]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
b95f1b31 | 12 | #include <linux/export.h> |
1da177e4 | 13 | #include <linux/compiler.h> |
f9fe48be | 14 | #include <linux/dax.h> |
1da177e4 | 15 | #include <linux/fs.h> |
c22ce143 | 16 | #include <linux/uaccess.h> |
c59ede7b | 17 | #include <linux/capability.h> |
1da177e4 | 18 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 19 | #include <linux/gfp.h> |
1da177e4 LT |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> | |
22 | #include <linux/mman.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/file.h> | |
25 | #include <linux/uio.h> | |
26 | #include <linux/hash.h> | |
27 | #include <linux/writeback.h> | |
53253383 | 28 | #include <linux/backing-dev.h> |
1da177e4 LT |
29 | #include <linux/pagevec.h> |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/security.h> | |
44110fe3 | 32 | #include <linux/cpuset.h> |
2f718ffc | 33 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
00501b53 | 34 | #include <linux/hugetlb.h> |
8a9f3ccd | 35 | #include <linux/memcontrol.h> |
c515e1fd | 36 | #include <linux/cleancache.h> |
f1820361 | 37 | #include <linux/rmap.h> |
0f8053a5 NP |
38 | #include "internal.h" |
39 | ||
fe0bfaaf RJ |
40 | #define CREATE_TRACE_POINTS |
41 | #include <trace/events/filemap.h> | |
42 | ||
1da177e4 | 43 | /* |
1da177e4 LT |
44 | * FIXME: remove all knowledge of the buffer layer from the core VM |
45 | */ | |
148f948b | 46 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 47 | |
1da177e4 LT |
48 | #include <asm/mman.h> |
49 | ||
50 | /* | |
51 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
52 | * though. | |
53 | * | |
54 | * Shared mappings now work. 15.8.1995 Bruno. | |
55 | * | |
56 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
57 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
58 | * | |
59 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
60 | */ | |
61 | ||
62 | /* | |
63 | * Lock ordering: | |
64 | * | |
c8c06efa | 65 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 66 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 HD |
67 | * ->swap_lock (exclusive_swap_page, others) |
68 | * ->mapping->tree_lock | |
1da177e4 | 69 | * |
1b1dcc1b | 70 | * ->i_mutex |
c8c06efa | 71 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
72 | * |
73 | * ->mmap_sem | |
c8c06efa | 74 | * ->i_mmap_rwsem |
b8072f09 | 75 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
76 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
77 | * | |
78 | * ->mmap_sem | |
79 | * ->lock_page (access_process_vm) | |
80 | * | |
ccad2365 | 81 | * ->i_mutex (generic_perform_write) |
82591e6e | 82 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 83 | * |
f758eeab | 84 | * bdi->wb.list_lock |
a66979ab | 85 | * sb_lock (fs/fs-writeback.c) |
1da177e4 LT |
86 | * ->mapping->tree_lock (__sync_single_inode) |
87 | * | |
c8c06efa | 88 | * ->i_mmap_rwsem |
1da177e4 LT |
89 | * ->anon_vma.lock (vma_adjust) |
90 | * | |
91 | * ->anon_vma.lock | |
b8072f09 | 92 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 93 | * |
b8072f09 | 94 | * ->page_table_lock or pte_lock |
5d337b91 | 95 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
96 | * ->private_lock (try_to_unmap_one) |
97 | * ->tree_lock (try_to_unmap_one) | |
a52633d8 MG |
98 | * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) |
99 | * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) | |
1da177e4 LT |
100 | * ->private_lock (page_remove_rmap->set_page_dirty) |
101 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
f758eeab | 102 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 103 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 104 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 105 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 106 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
107 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
108 | * | |
c8c06efa | 109 | * ->i_mmap_rwsem |
9a3c531d | 110 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
111 | */ |
112 | ||
22f2ac51 JW |
113 | static int page_cache_tree_insert(struct address_space *mapping, |
114 | struct page *page, void **shadowp) | |
115 | { | |
116 | struct radix_tree_node *node; | |
117 | void **slot; | |
118 | int error; | |
119 | ||
120 | error = __radix_tree_create(&mapping->page_tree, page->index, 0, | |
121 | &node, &slot); | |
122 | if (error) | |
123 | return error; | |
124 | if (*slot) { | |
125 | void *p; | |
126 | ||
127 | p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
128 | if (!radix_tree_exceptional_entry(p)) | |
129 | return -EEXIST; | |
130 | ||
131 | mapping->nrexceptional--; | |
132 | if (!dax_mapping(mapping)) { | |
133 | if (shadowp) | |
134 | *shadowp = p; | |
22f2ac51 JW |
135 | } else { |
136 | /* DAX can replace empty locked entry with a hole */ | |
137 | WARN_ON_ONCE(p != | |
642261ac | 138 | dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); |
22f2ac51 | 139 | /* Wakeup waiters for exceptional entry lock */ |
63e95b5c | 140 | dax_wake_mapping_entry_waiter(mapping, page->index, p, |
965d004a | 141 | true); |
22f2ac51 JW |
142 | } |
143 | } | |
14b46879 JW |
144 | __radix_tree_replace(&mapping->page_tree, node, slot, page, |
145 | workingset_update_node, mapping); | |
22f2ac51 | 146 | mapping->nrpages++; |
22f2ac51 JW |
147 | return 0; |
148 | } | |
149 | ||
91b0abe3 JW |
150 | static void page_cache_tree_delete(struct address_space *mapping, |
151 | struct page *page, void *shadow) | |
152 | { | |
c70b647d KS |
153 | int i, nr; |
154 | ||
155 | /* hugetlb pages are represented by one entry in the radix tree */ | |
156 | nr = PageHuge(page) ? 1 : hpage_nr_pages(page); | |
91b0abe3 | 157 | |
83929372 KS |
158 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
159 | VM_BUG_ON_PAGE(PageTail(page), page); | |
160 | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | |
449dd698 | 161 | |
83929372 | 162 | for (i = 0; i < nr; i++) { |
d3798ae8 JW |
163 | struct radix_tree_node *node; |
164 | void **slot; | |
165 | ||
166 | __radix_tree_lookup(&mapping->page_tree, page->index + i, | |
167 | &node, &slot); | |
168 | ||
dbc446b8 | 169 | VM_BUG_ON_PAGE(!node && nr != 1, page); |
449dd698 | 170 | |
14b46879 JW |
171 | radix_tree_clear_tags(&mapping->page_tree, node, slot); |
172 | __radix_tree_replace(&mapping->page_tree, node, slot, shadow, | |
173 | workingset_update_node, mapping); | |
449dd698 | 174 | } |
d3798ae8 JW |
175 | |
176 | if (shadow) { | |
177 | mapping->nrexceptional += nr; | |
178 | /* | |
179 | * Make sure the nrexceptional update is committed before | |
180 | * the nrpages update so that final truncate racing | |
181 | * with reclaim does not see both counters 0 at the | |
182 | * same time and miss a shadow entry. | |
183 | */ | |
184 | smp_wmb(); | |
185 | } | |
186 | mapping->nrpages -= nr; | |
91b0abe3 JW |
187 | } |
188 | ||
1da177e4 | 189 | /* |
e64a782f | 190 | * Delete a page from the page cache and free it. Caller has to make |
1da177e4 | 191 | * sure the page is locked and that nobody else uses it - or that usage |
fdf1cdb9 | 192 | * is safe. The caller must hold the mapping's tree_lock. |
1da177e4 | 193 | */ |
62cccb8c | 194 | void __delete_from_page_cache(struct page *page, void *shadow) |
1da177e4 LT |
195 | { |
196 | struct address_space *mapping = page->mapping; | |
83929372 | 197 | int nr = hpage_nr_pages(page); |
1da177e4 | 198 | |
fe0bfaaf | 199 | trace_mm_filemap_delete_from_page_cache(page); |
c515e1fd DM |
200 | /* |
201 | * if we're uptodate, flush out into the cleancache, otherwise | |
202 | * invalidate any existing cleancache entries. We can't leave | |
203 | * stale data around in the cleancache once our page is gone | |
204 | */ | |
205 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
206 | cleancache_put_page(page); | |
207 | else | |
3167760f | 208 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 209 | |
83929372 | 210 | VM_BUG_ON_PAGE(PageTail(page), page); |
06b241f3 HD |
211 | VM_BUG_ON_PAGE(page_mapped(page), page); |
212 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
213 | int mapcount; | |
214 | ||
215 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
216 | current->comm, page_to_pfn(page)); | |
217 | dump_page(page, "still mapped when deleted"); | |
218 | dump_stack(); | |
219 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
220 | ||
221 | mapcount = page_mapcount(page); | |
222 | if (mapping_exiting(mapping) && | |
223 | page_count(page) >= mapcount + 2) { | |
224 | /* | |
225 | * All vmas have already been torn down, so it's | |
226 | * a good bet that actually the page is unmapped, | |
227 | * and we'd prefer not to leak it: if we're wrong, | |
228 | * some other bad page check should catch it later. | |
229 | */ | |
230 | page_mapcount_reset(page); | |
6d061f9f | 231 | page_ref_sub(page, mapcount); |
06b241f3 HD |
232 | } |
233 | } | |
234 | ||
91b0abe3 JW |
235 | page_cache_tree_delete(mapping, page, shadow); |
236 | ||
1da177e4 | 237 | page->mapping = NULL; |
b85e0eff | 238 | /* Leave page->index set: truncation lookup relies upon it */ |
91b0abe3 | 239 | |
4165b9b4 MH |
240 | /* hugetlb pages do not participate in page cache accounting. */ |
241 | if (!PageHuge(page)) | |
11fb9989 | 242 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); |
800d8c63 | 243 | if (PageSwapBacked(page)) { |
11fb9989 | 244 | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); |
800d8c63 | 245 | if (PageTransHuge(page)) |
11fb9989 | 246 | __dec_node_page_state(page, NR_SHMEM_THPS); |
800d8c63 KS |
247 | } else { |
248 | VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); | |
249 | } | |
3a692790 LT |
250 | |
251 | /* | |
b9ea2515 KK |
252 | * At this point page must be either written or cleaned by truncate. |
253 | * Dirty page here signals a bug and loss of unwritten data. | |
3a692790 | 254 | * |
b9ea2515 KK |
255 | * This fixes dirty accounting after removing the page entirely but |
256 | * leaves PageDirty set: it has no effect for truncated page and | |
257 | * anyway will be cleared before returning page into buddy allocator. | |
3a692790 | 258 | */ |
b9ea2515 | 259 | if (WARN_ON_ONCE(PageDirty(page))) |
62cccb8c | 260 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); |
1da177e4 LT |
261 | } |
262 | ||
702cfbf9 MK |
263 | /** |
264 | * delete_from_page_cache - delete page from page cache | |
265 | * @page: the page which the kernel is trying to remove from page cache | |
266 | * | |
267 | * This must be called only on pages that have been verified to be in the page | |
268 | * cache and locked. It will never put the page into the free list, the caller | |
269 | * has a reference on the page. | |
270 | */ | |
271 | void delete_from_page_cache(struct page *page) | |
1da177e4 | 272 | { |
83929372 | 273 | struct address_space *mapping = page_mapping(page); |
c4843a75 | 274 | unsigned long flags; |
6072d13c | 275 | void (*freepage)(struct page *); |
1da177e4 | 276 | |
cd7619d6 | 277 | BUG_ON(!PageLocked(page)); |
1da177e4 | 278 | |
6072d13c | 279 | freepage = mapping->a_ops->freepage; |
c4843a75 | 280 | |
c4843a75 | 281 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 282 | __delete_from_page_cache(page, NULL); |
c4843a75 | 283 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6072d13c LT |
284 | |
285 | if (freepage) | |
286 | freepage(page); | |
83929372 KS |
287 | |
288 | if (PageTransHuge(page) && !PageHuge(page)) { | |
289 | page_ref_sub(page, HPAGE_PMD_NR); | |
290 | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | |
291 | } else { | |
292 | put_page(page); | |
293 | } | |
97cecb5a MK |
294 | } |
295 | EXPORT_SYMBOL(delete_from_page_cache); | |
296 | ||
d72d9e2a | 297 | int filemap_check_errors(struct address_space *mapping) |
865ffef3 DM |
298 | { |
299 | int ret = 0; | |
300 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
301 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
302 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 303 | ret = -ENOSPC; |
7fcbbaf1 JA |
304 | if (test_bit(AS_EIO, &mapping->flags) && |
305 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
306 | ret = -EIO; |
307 | return ret; | |
308 | } | |
d72d9e2a | 309 | EXPORT_SYMBOL(filemap_check_errors); |
865ffef3 | 310 | |
1da177e4 | 311 | /** |
485bb99b | 312 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
313 | * @mapping: address space structure to write |
314 | * @start: offset in bytes where the range starts | |
469eb4d0 | 315 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 316 | * @sync_mode: enable synchronous operation |
1da177e4 | 317 | * |
485bb99b RD |
318 | * Start writeback against all of a mapping's dirty pages that lie |
319 | * within the byte offsets <start, end> inclusive. | |
320 | * | |
1da177e4 | 321 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 322 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
323 | * these two operations is that if a dirty page/buffer is encountered, it must |
324 | * be waited upon, and not just skipped over. | |
325 | */ | |
ebcf28e1 AM |
326 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
327 | loff_t end, int sync_mode) | |
1da177e4 LT |
328 | { |
329 | int ret; | |
330 | struct writeback_control wbc = { | |
331 | .sync_mode = sync_mode, | |
05fe478d | 332 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
333 | .range_start = start, |
334 | .range_end = end, | |
1da177e4 LT |
335 | }; |
336 | ||
337 | if (!mapping_cap_writeback_dirty(mapping)) | |
338 | return 0; | |
339 | ||
b16b1deb | 340 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 341 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 342 | wbc_detach_inode(&wbc); |
1da177e4 LT |
343 | return ret; |
344 | } | |
345 | ||
346 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
347 | int sync_mode) | |
348 | { | |
111ebb6e | 349 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
350 | } |
351 | ||
352 | int filemap_fdatawrite(struct address_space *mapping) | |
353 | { | |
354 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
355 | } | |
356 | EXPORT_SYMBOL(filemap_fdatawrite); | |
357 | ||
f4c0a0fd | 358 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 359 | loff_t end) |
1da177e4 LT |
360 | { |
361 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
362 | } | |
f4c0a0fd | 363 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 364 | |
485bb99b RD |
365 | /** |
366 | * filemap_flush - mostly a non-blocking flush | |
367 | * @mapping: target address_space | |
368 | * | |
1da177e4 LT |
369 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
370 | * purposes - I/O may not be started against all dirty pages. | |
371 | */ | |
372 | int filemap_flush(struct address_space *mapping) | |
373 | { | |
374 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
375 | } | |
376 | EXPORT_SYMBOL(filemap_flush); | |
377 | ||
aa750fd7 JN |
378 | static int __filemap_fdatawait_range(struct address_space *mapping, |
379 | loff_t start_byte, loff_t end_byte) | |
1da177e4 | 380 | { |
09cbfeaf KS |
381 | pgoff_t index = start_byte >> PAGE_SHIFT; |
382 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
383 | struct pagevec pvec; |
384 | int nr_pages; | |
aa750fd7 | 385 | int ret = 0; |
1da177e4 | 386 | |
94004ed7 | 387 | if (end_byte < start_byte) |
865ffef3 | 388 | goto out; |
1da177e4 LT |
389 | |
390 | pagevec_init(&pvec, 0); | |
1da177e4 LT |
391 | while ((index <= end) && |
392 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
393 | PAGECACHE_TAG_WRITEBACK, | |
394 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | |
395 | unsigned i; | |
396 | ||
397 | for (i = 0; i < nr_pages; i++) { | |
398 | struct page *page = pvec.pages[i]; | |
399 | ||
400 | /* until radix tree lookup accepts end_index */ | |
401 | if (page->index > end) | |
402 | continue; | |
403 | ||
404 | wait_on_page_writeback(page); | |
212260aa | 405 | if (TestClearPageError(page)) |
1da177e4 LT |
406 | ret = -EIO; |
407 | } | |
408 | pagevec_release(&pvec); | |
409 | cond_resched(); | |
410 | } | |
865ffef3 | 411 | out: |
aa750fd7 JN |
412 | return ret; |
413 | } | |
414 | ||
415 | /** | |
416 | * filemap_fdatawait_range - wait for writeback to complete | |
417 | * @mapping: address space structure to wait for | |
418 | * @start_byte: offset in bytes where the range starts | |
419 | * @end_byte: offset in bytes where the range ends (inclusive) | |
420 | * | |
421 | * Walk the list of under-writeback pages of the given address space | |
422 | * in the given range and wait for all of them. Check error status of | |
423 | * the address space and return it. | |
424 | * | |
425 | * Since the error status of the address space is cleared by this function, | |
426 | * callers are responsible for checking the return value and handling and/or | |
427 | * reporting the error. | |
428 | */ | |
429 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
430 | loff_t end_byte) | |
431 | { | |
432 | int ret, ret2; | |
433 | ||
434 | ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
865ffef3 DM |
435 | ret2 = filemap_check_errors(mapping); |
436 | if (!ret) | |
437 | ret = ret2; | |
1da177e4 LT |
438 | |
439 | return ret; | |
440 | } | |
d3bccb6f JK |
441 | EXPORT_SYMBOL(filemap_fdatawait_range); |
442 | ||
aa750fd7 JN |
443 | /** |
444 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
445 | * @mapping: address space structure to wait for | |
446 | * | |
447 | * Walk the list of under-writeback pages of the given address space | |
448 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
449 | * does not clear error status of the address space. | |
450 | * | |
451 | * Use this function if callers don't handle errors themselves. Expected | |
452 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
453 | * fsfreeze(8) | |
454 | */ | |
455 | void filemap_fdatawait_keep_errors(struct address_space *mapping) | |
456 | { | |
457 | loff_t i_size = i_size_read(mapping->host); | |
458 | ||
459 | if (i_size == 0) | |
460 | return; | |
461 | ||
462 | __filemap_fdatawait_range(mapping, 0, i_size - 1); | |
463 | } | |
464 | ||
1da177e4 | 465 | /** |
485bb99b | 466 | * filemap_fdatawait - wait for all under-writeback pages to complete |
1da177e4 | 467 | * @mapping: address space structure to wait for |
485bb99b RD |
468 | * |
469 | * Walk the list of under-writeback pages of the given address space | |
aa750fd7 JN |
470 | * and wait for all of them. Check error status of the address space |
471 | * and return it. | |
472 | * | |
473 | * Since the error status of the address space is cleared by this function, | |
474 | * callers are responsible for checking the return value and handling and/or | |
475 | * reporting the error. | |
1da177e4 LT |
476 | */ |
477 | int filemap_fdatawait(struct address_space *mapping) | |
478 | { | |
479 | loff_t i_size = i_size_read(mapping->host); | |
480 | ||
481 | if (i_size == 0) | |
482 | return 0; | |
483 | ||
94004ed7 | 484 | return filemap_fdatawait_range(mapping, 0, i_size - 1); |
1da177e4 LT |
485 | } |
486 | EXPORT_SYMBOL(filemap_fdatawait); | |
487 | ||
488 | int filemap_write_and_wait(struct address_space *mapping) | |
489 | { | |
28fd1298 | 490 | int err = 0; |
1da177e4 | 491 | |
7f6d5b52 RZ |
492 | if ((!dax_mapping(mapping) && mapping->nrpages) || |
493 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
28fd1298 OH |
494 | err = filemap_fdatawrite(mapping); |
495 | /* | |
496 | * Even if the above returned error, the pages may be | |
497 | * written partially (e.g. -ENOSPC), so we wait for it. | |
498 | * But the -EIO is special case, it may indicate the worst | |
499 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
500 | */ | |
501 | if (err != -EIO) { | |
502 | int err2 = filemap_fdatawait(mapping); | |
503 | if (!err) | |
504 | err = err2; | |
505 | } | |
865ffef3 DM |
506 | } else { |
507 | err = filemap_check_errors(mapping); | |
1da177e4 | 508 | } |
28fd1298 | 509 | return err; |
1da177e4 | 510 | } |
28fd1298 | 511 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 512 | |
485bb99b RD |
513 | /** |
514 | * filemap_write_and_wait_range - write out & wait on a file range | |
515 | * @mapping: the address_space for the pages | |
516 | * @lstart: offset in bytes where the range starts | |
517 | * @lend: offset in bytes where the range ends (inclusive) | |
518 | * | |
469eb4d0 AM |
519 | * Write out and wait upon file offsets lstart->lend, inclusive. |
520 | * | |
521 | * Note that `lend' is inclusive (describes the last byte to be written) so | |
522 | * that this function can be used to write to the very end-of-file (end = -1). | |
523 | */ | |
1da177e4 LT |
524 | int filemap_write_and_wait_range(struct address_space *mapping, |
525 | loff_t lstart, loff_t lend) | |
526 | { | |
28fd1298 | 527 | int err = 0; |
1da177e4 | 528 | |
7f6d5b52 RZ |
529 | if ((!dax_mapping(mapping) && mapping->nrpages) || |
530 | (dax_mapping(mapping) && mapping->nrexceptional)) { | |
28fd1298 OH |
531 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
532 | WB_SYNC_ALL); | |
533 | /* See comment of filemap_write_and_wait() */ | |
534 | if (err != -EIO) { | |
94004ed7 CH |
535 | int err2 = filemap_fdatawait_range(mapping, |
536 | lstart, lend); | |
28fd1298 OH |
537 | if (!err) |
538 | err = err2; | |
539 | } | |
865ffef3 DM |
540 | } else { |
541 | err = filemap_check_errors(mapping); | |
1da177e4 | 542 | } |
28fd1298 | 543 | return err; |
1da177e4 | 544 | } |
f6995585 | 545 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 546 | |
ef6a3c63 MS |
547 | /** |
548 | * replace_page_cache_page - replace a pagecache page with a new one | |
549 | * @old: page to be replaced | |
550 | * @new: page to replace with | |
551 | * @gfp_mask: allocation mode | |
552 | * | |
553 | * This function replaces a page in the pagecache with a new one. On | |
554 | * success it acquires the pagecache reference for the new page and | |
555 | * drops it for the old page. Both the old and new pages must be | |
556 | * locked. This function does not add the new page to the LRU, the | |
557 | * caller must do that. | |
558 | * | |
559 | * The remove + add is atomic. The only way this function can fail is | |
560 | * memory allocation failure. | |
561 | */ | |
562 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
563 | { | |
564 | int error; | |
ef6a3c63 | 565 | |
309381fe SL |
566 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
567 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
568 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 569 | |
ef6a3c63 MS |
570 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
571 | if (!error) { | |
572 | struct address_space *mapping = old->mapping; | |
573 | void (*freepage)(struct page *); | |
c4843a75 | 574 | unsigned long flags; |
ef6a3c63 MS |
575 | |
576 | pgoff_t offset = old->index; | |
577 | freepage = mapping->a_ops->freepage; | |
578 | ||
09cbfeaf | 579 | get_page(new); |
ef6a3c63 MS |
580 | new->mapping = mapping; |
581 | new->index = offset; | |
582 | ||
c4843a75 | 583 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 584 | __delete_from_page_cache(old, NULL); |
22f2ac51 | 585 | error = page_cache_tree_insert(mapping, new, NULL); |
ef6a3c63 | 586 | BUG_ON(error); |
4165b9b4 MH |
587 | |
588 | /* | |
589 | * hugetlb pages do not participate in page cache accounting. | |
590 | */ | |
591 | if (!PageHuge(new)) | |
11fb9989 | 592 | __inc_node_page_state(new, NR_FILE_PAGES); |
ef6a3c63 | 593 | if (PageSwapBacked(new)) |
11fb9989 | 594 | __inc_node_page_state(new, NR_SHMEM); |
c4843a75 | 595 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6a93ca8f | 596 | mem_cgroup_migrate(old, new); |
ef6a3c63 MS |
597 | radix_tree_preload_end(); |
598 | if (freepage) | |
599 | freepage(old); | |
09cbfeaf | 600 | put_page(old); |
ef6a3c63 MS |
601 | } |
602 | ||
603 | return error; | |
604 | } | |
605 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
606 | ||
a528910e JW |
607 | static int __add_to_page_cache_locked(struct page *page, |
608 | struct address_space *mapping, | |
609 | pgoff_t offset, gfp_t gfp_mask, | |
610 | void **shadowp) | |
1da177e4 | 611 | { |
00501b53 JW |
612 | int huge = PageHuge(page); |
613 | struct mem_cgroup *memcg; | |
e286781d NP |
614 | int error; |
615 | ||
309381fe SL |
616 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
617 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
e286781d | 618 | |
00501b53 JW |
619 | if (!huge) { |
620 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 621 | gfp_mask, &memcg, false); |
00501b53 JW |
622 | if (error) |
623 | return error; | |
624 | } | |
1da177e4 | 625 | |
5e4c0d97 | 626 | error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); |
66a0c8ee | 627 | if (error) { |
00501b53 | 628 | if (!huge) |
f627c2f5 | 629 | mem_cgroup_cancel_charge(page, memcg, false); |
66a0c8ee KS |
630 | return error; |
631 | } | |
632 | ||
09cbfeaf | 633 | get_page(page); |
66a0c8ee KS |
634 | page->mapping = mapping; |
635 | page->index = offset; | |
636 | ||
637 | spin_lock_irq(&mapping->tree_lock); | |
a528910e | 638 | error = page_cache_tree_insert(mapping, page, shadowp); |
66a0c8ee KS |
639 | radix_tree_preload_end(); |
640 | if (unlikely(error)) | |
641 | goto err_insert; | |
4165b9b4 MH |
642 | |
643 | /* hugetlb pages do not participate in page cache accounting. */ | |
644 | if (!huge) | |
11fb9989 | 645 | __inc_node_page_state(page, NR_FILE_PAGES); |
66a0c8ee | 646 | spin_unlock_irq(&mapping->tree_lock); |
00501b53 | 647 | if (!huge) |
f627c2f5 | 648 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
649 | trace_mm_filemap_add_to_page_cache(page); |
650 | return 0; | |
651 | err_insert: | |
652 | page->mapping = NULL; | |
653 | /* Leave page->index set: truncation relies upon it */ | |
654 | spin_unlock_irq(&mapping->tree_lock); | |
00501b53 | 655 | if (!huge) |
f627c2f5 | 656 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 657 | put_page(page); |
1da177e4 LT |
658 | return error; |
659 | } | |
a528910e JW |
660 | |
661 | /** | |
662 | * add_to_page_cache_locked - add a locked page to the pagecache | |
663 | * @page: page to add | |
664 | * @mapping: the page's address_space | |
665 | * @offset: page index | |
666 | * @gfp_mask: page allocation mode | |
667 | * | |
668 | * This function is used to add a page to the pagecache. It must be locked. | |
669 | * This function does not add the page to the LRU. The caller must do that. | |
670 | */ | |
671 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
672 | pgoff_t offset, gfp_t gfp_mask) | |
673 | { | |
674 | return __add_to_page_cache_locked(page, mapping, offset, | |
675 | gfp_mask, NULL); | |
676 | } | |
e286781d | 677 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
678 | |
679 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 680 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 681 | { |
a528910e | 682 | void *shadow = NULL; |
4f98a2fe RR |
683 | int ret; |
684 | ||
48c935ad | 685 | __SetPageLocked(page); |
a528910e JW |
686 | ret = __add_to_page_cache_locked(page, mapping, offset, |
687 | gfp_mask, &shadow); | |
688 | if (unlikely(ret)) | |
48c935ad | 689 | __ClearPageLocked(page); |
a528910e JW |
690 | else { |
691 | /* | |
692 | * The page might have been evicted from cache only | |
693 | * recently, in which case it should be activated like | |
694 | * any other repeatedly accessed page. | |
f0281a00 RR |
695 | * The exception is pages getting rewritten; evicting other |
696 | * data from the working set, only to cache data that will | |
697 | * get overwritten with something else, is a waste of memory. | |
a528910e | 698 | */ |
f0281a00 RR |
699 | if (!(gfp_mask & __GFP_WRITE) && |
700 | shadow && workingset_refault(shadow)) { | |
a528910e JW |
701 | SetPageActive(page); |
702 | workingset_activation(page); | |
703 | } else | |
704 | ClearPageActive(page); | |
705 | lru_cache_add(page); | |
706 | } | |
1da177e4 LT |
707 | return ret; |
708 | } | |
18bc0bbd | 709 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 710 | |
44110fe3 | 711 | #ifdef CONFIG_NUMA |
2ae88149 | 712 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 713 | { |
c0ff7453 MX |
714 | int n; |
715 | struct page *page; | |
716 | ||
44110fe3 | 717 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
718 | unsigned int cpuset_mems_cookie; |
719 | do { | |
d26914d1 | 720 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 721 | n = cpuset_mem_spread_node(); |
96db800f | 722 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 723 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 724 | |
c0ff7453 | 725 | return page; |
44110fe3 | 726 | } |
2ae88149 | 727 | return alloc_pages(gfp, 0); |
44110fe3 | 728 | } |
2ae88149 | 729 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
730 | #endif |
731 | ||
1da177e4 LT |
732 | /* |
733 | * In order to wait for pages to become available there must be | |
734 | * waitqueues associated with pages. By using a hash table of | |
735 | * waitqueues where the bucket discipline is to maintain all | |
736 | * waiters on the same queue and wake all when any of the pages | |
737 | * become available, and for the woken contexts to check to be | |
738 | * sure the appropriate page became available, this saves space | |
739 | * at a cost of "thundering herd" phenomena during rare hash | |
740 | * collisions. | |
741 | */ | |
62906027 NP |
742 | #define PAGE_WAIT_TABLE_BITS 8 |
743 | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | |
744 | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | |
745 | ||
746 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
1da177e4 | 747 | { |
62906027 | 748 | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; |
1da177e4 | 749 | } |
1da177e4 | 750 | |
62906027 | 751 | void __init pagecache_init(void) |
1da177e4 | 752 | { |
62906027 | 753 | int i; |
1da177e4 | 754 | |
62906027 NP |
755 | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) |
756 | init_waitqueue_head(&page_wait_table[i]); | |
757 | ||
758 | page_writeback_init(); | |
1da177e4 | 759 | } |
1da177e4 | 760 | |
62906027 NP |
761 | struct wait_page_key { |
762 | struct page *page; | |
763 | int bit_nr; | |
764 | int page_match; | |
765 | }; | |
766 | ||
767 | struct wait_page_queue { | |
768 | struct page *page; | |
769 | int bit_nr; | |
770 | wait_queue_t wait; | |
771 | }; | |
772 | ||
773 | static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) | |
f62e00cc | 774 | { |
62906027 NP |
775 | struct wait_page_key *key = arg; |
776 | struct wait_page_queue *wait_page | |
777 | = container_of(wait, struct wait_page_queue, wait); | |
778 | ||
779 | if (wait_page->page != key->page) | |
780 | return 0; | |
781 | key->page_match = 1; | |
f62e00cc | 782 | |
62906027 NP |
783 | if (wait_page->bit_nr != key->bit_nr) |
784 | return 0; | |
785 | if (test_bit(key->bit_nr, &key->page->flags)) | |
f62e00cc KM |
786 | return 0; |
787 | ||
62906027 | 788 | return autoremove_wake_function(wait, mode, sync, key); |
f62e00cc KM |
789 | } |
790 | ||
74d81bfa | 791 | static void wake_up_page_bit(struct page *page, int bit_nr) |
cbbce822 | 792 | { |
62906027 NP |
793 | wait_queue_head_t *q = page_waitqueue(page); |
794 | struct wait_page_key key; | |
795 | unsigned long flags; | |
cbbce822 | 796 | |
62906027 NP |
797 | key.page = page; |
798 | key.bit_nr = bit_nr; | |
799 | key.page_match = 0; | |
800 | ||
801 | spin_lock_irqsave(&q->lock, flags); | |
802 | __wake_up_locked_key(q, TASK_NORMAL, &key); | |
803 | /* | |
804 | * It is possible for other pages to have collided on the waitqueue | |
805 | * hash, so in that case check for a page match. That prevents a long- | |
806 | * term waiter | |
807 | * | |
808 | * It is still possible to miss a case here, when we woke page waiters | |
809 | * and removed them from the waitqueue, but there are still other | |
810 | * page waiters. | |
811 | */ | |
812 | if (!waitqueue_active(q) || !key.page_match) { | |
813 | ClearPageWaiters(page); | |
814 | /* | |
815 | * It's possible to miss clearing Waiters here, when we woke | |
816 | * our page waiters, but the hashed waitqueue has waiters for | |
817 | * other pages on it. | |
818 | * | |
819 | * That's okay, it's a rare case. The next waker will clear it. | |
820 | */ | |
821 | } | |
822 | spin_unlock_irqrestore(&q->lock, flags); | |
823 | } | |
74d81bfa NP |
824 | |
825 | static void wake_up_page(struct page *page, int bit) | |
826 | { | |
827 | if (!PageWaiters(page)) | |
828 | return; | |
829 | wake_up_page_bit(page, bit); | |
830 | } | |
62906027 NP |
831 | |
832 | static inline int wait_on_page_bit_common(wait_queue_head_t *q, | |
833 | struct page *page, int bit_nr, int state, bool lock) | |
834 | { | |
835 | struct wait_page_queue wait_page; | |
836 | wait_queue_t *wait = &wait_page.wait; | |
837 | int ret = 0; | |
838 | ||
839 | init_wait(wait); | |
840 | wait->func = wake_page_function; | |
841 | wait_page.page = page; | |
842 | wait_page.bit_nr = bit_nr; | |
843 | ||
844 | for (;;) { | |
845 | spin_lock_irq(&q->lock); | |
846 | ||
847 | if (likely(list_empty(&wait->task_list))) { | |
848 | if (lock) | |
849 | __add_wait_queue_tail_exclusive(q, wait); | |
850 | else | |
851 | __add_wait_queue(q, wait); | |
852 | SetPageWaiters(page); | |
853 | } | |
854 | ||
855 | set_current_state(state); | |
856 | ||
857 | spin_unlock_irq(&q->lock); | |
858 | ||
859 | if (likely(test_bit(bit_nr, &page->flags))) { | |
860 | io_schedule(); | |
861 | if (unlikely(signal_pending_state(state, current))) { | |
862 | ret = -EINTR; | |
863 | break; | |
864 | } | |
865 | } | |
866 | ||
867 | if (lock) { | |
868 | if (!test_and_set_bit_lock(bit_nr, &page->flags)) | |
869 | break; | |
870 | } else { | |
871 | if (!test_bit(bit_nr, &page->flags)) | |
872 | break; | |
873 | } | |
874 | } | |
875 | ||
876 | finish_wait(q, wait); | |
877 | ||
878 | /* | |
879 | * A signal could leave PageWaiters set. Clearing it here if | |
880 | * !waitqueue_active would be possible (by open-coding finish_wait), | |
881 | * but still fail to catch it in the case of wait hash collision. We | |
882 | * already can fail to clear wait hash collision cases, so don't | |
883 | * bother with signals either. | |
884 | */ | |
885 | ||
886 | return ret; | |
887 | } | |
888 | ||
889 | void wait_on_page_bit(struct page *page, int bit_nr) | |
890 | { | |
891 | wait_queue_head_t *q = page_waitqueue(page); | |
892 | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); | |
893 | } | |
894 | EXPORT_SYMBOL(wait_on_page_bit); | |
895 | ||
896 | int wait_on_page_bit_killable(struct page *page, int bit_nr) | |
897 | { | |
898 | wait_queue_head_t *q = page_waitqueue(page); | |
899 | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); | |
cbbce822 | 900 | } |
cbbce822 | 901 | |
385e1ca5 DH |
902 | /** |
903 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
904 | * @page: Page defining the wait queue of interest |
905 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
906 | * |
907 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
908 | */ | |
909 | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) | |
910 | { | |
911 | wait_queue_head_t *q = page_waitqueue(page); | |
912 | unsigned long flags; | |
913 | ||
914 | spin_lock_irqsave(&q->lock, flags); | |
915 | __add_wait_queue(q, waiter); | |
62906027 | 916 | SetPageWaiters(page); |
385e1ca5 DH |
917 | spin_unlock_irqrestore(&q->lock, flags); |
918 | } | |
919 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
920 | ||
b91e1302 LT |
921 | #ifndef clear_bit_unlock_is_negative_byte |
922 | ||
923 | /* | |
924 | * PG_waiters is the high bit in the same byte as PG_lock. | |
925 | * | |
926 | * On x86 (and on many other architectures), we can clear PG_lock and | |
927 | * test the sign bit at the same time. But if the architecture does | |
928 | * not support that special operation, we just do this all by hand | |
929 | * instead. | |
930 | * | |
931 | * The read of PG_waiters has to be after (or concurrently with) PG_locked | |
932 | * being cleared, but a memory barrier should be unneccssary since it is | |
933 | * in the same byte as PG_locked. | |
934 | */ | |
935 | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | |
936 | { | |
937 | clear_bit_unlock(nr, mem); | |
938 | /* smp_mb__after_atomic(); */ | |
98473f9f | 939 | return test_bit(PG_waiters, mem); |
b91e1302 LT |
940 | } |
941 | ||
942 | #endif | |
943 | ||
1da177e4 | 944 | /** |
485bb99b | 945 | * unlock_page - unlock a locked page |
1da177e4 LT |
946 | * @page: the page |
947 | * | |
948 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
949 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 950 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
951 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
952 | * | |
b91e1302 LT |
953 | * Note that this depends on PG_waiters being the sign bit in the byte |
954 | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | |
955 | * clear the PG_locked bit and test PG_waiters at the same time fairly | |
956 | * portably (architectures that do LL/SC can test any bit, while x86 can | |
957 | * test the sign bit). | |
1da177e4 | 958 | */ |
920c7a5d | 959 | void unlock_page(struct page *page) |
1da177e4 | 960 | { |
b91e1302 | 961 | BUILD_BUG_ON(PG_waiters != 7); |
48c935ad | 962 | page = compound_head(page); |
309381fe | 963 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
b91e1302 LT |
964 | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) |
965 | wake_up_page_bit(page, PG_locked); | |
1da177e4 LT |
966 | } |
967 | EXPORT_SYMBOL(unlock_page); | |
968 | ||
485bb99b RD |
969 | /** |
970 | * end_page_writeback - end writeback against a page | |
971 | * @page: the page | |
1da177e4 LT |
972 | */ |
973 | void end_page_writeback(struct page *page) | |
974 | { | |
888cf2db MG |
975 | /* |
976 | * TestClearPageReclaim could be used here but it is an atomic | |
977 | * operation and overkill in this particular case. Failing to | |
978 | * shuffle a page marked for immediate reclaim is too mild to | |
979 | * justify taking an atomic operation penalty at the end of | |
980 | * ever page writeback. | |
981 | */ | |
982 | if (PageReclaim(page)) { | |
983 | ClearPageReclaim(page); | |
ac6aadb2 | 984 | rotate_reclaimable_page(page); |
888cf2db | 985 | } |
ac6aadb2 MS |
986 | |
987 | if (!test_clear_page_writeback(page)) | |
988 | BUG(); | |
989 | ||
4e857c58 | 990 | smp_mb__after_atomic(); |
1da177e4 LT |
991 | wake_up_page(page, PG_writeback); |
992 | } | |
993 | EXPORT_SYMBOL(end_page_writeback); | |
994 | ||
57d99845 MW |
995 | /* |
996 | * After completing I/O on a page, call this routine to update the page | |
997 | * flags appropriately | |
998 | */ | |
c11f0c0b | 999 | void page_endio(struct page *page, bool is_write, int err) |
57d99845 | 1000 | { |
c11f0c0b | 1001 | if (!is_write) { |
57d99845 MW |
1002 | if (!err) { |
1003 | SetPageUptodate(page); | |
1004 | } else { | |
1005 | ClearPageUptodate(page); | |
1006 | SetPageError(page); | |
1007 | } | |
1008 | unlock_page(page); | |
abf54548 | 1009 | } else { |
57d99845 MW |
1010 | if (err) { |
1011 | SetPageError(page); | |
1012 | if (page->mapping) | |
1013 | mapping_set_error(page->mapping, err); | |
1014 | } | |
1015 | end_page_writeback(page); | |
1016 | } | |
1017 | } | |
1018 | EXPORT_SYMBOL_GPL(page_endio); | |
1019 | ||
485bb99b RD |
1020 | /** |
1021 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
87066755 | 1022 | * @__page: the page to lock |
1da177e4 | 1023 | */ |
62906027 | 1024 | void __lock_page(struct page *__page) |
1da177e4 | 1025 | { |
62906027 NP |
1026 | struct page *page = compound_head(__page); |
1027 | wait_queue_head_t *q = page_waitqueue(page); | |
1028 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); | |
1da177e4 LT |
1029 | } |
1030 | EXPORT_SYMBOL(__lock_page); | |
1031 | ||
62906027 | 1032 | int __lock_page_killable(struct page *__page) |
2687a356 | 1033 | { |
62906027 NP |
1034 | struct page *page = compound_head(__page); |
1035 | wait_queue_head_t *q = page_waitqueue(page); | |
1036 | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); | |
2687a356 | 1037 | } |
18bc0bbd | 1038 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 1039 | |
9a95f3cf PC |
1040 | /* |
1041 | * Return values: | |
1042 | * 1 - page is locked; mmap_sem is still held. | |
1043 | * 0 - page is not locked. | |
1044 | * mmap_sem has been released (up_read()), unless flags had both | |
1045 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
1046 | * which case mmap_sem is still held. | |
1047 | * | |
1048 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
1049 | * with the page locked and the mmap_sem unperturbed. | |
1050 | */ | |
d065bd81 ML |
1051 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
1052 | unsigned int flags) | |
1053 | { | |
37b23e05 KM |
1054 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
1055 | /* | |
1056 | * CAUTION! In this case, mmap_sem is not released | |
1057 | * even though return 0. | |
1058 | */ | |
1059 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
1060 | return 0; | |
1061 | ||
1062 | up_read(&mm->mmap_sem); | |
1063 | if (flags & FAULT_FLAG_KILLABLE) | |
1064 | wait_on_page_locked_killable(page); | |
1065 | else | |
318b275f | 1066 | wait_on_page_locked(page); |
d065bd81 | 1067 | return 0; |
37b23e05 KM |
1068 | } else { |
1069 | if (flags & FAULT_FLAG_KILLABLE) { | |
1070 | int ret; | |
1071 | ||
1072 | ret = __lock_page_killable(page); | |
1073 | if (ret) { | |
1074 | up_read(&mm->mmap_sem); | |
1075 | return 0; | |
1076 | } | |
1077 | } else | |
1078 | __lock_page(page); | |
1079 | return 1; | |
d065bd81 ML |
1080 | } |
1081 | } | |
1082 | ||
e7b563bb JW |
1083 | /** |
1084 | * page_cache_next_hole - find the next hole (not-present entry) | |
1085 | * @mapping: mapping | |
1086 | * @index: index | |
1087 | * @max_scan: maximum range to search | |
1088 | * | |
1089 | * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the | |
1090 | * lowest indexed hole. | |
1091 | * | |
1092 | * Returns: the index of the hole if found, otherwise returns an index | |
1093 | * outside of the set specified (in which case 'return - index >= | |
1094 | * max_scan' will be true). In rare cases of index wrap-around, 0 will | |
1095 | * be returned. | |
1096 | * | |
1097 | * page_cache_next_hole may be called under rcu_read_lock. However, | |
1098 | * like radix_tree_gang_lookup, this will not atomically search a | |
1099 | * snapshot of the tree at a single point in time. For example, if a | |
1100 | * hole is created at index 5, then subsequently a hole is created at | |
1101 | * index 10, page_cache_next_hole covering both indexes may return 10 | |
1102 | * if called under rcu_read_lock. | |
1103 | */ | |
1104 | pgoff_t page_cache_next_hole(struct address_space *mapping, | |
1105 | pgoff_t index, unsigned long max_scan) | |
1106 | { | |
1107 | unsigned long i; | |
1108 | ||
1109 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1110 | struct page *page; |
1111 | ||
1112 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1113 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1114 | break; |
1115 | index++; | |
1116 | if (index == 0) | |
1117 | break; | |
1118 | } | |
1119 | ||
1120 | return index; | |
1121 | } | |
1122 | EXPORT_SYMBOL(page_cache_next_hole); | |
1123 | ||
1124 | /** | |
1125 | * page_cache_prev_hole - find the prev hole (not-present entry) | |
1126 | * @mapping: mapping | |
1127 | * @index: index | |
1128 | * @max_scan: maximum range to search | |
1129 | * | |
1130 | * Search backwards in the range [max(index-max_scan+1, 0), index] for | |
1131 | * the first hole. | |
1132 | * | |
1133 | * Returns: the index of the hole if found, otherwise returns an index | |
1134 | * outside of the set specified (in which case 'index - return >= | |
1135 | * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX | |
1136 | * will be returned. | |
1137 | * | |
1138 | * page_cache_prev_hole may be called under rcu_read_lock. However, | |
1139 | * like radix_tree_gang_lookup, this will not atomically search a | |
1140 | * snapshot of the tree at a single point in time. For example, if a | |
1141 | * hole is created at index 10, then subsequently a hole is created at | |
1142 | * index 5, page_cache_prev_hole covering both indexes may return 5 if | |
1143 | * called under rcu_read_lock. | |
1144 | */ | |
1145 | pgoff_t page_cache_prev_hole(struct address_space *mapping, | |
1146 | pgoff_t index, unsigned long max_scan) | |
1147 | { | |
1148 | unsigned long i; | |
1149 | ||
1150 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1151 | struct page *page; |
1152 | ||
1153 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1154 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1155 | break; |
1156 | index--; | |
1157 | if (index == ULONG_MAX) | |
1158 | break; | |
1159 | } | |
1160 | ||
1161 | return index; | |
1162 | } | |
1163 | EXPORT_SYMBOL(page_cache_prev_hole); | |
1164 | ||
485bb99b | 1165 | /** |
0cd6144a | 1166 | * find_get_entry - find and get a page cache entry |
485bb99b | 1167 | * @mapping: the address_space to search |
0cd6144a JW |
1168 | * @offset: the page cache index |
1169 | * | |
1170 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1171 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1172 | * |
139b6a6f JW |
1173 | * If the slot holds a shadow entry of a previously evicted page, or a |
1174 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1175 | * |
1176 | * Otherwise, %NULL is returned. | |
1da177e4 | 1177 | */ |
0cd6144a | 1178 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1179 | { |
a60637c8 | 1180 | void **pagep; |
83929372 | 1181 | struct page *head, *page; |
1da177e4 | 1182 | |
a60637c8 NP |
1183 | rcu_read_lock(); |
1184 | repeat: | |
1185 | page = NULL; | |
1186 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | |
1187 | if (pagep) { | |
1188 | page = radix_tree_deref_slot(pagep); | |
27d20fdd NP |
1189 | if (unlikely(!page)) |
1190 | goto out; | |
a2c16d6c | 1191 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1192 | if (radix_tree_deref_retry(page)) |
1193 | goto repeat; | |
1194 | /* | |
139b6a6f JW |
1195 | * A shadow entry of a recently evicted page, |
1196 | * or a swap entry from shmem/tmpfs. Return | |
1197 | * it without attempting to raise page count. | |
8079b1c8 HD |
1198 | */ |
1199 | goto out; | |
a2c16d6c | 1200 | } |
83929372 KS |
1201 | |
1202 | head = compound_head(page); | |
1203 | if (!page_cache_get_speculative(head)) | |
1204 | goto repeat; | |
1205 | ||
1206 | /* The page was split under us? */ | |
1207 | if (compound_head(page) != head) { | |
1208 | put_page(head); | |
a60637c8 | 1209 | goto repeat; |
83929372 | 1210 | } |
a60637c8 NP |
1211 | |
1212 | /* | |
1213 | * Has the page moved? | |
1214 | * This is part of the lockless pagecache protocol. See | |
1215 | * include/linux/pagemap.h for details. | |
1216 | */ | |
1217 | if (unlikely(page != *pagep)) { | |
83929372 | 1218 | put_page(head); |
a60637c8 NP |
1219 | goto repeat; |
1220 | } | |
1221 | } | |
27d20fdd | 1222 | out: |
a60637c8 NP |
1223 | rcu_read_unlock(); |
1224 | ||
1da177e4 LT |
1225 | return page; |
1226 | } | |
0cd6144a | 1227 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1228 | |
0cd6144a JW |
1229 | /** |
1230 | * find_lock_entry - locate, pin and lock a page cache entry | |
1231 | * @mapping: the address_space to search | |
1232 | * @offset: the page cache index | |
1233 | * | |
1234 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1235 | * page cache page, it is returned locked and with an increased | |
1236 | * refcount. | |
1237 | * | |
139b6a6f JW |
1238 | * If the slot holds a shadow entry of a previously evicted page, or a |
1239 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1240 | * |
1241 | * Otherwise, %NULL is returned. | |
1242 | * | |
1243 | * find_lock_entry() may sleep. | |
1244 | */ | |
1245 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1246 | { |
1247 | struct page *page; | |
1248 | ||
1da177e4 | 1249 | repeat: |
0cd6144a | 1250 | page = find_get_entry(mapping, offset); |
a2c16d6c | 1251 | if (page && !radix_tree_exception(page)) { |
a60637c8 NP |
1252 | lock_page(page); |
1253 | /* Has the page been truncated? */ | |
83929372 | 1254 | if (unlikely(page_mapping(page) != mapping)) { |
a60637c8 | 1255 | unlock_page(page); |
09cbfeaf | 1256 | put_page(page); |
a60637c8 | 1257 | goto repeat; |
1da177e4 | 1258 | } |
83929372 | 1259 | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); |
1da177e4 | 1260 | } |
1da177e4 LT |
1261 | return page; |
1262 | } | |
0cd6144a JW |
1263 | EXPORT_SYMBOL(find_lock_entry); |
1264 | ||
1265 | /** | |
2457aec6 | 1266 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1267 | * @mapping: the address_space to search |
1268 | * @offset: the page index | |
2457aec6 | 1269 | * @fgp_flags: PCG flags |
45f87de5 | 1270 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1271 | * |
2457aec6 | 1272 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1273 | * |
75325189 | 1274 | * PCG flags modify how the page is returned. |
0cd6144a | 1275 | * |
2457aec6 MG |
1276 | * FGP_ACCESSED: the page will be marked accessed |
1277 | * FGP_LOCK: Page is return locked | |
1278 | * FGP_CREAT: If page is not present then a new page is allocated using | |
45f87de5 MH |
1279 | * @gfp_mask and added to the page cache and the VM's LRU |
1280 | * list. The page is returned locked and with an increased | |
1281 | * refcount. Otherwise, %NULL is returned. | |
1da177e4 | 1282 | * |
2457aec6 MG |
1283 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1284 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1285 | * |
2457aec6 | 1286 | * If there is a page cache page, it is returned with an increased refcount. |
1da177e4 | 1287 | */ |
2457aec6 | 1288 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1289 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1290 | { |
eb2be189 | 1291 | struct page *page; |
2457aec6 | 1292 | |
1da177e4 | 1293 | repeat: |
2457aec6 MG |
1294 | page = find_get_entry(mapping, offset); |
1295 | if (radix_tree_exceptional_entry(page)) | |
1296 | page = NULL; | |
1297 | if (!page) | |
1298 | goto no_page; | |
1299 | ||
1300 | if (fgp_flags & FGP_LOCK) { | |
1301 | if (fgp_flags & FGP_NOWAIT) { | |
1302 | if (!trylock_page(page)) { | |
09cbfeaf | 1303 | put_page(page); |
2457aec6 MG |
1304 | return NULL; |
1305 | } | |
1306 | } else { | |
1307 | lock_page(page); | |
1308 | } | |
1309 | ||
1310 | /* Has the page been truncated? */ | |
1311 | if (unlikely(page->mapping != mapping)) { | |
1312 | unlock_page(page); | |
09cbfeaf | 1313 | put_page(page); |
2457aec6 MG |
1314 | goto repeat; |
1315 | } | |
1316 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1317 | } | |
1318 | ||
1319 | if (page && (fgp_flags & FGP_ACCESSED)) | |
1320 | mark_page_accessed(page); | |
1321 | ||
1322 | no_page: | |
1323 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1324 | int err; | |
1325 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1326 | gfp_mask |= __GFP_WRITE; |
1327 | if (fgp_flags & FGP_NOFS) | |
1328 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1329 | |
45f87de5 | 1330 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1331 | if (!page) |
1332 | return NULL; | |
2457aec6 MG |
1333 | |
1334 | if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) | |
1335 | fgp_flags |= FGP_LOCK; | |
1336 | ||
eb39d618 | 1337 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1338 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1339 | __SetPageReferenced(page); |
2457aec6 | 1340 | |
45f87de5 MH |
1341 | err = add_to_page_cache_lru(page, mapping, offset, |
1342 | gfp_mask & GFP_RECLAIM_MASK); | |
eb2be189 | 1343 | if (unlikely(err)) { |
09cbfeaf | 1344 | put_page(page); |
eb2be189 NP |
1345 | page = NULL; |
1346 | if (err == -EEXIST) | |
1347 | goto repeat; | |
1da177e4 | 1348 | } |
1da177e4 | 1349 | } |
2457aec6 | 1350 | |
1da177e4 LT |
1351 | return page; |
1352 | } | |
2457aec6 | 1353 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1354 | |
0cd6144a JW |
1355 | /** |
1356 | * find_get_entries - gang pagecache lookup | |
1357 | * @mapping: The address_space to search | |
1358 | * @start: The starting page cache index | |
1359 | * @nr_entries: The maximum number of entries | |
1360 | * @entries: Where the resulting entries are placed | |
1361 | * @indices: The cache indices corresponding to the entries in @entries | |
1362 | * | |
1363 | * find_get_entries() will search for and return a group of up to | |
1364 | * @nr_entries entries in the mapping. The entries are placed at | |
1365 | * @entries. find_get_entries() takes a reference against any actual | |
1366 | * pages it returns. | |
1367 | * | |
1368 | * The search returns a group of mapping-contiguous page cache entries | |
1369 | * with ascending indexes. There may be holes in the indices due to | |
1370 | * not-present pages. | |
1371 | * | |
139b6a6f JW |
1372 | * Any shadow entries of evicted pages, or swap entries from |
1373 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a JW |
1374 | * |
1375 | * find_get_entries() returns the number of pages and shadow entries | |
1376 | * which were found. | |
1377 | */ | |
1378 | unsigned find_get_entries(struct address_space *mapping, | |
1379 | pgoff_t start, unsigned int nr_entries, | |
1380 | struct page **entries, pgoff_t *indices) | |
1381 | { | |
1382 | void **slot; | |
1383 | unsigned int ret = 0; | |
1384 | struct radix_tree_iter iter; | |
1385 | ||
1386 | if (!nr_entries) | |
1387 | return 0; | |
1388 | ||
1389 | rcu_read_lock(); | |
0cd6144a | 1390 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
83929372 | 1391 | struct page *head, *page; |
0cd6144a JW |
1392 | repeat: |
1393 | page = radix_tree_deref_slot(slot); | |
1394 | if (unlikely(!page)) | |
1395 | continue; | |
1396 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
1397 | if (radix_tree_deref_retry(page)) { |
1398 | slot = radix_tree_iter_retry(&iter); | |
1399 | continue; | |
1400 | } | |
0cd6144a | 1401 | /* |
f9fe48be RZ |
1402 | * A shadow entry of a recently evicted page, a swap |
1403 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1404 | * without attempting to raise page count. | |
0cd6144a JW |
1405 | */ |
1406 | goto export; | |
1407 | } | |
83929372 KS |
1408 | |
1409 | head = compound_head(page); | |
1410 | if (!page_cache_get_speculative(head)) | |
1411 | goto repeat; | |
1412 | ||
1413 | /* The page was split under us? */ | |
1414 | if (compound_head(page) != head) { | |
1415 | put_page(head); | |
0cd6144a | 1416 | goto repeat; |
83929372 | 1417 | } |
0cd6144a JW |
1418 | |
1419 | /* Has the page moved? */ | |
1420 | if (unlikely(page != *slot)) { | |
83929372 | 1421 | put_page(head); |
0cd6144a JW |
1422 | goto repeat; |
1423 | } | |
1424 | export: | |
1425 | indices[ret] = iter.index; | |
1426 | entries[ret] = page; | |
1427 | if (++ret == nr_entries) | |
1428 | break; | |
1429 | } | |
1430 | rcu_read_unlock(); | |
1431 | return ret; | |
1432 | } | |
1433 | ||
1da177e4 LT |
1434 | /** |
1435 | * find_get_pages - gang pagecache lookup | |
1436 | * @mapping: The address_space to search | |
1437 | * @start: The starting page index | |
1438 | * @nr_pages: The maximum number of pages | |
1439 | * @pages: Where the resulting pages are placed | |
1440 | * | |
1441 | * find_get_pages() will search for and return a group of up to | |
1442 | * @nr_pages pages in the mapping. The pages are placed at @pages. | |
1443 | * find_get_pages() takes a reference against the returned pages. | |
1444 | * | |
1445 | * The search returns a group of mapping-contiguous pages with ascending | |
1446 | * indexes. There may be holes in the indices due to not-present pages. | |
1447 | * | |
1448 | * find_get_pages() returns the number of pages which were found. | |
1449 | */ | |
1450 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |
1451 | unsigned int nr_pages, struct page **pages) | |
1452 | { | |
0fc9d104 KK |
1453 | struct radix_tree_iter iter; |
1454 | void **slot; | |
1455 | unsigned ret = 0; | |
1456 | ||
1457 | if (unlikely(!nr_pages)) | |
1458 | return 0; | |
a60637c8 NP |
1459 | |
1460 | rcu_read_lock(); | |
0fc9d104 | 1461 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
83929372 | 1462 | struct page *head, *page; |
a60637c8 | 1463 | repeat: |
0fc9d104 | 1464 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1465 | if (unlikely(!page)) |
1466 | continue; | |
9d8aa4ea | 1467 | |
a2c16d6c | 1468 | if (radix_tree_exception(page)) { |
8079b1c8 | 1469 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1470 | slot = radix_tree_iter_retry(&iter); |
1471 | continue; | |
8079b1c8 | 1472 | } |
a2c16d6c | 1473 | /* |
139b6a6f JW |
1474 | * A shadow entry of a recently evicted page, |
1475 | * or a swap entry from shmem/tmpfs. Skip | |
1476 | * over it. | |
a2c16d6c | 1477 | */ |
8079b1c8 | 1478 | continue; |
27d20fdd | 1479 | } |
a60637c8 | 1480 | |
83929372 KS |
1481 | head = compound_head(page); |
1482 | if (!page_cache_get_speculative(head)) | |
1483 | goto repeat; | |
1484 | ||
1485 | /* The page was split under us? */ | |
1486 | if (compound_head(page) != head) { | |
1487 | put_page(head); | |
a60637c8 | 1488 | goto repeat; |
83929372 | 1489 | } |
a60637c8 NP |
1490 | |
1491 | /* Has the page moved? */ | |
0fc9d104 | 1492 | if (unlikely(page != *slot)) { |
83929372 | 1493 | put_page(head); |
a60637c8 NP |
1494 | goto repeat; |
1495 | } | |
1da177e4 | 1496 | |
a60637c8 | 1497 | pages[ret] = page; |
0fc9d104 KK |
1498 | if (++ret == nr_pages) |
1499 | break; | |
a60637c8 | 1500 | } |
5b280c0c | 1501 | |
a60637c8 | 1502 | rcu_read_unlock(); |
1da177e4 LT |
1503 | return ret; |
1504 | } | |
1505 | ||
ebf43500 JA |
1506 | /** |
1507 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1508 | * @mapping: The address_space to search | |
1509 | * @index: The starting page index | |
1510 | * @nr_pages: The maximum number of pages | |
1511 | * @pages: Where the resulting pages are placed | |
1512 | * | |
1513 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1514 | * that the returned number of pages are guaranteed to be contiguous. | |
1515 | * | |
1516 | * find_get_pages_contig() returns the number of pages which were found. | |
1517 | */ | |
1518 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1519 | unsigned int nr_pages, struct page **pages) | |
1520 | { | |
0fc9d104 KK |
1521 | struct radix_tree_iter iter; |
1522 | void **slot; | |
1523 | unsigned int ret = 0; | |
1524 | ||
1525 | if (unlikely(!nr_pages)) | |
1526 | return 0; | |
a60637c8 NP |
1527 | |
1528 | rcu_read_lock(); | |
0fc9d104 | 1529 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
83929372 | 1530 | struct page *head, *page; |
a60637c8 | 1531 | repeat: |
0fc9d104 KK |
1532 | page = radix_tree_deref_slot(slot); |
1533 | /* The hole, there no reason to continue */ | |
a60637c8 | 1534 | if (unlikely(!page)) |
0fc9d104 | 1535 | break; |
9d8aa4ea | 1536 | |
a2c16d6c | 1537 | if (radix_tree_exception(page)) { |
8079b1c8 | 1538 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1539 | slot = radix_tree_iter_retry(&iter); |
1540 | continue; | |
8079b1c8 | 1541 | } |
a2c16d6c | 1542 | /* |
139b6a6f JW |
1543 | * A shadow entry of a recently evicted page, |
1544 | * or a swap entry from shmem/tmpfs. Stop | |
1545 | * looking for contiguous pages. | |
a2c16d6c | 1546 | */ |
8079b1c8 | 1547 | break; |
a2c16d6c | 1548 | } |
ebf43500 | 1549 | |
83929372 KS |
1550 | head = compound_head(page); |
1551 | if (!page_cache_get_speculative(head)) | |
1552 | goto repeat; | |
1553 | ||
1554 | /* The page was split under us? */ | |
1555 | if (compound_head(page) != head) { | |
1556 | put_page(head); | |
a60637c8 | 1557 | goto repeat; |
83929372 | 1558 | } |
a60637c8 NP |
1559 | |
1560 | /* Has the page moved? */ | |
0fc9d104 | 1561 | if (unlikely(page != *slot)) { |
83929372 | 1562 | put_page(head); |
a60637c8 NP |
1563 | goto repeat; |
1564 | } | |
1565 | ||
9cbb4cb2 NP |
1566 | /* |
1567 | * must check mapping and index after taking the ref. | |
1568 | * otherwise we can get both false positives and false | |
1569 | * negatives, which is just confusing to the caller. | |
1570 | */ | |
83929372 | 1571 | if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { |
09cbfeaf | 1572 | put_page(page); |
9cbb4cb2 NP |
1573 | break; |
1574 | } | |
1575 | ||
a60637c8 | 1576 | pages[ret] = page; |
0fc9d104 KK |
1577 | if (++ret == nr_pages) |
1578 | break; | |
ebf43500 | 1579 | } |
a60637c8 NP |
1580 | rcu_read_unlock(); |
1581 | return ret; | |
ebf43500 | 1582 | } |
ef71c15c | 1583 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1584 | |
485bb99b RD |
1585 | /** |
1586 | * find_get_pages_tag - find and return pages that match @tag | |
1587 | * @mapping: the address_space to search | |
1588 | * @index: the starting page index | |
1589 | * @tag: the tag index | |
1590 | * @nr_pages: the maximum number of pages | |
1591 | * @pages: where the resulting pages are placed | |
1592 | * | |
1da177e4 | 1593 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1594 | * @tag. We update @index to index the next page for the traversal. |
1da177e4 LT |
1595 | */ |
1596 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |
1597 | int tag, unsigned int nr_pages, struct page **pages) | |
1598 | { | |
0fc9d104 KK |
1599 | struct radix_tree_iter iter; |
1600 | void **slot; | |
1601 | unsigned ret = 0; | |
1602 | ||
1603 | if (unlikely(!nr_pages)) | |
1604 | return 0; | |
a60637c8 NP |
1605 | |
1606 | rcu_read_lock(); | |
0fc9d104 KK |
1607 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1608 | &iter, *index, tag) { | |
83929372 | 1609 | struct page *head, *page; |
a60637c8 | 1610 | repeat: |
0fc9d104 | 1611 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1612 | if (unlikely(!page)) |
1613 | continue; | |
9d8aa4ea | 1614 | |
a2c16d6c | 1615 | if (radix_tree_exception(page)) { |
8079b1c8 | 1616 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1617 | slot = radix_tree_iter_retry(&iter); |
1618 | continue; | |
8079b1c8 | 1619 | } |
a2c16d6c | 1620 | /* |
139b6a6f JW |
1621 | * A shadow entry of a recently evicted page. |
1622 | * | |
1623 | * Those entries should never be tagged, but | |
1624 | * this tree walk is lockless and the tags are | |
1625 | * looked up in bulk, one radix tree node at a | |
1626 | * time, so there is a sizable window for page | |
1627 | * reclaim to evict a page we saw tagged. | |
1628 | * | |
1629 | * Skip over it. | |
a2c16d6c | 1630 | */ |
139b6a6f | 1631 | continue; |
a2c16d6c | 1632 | } |
a60637c8 | 1633 | |
83929372 KS |
1634 | head = compound_head(page); |
1635 | if (!page_cache_get_speculative(head)) | |
a60637c8 NP |
1636 | goto repeat; |
1637 | ||
83929372 KS |
1638 | /* The page was split under us? */ |
1639 | if (compound_head(page) != head) { | |
1640 | put_page(head); | |
1641 | goto repeat; | |
1642 | } | |
1643 | ||
a60637c8 | 1644 | /* Has the page moved? */ |
0fc9d104 | 1645 | if (unlikely(page != *slot)) { |
83929372 | 1646 | put_page(head); |
a60637c8 NP |
1647 | goto repeat; |
1648 | } | |
1649 | ||
1650 | pages[ret] = page; | |
0fc9d104 KK |
1651 | if (++ret == nr_pages) |
1652 | break; | |
a60637c8 | 1653 | } |
5b280c0c | 1654 | |
a60637c8 | 1655 | rcu_read_unlock(); |
1da177e4 | 1656 | |
1da177e4 LT |
1657 | if (ret) |
1658 | *index = pages[ret - 1]->index + 1; | |
a60637c8 | 1659 | |
1da177e4 LT |
1660 | return ret; |
1661 | } | |
ef71c15c | 1662 | EXPORT_SYMBOL(find_get_pages_tag); |
1da177e4 | 1663 | |
7e7f7749 RZ |
1664 | /** |
1665 | * find_get_entries_tag - find and return entries that match @tag | |
1666 | * @mapping: the address_space to search | |
1667 | * @start: the starting page cache index | |
1668 | * @tag: the tag index | |
1669 | * @nr_entries: the maximum number of entries | |
1670 | * @entries: where the resulting entries are placed | |
1671 | * @indices: the cache indices corresponding to the entries in @entries | |
1672 | * | |
1673 | * Like find_get_entries, except we only return entries which are tagged with | |
1674 | * @tag. | |
1675 | */ | |
1676 | unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, | |
1677 | int tag, unsigned int nr_entries, | |
1678 | struct page **entries, pgoff_t *indices) | |
1679 | { | |
1680 | void **slot; | |
1681 | unsigned int ret = 0; | |
1682 | struct radix_tree_iter iter; | |
1683 | ||
1684 | if (!nr_entries) | |
1685 | return 0; | |
1686 | ||
1687 | rcu_read_lock(); | |
7e7f7749 RZ |
1688 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1689 | &iter, start, tag) { | |
83929372 | 1690 | struct page *head, *page; |
7e7f7749 RZ |
1691 | repeat: |
1692 | page = radix_tree_deref_slot(slot); | |
1693 | if (unlikely(!page)) | |
1694 | continue; | |
1695 | if (radix_tree_exception(page)) { | |
1696 | if (radix_tree_deref_retry(page)) { | |
2cf938aa MW |
1697 | slot = radix_tree_iter_retry(&iter); |
1698 | continue; | |
7e7f7749 RZ |
1699 | } |
1700 | ||
1701 | /* | |
1702 | * A shadow entry of a recently evicted page, a swap | |
1703 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1704 | * without attempting to raise page count. | |
1705 | */ | |
1706 | goto export; | |
1707 | } | |
83929372 KS |
1708 | |
1709 | head = compound_head(page); | |
1710 | if (!page_cache_get_speculative(head)) | |
7e7f7749 RZ |
1711 | goto repeat; |
1712 | ||
83929372 KS |
1713 | /* The page was split under us? */ |
1714 | if (compound_head(page) != head) { | |
1715 | put_page(head); | |
1716 | goto repeat; | |
1717 | } | |
1718 | ||
7e7f7749 RZ |
1719 | /* Has the page moved? */ |
1720 | if (unlikely(page != *slot)) { | |
83929372 | 1721 | put_page(head); |
7e7f7749 RZ |
1722 | goto repeat; |
1723 | } | |
1724 | export: | |
1725 | indices[ret] = iter.index; | |
1726 | entries[ret] = page; | |
1727 | if (++ret == nr_entries) | |
1728 | break; | |
1729 | } | |
1730 | rcu_read_unlock(); | |
1731 | return ret; | |
1732 | } | |
1733 | EXPORT_SYMBOL(find_get_entries_tag); | |
1734 | ||
76d42bd9 WF |
1735 | /* |
1736 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1737 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1738 | * | |
1739 | * ---R__________________________________________B__________ | |
1740 | * ^ reading here ^ bad block(assume 4k) | |
1741 | * | |
1742 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
1743 | * => failing the whole request => read(R) => read(R+1) => | |
1744 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
1745 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
1746 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
1747 | * | |
1748 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
1749 | */ | |
1750 | static void shrink_readahead_size_eio(struct file *filp, | |
1751 | struct file_ra_state *ra) | |
1752 | { | |
76d42bd9 | 1753 | ra->ra_pages /= 4; |
76d42bd9 WF |
1754 | } |
1755 | ||
485bb99b | 1756 | /** |
36e78914 | 1757 | * do_generic_file_read - generic file read routine |
485bb99b RD |
1758 | * @filp: the file to read |
1759 | * @ppos: current file position | |
6e58e79d AV |
1760 | * @iter: data destination |
1761 | * @written: already copied | |
485bb99b | 1762 | * |
1da177e4 | 1763 | * This is a generic file read routine, and uses the |
485bb99b | 1764 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
1765 | * |
1766 | * This is really ugly. But the goto's actually try to clarify some | |
1767 | * of the logic when it comes to error handling etc. | |
1da177e4 | 1768 | */ |
6e58e79d AV |
1769 | static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, |
1770 | struct iov_iter *iter, ssize_t written) | |
1da177e4 | 1771 | { |
36e78914 | 1772 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 1773 | struct inode *inode = mapping->host; |
36e78914 | 1774 | struct file_ra_state *ra = &filp->f_ra; |
57f6b96c FW |
1775 | pgoff_t index; |
1776 | pgoff_t last_index; | |
1777 | pgoff_t prev_index; | |
1778 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 1779 | unsigned int prev_offset; |
6e58e79d | 1780 | int error = 0; |
1da177e4 | 1781 | |
c2a9737f | 1782 | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) |
d05c5f7b | 1783 | return 0; |
c2a9737f WF |
1784 | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); |
1785 | ||
09cbfeaf KS |
1786 | index = *ppos >> PAGE_SHIFT; |
1787 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
1788 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
1789 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
1790 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 1791 | |
1da177e4 LT |
1792 | for (;;) { |
1793 | struct page *page; | |
57f6b96c | 1794 | pgoff_t end_index; |
a32ea1e1 | 1795 | loff_t isize; |
1da177e4 LT |
1796 | unsigned long nr, ret; |
1797 | ||
1da177e4 | 1798 | cond_resched(); |
1da177e4 | 1799 | find_page: |
5abf186a MH |
1800 | if (fatal_signal_pending(current)) { |
1801 | error = -EINTR; | |
1802 | goto out; | |
1803 | } | |
1804 | ||
1da177e4 | 1805 | page = find_get_page(mapping, index); |
3ea89ee8 | 1806 | if (!page) { |
cf914a7d | 1807 | page_cache_sync_readahead(mapping, |
7ff81078 | 1808 | ra, filp, |
3ea89ee8 FW |
1809 | index, last_index - index); |
1810 | page = find_get_page(mapping, index); | |
1811 | if (unlikely(page == NULL)) | |
1812 | goto no_cached_page; | |
1813 | } | |
1814 | if (PageReadahead(page)) { | |
cf914a7d | 1815 | page_cache_async_readahead(mapping, |
7ff81078 | 1816 | ra, filp, page, |
3ea89ee8 | 1817 | index, last_index - index); |
1da177e4 | 1818 | } |
8ab22b9a | 1819 | if (!PageUptodate(page)) { |
ebded027 MG |
1820 | /* |
1821 | * See comment in do_read_cache_page on why | |
1822 | * wait_on_page_locked is used to avoid unnecessarily | |
1823 | * serialisations and why it's safe. | |
1824 | */ | |
c4b209a4 BVA |
1825 | error = wait_on_page_locked_killable(page); |
1826 | if (unlikely(error)) | |
1827 | goto readpage_error; | |
ebded027 MG |
1828 | if (PageUptodate(page)) |
1829 | goto page_ok; | |
1830 | ||
09cbfeaf | 1831 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
1832 | !mapping->a_ops->is_partially_uptodate) |
1833 | goto page_not_up_to_date; | |
6d6d36bc EG |
1834 | /* pipes can't handle partially uptodate pages */ |
1835 | if (unlikely(iter->type & ITER_PIPE)) | |
1836 | goto page_not_up_to_date; | |
529ae9aa | 1837 | if (!trylock_page(page)) |
8ab22b9a | 1838 | goto page_not_up_to_date; |
8d056cb9 DH |
1839 | /* Did it get truncated before we got the lock? */ |
1840 | if (!page->mapping) | |
1841 | goto page_not_up_to_date_locked; | |
8ab22b9a | 1842 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 1843 | offset, iter->count)) |
8ab22b9a HH |
1844 | goto page_not_up_to_date_locked; |
1845 | unlock_page(page); | |
1846 | } | |
1da177e4 | 1847 | page_ok: |
a32ea1e1 N |
1848 | /* |
1849 | * i_size must be checked after we know the page is Uptodate. | |
1850 | * | |
1851 | * Checking i_size after the check allows us to calculate | |
1852 | * the correct value for "nr", which means the zero-filled | |
1853 | * part of the page is not copied back to userspace (unless | |
1854 | * another truncate extends the file - this is desired though). | |
1855 | */ | |
1856 | ||
1857 | isize = i_size_read(inode); | |
09cbfeaf | 1858 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 1859 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 1860 | put_page(page); |
a32ea1e1 N |
1861 | goto out; |
1862 | } | |
1863 | ||
1864 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 1865 | nr = PAGE_SIZE; |
a32ea1e1 | 1866 | if (index == end_index) { |
09cbfeaf | 1867 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 1868 | if (nr <= offset) { |
09cbfeaf | 1869 | put_page(page); |
a32ea1e1 N |
1870 | goto out; |
1871 | } | |
1872 | } | |
1873 | nr = nr - offset; | |
1da177e4 LT |
1874 | |
1875 | /* If users can be writing to this page using arbitrary | |
1876 | * virtual addresses, take care about potential aliasing | |
1877 | * before reading the page on the kernel side. | |
1878 | */ | |
1879 | if (mapping_writably_mapped(mapping)) | |
1880 | flush_dcache_page(page); | |
1881 | ||
1882 | /* | |
ec0f1637 JK |
1883 | * When a sequential read accesses a page several times, |
1884 | * only mark it as accessed the first time. | |
1da177e4 | 1885 | */ |
ec0f1637 | 1886 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
1887 | mark_page_accessed(page); |
1888 | prev_index = index; | |
1889 | ||
1890 | /* | |
1891 | * Ok, we have the page, and it's up-to-date, so | |
1892 | * now we can copy it to user space... | |
1da177e4 | 1893 | */ |
6e58e79d AV |
1894 | |
1895 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 1896 | offset += ret; |
09cbfeaf KS |
1897 | index += offset >> PAGE_SHIFT; |
1898 | offset &= ~PAGE_MASK; | |
6ce745ed | 1899 | prev_offset = offset; |
1da177e4 | 1900 | |
09cbfeaf | 1901 | put_page(page); |
6e58e79d AV |
1902 | written += ret; |
1903 | if (!iov_iter_count(iter)) | |
1904 | goto out; | |
1905 | if (ret < nr) { | |
1906 | error = -EFAULT; | |
1907 | goto out; | |
1908 | } | |
1909 | continue; | |
1da177e4 LT |
1910 | |
1911 | page_not_up_to_date: | |
1912 | /* Get exclusive access to the page ... */ | |
85462323 ON |
1913 | error = lock_page_killable(page); |
1914 | if (unlikely(error)) | |
1915 | goto readpage_error; | |
1da177e4 | 1916 | |
8ab22b9a | 1917 | page_not_up_to_date_locked: |
da6052f7 | 1918 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
1919 | if (!page->mapping) { |
1920 | unlock_page(page); | |
09cbfeaf | 1921 | put_page(page); |
1da177e4 LT |
1922 | continue; |
1923 | } | |
1924 | ||
1925 | /* Did somebody else fill it already? */ | |
1926 | if (PageUptodate(page)) { | |
1927 | unlock_page(page); | |
1928 | goto page_ok; | |
1929 | } | |
1930 | ||
1931 | readpage: | |
91803b49 JM |
1932 | /* |
1933 | * A previous I/O error may have been due to temporary | |
1934 | * failures, eg. multipath errors. | |
1935 | * PG_error will be set again if readpage fails. | |
1936 | */ | |
1937 | ClearPageError(page); | |
1da177e4 LT |
1938 | /* Start the actual read. The read will unlock the page. */ |
1939 | error = mapping->a_ops->readpage(filp, page); | |
1940 | ||
994fc28c ZB |
1941 | if (unlikely(error)) { |
1942 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 1943 | put_page(page); |
6e58e79d | 1944 | error = 0; |
994fc28c ZB |
1945 | goto find_page; |
1946 | } | |
1da177e4 | 1947 | goto readpage_error; |
994fc28c | 1948 | } |
1da177e4 LT |
1949 | |
1950 | if (!PageUptodate(page)) { | |
85462323 ON |
1951 | error = lock_page_killable(page); |
1952 | if (unlikely(error)) | |
1953 | goto readpage_error; | |
1da177e4 LT |
1954 | if (!PageUptodate(page)) { |
1955 | if (page->mapping == NULL) { | |
1956 | /* | |
2ecdc82e | 1957 | * invalidate_mapping_pages got it |
1da177e4 LT |
1958 | */ |
1959 | unlock_page(page); | |
09cbfeaf | 1960 | put_page(page); |
1da177e4 LT |
1961 | goto find_page; |
1962 | } | |
1963 | unlock_page(page); | |
7ff81078 | 1964 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
1965 | error = -EIO; |
1966 | goto readpage_error; | |
1da177e4 LT |
1967 | } |
1968 | unlock_page(page); | |
1969 | } | |
1970 | ||
1da177e4 LT |
1971 | goto page_ok; |
1972 | ||
1973 | readpage_error: | |
1974 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 1975 | put_page(page); |
1da177e4 LT |
1976 | goto out; |
1977 | ||
1978 | no_cached_page: | |
1979 | /* | |
1980 | * Ok, it wasn't cached, so we need to create a new | |
1981 | * page.. | |
1982 | */ | |
eb2be189 NP |
1983 | page = page_cache_alloc_cold(mapping); |
1984 | if (!page) { | |
6e58e79d | 1985 | error = -ENOMEM; |
eb2be189 | 1986 | goto out; |
1da177e4 | 1987 | } |
6afdb859 | 1988 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 1989 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 1990 | if (error) { |
09cbfeaf | 1991 | put_page(page); |
6e58e79d AV |
1992 | if (error == -EEXIST) { |
1993 | error = 0; | |
1da177e4 | 1994 | goto find_page; |
6e58e79d | 1995 | } |
1da177e4 LT |
1996 | goto out; |
1997 | } | |
1da177e4 LT |
1998 | goto readpage; |
1999 | } | |
2000 | ||
2001 | out: | |
7ff81078 | 2002 | ra->prev_pos = prev_index; |
09cbfeaf | 2003 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 2004 | ra->prev_pos |= prev_offset; |
1da177e4 | 2005 | |
09cbfeaf | 2006 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 2007 | file_accessed(filp); |
6e58e79d | 2008 | return written ? written : error; |
1da177e4 LT |
2009 | } |
2010 | ||
485bb99b | 2011 | /** |
6abd2322 | 2012 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 2013 | * @iocb: kernel I/O control block |
6abd2322 | 2014 | * @iter: destination for the data read |
485bb99b | 2015 | * |
6abd2322 | 2016 | * This is the "read_iter()" routine for all filesystems |
1da177e4 LT |
2017 | * that can use the page cache directly. |
2018 | */ | |
2019 | ssize_t | |
ed978a81 | 2020 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 2021 | { |
ed978a81 | 2022 | struct file *file = iocb->ki_filp; |
cb66a7a1 | 2023 | ssize_t retval = 0; |
e7080a43 NS |
2024 | size_t count = iov_iter_count(iter); |
2025 | ||
2026 | if (!count) | |
2027 | goto out; /* skip atime */ | |
1da177e4 | 2028 | |
2ba48ce5 | 2029 | if (iocb->ki_flags & IOCB_DIRECT) { |
ed978a81 AV |
2030 | struct address_space *mapping = file->f_mapping; |
2031 | struct inode *inode = mapping->host; | |
0d5b0cf2 | 2032 | struct iov_iter data = *iter; |
543ade1f | 2033 | loff_t size; |
1da177e4 | 2034 | |
1da177e4 | 2035 | size = i_size_read(inode); |
c64fb5c7 CH |
2036 | retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, |
2037 | iocb->ki_pos + count - 1); | |
0d5b0cf2 CH |
2038 | if (retval < 0) |
2039 | goto out; | |
d8d3d94b | 2040 | |
0d5b0cf2 CH |
2041 | file_accessed(file); |
2042 | ||
2043 | retval = mapping->a_ops->direct_IO(iocb, &data); | |
c3a69024 | 2044 | if (retval >= 0) { |
c64fb5c7 | 2045 | iocb->ki_pos += retval; |
ed978a81 | 2046 | iov_iter_advance(iter, retval); |
9fe55eea | 2047 | } |
66f998f6 | 2048 | |
9fe55eea SW |
2049 | /* |
2050 | * Btrfs can have a short DIO read if we encounter | |
2051 | * compressed extents, so if there was an error, or if | |
2052 | * we've already read everything we wanted to, or if | |
2053 | * there was a short read because we hit EOF, go ahead | |
2054 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
2055 | * the rest of the read. Buffered reads will not work for |
2056 | * DAX files, so don't bother trying. | |
9fe55eea | 2057 | */ |
c64fb5c7 | 2058 | if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || |
0d5b0cf2 | 2059 | IS_DAX(inode)) |
9fe55eea | 2060 | goto out; |
1da177e4 LT |
2061 | } |
2062 | ||
c64fb5c7 | 2063 | retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); |
1da177e4 LT |
2064 | out: |
2065 | return retval; | |
2066 | } | |
ed978a81 | 2067 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 2068 | |
1da177e4 | 2069 | #ifdef CONFIG_MMU |
485bb99b RD |
2070 | /** |
2071 | * page_cache_read - adds requested page to the page cache if not already there | |
2072 | * @file: file to read | |
2073 | * @offset: page index | |
62eb320a | 2074 | * @gfp_mask: memory allocation flags |
485bb99b | 2075 | * |
1da177e4 LT |
2076 | * This adds the requested page to the page cache if it isn't already there, |
2077 | * and schedules an I/O to read in its contents from disk. | |
2078 | */ | |
c20cd45e | 2079 | static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) |
1da177e4 LT |
2080 | { |
2081 | struct address_space *mapping = file->f_mapping; | |
99dadfdd | 2082 | struct page *page; |
994fc28c | 2083 | int ret; |
1da177e4 | 2084 | |
994fc28c | 2085 | do { |
c20cd45e | 2086 | page = __page_cache_alloc(gfp_mask|__GFP_COLD); |
994fc28c ZB |
2087 | if (!page) |
2088 | return -ENOMEM; | |
2089 | ||
c20cd45e | 2090 | ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); |
994fc28c ZB |
2091 | if (ret == 0) |
2092 | ret = mapping->a_ops->readpage(file, page); | |
2093 | else if (ret == -EEXIST) | |
2094 | ret = 0; /* losing race to add is OK */ | |
1da177e4 | 2095 | |
09cbfeaf | 2096 | put_page(page); |
1da177e4 | 2097 | |
994fc28c | 2098 | } while (ret == AOP_TRUNCATED_PAGE); |
99dadfdd | 2099 | |
994fc28c | 2100 | return ret; |
1da177e4 LT |
2101 | } |
2102 | ||
2103 | #define MMAP_LOTSAMISS (100) | |
2104 | ||
ef00e08e LT |
2105 | /* |
2106 | * Synchronous readahead happens when we don't even find | |
2107 | * a page in the page cache at all. | |
2108 | */ | |
2109 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | |
2110 | struct file_ra_state *ra, | |
2111 | struct file *file, | |
2112 | pgoff_t offset) | |
2113 | { | |
ef00e08e LT |
2114 | struct address_space *mapping = file->f_mapping; |
2115 | ||
2116 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 2117 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e | 2118 | return; |
275b12bf WF |
2119 | if (!ra->ra_pages) |
2120 | return; | |
ef00e08e | 2121 | |
64363aad | 2122 | if (vma->vm_flags & VM_SEQ_READ) { |
7ffc59b4 WF |
2123 | page_cache_sync_readahead(mapping, ra, file, offset, |
2124 | ra->ra_pages); | |
ef00e08e LT |
2125 | return; |
2126 | } | |
2127 | ||
207d04ba AK |
2128 | /* Avoid banging the cache line if not needed */ |
2129 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
2130 | ra->mmap_miss++; |
2131 | ||
2132 | /* | |
2133 | * Do we miss much more than hit in this file? If so, | |
2134 | * stop bothering with read-ahead. It will only hurt. | |
2135 | */ | |
2136 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
2137 | return; | |
2138 | ||
d30a1100 WF |
2139 | /* |
2140 | * mmap read-around | |
2141 | */ | |
600e19af RG |
2142 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
2143 | ra->size = ra->ra_pages; | |
2144 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 2145 | ra_submit(ra, mapping, file); |
ef00e08e LT |
2146 | } |
2147 | ||
2148 | /* | |
2149 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
2150 | * so we want to possibly extend the readahead further.. | |
2151 | */ | |
2152 | static void do_async_mmap_readahead(struct vm_area_struct *vma, | |
2153 | struct file_ra_state *ra, | |
2154 | struct file *file, | |
2155 | struct page *page, | |
2156 | pgoff_t offset) | |
2157 | { | |
2158 | struct address_space *mapping = file->f_mapping; | |
2159 | ||
2160 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 2161 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e LT |
2162 | return; |
2163 | if (ra->mmap_miss > 0) | |
2164 | ra->mmap_miss--; | |
2165 | if (PageReadahead(page)) | |
2fad6f5d WF |
2166 | page_cache_async_readahead(mapping, ra, file, |
2167 | page, offset, ra->ra_pages); | |
ef00e08e LT |
2168 | } |
2169 | ||
485bb99b | 2170 | /** |
54cb8821 | 2171 | * filemap_fault - read in file data for page fault handling |
d0217ac0 | 2172 | * @vmf: struct vm_fault containing details of the fault |
485bb99b | 2173 | * |
54cb8821 | 2174 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
2175 | * mapped memory region to read in file data during a page fault. |
2176 | * | |
2177 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
2178 | * it in the page cache, and handles the special cases reasonably without | |
2179 | * having a lot of duplicated code. | |
9a95f3cf PC |
2180 | * |
2181 | * vma->vm_mm->mmap_sem must be held on entry. | |
2182 | * | |
2183 | * If our return value has VM_FAULT_RETRY set, it's because | |
2184 | * lock_page_or_retry() returned 0. | |
2185 | * The mmap_sem has usually been released in this case. | |
2186 | * See __lock_page_or_retry() for the exception. | |
2187 | * | |
2188 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2189 | * has not been released. | |
2190 | * | |
2191 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
1da177e4 | 2192 | */ |
11bac800 | 2193 | int filemap_fault(struct vm_fault *vmf) |
1da177e4 LT |
2194 | { |
2195 | int error; | |
11bac800 | 2196 | struct file *file = vmf->vma->vm_file; |
1da177e4 LT |
2197 | struct address_space *mapping = file->f_mapping; |
2198 | struct file_ra_state *ra = &file->f_ra; | |
2199 | struct inode *inode = mapping->host; | |
ef00e08e | 2200 | pgoff_t offset = vmf->pgoff; |
1da177e4 | 2201 | struct page *page; |
99e3e53f | 2202 | loff_t size; |
83c54070 | 2203 | int ret = 0; |
1da177e4 | 2204 | |
09cbfeaf KS |
2205 | size = round_up(i_size_read(inode), PAGE_SIZE); |
2206 | if (offset >= size >> PAGE_SHIFT) | |
5307cc1a | 2207 | return VM_FAULT_SIGBUS; |
1da177e4 | 2208 | |
1da177e4 | 2209 | /* |
49426420 | 2210 | * Do we have something in the page cache already? |
1da177e4 | 2211 | */ |
ef00e08e | 2212 | page = find_get_page(mapping, offset); |
45cac65b | 2213 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2214 | /* |
ef00e08e LT |
2215 | * We found the page, so try async readahead before |
2216 | * waiting for the lock. | |
1da177e4 | 2217 | */ |
11bac800 | 2218 | do_async_mmap_readahead(vmf->vma, ra, file, page, offset); |
45cac65b | 2219 | } else if (!page) { |
ef00e08e | 2220 | /* No page in the page cache at all */ |
11bac800 | 2221 | do_sync_mmap_readahead(vmf->vma, ra, file, offset); |
ef00e08e | 2222 | count_vm_event(PGMAJFAULT); |
11bac800 | 2223 | mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); |
ef00e08e LT |
2224 | ret = VM_FAULT_MAJOR; |
2225 | retry_find: | |
b522c94d | 2226 | page = find_get_page(mapping, offset); |
1da177e4 LT |
2227 | if (!page) |
2228 | goto no_cached_page; | |
2229 | } | |
2230 | ||
11bac800 | 2231 | if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { |
09cbfeaf | 2232 | put_page(page); |
d065bd81 | 2233 | return ret | VM_FAULT_RETRY; |
d88c0922 | 2234 | } |
b522c94d ML |
2235 | |
2236 | /* Did it get truncated? */ | |
2237 | if (unlikely(page->mapping != mapping)) { | |
2238 | unlock_page(page); | |
2239 | put_page(page); | |
2240 | goto retry_find; | |
2241 | } | |
309381fe | 2242 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2243 | |
1da177e4 | 2244 | /* |
d00806b1 NP |
2245 | * We have a locked page in the page cache, now we need to check |
2246 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2247 | */ |
d00806b1 | 2248 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2249 | goto page_not_uptodate; |
2250 | ||
ef00e08e LT |
2251 | /* |
2252 | * Found the page and have a reference on it. | |
2253 | * We must recheck i_size under page lock. | |
2254 | */ | |
09cbfeaf KS |
2255 | size = round_up(i_size_read(inode), PAGE_SIZE); |
2256 | if (unlikely(offset >= size >> PAGE_SHIFT)) { | |
d00806b1 | 2257 | unlock_page(page); |
09cbfeaf | 2258 | put_page(page); |
5307cc1a | 2259 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2260 | } |
2261 | ||
d0217ac0 | 2262 | vmf->page = page; |
83c54070 | 2263 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2264 | |
1da177e4 LT |
2265 | no_cached_page: |
2266 | /* | |
2267 | * We're only likely to ever get here if MADV_RANDOM is in | |
2268 | * effect. | |
2269 | */ | |
c20cd45e | 2270 | error = page_cache_read(file, offset, vmf->gfp_mask); |
1da177e4 LT |
2271 | |
2272 | /* | |
2273 | * The page we want has now been added to the page cache. | |
2274 | * In the unlikely event that someone removed it in the | |
2275 | * meantime, we'll just come back here and read it again. | |
2276 | */ | |
2277 | if (error >= 0) | |
2278 | goto retry_find; | |
2279 | ||
2280 | /* | |
2281 | * An error return from page_cache_read can result if the | |
2282 | * system is low on memory, or a problem occurs while trying | |
2283 | * to schedule I/O. | |
2284 | */ | |
2285 | if (error == -ENOMEM) | |
d0217ac0 NP |
2286 | return VM_FAULT_OOM; |
2287 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
2288 | |
2289 | page_not_uptodate: | |
1da177e4 LT |
2290 | /* |
2291 | * Umm, take care of errors if the page isn't up-to-date. | |
2292 | * Try to re-read it _once_. We do this synchronously, | |
2293 | * because there really aren't any performance issues here | |
2294 | * and we need to check for errors. | |
2295 | */ | |
1da177e4 | 2296 | ClearPageError(page); |
994fc28c | 2297 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2298 | if (!error) { |
2299 | wait_on_page_locked(page); | |
2300 | if (!PageUptodate(page)) | |
2301 | error = -EIO; | |
2302 | } | |
09cbfeaf | 2303 | put_page(page); |
d00806b1 NP |
2304 | |
2305 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2306 | goto retry_find; |
1da177e4 | 2307 | |
d00806b1 | 2308 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2309 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2310 | return VM_FAULT_SIGBUS; |
54cb8821 NP |
2311 | } |
2312 | EXPORT_SYMBOL(filemap_fault); | |
2313 | ||
82b0f8c3 | 2314 | void filemap_map_pages(struct vm_fault *vmf, |
bae473a4 | 2315 | pgoff_t start_pgoff, pgoff_t end_pgoff) |
f1820361 KS |
2316 | { |
2317 | struct radix_tree_iter iter; | |
2318 | void **slot; | |
82b0f8c3 | 2319 | struct file *file = vmf->vma->vm_file; |
f1820361 | 2320 | struct address_space *mapping = file->f_mapping; |
bae473a4 | 2321 | pgoff_t last_pgoff = start_pgoff; |
f1820361 | 2322 | loff_t size; |
83929372 | 2323 | struct page *head, *page; |
f1820361 KS |
2324 | |
2325 | rcu_read_lock(); | |
bae473a4 KS |
2326 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, |
2327 | start_pgoff) { | |
2328 | if (iter.index > end_pgoff) | |
f1820361 KS |
2329 | break; |
2330 | repeat: | |
2331 | page = radix_tree_deref_slot(slot); | |
2332 | if (unlikely(!page)) | |
2333 | goto next; | |
2334 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
2335 | if (radix_tree_deref_retry(page)) { |
2336 | slot = radix_tree_iter_retry(&iter); | |
2337 | continue; | |
2338 | } | |
2339 | goto next; | |
f1820361 KS |
2340 | } |
2341 | ||
83929372 KS |
2342 | head = compound_head(page); |
2343 | if (!page_cache_get_speculative(head)) | |
f1820361 KS |
2344 | goto repeat; |
2345 | ||
83929372 KS |
2346 | /* The page was split under us? */ |
2347 | if (compound_head(page) != head) { | |
2348 | put_page(head); | |
2349 | goto repeat; | |
2350 | } | |
2351 | ||
f1820361 KS |
2352 | /* Has the page moved? */ |
2353 | if (unlikely(page != *slot)) { | |
83929372 | 2354 | put_page(head); |
f1820361 KS |
2355 | goto repeat; |
2356 | } | |
2357 | ||
2358 | if (!PageUptodate(page) || | |
2359 | PageReadahead(page) || | |
2360 | PageHWPoison(page)) | |
2361 | goto skip; | |
2362 | if (!trylock_page(page)) | |
2363 | goto skip; | |
2364 | ||
2365 | if (page->mapping != mapping || !PageUptodate(page)) | |
2366 | goto unlock; | |
2367 | ||
09cbfeaf KS |
2368 | size = round_up(i_size_read(mapping->host), PAGE_SIZE); |
2369 | if (page->index >= size >> PAGE_SHIFT) | |
f1820361 KS |
2370 | goto unlock; |
2371 | ||
f1820361 KS |
2372 | if (file->f_ra.mmap_miss > 0) |
2373 | file->f_ra.mmap_miss--; | |
7267ec00 | 2374 | |
82b0f8c3 JK |
2375 | vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; |
2376 | if (vmf->pte) | |
2377 | vmf->pte += iter.index - last_pgoff; | |
7267ec00 | 2378 | last_pgoff = iter.index; |
82b0f8c3 | 2379 | if (alloc_set_pte(vmf, NULL, page)) |
7267ec00 | 2380 | goto unlock; |
f1820361 KS |
2381 | unlock_page(page); |
2382 | goto next; | |
2383 | unlock: | |
2384 | unlock_page(page); | |
2385 | skip: | |
09cbfeaf | 2386 | put_page(page); |
f1820361 | 2387 | next: |
7267ec00 | 2388 | /* Huge page is mapped? No need to proceed. */ |
82b0f8c3 | 2389 | if (pmd_trans_huge(*vmf->pmd)) |
7267ec00 | 2390 | break; |
bae473a4 | 2391 | if (iter.index == end_pgoff) |
f1820361 KS |
2392 | break; |
2393 | } | |
2394 | rcu_read_unlock(); | |
2395 | } | |
2396 | EXPORT_SYMBOL(filemap_map_pages); | |
2397 | ||
11bac800 | 2398 | int filemap_page_mkwrite(struct vm_fault *vmf) |
4fcf1c62 JK |
2399 | { |
2400 | struct page *page = vmf->page; | |
11bac800 | 2401 | struct inode *inode = file_inode(vmf->vma->vm_file); |
4fcf1c62 JK |
2402 | int ret = VM_FAULT_LOCKED; |
2403 | ||
14da9200 | 2404 | sb_start_pagefault(inode->i_sb); |
11bac800 | 2405 | file_update_time(vmf->vma->vm_file); |
4fcf1c62 JK |
2406 | lock_page(page); |
2407 | if (page->mapping != inode->i_mapping) { | |
2408 | unlock_page(page); | |
2409 | ret = VM_FAULT_NOPAGE; | |
2410 | goto out; | |
2411 | } | |
14da9200 JK |
2412 | /* |
2413 | * We mark the page dirty already here so that when freeze is in | |
2414 | * progress, we are guaranteed that writeback during freezing will | |
2415 | * see the dirty page and writeprotect it again. | |
2416 | */ | |
2417 | set_page_dirty(page); | |
1d1d1a76 | 2418 | wait_for_stable_page(page); |
4fcf1c62 | 2419 | out: |
14da9200 | 2420 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2421 | return ret; |
2422 | } | |
2423 | EXPORT_SYMBOL(filemap_page_mkwrite); | |
2424 | ||
f0f37e2f | 2425 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2426 | .fault = filemap_fault, |
f1820361 | 2427 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2428 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2429 | }; |
2430 | ||
2431 | /* This is used for a general mmap of a disk file */ | |
2432 | ||
2433 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2434 | { | |
2435 | struct address_space *mapping = file->f_mapping; | |
2436 | ||
2437 | if (!mapping->a_ops->readpage) | |
2438 | return -ENOEXEC; | |
2439 | file_accessed(file); | |
2440 | vma->vm_ops = &generic_file_vm_ops; | |
2441 | return 0; | |
2442 | } | |
1da177e4 LT |
2443 | |
2444 | /* | |
2445 | * This is for filesystems which do not implement ->writepage. | |
2446 | */ | |
2447 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2448 | { | |
2449 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2450 | return -EINVAL; | |
2451 | return generic_file_mmap(file, vma); | |
2452 | } | |
2453 | #else | |
2454 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2455 | { | |
2456 | return -ENOSYS; | |
2457 | } | |
2458 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2459 | { | |
2460 | return -ENOSYS; | |
2461 | } | |
2462 | #endif /* CONFIG_MMU */ | |
2463 | ||
2464 | EXPORT_SYMBOL(generic_file_mmap); | |
2465 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2466 | ||
67f9fd91 SL |
2467 | static struct page *wait_on_page_read(struct page *page) |
2468 | { | |
2469 | if (!IS_ERR(page)) { | |
2470 | wait_on_page_locked(page); | |
2471 | if (!PageUptodate(page)) { | |
09cbfeaf | 2472 | put_page(page); |
67f9fd91 SL |
2473 | page = ERR_PTR(-EIO); |
2474 | } | |
2475 | } | |
2476 | return page; | |
2477 | } | |
2478 | ||
32b63529 | 2479 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2480 | pgoff_t index, |
5e5358e7 | 2481 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2482 | void *data, |
2483 | gfp_t gfp) | |
1da177e4 | 2484 | { |
eb2be189 | 2485 | struct page *page; |
1da177e4 LT |
2486 | int err; |
2487 | repeat: | |
2488 | page = find_get_page(mapping, index); | |
2489 | if (!page) { | |
0531b2aa | 2490 | page = __page_cache_alloc(gfp | __GFP_COLD); |
eb2be189 NP |
2491 | if (!page) |
2492 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2493 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2494 | if (unlikely(err)) { |
09cbfeaf | 2495 | put_page(page); |
eb2be189 NP |
2496 | if (err == -EEXIST) |
2497 | goto repeat; | |
1da177e4 | 2498 | /* Presumably ENOMEM for radix tree node */ |
1da177e4 LT |
2499 | return ERR_PTR(err); |
2500 | } | |
32b63529 MG |
2501 | |
2502 | filler: | |
1da177e4 LT |
2503 | err = filler(data, page); |
2504 | if (err < 0) { | |
09cbfeaf | 2505 | put_page(page); |
32b63529 | 2506 | return ERR_PTR(err); |
1da177e4 | 2507 | } |
1da177e4 | 2508 | |
32b63529 MG |
2509 | page = wait_on_page_read(page); |
2510 | if (IS_ERR(page)) | |
2511 | return page; | |
2512 | goto out; | |
2513 | } | |
1da177e4 LT |
2514 | if (PageUptodate(page)) |
2515 | goto out; | |
2516 | ||
ebded027 MG |
2517 | /* |
2518 | * Page is not up to date and may be locked due one of the following | |
2519 | * case a: Page is being filled and the page lock is held | |
2520 | * case b: Read/write error clearing the page uptodate status | |
2521 | * case c: Truncation in progress (page locked) | |
2522 | * case d: Reclaim in progress | |
2523 | * | |
2524 | * Case a, the page will be up to date when the page is unlocked. | |
2525 | * There is no need to serialise on the page lock here as the page | |
2526 | * is pinned so the lock gives no additional protection. Even if the | |
2527 | * the page is truncated, the data is still valid if PageUptodate as | |
2528 | * it's a race vs truncate race. | |
2529 | * Case b, the page will not be up to date | |
2530 | * Case c, the page may be truncated but in itself, the data may still | |
2531 | * be valid after IO completes as it's a read vs truncate race. The | |
2532 | * operation must restart if the page is not uptodate on unlock but | |
2533 | * otherwise serialising on page lock to stabilise the mapping gives | |
2534 | * no additional guarantees to the caller as the page lock is | |
2535 | * released before return. | |
2536 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2537 | * will be a race with remove_mapping that determines if the mapping | |
2538 | * is valid on unlock but otherwise the data is valid and there is | |
2539 | * no need to serialise with page lock. | |
2540 | * | |
2541 | * As the page lock gives no additional guarantee, we optimistically | |
2542 | * wait on the page to be unlocked and check if it's up to date and | |
2543 | * use the page if it is. Otherwise, the page lock is required to | |
2544 | * distinguish between the different cases. The motivation is that we | |
2545 | * avoid spurious serialisations and wakeups when multiple processes | |
2546 | * wait on the same page for IO to complete. | |
2547 | */ | |
2548 | wait_on_page_locked(page); | |
2549 | if (PageUptodate(page)) | |
2550 | goto out; | |
2551 | ||
2552 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2553 | lock_page(page); |
ebded027 MG |
2554 | |
2555 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2556 | if (!page->mapping) { |
2557 | unlock_page(page); | |
09cbfeaf | 2558 | put_page(page); |
32b63529 | 2559 | goto repeat; |
1da177e4 | 2560 | } |
ebded027 MG |
2561 | |
2562 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2563 | if (PageUptodate(page)) { |
2564 | unlock_page(page); | |
2565 | goto out; | |
2566 | } | |
32b63529 MG |
2567 | goto filler; |
2568 | ||
c855ff37 | 2569 | out: |
6fe6900e NP |
2570 | mark_page_accessed(page); |
2571 | return page; | |
2572 | } | |
0531b2aa LT |
2573 | |
2574 | /** | |
67f9fd91 | 2575 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2576 | * @mapping: the page's address_space |
2577 | * @index: the page index | |
2578 | * @filler: function to perform the read | |
5e5358e7 | 2579 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2580 | * |
0531b2aa | 2581 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2582 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2583 | * |
2584 | * If the page does not get brought uptodate, return -EIO. | |
2585 | */ | |
67f9fd91 | 2586 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2587 | pgoff_t index, |
5e5358e7 | 2588 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2589 | void *data) |
2590 | { | |
2591 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | |
2592 | } | |
67f9fd91 | 2593 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2594 | |
2595 | /** | |
2596 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2597 | * @mapping: the page's address_space | |
2598 | * @index: the page index | |
2599 | * @gfp: the page allocator flags to use if allocating | |
2600 | * | |
2601 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2602 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2603 | * |
2604 | * If the page does not get brought uptodate, return -EIO. | |
2605 | */ | |
2606 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2607 | pgoff_t index, | |
2608 | gfp_t gfp) | |
2609 | { | |
2610 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | |
2611 | ||
67f9fd91 | 2612 | return do_read_cache_page(mapping, index, filler, NULL, gfp); |
0531b2aa LT |
2613 | } |
2614 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2615 | ||
1da177e4 LT |
2616 | /* |
2617 | * Performs necessary checks before doing a write | |
2618 | * | |
485bb99b | 2619 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2620 | * Returns appropriate error code that caller should return or |
2621 | * zero in case that write should be allowed. | |
2622 | */ | |
3309dd04 | 2623 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2624 | { |
3309dd04 | 2625 | struct file *file = iocb->ki_filp; |
1da177e4 | 2626 | struct inode *inode = file->f_mapping->host; |
59e99e5b | 2627 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
3309dd04 | 2628 | loff_t pos; |
1da177e4 | 2629 | |
3309dd04 AV |
2630 | if (!iov_iter_count(from)) |
2631 | return 0; | |
1da177e4 | 2632 | |
0fa6b005 | 2633 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2634 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2635 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2636 | |
3309dd04 | 2637 | pos = iocb->ki_pos; |
1da177e4 | 2638 | |
0fa6b005 | 2639 | if (limit != RLIM_INFINITY) { |
3309dd04 | 2640 | if (iocb->ki_pos >= limit) { |
0fa6b005 AV |
2641 | send_sig(SIGXFSZ, current, 0); |
2642 | return -EFBIG; | |
1da177e4 | 2643 | } |
3309dd04 | 2644 | iov_iter_truncate(from, limit - (unsigned long)pos); |
1da177e4 LT |
2645 | } |
2646 | ||
2647 | /* | |
2648 | * LFS rule | |
2649 | */ | |
3309dd04 | 2650 | if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && |
1da177e4 | 2651 | !(file->f_flags & O_LARGEFILE))) { |
3309dd04 | 2652 | if (pos >= MAX_NON_LFS) |
1da177e4 | 2653 | return -EFBIG; |
3309dd04 | 2654 | iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); |
1da177e4 LT |
2655 | } |
2656 | ||
2657 | /* | |
2658 | * Are we about to exceed the fs block limit ? | |
2659 | * | |
2660 | * If we have written data it becomes a short write. If we have | |
2661 | * exceeded without writing data we send a signal and return EFBIG. | |
2662 | * Linus frestrict idea will clean these up nicely.. | |
2663 | */ | |
3309dd04 AV |
2664 | if (unlikely(pos >= inode->i_sb->s_maxbytes)) |
2665 | return -EFBIG; | |
1da177e4 | 2666 | |
3309dd04 AV |
2667 | iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); |
2668 | return iov_iter_count(from); | |
1da177e4 LT |
2669 | } |
2670 | EXPORT_SYMBOL(generic_write_checks); | |
2671 | ||
afddba49 NP |
2672 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2673 | loff_t pos, unsigned len, unsigned flags, | |
2674 | struct page **pagep, void **fsdata) | |
2675 | { | |
2676 | const struct address_space_operations *aops = mapping->a_ops; | |
2677 | ||
4e02ed4b | 2678 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 2679 | pagep, fsdata); |
afddba49 NP |
2680 | } |
2681 | EXPORT_SYMBOL(pagecache_write_begin); | |
2682 | ||
2683 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
2684 | loff_t pos, unsigned len, unsigned copied, | |
2685 | struct page *page, void *fsdata) | |
2686 | { | |
2687 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 2688 | |
4e02ed4b | 2689 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
2690 | } |
2691 | EXPORT_SYMBOL(pagecache_write_end); | |
2692 | ||
1da177e4 | 2693 | ssize_t |
1af5bb49 | 2694 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2695 | { |
2696 | struct file *file = iocb->ki_filp; | |
2697 | struct address_space *mapping = file->f_mapping; | |
2698 | struct inode *inode = mapping->host; | |
1af5bb49 | 2699 | loff_t pos = iocb->ki_pos; |
1da177e4 | 2700 | ssize_t written; |
a969e903 CH |
2701 | size_t write_len; |
2702 | pgoff_t end; | |
26978b8b | 2703 | struct iov_iter data; |
1da177e4 | 2704 | |
0c949334 | 2705 | write_len = iov_iter_count(from); |
09cbfeaf | 2706 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 2707 | |
48b47c56 | 2708 | written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); |
a969e903 CH |
2709 | if (written) |
2710 | goto out; | |
2711 | ||
2712 | /* | |
2713 | * After a write we want buffered reads to be sure to go to disk to get | |
2714 | * the new data. We invalidate clean cached page from the region we're | |
2715 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 2716 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 CH |
2717 | */ |
2718 | if (mapping->nrpages) { | |
2719 | written = invalidate_inode_pages2_range(mapping, | |
09cbfeaf | 2720 | pos >> PAGE_SHIFT, end); |
6ccfa806 HH |
2721 | /* |
2722 | * If a page can not be invalidated, return 0 to fall back | |
2723 | * to buffered write. | |
2724 | */ | |
2725 | if (written) { | |
2726 | if (written == -EBUSY) | |
2727 | return 0; | |
a969e903 | 2728 | goto out; |
6ccfa806 | 2729 | } |
a969e903 CH |
2730 | } |
2731 | ||
26978b8b | 2732 | data = *from; |
c8b8e32d | 2733 | written = mapping->a_ops->direct_IO(iocb, &data); |
a969e903 CH |
2734 | |
2735 | /* | |
2736 | * Finally, try again to invalidate clean pages which might have been | |
2737 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
2738 | * if the source of the write was an mmap'ed region of the file | |
2739 | * we're writing. Either one is a pretty crazy thing to do, | |
2740 | * so we don't support it 100%. If this invalidation | |
2741 | * fails, tough, the write still worked... | |
2742 | */ | |
2743 | if (mapping->nrpages) { | |
2744 | invalidate_inode_pages2_range(mapping, | |
09cbfeaf | 2745 | pos >> PAGE_SHIFT, end); |
a969e903 CH |
2746 | } |
2747 | ||
1da177e4 | 2748 | if (written > 0) { |
0116651c | 2749 | pos += written; |
f8579f86 | 2750 | iov_iter_advance(from, written); |
0116651c NK |
2751 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2752 | i_size_write(inode, pos); | |
1da177e4 LT |
2753 | mark_inode_dirty(inode); |
2754 | } | |
5cb6c6c7 | 2755 | iocb->ki_pos = pos; |
1da177e4 | 2756 | } |
a969e903 | 2757 | out: |
1da177e4 LT |
2758 | return written; |
2759 | } | |
2760 | EXPORT_SYMBOL(generic_file_direct_write); | |
2761 | ||
eb2be189 NP |
2762 | /* |
2763 | * Find or create a page at the given pagecache position. Return the locked | |
2764 | * page. This function is specifically for buffered writes. | |
2765 | */ | |
54566b2c NP |
2766 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
2767 | pgoff_t index, unsigned flags) | |
eb2be189 | 2768 | { |
eb2be189 | 2769 | struct page *page; |
bbddabe2 | 2770 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 2771 | |
54566b2c | 2772 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
2773 | fgp_flags |= FGP_NOFS; |
2774 | ||
2775 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 2776 | mapping_gfp_mask(mapping)); |
c585a267 | 2777 | if (page) |
2457aec6 | 2778 | wait_for_stable_page(page); |
eb2be189 | 2779 | |
eb2be189 NP |
2780 | return page; |
2781 | } | |
54566b2c | 2782 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 2783 | |
3b93f911 | 2784 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
2785 | struct iov_iter *i, loff_t pos) |
2786 | { | |
2787 | struct address_space *mapping = file->f_mapping; | |
2788 | const struct address_space_operations *a_ops = mapping->a_ops; | |
2789 | long status = 0; | |
2790 | ssize_t written = 0; | |
674b892e NP |
2791 | unsigned int flags = 0; |
2792 | ||
2793 | /* | |
2794 | * Copies from kernel address space cannot fail (NFSD is a big user). | |
2795 | */ | |
777eda2c | 2796 | if (!iter_is_iovec(i)) |
674b892e | 2797 | flags |= AOP_FLAG_UNINTERRUPTIBLE; |
afddba49 NP |
2798 | |
2799 | do { | |
2800 | struct page *page; | |
afddba49 NP |
2801 | unsigned long offset; /* Offset into pagecache page */ |
2802 | unsigned long bytes; /* Bytes to write to page */ | |
2803 | size_t copied; /* Bytes copied from user */ | |
2804 | void *fsdata; | |
2805 | ||
09cbfeaf KS |
2806 | offset = (pos & (PAGE_SIZE - 1)); |
2807 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
2808 | iov_iter_count(i)); |
2809 | ||
2810 | again: | |
00a3d660 LT |
2811 | /* |
2812 | * Bring in the user page that we will copy from _first_. | |
2813 | * Otherwise there's a nasty deadlock on copying from the | |
2814 | * same page as we're writing to, without it being marked | |
2815 | * up-to-date. | |
2816 | * | |
2817 | * Not only is this an optimisation, but it is also required | |
2818 | * to check that the address is actually valid, when atomic | |
2819 | * usercopies are used, below. | |
2820 | */ | |
2821 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
2822 | status = -EFAULT; | |
2823 | break; | |
2824 | } | |
2825 | ||
296291cd JK |
2826 | if (fatal_signal_pending(current)) { |
2827 | status = -EINTR; | |
2828 | break; | |
2829 | } | |
2830 | ||
674b892e | 2831 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 2832 | &page, &fsdata); |
2457aec6 | 2833 | if (unlikely(status < 0)) |
afddba49 NP |
2834 | break; |
2835 | ||
931e80e4 | 2836 | if (mapping_writably_mapped(mapping)) |
2837 | flush_dcache_page(page); | |
00a3d660 | 2838 | |
afddba49 | 2839 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
2840 | flush_dcache_page(page); |
2841 | ||
2842 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
2843 | page, fsdata); | |
2844 | if (unlikely(status < 0)) | |
2845 | break; | |
2846 | copied = status; | |
2847 | ||
2848 | cond_resched(); | |
2849 | ||
124d3b70 | 2850 | iov_iter_advance(i, copied); |
afddba49 NP |
2851 | if (unlikely(copied == 0)) { |
2852 | /* | |
2853 | * If we were unable to copy any data at all, we must | |
2854 | * fall back to a single segment length write. | |
2855 | * | |
2856 | * If we didn't fallback here, we could livelock | |
2857 | * because not all segments in the iov can be copied at | |
2858 | * once without a pagefault. | |
2859 | */ | |
09cbfeaf | 2860 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
2861 | iov_iter_single_seg_count(i)); |
2862 | goto again; | |
2863 | } | |
afddba49 NP |
2864 | pos += copied; |
2865 | written += copied; | |
2866 | ||
2867 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
2868 | } while (iov_iter_count(i)); |
2869 | ||
2870 | return written ? written : status; | |
2871 | } | |
3b93f911 | 2872 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 2873 | |
e4dd9de3 | 2874 | /** |
8174202b | 2875 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 2876 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 2877 | * @from: iov_iter with data to write |
e4dd9de3 JK |
2878 | * |
2879 | * This function does all the work needed for actually writing data to a | |
2880 | * file. It does all basic checks, removes SUID from the file, updates | |
2881 | * modification times and calls proper subroutines depending on whether we | |
2882 | * do direct IO or a standard buffered write. | |
2883 | * | |
2884 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
2885 | * object which does not need locking at all. | |
2886 | * | |
2887 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
2888 | * A caller has to handle it. This is mainly due to the fact that we want to | |
2889 | * avoid syncing under i_mutex. | |
2890 | */ | |
8174202b | 2891 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2892 | { |
2893 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 2894 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 2895 | struct inode *inode = mapping->host; |
3b93f911 | 2896 | ssize_t written = 0; |
1da177e4 | 2897 | ssize_t err; |
3b93f911 | 2898 | ssize_t status; |
1da177e4 | 2899 | |
1da177e4 | 2900 | /* We can write back this queue in page reclaim */ |
de1414a6 | 2901 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 2902 | err = file_remove_privs(file); |
1da177e4 LT |
2903 | if (err) |
2904 | goto out; | |
2905 | ||
c3b2da31 JB |
2906 | err = file_update_time(file); |
2907 | if (err) | |
2908 | goto out; | |
1da177e4 | 2909 | |
2ba48ce5 | 2910 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 2911 | loff_t pos, endbyte; |
fb5527e6 | 2912 | |
1af5bb49 | 2913 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 2914 | /* |
fbbbad4b MW |
2915 | * If the write stopped short of completing, fall back to |
2916 | * buffered writes. Some filesystems do this for writes to | |
2917 | * holes, for example. For DAX files, a buffered write will | |
2918 | * not succeed (even if it did, DAX does not handle dirty | |
2919 | * page-cache pages correctly). | |
1da177e4 | 2920 | */ |
0b8def9d | 2921 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
2922 | goto out; |
2923 | ||
0b8def9d | 2924 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 2925 | /* |
3b93f911 | 2926 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
2927 | * then we want to return the number of bytes which were |
2928 | * direct-written, or the error code if that was zero. Note | |
2929 | * that this differs from normal direct-io semantics, which | |
2930 | * will return -EFOO even if some bytes were written. | |
2931 | */ | |
60bb4529 | 2932 | if (unlikely(status < 0)) { |
3b93f911 | 2933 | err = status; |
fb5527e6 JM |
2934 | goto out; |
2935 | } | |
fb5527e6 JM |
2936 | /* |
2937 | * We need to ensure that the page cache pages are written to | |
2938 | * disk and invalidated to preserve the expected O_DIRECT | |
2939 | * semantics. | |
2940 | */ | |
3b93f911 | 2941 | endbyte = pos + status - 1; |
0b8def9d | 2942 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 2943 | if (err == 0) { |
0b8def9d | 2944 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 2945 | written += status; |
fb5527e6 | 2946 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
2947 | pos >> PAGE_SHIFT, |
2948 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
2949 | } else { |
2950 | /* | |
2951 | * We don't know how much we wrote, so just return | |
2952 | * the number of bytes which were direct-written | |
2953 | */ | |
2954 | } | |
2955 | } else { | |
0b8def9d AV |
2956 | written = generic_perform_write(file, from, iocb->ki_pos); |
2957 | if (likely(written > 0)) | |
2958 | iocb->ki_pos += written; | |
fb5527e6 | 2959 | } |
1da177e4 LT |
2960 | out: |
2961 | current->backing_dev_info = NULL; | |
2962 | return written ? written : err; | |
2963 | } | |
8174202b | 2964 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 2965 | |
e4dd9de3 | 2966 | /** |
8174202b | 2967 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 2968 | * @iocb: IO state structure |
8174202b | 2969 | * @from: iov_iter with data to write |
e4dd9de3 | 2970 | * |
8174202b | 2971 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
2972 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
2973 | * and acquires i_mutex as needed. | |
2974 | */ | |
8174202b | 2975 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2976 | { |
2977 | struct file *file = iocb->ki_filp; | |
148f948b | 2978 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 2979 | ssize_t ret; |
1da177e4 | 2980 | |
5955102c | 2981 | inode_lock(inode); |
3309dd04 AV |
2982 | ret = generic_write_checks(iocb, from); |
2983 | if (ret > 0) | |
5f380c7f | 2984 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 2985 | inode_unlock(inode); |
1da177e4 | 2986 | |
e2592217 CH |
2987 | if (ret > 0) |
2988 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
2989 | return ret; |
2990 | } | |
8174202b | 2991 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 2992 | |
cf9a2ae8 DH |
2993 | /** |
2994 | * try_to_release_page() - release old fs-specific metadata on a page | |
2995 | * | |
2996 | * @page: the page which the kernel is trying to free | |
2997 | * @gfp_mask: memory allocation flags (and I/O mode) | |
2998 | * | |
2999 | * The address_space is to try to release any data against the page | |
3000 | * (presumably at page->private). If the release was successful, return `1'. | |
3001 | * Otherwise return zero. | |
3002 | * | |
266cf658 DH |
3003 | * This may also be called if PG_fscache is set on a page, indicating that the |
3004 | * page is known to the local caching routines. | |
3005 | * | |
cf9a2ae8 | 3006 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 3007 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 3008 | * |
cf9a2ae8 DH |
3009 | */ |
3010 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
3011 | { | |
3012 | struct address_space * const mapping = page->mapping; | |
3013 | ||
3014 | BUG_ON(!PageLocked(page)); | |
3015 | if (PageWriteback(page)) | |
3016 | return 0; | |
3017 | ||
3018 | if (mapping && mapping->a_ops->releasepage) | |
3019 | return mapping->a_ops->releasepage(page, gfp_mask); | |
3020 | return try_to_free_buffers(page); | |
3021 | } | |
3022 | ||
3023 | EXPORT_SYMBOL(try_to_release_page); |