2526 | next: |
7267ec00 | 2527 | /* Huge page is mapped? No need to proceed. */ |
82b0f8c3 | 2528 | if (pmd_trans_huge(*vmf->pmd)) |
7267ec00 | 2529 | break; |
bae473a4 | 2530 | if (iter.index == end_pgoff) |
f1820361 KS |
2531 | break; |
2532 | } | |
2533 | rcu_read_unlock(); | |
2534 | } | |
2535 | EXPORT_SYMBOL(filemap_map_pages); | |
2536 | ||
11bac800 | 2537 | int filemap_page_mkwrite(struct vm_fault *vmf) |
4fcf1c62 JK |
2538 | { |
2539 | struct page *page = vmf->page; | |
11bac800 | 2540 | struct inode *inode = file_inode(vmf->vma->vm_file); |
4fcf1c62 JK |
2541 | int ret = VM_FAULT_LOCKED; |
2542 | ||
14da9200 | 2543 | sb_start_pagefault(inode->i_sb); |
11bac800 | 2544 | file_update_time(vmf->vma->vm_file); |
4fcf1c62 JK |
2545 | lock_page(page); |
2546 | if (page->mapping != inode->i_mapping) { | |
2547 | unlock_page(page); | |
2548 | ret = VM_FAULT_NOPAGE; | |
2549 | goto out; | |
2550 | } | |
14da9200 JK |
2551 | /* |
2552 | * We mark the page dirty already here so that when freeze is in | |
2553 | * progress, we are guaranteed that writeback during freezing will | |
2554 | * see the dirty page and writeprotect it again. | |
2555 | */ | |
2556 | set_page_dirty(page); | |
1d1d1a76 | 2557 | wait_for_stable_page(page); |
4fcf1c62 | 2558 | out: |
14da9200 | 2559 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2560 | return ret; |
2561 | } | |
2562 | EXPORT_SYMBOL(filemap_page_mkwrite); | |
2563 | ||
f0f37e2f | 2564 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2565 | .fault = filemap_fault, |
f1820361 | 2566 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2567 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2568 | }; |
2569 | ||
2570 | /* This is used for a general mmap of a disk file */ | |
2571 | ||
2572 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2573 | { | |
2574 | struct address_space *mapping = file->f_mapping; | |
2575 | ||
2576 | if (!mapping->a_ops->readpage) | |
2577 | return -ENOEXEC; | |
2578 | file_accessed(file); | |
2579 | vma->vm_ops = &generic_file_vm_ops; | |
2580 | return 0; | |
2581 | } | |
1da177e4 LT |
2582 | |
2583 | /* | |
2584 | * This is for filesystems which do not implement ->writepage. | |
2585 | */ | |
2586 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2587 | { | |
2588 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2589 | return -EINVAL; | |
2590 | return generic_file_mmap(file, vma); | |
2591 | } | |
2592 | #else | |
2593 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2594 | { | |
2595 | return -ENOSYS; | |
2596 | } | |
2597 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2598 | { | |
2599 | return -ENOSYS; | |
2600 | } | |
2601 | #endif /* CONFIG_MMU */ | |
2602 | ||
2603 | EXPORT_SYMBOL(generic_file_mmap); | |
2604 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2605 | ||
67f9fd91 SL |
2606 | static struct page *wait_on_page_read(struct page *page) |
2607 | { | |
2608 | if (!IS_ERR(page)) { | |
2609 | wait_on_page_locked(page); | |
2610 | if (!PageUptodate(page)) { | |
09cbfeaf | 2611 | put_page(page); |
67f9fd91 SL |
2612 | page = ERR_PTR(-EIO); |
2613 | } | |
2614 | } | |
2615 | return page; | |
2616 | } | |
2617 | ||
32b63529 | 2618 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2619 | pgoff_t index, |
5e5358e7 | 2620 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2621 | void *data, |
2622 | gfp_t gfp) | |
1da177e4 | 2623 | { |
eb2be189 | 2624 | struct page *page; |
1da177e4 LT |
2625 | int err; |
2626 | repeat: | |
2627 | page = find_get_page(mapping, index); | |
2628 | if (!page) { | |
0531b2aa | 2629 | page = __page_cache_alloc(gfp | __GFP_COLD); |
eb2be189 NP |
2630 | if (!page) |
2631 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2632 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2633 | if (unlikely(err)) { |
09cbfeaf | 2634 | put_page(page); |
eb2be189 NP |
2635 | if (err == -EEXIST) |
2636 | goto repeat; | |
1da177e4 | 2637 | /* Presumably ENOMEM for radix tree node */ |
1da177e4 LT |
2638 | return ERR_PTR(err); |
2639 | } | |
32b63529 MG |
2640 | |
2641 | filler: | |
1da177e4 LT |
2642 | err = filler(data, page); |
2643 | if (err < 0) { | |
09cbfeaf | 2644 | put_page(page); |
32b63529 | 2645 | return ERR_PTR(err); |
1da177e4 | 2646 | } |
1da177e4 | 2647 | |
32b63529 MG |
2648 | page = wait_on_page_read(page); |
2649 | if (IS_ERR(page)) | |
2650 | return page; | |
2651 | goto out; | |
2652 | } | |
1da177e4 LT |
2653 | if (PageUptodate(page)) |
2654 | goto out; | |
2655 | ||
ebded027 MG |
2656 | /* |
2657 | * Page is not up to date and may be locked due one of the following | |
2658 | * case a: Page is being filled and the page lock is held | |
2659 | * case b: Read/write error clearing the page uptodate status | |
2660 | * case c: Truncation in progress (page locked) | |
2661 | * case d: Reclaim in progress | |
2662 | * | |
2663 | * Case a, the page will be up to date when the page is unlocked. | |
2664 | * There is no need to serialise on the page lock here as the page | |
2665 | * is pinned so the lock gives no additional protection. Even if the | |
2666 | * the page is truncated, the data is still valid if PageUptodate as | |
2667 | * it's a race vs truncate race. | |
2668 | * Case b, the page will not be up to date | |
2669 | * Case c, the page may be truncated but in itself, the data may still | |
2670 | * be valid after IO completes as it's a read vs truncate race. The | |
2671 | * operation must restart if the page is not uptodate on unlock but | |
2672 | * otherwise serialising on page lock to stabilise the mapping gives | |
2673 | * no additional guarantees to the caller as the page lock is | |
2674 | * released before return. | |
2675 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2676 | * will be a race with remove_mapping that determines if the mapping | |
2677 | * is valid on unlock but otherwise the data is valid and there is | |
2678 | * no need to serialise with page lock. | |
2679 | * | |
2680 | * As the page lock gives no additional guarantee, we optimistically | |
2681 | * wait on the page to be unlocked and check if it's up to date and | |
2682 | * use the page if it is. Otherwise, the page lock is required to | |
2683 | * distinguish between the different cases. The motivation is that we | |
2684 | * avoid spurious serialisations and wakeups when multiple processes | |
2685 | * wait on the same page for IO to complete. | |
2686 | */ | |
2687 | wait_on_page_locked(page); | |
2688 | if (PageUptodate(page)) | |
2689 | goto out; | |
2690 | ||
2691 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2692 | lock_page(page); |
ebded027 MG |
2693 | |
2694 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2695 | if (!page->mapping) { |
2696 | unlock_page(page); | |
09cbfeaf | 2697 | put_page(page); |
32b63529 | 2698 | goto repeat; |
1da177e4 | 2699 | } |
ebded027 MG |
2700 | |
2701 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2702 | if (PageUptodate(page)) { |
2703 | unlock_page(page); | |
2704 | goto out; | |
2705 | } | |
32b63529 MG |
2706 | goto filler; |
2707 | ||
c855ff37 | 2708 | out: |
6fe6900e NP |
2709 | mark_page_accessed(page); |
2710 | return page; | |
2711 | } | |
0531b2aa LT |
2712 | |
2713 | /** | |
67f9fd91 | 2714 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2715 | * @mapping: the page's address_space |
2716 | * @index: the page index | |
2717 | * @filler: function to perform the read | |
5e5358e7 | 2718 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2719 | * |
0531b2aa | 2720 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2721 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2722 | * |
2723 | * If the page does not get brought uptodate, return -EIO. | |
2724 | */ | |
67f9fd91 | 2725 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2726 | pgoff_t index, |
5e5358e7 | 2727 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2728 | void *data) |
2729 | { | |
2730 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | |
2731 | } | |
67f9fd91 | 2732 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2733 | |
2734 | /** | |
2735 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2736 | * @mapping: the page's address_space | |
2737 | * @index: the page index | |
2738 | * @gfp: the page allocator flags to use if allocating | |
2739 | * | |
2740 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2741 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2742 | * |
2743 | * If the page does not get brought uptodate, return -EIO. | |
2744 | */ | |
2745 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2746 | pgoff_t index, | |
2747 | gfp_t gfp) | |
2748 | { | |
2749 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | |
2750 | ||
67f9fd91 | 2751 | return do_read_cache_page(mapping, index, filler, NULL, gfp); |
0531b2aa LT |
2752 | } |
2753 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2754 | ||
1da177e4 LT |
2755 | /* |
2756 | * Performs necessary checks before doing a write | |
2757 | * | |
485bb99b | 2758 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2759 | * Returns appropriate error code that caller should return or |
2760 | * zero in case that write should be allowed. | |
2761 | */ | |
3309dd04 | 2762 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2763 | { |
3309dd04 | 2764 | struct file *file = iocb->ki_filp; |
1da177e4 | 2765 | struct inode *inode = file->f_mapping->host; |
59e99e5b | 2766 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
3309dd04 | 2767 | loff_t pos; |
1da177e4 | 2768 | |
3309dd04 AV |
2769 | if (!iov_iter_count(from)) |
2770 | return 0; | |
1da177e4 | 2771 | |
0fa6b005 | 2772 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2773 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2774 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2775 | |
3309dd04 | 2776 | pos = iocb->ki_pos; |
1da177e4 | 2777 | |
6be96d3a GR |
2778 | if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) |
2779 | return -EINVAL; | |
2780 | ||
0fa6b005 | 2781 | if (limit != RLIM_INFINITY) { |
3309dd04 | 2782 | if (iocb->ki_pos >= limit) { |
0fa6b005 AV |
2783 | send_sig(SIGXFSZ, current, 0); |
2784 | return -EFBIG; | |
1da177e4 | 2785 | } |
3309dd04 | 2786 | iov_iter_truncate(from, limit - (unsigned long)pos); |
1da177e4 LT |
2787 | } |
2788 | ||
2789 | /* | |
2790 | * LFS rule | |
2791 | */ | |
3309dd04 | 2792 | if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && |
1da177e4 | 2793 | !(file->f_flags & O_LARGEFILE))) { |
3309dd04 | 2794 | if (pos >= MAX_NON_LFS) |
1da177e4 | 2795 | return -EFBIG; |
3309dd04 | 2796 | iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); |
1da177e4 LT |
2797 | } |
2798 | ||
2799 | /* | |
2800 | * Are we about to exceed the fs block limit ? | |
2801 | * | |
2802 | * If we have written data it becomes a short write. If we have | |
2803 | * exceeded without writing data we send a signal and return EFBIG. | |
2804 | * Linus frestrict idea will clean these up nicely.. | |
2805 | */ | |
3309dd04 AV |
2806 | if (unlikely(pos >= inode->i_sb->s_maxbytes)) |
2807 | return -EFBIG; | |
1da177e4 | 2808 | |
3309dd04 AV |
2809 | iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); |
2810 | return iov_iter_count(from); | |
1da177e4 LT |
2811 | } |
2812 | EXPORT_SYMBOL(generic_write_checks); | |
2813 | ||
afddba49 NP |
2814 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2815 | loff_t pos, unsigned len, unsigned flags, | |
2816 | struct page **pagep, void **fsdata) | |
2817 | { | |
2818 | const struct address_space_operations *aops = mapping->a_ops; | |
2819 | ||
4e02ed4b | 2820 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 2821 | pagep, fsdata); |
afddba49 NP |
2822 | } |
2823 | EXPORT_SYMBOL(pagecache_write_begin); | |
2824 | ||
2825 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
2826 | loff_t pos, unsigned len, unsigned copied, | |
2827 | struct page *page, void *fsdata) | |
2828 | { | |
2829 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 2830 | |
4e02ed4b | 2831 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
2832 | } |
2833 | EXPORT_SYMBOL(pagecache_write_end); | |
2834 | ||
1da177e4 | 2835 | ssize_t |
1af5bb49 | 2836 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2837 | { |
2838 | struct file *file = iocb->ki_filp; | |
2839 | struct address_space *mapping = file->f_mapping; | |
2840 | struct inode *inode = mapping->host; | |
1af5bb49 | 2841 | loff_t pos = iocb->ki_pos; |
1da177e4 | 2842 | ssize_t written; |
a969e903 CH |
2843 | size_t write_len; |
2844 | pgoff_t end; | |
1da177e4 | 2845 | |
0c949334 | 2846 | write_len = iov_iter_count(from); |
09cbfeaf | 2847 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 2848 | |
6be96d3a GR |
2849 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2850 | /* If there are pages to writeback, return */ | |
2851 | if (filemap_range_has_page(inode->i_mapping, pos, | |
2852 | pos + iov_iter_count(from))) | |
2853 | return -EAGAIN; | |
2854 | } else { | |
2855 | written = filemap_write_and_wait_range(mapping, pos, | |
2856 | pos + write_len - 1); | |
2857 | if (written) | |
2858 | goto out; | |
2859 | } | |
a969e903 CH |
2860 | |
2861 | /* | |
2862 | * After a write we want buffered reads to be sure to go to disk to get | |
2863 | * the new data. We invalidate clean cached page from the region we're | |
2864 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 2865 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 | 2866 | */ |
55635ba7 | 2867 | written = invalidate_inode_pages2_range(mapping, |
09cbfeaf | 2868 | pos >> PAGE_SHIFT, end); |
55635ba7 AR |
2869 | /* |
2870 | * If a page can not be invalidated, return 0 to fall back | |
2871 | * to buffered write. | |
2872 | */ | |
2873 | if (written) { | |
2874 | if (written == -EBUSY) | |
2875 | return 0; | |
2876 | goto out; | |
a969e903 CH |
2877 | } |
2878 | ||
639a93a5 | 2879 | written = mapping->a_ops->direct_IO(iocb, from); |
a969e903 CH |
2880 | |
2881 | /* | |
2882 | * Finally, try again to invalidate clean pages which might have been | |
2883 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
2884 | * if the source of the write was an mmap'ed region of the file | |
2885 | * we're writing. Either one is a pretty crazy thing to do, | |
2886 | * so we don't support it 100%. If this invalidation | |
2887 | * fails, tough, the write still worked... | |
2888 | */ | |
55635ba7 AR |
2889 | invalidate_inode_pages2_range(mapping, |
2890 | pos >> PAGE_SHIFT, end); | |
a969e903 | 2891 | |
1da177e4 | 2892 | if (written > 0) { |
0116651c | 2893 | pos += written; |
639a93a5 | 2894 | write_len -= written; |
0116651c NK |
2895 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2896 | i_size_write(inode, pos); | |
1da177e4 LT |
2897 | mark_inode_dirty(inode); |
2898 | } | |
5cb6c6c7 | 2899 | iocb->ki_pos = pos; |
1da177e4 | 2900 | } |
639a93a5 | 2901 | iov_iter_revert(from, write_len - iov_iter_count(from)); |
a969e903 | 2902 | out: |
1da177e4 LT |
2903 | return written; |
2904 | } | |
2905 | EXPORT_SYMBOL(generic_file_direct_write); | |
2906 | ||
eb2be189 NP |
2907 | /* |
2908 | * Find or create a page at the given pagecache position. Return the locked | |
2909 | * page. This function is specifically for buffered writes. | |
2910 | */ | |
54566b2c NP |
2911 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
2912 | pgoff_t index, unsigned flags) | |
eb2be189 | 2913 | { |
eb2be189 | 2914 | struct page *page; |
bbddabe2 | 2915 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 2916 | |
54566b2c | 2917 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
2918 | fgp_flags |= FGP_NOFS; |
2919 | ||
2920 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 2921 | mapping_gfp_mask(mapping)); |
c585a267 | 2922 | if (page) |
2457aec6 | 2923 | wait_for_stable_page(page); |
eb2be189 | 2924 | |
eb2be189 NP |
2925 | return page; |
2926 | } | |
54566b2c | 2927 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 2928 | |
3b93f911 | 2929 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
2930 | struct iov_iter *i, loff_t pos) |
2931 | { | |
2932 | struct address_space *mapping = file->f_mapping; | |
2933 | const struct address_space_operations *a_ops = mapping->a_ops; | |
2934 | long status = 0; | |
2935 | ssize_t written = 0; | |
674b892e NP |
2936 | unsigned int flags = 0; |
2937 | ||
afddba49 NP |
2938 | do { |
2939 | struct page *page; | |
afddba49 NP |
2940 | unsigned long offset; /* Offset into pagecache page */ |
2941 | unsigned long bytes; /* Bytes to write to page */ | |
2942 | size_t copied; /* Bytes copied from user */ | |
2943 | void *fsdata; | |
2944 | ||
09cbfeaf KS |
2945 | offset = (pos & (PAGE_SIZE - 1)); |
2946 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
2947 | iov_iter_count(i)); |
2948 | ||
2949 | again: | |
00a3d660 LT |
2950 | /* |
2951 | * Bring in the user page that we will copy from _first_. | |
2952 | * Otherwise there's a nasty deadlock on copying from the | |
2953 | * same page as we're writing to, without it being marked | |
2954 | * up-to-date. | |
2955 | * | |
2956 | * Not only is this an optimisation, but it is also required | |
2957 | * to check that the address is actually valid, when atomic | |
2958 | * usercopies are used, below. | |
2959 | */ | |
2960 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
2961 | status = -EFAULT; | |
2962 | break; | |
2963 | } | |
2964 | ||
296291cd JK |
2965 | if (fatal_signal_pending(current)) { |
2966 | status = -EINTR; | |
2967 | break; | |
2968 | } | |
2969 | ||
674b892e | 2970 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 2971 | &page, &fsdata); |
2457aec6 | 2972 | if (unlikely(status < 0)) |
afddba49 NP |
2973 | break; |
2974 | ||
931e80e4 | 2975 | if (mapping_writably_mapped(mapping)) |
2976 | flush_dcache_page(page); | |
00a3d660 | 2977 | |
afddba49 | 2978 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
2979 | flush_dcache_page(page); |
2980 | ||
2981 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
2982 | page, fsdata); | |
2983 | if (unlikely(status < 0)) | |
2984 | break; | |
2985 | copied = status; | |
2986 | ||
2987 | cond_resched(); | |
2988 | ||
124d3b70 | 2989 | iov_iter_advance(i, copied); |
afddba49 NP |
2990 | if (unlikely(copied == 0)) { |
2991 | /* | |
2992 | * If we were unable to copy any data at all, we must | |
2993 | * fall back to a single segment length write. | |
2994 | * | |
2995 | * If we didn't fallback here, we could livelock | |
2996 | * because not all segments in the iov can be copied at | |
2997 | * once without a pagefault. | |
2998 | */ | |
09cbfeaf | 2999 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
3000 | iov_iter_single_seg_count(i)); |
3001 | goto again; | |
3002 | } | |
afddba49 NP |
3003 | pos += copied; |
3004 | written += copied; | |
3005 | ||
3006 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
3007 | } while (iov_iter_count(i)); |
3008 | ||
3009 | return written ? written : status; | |
3010 | } | |
3b93f911 | 3011 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 3012 | |
e4dd9de3 | 3013 | /** |
8174202b | 3014 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 3015 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 3016 | * @from: iov_iter with data to write |
e4dd9de3 JK |
3017 | * |
3018 | * This function does all the work needed for actually writing data to a | |
3019 | * file. It does all basic checks, removes SUID from the file, updates | |
3020 | * modification times and calls proper subroutines depending on whether we | |
3021 | * do direct IO or a standard buffered write. | |
3022 | * | |
3023 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
3024 | * object which does not need locking at all. | |
3025 | * | |
3026 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
3027 | * A caller has to handle it. This is mainly due to the fact that we want to | |
3028 | * avoid syncing under i_mutex. | |
3029 | */ | |
8174202b | 3030 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3031 | { |
3032 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 3033 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 3034 | struct inode *inode = mapping->host; |
3b93f911 | 3035 | ssize_t written = 0; |
1da177e4 | 3036 | ssize_t err; |
3b93f911 | 3037 | ssize_t status; |
1da177e4 | 3038 | |
1da177e4 | 3039 | /* We can write back this queue in page reclaim */ |
de1414a6 | 3040 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 3041 | err = file_remove_privs(file); |
1da177e4 LT |
3042 | if (err) |
3043 | goto out; | |
3044 | ||
c3b2da31 JB |
3045 | err = file_update_time(file); |
3046 | if (err) | |
3047 | goto out; | |
1da177e4 | 3048 | |
2ba48ce5 | 3049 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 3050 | loff_t pos, endbyte; |
fb5527e6 | 3051 | |
1af5bb49 | 3052 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 3053 | /* |
fbbbad4b MW |
3054 | * If the write stopped short of completing, fall back to |
3055 | * buffered writes. Some filesystems do this for writes to | |
3056 | * holes, for example. For DAX files, a buffered write will | |
3057 | * not succeed (even if it did, DAX does not handle dirty | |
3058 | * page-cache pages correctly). | |
1da177e4 | 3059 | */ |
0b8def9d | 3060 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
3061 | goto out; |
3062 | ||
0b8def9d | 3063 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 3064 | /* |
3b93f911 | 3065 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
3066 | * then we want to return the number of bytes which were |
3067 | * direct-written, or the error code if that was zero. Note | |
3068 | * that this differs from normal direct-io semantics, which | |
3069 | * will return -EFOO even if some bytes were written. | |
3070 | */ | |
60bb4529 | 3071 | if (unlikely(status < 0)) { |
3b93f911 | 3072 | err = status; |
fb5527e6 JM |
3073 | goto out; |
3074 | } | |
fb5527e6 JM |
3075 | /* |
3076 | * We need to ensure that the page cache pages are written to | |
3077 | * disk and invalidated to preserve the expected O_DIRECT | |
3078 | * semantics. | |
3079 | */ | |
3b93f911 | 3080 | endbyte = pos + status - 1; |
0b8def9d | 3081 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 3082 | if (err == 0) { |
0b8def9d | 3083 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 3084 | written += status; |
fb5527e6 | 3085 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
3086 | pos >> PAGE_SHIFT, |
3087 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
3088 | } else { |
3089 | /* | |
3090 | * We don't know how much we wrote, so just return | |
3091 | * the number of bytes which were direct-written | |
3092 | */ | |
3093 | } | |
3094 | } else { | |
0b8def9d AV |
3095 | written = generic_perform_write(file, from, iocb->ki_pos); |
3096 | if (likely(written > 0)) | |
3097 | iocb->ki_pos += written; | |
fb5527e6 | 3098 | } |
1da177e4 LT |
3099 | out: |
3100 | current->backing_dev_info = NULL; | |
3101 | return written ? written : err; | |
3102 | } | |
8174202b | 3103 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 3104 | |
e4dd9de3 | 3105 | /** |
8174202b | 3106 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 3107 | * @iocb: IO state structure |
8174202b | 3108 | * @from: iov_iter with data to write |
e4dd9de3 | 3109 | * |
8174202b | 3110 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
3111 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
3112 | * and acquires i_mutex as needed. | |
3113 | */ | |
8174202b | 3114 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3115 | { |
3116 | struct file *file = iocb->ki_filp; | |
148f948b | 3117 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 3118 | ssize_t ret; |
1da177e4 | 3119 | |
5955102c | 3120 | inode_lock(inode); |
3309dd04 AV |
3121 | ret = generic_write_checks(iocb, from); |
3122 | if (ret > 0) | |
5f380c7f | 3123 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 3124 | inode_unlock(inode); |
1da177e4 | 3125 | |
e2592217 CH |
3126 | if (ret > 0) |
3127 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
3128 | return ret; |
3129 | } | |
8174202b | 3130 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 3131 | |
cf9a2ae8 DH |
3132 | /** |
3133 | * try_to_release_page() - release old fs-specific metadata on a page | |
3134 | * | |
3135 | * @page: the page which the kernel is trying to free | |
3136 | * @gfp_mask: memory allocation flags (and I/O mode) | |
3137 | * | |
3138 | * The address_space is to try to release any data against the page | |
0e056eb5 | 3139 | * (presumably at page->private). If the release was successful, return '1'. |
cf9a2ae8 DH |
3140 | * Otherwise return zero. |
3141 | * | |
266cf658 DH |
3142 | * This may also be called if PG_fscache is set on a page, indicating that the |
3143 | * page is known to the local caching routines. | |
3144 | * | |
cf9a2ae8 | 3145 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 3146 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 3147 | * |
cf9a2ae8 DH |
3148 | */ |
3149 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
3150 | { | |
3151 | struct address_space * const mapping = page->mapping; | |
3152 | ||
3153 | BUG_ON(!PageLocked(page)); | |
3154 | if (PageWriteback(page)) | |
3155 | return 0; | |
3156 | ||
3157 | if (mapping && mapping->a_ops->releasepage) | |
3158 | return mapping->a_ops->releasepage(page, gfp_mask); | |
3159 | return try_to_free_buffers(page); | |
3160 | } | |
3161 | ||
3162 | EXPORT_SYMBOL(try_to_release_page); |