]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
b95f1b31 | 12 | #include <linux/export.h> |
1da177e4 LT |
13 | #include <linux/compiler.h> |
14 | #include <linux/fs.h> | |
c22ce143 | 15 | #include <linux/uaccess.h> |
1da177e4 | 16 | #include <linux/aio.h> |
c59ede7b | 17 | #include <linux/capability.h> |
1da177e4 | 18 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 19 | #include <linux/gfp.h> |
1da177e4 LT |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> | |
22 | #include <linux/mman.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/file.h> | |
25 | #include <linux/uio.h> | |
26 | #include <linux/hash.h> | |
27 | #include <linux/writeback.h> | |
53253383 | 28 | #include <linux/backing-dev.h> |
1da177e4 LT |
29 | #include <linux/pagevec.h> |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/security.h> | |
44110fe3 | 32 | #include <linux/cpuset.h> |
2f718ffc | 33 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
8a9f3ccd | 34 | #include <linux/memcontrol.h> |
c515e1fd | 35 | #include <linux/cleancache.h> |
f1820361 | 36 | #include <linux/rmap.h> |
0f8053a5 NP |
37 | #include "internal.h" |
38 | ||
fe0bfaaf RJ |
39 | #define CREATE_TRACE_POINTS |
40 | #include <trace/events/filemap.h> | |
41 | ||
1da177e4 | 42 | /* |
1da177e4 LT |
43 | * FIXME: remove all knowledge of the buffer layer from the core VM |
44 | */ | |
148f948b | 45 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 46 | |
1da177e4 LT |
47 | #include <asm/mman.h> |
48 | ||
49 | /* | |
50 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
51 | * though. | |
52 | * | |
53 | * Shared mappings now work. 15.8.1995 Bruno. | |
54 | * | |
55 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
56 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
57 | * | |
58 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
59 | */ | |
60 | ||
61 | /* | |
62 | * Lock ordering: | |
63 | * | |
3d48ae45 | 64 | * ->i_mmap_mutex (truncate_pagecache) |
1da177e4 | 65 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 HD |
66 | * ->swap_lock (exclusive_swap_page, others) |
67 | * ->mapping->tree_lock | |
1da177e4 | 68 | * |
1b1dcc1b | 69 | * ->i_mutex |
3d48ae45 | 70 | * ->i_mmap_mutex (truncate->unmap_mapping_range) |
1da177e4 LT |
71 | * |
72 | * ->mmap_sem | |
3d48ae45 | 73 | * ->i_mmap_mutex |
b8072f09 | 74 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
75 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
76 | * | |
77 | * ->mmap_sem | |
78 | * ->lock_page (access_process_vm) | |
79 | * | |
ccad2365 | 80 | * ->i_mutex (generic_perform_write) |
82591e6e | 81 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 82 | * |
f758eeab | 83 | * bdi->wb.list_lock |
a66979ab | 84 | * sb_lock (fs/fs-writeback.c) |
1da177e4 LT |
85 | * ->mapping->tree_lock (__sync_single_inode) |
86 | * | |
3d48ae45 | 87 | * ->i_mmap_mutex |
1da177e4 LT |
88 | * ->anon_vma.lock (vma_adjust) |
89 | * | |
90 | * ->anon_vma.lock | |
b8072f09 | 91 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 92 | * |
b8072f09 | 93 | * ->page_table_lock or pte_lock |
5d337b91 | 94 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
95 | * ->private_lock (try_to_unmap_one) |
96 | * ->tree_lock (try_to_unmap_one) | |
97 | * ->zone.lru_lock (follow_page->mark_page_accessed) | |
053837fc | 98 | * ->zone.lru_lock (check_pte_range->isolate_lru_page) |
1da177e4 LT |
99 | * ->private_lock (page_remove_rmap->set_page_dirty) |
100 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
f758eeab | 101 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 102 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
f758eeab | 103 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 104 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
105 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
106 | * | |
9a3c531d AK |
107 | * ->i_mmap_mutex |
108 | * ->tasklist_lock (memory_failure, collect_procs_ao) | |
1da177e4 LT |
109 | */ |
110 | ||
91b0abe3 JW |
111 | static void page_cache_tree_delete(struct address_space *mapping, |
112 | struct page *page, void *shadow) | |
113 | { | |
449dd698 JW |
114 | struct radix_tree_node *node; |
115 | unsigned long index; | |
116 | unsigned int offset; | |
117 | unsigned int tag; | |
118 | void **slot; | |
91b0abe3 | 119 | |
449dd698 JW |
120 | VM_BUG_ON(!PageLocked(page)); |
121 | ||
122 | __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); | |
123 | ||
124 | if (shadow) { | |
91b0abe3 JW |
125 | mapping->nrshadows++; |
126 | /* | |
127 | * Make sure the nrshadows update is committed before | |
128 | * the nrpages update so that final truncate racing | |
129 | * with reclaim does not see both counters 0 at the | |
130 | * same time and miss a shadow entry. | |
131 | */ | |
132 | smp_wmb(); | |
449dd698 | 133 | } |
91b0abe3 | 134 | mapping->nrpages--; |
449dd698 JW |
135 | |
136 | if (!node) { | |
137 | /* Clear direct pointer tags in root node */ | |
138 | mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; | |
139 | radix_tree_replace_slot(slot, shadow); | |
140 | return; | |
141 | } | |
142 | ||
143 | /* Clear tree tags for the removed page */ | |
144 | index = page->index; | |
145 | offset = index & RADIX_TREE_MAP_MASK; | |
146 | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { | |
147 | if (test_bit(offset, node->tags[tag])) | |
148 | radix_tree_tag_clear(&mapping->page_tree, index, tag); | |
149 | } | |
150 | ||
151 | /* Delete page, swap shadow entry */ | |
152 | radix_tree_replace_slot(slot, shadow); | |
153 | workingset_node_pages_dec(node); | |
154 | if (shadow) | |
155 | workingset_node_shadows_inc(node); | |
156 | else | |
157 | if (__radix_tree_delete_node(&mapping->page_tree, node)) | |
158 | return; | |
159 | ||
160 | /* | |
161 | * Track node that only contains shadow entries. | |
162 | * | |
163 | * Avoid acquiring the list_lru lock if already tracked. The | |
164 | * list_empty() test is safe as node->private_list is | |
165 | * protected by mapping->tree_lock. | |
166 | */ | |
167 | if (!workingset_node_pages(node) && | |
168 | list_empty(&node->private_list)) { | |
169 | node->private_data = mapping; | |
170 | list_lru_add(&workingset_shadow_nodes, &node->private_list); | |
171 | } | |
91b0abe3 JW |
172 | } |
173 | ||
1da177e4 | 174 | /* |
e64a782f | 175 | * Delete a page from the page cache and free it. Caller has to make |
1da177e4 | 176 | * sure the page is locked and that nobody else uses it - or that usage |
19fd6231 | 177 | * is safe. The caller must hold the mapping's tree_lock. |
1da177e4 | 178 | */ |
91b0abe3 | 179 | void __delete_from_page_cache(struct page *page, void *shadow) |
1da177e4 LT |
180 | { |
181 | struct address_space *mapping = page->mapping; | |
182 | ||
fe0bfaaf | 183 | trace_mm_filemap_delete_from_page_cache(page); |
c515e1fd DM |
184 | /* |
185 | * if we're uptodate, flush out into the cleancache, otherwise | |
186 | * invalidate any existing cleancache entries. We can't leave | |
187 | * stale data around in the cleancache once our page is gone | |
188 | */ | |
189 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
190 | cleancache_put_page(page); | |
191 | else | |
3167760f | 192 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 193 | |
91b0abe3 JW |
194 | page_cache_tree_delete(mapping, page, shadow); |
195 | ||
1da177e4 | 196 | page->mapping = NULL; |
b85e0eff | 197 | /* Leave page->index set: truncation lookup relies upon it */ |
91b0abe3 | 198 | |
347ce434 | 199 | __dec_zone_page_state(page, NR_FILE_PAGES); |
4b02108a KM |
200 | if (PageSwapBacked(page)) |
201 | __dec_zone_page_state(page, NR_SHMEM); | |
45426812 | 202 | BUG_ON(page_mapped(page)); |
3a692790 LT |
203 | |
204 | /* | |
205 | * Some filesystems seem to re-dirty the page even after | |
206 | * the VM has canceled the dirty bit (eg ext3 journaling). | |
207 | * | |
208 | * Fix it up by doing a final dirty accounting check after | |
209 | * having removed the page entirely. | |
210 | */ | |
211 | if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { | |
212 | dec_zone_page_state(page, NR_FILE_DIRTY); | |
213 | dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | |
214 | } | |
1da177e4 LT |
215 | } |
216 | ||
702cfbf9 MK |
217 | /** |
218 | * delete_from_page_cache - delete page from page cache | |
219 | * @page: the page which the kernel is trying to remove from page cache | |
220 | * | |
221 | * This must be called only on pages that have been verified to be in the page | |
222 | * cache and locked. It will never put the page into the free list, the caller | |
223 | * has a reference on the page. | |
224 | */ | |
225 | void delete_from_page_cache(struct page *page) | |
1da177e4 LT |
226 | { |
227 | struct address_space *mapping = page->mapping; | |
6072d13c | 228 | void (*freepage)(struct page *); |
1da177e4 | 229 | |
cd7619d6 | 230 | BUG_ON(!PageLocked(page)); |
1da177e4 | 231 | |
6072d13c | 232 | freepage = mapping->a_ops->freepage; |
19fd6231 | 233 | spin_lock_irq(&mapping->tree_lock); |
91b0abe3 | 234 | __delete_from_page_cache(page, NULL); |
19fd6231 | 235 | spin_unlock_irq(&mapping->tree_lock); |
e767e056 | 236 | mem_cgroup_uncharge_cache_page(page); |
6072d13c LT |
237 | |
238 | if (freepage) | |
239 | freepage(page); | |
97cecb5a MK |
240 | page_cache_release(page); |
241 | } | |
242 | EXPORT_SYMBOL(delete_from_page_cache); | |
243 | ||
7eaceacc | 244 | static int sleep_on_page(void *word) |
1da177e4 | 245 | { |
1da177e4 LT |
246 | io_schedule(); |
247 | return 0; | |
248 | } | |
249 | ||
7eaceacc | 250 | static int sleep_on_page_killable(void *word) |
2687a356 | 251 | { |
7eaceacc | 252 | sleep_on_page(word); |
2687a356 MW |
253 | return fatal_signal_pending(current) ? -EINTR : 0; |
254 | } | |
255 | ||
865ffef3 DM |
256 | static int filemap_check_errors(struct address_space *mapping) |
257 | { | |
258 | int ret = 0; | |
259 | /* Check for outstanding write errors */ | |
260 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
261 | ret = -ENOSPC; | |
262 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | |
263 | ret = -EIO; | |
264 | return ret; | |
265 | } | |
266 | ||
1da177e4 | 267 | /** |
485bb99b | 268 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
269 | * @mapping: address space structure to write |
270 | * @start: offset in bytes where the range starts | |
469eb4d0 | 271 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 272 | * @sync_mode: enable synchronous operation |
1da177e4 | 273 | * |
485bb99b RD |
274 | * Start writeback against all of a mapping's dirty pages that lie |
275 | * within the byte offsets <start, end> inclusive. | |
276 | * | |
1da177e4 | 277 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 278 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
279 | * these two operations is that if a dirty page/buffer is encountered, it must |
280 | * be waited upon, and not just skipped over. | |
281 | */ | |
ebcf28e1 AM |
282 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
283 | loff_t end, int sync_mode) | |
1da177e4 LT |
284 | { |
285 | int ret; | |
286 | struct writeback_control wbc = { | |
287 | .sync_mode = sync_mode, | |
05fe478d | 288 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
289 | .range_start = start, |
290 | .range_end = end, | |
1da177e4 LT |
291 | }; |
292 | ||
293 | if (!mapping_cap_writeback_dirty(mapping)) | |
294 | return 0; | |
295 | ||
296 | ret = do_writepages(mapping, &wbc); | |
297 | return ret; | |
298 | } | |
299 | ||
300 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
301 | int sync_mode) | |
302 | { | |
111ebb6e | 303 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
304 | } |
305 | ||
306 | int filemap_fdatawrite(struct address_space *mapping) | |
307 | { | |
308 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
309 | } | |
310 | EXPORT_SYMBOL(filemap_fdatawrite); | |
311 | ||
f4c0a0fd | 312 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 313 | loff_t end) |
1da177e4 LT |
314 | { |
315 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
316 | } | |
f4c0a0fd | 317 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 318 | |
485bb99b RD |
319 | /** |
320 | * filemap_flush - mostly a non-blocking flush | |
321 | * @mapping: target address_space | |
322 | * | |
1da177e4 LT |
323 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
324 | * purposes - I/O may not be started against all dirty pages. | |
325 | */ | |
326 | int filemap_flush(struct address_space *mapping) | |
327 | { | |
328 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
329 | } | |
330 | EXPORT_SYMBOL(filemap_flush); | |
331 | ||
485bb99b | 332 | /** |
94004ed7 CH |
333 | * filemap_fdatawait_range - wait for writeback to complete |
334 | * @mapping: address space structure to wait for | |
335 | * @start_byte: offset in bytes where the range starts | |
336 | * @end_byte: offset in bytes where the range ends (inclusive) | |
485bb99b | 337 | * |
94004ed7 CH |
338 | * Walk the list of under-writeback pages of the given address space |
339 | * in the given range and wait for all of them. | |
1da177e4 | 340 | */ |
94004ed7 CH |
341 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, |
342 | loff_t end_byte) | |
1da177e4 | 343 | { |
94004ed7 CH |
344 | pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; |
345 | pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; | |
1da177e4 LT |
346 | struct pagevec pvec; |
347 | int nr_pages; | |
865ffef3 | 348 | int ret2, ret = 0; |
1da177e4 | 349 | |
94004ed7 | 350 | if (end_byte < start_byte) |
865ffef3 | 351 | goto out; |
1da177e4 LT |
352 | |
353 | pagevec_init(&pvec, 0); | |
1da177e4 LT |
354 | while ((index <= end) && |
355 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
356 | PAGECACHE_TAG_WRITEBACK, | |
357 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | |
358 | unsigned i; | |
359 | ||
360 | for (i = 0; i < nr_pages; i++) { | |
361 | struct page *page = pvec.pages[i]; | |
362 | ||
363 | /* until radix tree lookup accepts end_index */ | |
364 | if (page->index > end) | |
365 | continue; | |
366 | ||
367 | wait_on_page_writeback(page); | |
212260aa | 368 | if (TestClearPageError(page)) |
1da177e4 LT |
369 | ret = -EIO; |
370 | } | |
371 | pagevec_release(&pvec); | |
372 | cond_resched(); | |
373 | } | |
865ffef3 DM |
374 | out: |
375 | ret2 = filemap_check_errors(mapping); | |
376 | if (!ret) | |
377 | ret = ret2; | |
1da177e4 LT |
378 | |
379 | return ret; | |
380 | } | |
d3bccb6f JK |
381 | EXPORT_SYMBOL(filemap_fdatawait_range); |
382 | ||
1da177e4 | 383 | /** |
485bb99b | 384 | * filemap_fdatawait - wait for all under-writeback pages to complete |
1da177e4 | 385 | * @mapping: address space structure to wait for |
485bb99b RD |
386 | * |
387 | * Walk the list of under-writeback pages of the given address space | |
388 | * and wait for all of them. | |
1da177e4 LT |
389 | */ |
390 | int filemap_fdatawait(struct address_space *mapping) | |
391 | { | |
392 | loff_t i_size = i_size_read(mapping->host); | |
393 | ||
394 | if (i_size == 0) | |
395 | return 0; | |
396 | ||
94004ed7 | 397 | return filemap_fdatawait_range(mapping, 0, i_size - 1); |
1da177e4 LT |
398 | } |
399 | EXPORT_SYMBOL(filemap_fdatawait); | |
400 | ||
401 | int filemap_write_and_wait(struct address_space *mapping) | |
402 | { | |
28fd1298 | 403 | int err = 0; |
1da177e4 LT |
404 | |
405 | if (mapping->nrpages) { | |
28fd1298 OH |
406 | err = filemap_fdatawrite(mapping); |
407 | /* | |
408 | * Even if the above returned error, the pages may be | |
409 | * written partially (e.g. -ENOSPC), so we wait for it. | |
410 | * But the -EIO is special case, it may indicate the worst | |
411 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
412 | */ | |
413 | if (err != -EIO) { | |
414 | int err2 = filemap_fdatawait(mapping); | |
415 | if (!err) | |
416 | err = err2; | |
417 | } | |
865ffef3 DM |
418 | } else { |
419 | err = filemap_check_errors(mapping); | |
1da177e4 | 420 | } |
28fd1298 | 421 | return err; |
1da177e4 | 422 | } |
28fd1298 | 423 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 424 | |
485bb99b RD |
425 | /** |
426 | * filemap_write_and_wait_range - write out & wait on a file range | |
427 | * @mapping: the address_space for the pages | |
428 | * @lstart: offset in bytes where the range starts | |
429 | * @lend: offset in bytes where the range ends (inclusive) | |
430 | * | |
469eb4d0 AM |
431 | * Write out and wait upon file offsets lstart->lend, inclusive. |
432 | * | |
433 | * Note that `lend' is inclusive (describes the last byte to be written) so | |
434 | * that this function can be used to write to the very end-of-file (end = -1). | |
435 | */ | |
1da177e4 LT |
436 | int filemap_write_and_wait_range(struct address_space *mapping, |
437 | loff_t lstart, loff_t lend) | |
438 | { | |
28fd1298 | 439 | int err = 0; |
1da177e4 LT |
440 | |
441 | if (mapping->nrpages) { | |
28fd1298 OH |
442 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
443 | WB_SYNC_ALL); | |
444 | /* See comment of filemap_write_and_wait() */ | |
445 | if (err != -EIO) { | |
94004ed7 CH |
446 | int err2 = filemap_fdatawait_range(mapping, |
447 | lstart, lend); | |
28fd1298 OH |
448 | if (!err) |
449 | err = err2; | |
450 | } | |
865ffef3 DM |
451 | } else { |
452 | err = filemap_check_errors(mapping); | |
1da177e4 | 453 | } |
28fd1298 | 454 | return err; |
1da177e4 | 455 | } |
f6995585 | 456 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 457 | |
ef6a3c63 MS |
458 | /** |
459 | * replace_page_cache_page - replace a pagecache page with a new one | |
460 | * @old: page to be replaced | |
461 | * @new: page to replace with | |
462 | * @gfp_mask: allocation mode | |
463 | * | |
464 | * This function replaces a page in the pagecache with a new one. On | |
465 | * success it acquires the pagecache reference for the new page and | |
466 | * drops it for the old page. Both the old and new pages must be | |
467 | * locked. This function does not add the new page to the LRU, the | |
468 | * caller must do that. | |
469 | * | |
470 | * The remove + add is atomic. The only way this function can fail is | |
471 | * memory allocation failure. | |
472 | */ | |
473 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
474 | { | |
475 | int error; | |
ef6a3c63 | 476 | |
309381fe SL |
477 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
478 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
479 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 480 | |
ef6a3c63 MS |
481 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
482 | if (!error) { | |
483 | struct address_space *mapping = old->mapping; | |
484 | void (*freepage)(struct page *); | |
485 | ||
486 | pgoff_t offset = old->index; | |
487 | freepage = mapping->a_ops->freepage; | |
488 | ||
489 | page_cache_get(new); | |
490 | new->mapping = mapping; | |
491 | new->index = offset; | |
492 | ||
493 | spin_lock_irq(&mapping->tree_lock); | |
91b0abe3 | 494 | __delete_from_page_cache(old, NULL); |
ef6a3c63 MS |
495 | error = radix_tree_insert(&mapping->page_tree, offset, new); |
496 | BUG_ON(error); | |
497 | mapping->nrpages++; | |
498 | __inc_zone_page_state(new, NR_FILE_PAGES); | |
499 | if (PageSwapBacked(new)) | |
500 | __inc_zone_page_state(new, NR_SHMEM); | |
501 | spin_unlock_irq(&mapping->tree_lock); | |
ab936cbc KH |
502 | /* mem_cgroup codes must not be called under tree_lock */ |
503 | mem_cgroup_replace_page_cache(old, new); | |
ef6a3c63 MS |
504 | radix_tree_preload_end(); |
505 | if (freepage) | |
506 | freepage(old); | |
507 | page_cache_release(old); | |
ef6a3c63 MS |
508 | } |
509 | ||
510 | return error; | |
511 | } | |
512 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
513 | ||
0cd6144a | 514 | static int page_cache_tree_insert(struct address_space *mapping, |
a528910e | 515 | struct page *page, void **shadowp) |
0cd6144a | 516 | { |
449dd698 | 517 | struct radix_tree_node *node; |
0cd6144a JW |
518 | void **slot; |
519 | int error; | |
520 | ||
449dd698 JW |
521 | error = __radix_tree_create(&mapping->page_tree, page->index, |
522 | &node, &slot); | |
523 | if (error) | |
524 | return error; | |
525 | if (*slot) { | |
0cd6144a JW |
526 | void *p; |
527 | ||
528 | p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
529 | if (!radix_tree_exceptional_entry(p)) | |
530 | return -EEXIST; | |
a528910e JW |
531 | if (shadowp) |
532 | *shadowp = p; | |
449dd698 JW |
533 | mapping->nrshadows--; |
534 | if (node) | |
535 | workingset_node_shadows_dec(node); | |
0cd6144a | 536 | } |
449dd698 JW |
537 | radix_tree_replace_slot(slot, page); |
538 | mapping->nrpages++; | |
539 | if (node) { | |
540 | workingset_node_pages_inc(node); | |
541 | /* | |
542 | * Don't track node that contains actual pages. | |
543 | * | |
544 | * Avoid acquiring the list_lru lock if already | |
545 | * untracked. The list_empty() test is safe as | |
546 | * node->private_list is protected by | |
547 | * mapping->tree_lock. | |
548 | */ | |
549 | if (!list_empty(&node->private_list)) | |
550 | list_lru_del(&workingset_shadow_nodes, | |
551 | &node->private_list); | |
552 | } | |
553 | return 0; | |
0cd6144a JW |
554 | } |
555 | ||
a528910e JW |
556 | static int __add_to_page_cache_locked(struct page *page, |
557 | struct address_space *mapping, | |
558 | pgoff_t offset, gfp_t gfp_mask, | |
559 | void **shadowp) | |
1da177e4 | 560 | { |
e286781d NP |
561 | int error; |
562 | ||
309381fe SL |
563 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
564 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
e286781d | 565 | |
d715ae08 | 566 | error = mem_cgroup_charge_file(page, current->mm, |
2c26fdd7 | 567 | gfp_mask & GFP_RECLAIM_MASK); |
35c754d7 | 568 | if (error) |
66a0c8ee | 569 | return error; |
1da177e4 | 570 | |
5e4c0d97 | 571 | error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); |
66a0c8ee | 572 | if (error) { |
69029cd5 | 573 | mem_cgroup_uncharge_cache_page(page); |
66a0c8ee KS |
574 | return error; |
575 | } | |
576 | ||
577 | page_cache_get(page); | |
578 | page->mapping = mapping; | |
579 | page->index = offset; | |
580 | ||
581 | spin_lock_irq(&mapping->tree_lock); | |
a528910e | 582 | error = page_cache_tree_insert(mapping, page, shadowp); |
66a0c8ee KS |
583 | radix_tree_preload_end(); |
584 | if (unlikely(error)) | |
585 | goto err_insert; | |
66a0c8ee KS |
586 | __inc_zone_page_state(page, NR_FILE_PAGES); |
587 | spin_unlock_irq(&mapping->tree_lock); | |
588 | trace_mm_filemap_add_to_page_cache(page); | |
589 | return 0; | |
590 | err_insert: | |
591 | page->mapping = NULL; | |
592 | /* Leave page->index set: truncation relies upon it */ | |
593 | spin_unlock_irq(&mapping->tree_lock); | |
594 | mem_cgroup_uncharge_cache_page(page); | |
595 | page_cache_release(page); | |
1da177e4 LT |
596 | return error; |
597 | } | |
a528910e JW |
598 | |
599 | /** | |
600 | * add_to_page_cache_locked - add a locked page to the pagecache | |
601 | * @page: page to add | |
602 | * @mapping: the page's address_space | |
603 | * @offset: page index | |
604 | * @gfp_mask: page allocation mode | |
605 | * | |
606 | * This function is used to add a page to the pagecache. It must be locked. | |
607 | * This function does not add the page to the LRU. The caller must do that. | |
608 | */ | |
609 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
610 | pgoff_t offset, gfp_t gfp_mask) | |
611 | { | |
612 | return __add_to_page_cache_locked(page, mapping, offset, | |
613 | gfp_mask, NULL); | |
614 | } | |
e286781d | 615 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
616 | |
617 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 618 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 619 | { |
a528910e | 620 | void *shadow = NULL; |
4f98a2fe RR |
621 | int ret; |
622 | ||
a528910e JW |
623 | __set_page_locked(page); |
624 | ret = __add_to_page_cache_locked(page, mapping, offset, | |
625 | gfp_mask, &shadow); | |
626 | if (unlikely(ret)) | |
627 | __clear_page_locked(page); | |
628 | else { | |
629 | /* | |
630 | * The page might have been evicted from cache only | |
631 | * recently, in which case it should be activated like | |
632 | * any other repeatedly accessed page. | |
633 | */ | |
634 | if (shadow && workingset_refault(shadow)) { | |
635 | SetPageActive(page); | |
636 | workingset_activation(page); | |
637 | } else | |
638 | ClearPageActive(page); | |
639 | lru_cache_add(page); | |
640 | } | |
1da177e4 LT |
641 | return ret; |
642 | } | |
18bc0bbd | 643 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 644 | |
44110fe3 | 645 | #ifdef CONFIG_NUMA |
2ae88149 | 646 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 647 | { |
c0ff7453 MX |
648 | int n; |
649 | struct page *page; | |
650 | ||
44110fe3 | 651 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
652 | unsigned int cpuset_mems_cookie; |
653 | do { | |
d26914d1 | 654 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 MG |
655 | n = cpuset_mem_spread_node(); |
656 | page = alloc_pages_exact_node(n, gfp, 0); | |
d26914d1 | 657 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 658 | |
c0ff7453 | 659 | return page; |
44110fe3 | 660 | } |
2ae88149 | 661 | return alloc_pages(gfp, 0); |
44110fe3 | 662 | } |
2ae88149 | 663 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
664 | #endif |
665 | ||
1da177e4 LT |
666 | /* |
667 | * In order to wait for pages to become available there must be | |
668 | * waitqueues associated with pages. By using a hash table of | |
669 | * waitqueues where the bucket discipline is to maintain all | |
670 | * waiters on the same queue and wake all when any of the pages | |
671 | * become available, and for the woken contexts to check to be | |
672 | * sure the appropriate page became available, this saves space | |
673 | * at a cost of "thundering herd" phenomena during rare hash | |
674 | * collisions. | |
675 | */ | |
676 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
677 | { | |
678 | const struct zone *zone = page_zone(page); | |
679 | ||
680 | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; | |
681 | } | |
682 | ||
683 | static inline void wake_up_page(struct page *page, int bit) | |
684 | { | |
685 | __wake_up_bit(page_waitqueue(page), &page->flags, bit); | |
686 | } | |
687 | ||
920c7a5d | 688 | void wait_on_page_bit(struct page *page, int bit_nr) |
1da177e4 LT |
689 | { |
690 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
691 | ||
692 | if (test_bit(bit_nr, &page->flags)) | |
7eaceacc | 693 | __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, |
1da177e4 LT |
694 | TASK_UNINTERRUPTIBLE); |
695 | } | |
696 | EXPORT_SYMBOL(wait_on_page_bit); | |
697 | ||
f62e00cc KM |
698 | int wait_on_page_bit_killable(struct page *page, int bit_nr) |
699 | { | |
700 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
701 | ||
702 | if (!test_bit(bit_nr, &page->flags)) | |
703 | return 0; | |
704 | ||
705 | return __wait_on_bit(page_waitqueue(page), &wait, | |
706 | sleep_on_page_killable, TASK_KILLABLE); | |
707 | } | |
708 | ||
385e1ca5 DH |
709 | /** |
710 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
711 | * @page: Page defining the wait queue of interest |
712 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
713 | * |
714 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
715 | */ | |
716 | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) | |
717 | { | |
718 | wait_queue_head_t *q = page_waitqueue(page); | |
719 | unsigned long flags; | |
720 | ||
721 | spin_lock_irqsave(&q->lock, flags); | |
722 | __add_wait_queue(q, waiter); | |
723 | spin_unlock_irqrestore(&q->lock, flags); | |
724 | } | |
725 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
726 | ||
1da177e4 | 727 | /** |
485bb99b | 728 | * unlock_page - unlock a locked page |
1da177e4 LT |
729 | * @page: the page |
730 | * | |
731 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
732 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
733 | * mechananism between PageLocked pages and PageWriteback pages is shared. | |
734 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | |
735 | * | |
8413ac9d NP |
736 | * The mb is necessary to enforce ordering between the clear_bit and the read |
737 | * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). | |
1da177e4 | 738 | */ |
920c7a5d | 739 | void unlock_page(struct page *page) |
1da177e4 | 740 | { |
309381fe | 741 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
8413ac9d NP |
742 | clear_bit_unlock(PG_locked, &page->flags); |
743 | smp_mb__after_clear_bit(); | |
1da177e4 LT |
744 | wake_up_page(page, PG_locked); |
745 | } | |
746 | EXPORT_SYMBOL(unlock_page); | |
747 | ||
485bb99b RD |
748 | /** |
749 | * end_page_writeback - end writeback against a page | |
750 | * @page: the page | |
1da177e4 LT |
751 | */ |
752 | void end_page_writeback(struct page *page) | |
753 | { | |
ac6aadb2 MS |
754 | if (TestClearPageReclaim(page)) |
755 | rotate_reclaimable_page(page); | |
756 | ||
757 | if (!test_clear_page_writeback(page)) | |
758 | BUG(); | |
759 | ||
1da177e4 LT |
760 | smp_mb__after_clear_bit(); |
761 | wake_up_page(page, PG_writeback); | |
762 | } | |
763 | EXPORT_SYMBOL(end_page_writeback); | |
764 | ||
485bb99b RD |
765 | /** |
766 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
767 | * @page: the page to lock | |
1da177e4 | 768 | */ |
920c7a5d | 769 | void __lock_page(struct page *page) |
1da177e4 LT |
770 | { |
771 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | |
772 | ||
7eaceacc | 773 | __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, |
1da177e4 LT |
774 | TASK_UNINTERRUPTIBLE); |
775 | } | |
776 | EXPORT_SYMBOL(__lock_page); | |
777 | ||
b5606c2d | 778 | int __lock_page_killable(struct page *page) |
2687a356 MW |
779 | { |
780 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | |
781 | ||
782 | return __wait_on_bit_lock(page_waitqueue(page), &wait, | |
7eaceacc | 783 | sleep_on_page_killable, TASK_KILLABLE); |
2687a356 | 784 | } |
18bc0bbd | 785 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 786 | |
d065bd81 ML |
787 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
788 | unsigned int flags) | |
789 | { | |
37b23e05 KM |
790 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
791 | /* | |
792 | * CAUTION! In this case, mmap_sem is not released | |
793 | * even though return 0. | |
794 | */ | |
795 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
796 | return 0; | |
797 | ||
798 | up_read(&mm->mmap_sem); | |
799 | if (flags & FAULT_FLAG_KILLABLE) | |
800 | wait_on_page_locked_killable(page); | |
801 | else | |
318b275f | 802 | wait_on_page_locked(page); |
d065bd81 | 803 | return 0; |
37b23e05 KM |
804 | } else { |
805 | if (flags & FAULT_FLAG_KILLABLE) { | |
806 | int ret; | |
807 | ||
808 | ret = __lock_page_killable(page); | |
809 | if (ret) { | |
810 | up_read(&mm->mmap_sem); | |
811 | return 0; | |
812 | } | |
813 | } else | |
814 | __lock_page(page); | |
815 | return 1; | |
d065bd81 ML |
816 | } |
817 | } | |
818 | ||
e7b563bb JW |
819 | /** |
820 | * page_cache_next_hole - find the next hole (not-present entry) | |
821 | * @mapping: mapping | |
822 | * @index: index | |
823 | * @max_scan: maximum range to search | |
824 | * | |
825 | * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the | |
826 | * lowest indexed hole. | |
827 | * | |
828 | * Returns: the index of the hole if found, otherwise returns an index | |
829 | * outside of the set specified (in which case 'return - index >= | |
830 | * max_scan' will be true). In rare cases of index wrap-around, 0 will | |
831 | * be returned. | |
832 | * | |
833 | * page_cache_next_hole may be called under rcu_read_lock. However, | |
834 | * like radix_tree_gang_lookup, this will not atomically search a | |
835 | * snapshot of the tree at a single point in time. For example, if a | |
836 | * hole is created at index 5, then subsequently a hole is created at | |
837 | * index 10, page_cache_next_hole covering both indexes may return 10 | |
838 | * if called under rcu_read_lock. | |
839 | */ | |
840 | pgoff_t page_cache_next_hole(struct address_space *mapping, | |
841 | pgoff_t index, unsigned long max_scan) | |
842 | { | |
843 | unsigned long i; | |
844 | ||
845 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
846 | struct page *page; |
847 | ||
848 | page = radix_tree_lookup(&mapping->page_tree, index); | |
849 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
850 | break; |
851 | index++; | |
852 | if (index == 0) | |
853 | break; | |
854 | } | |
855 | ||
856 | return index; | |
857 | } | |
858 | EXPORT_SYMBOL(page_cache_next_hole); | |
859 | ||
860 | /** | |
861 | * page_cache_prev_hole - find the prev hole (not-present entry) | |
862 | * @mapping: mapping | |
863 | * @index: index | |
864 | * @max_scan: maximum range to search | |
865 | * | |
866 | * Search backwards in the range [max(index-max_scan+1, 0), index] for | |
867 | * the first hole. | |
868 | * | |
869 | * Returns: the index of the hole if found, otherwise returns an index | |
870 | * outside of the set specified (in which case 'index - return >= | |
871 | * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX | |
872 | * will be returned. | |
873 | * | |
874 | * page_cache_prev_hole may be called under rcu_read_lock. However, | |
875 | * like radix_tree_gang_lookup, this will not atomically search a | |
876 | * snapshot of the tree at a single point in time. For example, if a | |
877 | * hole is created at index 10, then subsequently a hole is created at | |
878 | * index 5, page_cache_prev_hole covering both indexes may return 5 if | |
879 | * called under rcu_read_lock. | |
880 | */ | |
881 | pgoff_t page_cache_prev_hole(struct address_space *mapping, | |
882 | pgoff_t index, unsigned long max_scan) | |
883 | { | |
884 | unsigned long i; | |
885 | ||
886 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
887 | struct page *page; |
888 | ||
889 | page = radix_tree_lookup(&mapping->page_tree, index); | |
890 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
891 | break; |
892 | index--; | |
893 | if (index == ULONG_MAX) | |
894 | break; | |
895 | } | |
896 | ||
897 | return index; | |
898 | } | |
899 | EXPORT_SYMBOL(page_cache_prev_hole); | |
900 | ||
485bb99b | 901 | /** |
0cd6144a | 902 | * find_get_entry - find and get a page cache entry |
485bb99b | 903 | * @mapping: the address_space to search |
0cd6144a JW |
904 | * @offset: the page cache index |
905 | * | |
906 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
907 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 908 | * |
139b6a6f JW |
909 | * If the slot holds a shadow entry of a previously evicted page, or a |
910 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
911 | * |
912 | * Otherwise, %NULL is returned. | |
1da177e4 | 913 | */ |
0cd6144a | 914 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 915 | { |
a60637c8 | 916 | void **pagep; |
1da177e4 LT |
917 | struct page *page; |
918 | ||
a60637c8 NP |
919 | rcu_read_lock(); |
920 | repeat: | |
921 | page = NULL; | |
922 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | |
923 | if (pagep) { | |
924 | page = radix_tree_deref_slot(pagep); | |
27d20fdd NP |
925 | if (unlikely(!page)) |
926 | goto out; | |
a2c16d6c | 927 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
928 | if (radix_tree_deref_retry(page)) |
929 | goto repeat; | |
930 | /* | |
139b6a6f JW |
931 | * A shadow entry of a recently evicted page, |
932 | * or a swap entry from shmem/tmpfs. Return | |
933 | * it without attempting to raise page count. | |
8079b1c8 HD |
934 | */ |
935 | goto out; | |
a2c16d6c | 936 | } |
a60637c8 NP |
937 | if (!page_cache_get_speculative(page)) |
938 | goto repeat; | |
939 | ||
940 | /* | |
941 | * Has the page moved? | |
942 | * This is part of the lockless pagecache protocol. See | |
943 | * include/linux/pagemap.h for details. | |
944 | */ | |
945 | if (unlikely(page != *pagep)) { | |
946 | page_cache_release(page); | |
947 | goto repeat; | |
948 | } | |
949 | } | |
27d20fdd | 950 | out: |
a60637c8 NP |
951 | rcu_read_unlock(); |
952 | ||
1da177e4 LT |
953 | return page; |
954 | } | |
0cd6144a | 955 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 956 | |
1da177e4 | 957 | /** |
0cd6144a | 958 | * find_get_page - find and get a page reference |
67be2dd1 MW |
959 | * @mapping: the address_space to search |
960 | * @offset: the page index | |
1da177e4 | 961 | * |
0cd6144a JW |
962 | * Looks up the page cache slot at @mapping & @offset. If there is a |
963 | * page cache page, it is returned with an increased refcount. | |
1da177e4 | 964 | * |
0cd6144a | 965 | * Otherwise, %NULL is returned. |
1da177e4 | 966 | */ |
0cd6144a JW |
967 | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) |
968 | { | |
969 | struct page *page = find_get_entry(mapping, offset); | |
970 | ||
971 | if (radix_tree_exceptional_entry(page)) | |
972 | page = NULL; | |
973 | return page; | |
974 | } | |
975 | EXPORT_SYMBOL(find_get_page); | |
976 | ||
977 | /** | |
978 | * find_lock_entry - locate, pin and lock a page cache entry | |
979 | * @mapping: the address_space to search | |
980 | * @offset: the page cache index | |
981 | * | |
982 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
983 | * page cache page, it is returned locked and with an increased | |
984 | * refcount. | |
985 | * | |
139b6a6f JW |
986 | * If the slot holds a shadow entry of a previously evicted page, or a |
987 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
988 | * |
989 | * Otherwise, %NULL is returned. | |
990 | * | |
991 | * find_lock_entry() may sleep. | |
992 | */ | |
993 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
994 | { |
995 | struct page *page; | |
996 | ||
1da177e4 | 997 | repeat: |
0cd6144a | 998 | page = find_get_entry(mapping, offset); |
a2c16d6c | 999 | if (page && !radix_tree_exception(page)) { |
a60637c8 NP |
1000 | lock_page(page); |
1001 | /* Has the page been truncated? */ | |
1002 | if (unlikely(page->mapping != mapping)) { | |
1003 | unlock_page(page); | |
1004 | page_cache_release(page); | |
1005 | goto repeat; | |
1da177e4 | 1006 | } |
309381fe | 1007 | VM_BUG_ON_PAGE(page->index != offset, page); |
1da177e4 | 1008 | } |
1da177e4 LT |
1009 | return page; |
1010 | } | |
0cd6144a JW |
1011 | EXPORT_SYMBOL(find_lock_entry); |
1012 | ||
1013 | /** | |
1014 | * find_lock_page - locate, pin and lock a pagecache page | |
1015 | * @mapping: the address_space to search | |
1016 | * @offset: the page index | |
1017 | * | |
1018 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1019 | * page cache page, it is returned locked and with an increased | |
1020 | * refcount. | |
1021 | * | |
1022 | * Otherwise, %NULL is returned. | |
1023 | * | |
1024 | * find_lock_page() may sleep. | |
1025 | */ | |
1026 | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) | |
1027 | { | |
1028 | struct page *page = find_lock_entry(mapping, offset); | |
1029 | ||
1030 | if (radix_tree_exceptional_entry(page)) | |
1031 | page = NULL; | |
1032 | return page; | |
1033 | } | |
1da177e4 LT |
1034 | EXPORT_SYMBOL(find_lock_page); |
1035 | ||
1036 | /** | |
1037 | * find_or_create_page - locate or add a pagecache page | |
67be2dd1 MW |
1038 | * @mapping: the page's address_space |
1039 | * @index: the page's index into the mapping | |
1040 | * @gfp_mask: page allocation mode | |
1da177e4 | 1041 | * |
0cd6144a JW |
1042 | * Looks up the page cache slot at @mapping & @offset. If there is a |
1043 | * page cache page, it is returned locked and with an increased | |
1044 | * refcount. | |
1045 | * | |
1046 | * If the page is not present, a new page is allocated using @gfp_mask | |
1047 | * and added to the page cache and the VM's LRU list. The page is | |
1048 | * returned locked and with an increased refcount. | |
1da177e4 | 1049 | * |
0cd6144a | 1050 | * On memory exhaustion, %NULL is returned. |
1da177e4 | 1051 | * |
0cd6144a JW |
1052 | * find_or_create_page() may sleep, even if @gfp_flags specifies an |
1053 | * atomic allocation! | |
1da177e4 LT |
1054 | */ |
1055 | struct page *find_or_create_page(struct address_space *mapping, | |
57f6b96c | 1056 | pgoff_t index, gfp_t gfp_mask) |
1da177e4 | 1057 | { |
eb2be189 | 1058 | struct page *page; |
1da177e4 LT |
1059 | int err; |
1060 | repeat: | |
1061 | page = find_lock_page(mapping, index); | |
1062 | if (!page) { | |
eb2be189 NP |
1063 | page = __page_cache_alloc(gfp_mask); |
1064 | if (!page) | |
1065 | return NULL; | |
67d58ac4 NP |
1066 | /* |
1067 | * We want a regular kernel memory (not highmem or DMA etc) | |
1068 | * allocation for the radix tree nodes, but we need to honour | |
1069 | * the context-specific requirements the caller has asked for. | |
1070 | * GFP_RECLAIM_MASK collects those requirements. | |
1071 | */ | |
1072 | err = add_to_page_cache_lru(page, mapping, index, | |
1073 | (gfp_mask & GFP_RECLAIM_MASK)); | |
eb2be189 NP |
1074 | if (unlikely(err)) { |
1075 | page_cache_release(page); | |
1076 | page = NULL; | |
1077 | if (err == -EEXIST) | |
1078 | goto repeat; | |
1da177e4 | 1079 | } |
1da177e4 | 1080 | } |
1da177e4 LT |
1081 | return page; |
1082 | } | |
1da177e4 LT |
1083 | EXPORT_SYMBOL(find_or_create_page); |
1084 | ||
0cd6144a JW |
1085 | /** |
1086 | * find_get_entries - gang pagecache lookup | |
1087 | * @mapping: The address_space to search | |
1088 | * @start: The starting page cache index | |
1089 | * @nr_entries: The maximum number of entries | |
1090 | * @entries: Where the resulting entries are placed | |
1091 | * @indices: The cache indices corresponding to the entries in @entries | |
1092 | * | |
1093 | * find_get_entries() will search for and return a group of up to | |
1094 | * @nr_entries entries in the mapping. The entries are placed at | |
1095 | * @entries. find_get_entries() takes a reference against any actual | |
1096 | * pages it returns. | |
1097 | * | |
1098 | * The search returns a group of mapping-contiguous page cache entries | |
1099 | * with ascending indexes. There may be holes in the indices due to | |
1100 | * not-present pages. | |
1101 | * | |
139b6a6f JW |
1102 | * Any shadow entries of evicted pages, or swap entries from |
1103 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a JW |
1104 | * |
1105 | * find_get_entries() returns the number of pages and shadow entries | |
1106 | * which were found. | |
1107 | */ | |
1108 | unsigned find_get_entries(struct address_space *mapping, | |
1109 | pgoff_t start, unsigned int nr_entries, | |
1110 | struct page **entries, pgoff_t *indices) | |
1111 | { | |
1112 | void **slot; | |
1113 | unsigned int ret = 0; | |
1114 | struct radix_tree_iter iter; | |
1115 | ||
1116 | if (!nr_entries) | |
1117 | return 0; | |
1118 | ||
1119 | rcu_read_lock(); | |
1120 | restart: | |
1121 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | |
1122 | struct page *page; | |
1123 | repeat: | |
1124 | page = radix_tree_deref_slot(slot); | |
1125 | if (unlikely(!page)) | |
1126 | continue; | |
1127 | if (radix_tree_exception(page)) { | |
1128 | if (radix_tree_deref_retry(page)) | |
1129 | goto restart; | |
1130 | /* | |
139b6a6f JW |
1131 | * A shadow entry of a recently evicted page, |
1132 | * or a swap entry from shmem/tmpfs. Return | |
1133 | * it without attempting to raise page count. | |
0cd6144a JW |
1134 | */ |
1135 | goto export; | |
1136 | } | |
1137 | if (!page_cache_get_speculative(page)) | |
1138 | goto repeat; | |
1139 | ||
1140 | /* Has the page moved? */ | |
1141 | if (unlikely(page != *slot)) { | |
1142 | page_cache_release(page); | |
1143 | goto repeat; | |
1144 | } | |
1145 | export: | |
1146 | indices[ret] = iter.index; | |
1147 | entries[ret] = page; | |
1148 | if (++ret == nr_entries) | |
1149 | break; | |
1150 | } | |
1151 | rcu_read_unlock(); | |
1152 | return ret; | |
1153 | } | |
1154 | ||
1da177e4 LT |
1155 | /** |
1156 | * find_get_pages - gang pagecache lookup | |
1157 | * @mapping: The address_space to search | |
1158 | * @start: The starting page index | |
1159 | * @nr_pages: The maximum number of pages | |
1160 | * @pages: Where the resulting pages are placed | |
1161 | * | |
1162 | * find_get_pages() will search for and return a group of up to | |
1163 | * @nr_pages pages in the mapping. The pages are placed at @pages. | |
1164 | * find_get_pages() takes a reference against the returned pages. | |
1165 | * | |
1166 | * The search returns a group of mapping-contiguous pages with ascending | |
1167 | * indexes. There may be holes in the indices due to not-present pages. | |
1168 | * | |
1169 | * find_get_pages() returns the number of pages which were found. | |
1170 | */ | |
1171 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |
1172 | unsigned int nr_pages, struct page **pages) | |
1173 | { | |
0fc9d104 KK |
1174 | struct radix_tree_iter iter; |
1175 | void **slot; | |
1176 | unsigned ret = 0; | |
1177 | ||
1178 | if (unlikely(!nr_pages)) | |
1179 | return 0; | |
a60637c8 NP |
1180 | |
1181 | rcu_read_lock(); | |
1182 | restart: | |
0fc9d104 | 1183 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
a60637c8 NP |
1184 | struct page *page; |
1185 | repeat: | |
0fc9d104 | 1186 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1187 | if (unlikely(!page)) |
1188 | continue; | |
9d8aa4ea | 1189 | |
a2c16d6c | 1190 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1191 | if (radix_tree_deref_retry(page)) { |
1192 | /* | |
1193 | * Transient condition which can only trigger | |
1194 | * when entry at index 0 moves out of or back | |
1195 | * to root: none yet gotten, safe to restart. | |
1196 | */ | |
0fc9d104 | 1197 | WARN_ON(iter.index); |
8079b1c8 HD |
1198 | goto restart; |
1199 | } | |
a2c16d6c | 1200 | /* |
139b6a6f JW |
1201 | * A shadow entry of a recently evicted page, |
1202 | * or a swap entry from shmem/tmpfs. Skip | |
1203 | * over it. | |
a2c16d6c | 1204 | */ |
8079b1c8 | 1205 | continue; |
27d20fdd | 1206 | } |
a60637c8 NP |
1207 | |
1208 | if (!page_cache_get_speculative(page)) | |
1209 | goto repeat; | |
1210 | ||
1211 | /* Has the page moved? */ | |
0fc9d104 | 1212 | if (unlikely(page != *slot)) { |
a60637c8 NP |
1213 | page_cache_release(page); |
1214 | goto repeat; | |
1215 | } | |
1da177e4 | 1216 | |
a60637c8 | 1217 | pages[ret] = page; |
0fc9d104 KK |
1218 | if (++ret == nr_pages) |
1219 | break; | |
a60637c8 | 1220 | } |
5b280c0c | 1221 | |
a60637c8 | 1222 | rcu_read_unlock(); |
1da177e4 LT |
1223 | return ret; |
1224 | } | |
1225 | ||
ebf43500 JA |
1226 | /** |
1227 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1228 | * @mapping: The address_space to search | |
1229 | * @index: The starting page index | |
1230 | * @nr_pages: The maximum number of pages | |
1231 | * @pages: Where the resulting pages are placed | |
1232 | * | |
1233 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1234 | * that the returned number of pages are guaranteed to be contiguous. | |
1235 | * | |
1236 | * find_get_pages_contig() returns the number of pages which were found. | |
1237 | */ | |
1238 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1239 | unsigned int nr_pages, struct page **pages) | |
1240 | { | |
0fc9d104 KK |
1241 | struct radix_tree_iter iter; |
1242 | void **slot; | |
1243 | unsigned int ret = 0; | |
1244 | ||
1245 | if (unlikely(!nr_pages)) | |
1246 | return 0; | |
a60637c8 NP |
1247 | |
1248 | rcu_read_lock(); | |
1249 | restart: | |
0fc9d104 | 1250 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
a60637c8 NP |
1251 | struct page *page; |
1252 | repeat: | |
0fc9d104 KK |
1253 | page = radix_tree_deref_slot(slot); |
1254 | /* The hole, there no reason to continue */ | |
a60637c8 | 1255 | if (unlikely(!page)) |
0fc9d104 | 1256 | break; |
9d8aa4ea | 1257 | |
a2c16d6c | 1258 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1259 | if (radix_tree_deref_retry(page)) { |
1260 | /* | |
1261 | * Transient condition which can only trigger | |
1262 | * when entry at index 0 moves out of or back | |
1263 | * to root: none yet gotten, safe to restart. | |
1264 | */ | |
1265 | goto restart; | |
1266 | } | |
a2c16d6c | 1267 | /* |
139b6a6f JW |
1268 | * A shadow entry of a recently evicted page, |
1269 | * or a swap entry from shmem/tmpfs. Stop | |
1270 | * looking for contiguous pages. | |
a2c16d6c | 1271 | */ |
8079b1c8 | 1272 | break; |
a2c16d6c | 1273 | } |
ebf43500 | 1274 | |
a60637c8 NP |
1275 | if (!page_cache_get_speculative(page)) |
1276 | goto repeat; | |
1277 | ||
1278 | /* Has the page moved? */ | |
0fc9d104 | 1279 | if (unlikely(page != *slot)) { |
a60637c8 NP |
1280 | page_cache_release(page); |
1281 | goto repeat; | |
1282 | } | |
1283 | ||
9cbb4cb2 NP |
1284 | /* |
1285 | * must check mapping and index after taking the ref. | |
1286 | * otherwise we can get both false positives and false | |
1287 | * negatives, which is just confusing to the caller. | |
1288 | */ | |
0fc9d104 | 1289 | if (page->mapping == NULL || page->index != iter.index) { |
9cbb4cb2 NP |
1290 | page_cache_release(page); |
1291 | break; | |
1292 | } | |
1293 | ||
a60637c8 | 1294 | pages[ret] = page; |
0fc9d104 KK |
1295 | if (++ret == nr_pages) |
1296 | break; | |
ebf43500 | 1297 | } |
a60637c8 NP |
1298 | rcu_read_unlock(); |
1299 | return ret; | |
ebf43500 | 1300 | } |
ef71c15c | 1301 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1302 | |
485bb99b RD |
1303 | /** |
1304 | * find_get_pages_tag - find and return pages that match @tag | |
1305 | * @mapping: the address_space to search | |
1306 | * @index: the starting page index | |
1307 | * @tag: the tag index | |
1308 | * @nr_pages: the maximum number of pages | |
1309 | * @pages: where the resulting pages are placed | |
1310 | * | |
1da177e4 | 1311 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1312 | * @tag. We update @index to index the next page for the traversal. |
1da177e4 LT |
1313 | */ |
1314 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |
1315 | int tag, unsigned int nr_pages, struct page **pages) | |
1316 | { | |
0fc9d104 KK |
1317 | struct radix_tree_iter iter; |
1318 | void **slot; | |
1319 | unsigned ret = 0; | |
1320 | ||
1321 | if (unlikely(!nr_pages)) | |
1322 | return 0; | |
a60637c8 NP |
1323 | |
1324 | rcu_read_lock(); | |
1325 | restart: | |
0fc9d104 KK |
1326 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1327 | &iter, *index, tag) { | |
a60637c8 NP |
1328 | struct page *page; |
1329 | repeat: | |
0fc9d104 | 1330 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1331 | if (unlikely(!page)) |
1332 | continue; | |
9d8aa4ea | 1333 | |
a2c16d6c | 1334 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1335 | if (radix_tree_deref_retry(page)) { |
1336 | /* | |
1337 | * Transient condition which can only trigger | |
1338 | * when entry at index 0 moves out of or back | |
1339 | * to root: none yet gotten, safe to restart. | |
1340 | */ | |
1341 | goto restart; | |
1342 | } | |
a2c16d6c | 1343 | /* |
139b6a6f JW |
1344 | * A shadow entry of a recently evicted page. |
1345 | * | |
1346 | * Those entries should never be tagged, but | |
1347 | * this tree walk is lockless and the tags are | |
1348 | * looked up in bulk, one radix tree node at a | |
1349 | * time, so there is a sizable window for page | |
1350 | * reclaim to evict a page we saw tagged. | |
1351 | * | |
1352 | * Skip over it. | |
a2c16d6c | 1353 | */ |
139b6a6f | 1354 | continue; |
a2c16d6c | 1355 | } |
a60637c8 NP |
1356 | |
1357 | if (!page_cache_get_speculative(page)) | |
1358 | goto repeat; | |
1359 | ||
1360 | /* Has the page moved? */ | |
0fc9d104 | 1361 | if (unlikely(page != *slot)) { |
a60637c8 NP |
1362 | page_cache_release(page); |
1363 | goto repeat; | |
1364 | } | |
1365 | ||
1366 | pages[ret] = page; | |
0fc9d104 KK |
1367 | if (++ret == nr_pages) |
1368 | break; | |
a60637c8 | 1369 | } |
5b280c0c | 1370 | |
a60637c8 | 1371 | rcu_read_unlock(); |
1da177e4 | 1372 | |
1da177e4 LT |
1373 | if (ret) |
1374 | *index = pages[ret - 1]->index + 1; | |
a60637c8 | 1375 | |
1da177e4 LT |
1376 | return ret; |
1377 | } | |
ef71c15c | 1378 | EXPORT_SYMBOL(find_get_pages_tag); |
1da177e4 | 1379 | |
485bb99b RD |
1380 | /** |
1381 | * grab_cache_page_nowait - returns locked page at given index in given cache | |
1382 | * @mapping: target address_space | |
1383 | * @index: the page index | |
1384 | * | |
72fd4a35 | 1385 | * Same as grab_cache_page(), but do not wait if the page is unavailable. |
1da177e4 LT |
1386 | * This is intended for speculative data generators, where the data can |
1387 | * be regenerated if the page couldn't be grabbed. This routine should | |
1388 | * be safe to call while holding the lock for another page. | |
1389 | * | |
1390 | * Clear __GFP_FS when allocating the page to avoid recursion into the fs | |
1391 | * and deadlock against the caller's locked page. | |
1392 | */ | |
1393 | struct page * | |
57f6b96c | 1394 | grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) |
1da177e4 LT |
1395 | { |
1396 | struct page *page = find_get_page(mapping, index); | |
1da177e4 LT |
1397 | |
1398 | if (page) { | |
529ae9aa | 1399 | if (trylock_page(page)) |
1da177e4 LT |
1400 | return page; |
1401 | page_cache_release(page); | |
1402 | return NULL; | |
1403 | } | |
2ae88149 | 1404 | page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); |
67d58ac4 | 1405 | if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { |
1da177e4 LT |
1406 | page_cache_release(page); |
1407 | page = NULL; | |
1408 | } | |
1409 | return page; | |
1410 | } | |
1da177e4 LT |
1411 | EXPORT_SYMBOL(grab_cache_page_nowait); |
1412 | ||
76d42bd9 WF |
1413 | /* |
1414 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1415 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1416 | * | |
1417 | * ---R__________________________________________B__________ | |
1418 | * ^ reading here ^ bad block(assume 4k) | |
1419 | * | |
1420 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
1421 | * => failing the whole request => read(R) => read(R+1) => | |
1422 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
1423 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
1424 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
1425 | * | |
1426 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
1427 | */ | |
1428 | static void shrink_readahead_size_eio(struct file *filp, | |
1429 | struct file_ra_state *ra) | |
1430 | { | |
76d42bd9 | 1431 | ra->ra_pages /= 4; |
76d42bd9 WF |
1432 | } |
1433 | ||
485bb99b | 1434 | /** |
36e78914 | 1435 | * do_generic_file_read - generic file read routine |
485bb99b RD |
1436 | * @filp: the file to read |
1437 | * @ppos: current file position | |
6e58e79d AV |
1438 | * @iter: data destination |
1439 | * @written: already copied | |
485bb99b | 1440 | * |
1da177e4 | 1441 | * This is a generic file read routine, and uses the |
485bb99b | 1442 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
1443 | * |
1444 | * This is really ugly. But the goto's actually try to clarify some | |
1445 | * of the logic when it comes to error handling etc. | |
1da177e4 | 1446 | */ |
6e58e79d AV |
1447 | static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, |
1448 | struct iov_iter *iter, ssize_t written) | |
1da177e4 | 1449 | { |
36e78914 | 1450 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 1451 | struct inode *inode = mapping->host; |
36e78914 | 1452 | struct file_ra_state *ra = &filp->f_ra; |
57f6b96c FW |
1453 | pgoff_t index; |
1454 | pgoff_t last_index; | |
1455 | pgoff_t prev_index; | |
1456 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 1457 | unsigned int prev_offset; |
6e58e79d | 1458 | int error = 0; |
1da177e4 | 1459 | |
1da177e4 | 1460 | index = *ppos >> PAGE_CACHE_SHIFT; |
7ff81078 FW |
1461 | prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; |
1462 | prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); | |
6e58e79d | 1463 | last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; |
1da177e4 LT |
1464 | offset = *ppos & ~PAGE_CACHE_MASK; |
1465 | ||
1da177e4 LT |
1466 | for (;;) { |
1467 | struct page *page; | |
57f6b96c | 1468 | pgoff_t end_index; |
a32ea1e1 | 1469 | loff_t isize; |
1da177e4 LT |
1470 | unsigned long nr, ret; |
1471 | ||
1da177e4 | 1472 | cond_resched(); |
1da177e4 LT |
1473 | find_page: |
1474 | page = find_get_page(mapping, index); | |
3ea89ee8 | 1475 | if (!page) { |
cf914a7d | 1476 | page_cache_sync_readahead(mapping, |
7ff81078 | 1477 | ra, filp, |
3ea89ee8 FW |
1478 | index, last_index - index); |
1479 | page = find_get_page(mapping, index); | |
1480 | if (unlikely(page == NULL)) | |
1481 | goto no_cached_page; | |
1482 | } | |
1483 | if (PageReadahead(page)) { | |
cf914a7d | 1484 | page_cache_async_readahead(mapping, |
7ff81078 | 1485 | ra, filp, page, |
3ea89ee8 | 1486 | index, last_index - index); |
1da177e4 | 1487 | } |
8ab22b9a HH |
1488 | if (!PageUptodate(page)) { |
1489 | if (inode->i_blkbits == PAGE_CACHE_SHIFT || | |
1490 | !mapping->a_ops->is_partially_uptodate) | |
1491 | goto page_not_up_to_date; | |
529ae9aa | 1492 | if (!trylock_page(page)) |
8ab22b9a | 1493 | goto page_not_up_to_date; |
8d056cb9 DH |
1494 | /* Did it get truncated before we got the lock? */ |
1495 | if (!page->mapping) | |
1496 | goto page_not_up_to_date_locked; | |
8ab22b9a | 1497 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 1498 | offset, iter->count)) |
8ab22b9a HH |
1499 | goto page_not_up_to_date_locked; |
1500 | unlock_page(page); | |
1501 | } | |
1da177e4 | 1502 | page_ok: |
a32ea1e1 N |
1503 | /* |
1504 | * i_size must be checked after we know the page is Uptodate. | |
1505 | * | |
1506 | * Checking i_size after the check allows us to calculate | |
1507 | * the correct value for "nr", which means the zero-filled | |
1508 | * part of the page is not copied back to userspace (unless | |
1509 | * another truncate extends the file - this is desired though). | |
1510 | */ | |
1511 | ||
1512 | isize = i_size_read(inode); | |
1513 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | |
1514 | if (unlikely(!isize || index > end_index)) { | |
1515 | page_cache_release(page); | |
1516 | goto out; | |
1517 | } | |
1518 | ||
1519 | /* nr is the maximum number of bytes to copy from this page */ | |
1520 | nr = PAGE_CACHE_SIZE; | |
1521 | if (index == end_index) { | |
1522 | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | |
1523 | if (nr <= offset) { | |
1524 | page_cache_release(page); | |
1525 | goto out; | |
1526 | } | |
1527 | } | |
1528 | nr = nr - offset; | |
1da177e4 LT |
1529 | |
1530 | /* If users can be writing to this page using arbitrary | |
1531 | * virtual addresses, take care about potential aliasing | |
1532 | * before reading the page on the kernel side. | |
1533 | */ | |
1534 | if (mapping_writably_mapped(mapping)) | |
1535 | flush_dcache_page(page); | |
1536 | ||
1537 | /* | |
ec0f1637 JK |
1538 | * When a sequential read accesses a page several times, |
1539 | * only mark it as accessed the first time. | |
1da177e4 | 1540 | */ |
ec0f1637 | 1541 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
1542 | mark_page_accessed(page); |
1543 | prev_index = index; | |
1544 | ||
1545 | /* | |
1546 | * Ok, we have the page, and it's up-to-date, so | |
1547 | * now we can copy it to user space... | |
1da177e4 | 1548 | */ |
6e58e79d AV |
1549 | |
1550 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 LT |
1551 | offset += ret; |
1552 | index += offset >> PAGE_CACHE_SHIFT; | |
1553 | offset &= ~PAGE_CACHE_MASK; | |
6ce745ed | 1554 | prev_offset = offset; |
1da177e4 LT |
1555 | |
1556 | page_cache_release(page); | |
6e58e79d AV |
1557 | written += ret; |
1558 | if (!iov_iter_count(iter)) | |
1559 | goto out; | |
1560 | if (ret < nr) { | |
1561 | error = -EFAULT; | |
1562 | goto out; | |
1563 | } | |
1564 | continue; | |
1da177e4 LT |
1565 | |
1566 | page_not_up_to_date: | |
1567 | /* Get exclusive access to the page ... */ | |
85462323 ON |
1568 | error = lock_page_killable(page); |
1569 | if (unlikely(error)) | |
1570 | goto readpage_error; | |
1da177e4 | 1571 | |
8ab22b9a | 1572 | page_not_up_to_date_locked: |
da6052f7 | 1573 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
1574 | if (!page->mapping) { |
1575 | unlock_page(page); | |
1576 | page_cache_release(page); | |
1577 | continue; | |
1578 | } | |
1579 | ||
1580 | /* Did somebody else fill it already? */ | |
1581 | if (PageUptodate(page)) { | |
1582 | unlock_page(page); | |
1583 | goto page_ok; | |
1584 | } | |
1585 | ||
1586 | readpage: | |
91803b49 JM |
1587 | /* |
1588 | * A previous I/O error may have been due to temporary | |
1589 | * failures, eg. multipath errors. | |
1590 | * PG_error will be set again if readpage fails. | |
1591 | */ | |
1592 | ClearPageError(page); | |
1da177e4 LT |
1593 | /* Start the actual read. The read will unlock the page. */ |
1594 | error = mapping->a_ops->readpage(filp, page); | |
1595 | ||
994fc28c ZB |
1596 | if (unlikely(error)) { |
1597 | if (error == AOP_TRUNCATED_PAGE) { | |
1598 | page_cache_release(page); | |
6e58e79d | 1599 | error = 0; |
994fc28c ZB |
1600 | goto find_page; |
1601 | } | |
1da177e4 | 1602 | goto readpage_error; |
994fc28c | 1603 | } |
1da177e4 LT |
1604 | |
1605 | if (!PageUptodate(page)) { | |
85462323 ON |
1606 | error = lock_page_killable(page); |
1607 | if (unlikely(error)) | |
1608 | goto readpage_error; | |
1da177e4 LT |
1609 | if (!PageUptodate(page)) { |
1610 | if (page->mapping == NULL) { | |
1611 | /* | |
2ecdc82e | 1612 | * invalidate_mapping_pages got it |
1da177e4 LT |
1613 | */ |
1614 | unlock_page(page); | |
1615 | page_cache_release(page); | |
1616 | goto find_page; | |
1617 | } | |
1618 | unlock_page(page); | |
7ff81078 | 1619 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
1620 | error = -EIO; |
1621 | goto readpage_error; | |
1da177e4 LT |
1622 | } |
1623 | unlock_page(page); | |
1624 | } | |
1625 | ||
1da177e4 LT |
1626 | goto page_ok; |
1627 | ||
1628 | readpage_error: | |
1629 | /* UHHUH! A synchronous read error occurred. Report it */ | |
1da177e4 LT |
1630 | page_cache_release(page); |
1631 | goto out; | |
1632 | ||
1633 | no_cached_page: | |
1634 | /* | |
1635 | * Ok, it wasn't cached, so we need to create a new | |
1636 | * page.. | |
1637 | */ | |
eb2be189 NP |
1638 | page = page_cache_alloc_cold(mapping); |
1639 | if (!page) { | |
6e58e79d | 1640 | error = -ENOMEM; |
eb2be189 | 1641 | goto out; |
1da177e4 | 1642 | } |
eb2be189 | 1643 | error = add_to_page_cache_lru(page, mapping, |
1da177e4 LT |
1644 | index, GFP_KERNEL); |
1645 | if (error) { | |
eb2be189 | 1646 | page_cache_release(page); |
6e58e79d AV |
1647 | if (error == -EEXIST) { |
1648 | error = 0; | |
1da177e4 | 1649 | goto find_page; |
6e58e79d | 1650 | } |
1da177e4 LT |
1651 | goto out; |
1652 | } | |
1da177e4 LT |
1653 | goto readpage; |
1654 | } | |
1655 | ||
1656 | out: | |
7ff81078 FW |
1657 | ra->prev_pos = prev_index; |
1658 | ra->prev_pos <<= PAGE_CACHE_SHIFT; | |
1659 | ra->prev_pos |= prev_offset; | |
1da177e4 | 1660 | |
f4e6b498 | 1661 | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; |
0c6aa263 | 1662 | file_accessed(filp); |
6e58e79d | 1663 | return written ? written : error; |
1da177e4 LT |
1664 | } |
1665 | ||
0ceb3314 DM |
1666 | /* |
1667 | * Performs necessary checks before doing a write | |
1668 | * @iov: io vector request | |
1669 | * @nr_segs: number of segments in the iovec | |
1670 | * @count: number of bytes to write | |
1671 | * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE | |
1672 | * | |
1673 | * Adjust number of segments and amount of bytes to write (nr_segs should be | |
1674 | * properly initialized first). Returns appropriate error code that caller | |
1675 | * should return or zero in case that write should be allowed. | |
1676 | */ | |
1677 | int generic_segment_checks(const struct iovec *iov, | |
1678 | unsigned long *nr_segs, size_t *count, int access_flags) | |
1679 | { | |
1680 | unsigned long seg; | |
1681 | size_t cnt = 0; | |
1682 | for (seg = 0; seg < *nr_segs; seg++) { | |
1683 | const struct iovec *iv = &iov[seg]; | |
1684 | ||
1685 | /* | |
1686 | * If any segment has a negative length, or the cumulative | |
1687 | * length ever wraps negative then return -EINVAL. | |
1688 | */ | |
1689 | cnt += iv->iov_len; | |
1690 | if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) | |
1691 | return -EINVAL; | |
1692 | if (access_ok(access_flags, iv->iov_base, iv->iov_len)) | |
1693 | continue; | |
1694 | if (seg == 0) | |
1695 | return -EFAULT; | |
1696 | *nr_segs = seg; | |
1697 | cnt -= iv->iov_len; /* This segment is no good */ | |
1698 | break; | |
1699 | } | |
1700 | *count = cnt; | |
1701 | return 0; | |
1702 | } | |
1703 | EXPORT_SYMBOL(generic_segment_checks); | |
1704 | ||
485bb99b | 1705 | /** |
b2abacf3 | 1706 | * generic_file_aio_read - generic filesystem read routine |
485bb99b RD |
1707 | * @iocb: kernel I/O control block |
1708 | * @iov: io vector request | |
1709 | * @nr_segs: number of segments in the iovec | |
b2abacf3 | 1710 | * @pos: current file position |
485bb99b | 1711 | * |
1da177e4 LT |
1712 | * This is the "read()" routine for all filesystems |
1713 | * that can use the page cache directly. | |
1714 | */ | |
1715 | ssize_t | |
543ade1f BP |
1716 | generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, |
1717 | unsigned long nr_segs, loff_t pos) | |
1da177e4 LT |
1718 | { |
1719 | struct file *filp = iocb->ki_filp; | |
1720 | ssize_t retval; | |
1da177e4 | 1721 | size_t count; |
543ade1f | 1722 | loff_t *ppos = &iocb->ki_pos; |
6e58e79d | 1723 | struct iov_iter i; |
1da177e4 LT |
1724 | |
1725 | count = 0; | |
0ceb3314 DM |
1726 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1727 | if (retval) | |
1728 | return retval; | |
6e58e79d | 1729 | iov_iter_init(&i, iov, nr_segs, count, 0); |
1da177e4 LT |
1730 | |
1731 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | |
1732 | if (filp->f_flags & O_DIRECT) { | |
543ade1f | 1733 | loff_t size; |
1da177e4 LT |
1734 | struct address_space *mapping; |
1735 | struct inode *inode; | |
1736 | ||
1737 | mapping = filp->f_mapping; | |
1738 | inode = mapping->host; | |
1da177e4 LT |
1739 | if (!count) |
1740 | goto out; /* skip atime */ | |
1741 | size = i_size_read(inode); | |
9fe55eea | 1742 | retval = filemap_write_and_wait_range(mapping, pos, |
48b47c56 | 1743 | pos + iov_length(iov, nr_segs) - 1); |
9fe55eea SW |
1744 | if (!retval) { |
1745 | retval = mapping->a_ops->direct_IO(READ, iocb, | |
1746 | iov, pos, nr_segs); | |
1747 | } | |
1748 | if (retval > 0) { | |
1749 | *ppos = pos + retval; | |
1750 | count -= retval; | |
6e58e79d AV |
1751 | /* |
1752 | * If we did a short DIO read we need to skip the | |
1753 | * section of the iov that we've already read data into. | |
1754 | */ | |
1755 | iov_iter_advance(&i, retval); | |
9fe55eea | 1756 | } |
66f998f6 | 1757 | |
9fe55eea SW |
1758 | /* |
1759 | * Btrfs can have a short DIO read if we encounter | |
1760 | * compressed extents, so if there was an error, or if | |
1761 | * we've already read everything we wanted to, or if | |
1762 | * there was a short read because we hit EOF, go ahead | |
1763 | * and return. Otherwise fallthrough to buffered io for | |
1764 | * the rest of the read. | |
1765 | */ | |
1766 | if (retval < 0 || !count || *ppos >= size) { | |
1767 | file_accessed(filp); | |
1768 | goto out; | |
0e0bcae3 | 1769 | } |
1da177e4 LT |
1770 | } |
1771 | ||
6e58e79d | 1772 | retval = do_generic_file_read(filp, ppos, &i, retval); |
1da177e4 LT |
1773 | out: |
1774 | return retval; | |
1775 | } | |
1da177e4 LT |
1776 | EXPORT_SYMBOL(generic_file_aio_read); |
1777 | ||
1da177e4 | 1778 | #ifdef CONFIG_MMU |
485bb99b RD |
1779 | /** |
1780 | * page_cache_read - adds requested page to the page cache if not already there | |
1781 | * @file: file to read | |
1782 | * @offset: page index | |
1783 | * | |
1da177e4 LT |
1784 | * This adds the requested page to the page cache if it isn't already there, |
1785 | * and schedules an I/O to read in its contents from disk. | |
1786 | */ | |
920c7a5d | 1787 | static int page_cache_read(struct file *file, pgoff_t offset) |
1da177e4 LT |
1788 | { |
1789 | struct address_space *mapping = file->f_mapping; | |
1790 | struct page *page; | |
994fc28c | 1791 | int ret; |
1da177e4 | 1792 | |
994fc28c ZB |
1793 | do { |
1794 | page = page_cache_alloc_cold(mapping); | |
1795 | if (!page) | |
1796 | return -ENOMEM; | |
1797 | ||
1798 | ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); | |
1799 | if (ret == 0) | |
1800 | ret = mapping->a_ops->readpage(file, page); | |
1801 | else if (ret == -EEXIST) | |
1802 | ret = 0; /* losing race to add is OK */ | |
1da177e4 | 1803 | |
1da177e4 | 1804 | page_cache_release(page); |
1da177e4 | 1805 | |
994fc28c ZB |
1806 | } while (ret == AOP_TRUNCATED_PAGE); |
1807 | ||
1808 | return ret; | |
1da177e4 LT |
1809 | } |
1810 | ||
1811 | #define MMAP_LOTSAMISS (100) | |
1812 | ||
ef00e08e LT |
1813 | /* |
1814 | * Synchronous readahead happens when we don't even find | |
1815 | * a page in the page cache at all. | |
1816 | */ | |
1817 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | |
1818 | struct file_ra_state *ra, | |
1819 | struct file *file, | |
1820 | pgoff_t offset) | |
1821 | { | |
1822 | unsigned long ra_pages; | |
1823 | struct address_space *mapping = file->f_mapping; | |
1824 | ||
1825 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 1826 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e | 1827 | return; |
275b12bf WF |
1828 | if (!ra->ra_pages) |
1829 | return; | |
ef00e08e | 1830 | |
64363aad | 1831 | if (vma->vm_flags & VM_SEQ_READ) { |
7ffc59b4 WF |
1832 | page_cache_sync_readahead(mapping, ra, file, offset, |
1833 | ra->ra_pages); | |
ef00e08e LT |
1834 | return; |
1835 | } | |
1836 | ||
207d04ba AK |
1837 | /* Avoid banging the cache line if not needed */ |
1838 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
1839 | ra->mmap_miss++; |
1840 | ||
1841 | /* | |
1842 | * Do we miss much more than hit in this file? If so, | |
1843 | * stop bothering with read-ahead. It will only hurt. | |
1844 | */ | |
1845 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
1846 | return; | |
1847 | ||
d30a1100 WF |
1848 | /* |
1849 | * mmap read-around | |
1850 | */ | |
ef00e08e | 1851 | ra_pages = max_sane_readahead(ra->ra_pages); |
275b12bf WF |
1852 | ra->start = max_t(long, 0, offset - ra_pages / 2); |
1853 | ra->size = ra_pages; | |
2cbea1d3 | 1854 | ra->async_size = ra_pages / 4; |
275b12bf | 1855 | ra_submit(ra, mapping, file); |
ef00e08e LT |
1856 | } |
1857 | ||
1858 | /* | |
1859 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
1860 | * so we want to possibly extend the readahead further.. | |
1861 | */ | |
1862 | static void do_async_mmap_readahead(struct vm_area_struct *vma, | |
1863 | struct file_ra_state *ra, | |
1864 | struct file *file, | |
1865 | struct page *page, | |
1866 | pgoff_t offset) | |
1867 | { | |
1868 | struct address_space *mapping = file->f_mapping; | |
1869 | ||
1870 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 1871 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e LT |
1872 | return; |
1873 | if (ra->mmap_miss > 0) | |
1874 | ra->mmap_miss--; | |
1875 | if (PageReadahead(page)) | |
2fad6f5d WF |
1876 | page_cache_async_readahead(mapping, ra, file, |
1877 | page, offset, ra->ra_pages); | |
ef00e08e LT |
1878 | } |
1879 | ||
485bb99b | 1880 | /** |
54cb8821 | 1881 | * filemap_fault - read in file data for page fault handling |
d0217ac0 NP |
1882 | * @vma: vma in which the fault was taken |
1883 | * @vmf: struct vm_fault containing details of the fault | |
485bb99b | 1884 | * |
54cb8821 | 1885 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
1886 | * mapped memory region to read in file data during a page fault. |
1887 | * | |
1888 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
1889 | * it in the page cache, and handles the special cases reasonably without | |
1890 | * having a lot of duplicated code. | |
1891 | */ | |
d0217ac0 | 1892 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
1893 | { |
1894 | int error; | |
54cb8821 | 1895 | struct file *file = vma->vm_file; |
1da177e4 LT |
1896 | struct address_space *mapping = file->f_mapping; |
1897 | struct file_ra_state *ra = &file->f_ra; | |
1898 | struct inode *inode = mapping->host; | |
ef00e08e | 1899 | pgoff_t offset = vmf->pgoff; |
1da177e4 | 1900 | struct page *page; |
99e3e53f | 1901 | loff_t size; |
83c54070 | 1902 | int ret = 0; |
1da177e4 | 1903 | |
99e3e53f KS |
1904 | size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); |
1905 | if (offset >= size >> PAGE_CACHE_SHIFT) | |
5307cc1a | 1906 | return VM_FAULT_SIGBUS; |
1da177e4 | 1907 | |
1da177e4 | 1908 | /* |
49426420 | 1909 | * Do we have something in the page cache already? |
1da177e4 | 1910 | */ |
ef00e08e | 1911 | page = find_get_page(mapping, offset); |
45cac65b | 1912 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 1913 | /* |
ef00e08e LT |
1914 | * We found the page, so try async readahead before |
1915 | * waiting for the lock. | |
1da177e4 | 1916 | */ |
ef00e08e | 1917 | do_async_mmap_readahead(vma, ra, file, page, offset); |
45cac65b | 1918 | } else if (!page) { |
ef00e08e LT |
1919 | /* No page in the page cache at all */ |
1920 | do_sync_mmap_readahead(vma, ra, file, offset); | |
1921 | count_vm_event(PGMAJFAULT); | |
456f998e | 1922 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); |
ef00e08e LT |
1923 | ret = VM_FAULT_MAJOR; |
1924 | retry_find: | |
b522c94d | 1925 | page = find_get_page(mapping, offset); |
1da177e4 LT |
1926 | if (!page) |
1927 | goto no_cached_page; | |
1928 | } | |
1929 | ||
d88c0922 ML |
1930 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { |
1931 | page_cache_release(page); | |
d065bd81 | 1932 | return ret | VM_FAULT_RETRY; |
d88c0922 | 1933 | } |
b522c94d ML |
1934 | |
1935 | /* Did it get truncated? */ | |
1936 | if (unlikely(page->mapping != mapping)) { | |
1937 | unlock_page(page); | |
1938 | put_page(page); | |
1939 | goto retry_find; | |
1940 | } | |
309381fe | 1941 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 1942 | |
1da177e4 | 1943 | /* |
d00806b1 NP |
1944 | * We have a locked page in the page cache, now we need to check |
1945 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 1946 | */ |
d00806b1 | 1947 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
1948 | goto page_not_uptodate; |
1949 | ||
ef00e08e LT |
1950 | /* |
1951 | * Found the page and have a reference on it. | |
1952 | * We must recheck i_size under page lock. | |
1953 | */ | |
99e3e53f KS |
1954 | size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); |
1955 | if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { | |
d00806b1 | 1956 | unlock_page(page); |
745ad48e | 1957 | page_cache_release(page); |
5307cc1a | 1958 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
1959 | } |
1960 | ||
d0217ac0 | 1961 | vmf->page = page; |
83c54070 | 1962 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 1963 | |
1da177e4 LT |
1964 | no_cached_page: |
1965 | /* | |
1966 | * We're only likely to ever get here if MADV_RANDOM is in | |
1967 | * effect. | |
1968 | */ | |
ef00e08e | 1969 | error = page_cache_read(file, offset); |
1da177e4 LT |
1970 | |
1971 | /* | |
1972 | * The page we want has now been added to the page cache. | |
1973 | * In the unlikely event that someone removed it in the | |
1974 | * meantime, we'll just come back here and read it again. | |
1975 | */ | |
1976 | if (error >= 0) | |
1977 | goto retry_find; | |
1978 | ||
1979 | /* | |
1980 | * An error return from page_cache_read can result if the | |
1981 | * system is low on memory, or a problem occurs while trying | |
1982 | * to schedule I/O. | |
1983 | */ | |
1984 | if (error == -ENOMEM) | |
d0217ac0 NP |
1985 | return VM_FAULT_OOM; |
1986 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
1987 | |
1988 | page_not_uptodate: | |
1da177e4 LT |
1989 | /* |
1990 | * Umm, take care of errors if the page isn't up-to-date. | |
1991 | * Try to re-read it _once_. We do this synchronously, | |
1992 | * because there really aren't any performance issues here | |
1993 | * and we need to check for errors. | |
1994 | */ | |
1da177e4 | 1995 | ClearPageError(page); |
994fc28c | 1996 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
1997 | if (!error) { |
1998 | wait_on_page_locked(page); | |
1999 | if (!PageUptodate(page)) | |
2000 | error = -EIO; | |
2001 | } | |
d00806b1 NP |
2002 | page_cache_release(page); |
2003 | ||
2004 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2005 | goto retry_find; |
1da177e4 | 2006 | |
d00806b1 | 2007 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2008 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2009 | return VM_FAULT_SIGBUS; |
54cb8821 NP |
2010 | } |
2011 | EXPORT_SYMBOL(filemap_fault); | |
2012 | ||
f1820361 KS |
2013 | void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) |
2014 | { | |
2015 | struct radix_tree_iter iter; | |
2016 | void **slot; | |
2017 | struct file *file = vma->vm_file; | |
2018 | struct address_space *mapping = file->f_mapping; | |
2019 | loff_t size; | |
2020 | struct page *page; | |
2021 | unsigned long address = (unsigned long) vmf->virtual_address; | |
2022 | unsigned long addr; | |
2023 | pte_t *pte; | |
2024 | ||
2025 | rcu_read_lock(); | |
2026 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { | |
2027 | if (iter.index > vmf->max_pgoff) | |
2028 | break; | |
2029 | repeat: | |
2030 | page = radix_tree_deref_slot(slot); | |
2031 | if (unlikely(!page)) | |
2032 | goto next; | |
2033 | if (radix_tree_exception(page)) { | |
2034 | if (radix_tree_deref_retry(page)) | |
2035 | break; | |
2036 | else | |
2037 | goto next; | |
2038 | } | |
2039 | ||
2040 | if (!page_cache_get_speculative(page)) | |
2041 | goto repeat; | |
2042 | ||
2043 | /* Has the page moved? */ | |
2044 | if (unlikely(page != *slot)) { | |
2045 | page_cache_release(page); | |
2046 | goto repeat; | |
2047 | } | |
2048 | ||
2049 | if (!PageUptodate(page) || | |
2050 | PageReadahead(page) || | |
2051 | PageHWPoison(page)) | |
2052 | goto skip; | |
2053 | if (!trylock_page(page)) | |
2054 | goto skip; | |
2055 | ||
2056 | if (page->mapping != mapping || !PageUptodate(page)) | |
2057 | goto unlock; | |
2058 | ||
99e3e53f KS |
2059 | size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); |
2060 | if (page->index >= size >> PAGE_CACHE_SHIFT) | |
f1820361 KS |
2061 | goto unlock; |
2062 | ||
2063 | pte = vmf->pte + page->index - vmf->pgoff; | |
2064 | if (!pte_none(*pte)) | |
2065 | goto unlock; | |
2066 | ||
2067 | if (file->f_ra.mmap_miss > 0) | |
2068 | file->f_ra.mmap_miss--; | |
2069 | addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; | |
2070 | do_set_pte(vma, addr, page, pte, false, false); | |
2071 | unlock_page(page); | |
2072 | goto next; | |
2073 | unlock: | |
2074 | unlock_page(page); | |
2075 | skip: | |
2076 | page_cache_release(page); | |
2077 | next: | |
2078 | if (iter.index == vmf->max_pgoff) | |
2079 | break; | |
2080 | } | |
2081 | rcu_read_unlock(); | |
2082 | } | |
2083 | EXPORT_SYMBOL(filemap_map_pages); | |
2084 | ||
4fcf1c62 JK |
2085 | int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) |
2086 | { | |
2087 | struct page *page = vmf->page; | |
496ad9aa | 2088 | struct inode *inode = file_inode(vma->vm_file); |
4fcf1c62 JK |
2089 | int ret = VM_FAULT_LOCKED; |
2090 | ||
14da9200 | 2091 | sb_start_pagefault(inode->i_sb); |
4fcf1c62 JK |
2092 | file_update_time(vma->vm_file); |
2093 | lock_page(page); | |
2094 | if (page->mapping != inode->i_mapping) { | |
2095 | unlock_page(page); | |
2096 | ret = VM_FAULT_NOPAGE; | |
2097 | goto out; | |
2098 | } | |
14da9200 JK |
2099 | /* |
2100 | * We mark the page dirty already here so that when freeze is in | |
2101 | * progress, we are guaranteed that writeback during freezing will | |
2102 | * see the dirty page and writeprotect it again. | |
2103 | */ | |
2104 | set_page_dirty(page); | |
1d1d1a76 | 2105 | wait_for_stable_page(page); |
4fcf1c62 | 2106 | out: |
14da9200 | 2107 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2108 | return ret; |
2109 | } | |
2110 | EXPORT_SYMBOL(filemap_page_mkwrite); | |
2111 | ||
f0f37e2f | 2112 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2113 | .fault = filemap_fault, |
f1820361 | 2114 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2115 | .page_mkwrite = filemap_page_mkwrite, |
0b173bc4 | 2116 | .remap_pages = generic_file_remap_pages, |
1da177e4 LT |
2117 | }; |
2118 | ||
2119 | /* This is used for a general mmap of a disk file */ | |
2120 | ||
2121 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2122 | { | |
2123 | struct address_space *mapping = file->f_mapping; | |
2124 | ||
2125 | if (!mapping->a_ops->readpage) | |
2126 | return -ENOEXEC; | |
2127 | file_accessed(file); | |
2128 | vma->vm_ops = &generic_file_vm_ops; | |
2129 | return 0; | |
2130 | } | |
1da177e4 LT |
2131 | |
2132 | /* | |
2133 | * This is for filesystems which do not implement ->writepage. | |
2134 | */ | |
2135 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2136 | { | |
2137 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2138 | return -EINVAL; | |
2139 | return generic_file_mmap(file, vma); | |
2140 | } | |
2141 | #else | |
2142 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2143 | { | |
2144 | return -ENOSYS; | |
2145 | } | |
2146 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2147 | { | |
2148 | return -ENOSYS; | |
2149 | } | |
2150 | #endif /* CONFIG_MMU */ | |
2151 | ||
2152 | EXPORT_SYMBOL(generic_file_mmap); | |
2153 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2154 | ||
67f9fd91 SL |
2155 | static struct page *wait_on_page_read(struct page *page) |
2156 | { | |
2157 | if (!IS_ERR(page)) { | |
2158 | wait_on_page_locked(page); | |
2159 | if (!PageUptodate(page)) { | |
2160 | page_cache_release(page); | |
2161 | page = ERR_PTR(-EIO); | |
2162 | } | |
2163 | } | |
2164 | return page; | |
2165 | } | |
2166 | ||
6fe6900e | 2167 | static struct page *__read_cache_page(struct address_space *mapping, |
57f6b96c | 2168 | pgoff_t index, |
5e5358e7 | 2169 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2170 | void *data, |
2171 | gfp_t gfp) | |
1da177e4 | 2172 | { |
eb2be189 | 2173 | struct page *page; |
1da177e4 LT |
2174 | int err; |
2175 | repeat: | |
2176 | page = find_get_page(mapping, index); | |
2177 | if (!page) { | |
0531b2aa | 2178 | page = __page_cache_alloc(gfp | __GFP_COLD); |
eb2be189 NP |
2179 | if (!page) |
2180 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2181 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 NP |
2182 | if (unlikely(err)) { |
2183 | page_cache_release(page); | |
2184 | if (err == -EEXIST) | |
2185 | goto repeat; | |
1da177e4 | 2186 | /* Presumably ENOMEM for radix tree node */ |
1da177e4 LT |
2187 | return ERR_PTR(err); |
2188 | } | |
1da177e4 LT |
2189 | err = filler(data, page); |
2190 | if (err < 0) { | |
2191 | page_cache_release(page); | |
2192 | page = ERR_PTR(err); | |
67f9fd91 SL |
2193 | } else { |
2194 | page = wait_on_page_read(page); | |
1da177e4 LT |
2195 | } |
2196 | } | |
1da177e4 LT |
2197 | return page; |
2198 | } | |
2199 | ||
0531b2aa | 2200 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2201 | pgoff_t index, |
5e5358e7 | 2202 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2203 | void *data, |
2204 | gfp_t gfp) | |
2205 | ||
1da177e4 LT |
2206 | { |
2207 | struct page *page; | |
2208 | int err; | |
2209 | ||
2210 | retry: | |
0531b2aa | 2211 | page = __read_cache_page(mapping, index, filler, data, gfp); |
1da177e4 | 2212 | if (IS_ERR(page)) |
c855ff37 | 2213 | return page; |
1da177e4 LT |
2214 | if (PageUptodate(page)) |
2215 | goto out; | |
2216 | ||
2217 | lock_page(page); | |
2218 | if (!page->mapping) { | |
2219 | unlock_page(page); | |
2220 | page_cache_release(page); | |
2221 | goto retry; | |
2222 | } | |
2223 | if (PageUptodate(page)) { | |
2224 | unlock_page(page); | |
2225 | goto out; | |
2226 | } | |
2227 | err = filler(data, page); | |
2228 | if (err < 0) { | |
2229 | page_cache_release(page); | |
c855ff37 | 2230 | return ERR_PTR(err); |
67f9fd91 SL |
2231 | } else { |
2232 | page = wait_on_page_read(page); | |
2233 | if (IS_ERR(page)) | |
2234 | return page; | |
1da177e4 | 2235 | } |
c855ff37 | 2236 | out: |
6fe6900e NP |
2237 | mark_page_accessed(page); |
2238 | return page; | |
2239 | } | |
0531b2aa LT |
2240 | |
2241 | /** | |
67f9fd91 | 2242 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2243 | * @mapping: the page's address_space |
2244 | * @index: the page index | |
2245 | * @filler: function to perform the read | |
5e5358e7 | 2246 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2247 | * |
0531b2aa | 2248 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2249 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2250 | * |
2251 | * If the page does not get brought uptodate, return -EIO. | |
2252 | */ | |
67f9fd91 | 2253 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2254 | pgoff_t index, |
5e5358e7 | 2255 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2256 | void *data) |
2257 | { | |
2258 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | |
2259 | } | |
67f9fd91 | 2260 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2261 | |
2262 | /** | |
2263 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2264 | * @mapping: the page's address_space | |
2265 | * @index: the page index | |
2266 | * @gfp: the page allocator flags to use if allocating | |
2267 | * | |
2268 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2269 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2270 | * |
2271 | * If the page does not get brought uptodate, return -EIO. | |
2272 | */ | |
2273 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2274 | pgoff_t index, | |
2275 | gfp_t gfp) | |
2276 | { | |
2277 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | |
2278 | ||
67f9fd91 | 2279 | return do_read_cache_page(mapping, index, filler, NULL, gfp); |
0531b2aa LT |
2280 | } |
2281 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2282 | ||
1da177e4 LT |
2283 | /* |
2284 | * Performs necessary checks before doing a write | |
2285 | * | |
485bb99b | 2286 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2287 | * Returns appropriate error code that caller should return or |
2288 | * zero in case that write should be allowed. | |
2289 | */ | |
2290 | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) | |
2291 | { | |
2292 | struct inode *inode = file->f_mapping->host; | |
59e99e5b | 2293 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
1da177e4 LT |
2294 | |
2295 | if (unlikely(*pos < 0)) | |
2296 | return -EINVAL; | |
2297 | ||
1da177e4 LT |
2298 | if (!isblk) { |
2299 | /* FIXME: this is for backwards compatibility with 2.4 */ | |
2300 | if (file->f_flags & O_APPEND) | |
2301 | *pos = i_size_read(inode); | |
2302 | ||
2303 | if (limit != RLIM_INFINITY) { | |
2304 | if (*pos >= limit) { | |
2305 | send_sig(SIGXFSZ, current, 0); | |
2306 | return -EFBIG; | |
2307 | } | |
2308 | if (*count > limit - (typeof(limit))*pos) { | |
2309 | *count = limit - (typeof(limit))*pos; | |
2310 | } | |
2311 | } | |
2312 | } | |
2313 | ||
2314 | /* | |
2315 | * LFS rule | |
2316 | */ | |
2317 | if (unlikely(*pos + *count > MAX_NON_LFS && | |
2318 | !(file->f_flags & O_LARGEFILE))) { | |
2319 | if (*pos >= MAX_NON_LFS) { | |
1da177e4 LT |
2320 | return -EFBIG; |
2321 | } | |
2322 | if (*count > MAX_NON_LFS - (unsigned long)*pos) { | |
2323 | *count = MAX_NON_LFS - (unsigned long)*pos; | |
2324 | } | |
2325 | } | |
2326 | ||
2327 | /* | |
2328 | * Are we about to exceed the fs block limit ? | |
2329 | * | |
2330 | * If we have written data it becomes a short write. If we have | |
2331 | * exceeded without writing data we send a signal and return EFBIG. | |
2332 | * Linus frestrict idea will clean these up nicely.. | |
2333 | */ | |
2334 | if (likely(!isblk)) { | |
2335 | if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { | |
2336 | if (*count || *pos > inode->i_sb->s_maxbytes) { | |
1da177e4 LT |
2337 | return -EFBIG; |
2338 | } | |
2339 | /* zero-length writes at ->s_maxbytes are OK */ | |
2340 | } | |
2341 | ||
2342 | if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) | |
2343 | *count = inode->i_sb->s_maxbytes - *pos; | |
2344 | } else { | |
9361401e | 2345 | #ifdef CONFIG_BLOCK |
1da177e4 LT |
2346 | loff_t isize; |
2347 | if (bdev_read_only(I_BDEV(inode))) | |
2348 | return -EPERM; | |
2349 | isize = i_size_read(inode); | |
2350 | if (*pos >= isize) { | |
2351 | if (*count || *pos > isize) | |
2352 | return -ENOSPC; | |
2353 | } | |
2354 | ||
2355 | if (*pos + *count > isize) | |
2356 | *count = isize - *pos; | |
9361401e DH |
2357 | #else |
2358 | return -EPERM; | |
2359 | #endif | |
1da177e4 LT |
2360 | } |
2361 | return 0; | |
2362 | } | |
2363 | EXPORT_SYMBOL(generic_write_checks); | |
2364 | ||
afddba49 NP |
2365 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2366 | loff_t pos, unsigned len, unsigned flags, | |
2367 | struct page **pagep, void **fsdata) | |
2368 | { | |
2369 | const struct address_space_operations *aops = mapping->a_ops; | |
2370 | ||
4e02ed4b | 2371 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 2372 | pagep, fsdata); |
afddba49 NP |
2373 | } |
2374 | EXPORT_SYMBOL(pagecache_write_begin); | |
2375 | ||
2376 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
2377 | loff_t pos, unsigned len, unsigned copied, | |
2378 | struct page *page, void *fsdata) | |
2379 | { | |
2380 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 2381 | |
4e02ed4b NP |
2382 | mark_page_accessed(page); |
2383 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); | |
afddba49 NP |
2384 | } |
2385 | EXPORT_SYMBOL(pagecache_write_end); | |
2386 | ||
1da177e4 | 2387 | ssize_t |
f8579f86 AV |
2388 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, |
2389 | loff_t pos, size_t count, size_t ocount) | |
1da177e4 LT |
2390 | { |
2391 | struct file *file = iocb->ki_filp; | |
2392 | struct address_space *mapping = file->f_mapping; | |
2393 | struct inode *inode = mapping->host; | |
2394 | ssize_t written; | |
a969e903 CH |
2395 | size_t write_len; |
2396 | pgoff_t end; | |
1da177e4 LT |
2397 | |
2398 | if (count != ocount) | |
f8579f86 | 2399 | from->nr_segs = iov_shorten((struct iovec *)from->iov, from->nr_segs, count); |
1da177e4 | 2400 | |
f8579f86 | 2401 | write_len = iov_length(from->iov, from->nr_segs); |
a969e903 | 2402 | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; |
a969e903 | 2403 | |
48b47c56 | 2404 | written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); |
a969e903 CH |
2405 | if (written) |
2406 | goto out; | |
2407 | ||
2408 | /* | |
2409 | * After a write we want buffered reads to be sure to go to disk to get | |
2410 | * the new data. We invalidate clean cached page from the region we're | |
2411 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 2412 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 CH |
2413 | */ |
2414 | if (mapping->nrpages) { | |
2415 | written = invalidate_inode_pages2_range(mapping, | |
2416 | pos >> PAGE_CACHE_SHIFT, end); | |
6ccfa806 HH |
2417 | /* |
2418 | * If a page can not be invalidated, return 0 to fall back | |
2419 | * to buffered write. | |
2420 | */ | |
2421 | if (written) { | |
2422 | if (written == -EBUSY) | |
2423 | return 0; | |
a969e903 | 2424 | goto out; |
6ccfa806 | 2425 | } |
a969e903 CH |
2426 | } |
2427 | ||
f8579f86 | 2428 | written = mapping->a_ops->direct_IO(WRITE, iocb, from->iov, pos, from->nr_segs); |
a969e903 CH |
2429 | |
2430 | /* | |
2431 | * Finally, try again to invalidate clean pages which might have been | |
2432 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
2433 | * if the source of the write was an mmap'ed region of the file | |
2434 | * we're writing. Either one is a pretty crazy thing to do, | |
2435 | * so we don't support it 100%. If this invalidation | |
2436 | * fails, tough, the write still worked... | |
2437 | */ | |
2438 | if (mapping->nrpages) { | |
2439 | invalidate_inode_pages2_range(mapping, | |
2440 | pos >> PAGE_CACHE_SHIFT, end); | |
2441 | } | |
2442 | ||
1da177e4 | 2443 | if (written > 0) { |
0116651c | 2444 | pos += written; |
f8579f86 | 2445 | iov_iter_advance(from, written); |
0116651c NK |
2446 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2447 | i_size_write(inode, pos); | |
1da177e4 LT |
2448 | mark_inode_dirty(inode); |
2449 | } | |
5cb6c6c7 | 2450 | iocb->ki_pos = pos; |
1da177e4 | 2451 | } |
a969e903 | 2452 | out: |
1da177e4 LT |
2453 | return written; |
2454 | } | |
2455 | EXPORT_SYMBOL(generic_file_direct_write); | |
2456 | ||
eb2be189 NP |
2457 | /* |
2458 | * Find or create a page at the given pagecache position. Return the locked | |
2459 | * page. This function is specifically for buffered writes. | |
2460 | */ | |
54566b2c NP |
2461 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
2462 | pgoff_t index, unsigned flags) | |
eb2be189 NP |
2463 | { |
2464 | int status; | |
0faa70cb | 2465 | gfp_t gfp_mask; |
eb2be189 | 2466 | struct page *page; |
54566b2c | 2467 | gfp_t gfp_notmask = 0; |
0faa70cb | 2468 | |
1010bb1b FW |
2469 | gfp_mask = mapping_gfp_mask(mapping); |
2470 | if (mapping_cap_account_dirty(mapping)) | |
2471 | gfp_mask |= __GFP_WRITE; | |
54566b2c NP |
2472 | if (flags & AOP_FLAG_NOFS) |
2473 | gfp_notmask = __GFP_FS; | |
eb2be189 NP |
2474 | repeat: |
2475 | page = find_lock_page(mapping, index); | |
c585a267 | 2476 | if (page) |
3d08bcc8 | 2477 | goto found; |
eb2be189 | 2478 | |
0faa70cb | 2479 | page = __page_cache_alloc(gfp_mask & ~gfp_notmask); |
eb2be189 NP |
2480 | if (!page) |
2481 | return NULL; | |
54566b2c NP |
2482 | status = add_to_page_cache_lru(page, mapping, index, |
2483 | GFP_KERNEL & ~gfp_notmask); | |
eb2be189 NP |
2484 | if (unlikely(status)) { |
2485 | page_cache_release(page); | |
2486 | if (status == -EEXIST) | |
2487 | goto repeat; | |
2488 | return NULL; | |
2489 | } | |
3d08bcc8 | 2490 | found: |
1d1d1a76 | 2491 | wait_for_stable_page(page); |
eb2be189 NP |
2492 | return page; |
2493 | } | |
54566b2c | 2494 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 2495 | |
3b93f911 | 2496 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
2497 | struct iov_iter *i, loff_t pos) |
2498 | { | |
2499 | struct address_space *mapping = file->f_mapping; | |
2500 | const struct address_space_operations *a_ops = mapping->a_ops; | |
2501 | long status = 0; | |
2502 | ssize_t written = 0; | |
674b892e NP |
2503 | unsigned int flags = 0; |
2504 | ||
2505 | /* | |
2506 | * Copies from kernel address space cannot fail (NFSD is a big user). | |
2507 | */ | |
2508 | if (segment_eq(get_fs(), KERNEL_DS)) | |
2509 | flags |= AOP_FLAG_UNINTERRUPTIBLE; | |
afddba49 NP |
2510 | |
2511 | do { | |
2512 | struct page *page; | |
afddba49 NP |
2513 | unsigned long offset; /* Offset into pagecache page */ |
2514 | unsigned long bytes; /* Bytes to write to page */ | |
2515 | size_t copied; /* Bytes copied from user */ | |
2516 | void *fsdata; | |
2517 | ||
2518 | offset = (pos & (PAGE_CACHE_SIZE - 1)); | |
afddba49 NP |
2519 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
2520 | iov_iter_count(i)); | |
2521 | ||
2522 | again: | |
afddba49 NP |
2523 | /* |
2524 | * Bring in the user page that we will copy from _first_. | |
2525 | * Otherwise there's a nasty deadlock on copying from the | |
2526 | * same page as we're writing to, without it being marked | |
2527 | * up-to-date. | |
2528 | * | |
2529 | * Not only is this an optimisation, but it is also required | |
2530 | * to check that the address is actually valid, when atomic | |
2531 | * usercopies are used, below. | |
2532 | */ | |
2533 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
2534 | status = -EFAULT; | |
2535 | break; | |
2536 | } | |
2537 | ||
674b892e | 2538 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 NP |
2539 | &page, &fsdata); |
2540 | if (unlikely(status)) | |
2541 | break; | |
2542 | ||
931e80e4 | 2543 | if (mapping_writably_mapped(mapping)) |
2544 | flush_dcache_page(page); | |
2545 | ||
afddba49 | 2546 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
2547 | flush_dcache_page(page); |
2548 | ||
c8236db9 | 2549 | mark_page_accessed(page); |
afddba49 NP |
2550 | status = a_ops->write_end(file, mapping, pos, bytes, copied, |
2551 | page, fsdata); | |
2552 | if (unlikely(status < 0)) | |
2553 | break; | |
2554 | copied = status; | |
2555 | ||
2556 | cond_resched(); | |
2557 | ||
124d3b70 | 2558 | iov_iter_advance(i, copied); |
afddba49 NP |
2559 | if (unlikely(copied == 0)) { |
2560 | /* | |
2561 | * If we were unable to copy any data at all, we must | |
2562 | * fall back to a single segment length write. | |
2563 | * | |
2564 | * If we didn't fallback here, we could livelock | |
2565 | * because not all segments in the iov can be copied at | |
2566 | * once without a pagefault. | |
2567 | */ | |
2568 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | |
2569 | iov_iter_single_seg_count(i)); | |
2570 | goto again; | |
2571 | } | |
afddba49 NP |
2572 | pos += copied; |
2573 | written += copied; | |
2574 | ||
2575 | balance_dirty_pages_ratelimited(mapping); | |
a50527b1 JK |
2576 | if (fatal_signal_pending(current)) { |
2577 | status = -EINTR; | |
2578 | break; | |
2579 | } | |
afddba49 NP |
2580 | } while (iov_iter_count(i)); |
2581 | ||
2582 | return written ? written : status; | |
2583 | } | |
3b93f911 | 2584 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 2585 | |
e4dd9de3 JK |
2586 | /** |
2587 | * __generic_file_aio_write - write data to a file | |
2588 | * @iocb: IO state structure (file, offset, etc.) | |
2589 | * @iov: vector with data to write | |
2590 | * @nr_segs: number of segments in the vector | |
e4dd9de3 JK |
2591 | * |
2592 | * This function does all the work needed for actually writing data to a | |
2593 | * file. It does all basic checks, removes SUID from the file, updates | |
2594 | * modification times and calls proper subroutines depending on whether we | |
2595 | * do direct IO or a standard buffered write. | |
2596 | * | |
2597 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
2598 | * object which does not need locking at all. | |
2599 | * | |
2600 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
2601 | * A caller has to handle it. This is mainly due to the fact that we want to | |
2602 | * avoid syncing under i_mutex. | |
2603 | */ | |
2604 | ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | |
41fc56d5 | 2605 | unsigned long nr_segs) |
1da177e4 LT |
2606 | { |
2607 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 2608 | struct address_space * mapping = file->f_mapping; |
1da177e4 LT |
2609 | size_t ocount; /* original count */ |
2610 | size_t count; /* after file limit checks */ | |
2611 | struct inode *inode = mapping->host; | |
41fc56d5 | 2612 | loff_t pos = iocb->ki_pos; |
3b93f911 | 2613 | ssize_t written = 0; |
1da177e4 | 2614 | ssize_t err; |
3b93f911 AV |
2615 | ssize_t status; |
2616 | struct iov_iter from; | |
1da177e4 LT |
2617 | |
2618 | ocount = 0; | |
0ceb3314 DM |
2619 | err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); |
2620 | if (err) | |
2621 | return err; | |
1da177e4 LT |
2622 | |
2623 | count = ocount; | |
1da177e4 | 2624 | |
1da177e4 LT |
2625 | /* We can write back this queue in page reclaim */ |
2626 | current->backing_dev_info = mapping->backing_dev_info; | |
1da177e4 LT |
2627 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); |
2628 | if (err) | |
2629 | goto out; | |
2630 | ||
2631 | if (count == 0) | |
2632 | goto out; | |
2633 | ||
2f1936b8 | 2634 | err = file_remove_suid(file); |
1da177e4 LT |
2635 | if (err) |
2636 | goto out; | |
2637 | ||
c3b2da31 JB |
2638 | err = file_update_time(file); |
2639 | if (err) | |
2640 | goto out; | |
1da177e4 | 2641 | |
3b93f911 AV |
2642 | iov_iter_init(&from, iov, nr_segs, count, 0); |
2643 | ||
1da177e4 LT |
2644 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ |
2645 | if (unlikely(file->f_flags & O_DIRECT)) { | |
fb5527e6 | 2646 | loff_t endbyte; |
fb5527e6 | 2647 | |
f8579f86 | 2648 | written = generic_file_direct_write(iocb, &from, pos, |
5cb6c6c7 | 2649 | count, ocount); |
1da177e4 LT |
2650 | if (written < 0 || written == count) |
2651 | goto out; | |
3b93f911 | 2652 | |
1da177e4 LT |
2653 | /* |
2654 | * direct-io write to a hole: fall through to buffered I/O | |
2655 | * for completing the rest of the request. | |
2656 | */ | |
2657 | pos += written; | |
2658 | count -= written; | |
3b93f911 AV |
2659 | |
2660 | status = generic_perform_write(file, &from, pos); | |
fb5527e6 | 2661 | /* |
3b93f911 | 2662 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
2663 | * then we want to return the number of bytes which were |
2664 | * direct-written, or the error code if that was zero. Note | |
2665 | * that this differs from normal direct-io semantics, which | |
2666 | * will return -EFOO even if some bytes were written. | |
2667 | */ | |
3b93f911 AV |
2668 | if (unlikely(status < 0) && !written) { |
2669 | err = status; | |
fb5527e6 JM |
2670 | goto out; |
2671 | } | |
3b93f911 | 2672 | iocb->ki_pos = pos + status; |
fb5527e6 JM |
2673 | /* |
2674 | * We need to ensure that the page cache pages are written to | |
2675 | * disk and invalidated to preserve the expected O_DIRECT | |
2676 | * semantics. | |
2677 | */ | |
3b93f911 | 2678 | endbyte = pos + status - 1; |
c05c4edd | 2679 | err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); |
fb5527e6 | 2680 | if (err == 0) { |
3b93f911 | 2681 | written += status; |
fb5527e6 JM |
2682 | invalidate_mapping_pages(mapping, |
2683 | pos >> PAGE_CACHE_SHIFT, | |
2684 | endbyte >> PAGE_CACHE_SHIFT); | |
2685 | } else { | |
2686 | /* | |
2687 | * We don't know how much we wrote, so just return | |
2688 | * the number of bytes which were direct-written | |
2689 | */ | |
2690 | } | |
2691 | } else { | |
3b93f911 AV |
2692 | written = generic_perform_write(file, &from, pos); |
2693 | if (likely(written >= 0)) | |
2694 | iocb->ki_pos = pos + written; | |
fb5527e6 | 2695 | } |
1da177e4 LT |
2696 | out: |
2697 | current->backing_dev_info = NULL; | |
2698 | return written ? written : err; | |
2699 | } | |
e4dd9de3 JK |
2700 | EXPORT_SYMBOL(__generic_file_aio_write); |
2701 | ||
e4dd9de3 JK |
2702 | /** |
2703 | * generic_file_aio_write - write data to a file | |
2704 | * @iocb: IO state structure | |
2705 | * @iov: vector with data to write | |
2706 | * @nr_segs: number of segments in the vector | |
2707 | * @pos: position in file where to write | |
2708 | * | |
2709 | * This is a wrapper around __generic_file_aio_write() to be used by most | |
2710 | * filesystems. It takes care of syncing the file in case of O_SYNC file | |
2711 | * and acquires i_mutex as needed. | |
2712 | */ | |
027445c3 BP |
2713 | ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2714 | unsigned long nr_segs, loff_t pos) | |
1da177e4 LT |
2715 | { |
2716 | struct file *file = iocb->ki_filp; | |
148f948b | 2717 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 2718 | ssize_t ret; |
1da177e4 LT |
2719 | |
2720 | BUG_ON(iocb->ki_pos != pos); | |
2721 | ||
1b1dcc1b | 2722 | mutex_lock(&inode->i_mutex); |
41fc56d5 | 2723 | ret = __generic_file_aio_write(iocb, iov, nr_segs); |
1b1dcc1b | 2724 | mutex_unlock(&inode->i_mutex); |
1da177e4 | 2725 | |
02afc27f | 2726 | if (ret > 0) { |
1da177e4 LT |
2727 | ssize_t err; |
2728 | ||
d311d79d AV |
2729 | err = generic_write_sync(file, iocb->ki_pos - ret, ret); |
2730 | if (err < 0) | |
1da177e4 LT |
2731 | ret = err; |
2732 | } | |
2733 | return ret; | |
2734 | } | |
2735 | EXPORT_SYMBOL(generic_file_aio_write); | |
2736 | ||
cf9a2ae8 DH |
2737 | /** |
2738 | * try_to_release_page() - release old fs-specific metadata on a page | |
2739 | * | |
2740 | * @page: the page which the kernel is trying to free | |
2741 | * @gfp_mask: memory allocation flags (and I/O mode) | |
2742 | * | |
2743 | * The address_space is to try to release any data against the page | |
2744 | * (presumably at page->private). If the release was successful, return `1'. | |
2745 | * Otherwise return zero. | |
2746 | * | |
266cf658 DH |
2747 | * This may also be called if PG_fscache is set on a page, indicating that the |
2748 | * page is known to the local caching routines. | |
2749 | * | |
cf9a2ae8 | 2750 | * The @gfp_mask argument specifies whether I/O may be performed to release |
3f31fddf | 2751 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
cf9a2ae8 | 2752 | * |
cf9a2ae8 DH |
2753 | */ |
2754 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
2755 | { | |
2756 | struct address_space * const mapping = page->mapping; | |
2757 | ||
2758 | BUG_ON(!PageLocked(page)); | |
2759 | if (PageWriteback(page)) | |
2760 | return 0; | |
2761 | ||
2762 | if (mapping && mapping->a_ops->releasepage) | |
2763 | return mapping->a_ops->releasepage(page, gfp_mask); | |
2764 | return try_to_free_buffers(page); | |
2765 | } | |
2766 | ||
2767 | EXPORT_SYMBOL(try_to_release_page); |