]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
12 | #include <linux/config.h> | |
13 | #include <linux/module.h> | |
14 | #include <linux/slab.h> | |
15 | #include <linux/compiler.h> | |
16 | #include <linux/fs.h> | |
17 | #include <linux/aio.h> | |
18 | #include <linux/kernel_stat.h> | |
19 | #include <linux/mm.h> | |
20 | #include <linux/swap.h> | |
21 | #include <linux/mman.h> | |
22 | #include <linux/pagemap.h> | |
23 | #include <linux/file.h> | |
24 | #include <linux/uio.h> | |
25 | #include <linux/hash.h> | |
26 | #include <linux/writeback.h> | |
27 | #include <linux/pagevec.h> | |
28 | #include <linux/blkdev.h> | |
29 | #include <linux/security.h> | |
30 | #include <linux/syscalls.h> | |
ceffc078 | 31 | #include "filemap.h" |
1da177e4 | 32 | /* |
1da177e4 LT |
33 | * FIXME: remove all knowledge of the buffer layer from the core VM |
34 | */ | |
35 | #include <linux/buffer_head.h> /* for generic_osync_inode */ | |
36 | ||
37 | #include <asm/uaccess.h> | |
38 | #include <asm/mman.h> | |
39 | ||
5ce7852c AB |
40 | static ssize_t |
41 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | |
42 | loff_t offset, unsigned long nr_segs); | |
43 | ||
1da177e4 LT |
44 | /* |
45 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
46 | * though. | |
47 | * | |
48 | * Shared mappings now work. 15.8.1995 Bruno. | |
49 | * | |
50 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
51 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
52 | * | |
53 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
54 | */ | |
55 | ||
56 | /* | |
57 | * Lock ordering: | |
58 | * | |
59 | * ->i_mmap_lock (vmtruncate) | |
60 | * ->private_lock (__free_pte->__set_page_dirty_buffers) | |
5d337b91 HD |
61 | * ->swap_lock (exclusive_swap_page, others) |
62 | * ->mapping->tree_lock | |
1da177e4 LT |
63 | * |
64 | * ->i_sem | |
65 | * ->i_mmap_lock (truncate->unmap_mapping_range) | |
66 | * | |
67 | * ->mmap_sem | |
68 | * ->i_mmap_lock | |
b8072f09 | 69 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
70 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
71 | * | |
72 | * ->mmap_sem | |
73 | * ->lock_page (access_process_vm) | |
74 | * | |
75 | * ->mmap_sem | |
76 | * ->i_sem (msync) | |
77 | * | |
78 | * ->i_sem | |
79 | * ->i_alloc_sem (various) | |
80 | * | |
81 | * ->inode_lock | |
82 | * ->sb_lock (fs/fs-writeback.c) | |
83 | * ->mapping->tree_lock (__sync_single_inode) | |
84 | * | |
85 | * ->i_mmap_lock | |
86 | * ->anon_vma.lock (vma_adjust) | |
87 | * | |
88 | * ->anon_vma.lock | |
b8072f09 | 89 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 90 | * |
b8072f09 | 91 | * ->page_table_lock or pte_lock |
5d337b91 | 92 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
93 | * ->private_lock (try_to_unmap_one) |
94 | * ->tree_lock (try_to_unmap_one) | |
95 | * ->zone.lru_lock (follow_page->mark_page_accessed) | |
96 | * ->private_lock (page_remove_rmap->set_page_dirty) | |
97 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
98 | * ->inode_lock (page_remove_rmap->set_page_dirty) | |
99 | * ->inode_lock (zap_pte_range->set_page_dirty) | |
100 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) | |
101 | * | |
102 | * ->task->proc_lock | |
103 | * ->dcache_lock (proc_pid_lookup) | |
104 | */ | |
105 | ||
106 | /* | |
107 | * Remove a page from the page cache and free it. Caller has to make | |
108 | * sure the page is locked and that nobody else uses it - or that usage | |
109 | * is safe. The caller must hold a write_lock on the mapping's tree_lock. | |
110 | */ | |
111 | void __remove_from_page_cache(struct page *page) | |
112 | { | |
113 | struct address_space *mapping = page->mapping; | |
114 | ||
115 | radix_tree_delete(&mapping->page_tree, page->index); | |
116 | page->mapping = NULL; | |
117 | mapping->nrpages--; | |
118 | pagecache_acct(-1); | |
119 | } | |
120 | ||
121 | void remove_from_page_cache(struct page *page) | |
122 | { | |
123 | struct address_space *mapping = page->mapping; | |
124 | ||
cd7619d6 | 125 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
126 | |
127 | write_lock_irq(&mapping->tree_lock); | |
128 | __remove_from_page_cache(page); | |
129 | write_unlock_irq(&mapping->tree_lock); | |
130 | } | |
131 | ||
132 | static int sync_page(void *word) | |
133 | { | |
134 | struct address_space *mapping; | |
135 | struct page *page; | |
136 | ||
07808b74 | 137 | page = container_of((unsigned long *)word, struct page, flags); |
1da177e4 LT |
138 | |
139 | /* | |
dd1d5afc NYC |
140 | * page_mapping() is being called without PG_locked held. |
141 | * Some knowledge of the state and use of the page is used to | |
142 | * reduce the requirements down to a memory barrier. | |
143 | * The danger here is of a stale page_mapping() return value | |
144 | * indicating a struct address_space different from the one it's | |
145 | * associated with when it is associated with one. | |
146 | * After smp_mb(), it's either the correct page_mapping() for | |
147 | * the page, or an old page_mapping() and the page's own | |
148 | * page_mapping() has gone NULL. | |
149 | * The ->sync_page() address_space operation must tolerate | |
150 | * page_mapping() going NULL. By an amazing coincidence, | |
151 | * this comes about because none of the users of the page | |
152 | * in the ->sync_page() methods make essential use of the | |
153 | * page_mapping(), merely passing the page down to the backing | |
154 | * device's unplug functions when it's non-NULL, which in turn | |
4c21e2f2 | 155 | * ignore it for all cases but swap, where only page_private(page) is |
dd1d5afc NYC |
156 | * of interest. When page_mapping() does go NULL, the entire |
157 | * call stack gracefully ignores the page and returns. | |
158 | * -- wli | |
1da177e4 LT |
159 | */ |
160 | smp_mb(); | |
161 | mapping = page_mapping(page); | |
162 | if (mapping && mapping->a_ops && mapping->a_ops->sync_page) | |
163 | mapping->a_ops->sync_page(page); | |
164 | io_schedule(); | |
165 | return 0; | |
166 | } | |
167 | ||
168 | /** | |
169 | * filemap_fdatawrite_range - start writeback against all of a mapping's | |
170 | * dirty pages that lie within the byte offsets <start, end> | |
67be2dd1 MW |
171 | * @mapping: address space structure to write |
172 | * @start: offset in bytes where the range starts | |
173 | * @end: offset in bytes where the range ends | |
174 | * @sync_mode: enable synchronous operation | |
1da177e4 LT |
175 | * |
176 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | |
177 | * opposed to a regular memory * cleansing writeback. The difference between | |
178 | * these two operations is that if a dirty page/buffer is encountered, it must | |
179 | * be waited upon, and not just skipped over. | |
180 | */ | |
181 | static int __filemap_fdatawrite_range(struct address_space *mapping, | |
182 | loff_t start, loff_t end, int sync_mode) | |
183 | { | |
184 | int ret; | |
185 | struct writeback_control wbc = { | |
186 | .sync_mode = sync_mode, | |
187 | .nr_to_write = mapping->nrpages * 2, | |
188 | .start = start, | |
189 | .end = end, | |
190 | }; | |
191 | ||
192 | if (!mapping_cap_writeback_dirty(mapping)) | |
193 | return 0; | |
194 | ||
195 | ret = do_writepages(mapping, &wbc); | |
196 | return ret; | |
197 | } | |
198 | ||
199 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
200 | int sync_mode) | |
201 | { | |
202 | return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode); | |
203 | } | |
204 | ||
205 | int filemap_fdatawrite(struct address_space *mapping) | |
206 | { | |
207 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
208 | } | |
209 | EXPORT_SYMBOL(filemap_fdatawrite); | |
210 | ||
211 | static int filemap_fdatawrite_range(struct address_space *mapping, | |
212 | loff_t start, loff_t end) | |
213 | { | |
214 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
215 | } | |
216 | ||
217 | /* | |
218 | * This is a mostly non-blocking flush. Not suitable for data-integrity | |
219 | * purposes - I/O may not be started against all dirty pages. | |
220 | */ | |
221 | int filemap_flush(struct address_space *mapping) | |
222 | { | |
223 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
224 | } | |
225 | EXPORT_SYMBOL(filemap_flush); | |
226 | ||
227 | /* | |
228 | * Wait for writeback to complete against pages indexed by start->end | |
229 | * inclusive | |
230 | */ | |
231 | static int wait_on_page_writeback_range(struct address_space *mapping, | |
232 | pgoff_t start, pgoff_t end) | |
233 | { | |
234 | struct pagevec pvec; | |
235 | int nr_pages; | |
236 | int ret = 0; | |
237 | pgoff_t index; | |
238 | ||
239 | if (end < start) | |
240 | return 0; | |
241 | ||
242 | pagevec_init(&pvec, 0); | |
243 | index = start; | |
244 | while ((index <= end) && | |
245 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
246 | PAGECACHE_TAG_WRITEBACK, | |
247 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | |
248 | unsigned i; | |
249 | ||
250 | for (i = 0; i < nr_pages; i++) { | |
251 | struct page *page = pvec.pages[i]; | |
252 | ||
253 | /* until radix tree lookup accepts end_index */ | |
254 | if (page->index > end) | |
255 | continue; | |
256 | ||
257 | wait_on_page_writeback(page); | |
258 | if (PageError(page)) | |
259 | ret = -EIO; | |
260 | } | |
261 | pagevec_release(&pvec); | |
262 | cond_resched(); | |
263 | } | |
264 | ||
265 | /* Check for outstanding write errors */ | |
266 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
267 | ret = -ENOSPC; | |
268 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | |
269 | ret = -EIO; | |
270 | ||
271 | return ret; | |
272 | } | |
273 | ||
274 | /* | |
275 | * Write and wait upon all the pages in the passed range. This is a "data | |
276 | * integrity" operation. It waits upon in-flight writeout before starting and | |
277 | * waiting upon new writeout. If there was an IO error, return it. | |
278 | * | |
279 | * We need to re-take i_sem during the generic_osync_inode list walk because | |
280 | * it is otherwise livelockable. | |
281 | */ | |
282 | int sync_page_range(struct inode *inode, struct address_space *mapping, | |
283 | loff_t pos, size_t count) | |
284 | { | |
285 | pgoff_t start = pos >> PAGE_CACHE_SHIFT; | |
286 | pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; | |
287 | int ret; | |
288 | ||
289 | if (!mapping_cap_writeback_dirty(mapping) || !count) | |
290 | return 0; | |
291 | ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); | |
292 | if (ret == 0) { | |
293 | down(&inode->i_sem); | |
294 | ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); | |
295 | up(&inode->i_sem); | |
296 | } | |
297 | if (ret == 0) | |
298 | ret = wait_on_page_writeback_range(mapping, start, end); | |
299 | return ret; | |
300 | } | |
301 | EXPORT_SYMBOL(sync_page_range); | |
302 | ||
303 | /* | |
304 | * Note: Holding i_sem across sync_page_range_nolock is not a good idea | |
305 | * as it forces O_SYNC writers to different parts of the same file | |
306 | * to be serialised right until io completion. | |
307 | */ | |
5ce7852c AB |
308 | static int sync_page_range_nolock(struct inode *inode, |
309 | struct address_space *mapping, | |
310 | loff_t pos, size_t count) | |
1da177e4 LT |
311 | { |
312 | pgoff_t start = pos >> PAGE_CACHE_SHIFT; | |
313 | pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; | |
314 | int ret; | |
315 | ||
316 | if (!mapping_cap_writeback_dirty(mapping) || !count) | |
317 | return 0; | |
318 | ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); | |
319 | if (ret == 0) | |
320 | ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); | |
321 | if (ret == 0) | |
322 | ret = wait_on_page_writeback_range(mapping, start, end); | |
323 | return ret; | |
324 | } | |
1da177e4 LT |
325 | |
326 | /** | |
327 | * filemap_fdatawait - walk the list of under-writeback pages of the given | |
328 | * address space and wait for all of them. | |
329 | * | |
330 | * @mapping: address space structure to wait for | |
331 | */ | |
332 | int filemap_fdatawait(struct address_space *mapping) | |
333 | { | |
334 | loff_t i_size = i_size_read(mapping->host); | |
335 | ||
336 | if (i_size == 0) | |
337 | return 0; | |
338 | ||
339 | return wait_on_page_writeback_range(mapping, 0, | |
340 | (i_size - 1) >> PAGE_CACHE_SHIFT); | |
341 | } | |
342 | EXPORT_SYMBOL(filemap_fdatawait); | |
343 | ||
344 | int filemap_write_and_wait(struct address_space *mapping) | |
345 | { | |
346 | int retval = 0; | |
347 | ||
348 | if (mapping->nrpages) { | |
349 | retval = filemap_fdatawrite(mapping); | |
350 | if (retval == 0) | |
351 | retval = filemap_fdatawait(mapping); | |
352 | } | |
353 | return retval; | |
354 | } | |
355 | ||
356 | int filemap_write_and_wait_range(struct address_space *mapping, | |
357 | loff_t lstart, loff_t lend) | |
358 | { | |
359 | int retval = 0; | |
360 | ||
361 | if (mapping->nrpages) { | |
362 | retval = __filemap_fdatawrite_range(mapping, lstart, lend, | |
363 | WB_SYNC_ALL); | |
364 | if (retval == 0) | |
365 | retval = wait_on_page_writeback_range(mapping, | |
366 | lstart >> PAGE_CACHE_SHIFT, | |
367 | lend >> PAGE_CACHE_SHIFT); | |
368 | } | |
369 | return retval; | |
370 | } | |
371 | ||
372 | /* | |
373 | * This function is used to add newly allocated pagecache pages: | |
374 | * the page is new, so we can just run SetPageLocked() against it. | |
375 | * The other page state flags were set by rmqueue(). | |
376 | * | |
377 | * This function does not add the page to the LRU. The caller must do that. | |
378 | */ | |
379 | int add_to_page_cache(struct page *page, struct address_space *mapping, | |
6daa0e28 | 380 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 LT |
381 | { |
382 | int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); | |
383 | ||
384 | if (error == 0) { | |
385 | write_lock_irq(&mapping->tree_lock); | |
386 | error = radix_tree_insert(&mapping->page_tree, offset, page); | |
387 | if (!error) { | |
388 | page_cache_get(page); | |
389 | SetPageLocked(page); | |
390 | page->mapping = mapping; | |
391 | page->index = offset; | |
392 | mapping->nrpages++; | |
393 | pagecache_acct(1); | |
394 | } | |
395 | write_unlock_irq(&mapping->tree_lock); | |
396 | radix_tree_preload_end(); | |
397 | } | |
398 | return error; | |
399 | } | |
400 | ||
401 | EXPORT_SYMBOL(add_to_page_cache); | |
402 | ||
403 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 404 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 LT |
405 | { |
406 | int ret = add_to_page_cache(page, mapping, offset, gfp_mask); | |
407 | if (ret == 0) | |
408 | lru_cache_add(page); | |
409 | return ret; | |
410 | } | |
411 | ||
412 | /* | |
413 | * In order to wait for pages to become available there must be | |
414 | * waitqueues associated with pages. By using a hash table of | |
415 | * waitqueues where the bucket discipline is to maintain all | |
416 | * waiters on the same queue and wake all when any of the pages | |
417 | * become available, and for the woken contexts to check to be | |
418 | * sure the appropriate page became available, this saves space | |
419 | * at a cost of "thundering herd" phenomena during rare hash | |
420 | * collisions. | |
421 | */ | |
422 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
423 | { | |
424 | const struct zone *zone = page_zone(page); | |
425 | ||
426 | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; | |
427 | } | |
428 | ||
429 | static inline void wake_up_page(struct page *page, int bit) | |
430 | { | |
431 | __wake_up_bit(page_waitqueue(page), &page->flags, bit); | |
432 | } | |
433 | ||
434 | void fastcall wait_on_page_bit(struct page *page, int bit_nr) | |
435 | { | |
436 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
437 | ||
438 | if (test_bit(bit_nr, &page->flags)) | |
439 | __wait_on_bit(page_waitqueue(page), &wait, sync_page, | |
440 | TASK_UNINTERRUPTIBLE); | |
441 | } | |
442 | EXPORT_SYMBOL(wait_on_page_bit); | |
443 | ||
444 | /** | |
445 | * unlock_page() - unlock a locked page | |
446 | * | |
447 | * @page: the page | |
448 | * | |
449 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
450 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
451 | * mechananism between PageLocked pages and PageWriteback pages is shared. | |
452 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | |
453 | * | |
454 | * The first mb is necessary to safely close the critical section opened by the | |
455 | * TestSetPageLocked(), the second mb is necessary to enforce ordering between | |
456 | * the clear_bit and the read of the waitqueue (to avoid SMP races with a | |
457 | * parallel wait_on_page_locked()). | |
458 | */ | |
459 | void fastcall unlock_page(struct page *page) | |
460 | { | |
461 | smp_mb__before_clear_bit(); | |
462 | if (!TestClearPageLocked(page)) | |
463 | BUG(); | |
464 | smp_mb__after_clear_bit(); | |
465 | wake_up_page(page, PG_locked); | |
466 | } | |
467 | EXPORT_SYMBOL(unlock_page); | |
468 | ||
469 | /* | |
470 | * End writeback against a page. | |
471 | */ | |
472 | void end_page_writeback(struct page *page) | |
473 | { | |
474 | if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { | |
475 | if (!test_clear_page_writeback(page)) | |
476 | BUG(); | |
477 | } | |
478 | smp_mb__after_clear_bit(); | |
479 | wake_up_page(page, PG_writeback); | |
480 | } | |
481 | EXPORT_SYMBOL(end_page_writeback); | |
482 | ||
483 | /* | |
484 | * Get a lock on the page, assuming we need to sleep to get it. | |
485 | * | |
486 | * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some | |
487 | * random driver's requestfn sets TASK_RUNNING, we could busywait. However | |
488 | * chances are that on the second loop, the block layer's plug list is empty, | |
489 | * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. | |
490 | */ | |
491 | void fastcall __lock_page(struct page *page) | |
492 | { | |
493 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | |
494 | ||
495 | __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, | |
496 | TASK_UNINTERRUPTIBLE); | |
497 | } | |
498 | EXPORT_SYMBOL(__lock_page); | |
499 | ||
500 | /* | |
501 | * a rather lightweight function, finding and getting a reference to a | |
502 | * hashed page atomically. | |
503 | */ | |
504 | struct page * find_get_page(struct address_space *mapping, unsigned long offset) | |
505 | { | |
506 | struct page *page; | |
507 | ||
508 | read_lock_irq(&mapping->tree_lock); | |
509 | page = radix_tree_lookup(&mapping->page_tree, offset); | |
510 | if (page) | |
511 | page_cache_get(page); | |
512 | read_unlock_irq(&mapping->tree_lock); | |
513 | return page; | |
514 | } | |
515 | ||
516 | EXPORT_SYMBOL(find_get_page); | |
517 | ||
518 | /* | |
519 | * Same as above, but trylock it instead of incrementing the count. | |
520 | */ | |
521 | struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) | |
522 | { | |
523 | struct page *page; | |
524 | ||
525 | read_lock_irq(&mapping->tree_lock); | |
526 | page = radix_tree_lookup(&mapping->page_tree, offset); | |
527 | if (page && TestSetPageLocked(page)) | |
528 | page = NULL; | |
529 | read_unlock_irq(&mapping->tree_lock); | |
530 | return page; | |
531 | } | |
532 | ||
533 | EXPORT_SYMBOL(find_trylock_page); | |
534 | ||
535 | /** | |
536 | * find_lock_page - locate, pin and lock a pagecache page | |
537 | * | |
67be2dd1 MW |
538 | * @mapping: the address_space to search |
539 | * @offset: the page index | |
1da177e4 LT |
540 | * |
541 | * Locates the desired pagecache page, locks it, increments its reference | |
542 | * count and returns its address. | |
543 | * | |
544 | * Returns zero if the page was not present. find_lock_page() may sleep. | |
545 | */ | |
546 | struct page *find_lock_page(struct address_space *mapping, | |
547 | unsigned long offset) | |
548 | { | |
549 | struct page *page; | |
550 | ||
551 | read_lock_irq(&mapping->tree_lock); | |
552 | repeat: | |
553 | page = radix_tree_lookup(&mapping->page_tree, offset); | |
554 | if (page) { | |
555 | page_cache_get(page); | |
556 | if (TestSetPageLocked(page)) { | |
557 | read_unlock_irq(&mapping->tree_lock); | |
558 | lock_page(page); | |
559 | read_lock_irq(&mapping->tree_lock); | |
560 | ||
561 | /* Has the page been truncated while we slept? */ | |
562 | if (page->mapping != mapping || page->index != offset) { | |
563 | unlock_page(page); | |
564 | page_cache_release(page); | |
565 | goto repeat; | |
566 | } | |
567 | } | |
568 | } | |
569 | read_unlock_irq(&mapping->tree_lock); | |
570 | return page; | |
571 | } | |
572 | ||
573 | EXPORT_SYMBOL(find_lock_page); | |
574 | ||
575 | /** | |
576 | * find_or_create_page - locate or add a pagecache page | |
577 | * | |
67be2dd1 MW |
578 | * @mapping: the page's address_space |
579 | * @index: the page's index into the mapping | |
580 | * @gfp_mask: page allocation mode | |
1da177e4 LT |
581 | * |
582 | * Locates a page in the pagecache. If the page is not present, a new page | |
583 | * is allocated using @gfp_mask and is added to the pagecache and to the VM's | |
584 | * LRU list. The returned page is locked and has its reference count | |
585 | * incremented. | |
586 | * | |
587 | * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic | |
588 | * allocation! | |
589 | * | |
590 | * find_or_create_page() returns the desired page's address, or zero on | |
591 | * memory exhaustion. | |
592 | */ | |
593 | struct page *find_or_create_page(struct address_space *mapping, | |
6daa0e28 | 594 | unsigned long index, gfp_t gfp_mask) |
1da177e4 LT |
595 | { |
596 | struct page *page, *cached_page = NULL; | |
597 | int err; | |
598 | repeat: | |
599 | page = find_lock_page(mapping, index); | |
600 | if (!page) { | |
601 | if (!cached_page) { | |
602 | cached_page = alloc_page(gfp_mask); | |
603 | if (!cached_page) | |
604 | return NULL; | |
605 | } | |
606 | err = add_to_page_cache_lru(cached_page, mapping, | |
607 | index, gfp_mask); | |
608 | if (!err) { | |
609 | page = cached_page; | |
610 | cached_page = NULL; | |
611 | } else if (err == -EEXIST) | |
612 | goto repeat; | |
613 | } | |
614 | if (cached_page) | |
615 | page_cache_release(cached_page); | |
616 | return page; | |
617 | } | |
618 | ||
619 | EXPORT_SYMBOL(find_or_create_page); | |
620 | ||
621 | /** | |
622 | * find_get_pages - gang pagecache lookup | |
623 | * @mapping: The address_space to search | |
624 | * @start: The starting page index | |
625 | * @nr_pages: The maximum number of pages | |
626 | * @pages: Where the resulting pages are placed | |
627 | * | |
628 | * find_get_pages() will search for and return a group of up to | |
629 | * @nr_pages pages in the mapping. The pages are placed at @pages. | |
630 | * find_get_pages() takes a reference against the returned pages. | |
631 | * | |
632 | * The search returns a group of mapping-contiguous pages with ascending | |
633 | * indexes. There may be holes in the indices due to not-present pages. | |
634 | * | |
635 | * find_get_pages() returns the number of pages which were found. | |
636 | */ | |
637 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |
638 | unsigned int nr_pages, struct page **pages) | |
639 | { | |
640 | unsigned int i; | |
641 | unsigned int ret; | |
642 | ||
643 | read_lock_irq(&mapping->tree_lock); | |
644 | ret = radix_tree_gang_lookup(&mapping->page_tree, | |
645 | (void **)pages, start, nr_pages); | |
646 | for (i = 0; i < ret; i++) | |
647 | page_cache_get(pages[i]); | |
648 | read_unlock_irq(&mapping->tree_lock); | |
649 | return ret; | |
650 | } | |
651 | ||
652 | /* | |
653 | * Like find_get_pages, except we only return pages which are tagged with | |
654 | * `tag'. We update *index to index the next page for the traversal. | |
655 | */ | |
656 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |
657 | int tag, unsigned int nr_pages, struct page **pages) | |
658 | { | |
659 | unsigned int i; | |
660 | unsigned int ret; | |
661 | ||
662 | read_lock_irq(&mapping->tree_lock); | |
663 | ret = radix_tree_gang_lookup_tag(&mapping->page_tree, | |
664 | (void **)pages, *index, nr_pages, tag); | |
665 | for (i = 0; i < ret; i++) | |
666 | page_cache_get(pages[i]); | |
667 | if (ret) | |
668 | *index = pages[ret - 1]->index + 1; | |
669 | read_unlock_irq(&mapping->tree_lock); | |
670 | return ret; | |
671 | } | |
672 | ||
673 | /* | |
674 | * Same as grab_cache_page, but do not wait if the page is unavailable. | |
675 | * This is intended for speculative data generators, where the data can | |
676 | * be regenerated if the page couldn't be grabbed. This routine should | |
677 | * be safe to call while holding the lock for another page. | |
678 | * | |
679 | * Clear __GFP_FS when allocating the page to avoid recursion into the fs | |
680 | * and deadlock against the caller's locked page. | |
681 | */ | |
682 | struct page * | |
683 | grab_cache_page_nowait(struct address_space *mapping, unsigned long index) | |
684 | { | |
685 | struct page *page = find_get_page(mapping, index); | |
6daa0e28 | 686 | gfp_t gfp_mask; |
1da177e4 LT |
687 | |
688 | if (page) { | |
689 | if (!TestSetPageLocked(page)) | |
690 | return page; | |
691 | page_cache_release(page); | |
692 | return NULL; | |
693 | } | |
694 | gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; | |
695 | page = alloc_pages(gfp_mask, 0); | |
696 | if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { | |
697 | page_cache_release(page); | |
698 | page = NULL; | |
699 | } | |
700 | return page; | |
701 | } | |
702 | ||
703 | EXPORT_SYMBOL(grab_cache_page_nowait); | |
704 | ||
705 | /* | |
706 | * This is a generic file read routine, and uses the | |
707 | * mapping->a_ops->readpage() function for the actual low-level | |
708 | * stuff. | |
709 | * | |
710 | * This is really ugly. But the goto's actually try to clarify some | |
711 | * of the logic when it comes to error handling etc. | |
712 | * | |
713 | * Note the struct file* is only passed for the use of readpage. It may be | |
714 | * NULL. | |
715 | */ | |
716 | void do_generic_mapping_read(struct address_space *mapping, | |
717 | struct file_ra_state *_ra, | |
718 | struct file *filp, | |
719 | loff_t *ppos, | |
720 | read_descriptor_t *desc, | |
721 | read_actor_t actor) | |
722 | { | |
723 | struct inode *inode = mapping->host; | |
724 | unsigned long index; | |
725 | unsigned long end_index; | |
726 | unsigned long offset; | |
727 | unsigned long last_index; | |
728 | unsigned long next_index; | |
729 | unsigned long prev_index; | |
730 | loff_t isize; | |
731 | struct page *cached_page; | |
732 | int error; | |
733 | struct file_ra_state ra = *_ra; | |
734 | ||
735 | cached_page = NULL; | |
736 | index = *ppos >> PAGE_CACHE_SHIFT; | |
737 | next_index = index; | |
738 | prev_index = ra.prev_page; | |
739 | last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; | |
740 | offset = *ppos & ~PAGE_CACHE_MASK; | |
741 | ||
742 | isize = i_size_read(inode); | |
743 | if (!isize) | |
744 | goto out; | |
745 | ||
746 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | |
747 | for (;;) { | |
748 | struct page *page; | |
749 | unsigned long nr, ret; | |
750 | ||
751 | /* nr is the maximum number of bytes to copy from this page */ | |
752 | nr = PAGE_CACHE_SIZE; | |
753 | if (index >= end_index) { | |
754 | if (index > end_index) | |
755 | goto out; | |
756 | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | |
757 | if (nr <= offset) { | |
758 | goto out; | |
759 | } | |
760 | } | |
761 | nr = nr - offset; | |
762 | ||
763 | cond_resched(); | |
764 | if (index == next_index) | |
765 | next_index = page_cache_readahead(mapping, &ra, filp, | |
766 | index, last_index - index); | |
767 | ||
768 | find_page: | |
769 | page = find_get_page(mapping, index); | |
770 | if (unlikely(page == NULL)) { | |
771 | handle_ra_miss(mapping, &ra, index); | |
772 | goto no_cached_page; | |
773 | } | |
774 | if (!PageUptodate(page)) | |
775 | goto page_not_up_to_date; | |
776 | page_ok: | |
777 | ||
778 | /* If users can be writing to this page using arbitrary | |
779 | * virtual addresses, take care about potential aliasing | |
780 | * before reading the page on the kernel side. | |
781 | */ | |
782 | if (mapping_writably_mapped(mapping)) | |
783 | flush_dcache_page(page); | |
784 | ||
785 | /* | |
786 | * When (part of) the same page is read multiple times | |
787 | * in succession, only mark it as accessed the first time. | |
788 | */ | |
789 | if (prev_index != index) | |
790 | mark_page_accessed(page); | |
791 | prev_index = index; | |
792 | ||
793 | /* | |
794 | * Ok, we have the page, and it's up-to-date, so | |
795 | * now we can copy it to user space... | |
796 | * | |
797 | * The actor routine returns how many bytes were actually used.. | |
798 | * NOTE! This may not be the same as how much of a user buffer | |
799 | * we filled up (we may be padding etc), so we can only update | |
800 | * "pos" here (the actor routine has to update the user buffer | |
801 | * pointers and the remaining count). | |
802 | */ | |
803 | ret = actor(desc, page, offset, nr); | |
804 | offset += ret; | |
805 | index += offset >> PAGE_CACHE_SHIFT; | |
806 | offset &= ~PAGE_CACHE_MASK; | |
807 | ||
808 | page_cache_release(page); | |
809 | if (ret == nr && desc->count) | |
810 | continue; | |
811 | goto out; | |
812 | ||
813 | page_not_up_to_date: | |
814 | /* Get exclusive access to the page ... */ | |
815 | lock_page(page); | |
816 | ||
817 | /* Did it get unhashed before we got the lock? */ | |
818 | if (!page->mapping) { | |
819 | unlock_page(page); | |
820 | page_cache_release(page); | |
821 | continue; | |
822 | } | |
823 | ||
824 | /* Did somebody else fill it already? */ | |
825 | if (PageUptodate(page)) { | |
826 | unlock_page(page); | |
827 | goto page_ok; | |
828 | } | |
829 | ||
830 | readpage: | |
831 | /* Start the actual read. The read will unlock the page. */ | |
832 | error = mapping->a_ops->readpage(filp, page); | |
833 | ||
834 | if (unlikely(error)) | |
835 | goto readpage_error; | |
836 | ||
837 | if (!PageUptodate(page)) { | |
838 | lock_page(page); | |
839 | if (!PageUptodate(page)) { | |
840 | if (page->mapping == NULL) { | |
841 | /* | |
842 | * invalidate_inode_pages got it | |
843 | */ | |
844 | unlock_page(page); | |
845 | page_cache_release(page); | |
846 | goto find_page; | |
847 | } | |
848 | unlock_page(page); | |
849 | error = -EIO; | |
850 | goto readpage_error; | |
851 | } | |
852 | unlock_page(page); | |
853 | } | |
854 | ||
855 | /* | |
856 | * i_size must be checked after we have done ->readpage. | |
857 | * | |
858 | * Checking i_size after the readpage allows us to calculate | |
859 | * the correct value for "nr", which means the zero-filled | |
860 | * part of the page is not copied back to userspace (unless | |
861 | * another truncate extends the file - this is desired though). | |
862 | */ | |
863 | isize = i_size_read(inode); | |
864 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | |
865 | if (unlikely(!isize || index > end_index)) { | |
866 | page_cache_release(page); | |
867 | goto out; | |
868 | } | |
869 | ||
870 | /* nr is the maximum number of bytes to copy from this page */ | |
871 | nr = PAGE_CACHE_SIZE; | |
872 | if (index == end_index) { | |
873 | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | |
874 | if (nr <= offset) { | |
875 | page_cache_release(page); | |
876 | goto out; | |
877 | } | |
878 | } | |
879 | nr = nr - offset; | |
880 | goto page_ok; | |
881 | ||
882 | readpage_error: | |
883 | /* UHHUH! A synchronous read error occurred. Report it */ | |
884 | desc->error = error; | |
885 | page_cache_release(page); | |
886 | goto out; | |
887 | ||
888 | no_cached_page: | |
889 | /* | |
890 | * Ok, it wasn't cached, so we need to create a new | |
891 | * page.. | |
892 | */ | |
893 | if (!cached_page) { | |
894 | cached_page = page_cache_alloc_cold(mapping); | |
895 | if (!cached_page) { | |
896 | desc->error = -ENOMEM; | |
897 | goto out; | |
898 | } | |
899 | } | |
900 | error = add_to_page_cache_lru(cached_page, mapping, | |
901 | index, GFP_KERNEL); | |
902 | if (error) { | |
903 | if (error == -EEXIST) | |
904 | goto find_page; | |
905 | desc->error = error; | |
906 | goto out; | |
907 | } | |
908 | page = cached_page; | |
909 | cached_page = NULL; | |
910 | goto readpage; | |
911 | } | |
912 | ||
913 | out: | |
914 | *_ra = ra; | |
915 | ||
916 | *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; | |
917 | if (cached_page) | |
918 | page_cache_release(cached_page); | |
919 | if (filp) | |
920 | file_accessed(filp); | |
921 | } | |
922 | ||
923 | EXPORT_SYMBOL(do_generic_mapping_read); | |
924 | ||
925 | int file_read_actor(read_descriptor_t *desc, struct page *page, | |
926 | unsigned long offset, unsigned long size) | |
927 | { | |
928 | char *kaddr; | |
929 | unsigned long left, count = desc->count; | |
930 | ||
931 | if (size > count) | |
932 | size = count; | |
933 | ||
934 | /* | |
935 | * Faults on the destination of a read are common, so do it before | |
936 | * taking the kmap. | |
937 | */ | |
938 | if (!fault_in_pages_writeable(desc->arg.buf, size)) { | |
939 | kaddr = kmap_atomic(page, KM_USER0); | |
940 | left = __copy_to_user_inatomic(desc->arg.buf, | |
941 | kaddr + offset, size); | |
942 | kunmap_atomic(kaddr, KM_USER0); | |
943 | if (left == 0) | |
944 | goto success; | |
945 | } | |
946 | ||
947 | /* Do it the slow way */ | |
948 | kaddr = kmap(page); | |
949 | left = __copy_to_user(desc->arg.buf, kaddr + offset, size); | |
950 | kunmap(page); | |
951 | ||
952 | if (left) { | |
953 | size -= left; | |
954 | desc->error = -EFAULT; | |
955 | } | |
956 | success: | |
957 | desc->count = count - size; | |
958 | desc->written += size; | |
959 | desc->arg.buf += size; | |
960 | return size; | |
961 | } | |
962 | ||
963 | /* | |
964 | * This is the "read()" routine for all filesystems | |
965 | * that can use the page cache directly. | |
966 | */ | |
967 | ssize_t | |
968 | __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, | |
969 | unsigned long nr_segs, loff_t *ppos) | |
970 | { | |
971 | struct file *filp = iocb->ki_filp; | |
972 | ssize_t retval; | |
973 | unsigned long seg; | |
974 | size_t count; | |
975 | ||
976 | count = 0; | |
977 | for (seg = 0; seg < nr_segs; seg++) { | |
978 | const struct iovec *iv = &iov[seg]; | |
979 | ||
980 | /* | |
981 | * If any segment has a negative length, or the cumulative | |
982 | * length ever wraps negative then return -EINVAL. | |
983 | */ | |
984 | count += iv->iov_len; | |
985 | if (unlikely((ssize_t)(count|iv->iov_len) < 0)) | |
986 | return -EINVAL; | |
987 | if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) | |
988 | continue; | |
989 | if (seg == 0) | |
990 | return -EFAULT; | |
991 | nr_segs = seg; | |
992 | count -= iv->iov_len; /* This segment is no good */ | |
993 | break; | |
994 | } | |
995 | ||
996 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | |
997 | if (filp->f_flags & O_DIRECT) { | |
998 | loff_t pos = *ppos, size; | |
999 | struct address_space *mapping; | |
1000 | struct inode *inode; | |
1001 | ||
1002 | mapping = filp->f_mapping; | |
1003 | inode = mapping->host; | |
1004 | retval = 0; | |
1005 | if (!count) | |
1006 | goto out; /* skip atime */ | |
1007 | size = i_size_read(inode); | |
1008 | if (pos < size) { | |
1009 | retval = generic_file_direct_IO(READ, iocb, | |
1010 | iov, pos, nr_segs); | |
b5c44c21 | 1011 | if (retval > 0 && !is_sync_kiocb(iocb)) |
1da177e4 LT |
1012 | retval = -EIOCBQUEUED; |
1013 | if (retval > 0) | |
1014 | *ppos = pos + retval; | |
1015 | } | |
1016 | file_accessed(filp); | |
1017 | goto out; | |
1018 | } | |
1019 | ||
1020 | retval = 0; | |
1021 | if (count) { | |
1022 | for (seg = 0; seg < nr_segs; seg++) { | |
1023 | read_descriptor_t desc; | |
1024 | ||
1025 | desc.written = 0; | |
1026 | desc.arg.buf = iov[seg].iov_base; | |
1027 | desc.count = iov[seg].iov_len; | |
1028 | if (desc.count == 0) | |
1029 | continue; | |
1030 | desc.error = 0; | |
1031 | do_generic_file_read(filp,ppos,&desc,file_read_actor); | |
1032 | retval += desc.written; | |
39e88ca2 TH |
1033 | if (desc.error) { |
1034 | retval = retval ?: desc.error; | |
1da177e4 LT |
1035 | break; |
1036 | } | |
1037 | } | |
1038 | } | |
1039 | out: | |
1040 | return retval; | |
1041 | } | |
1042 | ||
1043 | EXPORT_SYMBOL(__generic_file_aio_read); | |
1044 | ||
1045 | ssize_t | |
1046 | generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) | |
1047 | { | |
1048 | struct iovec local_iov = { .iov_base = buf, .iov_len = count }; | |
1049 | ||
1050 | BUG_ON(iocb->ki_pos != pos); | |
1051 | return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); | |
1052 | } | |
1053 | ||
1054 | EXPORT_SYMBOL(generic_file_aio_read); | |
1055 | ||
1056 | ssize_t | |
1057 | generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) | |
1058 | { | |
1059 | struct iovec local_iov = { .iov_base = buf, .iov_len = count }; | |
1060 | struct kiocb kiocb; | |
1061 | ssize_t ret; | |
1062 | ||
1063 | init_sync_kiocb(&kiocb, filp); | |
1064 | ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); | |
1065 | if (-EIOCBQUEUED == ret) | |
1066 | ret = wait_on_sync_kiocb(&kiocb); | |
1067 | return ret; | |
1068 | } | |
1069 | ||
1070 | EXPORT_SYMBOL(generic_file_read); | |
1071 | ||
1072 | int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) | |
1073 | { | |
1074 | ssize_t written; | |
1075 | unsigned long count = desc->count; | |
1076 | struct file *file = desc->arg.data; | |
1077 | ||
1078 | if (size > count) | |
1079 | size = count; | |
1080 | ||
1081 | written = file->f_op->sendpage(file, page, offset, | |
1082 | size, &file->f_pos, size<count); | |
1083 | if (written < 0) { | |
1084 | desc->error = written; | |
1085 | written = 0; | |
1086 | } | |
1087 | desc->count = count - written; | |
1088 | desc->written += written; | |
1089 | return written; | |
1090 | } | |
1091 | ||
1092 | ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, | |
1093 | size_t count, read_actor_t actor, void *target) | |
1094 | { | |
1095 | read_descriptor_t desc; | |
1096 | ||
1097 | if (!count) | |
1098 | return 0; | |
1099 | ||
1100 | desc.written = 0; | |
1101 | desc.count = count; | |
1102 | desc.arg.data = target; | |
1103 | desc.error = 0; | |
1104 | ||
1105 | do_generic_file_read(in_file, ppos, &desc, actor); | |
1106 | if (desc.written) | |
1107 | return desc.written; | |
1108 | return desc.error; | |
1109 | } | |
1110 | ||
1111 | EXPORT_SYMBOL(generic_file_sendfile); | |
1112 | ||
1113 | static ssize_t | |
1114 | do_readahead(struct address_space *mapping, struct file *filp, | |
1115 | unsigned long index, unsigned long nr) | |
1116 | { | |
1117 | if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) | |
1118 | return -EINVAL; | |
1119 | ||
1120 | force_page_cache_readahead(mapping, filp, index, | |
1121 | max_sane_readahead(nr)); | |
1122 | return 0; | |
1123 | } | |
1124 | ||
1125 | asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) | |
1126 | { | |
1127 | ssize_t ret; | |
1128 | struct file *file; | |
1129 | ||
1130 | ret = -EBADF; | |
1131 | file = fget(fd); | |
1132 | if (file) { | |
1133 | if (file->f_mode & FMODE_READ) { | |
1134 | struct address_space *mapping = file->f_mapping; | |
1135 | unsigned long start = offset >> PAGE_CACHE_SHIFT; | |
1136 | unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; | |
1137 | unsigned long len = end - start + 1; | |
1138 | ret = do_readahead(mapping, file, start, len); | |
1139 | } | |
1140 | fput(file); | |
1141 | } | |
1142 | return ret; | |
1143 | } | |
1144 | ||
1145 | #ifdef CONFIG_MMU | |
1146 | /* | |
1147 | * This adds the requested page to the page cache if it isn't already there, | |
1148 | * and schedules an I/O to read in its contents from disk. | |
1149 | */ | |
1150 | static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); | |
1151 | static int fastcall page_cache_read(struct file * file, unsigned long offset) | |
1152 | { | |
1153 | struct address_space *mapping = file->f_mapping; | |
1154 | struct page *page; | |
1155 | int error; | |
1156 | ||
1157 | page = page_cache_alloc_cold(mapping); | |
1158 | if (!page) | |
1159 | return -ENOMEM; | |
1160 | ||
1161 | error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); | |
1162 | if (!error) { | |
1163 | error = mapping->a_ops->readpage(file, page); | |
1164 | page_cache_release(page); | |
1165 | return error; | |
1166 | } | |
1167 | ||
1168 | /* | |
1169 | * We arrive here in the unlikely event that someone | |
1170 | * raced with us and added our page to the cache first | |
1171 | * or we are out of memory for radix-tree nodes. | |
1172 | */ | |
1173 | page_cache_release(page); | |
1174 | return error == -EEXIST ? 0 : error; | |
1175 | } | |
1176 | ||
1177 | #define MMAP_LOTSAMISS (100) | |
1178 | ||
1179 | /* | |
1180 | * filemap_nopage() is invoked via the vma operations vector for a | |
1181 | * mapped memory region to read in file data during a page fault. | |
1182 | * | |
1183 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
1184 | * it in the page cache, and handles the special cases reasonably without | |
1185 | * having a lot of duplicated code. | |
1186 | */ | |
1187 | struct page *filemap_nopage(struct vm_area_struct *area, | |
1188 | unsigned long address, int *type) | |
1189 | { | |
1190 | int error; | |
1191 | struct file *file = area->vm_file; | |
1192 | struct address_space *mapping = file->f_mapping; | |
1193 | struct file_ra_state *ra = &file->f_ra; | |
1194 | struct inode *inode = mapping->host; | |
1195 | struct page *page; | |
1196 | unsigned long size, pgoff; | |
1197 | int did_readaround = 0, majmin = VM_FAULT_MINOR; | |
1198 | ||
1199 | pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; | |
1200 | ||
1201 | retry_all: | |
1202 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | |
1203 | if (pgoff >= size) | |
1204 | goto outside_data_content; | |
1205 | ||
1206 | /* If we don't want any read-ahead, don't bother */ | |
1207 | if (VM_RandomReadHint(area)) | |
1208 | goto no_cached_page; | |
1209 | ||
1210 | /* | |
1211 | * The readahead code wants to be told about each and every page | |
1212 | * so it can build and shrink its windows appropriately | |
1213 | * | |
1214 | * For sequential accesses, we use the generic readahead logic. | |
1215 | */ | |
1216 | if (VM_SequentialReadHint(area)) | |
1217 | page_cache_readahead(mapping, ra, file, pgoff, 1); | |
1218 | ||
1219 | /* | |
1220 | * Do we have something in the page cache already? | |
1221 | */ | |
1222 | retry_find: | |
1223 | page = find_get_page(mapping, pgoff); | |
1224 | if (!page) { | |
1225 | unsigned long ra_pages; | |
1226 | ||
1227 | if (VM_SequentialReadHint(area)) { | |
1228 | handle_ra_miss(mapping, ra, pgoff); | |
1229 | goto no_cached_page; | |
1230 | } | |
1231 | ra->mmap_miss++; | |
1232 | ||
1233 | /* | |
1234 | * Do we miss much more than hit in this file? If so, | |
1235 | * stop bothering with read-ahead. It will only hurt. | |
1236 | */ | |
1237 | if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) | |
1238 | goto no_cached_page; | |
1239 | ||
1240 | /* | |
1241 | * To keep the pgmajfault counter straight, we need to | |
1242 | * check did_readaround, as this is an inner loop. | |
1243 | */ | |
1244 | if (!did_readaround) { | |
1245 | majmin = VM_FAULT_MAJOR; | |
1246 | inc_page_state(pgmajfault); | |
1247 | } | |
1248 | did_readaround = 1; | |
1249 | ra_pages = max_sane_readahead(file->f_ra.ra_pages); | |
1250 | if (ra_pages) { | |
1251 | pgoff_t start = 0; | |
1252 | ||
1253 | if (pgoff > ra_pages / 2) | |
1254 | start = pgoff - ra_pages / 2; | |
1255 | do_page_cache_readahead(mapping, file, start, ra_pages); | |
1256 | } | |
1257 | page = find_get_page(mapping, pgoff); | |
1258 | if (!page) | |
1259 | goto no_cached_page; | |
1260 | } | |
1261 | ||
1262 | if (!did_readaround) | |
1263 | ra->mmap_hit++; | |
1264 | ||
1265 | /* | |
1266 | * Ok, found a page in the page cache, now we need to check | |
1267 | * that it's up-to-date. | |
1268 | */ | |
1269 | if (!PageUptodate(page)) | |
1270 | goto page_not_uptodate; | |
1271 | ||
1272 | success: | |
1273 | /* | |
1274 | * Found the page and have a reference on it. | |
1275 | */ | |
1276 | mark_page_accessed(page); | |
1277 | if (type) | |
1278 | *type = majmin; | |
1279 | return page; | |
1280 | ||
1281 | outside_data_content: | |
1282 | /* | |
1283 | * An external ptracer can access pages that normally aren't | |
1284 | * accessible.. | |
1285 | */ | |
1286 | if (area->vm_mm == current->mm) | |
1287 | return NULL; | |
1288 | /* Fall through to the non-read-ahead case */ | |
1289 | no_cached_page: | |
1290 | /* | |
1291 | * We're only likely to ever get here if MADV_RANDOM is in | |
1292 | * effect. | |
1293 | */ | |
1294 | error = page_cache_read(file, pgoff); | |
1295 | grab_swap_token(); | |
1296 | ||
1297 | /* | |
1298 | * The page we want has now been added to the page cache. | |
1299 | * In the unlikely event that someone removed it in the | |
1300 | * meantime, we'll just come back here and read it again. | |
1301 | */ | |
1302 | if (error >= 0) | |
1303 | goto retry_find; | |
1304 | ||
1305 | /* | |
1306 | * An error return from page_cache_read can result if the | |
1307 | * system is low on memory, or a problem occurs while trying | |
1308 | * to schedule I/O. | |
1309 | */ | |
1310 | if (error == -ENOMEM) | |
1311 | return NOPAGE_OOM; | |
1312 | return NULL; | |
1313 | ||
1314 | page_not_uptodate: | |
1315 | if (!did_readaround) { | |
1316 | majmin = VM_FAULT_MAJOR; | |
1317 | inc_page_state(pgmajfault); | |
1318 | } | |
1319 | lock_page(page); | |
1320 | ||
1321 | /* Did it get unhashed while we waited for it? */ | |
1322 | if (!page->mapping) { | |
1323 | unlock_page(page); | |
1324 | page_cache_release(page); | |
1325 | goto retry_all; | |
1326 | } | |
1327 | ||
1328 | /* Did somebody else get it up-to-date? */ | |
1329 | if (PageUptodate(page)) { | |
1330 | unlock_page(page); | |
1331 | goto success; | |
1332 | } | |
1333 | ||
1334 | if (!mapping->a_ops->readpage(file, page)) { | |
1335 | wait_on_page_locked(page); | |
1336 | if (PageUptodate(page)) | |
1337 | goto success; | |
1338 | } | |
1339 | ||
1340 | /* | |
1341 | * Umm, take care of errors if the page isn't up-to-date. | |
1342 | * Try to re-read it _once_. We do this synchronously, | |
1343 | * because there really aren't any performance issues here | |
1344 | * and we need to check for errors. | |
1345 | */ | |
1346 | lock_page(page); | |
1347 | ||
1348 | /* Somebody truncated the page on us? */ | |
1349 | if (!page->mapping) { | |
1350 | unlock_page(page); | |
1351 | page_cache_release(page); | |
1352 | goto retry_all; | |
1353 | } | |
1354 | ||
1355 | /* Somebody else successfully read it in? */ | |
1356 | if (PageUptodate(page)) { | |
1357 | unlock_page(page); | |
1358 | goto success; | |
1359 | } | |
1360 | ClearPageError(page); | |
1361 | if (!mapping->a_ops->readpage(file, page)) { | |
1362 | wait_on_page_locked(page); | |
1363 | if (PageUptodate(page)) | |
1364 | goto success; | |
1365 | } | |
1366 | ||
1367 | /* | |
1368 | * Things didn't work out. Return zero to tell the | |
1369 | * mm layer so, possibly freeing the page cache page first. | |
1370 | */ | |
1371 | page_cache_release(page); | |
1372 | return NULL; | |
1373 | } | |
1374 | ||
1375 | EXPORT_SYMBOL(filemap_nopage); | |
1376 | ||
1377 | static struct page * filemap_getpage(struct file *file, unsigned long pgoff, | |
1378 | int nonblock) | |
1379 | { | |
1380 | struct address_space *mapping = file->f_mapping; | |
1381 | struct page *page; | |
1382 | int error; | |
1383 | ||
1384 | /* | |
1385 | * Do we have something in the page cache already? | |
1386 | */ | |
1387 | retry_find: | |
1388 | page = find_get_page(mapping, pgoff); | |
1389 | if (!page) { | |
1390 | if (nonblock) | |
1391 | return NULL; | |
1392 | goto no_cached_page; | |
1393 | } | |
1394 | ||
1395 | /* | |
1396 | * Ok, found a page in the page cache, now we need to check | |
1397 | * that it's up-to-date. | |
1398 | */ | |
d3457342 JM |
1399 | if (!PageUptodate(page)) { |
1400 | if (nonblock) { | |
1401 | page_cache_release(page); | |
1402 | return NULL; | |
1403 | } | |
1da177e4 | 1404 | goto page_not_uptodate; |
d3457342 | 1405 | } |
1da177e4 LT |
1406 | |
1407 | success: | |
1408 | /* | |
1409 | * Found the page and have a reference on it. | |
1410 | */ | |
1411 | mark_page_accessed(page); | |
1412 | return page; | |
1413 | ||
1414 | no_cached_page: | |
1415 | error = page_cache_read(file, pgoff); | |
1416 | ||
1417 | /* | |
1418 | * The page we want has now been added to the page cache. | |
1419 | * In the unlikely event that someone removed it in the | |
1420 | * meantime, we'll just come back here and read it again. | |
1421 | */ | |
1422 | if (error >= 0) | |
1423 | goto retry_find; | |
1424 | ||
1425 | /* | |
1426 | * An error return from page_cache_read can result if the | |
1427 | * system is low on memory, or a problem occurs while trying | |
1428 | * to schedule I/O. | |
1429 | */ | |
1430 | return NULL; | |
1431 | ||
1432 | page_not_uptodate: | |
1433 | lock_page(page); | |
1434 | ||
1435 | /* Did it get unhashed while we waited for it? */ | |
1436 | if (!page->mapping) { | |
1437 | unlock_page(page); | |
1438 | goto err; | |
1439 | } | |
1440 | ||
1441 | /* Did somebody else get it up-to-date? */ | |
1442 | if (PageUptodate(page)) { | |
1443 | unlock_page(page); | |
1444 | goto success; | |
1445 | } | |
1446 | ||
1447 | if (!mapping->a_ops->readpage(file, page)) { | |
1448 | wait_on_page_locked(page); | |
1449 | if (PageUptodate(page)) | |
1450 | goto success; | |
1451 | } | |
1452 | ||
1453 | /* | |
1454 | * Umm, take care of errors if the page isn't up-to-date. | |
1455 | * Try to re-read it _once_. We do this synchronously, | |
1456 | * because there really aren't any performance issues here | |
1457 | * and we need to check for errors. | |
1458 | */ | |
1459 | lock_page(page); | |
1460 | ||
1461 | /* Somebody truncated the page on us? */ | |
1462 | if (!page->mapping) { | |
1463 | unlock_page(page); | |
1464 | goto err; | |
1465 | } | |
1466 | /* Somebody else successfully read it in? */ | |
1467 | if (PageUptodate(page)) { | |
1468 | unlock_page(page); | |
1469 | goto success; | |
1470 | } | |
1471 | ||
1472 | ClearPageError(page); | |
1473 | if (!mapping->a_ops->readpage(file, page)) { | |
1474 | wait_on_page_locked(page); | |
1475 | if (PageUptodate(page)) | |
1476 | goto success; | |
1477 | } | |
1478 | ||
1479 | /* | |
1480 | * Things didn't work out. Return zero to tell the | |
1481 | * mm layer so, possibly freeing the page cache page first. | |
1482 | */ | |
1483 | err: | |
1484 | page_cache_release(page); | |
1485 | ||
1486 | return NULL; | |
1487 | } | |
1488 | ||
1489 | int filemap_populate(struct vm_area_struct *vma, unsigned long addr, | |
1490 | unsigned long len, pgprot_t prot, unsigned long pgoff, | |
1491 | int nonblock) | |
1492 | { | |
1493 | struct file *file = vma->vm_file; | |
1494 | struct address_space *mapping = file->f_mapping; | |
1495 | struct inode *inode = mapping->host; | |
1496 | unsigned long size; | |
1497 | struct mm_struct *mm = vma->vm_mm; | |
1498 | struct page *page; | |
1499 | int err; | |
1500 | ||
1501 | if (!nonblock) | |
1502 | force_page_cache_readahead(mapping, vma->vm_file, | |
1503 | pgoff, len >> PAGE_CACHE_SHIFT); | |
1504 | ||
1505 | repeat: | |
1506 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | |
1507 | if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) | |
1508 | return -EINVAL; | |
1509 | ||
1510 | page = filemap_getpage(file, pgoff, nonblock); | |
d44ed4f8 PBG |
1511 | |
1512 | /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as | |
1513 | * done in shmem_populate calling shmem_getpage */ | |
1da177e4 LT |
1514 | if (!page && !nonblock) |
1515 | return -ENOMEM; | |
d44ed4f8 | 1516 | |
1da177e4 LT |
1517 | if (page) { |
1518 | err = install_page(mm, vma, addr, page, prot); | |
1519 | if (err) { | |
1520 | page_cache_release(page); | |
1521 | return err; | |
1522 | } | |
65500d23 | 1523 | } else if (vma->vm_flags & VM_NONLINEAR) { |
d44ed4f8 PBG |
1524 | /* No page was found just because we can't read it in now (being |
1525 | * here implies nonblock != 0), but the page may exist, so set | |
1526 | * the PTE to fault it in later. */ | |
1da177e4 LT |
1527 | err = install_file_pte(mm, vma, addr, pgoff, prot); |
1528 | if (err) | |
1529 | return err; | |
1530 | } | |
1531 | ||
1532 | len -= PAGE_SIZE; | |
1533 | addr += PAGE_SIZE; | |
1534 | pgoff++; | |
1535 | if (len) | |
1536 | goto repeat; | |
1537 | ||
1538 | return 0; | |
1539 | } | |
b1459461 | 1540 | EXPORT_SYMBOL(filemap_populate); |
1da177e4 LT |
1541 | |
1542 | struct vm_operations_struct generic_file_vm_ops = { | |
1543 | .nopage = filemap_nopage, | |
1544 | .populate = filemap_populate, | |
1545 | }; | |
1546 | ||
1547 | /* This is used for a general mmap of a disk file */ | |
1548 | ||
1549 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
1550 | { | |
1551 | struct address_space *mapping = file->f_mapping; | |
1552 | ||
1553 | if (!mapping->a_ops->readpage) | |
1554 | return -ENOEXEC; | |
1555 | file_accessed(file); | |
1556 | vma->vm_ops = &generic_file_vm_ops; | |
1557 | return 0; | |
1558 | } | |
1da177e4 LT |
1559 | |
1560 | /* | |
1561 | * This is for filesystems which do not implement ->writepage. | |
1562 | */ | |
1563 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
1564 | { | |
1565 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
1566 | return -EINVAL; | |
1567 | return generic_file_mmap(file, vma); | |
1568 | } | |
1569 | #else | |
1570 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
1571 | { | |
1572 | return -ENOSYS; | |
1573 | } | |
1574 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
1575 | { | |
1576 | return -ENOSYS; | |
1577 | } | |
1578 | #endif /* CONFIG_MMU */ | |
1579 | ||
1580 | EXPORT_SYMBOL(generic_file_mmap); | |
1581 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
1582 | ||
1583 | static inline struct page *__read_cache_page(struct address_space *mapping, | |
1584 | unsigned long index, | |
1585 | int (*filler)(void *,struct page*), | |
1586 | void *data) | |
1587 | { | |
1588 | struct page *page, *cached_page = NULL; | |
1589 | int err; | |
1590 | repeat: | |
1591 | page = find_get_page(mapping, index); | |
1592 | if (!page) { | |
1593 | if (!cached_page) { | |
1594 | cached_page = page_cache_alloc_cold(mapping); | |
1595 | if (!cached_page) | |
1596 | return ERR_PTR(-ENOMEM); | |
1597 | } | |
1598 | err = add_to_page_cache_lru(cached_page, mapping, | |
1599 | index, GFP_KERNEL); | |
1600 | if (err == -EEXIST) | |
1601 | goto repeat; | |
1602 | if (err < 0) { | |
1603 | /* Presumably ENOMEM for radix tree node */ | |
1604 | page_cache_release(cached_page); | |
1605 | return ERR_PTR(err); | |
1606 | } | |
1607 | page = cached_page; | |
1608 | cached_page = NULL; | |
1609 | err = filler(data, page); | |
1610 | if (err < 0) { | |
1611 | page_cache_release(page); | |
1612 | page = ERR_PTR(err); | |
1613 | } | |
1614 | } | |
1615 | if (cached_page) | |
1616 | page_cache_release(cached_page); | |
1617 | return page; | |
1618 | } | |
1619 | ||
1620 | /* | |
1621 | * Read into the page cache. If a page already exists, | |
1622 | * and PageUptodate() is not set, try to fill the page. | |
1623 | */ | |
1624 | struct page *read_cache_page(struct address_space *mapping, | |
1625 | unsigned long index, | |
1626 | int (*filler)(void *,struct page*), | |
1627 | void *data) | |
1628 | { | |
1629 | struct page *page; | |
1630 | int err; | |
1631 | ||
1632 | retry: | |
1633 | page = __read_cache_page(mapping, index, filler, data); | |
1634 | if (IS_ERR(page)) | |
1635 | goto out; | |
1636 | mark_page_accessed(page); | |
1637 | if (PageUptodate(page)) | |
1638 | goto out; | |
1639 | ||
1640 | lock_page(page); | |
1641 | if (!page->mapping) { | |
1642 | unlock_page(page); | |
1643 | page_cache_release(page); | |
1644 | goto retry; | |
1645 | } | |
1646 | if (PageUptodate(page)) { | |
1647 | unlock_page(page); | |
1648 | goto out; | |
1649 | } | |
1650 | err = filler(data, page); | |
1651 | if (err < 0) { | |
1652 | page_cache_release(page); | |
1653 | page = ERR_PTR(err); | |
1654 | } | |
1655 | out: | |
1656 | return page; | |
1657 | } | |
1658 | ||
1659 | EXPORT_SYMBOL(read_cache_page); | |
1660 | ||
1661 | /* | |
1662 | * If the page was newly created, increment its refcount and add it to the | |
1663 | * caller's lru-buffering pagevec. This function is specifically for | |
1664 | * generic_file_write(). | |
1665 | */ | |
1666 | static inline struct page * | |
1667 | __grab_cache_page(struct address_space *mapping, unsigned long index, | |
1668 | struct page **cached_page, struct pagevec *lru_pvec) | |
1669 | { | |
1670 | int err; | |
1671 | struct page *page; | |
1672 | repeat: | |
1673 | page = find_lock_page(mapping, index); | |
1674 | if (!page) { | |
1675 | if (!*cached_page) { | |
1676 | *cached_page = page_cache_alloc(mapping); | |
1677 | if (!*cached_page) | |
1678 | return NULL; | |
1679 | } | |
1680 | err = add_to_page_cache(*cached_page, mapping, | |
1681 | index, GFP_KERNEL); | |
1682 | if (err == -EEXIST) | |
1683 | goto repeat; | |
1684 | if (err == 0) { | |
1685 | page = *cached_page; | |
1686 | page_cache_get(page); | |
1687 | if (!pagevec_add(lru_pvec, page)) | |
1688 | __pagevec_lru_add(lru_pvec); | |
1689 | *cached_page = NULL; | |
1690 | } | |
1691 | } | |
1692 | return page; | |
1693 | } | |
1694 | ||
1695 | /* | |
1696 | * The logic we want is | |
1697 | * | |
1698 | * if suid or (sgid and xgrp) | |
1699 | * remove privs | |
1700 | */ | |
1701 | int remove_suid(struct dentry *dentry) | |
1702 | { | |
1703 | mode_t mode = dentry->d_inode->i_mode; | |
1704 | int kill = 0; | |
1705 | int result = 0; | |
1706 | ||
1707 | /* suid always must be killed */ | |
1708 | if (unlikely(mode & S_ISUID)) | |
1709 | kill = ATTR_KILL_SUID; | |
1710 | ||
1711 | /* | |
1712 | * sgid without any exec bits is just a mandatory locking mark; leave | |
1713 | * it alone. If some exec bits are set, it's a real sgid; kill it. | |
1714 | */ | |
1715 | if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) | |
1716 | kill |= ATTR_KILL_SGID; | |
1717 | ||
1718 | if (unlikely(kill && !capable(CAP_FSETID))) { | |
1719 | struct iattr newattrs; | |
1720 | ||
1721 | newattrs.ia_valid = ATTR_FORCE | kill; | |
1722 | result = notify_change(dentry, &newattrs); | |
1723 | } | |
1724 | return result; | |
1725 | } | |
1726 | EXPORT_SYMBOL(remove_suid); | |
1727 | ||
ceffc078 | 1728 | size_t |
1da177e4 LT |
1729 | __filemap_copy_from_user_iovec(char *vaddr, |
1730 | const struct iovec *iov, size_t base, size_t bytes) | |
1731 | { | |
1732 | size_t copied = 0, left = 0; | |
1733 | ||
1734 | while (bytes) { | |
1735 | char __user *buf = iov->iov_base + base; | |
1736 | int copy = min(bytes, iov->iov_len - base); | |
1737 | ||
1738 | base = 0; | |
1739 | left = __copy_from_user_inatomic(vaddr, buf, copy); | |
1740 | copied += copy; | |
1741 | bytes -= copy; | |
1742 | vaddr += copy; | |
1743 | iov++; | |
1744 | ||
1745 | if (unlikely(left)) { | |
1746 | /* zero the rest of the target like __copy_from_user */ | |
1747 | if (bytes) | |
1748 | memset(vaddr, 0, bytes); | |
1749 | break; | |
1750 | } | |
1751 | } | |
1752 | return copied - left; | |
1753 | } | |
1754 | ||
1da177e4 LT |
1755 | /* |
1756 | * Performs necessary checks before doing a write | |
1757 | * | |
1758 | * Can adjust writing position aor amount of bytes to write. | |
1759 | * Returns appropriate error code that caller should return or | |
1760 | * zero in case that write should be allowed. | |
1761 | */ | |
1762 | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) | |
1763 | { | |
1764 | struct inode *inode = file->f_mapping->host; | |
1765 | unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
1766 | ||
1767 | if (unlikely(*pos < 0)) | |
1768 | return -EINVAL; | |
1769 | ||
1da177e4 LT |
1770 | if (!isblk) { |
1771 | /* FIXME: this is for backwards compatibility with 2.4 */ | |
1772 | if (file->f_flags & O_APPEND) | |
1773 | *pos = i_size_read(inode); | |
1774 | ||
1775 | if (limit != RLIM_INFINITY) { | |
1776 | if (*pos >= limit) { | |
1777 | send_sig(SIGXFSZ, current, 0); | |
1778 | return -EFBIG; | |
1779 | } | |
1780 | if (*count > limit - (typeof(limit))*pos) { | |
1781 | *count = limit - (typeof(limit))*pos; | |
1782 | } | |
1783 | } | |
1784 | } | |
1785 | ||
1786 | /* | |
1787 | * LFS rule | |
1788 | */ | |
1789 | if (unlikely(*pos + *count > MAX_NON_LFS && | |
1790 | !(file->f_flags & O_LARGEFILE))) { | |
1791 | if (*pos >= MAX_NON_LFS) { | |
1792 | send_sig(SIGXFSZ, current, 0); | |
1793 | return -EFBIG; | |
1794 | } | |
1795 | if (*count > MAX_NON_LFS - (unsigned long)*pos) { | |
1796 | *count = MAX_NON_LFS - (unsigned long)*pos; | |
1797 | } | |
1798 | } | |
1799 | ||
1800 | /* | |
1801 | * Are we about to exceed the fs block limit ? | |
1802 | * | |
1803 | * If we have written data it becomes a short write. If we have | |
1804 | * exceeded without writing data we send a signal and return EFBIG. | |
1805 | * Linus frestrict idea will clean these up nicely.. | |
1806 | */ | |
1807 | if (likely(!isblk)) { | |
1808 | if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { | |
1809 | if (*count || *pos > inode->i_sb->s_maxbytes) { | |
1810 | send_sig(SIGXFSZ, current, 0); | |
1811 | return -EFBIG; | |
1812 | } | |
1813 | /* zero-length writes at ->s_maxbytes are OK */ | |
1814 | } | |
1815 | ||
1816 | if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) | |
1817 | *count = inode->i_sb->s_maxbytes - *pos; | |
1818 | } else { | |
1819 | loff_t isize; | |
1820 | if (bdev_read_only(I_BDEV(inode))) | |
1821 | return -EPERM; | |
1822 | isize = i_size_read(inode); | |
1823 | if (*pos >= isize) { | |
1824 | if (*count || *pos > isize) | |
1825 | return -ENOSPC; | |
1826 | } | |
1827 | ||
1828 | if (*pos + *count > isize) | |
1829 | *count = isize - *pos; | |
1830 | } | |
1831 | return 0; | |
1832 | } | |
1833 | EXPORT_SYMBOL(generic_write_checks); | |
1834 | ||
1835 | ssize_t | |
1836 | generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |
1837 | unsigned long *nr_segs, loff_t pos, loff_t *ppos, | |
1838 | size_t count, size_t ocount) | |
1839 | { | |
1840 | struct file *file = iocb->ki_filp; | |
1841 | struct address_space *mapping = file->f_mapping; | |
1842 | struct inode *inode = mapping->host; | |
1843 | ssize_t written; | |
1844 | ||
1845 | if (count != ocount) | |
1846 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); | |
1847 | ||
1848 | written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); | |
1849 | if (written > 0) { | |
1850 | loff_t end = pos + written; | |
1851 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | |
1852 | i_size_write(inode, end); | |
1853 | mark_inode_dirty(inode); | |
1854 | } | |
1855 | *ppos = end; | |
1856 | } | |
1857 | ||
1858 | /* | |
1859 | * Sync the fs metadata but not the minor inode changes and | |
1860 | * of course not the data as we did direct DMA for the IO. | |
1861 | * i_sem is held, which protects generic_osync_inode() from | |
1862 | * livelocking. | |
1863 | */ | |
1e8a81c5 HH |
1864 | if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { |
1865 | int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); | |
1866 | if (err < 0) | |
1867 | written = err; | |
1868 | } | |
1da177e4 LT |
1869 | if (written == count && !is_sync_kiocb(iocb)) |
1870 | written = -EIOCBQUEUED; | |
1871 | return written; | |
1872 | } | |
1873 | EXPORT_SYMBOL(generic_file_direct_write); | |
1874 | ||
1875 | ssize_t | |
1876 | generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, | |
1877 | unsigned long nr_segs, loff_t pos, loff_t *ppos, | |
1878 | size_t count, ssize_t written) | |
1879 | { | |
1880 | struct file *file = iocb->ki_filp; | |
1881 | struct address_space * mapping = file->f_mapping; | |
1882 | struct address_space_operations *a_ops = mapping->a_ops; | |
1883 | struct inode *inode = mapping->host; | |
1884 | long status = 0; | |
1885 | struct page *page; | |
1886 | struct page *cached_page = NULL; | |
1887 | size_t bytes; | |
1888 | struct pagevec lru_pvec; | |
1889 | const struct iovec *cur_iov = iov; /* current iovec */ | |
1890 | size_t iov_base = 0; /* offset in the current iovec */ | |
1891 | char __user *buf; | |
1892 | ||
1893 | pagevec_init(&lru_pvec, 0); | |
1894 | ||
1895 | /* | |
1896 | * handle partial DIO write. Adjust cur_iov if needed. | |
1897 | */ | |
1898 | if (likely(nr_segs == 1)) | |
1899 | buf = iov->iov_base + written; | |
1900 | else { | |
1901 | filemap_set_next_iovec(&cur_iov, &iov_base, written); | |
f021e921 | 1902 | buf = cur_iov->iov_base + iov_base; |
1da177e4 LT |
1903 | } |
1904 | ||
1905 | do { | |
1906 | unsigned long index; | |
1907 | unsigned long offset; | |
a5117181 | 1908 | unsigned long maxlen; |
1da177e4 LT |
1909 | size_t copied; |
1910 | ||
1911 | offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ | |
1912 | index = pos >> PAGE_CACHE_SHIFT; | |
1913 | bytes = PAGE_CACHE_SIZE - offset; | |
1914 | if (bytes > count) | |
1915 | bytes = count; | |
1916 | ||
1917 | /* | |
1918 | * Bring in the user page that we will copy from _first_. | |
1919 | * Otherwise there's a nasty deadlock on copying from the | |
1920 | * same page as we're writing to, without it being marked | |
1921 | * up-to-date. | |
1922 | */ | |
a5117181 MS |
1923 | maxlen = cur_iov->iov_len - iov_base; |
1924 | if (maxlen > bytes) | |
1925 | maxlen = bytes; | |
1926 | fault_in_pages_readable(buf, maxlen); | |
1da177e4 LT |
1927 | |
1928 | page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); | |
1929 | if (!page) { | |
1930 | status = -ENOMEM; | |
1931 | break; | |
1932 | } | |
1933 | ||
1934 | status = a_ops->prepare_write(file, page, offset, offset+bytes); | |
1935 | if (unlikely(status)) { | |
1936 | loff_t isize = i_size_read(inode); | |
1937 | /* | |
1938 | * prepare_write() may have instantiated a few blocks | |
1939 | * outside i_size. Trim these off again. | |
1940 | */ | |
1941 | unlock_page(page); | |
1942 | page_cache_release(page); | |
1943 | if (pos + bytes > isize) | |
1944 | vmtruncate(inode, isize); | |
1945 | break; | |
1946 | } | |
1947 | if (likely(nr_segs == 1)) | |
1948 | copied = filemap_copy_from_user(page, offset, | |
1949 | buf, bytes); | |
1950 | else | |
1951 | copied = filemap_copy_from_user_iovec(page, offset, | |
1952 | cur_iov, iov_base, bytes); | |
1953 | flush_dcache_page(page); | |
1954 | status = a_ops->commit_write(file, page, offset, offset+bytes); | |
1955 | if (likely(copied > 0)) { | |
1956 | if (!status) | |
1957 | status = copied; | |
1958 | ||
1959 | if (status >= 0) { | |
1960 | written += status; | |
1961 | count -= status; | |
1962 | pos += status; | |
1963 | buf += status; | |
f021e921 | 1964 | if (unlikely(nr_segs > 1)) { |
1da177e4 LT |
1965 | filemap_set_next_iovec(&cur_iov, |
1966 | &iov_base, status); | |
b0cfbd99 BP |
1967 | if (count) |
1968 | buf = cur_iov->iov_base + | |
1969 | iov_base; | |
a5117181 MS |
1970 | } else { |
1971 | iov_base += status; | |
f021e921 | 1972 | } |
1da177e4 LT |
1973 | } |
1974 | } | |
1975 | if (unlikely(copied != bytes)) | |
1976 | if (status >= 0) | |
1977 | status = -EFAULT; | |
1978 | unlock_page(page); | |
1979 | mark_page_accessed(page); | |
1980 | page_cache_release(page); | |
1981 | if (status < 0) | |
1982 | break; | |
1983 | balance_dirty_pages_ratelimited(mapping); | |
1984 | cond_resched(); | |
1985 | } while (count); | |
1986 | *ppos = pos; | |
1987 | ||
1988 | if (cached_page) | |
1989 | page_cache_release(cached_page); | |
1990 | ||
1991 | /* | |
1992 | * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC | |
1993 | */ | |
1994 | if (likely(status >= 0)) { | |
1995 | if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
1996 | if (!a_ops->writepage || !is_sync_kiocb(iocb)) | |
1997 | status = generic_osync_inode(inode, mapping, | |
1998 | OSYNC_METADATA|OSYNC_DATA); | |
1999 | } | |
2000 | } | |
2001 | ||
2002 | /* | |
2003 | * If we get here for O_DIRECT writes then we must have fallen through | |
2004 | * to buffered writes (block instantiation inside i_size). So we sync | |
2005 | * the file data here, to try to honour O_DIRECT expectations. | |
2006 | */ | |
2007 | if (unlikely(file->f_flags & O_DIRECT) && written) | |
2008 | status = filemap_write_and_wait(mapping); | |
2009 | ||
2010 | pagevec_lru_add(&lru_pvec); | |
2011 | return written ? written : status; | |
2012 | } | |
2013 | EXPORT_SYMBOL(generic_file_buffered_write); | |
2014 | ||
5ce7852c | 2015 | static ssize_t |
1da177e4 LT |
2016 | __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, |
2017 | unsigned long nr_segs, loff_t *ppos) | |
2018 | { | |
2019 | struct file *file = iocb->ki_filp; | |
2020 | struct address_space * mapping = file->f_mapping; | |
2021 | size_t ocount; /* original count */ | |
2022 | size_t count; /* after file limit checks */ | |
2023 | struct inode *inode = mapping->host; | |
2024 | unsigned long seg; | |
2025 | loff_t pos; | |
2026 | ssize_t written; | |
2027 | ssize_t err; | |
2028 | ||
2029 | ocount = 0; | |
2030 | for (seg = 0; seg < nr_segs; seg++) { | |
2031 | const struct iovec *iv = &iov[seg]; | |
2032 | ||
2033 | /* | |
2034 | * If any segment has a negative length, or the cumulative | |
2035 | * length ever wraps negative then return -EINVAL. | |
2036 | */ | |
2037 | ocount += iv->iov_len; | |
2038 | if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) | |
2039 | return -EINVAL; | |
2040 | if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) | |
2041 | continue; | |
2042 | if (seg == 0) | |
2043 | return -EFAULT; | |
2044 | nr_segs = seg; | |
2045 | ocount -= iv->iov_len; /* This segment is no good */ | |
2046 | break; | |
2047 | } | |
2048 | ||
2049 | count = ocount; | |
2050 | pos = *ppos; | |
2051 | ||
2052 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | |
2053 | ||
2054 | /* We can write back this queue in page reclaim */ | |
2055 | current->backing_dev_info = mapping->backing_dev_info; | |
2056 | written = 0; | |
2057 | ||
2058 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | |
2059 | if (err) | |
2060 | goto out; | |
2061 | ||
2062 | if (count == 0) | |
2063 | goto out; | |
2064 | ||
2065 | err = remove_suid(file->f_dentry); | |
2066 | if (err) | |
2067 | goto out; | |
2068 | ||
2069 | inode_update_time(inode, 1); | |
2070 | ||
2071 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | |
2072 | if (unlikely(file->f_flags & O_DIRECT)) { | |
2073 | written = generic_file_direct_write(iocb, iov, | |
2074 | &nr_segs, pos, ppos, count, ocount); | |
2075 | if (written < 0 || written == count) | |
2076 | goto out; | |
2077 | /* | |
2078 | * direct-io write to a hole: fall through to buffered I/O | |
2079 | * for completing the rest of the request. | |
2080 | */ | |
2081 | pos += written; | |
2082 | count -= written; | |
2083 | } | |
2084 | ||
2085 | written = generic_file_buffered_write(iocb, iov, nr_segs, | |
2086 | pos, ppos, count, written); | |
2087 | out: | |
2088 | current->backing_dev_info = NULL; | |
2089 | return written ? written : err; | |
2090 | } | |
2091 | EXPORT_SYMBOL(generic_file_aio_write_nolock); | |
2092 | ||
2093 | ssize_t | |
2094 | generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, | |
2095 | unsigned long nr_segs, loff_t *ppos) | |
2096 | { | |
2097 | struct file *file = iocb->ki_filp; | |
2098 | struct address_space *mapping = file->f_mapping; | |
2099 | struct inode *inode = mapping->host; | |
2100 | ssize_t ret; | |
2101 | loff_t pos = *ppos; | |
2102 | ||
2103 | ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); | |
2104 | ||
2105 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
2106 | int err; | |
2107 | ||
2108 | err = sync_page_range_nolock(inode, mapping, pos, ret); | |
2109 | if (err < 0) | |
2110 | ret = err; | |
2111 | } | |
2112 | return ret; | |
2113 | } | |
2114 | ||
5ce7852c | 2115 | static ssize_t |
1da177e4 LT |
2116 | __generic_file_write_nolock(struct file *file, const struct iovec *iov, |
2117 | unsigned long nr_segs, loff_t *ppos) | |
2118 | { | |
2119 | struct kiocb kiocb; | |
2120 | ssize_t ret; | |
2121 | ||
2122 | init_sync_kiocb(&kiocb, file); | |
2123 | ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); | |
2124 | if (ret == -EIOCBQUEUED) | |
2125 | ret = wait_on_sync_kiocb(&kiocb); | |
2126 | return ret; | |
2127 | } | |
2128 | ||
2129 | ssize_t | |
2130 | generic_file_write_nolock(struct file *file, const struct iovec *iov, | |
2131 | unsigned long nr_segs, loff_t *ppos) | |
2132 | { | |
2133 | struct kiocb kiocb; | |
2134 | ssize_t ret; | |
2135 | ||
2136 | init_sync_kiocb(&kiocb, file); | |
2137 | ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); | |
2138 | if (-EIOCBQUEUED == ret) | |
2139 | ret = wait_on_sync_kiocb(&kiocb); | |
2140 | return ret; | |
2141 | } | |
2142 | EXPORT_SYMBOL(generic_file_write_nolock); | |
2143 | ||
2144 | ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, | |
2145 | size_t count, loff_t pos) | |
2146 | { | |
2147 | struct file *file = iocb->ki_filp; | |
2148 | struct address_space *mapping = file->f_mapping; | |
2149 | struct inode *inode = mapping->host; | |
2150 | ssize_t ret; | |
2151 | struct iovec local_iov = { .iov_base = (void __user *)buf, | |
2152 | .iov_len = count }; | |
2153 | ||
2154 | BUG_ON(iocb->ki_pos != pos); | |
2155 | ||
2156 | down(&inode->i_sem); | |
2157 | ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, | |
2158 | &iocb->ki_pos); | |
2159 | up(&inode->i_sem); | |
2160 | ||
2161 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
2162 | ssize_t err; | |
2163 | ||
2164 | err = sync_page_range(inode, mapping, pos, ret); | |
2165 | if (err < 0) | |
2166 | ret = err; | |
2167 | } | |
2168 | return ret; | |
2169 | } | |
2170 | EXPORT_SYMBOL(generic_file_aio_write); | |
2171 | ||
2172 | ssize_t generic_file_write(struct file *file, const char __user *buf, | |
2173 | size_t count, loff_t *ppos) | |
2174 | { | |
2175 | struct address_space *mapping = file->f_mapping; | |
2176 | struct inode *inode = mapping->host; | |
2177 | ssize_t ret; | |
2178 | struct iovec local_iov = { .iov_base = (void __user *)buf, | |
2179 | .iov_len = count }; | |
2180 | ||
2181 | down(&inode->i_sem); | |
2182 | ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); | |
2183 | up(&inode->i_sem); | |
2184 | ||
2185 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
2186 | ssize_t err; | |
2187 | ||
2188 | err = sync_page_range(inode, mapping, *ppos - ret, ret); | |
2189 | if (err < 0) | |
2190 | ret = err; | |
2191 | } | |
2192 | return ret; | |
2193 | } | |
2194 | EXPORT_SYMBOL(generic_file_write); | |
2195 | ||
2196 | ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, | |
2197 | unsigned long nr_segs, loff_t *ppos) | |
2198 | { | |
2199 | struct kiocb kiocb; | |
2200 | ssize_t ret; | |
2201 | ||
2202 | init_sync_kiocb(&kiocb, filp); | |
2203 | ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); | |
2204 | if (-EIOCBQUEUED == ret) | |
2205 | ret = wait_on_sync_kiocb(&kiocb); | |
2206 | return ret; | |
2207 | } | |
2208 | EXPORT_SYMBOL(generic_file_readv); | |
2209 | ||
2210 | ssize_t generic_file_writev(struct file *file, const struct iovec *iov, | |
2211 | unsigned long nr_segs, loff_t *ppos) | |
2212 | { | |
2213 | struct address_space *mapping = file->f_mapping; | |
2214 | struct inode *inode = mapping->host; | |
2215 | ssize_t ret; | |
2216 | ||
2217 | down(&inode->i_sem); | |
2218 | ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); | |
2219 | up(&inode->i_sem); | |
2220 | ||
2221 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
2222 | int err; | |
2223 | ||
2224 | err = sync_page_range(inode, mapping, *ppos - ret, ret); | |
2225 | if (err < 0) | |
2226 | ret = err; | |
2227 | } | |
2228 | return ret; | |
2229 | } | |
2230 | EXPORT_SYMBOL(generic_file_writev); | |
2231 | ||
2232 | /* | |
2233 | * Called under i_sem for writes to S_ISREG files. Returns -EIO if something | |
2234 | * went wrong during pagecache shootdown. | |
2235 | */ | |
5ce7852c | 2236 | static ssize_t |
1da177e4 LT |
2237 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, |
2238 | loff_t offset, unsigned long nr_segs) | |
2239 | { | |
2240 | struct file *file = iocb->ki_filp; | |
2241 | struct address_space *mapping = file->f_mapping; | |
2242 | ssize_t retval; | |
2243 | size_t write_len = 0; | |
2244 | ||
2245 | /* | |
2246 | * If it's a write, unmap all mmappings of the file up-front. This | |
2247 | * will cause any pte dirty bits to be propagated into the pageframes | |
2248 | * for the subsequent filemap_write_and_wait(). | |
2249 | */ | |
2250 | if (rw == WRITE) { | |
2251 | write_len = iov_length(iov, nr_segs); | |
2252 | if (mapping_mapped(mapping)) | |
2253 | unmap_mapping_range(mapping, offset, write_len, 0); | |
2254 | } | |
2255 | ||
2256 | retval = filemap_write_and_wait(mapping); | |
2257 | if (retval == 0) { | |
2258 | retval = mapping->a_ops->direct_IO(rw, iocb, iov, | |
2259 | offset, nr_segs); | |
2260 | if (rw == WRITE && mapping->nrpages) { | |
2261 | pgoff_t end = (offset + write_len - 1) | |
2262 | >> PAGE_CACHE_SHIFT; | |
2263 | int err = invalidate_inode_pages2_range(mapping, | |
2264 | offset >> PAGE_CACHE_SHIFT, end); | |
2265 | if (err) | |
2266 | retval = err; | |
2267 | } | |
2268 | } | |
2269 | return retval; | |
2270 | } |