]> Git Repo - linux.git/blame - fs/btrfs/tree-log.c
btrfs: skip backref walking during fiemap if we know the leaf is shared
[linux.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
6787bb9f
NB
20#include "block-group.h"
21#include "space-info.h"
d3575156 22#include "zoned.h"
26c2c454 23#include "inode-item.h"
c7f13d42 24#include "fs.h"
ad1ac501 25#include "accessors.h"
a0231804 26#include "extent-tree.h"
45c40c8f 27#include "root-tree.h"
f2b39277 28#include "dir-item.h"
7c8ede16 29#include "file-item.h"
af142b6f 30#include "file.h"
aa5d3003 31#include "orphan.h"
103c1972 32#include "tree-checker.h"
e02119d5 33
e09d94c9
FM
34#define MAX_CONFLICT_INODES 10
35
e02119d5
CM
36/* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
e13976cf
DS
42enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
e13976cf 45};
e02119d5 46
12fcfd22
CM
47/*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
e02119d5
CM
90/*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
e13976cf
DS
99enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104};
e02119d5 105
12fcfd22 106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 107 struct btrfs_inode *inode,
49dae1bc 108 int inode_only,
8407f553 109 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
fa1a0f42 118static void wait_log_commit(struct btrfs_root *root, int transid);
e02119d5
CM
119
120/*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
e02119d5
CM
143/*
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
147 */
148static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
e02119d5 151{
0b246afa 152 struct btrfs_fs_info *fs_info = root->fs_info;
47876f7c 153 struct btrfs_root *tree_root = fs_info->tree_root;
fa1a0f42 154 const bool zoned = btrfs_is_zoned(fs_info);
34eb2a52 155 int ret = 0;
fa1a0f42 156 bool created = false;
7237f183 157
47876f7c
FM
158 /*
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
161 */
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
fa1a0f42 166 if (!ret) {
47876f7c 167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
fa1a0f42
NA
168 created = true;
169 }
47876f7c
FM
170 }
171 mutex_unlock(&tree_root->log_mutex);
172 if (ret)
173 return ret;
174 }
175
7237f183 176 mutex_lock(&root->log_mutex);
34eb2a52 177
fa1a0f42 178again:
7237f183 179 if (root->log_root) {
fa1a0f42
NA
180 int index = (root->log_transid + 1) % 2;
181
4884b8e8 182 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 183 ret = BTRFS_LOG_FORCE_COMMIT;
50471a38
MX
184 goto out;
185 }
34eb2a52 186
fa1a0f42
NA
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
189 goto again;
190 }
191
ff782e0a 192 if (!root->log_start_pid) {
27cdeb70 193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 194 root->log_start_pid = current->pid;
ff782e0a 195 } else if (root->log_start_pid != current->pid) {
27cdeb70 196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 197 }
34eb2a52 198 } else {
fa1a0f42
NA
199 /*
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
203 * writing.
204 */
205 if (zoned && !created) {
f31f09f6 206 ret = BTRFS_LOG_FORCE_COMMIT;
fa1a0f42
NA
207 goto out;
208 }
209
e02119d5 210 ret = btrfs_add_log_tree(trans, root);
4a500fd1 211 if (ret)
e87ac136 212 goto out;
34eb2a52 213
e7a79811 214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
e02119d5 217 }
34eb2a52 218
7237f183 219 atomic_inc(&root->log_writers);
289cffcb 220 if (!ctx->logging_new_name) {
34eb2a52 221 int index = root->log_transid % 2;
8b050d35 222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 223 ctx->log_transid = root->log_transid;
8b050d35 224 }
34eb2a52 225
e87ac136 226out:
7237f183 227 mutex_unlock(&root->log_mutex);
e87ac136 228 return ret;
e02119d5
CM
229}
230
231/*
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
234 * in progress
235 */
236static int join_running_log_trans(struct btrfs_root *root)
237{
fa1a0f42 238 const bool zoned = btrfs_is_zoned(root->fs_info);
e02119d5
CM
239 int ret = -ENOENT;
240
e7a79811
FM
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 return ret;
243
7237f183 244 mutex_lock(&root->log_mutex);
fa1a0f42 245again:
e02119d5 246 if (root->log_root) {
fa1a0f42
NA
247 int index = (root->log_transid + 1) % 2;
248
e02119d5 249 ret = 0;
fa1a0f42
NA
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
252 goto again;
253 }
7237f183 254 atomic_inc(&root->log_writers);
e02119d5 255 }
7237f183 256 mutex_unlock(&root->log_mutex);
e02119d5
CM
257 return ret;
258}
259
12fcfd22
CM
260/*
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
264 */
45128b08 265void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 266{
12fcfd22 267 atomic_inc(&root->log_writers);
12fcfd22
CM
268}
269
e02119d5
CM
270/*
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
273 */
143bede5 274void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 275{
7237f183 276 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 279 }
e02119d5
CM
280}
281
247462a5
DS
282static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
283{
284 filemap_fdatawait_range(buf->pages[0]->mapping,
285 buf->start, buf->start + buf->len - 1);
286}
e02119d5
CM
287
288/*
289 * the walk control struct is used to pass state down the chain when
290 * processing the log tree. The stage field tells us which part
291 * of the log tree processing we are currently doing. The others
292 * are state fields used for that specific part
293 */
294struct walk_control {
295 /* should we free the extent on disk when done? This is used
296 * at transaction commit time while freeing a log tree
297 */
298 int free;
299
e02119d5
CM
300 /* pin only walk, we record which extents on disk belong to the
301 * log trees
302 */
303 int pin;
304
305 /* what stage of the replay code we're currently in */
306 int stage;
307
f2d72f42
FM
308 /*
309 * Ignore any items from the inode currently being processed. Needs
310 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
311 * the LOG_WALK_REPLAY_INODES stage.
312 */
313 bool ignore_cur_inode;
314
e02119d5
CM
315 /* the root we are currently replaying */
316 struct btrfs_root *replay_dest;
317
318 /* the trans handle for the current replay */
319 struct btrfs_trans_handle *trans;
320
321 /* the function that gets used to process blocks we find in the
322 * tree. Note the extent_buffer might not be up to date when it is
323 * passed in, and it must be checked or read if you need the data
324 * inside it
325 */
326 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 327 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
328};
329
330/*
331 * process_func used to pin down extents, write them or wait on them
332 */
333static int process_one_buffer(struct btrfs_root *log,
334 struct extent_buffer *eb,
581c1760 335 struct walk_control *wc, u64 gen, int level)
e02119d5 336{
0b246afa 337 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
338 int ret = 0;
339
8c2a1a30
JB
340 /*
341 * If this fs is mixed then we need to be able to process the leaves to
342 * pin down any logged extents, so we have to read the block.
343 */
0b246afa 344 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
789d6a3a
QW
345 struct btrfs_tree_parent_check check = {
346 .level = level,
347 .transid = gen
348 };
349
350 ret = btrfs_read_extent_buffer(eb, &check);
8c2a1a30
JB
351 if (ret)
352 return ret;
353 }
354
c816d705 355 if (wc->pin) {
9fce5704 356 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 357 eb->len);
c816d705
FM
358 if (ret)
359 return ret;
e02119d5 360
c816d705
FM
361 if (btrfs_buffer_uptodate(eb, gen, 0) &&
362 btrfs_header_level(eb) == 0)
bcdc428c 363 ret = btrfs_exclude_logged_extents(eb);
e02119d5 364 }
b50c6e25 365 return ret;
e02119d5
CM
366}
367
3a8d1db3
FM
368/*
369 * Item overwrite used by replay and tree logging. eb, slot and key all refer
370 * to the src data we are copying out.
371 *
372 * root is the tree we are copying into, and path is a scratch
373 * path for use in this function (it should be released on entry and
374 * will be released on exit).
375 *
376 * If the key is already in the destination tree the existing item is
377 * overwritten. If the existing item isn't big enough, it is extended.
378 * If it is too large, it is truncated.
379 *
380 * If the key isn't in the destination yet, a new item is inserted.
381 */
382static int overwrite_item(struct btrfs_trans_handle *trans,
383 struct btrfs_root *root,
384 struct btrfs_path *path,
385 struct extent_buffer *eb, int slot,
386 struct btrfs_key *key)
e02119d5
CM
387{
388 int ret;
389 u32 item_size;
390 u64 saved_i_size = 0;
391 int save_old_i_size = 0;
392 unsigned long src_ptr;
393 unsigned long dst_ptr;
4bc4bee4 394 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5 395
3eb42344
FM
396 /*
397 * This is only used during log replay, so the root is always from a
398 * fs/subvolume tree. In case we ever need to support a log root, then
399 * we'll have to clone the leaf in the path, release the path and use
400 * the leaf before writing into the log tree. See the comments at
401 * copy_items() for more details.
402 */
403 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
e02119d5 404
3212fa14 405 item_size = btrfs_item_size(eb, slot);
e02119d5
CM
406 src_ptr = btrfs_item_ptr_offset(eb, slot);
407
3a8d1db3
FM
408 /* Look for the key in the destination tree. */
409 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
410 if (ret < 0)
411 return ret;
4bc4bee4 412
e02119d5
CM
413 if (ret == 0) {
414 char *src_copy;
415 char *dst_copy;
3212fa14 416 u32 dst_size = btrfs_item_size(path->nodes[0],
e02119d5
CM
417 path->slots[0]);
418 if (dst_size != item_size)
419 goto insert;
420
421 if (item_size == 0) {
b3b4aa74 422 btrfs_release_path(path);
e02119d5
CM
423 return 0;
424 }
425 dst_copy = kmalloc(item_size, GFP_NOFS);
426 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 427 if (!dst_copy || !src_copy) {
b3b4aa74 428 btrfs_release_path(path);
2a29edc6 429 kfree(dst_copy);
430 kfree(src_copy);
431 return -ENOMEM;
432 }
e02119d5
CM
433
434 read_extent_buffer(eb, src_copy, src_ptr, item_size);
435
436 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
437 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
438 item_size);
439 ret = memcmp(dst_copy, src_copy, item_size);
440
441 kfree(dst_copy);
442 kfree(src_copy);
443 /*
444 * they have the same contents, just return, this saves
445 * us from cowing blocks in the destination tree and doing
446 * extra writes that may not have been done by a previous
447 * sync
448 */
449 if (ret == 0) {
b3b4aa74 450 btrfs_release_path(path);
e02119d5
CM
451 return 0;
452 }
453
4bc4bee4
JB
454 /*
455 * We need to load the old nbytes into the inode so when we
456 * replay the extents we've logged we get the right nbytes.
457 */
458 if (inode_item) {
459 struct btrfs_inode_item *item;
460 u64 nbytes;
d555438b 461 u32 mode;
4bc4bee4
JB
462
463 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
464 struct btrfs_inode_item);
465 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
466 item = btrfs_item_ptr(eb, slot,
467 struct btrfs_inode_item);
468 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
469
470 /*
471 * If this is a directory we need to reset the i_size to
472 * 0 so that we can set it up properly when replaying
473 * the rest of the items in this log.
474 */
475 mode = btrfs_inode_mode(eb, item);
476 if (S_ISDIR(mode))
477 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
478 }
479 } else if (inode_item) {
480 struct btrfs_inode_item *item;
d555438b 481 u32 mode;
4bc4bee4
JB
482
483 /*
484 * New inode, set nbytes to 0 so that the nbytes comes out
485 * properly when we replay the extents.
486 */
487 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
488 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
489
490 /*
491 * If this is a directory we need to reset the i_size to 0 so
492 * that we can set it up properly when replaying the rest of
493 * the items in this log.
494 */
495 mode = btrfs_inode_mode(eb, item);
496 if (S_ISDIR(mode))
497 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
498 }
499insert:
b3b4aa74 500 btrfs_release_path(path);
e02119d5 501 /* try to insert the key into the destination tree */
df8d116f 502 path->skip_release_on_error = 1;
e02119d5
CM
503 ret = btrfs_insert_empty_item(trans, root, path,
504 key, item_size);
df8d116f 505 path->skip_release_on_error = 0;
e02119d5
CM
506
507 /* make sure any existing item is the correct size */
df8d116f 508 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5 509 u32 found_size;
3212fa14 510 found_size = btrfs_item_size(path->nodes[0],
e02119d5 511 path->slots[0]);
143bede5 512 if (found_size > item_size)
78ac4f9e 513 btrfs_truncate_item(path, item_size, 1);
143bede5 514 else if (found_size < item_size)
c71dd880 515 btrfs_extend_item(path, item_size - found_size);
e02119d5 516 } else if (ret) {
4a500fd1 517 return ret;
e02119d5
CM
518 }
519 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
520 path->slots[0]);
521
522 /* don't overwrite an existing inode if the generation number
523 * was logged as zero. This is done when the tree logging code
524 * is just logging an inode to make sure it exists after recovery.
525 *
526 * Also, don't overwrite i_size on directories during replay.
527 * log replay inserts and removes directory items based on the
528 * state of the tree found in the subvolume, and i_size is modified
529 * as it goes
530 */
531 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
532 struct btrfs_inode_item *src_item;
533 struct btrfs_inode_item *dst_item;
534
535 src_item = (struct btrfs_inode_item *)src_ptr;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537
1a4bcf47
FM
538 if (btrfs_inode_generation(eb, src_item) == 0) {
539 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 540 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 541
2f2ff0ee
FM
542 /*
543 * For regular files an ino_size == 0 is used only when
544 * logging that an inode exists, as part of a directory
545 * fsync, and the inode wasn't fsynced before. In this
546 * case don't set the size of the inode in the fs/subvol
547 * tree, otherwise we would be throwing valid data away.
548 */
1a4bcf47 549 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 550 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
551 ino_size != 0)
552 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 553 goto no_copy;
1a4bcf47 554 }
e02119d5 555
3eb42344 556 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
e02119d5
CM
557 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
558 save_old_i_size = 1;
559 saved_i_size = btrfs_inode_size(path->nodes[0],
560 dst_item);
561 }
562 }
563
564 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
565 src_ptr, item_size);
566
567 if (save_old_i_size) {
568 struct btrfs_inode_item *dst_item;
569 dst_item = (struct btrfs_inode_item *)dst_ptr;
570 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
571 }
572
573 /* make sure the generation is filled in */
574 if (key->type == BTRFS_INODE_ITEM_KEY) {
575 struct btrfs_inode_item *dst_item;
576 dst_item = (struct btrfs_inode_item *)dst_ptr;
577 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
578 btrfs_set_inode_generation(path->nodes[0], dst_item,
579 trans->transid);
580 }
581 }
582no_copy:
583 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 584 btrfs_release_path(path);
e02119d5
CM
585 return 0;
586}
587
e43eec81 588static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
6db75318 589 struct fscrypt_str *name)
e43eec81
STD
590{
591 char *buf;
592
593 buf = kmalloc(len, GFP_NOFS);
594 if (!buf)
595 return -ENOMEM;
596
597 read_extent_buffer(eb, buf, (unsigned long)start, len);
598 name->name = buf;
599 name->len = len;
600 return 0;
601}
602
e02119d5
CM
603/*
604 * simple helper to read an inode off the disk from a given root
605 * This can only be called for subvolume roots and not for the log
606 */
607static noinline struct inode *read_one_inode(struct btrfs_root *root,
608 u64 objectid)
609{
610 struct inode *inode;
e02119d5 611
0202e83f 612 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 613 if (IS_ERR(inode))
5d4f98a2 614 inode = NULL;
e02119d5
CM
615 return inode;
616}
617
618/* replays a single extent in 'eb' at 'slot' with 'key' into the
619 * subvolume 'root'. path is released on entry and should be released
620 * on exit.
621 *
622 * extents in the log tree have not been allocated out of the extent
623 * tree yet. So, this completes the allocation, taking a reference
624 * as required if the extent already exists or creating a new extent
625 * if it isn't in the extent allocation tree yet.
626 *
627 * The extent is inserted into the file, dropping any existing extents
628 * from the file that overlap the new one.
629 */
630static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path,
633 struct extent_buffer *eb, int slot,
634 struct btrfs_key *key)
635{
5893dfb9 636 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 637 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 638 int found_type;
e02119d5 639 u64 extent_end;
e02119d5 640 u64 start = key->offset;
4bc4bee4 641 u64 nbytes = 0;
e02119d5
CM
642 struct btrfs_file_extent_item *item;
643 struct inode *inode = NULL;
644 unsigned long size;
645 int ret = 0;
646
647 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 found_type = btrfs_file_extent_type(eb, item);
649
d899e052 650 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
651 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 nbytes = btrfs_file_extent_num_bytes(eb, item);
653 extent_end = start + nbytes;
654
655 /*
656 * We don't add to the inodes nbytes if we are prealloc or a
657 * hole.
658 */
659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
660 nbytes = 0;
661 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 662 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 663 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 664 extent_end = ALIGN(start + size,
0b246afa 665 fs_info->sectorsize);
e02119d5
CM
666 } else {
667 ret = 0;
668 goto out;
669 }
670
671 inode = read_one_inode(root, key->objectid);
672 if (!inode) {
673 ret = -EIO;
674 goto out;
675 }
676
677 /*
678 * first check to see if we already have this extent in the
679 * file. This must be done before the btrfs_drop_extents run
680 * so we don't try to drop this extent.
681 */
f85b7379
DS
682 ret = btrfs_lookup_file_extent(trans, root, path,
683 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 684
d899e052
YZ
685 if (ret == 0 &&
686 (found_type == BTRFS_FILE_EXTENT_REG ||
687 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
688 struct btrfs_file_extent_item cmp1;
689 struct btrfs_file_extent_item cmp2;
690 struct btrfs_file_extent_item *existing;
691 struct extent_buffer *leaf;
692
693 leaf = path->nodes[0];
694 existing = btrfs_item_ptr(leaf, path->slots[0],
695 struct btrfs_file_extent_item);
696
697 read_extent_buffer(eb, &cmp1, (unsigned long)item,
698 sizeof(cmp1));
699 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
700 sizeof(cmp2));
701
702 /*
703 * we already have a pointer to this exact extent,
704 * we don't have to do anything
705 */
706 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 707 btrfs_release_path(path);
e02119d5
CM
708 goto out;
709 }
710 }
b3b4aa74 711 btrfs_release_path(path);
e02119d5
CM
712
713 /* drop any overlapping extents */
5893dfb9
FM
714 drop_args.start = start;
715 drop_args.end = extent_end;
716 drop_args.drop_cache = true;
717 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
718 if (ret)
719 goto out;
e02119d5 720
07d400a6
YZ
721 if (found_type == BTRFS_FILE_EXTENT_REG ||
722 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 723 u64 offset;
07d400a6
YZ
724 unsigned long dest_offset;
725 struct btrfs_key ins;
726
3168021c
FM
727 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
728 btrfs_fs_incompat(fs_info, NO_HOLES))
729 goto update_inode;
730
07d400a6
YZ
731 ret = btrfs_insert_empty_item(trans, root, path, key,
732 sizeof(*item));
3650860b
JB
733 if (ret)
734 goto out;
07d400a6
YZ
735 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
736 path->slots[0]);
737 copy_extent_buffer(path->nodes[0], eb, dest_offset,
738 (unsigned long)item, sizeof(*item));
739
740 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
741 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
742 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 743 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 744
df2c95f3
QW
745 /*
746 * Manually record dirty extent, as here we did a shallow
747 * file extent item copy and skip normal backref update,
748 * but modifying extent tree all by ourselves.
749 * So need to manually record dirty extent for qgroup,
750 * as the owner of the file extent changed from log tree
751 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
752 */
a95f3aaf 753 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3 754 btrfs_file_extent_disk_bytenr(eb, item),
e2896e79 755 btrfs_file_extent_disk_num_bytes(eb, item));
df2c95f3
QW
756 if (ret < 0)
757 goto out;
758
07d400a6 759 if (ins.objectid > 0) {
82fa113f 760 struct btrfs_ref ref = { 0 };
07d400a6
YZ
761 u64 csum_start;
762 u64 csum_end;
763 LIST_HEAD(ordered_sums);
82fa113f 764
07d400a6
YZ
765 /*
766 * is this extent already allocated in the extent
767 * allocation tree? If so, just add a reference
768 */
2ff7e61e 769 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6 770 ins.offset);
3736127a
MPS
771 if (ret < 0) {
772 goto out;
773 } else if (ret == 0) {
82fa113f
QW
774 btrfs_init_generic_ref(&ref,
775 BTRFS_ADD_DELAYED_REF,
776 ins.objectid, ins.offset, 0);
777 btrfs_init_data_ref(&ref,
778 root->root_key.objectid,
f42c5da6 779 key->objectid, offset, 0, false);
82fa113f 780 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
781 if (ret)
782 goto out;
07d400a6
YZ
783 } else {
784 /*
785 * insert the extent pointer in the extent
786 * allocation tree
787 */
5d4f98a2 788 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 789 root->root_key.objectid,
5d4f98a2 790 key->objectid, offset, &ins);
b50c6e25
JB
791 if (ret)
792 goto out;
07d400a6 793 }
b3b4aa74 794 btrfs_release_path(path);
07d400a6
YZ
795
796 if (btrfs_file_extent_compression(eb, item)) {
797 csum_start = ins.objectid;
798 csum_end = csum_start + ins.offset;
799 } else {
800 csum_start = ins.objectid +
801 btrfs_file_extent_offset(eb, item);
802 csum_end = csum_start +
803 btrfs_file_extent_num_bytes(eb, item);
804 }
805
97e38239 806 ret = btrfs_lookup_csums_list(root->log_root,
07d400a6 807 csum_start, csum_end - 1,
26ce9114 808 &ordered_sums, 0, false);
3650860b
JB
809 if (ret)
810 goto out;
b84b8390
FM
811 /*
812 * Now delete all existing cums in the csum root that
813 * cover our range. We do this because we can have an
814 * extent that is completely referenced by one file
815 * extent item and partially referenced by another
816 * file extent item (like after using the clone or
817 * extent_same ioctls). In this case if we end up doing
818 * the replay of the one that partially references the
819 * extent first, and we do not do the csum deletion
820 * below, we can get 2 csum items in the csum tree that
821 * overlap each other. For example, imagine our log has
822 * the two following file extent items:
823 *
824 * key (257 EXTENT_DATA 409600)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 20480 nr 20480 ram 102400
827 *
828 * key (257 EXTENT_DATA 819200)
829 * extent data disk byte 12845056 nr 102400
830 * extent data offset 0 nr 102400 ram 102400
831 *
832 * Where the second one fully references the 100K extent
833 * that starts at disk byte 12845056, and the log tree
834 * has a single csum item that covers the entire range
835 * of the extent:
836 *
837 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
838 *
839 * After the first file extent item is replayed, the
840 * csum tree gets the following csum item:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
843 *
844 * Which covers the 20K sub-range starting at offset 20K
845 * of our extent. Now when we replay the second file
846 * extent item, if we do not delete existing csum items
847 * that cover any of its blocks, we end up getting two
848 * csum items in our csum tree that overlap each other:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
852 *
853 * Which is a problem, because after this anyone trying
854 * to lookup up for the checksum of any block of our
855 * extent starting at an offset of 40K or higher, will
856 * end up looking at the second csum item only, which
857 * does not contain the checksum for any block starting
858 * at offset 40K or higher of our extent.
859 */
07d400a6
YZ
860 while (!list_empty(&ordered_sums)) {
861 struct btrfs_ordered_sum *sums;
fc28b25e
JB
862 struct btrfs_root *csum_root;
863
07d400a6
YZ
864 sums = list_entry(ordered_sums.next,
865 struct btrfs_ordered_sum,
866 list);
fc28b25e
JB
867 csum_root = btrfs_csum_root(fs_info,
868 sums->bytenr);
b84b8390 869 if (!ret)
fc28b25e 870 ret = btrfs_del_csums(trans, csum_root,
5b4aacef
JM
871 sums->bytenr,
872 sums->len);
3650860b
JB
873 if (!ret)
874 ret = btrfs_csum_file_blocks(trans,
fc28b25e
JB
875 csum_root,
876 sums);
07d400a6
YZ
877 list_del(&sums->list);
878 kfree(sums);
879 }
3650860b
JB
880 if (ret)
881 goto out;
07d400a6 882 } else {
b3b4aa74 883 btrfs_release_path(path);
07d400a6
YZ
884 }
885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
886 /* inline extents are easy, we just overwrite them */
887 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
888 if (ret)
889 goto out;
07d400a6 890 }
e02119d5 891
9ddc959e
JB
892 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
893 extent_end - start);
894 if (ret)
895 goto out;
896
3168021c 897update_inode:
2766ff61 898 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 899 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5 900out:
8aa1e49e 901 iput(inode);
e02119d5
CM
902 return ret;
903}
904
313ab753
FM
905static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
906 struct btrfs_inode *dir,
907 struct btrfs_inode *inode,
6db75318 908 const struct fscrypt_str *name)
313ab753
FM
909{
910 int ret;
911
e43eec81 912 ret = btrfs_unlink_inode(trans, dir, inode, name);
313ab753
FM
913 if (ret)
914 return ret;
915 /*
916 * Whenever we need to check if a name exists or not, we check the
917 * fs/subvolume tree. So after an unlink we must run delayed items, so
918 * that future checks for a name during log replay see that the name
919 * does not exists anymore.
920 */
921 return btrfs_run_delayed_items(trans);
922}
923
e02119d5
CM
924/*
925 * when cleaning up conflicts between the directory names in the
926 * subvolume, directory names in the log and directory names in the
927 * inode back references, we may have to unlink inodes from directories.
928 *
929 * This is a helper function to do the unlink of a specific directory
930 * item
931 */
932static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
e02119d5 933 struct btrfs_path *path,
207e7d92 934 struct btrfs_inode *dir,
e02119d5
CM
935 struct btrfs_dir_item *di)
936{
9798ba24 937 struct btrfs_root *root = dir->root;
e02119d5 938 struct inode *inode;
6db75318 939 struct fscrypt_str name;
e02119d5
CM
940 struct extent_buffer *leaf;
941 struct btrfs_key location;
942 int ret;
943
944 leaf = path->nodes[0];
945
946 btrfs_dir_item_key_to_cpu(leaf, di, &location);
e43eec81
STD
947 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
948 if (ret)
2a29edc6 949 return -ENOMEM;
950
b3b4aa74 951 btrfs_release_path(path);
e02119d5
CM
952
953 inode = read_one_inode(root, location.objectid);
c00e9493 954 if (!inode) {
3650860b
JB
955 ret = -EIO;
956 goto out;
c00e9493 957 }
e02119d5 958
ec051c0f 959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
960 if (ret)
961 goto out;
12fcfd22 962
e43eec81 963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
3650860b 964out:
e43eec81 965 kfree(name.name);
e02119d5
CM
966 iput(inode);
967 return ret;
968}
969
970/*
77a5b9e3
FM
971 * See if a given name and sequence number found in an inode back reference are
972 * already in a directory and correctly point to this inode.
973 *
974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
975 * exists.
e02119d5
CM
976 */
977static noinline int inode_in_dir(struct btrfs_root *root,
978 struct btrfs_path *path,
979 u64 dirid, u64 objectid, u64 index,
6db75318 980 struct fscrypt_str *name)
e02119d5
CM
981{
982 struct btrfs_dir_item *di;
983 struct btrfs_key location;
77a5b9e3 984 int ret = 0;
e02119d5
CM
985
986 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
e43eec81 987 index, name, 0);
77a5b9e3 988 if (IS_ERR(di)) {
8dcbc261 989 ret = PTR_ERR(di);
77a5b9e3
FM
990 goto out;
991 } else if (di) {
e02119d5
CM
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid != objectid)
994 goto out;
77a5b9e3 995 } else {
e02119d5 996 goto out;
77a5b9e3 997 }
e02119d5 998
77a5b9e3 999 btrfs_release_path(path);
e43eec81 1000 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
77a5b9e3
FM
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
e02119d5 1003 goto out;
77a5b9e3
FM
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid == objectid)
1007 ret = 1;
1008 }
e02119d5 1009out:
b3b4aa74 1010 btrfs_release_path(path);
77a5b9e3 1011 return ret;
e02119d5
CM
1012}
1013
1014/*
1015 * helper function to check a log tree for a named back reference in
1016 * an inode. This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1018 *
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1023 */
1024static noinline int backref_in_log(struct btrfs_root *log,
1025 struct btrfs_key *key,
f186373f 1026 u64 ref_objectid,
6db75318 1027 const struct fscrypt_str *name)
e02119d5
CM
1028{
1029 struct btrfs_path *path;
e02119d5 1030 int ret;
e02119d5
CM
1031
1032 path = btrfs_alloc_path();
2a29edc6 1033 if (!path)
1034 return -ENOMEM;
1035
e02119d5 1036 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
1037 if (ret < 0) {
1038 goto out;
1039 } else if (ret == 1) {
89cbf5f6 1040 ret = 0;
f186373f
MF
1041 goto out;
1042 }
1043
89cbf5f6
NB
1044 if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046 path->slots[0],
e43eec81 1047 ref_objectid, name);
89cbf5f6
NB
1048 else
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
e43eec81 1050 path->slots[0], name);
e02119d5
CM
1051out:
1052 btrfs_free_path(path);
89cbf5f6 1053 return ret;
e02119d5
CM
1054}
1055
5a1d7843 1056static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 1057 struct btrfs_root *root,
e02119d5 1058 struct btrfs_path *path,
5a1d7843 1059 struct btrfs_root *log_root,
94c91a1f
NB
1060 struct btrfs_inode *dir,
1061 struct btrfs_inode *inode,
f186373f 1062 u64 inode_objectid, u64 parent_objectid,
6db75318 1063 u64 ref_index, struct fscrypt_str *name)
e02119d5 1064{
34f3e4f2 1065 int ret;
f186373f 1066 struct extent_buffer *leaf;
5a1d7843 1067 struct btrfs_dir_item *di;
f186373f
MF
1068 struct btrfs_key search_key;
1069 struct btrfs_inode_extref *extref;
c622ae60 1070
f186373f
MF
1071again:
1072 /* Search old style refs */
1073 search_key.objectid = inode_objectid;
1074 search_key.type = BTRFS_INODE_REF_KEY;
1075 search_key.offset = parent_objectid;
1076 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1077 if (ret == 0) {
e02119d5
CM
1078 struct btrfs_inode_ref *victim_ref;
1079 unsigned long ptr;
1080 unsigned long ptr_end;
f186373f
MF
1081
1082 leaf = path->nodes[0];
e02119d5
CM
1083
1084 /* are we trying to overwrite a back ref for the root directory
1085 * if so, just jump out, we're done
1086 */
f186373f 1087 if (search_key.objectid == search_key.offset)
5a1d7843 1088 return 1;
e02119d5
CM
1089
1090 /* check all the names in this back reference to see
1091 * if they are in the log. if so, we allow them to stay
1092 * otherwise they must be unlinked as a conflict
1093 */
1094 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3212fa14 1095 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
d397712b 1096 while (ptr < ptr_end) {
6db75318 1097 struct fscrypt_str victim_name;
e02119d5 1098
e43eec81
STD
1099 victim_ref = (struct btrfs_inode_ref *)ptr;
1100 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101 btrfs_inode_ref_name_len(leaf, victim_ref),
1102 &victim_name);
1103 if (ret)
1104 return ret;
e02119d5 1105
d3316c82 1106 ret = backref_in_log(log_root, &search_key,
e43eec81 1107 parent_objectid, &victim_name);
d3316c82 1108 if (ret < 0) {
e43eec81 1109 kfree(victim_name.name);
d3316c82
NB
1110 return ret;
1111 } else if (!ret) {
94c91a1f 1112 inc_nlink(&inode->vfs_inode);
b3b4aa74 1113 btrfs_release_path(path);
12fcfd22 1114
313ab753 1115 ret = unlink_inode_for_log_replay(trans, dir, inode,
e43eec81
STD
1116 &victim_name);
1117 kfree(victim_name.name);
ada9af21
FDBM
1118 if (ret)
1119 return ret;
f186373f 1120 goto again;
e02119d5 1121 }
e43eec81 1122 kfree(victim_name.name);
f186373f 1123
e43eec81 1124 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
e02119d5 1125 }
e02119d5 1126 }
b3b4aa74 1127 btrfs_release_path(path);
e02119d5 1128
f186373f 1129 /* Same search but for extended refs */
e43eec81 1130 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
f186373f
MF
1131 inode_objectid, parent_objectid, 0,
1132 0);
7a6b75b7
FM
1133 if (IS_ERR(extref)) {
1134 return PTR_ERR(extref);
1135 } else if (extref) {
f186373f
MF
1136 u32 item_size;
1137 u32 cur_offset = 0;
1138 unsigned long base;
1139 struct inode *victim_parent;
1140
1141 leaf = path->nodes[0];
1142
3212fa14 1143 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f
MF
1144 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1145
1146 while (cur_offset < item_size) {
6db75318 1147 struct fscrypt_str victim_name;
f186373f 1148
e43eec81 1149 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1150
1151 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1152 goto next;
1153
e43eec81
STD
1154 ret = read_alloc_one_name(leaf, &extref->name,
1155 btrfs_inode_extref_name_len(leaf, extref),
1156 &victim_name);
1157 if (ret)
1158 return ret;
f186373f
MF
1159
1160 search_key.objectid = inode_objectid;
1161 search_key.type = BTRFS_INODE_EXTREF_KEY;
1162 search_key.offset = btrfs_extref_hash(parent_objectid,
e43eec81
STD
1163 victim_name.name,
1164 victim_name.len);
d3316c82 1165 ret = backref_in_log(log_root, &search_key,
e43eec81 1166 parent_objectid, &victim_name);
d3316c82 1167 if (ret < 0) {
e43eec81 1168 kfree(victim_name.name);
d3316c82
NB
1169 return ret;
1170 } else if (!ret) {
f186373f
MF
1171 ret = -ENOENT;
1172 victim_parent = read_one_inode(root,
94c91a1f 1173 parent_objectid);
f186373f 1174 if (victim_parent) {
94c91a1f 1175 inc_nlink(&inode->vfs_inode);
f186373f
MF
1176 btrfs_release_path(path);
1177
313ab753 1178 ret = unlink_inode_for_log_replay(trans,
4ec5934e 1179 BTRFS_I(victim_parent),
e43eec81 1180 inode, &victim_name);
f186373f 1181 }
f186373f 1182 iput(victim_parent);
e43eec81 1183 kfree(victim_name.name);
3650860b
JB
1184 if (ret)
1185 return ret;
f186373f
MF
1186 goto again;
1187 }
e43eec81 1188 kfree(victim_name.name);
f186373f 1189next:
e43eec81 1190 cur_offset += victim_name.len + sizeof(*extref);
f186373f 1191 }
f186373f
MF
1192 }
1193 btrfs_release_path(path);
1194
34f3e4f2 1195 /* look for a conflicting sequence number */
94c91a1f 1196 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
e43eec81 1197 ref_index, name, 0);
52db7779 1198 if (IS_ERR(di)) {
8dcbc261 1199 return PTR_ERR(di);
52db7779 1200 } else if (di) {
9798ba24 1201 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1202 if (ret)
1203 return ret;
34f3e4f2 1204 }
1205 btrfs_release_path(path);
1206
52042d8e 1207 /* look for a conflicting name */
e43eec81 1208 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
52db7779
FM
1209 if (IS_ERR(di)) {
1210 return PTR_ERR(di);
1211 } else if (di) {
9798ba24 1212 ret = drop_one_dir_item(trans, path, dir, di);
3650860b
JB
1213 if (ret)
1214 return ret;
34f3e4f2 1215 }
1216 btrfs_release_path(path);
1217
5a1d7843
JS
1218 return 0;
1219}
e02119d5 1220
bae15d95 1221static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1222 struct fscrypt_str *name, u64 *index,
bae15d95 1223 u64 *parent_objectid)
f186373f
MF
1224{
1225 struct btrfs_inode_extref *extref;
e43eec81 1226 int ret;
f186373f
MF
1227
1228 extref = (struct btrfs_inode_extref *)ref_ptr;
1229
e43eec81
STD
1230 ret = read_alloc_one_name(eb, &extref->name,
1231 btrfs_inode_extref_name_len(eb, extref), name);
1232 if (ret)
1233 return ret;
f186373f 1234
1f250e92
FM
1235 if (index)
1236 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1237 if (parent_objectid)
1238 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1239
1240 return 0;
1241}
1242
bae15d95 1243static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
6db75318 1244 struct fscrypt_str *name, u64 *index)
f186373f
MF
1245{
1246 struct btrfs_inode_ref *ref;
e43eec81 1247 int ret;
f186373f
MF
1248
1249 ref = (struct btrfs_inode_ref *)ref_ptr;
1250
e43eec81
STD
1251 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1252 name);
1253 if (ret)
1254 return ret;
f186373f 1255
1f250e92
FM
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1258
1259 return 0;
1260}
1261
1f250e92
FM
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3212fa14 1294 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1f250e92 1295 while (ref_ptr < ref_end) {
6db75318 1296 struct fscrypt_str name;
1f250e92
FM
1297 u64 parent_id;
1298
1299 if (key->type == BTRFS_INODE_EXTREF_KEY) {
e43eec81 1300 ret = extref_get_fields(eb, ref_ptr, &name,
1f250e92
FM
1301 NULL, &parent_id);
1302 } else {
1303 parent_id = key->offset;
e43eec81 1304 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1f250e92
FM
1305 }
1306 if (ret)
1307 goto out;
1308
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a 1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
e43eec81 1311 parent_id, &name);
1f250e92 1312 else
e43eec81 1313 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1f250e92
FM
1314
1315 if (!ret) {
1316 struct inode *dir;
1317
1318 btrfs_release_path(path);
1319 dir = read_one_inode(root, parent_id);
1320 if (!dir) {
1321 ret = -ENOENT;
e43eec81 1322 kfree(name.name);
1f250e92
FM
1323 goto out;
1324 }
313ab753 1325 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
e43eec81
STD
1326 inode, &name);
1327 kfree(name.name);
1f250e92
FM
1328 iput(dir);
1329 if (ret)
1330 goto out;
1331 goto again;
1332 }
1333
e43eec81
STD
1334 kfree(name.name);
1335 ref_ptr += name.len;
1f250e92
FM
1336 if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 ref_ptr += sizeof(struct btrfs_inode_extref);
1338 else
1339 ref_ptr += sizeof(struct btrfs_inode_ref);
1340 }
1341 ret = 0;
1342 out:
1343 btrfs_release_path(path);
1344 return ret;
1345}
1346
5a1d7843
JS
1347/*
1348 * replay one inode back reference item found in the log tree.
1349 * eb, slot and key refer to the buffer and key found in the log tree.
1350 * root is the destination we are replaying into, and path is for temp
1351 * use by this function. (it should be released on return).
1352 */
1353static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354 struct btrfs_root *root,
1355 struct btrfs_root *log,
1356 struct btrfs_path *path,
1357 struct extent_buffer *eb, int slot,
1358 struct btrfs_key *key)
1359{
03b2f08b
GB
1360 struct inode *dir = NULL;
1361 struct inode *inode = NULL;
5a1d7843
JS
1362 unsigned long ref_ptr;
1363 unsigned long ref_end;
6db75318 1364 struct fscrypt_str name;
5a1d7843 1365 int ret;
f186373f
MF
1366 int log_ref_ver = 0;
1367 u64 parent_objectid;
1368 u64 inode_objectid;
f46dbe3d 1369 u64 ref_index = 0;
f186373f
MF
1370 int ref_struct_size;
1371
1372 ref_ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1373 ref_end = ref_ptr + btrfs_item_size(eb, slot);
f186373f
MF
1374
1375 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376 struct btrfs_inode_extref *r;
1377
1378 ref_struct_size = sizeof(struct btrfs_inode_extref);
1379 log_ref_ver = 1;
1380 r = (struct btrfs_inode_extref *)ref_ptr;
1381 parent_objectid = btrfs_inode_extref_parent(eb, r);
1382 } else {
1383 ref_struct_size = sizeof(struct btrfs_inode_ref);
1384 parent_objectid = key->offset;
1385 }
1386 inode_objectid = key->objectid;
e02119d5 1387
5a1d7843
JS
1388 /*
1389 * it is possible that we didn't log all the parent directories
1390 * for a given inode. If we don't find the dir, just don't
1391 * copy the back ref in. The link count fixup code will take
1392 * care of the rest
1393 */
f186373f 1394 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1395 if (!dir) {
1396 ret = -ENOENT;
1397 goto out;
1398 }
5a1d7843 1399
f186373f 1400 inode = read_one_inode(root, inode_objectid);
5a1d7843 1401 if (!inode) {
03b2f08b
GB
1402 ret = -EIO;
1403 goto out;
5a1d7843
JS
1404 }
1405
5a1d7843 1406 while (ref_ptr < ref_end) {
f186373f 1407 if (log_ref_ver) {
e43eec81 1408 ret = extref_get_fields(eb, ref_ptr, &name,
bae15d95 1409 &ref_index, &parent_objectid);
f186373f
MF
1410 /*
1411 * parent object can change from one array
1412 * item to another.
1413 */
1414 if (!dir)
1415 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1416 if (!dir) {
1417 ret = -ENOENT;
1418 goto out;
1419 }
f186373f 1420 } else {
e43eec81 1421 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
f186373f
MF
1422 }
1423 if (ret)
03b2f08b 1424 goto out;
5a1d7843 1425
77a5b9e3 1426 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
e43eec81 1427 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
77a5b9e3
FM
1428 if (ret < 0) {
1429 goto out;
1430 } else if (ret == 0) {
5a1d7843
JS
1431 /*
1432 * look for a conflicting back reference in the
1433 * metadata. if we find one we have to unlink that name
1434 * of the file before we add our new link. Later on, we
1435 * overwrite any existing back reference, and we don't
1436 * want to create dangling pointers in the directory.
1437 */
7059c658
FM
1438 ret = __add_inode_ref(trans, root, path, log,
1439 BTRFS_I(dir), BTRFS_I(inode),
1440 inode_objectid, parent_objectid,
e43eec81 1441 ref_index, &name);
7059c658
FM
1442 if (ret) {
1443 if (ret == 1)
1444 ret = 0;
0d836392 1445 goto out;
7059c658 1446 }
0d836392 1447
5a1d7843 1448 /* insert our name */
7059c658 1449 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 1450 &name, 0, ref_index);
3650860b
JB
1451 if (ret)
1452 goto out;
5a1d7843 1453
f96d4474
JB
1454 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1455 if (ret)
1456 goto out;
5a1d7843 1457 }
77a5b9e3 1458 /* Else, ret == 1, we already have a perfect match, we're done. */
5a1d7843 1459
e43eec81
STD
1460 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1461 kfree(name.name);
1462 name.name = NULL;
f186373f
MF
1463 if (log_ref_ver) {
1464 iput(dir);
1465 dir = NULL;
1466 }
5a1d7843 1467 }
e02119d5 1468
1f250e92
FM
1469 /*
1470 * Before we overwrite the inode reference item in the subvolume tree
1471 * with the item from the log tree, we must unlink all names from the
1472 * parent directory that are in the subvolume's tree inode reference
1473 * item, otherwise we end up with an inconsistent subvolume tree where
1474 * dir index entries exist for a name but there is no inode reference
1475 * item with the same name.
1476 */
1477 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1478 key);
1479 if (ret)
1480 goto out;
1481
e02119d5
CM
1482 /* finally write the back reference in the inode */
1483 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1484out:
b3b4aa74 1485 btrfs_release_path(path);
e43eec81 1486 kfree(name.name);
e02119d5
CM
1487 iput(dir);
1488 iput(inode);
3650860b 1489 return ret;
e02119d5
CM
1490}
1491
f186373f 1492static int count_inode_extrefs(struct btrfs_root *root,
36283658 1493 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1494{
1495 int ret = 0;
1496 int name_len;
1497 unsigned int nlink = 0;
1498 u32 item_size;
1499 u32 cur_offset = 0;
36283658 1500 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1501 u64 offset = 0;
1502 unsigned long ptr;
1503 struct btrfs_inode_extref *extref;
1504 struct extent_buffer *leaf;
1505
1506 while (1) {
1507 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1508 &extref, &offset);
1509 if (ret)
1510 break;
c71bf099 1511
f186373f 1512 leaf = path->nodes[0];
3212fa14 1513 item_size = btrfs_item_size(leaf, path->slots[0]);
f186373f 1514 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1515 cur_offset = 0;
f186373f
MF
1516
1517 while (cur_offset < item_size) {
1518 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519 name_len = btrfs_inode_extref_name_len(leaf, extref);
1520
1521 nlink++;
1522
1523 cur_offset += name_len + sizeof(*extref);
1524 }
1525
1526 offset++;
1527 btrfs_release_path(path);
1528 }
1529 btrfs_release_path(path);
1530
2c2c452b 1531 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1532 return ret;
1533 return nlink;
1534}
1535
1536static int count_inode_refs(struct btrfs_root *root,
f329e319 1537 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1538{
e02119d5
CM
1539 int ret;
1540 struct btrfs_key key;
f186373f 1541 unsigned int nlink = 0;
e02119d5
CM
1542 unsigned long ptr;
1543 unsigned long ptr_end;
1544 int name_len;
f329e319 1545 u64 ino = btrfs_ino(inode);
e02119d5 1546
33345d01 1547 key.objectid = ino;
e02119d5
CM
1548 key.type = BTRFS_INODE_REF_KEY;
1549 key.offset = (u64)-1;
1550
d397712b 1551 while (1) {
e02119d5
CM
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 if (ret < 0)
1554 break;
1555 if (ret > 0) {
1556 if (path->slots[0] == 0)
1557 break;
1558 path->slots[0]--;
1559 }
e93ae26f 1560process_slot:
e02119d5
CM
1561 btrfs_item_key_to_cpu(path->nodes[0], &key,
1562 path->slots[0]);
33345d01 1563 if (key.objectid != ino ||
e02119d5
CM
1564 key.type != BTRFS_INODE_REF_KEY)
1565 break;
1566 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
3212fa14 1567 ptr_end = ptr + btrfs_item_size(path->nodes[0],
e02119d5 1568 path->slots[0]);
d397712b 1569 while (ptr < ptr_end) {
e02119d5
CM
1570 struct btrfs_inode_ref *ref;
1571
1572 ref = (struct btrfs_inode_ref *)ptr;
1573 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1574 ref);
1575 ptr = (unsigned long)(ref + 1) + name_len;
1576 nlink++;
1577 }
1578
1579 if (key.offset == 0)
1580 break;
e93ae26f
FDBM
1581 if (path->slots[0] > 0) {
1582 path->slots[0]--;
1583 goto process_slot;
1584 }
e02119d5 1585 key.offset--;
b3b4aa74 1586 btrfs_release_path(path);
e02119d5 1587 }
b3b4aa74 1588 btrfs_release_path(path);
f186373f
MF
1589
1590 return nlink;
1591}
1592
1593/*
1594 * There are a few corners where the link count of the file can't
1595 * be properly maintained during replay. So, instead of adding
1596 * lots of complexity to the log code, we just scan the backrefs
1597 * for any file that has been through replay.
1598 *
1599 * The scan will update the link count on the inode to reflect the
1600 * number of back refs found. If it goes down to zero, the iput
1601 * will free the inode.
1602 */
1603static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct inode *inode)
1606{
1607 struct btrfs_path *path;
1608 int ret;
1609 u64 nlink = 0;
4a0cc7ca 1610 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1611
1612 path = btrfs_alloc_path();
1613 if (!path)
1614 return -ENOMEM;
1615
f329e319 1616 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1617 if (ret < 0)
1618 goto out;
1619
1620 nlink = ret;
1621
36283658 1622 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1623 if (ret < 0)
1624 goto out;
1625
1626 nlink += ret;
1627
1628 ret = 0;
1629
e02119d5 1630 if (nlink != inode->i_nlink) {
bfe86848 1631 set_nlink(inode, nlink);
f96d4474
JB
1632 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1633 if (ret)
1634 goto out;
e02119d5 1635 }
8d5bf1cb 1636 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1637
c71bf099
YZ
1638 if (inode->i_nlink == 0) {
1639 if (S_ISDIR(inode->i_mode)) {
1640 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1641 ino, 1);
3650860b
JB
1642 if (ret)
1643 goto out;
c71bf099 1644 }
ecdcf3c2
NB
1645 ret = btrfs_insert_orphan_item(trans, root, ino);
1646 if (ret == -EEXIST)
1647 ret = 0;
12fcfd22 1648 }
12fcfd22 1649
f186373f
MF
1650out:
1651 btrfs_free_path(path);
1652 return ret;
e02119d5
CM
1653}
1654
1655static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_path *path)
1658{
1659 int ret;
1660 struct btrfs_key key;
1661 struct inode *inode;
1662
1663 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664 key.type = BTRFS_ORPHAN_ITEM_KEY;
1665 key.offset = (u64)-1;
d397712b 1666 while (1) {
e02119d5
CM
1667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668 if (ret < 0)
1669 break;
1670
1671 if (ret == 1) {
011b28ac 1672 ret = 0;
e02119d5
CM
1673 if (path->slots[0] == 0)
1674 break;
1675 path->slots[0]--;
1676 }
1677
1678 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680 key.type != BTRFS_ORPHAN_ITEM_KEY)
1681 break;
1682
1683 ret = btrfs_del_item(trans, root, path);
65a246c5 1684 if (ret)
011b28ac 1685 break;
e02119d5 1686
b3b4aa74 1687 btrfs_release_path(path);
e02119d5 1688 inode = read_one_inode(root, key.offset);
011b28ac
JB
1689 if (!inode) {
1690 ret = -EIO;
1691 break;
1692 }
e02119d5
CM
1693
1694 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1695 iput(inode);
3650860b 1696 if (ret)
011b28ac 1697 break;
e02119d5 1698
12fcfd22
CM
1699 /*
1700 * fixup on a directory may create new entries,
1701 * make sure we always look for the highset possible
1702 * offset
1703 */
1704 key.offset = (u64)-1;
e02119d5 1705 }
b3b4aa74 1706 btrfs_release_path(path);
65a246c5 1707 return ret;
e02119d5
CM
1708}
1709
1710
1711/*
1712 * record a given inode in the fixup dir so we can check its link
1713 * count when replay is done. The link count is incremented here
1714 * so the inode won't go away until we check it
1715 */
1716static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717 struct btrfs_root *root,
1718 struct btrfs_path *path,
1719 u64 objectid)
1720{
1721 struct btrfs_key key;
1722 int ret = 0;
1723 struct inode *inode;
1724
1725 inode = read_one_inode(root, objectid);
c00e9493
TI
1726 if (!inode)
1727 return -EIO;
e02119d5
CM
1728
1729 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1730 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1731 key.offset = objectid;
1732
1733 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1734
b3b4aa74 1735 btrfs_release_path(path);
e02119d5 1736 if (ret == 0) {
9bf7a489
JB
1737 if (!inode->i_nlink)
1738 set_nlink(inode, 1);
1739 else
8b558c5f 1740 inc_nlink(inode);
9a56fcd1 1741 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1742 } else if (ret == -EEXIST) {
1743 ret = 0;
e02119d5
CM
1744 }
1745 iput(inode);
1746
1747 return ret;
1748}
1749
1750/*
1751 * when replaying the log for a directory, we only insert names
1752 * for inodes that actually exist. This means an fsync on a directory
1753 * does not implicitly fsync all the new files in it
1754 */
1755static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
e02119d5 1757 u64 dirid, u64 index,
6db75318 1758 const struct fscrypt_str *name,
e02119d5
CM
1759 struct btrfs_key *location)
1760{
1761 struct inode *inode;
1762 struct inode *dir;
1763 int ret;
1764
1765 inode = read_one_inode(root, location->objectid);
1766 if (!inode)
1767 return -ENOENT;
1768
1769 dir = read_one_inode(root, dirid);
1770 if (!dir) {
1771 iput(inode);
1772 return -EIO;
1773 }
d555438b 1774
db0a669f 1775 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 1776 1, index);
e02119d5
CM
1777
1778 /* FIXME, put inode into FIXUP list */
1779
1780 iput(inode);
1781 iput(dir);
1782 return ret;
1783}
1784
339d0354
FM
1785static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786 struct btrfs_inode *dir,
1787 struct btrfs_path *path,
1788 struct btrfs_dir_item *dst_di,
1789 const struct btrfs_key *log_key,
94a48aef 1790 u8 log_flags,
339d0354
FM
1791 bool exists)
1792{
1793 struct btrfs_key found_key;
1794
1795 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796 /* The existing dentry points to the same inode, don't delete it. */
1797 if (found_key.objectid == log_key->objectid &&
1798 found_key.type == log_key->type &&
1799 found_key.offset == log_key->offset &&
94a48aef 1800 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
339d0354
FM
1801 return 1;
1802
1803 /*
1804 * Don't drop the conflicting directory entry if the inode for the new
1805 * entry doesn't exist.
1806 */
1807 if (!exists)
1808 return 0;
1809
1810 return drop_one_dir_item(trans, path, dir, dst_di);
1811}
1812
e02119d5
CM
1813/*
1814 * take a single entry in a log directory item and replay it into
1815 * the subvolume.
1816 *
1817 * if a conflicting item exists in the subdirectory already,
1818 * the inode it points to is unlinked and put into the link count
1819 * fix up tree.
1820 *
1821 * If a name from the log points to a file or directory that does
1822 * not exist in the FS, it is skipped. fsyncs on directories
1823 * do not force down inodes inside that directory, just changes to the
1824 * names or unlinks in a directory.
bb53eda9
FM
1825 *
1826 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1828 */
1829static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct btrfs_path *path,
1832 struct extent_buffer *eb,
1833 struct btrfs_dir_item *di,
1834 struct btrfs_key *key)
1835{
6db75318 1836 struct fscrypt_str name;
339d0354
FM
1837 struct btrfs_dir_item *dir_dst_di;
1838 struct btrfs_dir_item *index_dst_di;
1839 bool dir_dst_matches = false;
1840 bool index_dst_matches = false;
e02119d5 1841 struct btrfs_key log_key;
339d0354 1842 struct btrfs_key search_key;
e02119d5 1843 struct inode *dir;
94a48aef 1844 u8 log_flags;
cfd31269
FM
1845 bool exists;
1846 int ret;
339d0354 1847 bool update_size = true;
bb53eda9 1848 bool name_added = false;
e02119d5
CM
1849
1850 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1851 if (!dir)
1852 return -EIO;
e02119d5 1853
e43eec81
STD
1854 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1855 if (ret)
2bac325e 1856 goto out;
2a29edc6 1857
94a48aef 1858 log_flags = btrfs_dir_flags(eb, di);
e02119d5 1859 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
cfd31269 1860 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
b3b4aa74 1861 btrfs_release_path(path);
cfd31269
FM
1862 if (ret < 0)
1863 goto out;
1864 exists = (ret == 0);
1865 ret = 0;
4bef0848 1866
339d0354 1867 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
e43eec81 1868 &name, 1);
339d0354
FM
1869 if (IS_ERR(dir_dst_di)) {
1870 ret = PTR_ERR(dir_dst_di);
3650860b 1871 goto out;
339d0354
FM
1872 } else if (dir_dst_di) {
1873 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
94a48aef
OS
1874 dir_dst_di, &log_key,
1875 log_flags, exists);
339d0354
FM
1876 if (ret < 0)
1877 goto out;
1878 dir_dst_matches = (ret == 1);
e02119d5 1879 }
e15ac641 1880
339d0354
FM
1881 btrfs_release_path(path);
1882
1883 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884 key->objectid, key->offset,
e43eec81 1885 &name, 1);
339d0354
FM
1886 if (IS_ERR(index_dst_di)) {
1887 ret = PTR_ERR(index_dst_di);
e15ac641 1888 goto out;
339d0354
FM
1889 } else if (index_dst_di) {
1890 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891 index_dst_di, &log_key,
94a48aef 1892 log_flags, exists);
339d0354 1893 if (ret < 0)
e02119d5 1894 goto out;
339d0354 1895 index_dst_matches = (ret == 1);
e02119d5
CM
1896 }
1897
339d0354
FM
1898 btrfs_release_path(path);
1899
1900 if (dir_dst_matches && index_dst_matches) {
1901 ret = 0;
a2cc11db 1902 update_size = false;
e02119d5
CM
1903 goto out;
1904 }
1905
725af92a
NB
1906 /*
1907 * Check if the inode reference exists in the log for the given name,
1908 * inode and parent inode
1909 */
339d0354
FM
1910 search_key.objectid = log_key.objectid;
1911 search_key.type = BTRFS_INODE_REF_KEY;
1912 search_key.offset = key->objectid;
e43eec81 1913 ret = backref_in_log(root->log_root, &search_key, 0, &name);
725af92a
NB
1914 if (ret < 0) {
1915 goto out;
1916 } else if (ret) {
1917 /* The dentry will be added later. */
1918 ret = 0;
1919 update_size = false;
1920 goto out;
1921 }
1922
339d0354
FM
1923 search_key.objectid = log_key.objectid;
1924 search_key.type = BTRFS_INODE_EXTREF_KEY;
1925 search_key.offset = key->objectid;
e43eec81 1926 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
725af92a
NB
1927 if (ret < 0) {
1928 goto out;
1929 } else if (ret) {
df8d116f
FM
1930 /* The dentry will be added later. */
1931 ret = 0;
1932 update_size = false;
1933 goto out;
1934 }
b3b4aa74 1935 btrfs_release_path(path);
60d53eb3 1936 ret = insert_one_name(trans, root, key->objectid, key->offset,
e43eec81 1937 &name, &log_key);
df8d116f 1938 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1939 goto out;
bb53eda9
FM
1940 if (!ret)
1941 name_added = true;
d555438b 1942 update_size = false;
3650860b 1943 ret = 0;
339d0354
FM
1944
1945out:
1946 if (!ret && update_size) {
e43eec81 1947 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
339d0354
FM
1948 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1949 }
e43eec81 1950 kfree(name.name);
339d0354
FM
1951 iput(dir);
1952 if (!ret && name_added)
1953 ret = 1;
1954 return ret;
e02119d5
CM
1955}
1956
339d0354 1957/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
e02119d5
CM
1958static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_path *path,
1961 struct extent_buffer *eb, int slot,
1962 struct btrfs_key *key)
1963{
339d0354 1964 int ret;
e02119d5 1965 struct btrfs_dir_item *di;
e02119d5 1966
339d0354
FM
1967 /* We only log dir index keys, which only contain a single dir item. */
1968 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1969
339d0354
FM
1970 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971 ret = replay_one_name(trans, root, path, eb, di, key);
1972 if (ret < 0)
1973 return ret;
bb53eda9 1974
339d0354
FM
1975 /*
1976 * If this entry refers to a non-directory (directories can not have a
1977 * link count > 1) and it was added in the transaction that was not
1978 * committed, make sure we fixup the link count of the inode the entry
1979 * points to. Otherwise something like the following would result in a
1980 * directory pointing to an inode with a wrong link that does not account
1981 * for this dir entry:
1982 *
1983 * mkdir testdir
1984 * touch testdir/foo
1985 * touch testdir/bar
1986 * sync
1987 *
1988 * ln testdir/bar testdir/bar_link
1989 * ln testdir/foo testdir/foo_link
1990 * xfs_io -c "fsync" testdir/bar
1991 *
1992 * <power failure>
1993 *
1994 * mount fs, log replay happens
1995 *
1996 * File foo would remain with a link count of 1 when it has two entries
1997 * pointing to it in the directory testdir. This would make it impossible
1998 * to ever delete the parent directory has it would result in stale
1999 * dentries that can never be deleted.
2000 */
94a48aef 2001 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
339d0354
FM
2002 struct btrfs_path *fixup_path;
2003 struct btrfs_key di_key;
bb53eda9 2004
339d0354
FM
2005 fixup_path = btrfs_alloc_path();
2006 if (!fixup_path)
2007 return -ENOMEM;
2008
2009 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011 btrfs_free_path(fixup_path);
e02119d5 2012 }
339d0354 2013
bb53eda9 2014 return ret;
e02119d5
CM
2015}
2016
2017/*
2018 * directory replay has two parts. There are the standard directory
2019 * items in the log copied from the subvolume, and range items
2020 * created in the log while the subvolume was logged.
2021 *
2022 * The range items tell us which parts of the key space the log
2023 * is authoritative for. During replay, if a key in the subvolume
2024 * directory is in a logged range item, but not actually in the log
2025 * that means it was deleted from the directory before the fsync
2026 * and should be removed.
2027 */
2028static noinline int find_dir_range(struct btrfs_root *root,
2029 struct btrfs_path *path,
ccae4a19 2030 u64 dirid,
e02119d5
CM
2031 u64 *start_ret, u64 *end_ret)
2032{
2033 struct btrfs_key key;
2034 u64 found_end;
2035 struct btrfs_dir_log_item *item;
2036 int ret;
2037 int nritems;
2038
2039 if (*start_ret == (u64)-1)
2040 return 1;
2041
2042 key.objectid = dirid;
ccae4a19 2043 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5
CM
2044 key.offset = *start_ret;
2045
2046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2047 if (ret < 0)
2048 goto out;
2049 if (ret > 0) {
2050 if (path->slots[0] == 0)
2051 goto out;
2052 path->slots[0]--;
2053 }
2054 if (ret != 0)
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
ccae4a19 2057 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2058 ret = 1;
2059 goto next;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064
2065 if (*start_ret >= key.offset && *start_ret <= found_end) {
2066 ret = 0;
2067 *start_ret = key.offset;
2068 *end_ret = found_end;
2069 goto out;
2070 }
2071 ret = 1;
2072next:
2073 /* check the next slot in the tree to see if it is a valid item */
2074 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2075 path->slots[0]++;
e02119d5
CM
2076 if (path->slots[0] >= nritems) {
2077 ret = btrfs_next_leaf(root, path);
2078 if (ret)
2079 goto out;
e02119d5
CM
2080 }
2081
2082 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2083
ccae4a19 2084 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
e02119d5
CM
2085 ret = 1;
2086 goto out;
2087 }
2088 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089 struct btrfs_dir_log_item);
2090 found_end = btrfs_dir_log_end(path->nodes[0], item);
2091 *start_ret = key.offset;
2092 *end_ret = found_end;
2093 ret = 0;
2094out:
b3b4aa74 2095 btrfs_release_path(path);
e02119d5
CM
2096 return ret;
2097}
2098
2099/*
2100 * this looks for a given directory item in the log. If the directory
2101 * item is not in the log, the item is removed and the inode it points
2102 * to is unlinked
2103 */
2104static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
e02119d5
CM
2105 struct btrfs_root *log,
2106 struct btrfs_path *path,
2107 struct btrfs_path *log_path,
2108 struct inode *dir,
2109 struct btrfs_key *dir_key)
2110{
d1ed82f3 2111 struct btrfs_root *root = BTRFS_I(dir)->root;
e02119d5
CM
2112 int ret;
2113 struct extent_buffer *eb;
2114 int slot;
e02119d5 2115 struct btrfs_dir_item *di;
6db75318 2116 struct fscrypt_str name;
ccae4a19 2117 struct inode *inode = NULL;
e02119d5
CM
2118 struct btrfs_key location;
2119
ccae4a19 2120 /*
143823cf 2121 * Currently we only log dir index keys. Even if we replay a log created
ccae4a19
FM
2122 * by an older kernel that logged both dir index and dir item keys, all
2123 * we need to do is process the dir index keys, we (and our caller) can
2124 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2125 */
2126 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2127
e02119d5
CM
2128 eb = path->nodes[0];
2129 slot = path->slots[0];
ccae4a19 2130 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
e43eec81
STD
2131 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2132 if (ret)
ccae4a19 2133 goto out;
3650860b 2134
ccae4a19
FM
2135 if (log) {
2136 struct btrfs_dir_item *log_di;
e02119d5 2137
ccae4a19
FM
2138 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2139 dir_key->objectid,
e43eec81 2140 dir_key->offset, &name, 0);
ccae4a19
FM
2141 if (IS_ERR(log_di)) {
2142 ret = PTR_ERR(log_di);
2143 goto out;
2144 } else if (log_di) {
2145 /* The dentry exists in the log, we have nothing to do. */
e02119d5
CM
2146 ret = 0;
2147 goto out;
2148 }
ccae4a19 2149 }
e02119d5 2150
ccae4a19
FM
2151 btrfs_dir_item_key_to_cpu(eb, di, &location);
2152 btrfs_release_path(path);
2153 btrfs_release_path(log_path);
2154 inode = read_one_inode(root, location.objectid);
2155 if (!inode) {
2156 ret = -EIO;
2157 goto out;
e02119d5 2158 }
ccae4a19
FM
2159
2160 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2161 if (ret)
2162 goto out;
2163
2164 inc_nlink(inode);
313ab753 2165 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
e43eec81 2166 &name);
ccae4a19
FM
2167 /*
2168 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169 * them, as there are no key collisions since each key has a unique offset
2170 * (an index number), so we're done.
2171 */
e02119d5 2172out:
b3b4aa74
DS
2173 btrfs_release_path(path);
2174 btrfs_release_path(log_path);
e43eec81 2175 kfree(name.name);
ccae4a19 2176 iput(inode);
e02119d5
CM
2177 return ret;
2178}
2179
4f764e51
FM
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
3212fa14 2219 total_size = btrfs_item_size(path->nodes[0], i);
4f764e51
FM
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
e02119d5
CM
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
12fcfd22 2292 u64 dirid, int del_all)
e02119d5
CM
2293{
2294 u64 range_start;
2295 u64 range_end;
e02119d5
CM
2296 int ret = 0;
2297 struct btrfs_key dir_key;
2298 struct btrfs_key found_key;
2299 struct btrfs_path *log_path;
2300 struct inode *dir;
2301
2302 dir_key.objectid = dirid;
ccae4a19 2303 dir_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
2304 log_path = btrfs_alloc_path();
2305 if (!log_path)
2306 return -ENOMEM;
2307
2308 dir = read_one_inode(root, dirid);
2309 /* it isn't an error if the inode isn't there, that can happen
2310 * because we replay the deletes before we copy in the inode item
2311 * from the log
2312 */
2313 if (!dir) {
2314 btrfs_free_path(log_path);
2315 return 0;
2316 }
ccae4a19 2317
e02119d5
CM
2318 range_start = 0;
2319 range_end = 0;
d397712b 2320 while (1) {
12fcfd22
CM
2321 if (del_all)
2322 range_end = (u64)-1;
2323 else {
ccae4a19 2324 ret = find_dir_range(log, path, dirid,
12fcfd22 2325 &range_start, &range_end);
10adb115
FM
2326 if (ret < 0)
2327 goto out;
2328 else if (ret > 0)
12fcfd22
CM
2329 break;
2330 }
e02119d5
CM
2331
2332 dir_key.offset = range_start;
d397712b 2333 while (1) {
e02119d5
CM
2334 int nritems;
2335 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 nritems = btrfs_header_nritems(path->nodes[0]);
2341 if (path->slots[0] >= nritems) {
2342 ret = btrfs_next_leaf(root, path);
b98def7c 2343 if (ret == 1)
e02119d5 2344 break;
b98def7c
LB
2345 else if (ret < 0)
2346 goto out;
e02119d5
CM
2347 }
2348 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349 path->slots[0]);
2350 if (found_key.objectid != dirid ||
ccae4a19
FM
2351 found_key.type != dir_key.type) {
2352 ret = 0;
2353 goto out;
2354 }
e02119d5
CM
2355
2356 if (found_key.offset > range_end)
2357 break;
2358
d1ed82f3 2359 ret = check_item_in_log(trans, log, path,
12fcfd22
CM
2360 log_path, dir,
2361 &found_key);
3650860b
JB
2362 if (ret)
2363 goto out;
e02119d5
CM
2364 if (found_key.offset == (u64)-1)
2365 break;
2366 dir_key.offset = found_key.offset + 1;
2367 }
b3b4aa74 2368 btrfs_release_path(path);
e02119d5
CM
2369 if (range_end == (u64)-1)
2370 break;
2371 range_start = range_end + 1;
2372 }
e02119d5 2373 ret = 0;
e02119d5 2374out:
b3b4aa74 2375 btrfs_release_path(path);
e02119d5
CM
2376 btrfs_free_path(log_path);
2377 iput(dir);
2378 return ret;
2379}
2380
2381/*
2382 * the process_func used to replay items from the log tree. This
2383 * gets called in two different stages. The first stage just looks
2384 * for inodes and makes sure they are all copied into the subvolume.
2385 *
2386 * The second stage copies all the other item types from the log into
2387 * the subvolume. The two stage approach is slower, but gets rid of
2388 * lots of complexity around inodes referencing other inodes that exist
2389 * only in the log (references come from either directory items or inode
2390 * back refs).
2391 */
2392static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2393 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2394{
2395 int nritems;
789d6a3a
QW
2396 struct btrfs_tree_parent_check check = {
2397 .transid = gen,
2398 .level = level
2399 };
e02119d5
CM
2400 struct btrfs_path *path;
2401 struct btrfs_root *root = wc->replay_dest;
2402 struct btrfs_key key;
e02119d5
CM
2403 int i;
2404 int ret;
2405
789d6a3a 2406 ret = btrfs_read_extent_buffer(eb, &check);
018642a1
TI
2407 if (ret)
2408 return ret;
e02119d5
CM
2409
2410 level = btrfs_header_level(eb);
2411
2412 if (level != 0)
2413 return 0;
2414
2415 path = btrfs_alloc_path();
1e5063d0
MF
2416 if (!path)
2417 return -ENOMEM;
e02119d5
CM
2418
2419 nritems = btrfs_header_nritems(eb);
2420 for (i = 0; i < nritems; i++) {
2421 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2422
2423 /* inode keys are done during the first stage */
2424 if (key.type == BTRFS_INODE_ITEM_KEY &&
2425 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2426 struct btrfs_inode_item *inode_item;
2427 u32 mode;
2428
2429 inode_item = btrfs_item_ptr(eb, i,
2430 struct btrfs_inode_item);
f2d72f42
FM
2431 /*
2432 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433 * and never got linked before the fsync, skip it, as
2434 * replaying it is pointless since it would be deleted
2435 * later. We skip logging tmpfiles, but it's always
2436 * possible we are replaying a log created with a kernel
2437 * that used to log tmpfiles.
2438 */
2439 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440 wc->ignore_cur_inode = true;
2441 continue;
2442 } else {
2443 wc->ignore_cur_inode = false;
2444 }
4f764e51
FM
2445 ret = replay_xattr_deletes(wc->trans, root, log,
2446 path, key.objectid);
2447 if (ret)
2448 break;
e02119d5
CM
2449 mode = btrfs_inode_mode(eb, inode_item);
2450 if (S_ISDIR(mode)) {
2451 ret = replay_dir_deletes(wc->trans,
12fcfd22 2452 root, log, path, key.objectid, 0);
b50c6e25
JB
2453 if (ret)
2454 break;
e02119d5
CM
2455 }
2456 ret = overwrite_item(wc->trans, root, path,
2457 eb, i, &key);
b50c6e25
JB
2458 if (ret)
2459 break;
e02119d5 2460
471d557a
FM
2461 /*
2462 * Before replaying extents, truncate the inode to its
2463 * size. We need to do it now and not after log replay
2464 * because before an fsync we can have prealloc extents
2465 * added beyond the inode's i_size. If we did it after,
2466 * through orphan cleanup for example, we would drop
2467 * those prealloc extents just after replaying them.
e02119d5
CM
2468 */
2469 if (S_ISREG(mode)) {
5893dfb9 2470 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2471 struct inode *inode;
2472 u64 from;
2473
2474 inode = read_one_inode(root, key.objectid);
2475 if (!inode) {
2476 ret = -EIO;
2477 break;
2478 }
2479 from = ALIGN(i_size_read(inode),
2480 root->fs_info->sectorsize);
5893dfb9
FM
2481 drop_args.start = from;
2482 drop_args.end = (u64)-1;
2483 drop_args.drop_cache = true;
2484 ret = btrfs_drop_extents(wc->trans, root,
2485 BTRFS_I(inode),
2486 &drop_args);
471d557a 2487 if (!ret) {
2766ff61
FM
2488 inode_sub_bytes(inode,
2489 drop_args.bytes_found);
f2d72f42 2490 /* Update the inode's nbytes. */
471d557a 2491 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2492 root, BTRFS_I(inode));
471d557a
FM
2493 }
2494 iput(inode);
b50c6e25
JB
2495 if (ret)
2496 break;
e02119d5 2497 }
c71bf099 2498
e02119d5
CM
2499 ret = link_to_fixup_dir(wc->trans, root,
2500 path, key.objectid);
b50c6e25
JB
2501 if (ret)
2502 break;
e02119d5 2503 }
dd8e7217 2504
f2d72f42
FM
2505 if (wc->ignore_cur_inode)
2506 continue;
2507
dd8e7217
JB
2508 if (key.type == BTRFS_DIR_INDEX_KEY &&
2509 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510 ret = replay_one_dir_item(wc->trans, root, path,
2511 eb, i, &key);
2512 if (ret)
2513 break;
2514 }
2515
e02119d5
CM
2516 if (wc->stage < LOG_WALK_REPLAY_ALL)
2517 continue;
2518
2519 /* these keys are simply copied */
2520 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521 ret = overwrite_item(wc->trans, root, path,
2522 eb, i, &key);
b50c6e25
JB
2523 if (ret)
2524 break;
2da1c669
LB
2525 } else if (key.type == BTRFS_INODE_REF_KEY ||
2526 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2527 ret = add_inode_ref(wc->trans, root, log, path,
2528 eb, i, &key);
b50c6e25
JB
2529 if (ret && ret != -ENOENT)
2530 break;
2531 ret = 0;
e02119d5
CM
2532 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533 ret = replay_one_extent(wc->trans, root, path,
2534 eb, i, &key);
b50c6e25
JB
2535 if (ret)
2536 break;
e02119d5 2537 }
339d0354
FM
2538 /*
2539 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542 * older kernel with such keys, ignore them.
2543 */
e02119d5
CM
2544 }
2545 btrfs_free_path(path);
b50c6e25 2546 return ret;
e02119d5
CM
2547}
2548
6787bb9f
NB
2549/*
2550 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2551 */
2552static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2553{
2554 struct btrfs_block_group *cache;
2555
2556 cache = btrfs_lookup_block_group(fs_info, start);
2557 if (!cache) {
2558 btrfs_err(fs_info, "unable to find block group for %llu", start);
2559 return;
2560 }
2561
2562 spin_lock(&cache->space_info->lock);
2563 spin_lock(&cache->lock);
2564 cache->reserved -= fs_info->nodesize;
2565 cache->space_info->bytes_reserved -= fs_info->nodesize;
2566 spin_unlock(&cache->lock);
2567 spin_unlock(&cache->space_info->lock);
2568
2569 btrfs_put_block_group(cache);
2570}
2571
d397712b 2572static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2573 struct btrfs_root *root,
2574 struct btrfs_path *path, int *level,
2575 struct walk_control *wc)
2576{
0b246afa 2577 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2578 u64 bytenr;
2579 u64 ptr_gen;
2580 struct extent_buffer *next;
2581 struct extent_buffer *cur;
e02119d5
CM
2582 u32 blocksize;
2583 int ret = 0;
2584
d397712b 2585 while (*level > 0) {
789d6a3a 2586 struct btrfs_tree_parent_check check = { 0 };
581c1760 2587
e02119d5
CM
2588 cur = path->nodes[*level];
2589
fae7f21c 2590 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2591
2592 if (path->slots[*level] >=
2593 btrfs_header_nritems(cur))
2594 break;
2595
2596 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
789d6a3a
QW
2598 check.transid = ptr_gen;
2599 check.level = *level - 1;
2600 check.has_first_key = true;
2601 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
0b246afa 2602 blocksize = fs_info->nodesize;
e02119d5 2603
3fbaf258
JB
2604 next = btrfs_find_create_tree_block(fs_info, bytenr,
2605 btrfs_header_owner(cur),
2606 *level - 1);
c871b0f2
LB
2607 if (IS_ERR(next))
2608 return PTR_ERR(next);
e02119d5 2609
e02119d5 2610 if (*level == 1) {
581c1760
QW
2611 ret = wc->process_func(root, next, wc, ptr_gen,
2612 *level - 1);
b50c6e25
JB
2613 if (ret) {
2614 free_extent_buffer(next);
1e5063d0 2615 return ret;
b50c6e25 2616 }
4a500fd1 2617
e02119d5
CM
2618 path->slots[*level]++;
2619 if (wc->free) {
789d6a3a 2620 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2621 if (ret) {
2622 free_extent_buffer(next);
2623 return ret;
2624 }
e02119d5 2625
681ae509
JB
2626 if (trans) {
2627 btrfs_tree_lock(next);
6a884d7d 2628 btrfs_clean_tree_block(next);
681ae509
JB
2629 btrfs_wait_tree_block_writeback(next);
2630 btrfs_tree_unlock(next);
7bfc1007 2631 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2632 bytenr, blocksize);
2633 if (ret) {
2634 free_extent_buffer(next);
2635 return ret;
2636 }
d3575156
NA
2637 btrfs_redirty_list_add(
2638 trans->transaction, next);
1846430c
LB
2639 } else {
2640 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 clear_extent_buffer_dirty(next);
10e958d5 2642 unaccount_log_buffer(fs_info, bytenr);
3650860b 2643 }
e02119d5
CM
2644 }
2645 free_extent_buffer(next);
2646 continue;
2647 }
789d6a3a 2648 ret = btrfs_read_extent_buffer(next, &check);
018642a1
TI
2649 if (ret) {
2650 free_extent_buffer(next);
2651 return ret;
2652 }
e02119d5 2653
e02119d5
CM
2654 if (path->nodes[*level-1])
2655 free_extent_buffer(path->nodes[*level-1]);
2656 path->nodes[*level-1] = next;
2657 *level = btrfs_header_level(next);
2658 path->slots[*level] = 0;
2659 cond_resched();
2660 }
4a500fd1 2661 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2662
2663 cond_resched();
2664 return 0;
2665}
2666
d397712b 2667static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2668 struct btrfs_root *root,
2669 struct btrfs_path *path, int *level,
2670 struct walk_control *wc)
2671{
0b246afa 2672 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2673 int i;
2674 int slot;
2675 int ret;
2676
d397712b 2677 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2678 slot = path->slots[i];
4a500fd1 2679 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2680 path->slots[i]++;
2681 *level = i;
2682 WARN_ON(*level == 0);
2683 return 0;
2684 } else {
1e5063d0 2685 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2686 btrfs_header_generation(path->nodes[*level]),
2687 *level);
1e5063d0
MF
2688 if (ret)
2689 return ret;
2690
e02119d5
CM
2691 if (wc->free) {
2692 struct extent_buffer *next;
2693
2694 next = path->nodes[*level];
2695
681ae509
JB
2696 if (trans) {
2697 btrfs_tree_lock(next);
6a884d7d 2698 btrfs_clean_tree_block(next);
681ae509
JB
2699 btrfs_wait_tree_block_writeback(next);
2700 btrfs_tree_unlock(next);
7bfc1007 2701 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2702 path->nodes[*level]->start,
2703 path->nodes[*level]->len);
2704 if (ret)
2705 return ret;
84c25448
NA
2706 btrfs_redirty_list_add(trans->transaction,
2707 next);
1846430c
LB
2708 } else {
2709 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710 clear_extent_buffer_dirty(next);
e02119d5 2711
10e958d5
NB
2712 unaccount_log_buffer(fs_info,
2713 path->nodes[*level]->start);
2714 }
e02119d5
CM
2715 }
2716 free_extent_buffer(path->nodes[*level]);
2717 path->nodes[*level] = NULL;
2718 *level = i + 1;
2719 }
2720 }
2721 return 1;
2722}
2723
2724/*
2725 * drop the reference count on the tree rooted at 'snap'. This traverses
2726 * the tree freeing any blocks that have a ref count of zero after being
2727 * decremented.
2728 */
2729static int walk_log_tree(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *log, struct walk_control *wc)
2731{
2ff7e61e 2732 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2733 int ret = 0;
2734 int wret;
2735 int level;
2736 struct btrfs_path *path;
e02119d5
CM
2737 int orig_level;
2738
2739 path = btrfs_alloc_path();
db5b493a
TI
2740 if (!path)
2741 return -ENOMEM;
e02119d5
CM
2742
2743 level = btrfs_header_level(log->node);
2744 orig_level = level;
2745 path->nodes[level] = log->node;
67439dad 2746 atomic_inc(&log->node->refs);
e02119d5
CM
2747 path->slots[level] = 0;
2748
d397712b 2749 while (1) {
e02119d5
CM
2750 wret = walk_down_log_tree(trans, log, path, &level, wc);
2751 if (wret > 0)
2752 break;
79787eaa 2753 if (wret < 0) {
e02119d5 2754 ret = wret;
79787eaa
JM
2755 goto out;
2756 }
e02119d5
CM
2757
2758 wret = walk_up_log_tree(trans, log, path, &level, wc);
2759 if (wret > 0)
2760 break;
79787eaa 2761 if (wret < 0) {
e02119d5 2762 ret = wret;
79787eaa
JM
2763 goto out;
2764 }
e02119d5
CM
2765 }
2766
2767 /* was the root node processed? if not, catch it here */
2768 if (path->nodes[orig_level]) {
79787eaa 2769 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2770 btrfs_header_generation(path->nodes[orig_level]),
2771 orig_level);
79787eaa
JM
2772 if (ret)
2773 goto out;
e02119d5
CM
2774 if (wc->free) {
2775 struct extent_buffer *next;
2776
2777 next = path->nodes[orig_level];
2778
681ae509
JB
2779 if (trans) {
2780 btrfs_tree_lock(next);
6a884d7d 2781 btrfs_clean_tree_block(next);
681ae509
JB
2782 btrfs_wait_tree_block_writeback(next);
2783 btrfs_tree_unlock(next);
7bfc1007 2784 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2785 next->start, next->len);
2786 if (ret)
2787 goto out;
84c25448 2788 btrfs_redirty_list_add(trans->transaction, next);
1846430c
LB
2789 } else {
2790 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791 clear_extent_buffer_dirty(next);
10e958d5 2792 unaccount_log_buffer(fs_info, next->start);
681ae509 2793 }
e02119d5
CM
2794 }
2795 }
2796
79787eaa 2797out:
e02119d5 2798 btrfs_free_path(path);
e02119d5
CM
2799 return ret;
2800}
2801
7237f183
YZ
2802/*
2803 * helper function to update the item for a given subvolumes log root
2804 * in the tree of log roots
2805 */
2806static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2807 struct btrfs_root *log,
2808 struct btrfs_root_item *root_item)
7237f183 2809{
0b246afa 2810 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2811 int ret;
2812
2813 if (log->log_transid == 1) {
2814 /* insert root item on the first sync */
0b246afa 2815 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2816 &log->root_key, root_item);
7237f183 2817 } else {
0b246afa 2818 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2819 &log->root_key, root_item);
7237f183
YZ
2820 }
2821 return ret;
2822}
2823
60d53eb3 2824static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2825{
2826 DEFINE_WAIT(wait);
7237f183 2827 int index = transid % 2;
e02119d5 2828
7237f183
YZ
2829 /*
2830 * we only allow two pending log transactions at a time,
2831 * so we know that if ours is more than 2 older than the
2832 * current transaction, we're done
2833 */
49e83f57 2834 for (;;) {
7237f183
YZ
2835 prepare_to_wait(&root->log_commit_wait[index],
2836 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2837
49e83f57
LB
2838 if (!(root->log_transid_committed < transid &&
2839 atomic_read(&root->log_commit[index])))
2840 break;
12fcfd22 2841
49e83f57
LB
2842 mutex_unlock(&root->log_mutex);
2843 schedule();
7237f183 2844 mutex_lock(&root->log_mutex);
49e83f57
LB
2845 }
2846 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2847}
2848
60d53eb3 2849static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2850{
2851 DEFINE_WAIT(wait);
8b050d35 2852
49e83f57
LB
2853 for (;;) {
2854 prepare_to_wait(&root->log_writer_wait, &wait,
2855 TASK_UNINTERRUPTIBLE);
2856 if (!atomic_read(&root->log_writers))
2857 break;
2858
7237f183 2859 mutex_unlock(&root->log_mutex);
49e83f57 2860 schedule();
575849ec 2861 mutex_lock(&root->log_mutex);
7237f183 2862 }
49e83f57 2863 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2864}
2865
8b050d35
MX
2866static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867 struct btrfs_log_ctx *ctx)
2868{
8b050d35
MX
2869 mutex_lock(&root->log_mutex);
2870 list_del_init(&ctx->list);
2871 mutex_unlock(&root->log_mutex);
2872}
2873
2874/*
2875 * Invoked in log mutex context, or be sure there is no other task which
2876 * can access the list.
2877 */
2878static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879 int index, int error)
2880{
2881 struct btrfs_log_ctx *ctx;
570dd450 2882 struct btrfs_log_ctx *safe;
8b050d35 2883
570dd450
CM
2884 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885 list_del_init(&ctx->list);
8b050d35 2886 ctx->log_ret = error;
570dd450 2887 }
8b050d35
MX
2888}
2889
e02119d5
CM
2890/*
2891 * btrfs_sync_log does sends a given tree log down to the disk and
2892 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2893 * you know that any inodes previously logged are safely on disk only
2894 * if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
e02119d5
CM
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2904{
7237f183
YZ
2905 int index1;
2906 int index2;
8cef4e16 2907 int mark;
e02119d5 2908 int ret;
0b246afa 2909 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2910 struct btrfs_root *log = root->log_root;
0b246afa 2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 2912 struct btrfs_root_item new_root_item;
bb14a59b 2913 int log_transid = 0;
8b050d35 2914 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2915 struct blk_plug plug;
47876f7c
FM
2916 u64 log_root_start;
2917 u64 log_root_level;
e02119d5 2918
7237f183 2919 mutex_lock(&root->log_mutex);
d1433deb
MX
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
7237f183 2927 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2928 wait_log_commit(root, log_transid);
7237f183 2929 mutex_unlock(&root->log_mutex);
8b050d35 2930 return ctx->log_ret;
e02119d5 2931 }
d1433deb 2932 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2933 atomic_set(&root->log_commit[index1], 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2937 wait_log_commit(root, log_transid - 1);
48cab2e0 2938
86df7eb9 2939 while (1) {
2ecb7923 2940 int batch = atomic_read(&root->log_batch);
cd354ad6 2941 /* when we're on an ssd, just kick the log commit out */
0b246afa 2942 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2947 }
60d53eb3 2948 wait_for_writer(root);
2ecb7923 2949 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2950 break;
2951 }
e02119d5 2952
12fcfd22 2953 /* bail out if we need to do a full commit */
4884b8e8 2954 if (btrfs_need_log_full_commit(trans)) {
f31f09f6 2955 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
2956 mutex_unlock(&root->log_mutex);
2957 goto out;
2958 }
2959
8cef4e16
YZ
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
690587d1
CM
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
c6adc9cc 2968 blk_start_plug(&plug);
2ff7e61e 2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
b528f467
NA
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
79787eaa 2981 if (ret) {
c6adc9cc 2982 blk_finish_plug(&plug);
90787766 2983 btrfs_set_log_full_commit(trans);
79787eaa
JM
2984 mutex_unlock(&root->log_mutex);
2985 goto out;
2986 }
7237f183 2987
4203e968
JB
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
5d4f98a2 3001 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3003
7237f183
YZ
3004 root->log_transid++;
3005 log->log_transid = root->log_transid;
ff782e0a 3006 root->log_start_pid = 0;
7237f183 3007 /*
8cef4e16
YZ
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3011 */
3012 mutex_unlock(&root->log_mutex);
3013
3ddebf27 3014 if (btrfs_is_zoned(fs_info)) {
e75f9fd1 3015 mutex_lock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 if (ret) {
ea32af47 3019 mutex_unlock(&fs_info->tree_root->log_mutex);
50ff5788 3020 blk_finish_plug(&plug);
3ddebf27
NA
3021 goto out;
3022 }
3023 }
e75f9fd1 3024 mutex_unlock(&fs_info->tree_root->log_mutex);
3ddebf27
NA
3025 }
3026
e75f9fd1
NA
3027 btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
e3d3b415
FM
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
4203e968
JB
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3041 if (ret) {
d1433deb
MX
3042 if (!list_empty(&root_log_ctx.list))
3043 list_del_init(&root_log_ctx.list);
3044
c6adc9cc 3045 blk_finish_plug(&plug);
90787766 3046 btrfs_set_log_full_commit(trans);
09e44868
FM
3047 if (ret != -ENOSPC)
3048 btrfs_err(fs_info,
3049 "failed to update log for root %llu ret %d",
3050 root->root_key.objectid, ret);
bf89d38f 3051 btrfs_wait_tree_log_extents(log, mark);
4a500fd1 3052 mutex_unlock(&log_root_tree->log_mutex);
4a500fd1
YZ
3053 goto out;
3054 }
3055
d1433deb 3056 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3057 blk_finish_plug(&plug);
cbd60aa7 3058 list_del_init(&root_log_ctx.list);
d1433deb
MX
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 ret = root_log_ctx.log_ret;
3061 goto out;
3062 }
8b050d35 3063
d1433deb 3064 index2 = root_log_ctx.log_transid % 2;
7237f183 3065 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3066 blk_finish_plug(&plug);
bf89d38f 3067 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3068 wait_log_commit(log_root_tree,
d1433deb 3069 root_log_ctx.log_transid);
7237f183 3070 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3071 if (!ret)
3072 ret = root_log_ctx.log_ret;
7237f183
YZ
3073 goto out;
3074 }
d1433deb 3075 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3076 atomic_set(&log_root_tree->log_commit[index2], 1);
3077
12fcfd22 3078 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3079 wait_log_commit(log_root_tree,
d1433deb 3080 root_log_ctx.log_transid - 1);
12fcfd22
CM
3081 }
3082
12fcfd22
CM
3083 /*
3084 * now that we've moved on to the tree of log tree roots,
3085 * check the full commit flag again
3086 */
4884b8e8 3087 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3088 blk_finish_plug(&plug);
bf89d38f 3089 btrfs_wait_tree_log_extents(log, mark);
12fcfd22 3090 mutex_unlock(&log_root_tree->log_mutex);
f31f09f6 3091 ret = BTRFS_LOG_FORCE_COMMIT;
12fcfd22
CM
3092 goto out_wake_log_root;
3093 }
7237f183 3094
2ff7e61e 3095 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3096 &log_root_tree->dirty_log_pages,
3097 EXTENT_DIRTY | EXTENT_NEW);
3098 blk_finish_plug(&plug);
b528f467
NA
3099 /*
3100 * As described above, -EAGAIN indicates a hole in the extents. We
3101 * cannot wait for these write outs since the waiting cause a
3102 * deadlock. Bail out to the full commit instead.
3103 */
3104 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3105 btrfs_set_log_full_commit(trans);
3106 btrfs_wait_tree_log_extents(log, mark);
3107 mutex_unlock(&log_root_tree->log_mutex);
3108 goto out_wake_log_root;
3109 } else if (ret) {
90787766 3110 btrfs_set_log_full_commit(trans);
79787eaa
JM
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 goto out_wake_log_root;
3113 }
bf89d38f 3114 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3115 if (!ret)
bf89d38f
JM
3116 ret = btrfs_wait_tree_log_extents(log_root_tree,
3117 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3118 if (ret) {
90787766 3119 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3120 mutex_unlock(&log_root_tree->log_mutex);
3121 goto out_wake_log_root;
3122 }
e02119d5 3123
47876f7c
FM
3124 log_root_start = log_root_tree->node->start;
3125 log_root_level = btrfs_header_level(log_root_tree->node);
7237f183 3126 log_root_tree->log_transid++;
7237f183
YZ
3127 mutex_unlock(&log_root_tree->log_mutex);
3128
3129 /*
47876f7c
FM
3130 * Here we are guaranteed that nobody is going to write the superblock
3131 * for the current transaction before us and that neither we do write
3132 * our superblock before the previous transaction finishes its commit
3133 * and writes its superblock, because:
3134 *
3135 * 1) We are holding a handle on the current transaction, so no body
3136 * can commit it until we release the handle;
3137 *
3138 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3139 * if the previous transaction is still committing, and hasn't yet
3140 * written its superblock, we wait for it to do it, because a
3141 * transaction commit acquires the tree_log_mutex when the commit
3142 * begins and releases it only after writing its superblock.
7237f183 3143 */
47876f7c 3144 mutex_lock(&fs_info->tree_log_mutex);
165ea85f
JB
3145
3146 /*
3147 * The previous transaction writeout phase could have failed, and thus
3148 * marked the fs in an error state. We must not commit here, as we
3149 * could have updated our generation in the super_for_commit and
3150 * writing the super here would result in transid mismatches. If there
3151 * is an error here just bail.
3152 */
84961539 3153 if (BTRFS_FS_ERROR(fs_info)) {
165ea85f
JB
3154 ret = -EIO;
3155 btrfs_set_log_full_commit(trans);
3156 btrfs_abort_transaction(trans, ret);
3157 mutex_unlock(&fs_info->tree_log_mutex);
3158 goto out_wake_log_root;
3159 }
3160
47876f7c
FM
3161 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3162 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
eece6a9c 3163 ret = write_all_supers(fs_info, 1);
47876f7c 3164 mutex_unlock(&fs_info->tree_log_mutex);
5af3e8cc 3165 if (ret) {
90787766 3166 btrfs_set_log_full_commit(trans);
66642832 3167 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3168 goto out_wake_log_root;
3169 }
7237f183 3170
e1a6d264
FM
3171 /*
3172 * We know there can only be one task here, since we have not yet set
3173 * root->log_commit[index1] to 0 and any task attempting to sync the
3174 * log must wait for the previous log transaction to commit if it's
3175 * still in progress or wait for the current log transaction commit if
3176 * someone else already started it. We use <= and not < because the
3177 * first log transaction has an ID of 0.
3178 */
3179 ASSERT(root->last_log_commit <= log_transid);
3180 root->last_log_commit = log_transid;
257c62e1 3181
12fcfd22 3182out_wake_log_root:
570dd450 3183 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3184 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3185
d1433deb 3186 log_root_tree->log_transid_committed++;
7237f183 3187 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3188 mutex_unlock(&log_root_tree->log_mutex);
3189
33a9eca7 3190 /*
093258e6
DS
3191 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3192 * all the updates above are seen by the woken threads. It might not be
3193 * necessary, but proving that seems to be hard.
33a9eca7 3194 */
093258e6 3195 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3196out:
d1433deb 3197 mutex_lock(&root->log_mutex);
570dd450 3198 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3199 root->log_transid_committed++;
7237f183 3200 atomic_set(&root->log_commit[index1], 0);
d1433deb 3201 mutex_unlock(&root->log_mutex);
8b050d35 3202
33a9eca7 3203 /*
093258e6
DS
3204 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205 * all the updates above are seen by the woken threads. It might not be
3206 * necessary, but proving that seems to be hard.
33a9eca7 3207 */
093258e6 3208 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3209 return ret;
e02119d5
CM
3210}
3211
4a500fd1
YZ
3212static void free_log_tree(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *log)
e02119d5
CM
3214{
3215 int ret;
e02119d5
CM
3216 struct walk_control wc = {
3217 .free = 1,
3218 .process_func = process_one_buffer
3219 };
3220
3ddebf27
NA
3221 if (log->node) {
3222 ret = walk_log_tree(trans, log, &wc);
3223 if (ret) {
40cdc509
FM
3224 /*
3225 * We weren't able to traverse the entire log tree, the
3226 * typical scenario is getting an -EIO when reading an
3227 * extent buffer of the tree, due to a previous writeback
3228 * failure of it.
3229 */
3230 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3231 &log->fs_info->fs_state);
3232
3233 /*
3234 * Some extent buffers of the log tree may still be dirty
3235 * and not yet written back to storage, because we may
3236 * have updates to a log tree without syncing a log tree,
3237 * such as during rename and link operations. So flush
3238 * them out and wait for their writeback to complete, so
3239 * that we properly cleanup their state and pages.
3240 */
3241 btrfs_write_marked_extents(log->fs_info,
3242 &log->dirty_log_pages,
3243 EXTENT_DIRTY | EXTENT_NEW);
3244 btrfs_wait_tree_log_extents(log,
3245 EXTENT_DIRTY | EXTENT_NEW);
3246
3ddebf27
NA
3247 if (trans)
3248 btrfs_abort_transaction(trans, ret);
3249 else
3250 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3251 }
374b0e2d 3252 }
e02119d5 3253
59b0713a
FM
3254 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3255 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3256 extent_io_tree_release(&log->log_csum_range);
d3575156 3257
00246528 3258 btrfs_put_root(log);
4a500fd1
YZ
3259}
3260
3261/*
3262 * free all the extents used by the tree log. This should be called
3263 * at commit time of the full transaction
3264 */
3265int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266{
3267 if (root->log_root) {
3268 free_log_tree(trans, root->log_root);
3269 root->log_root = NULL;
e7a79811 3270 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3271 }
3272 return 0;
3273}
3274
3275int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3276 struct btrfs_fs_info *fs_info)
3277{
3278 if (fs_info->log_root_tree) {
3279 free_log_tree(trans, fs_info->log_root_tree);
3280 fs_info->log_root_tree = NULL;
47876f7c 3281 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
4a500fd1 3282 }
e02119d5
CM
3283 return 0;
3284}
3285
803f0f64 3286/*
0f8ce498
FM
3287 * Check if an inode was logged in the current transaction. This correctly deals
3288 * with the case where the inode was logged but has a logged_trans of 0, which
3289 * happens if the inode is evicted and loaded again, as logged_trans is an in
3290 * memory only field (not persisted).
3291 *
3292 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3293 * and < 0 on error.
803f0f64 3294 */
0f8ce498
FM
3295static int inode_logged(struct btrfs_trans_handle *trans,
3296 struct btrfs_inode *inode,
3297 struct btrfs_path *path_in)
803f0f64 3298{
0f8ce498
FM
3299 struct btrfs_path *path = path_in;
3300 struct btrfs_key key;
3301 int ret;
3302
803f0f64 3303 if (inode->logged_trans == trans->transid)
0f8ce498 3304 return 1;
803f0f64 3305
0f8ce498
FM
3306 /*
3307 * If logged_trans is not 0, then we know the inode logged was not logged
3308 * in this transaction, so we can return false right away.
3309 */
3310 if (inode->logged_trans > 0)
3311 return 0;
3312
3313 /*
3314 * If no log tree was created for this root in this transaction, then
3315 * the inode can not have been logged in this transaction. In that case
3316 * set logged_trans to anything greater than 0 and less than the current
3317 * transaction's ID, to avoid the search below in a future call in case
3318 * a log tree gets created after this.
3319 */
3320 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3321 inode->logged_trans = trans->transid - 1;
3322 return 0;
3323 }
3324
3325 /*
3326 * We have a log tree and the inode's logged_trans is 0. We can't tell
3327 * for sure if the inode was logged before in this transaction by looking
3328 * only at logged_trans. We could be pessimistic and assume it was, but
3329 * that can lead to unnecessarily logging an inode during rename and link
3330 * operations, and then further updating the log in followup rename and
3331 * link operations, specially if it's a directory, which adds latency
3332 * visible to applications doing a series of rename or link operations.
3333 *
3334 * A logged_trans of 0 here can mean several things:
3335 *
3336 * 1) The inode was never logged since the filesystem was mounted, and may
3337 * or may have not been evicted and loaded again;
3338 *
3339 * 2) The inode was logged in a previous transaction, then evicted and
3340 * then loaded again;
3341 *
3342 * 3) The inode was logged in the current transaction, then evicted and
3343 * then loaded again.
3344 *
3345 * For cases 1) and 2) we don't want to return true, but we need to detect
3346 * case 3) and return true. So we do a search in the log root for the inode
3347 * item.
3348 */
3349 key.objectid = btrfs_ino(inode);
3350 key.type = BTRFS_INODE_ITEM_KEY;
3351 key.offset = 0;
3352
3353 if (!path) {
3354 path = btrfs_alloc_path();
3355 if (!path)
3356 return -ENOMEM;
3357 }
3358
3359 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3360
3361 if (path_in)
3362 btrfs_release_path(path);
3363 else
3364 btrfs_free_path(path);
1e0860f3 3365
6e8e777d 3366 /*
0f8ce498
FM
3367 * Logging an inode always results in logging its inode item. So if we
3368 * did not find the item we know the inode was not logged for sure.
6e8e777d 3369 */
0f8ce498
FM
3370 if (ret < 0) {
3371 return ret;
3372 } else if (ret > 0) {
3373 /*
3374 * Set logged_trans to a value greater than 0 and less then the
3375 * current transaction to avoid doing the search in future calls.
3376 */
3377 inode->logged_trans = trans->transid - 1;
3378 return 0;
3379 }
3380
3381 /*
3382 * The inode was previously logged and then evicted, set logged_trans to
3383 * the current transacion's ID, to avoid future tree searches as long as
3384 * the inode is not evicted again.
3385 */
3386 inode->logged_trans = trans->transid;
3387
3388 /*
3389 * If it's a directory, then we must set last_dir_index_offset to the
3390 * maximum possible value, so that the next attempt to log the inode does
3391 * not skip checking if dir index keys found in modified subvolume tree
3392 * leaves have been logged before, otherwise it would result in attempts
3393 * to insert duplicate dir index keys in the log tree. This must be done
3394 * because last_dir_index_offset is an in-memory only field, not persisted
3395 * in the inode item or any other on-disk structure, so its value is lost
3396 * once the inode is evicted.
3397 */
3398 if (S_ISDIR(inode->vfs_inode.i_mode))
3399 inode->last_dir_index_offset = (u64)-1;
803f0f64 3400
0f8ce498 3401 return 1;
803f0f64
FM
3402}
3403
839061fe
FM
3404/*
3405 * Delete a directory entry from the log if it exists.
3406 *
3407 * Returns < 0 on error
3408 * 1 if the entry does not exists
3409 * 0 if the entry existed and was successfully deleted
3410 */
3411static int del_logged_dentry(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *log,
3413 struct btrfs_path *path,
3414 u64 dir_ino,
6db75318 3415 const struct fscrypt_str *name,
839061fe
FM
3416 u64 index)
3417{
3418 struct btrfs_dir_item *di;
3419
3420 /*
3421 * We only log dir index items of a directory, so we don't need to look
3422 * for dir item keys.
3423 */
3424 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e43eec81 3425 index, name, -1);
839061fe
FM
3426 if (IS_ERR(di))
3427 return PTR_ERR(di);
3428 else if (!di)
3429 return 1;
3430
3431 /*
3432 * We do not need to update the size field of the directory's
3433 * inode item because on log replay we update the field to reflect
3434 * all existing entries in the directory (see overwrite_item()).
3435 */
3436 return btrfs_delete_one_dir_name(trans, log, path, di);
3437}
3438
e02119d5
CM
3439/*
3440 * If both a file and directory are logged, and unlinks or renames are
3441 * mixed in, we have a few interesting corners:
3442 *
3443 * create file X in dir Y
3444 * link file X to X.link in dir Y
3445 * fsync file X
3446 * unlink file X but leave X.link
3447 * fsync dir Y
3448 *
3449 * After a crash we would expect only X.link to exist. But file X
3450 * didn't get fsync'd again so the log has back refs for X and X.link.
3451 *
3452 * We solve this by removing directory entries and inode backrefs from the
3453 * log when a file that was logged in the current transaction is
3454 * unlinked. Any later fsync will include the updated log entries, and
3455 * we'll be able to reconstruct the proper directory items from backrefs.
3456 *
3457 * This optimizations allows us to avoid relogging the entire inode
3458 * or the entire directory.
3459 */
9a35fc95
JB
3460void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3461 struct btrfs_root *root,
6db75318 3462 const struct fscrypt_str *name,
9a35fc95 3463 struct btrfs_inode *dir, u64 index)
e02119d5 3464{
e02119d5
CM
3465 struct btrfs_path *path;
3466 int ret;
e02119d5 3467
0f8ce498
FM
3468 ret = inode_logged(trans, dir, NULL);
3469 if (ret == 0)
3470 return;
3471 else if (ret < 0) {
3472 btrfs_set_log_full_commit(trans);
9a35fc95 3473 return;
0f8ce498 3474 }
3a5f1d45 3475
e02119d5
CM
3476 ret = join_running_log_trans(root);
3477 if (ret)
9a35fc95 3478 return;
e02119d5 3479
49f34d1f 3480 mutex_lock(&dir->log_mutex);
e02119d5 3481
e02119d5 3482 path = btrfs_alloc_path();
a62f44a5 3483 if (!path) {
839061fe 3484 ret = -ENOMEM;
a62f44a5
TI
3485 goto out_unlock;
3486 }
2a29edc6 3487
839061fe 3488 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
e43eec81 3489 name, index);
e02119d5 3490 btrfs_free_path(path);
a62f44a5 3491out_unlock:
49f34d1f 3492 mutex_unlock(&dir->log_mutex);
839061fe 3493 if (ret < 0)
90787766 3494 btrfs_set_log_full_commit(trans);
12fcfd22 3495 btrfs_end_log_trans(root);
e02119d5
CM
3496}
3497
3498/* see comments for btrfs_del_dir_entries_in_log */
9a35fc95
JB
3499void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3500 struct btrfs_root *root,
6db75318 3501 const struct fscrypt_str *name,
9a35fc95 3502 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3503{
3504 struct btrfs_root *log;
3505 u64 index;
3506 int ret;
3507
0f8ce498
FM
3508 ret = inode_logged(trans, inode, NULL);
3509 if (ret == 0)
9a35fc95 3510 return;
0f8ce498
FM
3511 else if (ret < 0) {
3512 btrfs_set_log_full_commit(trans);
3513 return;
3514 }
3a5f1d45 3515
e02119d5
CM
3516 ret = join_running_log_trans(root);
3517 if (ret)
9a35fc95 3518 return;
e02119d5 3519 log = root->log_root;
a491abb2 3520 mutex_lock(&inode->log_mutex);
e02119d5 3521
e43eec81 3522 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
e02119d5 3523 dirid, &index);
a491abb2 3524 mutex_unlock(&inode->log_mutex);
9a35fc95 3525 if (ret < 0 && ret != -ENOENT)
90787766 3526 btrfs_set_log_full_commit(trans);
12fcfd22 3527 btrfs_end_log_trans(root);
e02119d5
CM
3528}
3529
3530/*
3531 * creates a range item in the log for 'dirid'. first_offset and
3532 * last_offset tell us which parts of the key space the log should
3533 * be considered authoritative for.
3534 */
3535static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *log,
3537 struct btrfs_path *path,
339d0354 3538 u64 dirid,
e02119d5
CM
3539 u64 first_offset, u64 last_offset)
3540{
3541 int ret;
3542 struct btrfs_key key;
3543 struct btrfs_dir_log_item *item;
3544
3545 key.objectid = dirid;
3546 key.offset = first_offset;
339d0354 3547 key.type = BTRFS_DIR_LOG_INDEX_KEY;
e02119d5 3548 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
750ee454
FM
3549 /*
3550 * -EEXIST is fine and can happen sporadically when we are logging a
3551 * directory and have concurrent insertions in the subvolume's tree for
3552 * items from other inodes and that result in pushing off some dir items
3553 * from one leaf to another in order to accommodate for the new items.
3554 * This results in logging the same dir index range key.
3555 */
3556 if (ret && ret != -EEXIST)
4a500fd1 3557 return ret;
e02119d5
CM
3558
3559 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560 struct btrfs_dir_log_item);
750ee454
FM
3561 if (ret == -EEXIST) {
3562 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3563
3564 /*
3565 * btrfs_del_dir_entries_in_log() might have been called during
3566 * an unlink between the initial insertion of this key and the
3567 * current update, or we might be logging a single entry deletion
3568 * during a rename, so set the new last_offset to the max value.
3569 */
3570 last_offset = max(last_offset, curr_end);
3571 }
e02119d5
CM
3572 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3573 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3574 btrfs_release_path(path);
e02119d5
CM
3575 return 0;
3576}
3577
086dcbfa 3578static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
6afaed53 3579 struct btrfs_inode *inode,
086dcbfa
FM
3580 struct extent_buffer *src,
3581 struct btrfs_path *dst_path,
3582 int start_slot,
3583 int count)
3584{
6afaed53 3585 struct btrfs_root *log = inode->root->log_root;
086dcbfa 3586 char *ins_data = NULL;
b7ef5f3a 3587 struct btrfs_item_batch batch;
086dcbfa 3588 struct extent_buffer *dst;
da1b811f
FM
3589 unsigned long src_offset;
3590 unsigned long dst_offset;
6afaed53 3591 u64 last_index;
086dcbfa
FM
3592 struct btrfs_key key;
3593 u32 item_size;
3594 int ret;
3595 int i;
3596
3597 ASSERT(count > 0);
b7ef5f3a 3598 batch.nr = count;
086dcbfa
FM
3599
3600 if (count == 1) {
3601 btrfs_item_key_to_cpu(src, &key, start_slot);
3212fa14 3602 item_size = btrfs_item_size(src, start_slot);
b7ef5f3a
FM
3603 batch.keys = &key;
3604 batch.data_sizes = &item_size;
3605 batch.total_data_size = item_size;
086dcbfa 3606 } else {
b7ef5f3a
FM
3607 struct btrfs_key *ins_keys;
3608 u32 *ins_sizes;
3609
086dcbfa
FM
3610 ins_data = kmalloc(count * sizeof(u32) +
3611 count * sizeof(struct btrfs_key), GFP_NOFS);
3612 if (!ins_data)
3613 return -ENOMEM;
3614
3615 ins_sizes = (u32 *)ins_data;
3616 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
b7ef5f3a
FM
3617 batch.keys = ins_keys;
3618 batch.data_sizes = ins_sizes;
3619 batch.total_data_size = 0;
086dcbfa
FM
3620
3621 for (i = 0; i < count; i++) {
3622 const int slot = start_slot + i;
3623
3624 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3212fa14 3625 ins_sizes[i] = btrfs_item_size(src, slot);
b7ef5f3a 3626 batch.total_data_size += ins_sizes[i];
086dcbfa
FM
3627 }
3628 }
3629
b7ef5f3a 3630 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
086dcbfa
FM
3631 if (ret)
3632 goto out;
3633
3634 dst = dst_path->nodes[0];
da1b811f
FM
3635 /*
3636 * Copy all the items in bulk, in a single copy operation. Item data is
3637 * organized such that it's placed at the end of a leaf and from right
3638 * to left. For example, the data for the second item ends at an offset
3639 * that matches the offset where the data for the first item starts, the
3640 * data for the third item ends at an offset that matches the offset
3641 * where the data of the second items starts, and so on.
3642 * Therefore our source and destination start offsets for copy match the
3643 * offsets of the last items (highest slots).
3644 */
3645 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3646 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3647 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
086dcbfa 3648 btrfs_release_path(dst_path);
6afaed53
FM
3649
3650 last_index = batch.keys[count - 1].offset;
3651 ASSERT(last_index > inode->last_dir_index_offset);
3652
3653 /*
3654 * If for some unexpected reason the last item's index is not greater
5cce1780 3655 * than the last index we logged, warn and force a transaction commit.
6afaed53
FM
3656 */
3657 if (WARN_ON(last_index <= inode->last_dir_index_offset))
5cce1780 3658 ret = BTRFS_LOG_FORCE_COMMIT;
6afaed53
FM
3659 else
3660 inode->last_dir_index_offset = last_index;
086dcbfa
FM
3661out:
3662 kfree(ins_data);
3663
3664 return ret;
3665}
3666
eb10d85e
FM
3667static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3668 struct btrfs_inode *inode,
3669 struct btrfs_path *path,
3670 struct btrfs_path *dst_path,
732d591a
FM
3671 struct btrfs_log_ctx *ctx,
3672 u64 *last_old_dentry_offset)
eb10d85e
FM
3673{
3674 struct btrfs_root *log = inode->root->log_root;
796787c9
FM
3675 struct extent_buffer *src;
3676 const int nritems = btrfs_header_nritems(path->nodes[0]);
eb10d85e 3677 const u64 ino = btrfs_ino(inode);
086dcbfa
FM
3678 bool last_found = false;
3679 int batch_start = 0;
3680 int batch_size = 0;
eb10d85e
FM
3681 int i;
3682
796787c9
FM
3683 /*
3684 * We need to clone the leaf, release the read lock on it, and use the
3685 * clone before modifying the log tree. See the comment at copy_items()
3686 * about why we need to do this.
3687 */
3688 src = btrfs_clone_extent_buffer(path->nodes[0]);
3689 if (!src)
3690 return -ENOMEM;
3691
3692 i = path->slots[0];
3693 btrfs_release_path(path);
3694 path->nodes[0] = src;
3695 path->slots[0] = i;
3696
3697 for (; i < nritems; i++) {
732d591a 3698 struct btrfs_dir_item *di;
eb10d85e 3699 struct btrfs_key key;
eb10d85e
FM
3700 int ret;
3701
3702 btrfs_item_key_to_cpu(src, &key, i);
3703
339d0354 3704 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
086dcbfa
FM
3705 last_found = true;
3706 break;
3707 }
eb10d85e 3708
732d591a 3709 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
732d591a
FM
3710
3711 /*
3712 * Skip ranges of items that consist only of dir item keys created
3713 * in past transactions. However if we find a gap, we must log a
3714 * dir index range item for that gap, so that index keys in that
3715 * gap are deleted during log replay.
3716 */
3717 if (btrfs_dir_transid(src, di) < trans->transid) {
3718 if (key.offset > *last_old_dentry_offset + 1) {
3719 ret = insert_dir_log_key(trans, log, dst_path,
3720 ino, *last_old_dentry_offset + 1,
3721 key.offset - 1);
732d591a
FM
3722 if (ret < 0)
3723 return ret;
3724 }
3725
3726 *last_old_dentry_offset = key.offset;
3727 continue;
3728 }
193df624
FM
3729
3730 /* If we logged this dir index item before, we can skip it. */
3731 if (key.offset <= inode->last_dir_index_offset)
3732 continue;
3733
eb10d85e
FM
3734 /*
3735 * We must make sure that when we log a directory entry, the
3736 * corresponding inode, after log replay, has a matching link
3737 * count. For example:
3738 *
3739 * touch foo
3740 * mkdir mydir
3741 * sync
3742 * ln foo mydir/bar
3743 * xfs_io -c "fsync" mydir
3744 * <crash>
3745 * <mount fs and log replay>
3746 *
3747 * Would result in a fsync log that when replayed, our file inode
3748 * would have a link count of 1, but we get two directory entries
3749 * pointing to the same inode. After removing one of the names,
3750 * it would not be possible to remove the other name, which
3751 * resulted always in stale file handle errors, and would not be
3752 * possible to rmdir the parent directory, since its i_size could
3753 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3754 * resulting in -ENOTEMPTY errors.
3755 */
086dcbfa 3756 if (!ctx->log_new_dentries) {
086dcbfa
FM
3757 struct btrfs_key di_key;
3758
086dcbfa 3759 btrfs_dir_item_key_to_cpu(src, di, &di_key);
732d591a 3760 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
086dcbfa
FM
3761 ctx->log_new_dentries = true;
3762 }
3763
086dcbfa
FM
3764 if (batch_size == 0)
3765 batch_start = i;
3766 batch_size++;
eb10d85e
FM
3767 }
3768
086dcbfa
FM
3769 if (batch_size > 0) {
3770 int ret;
3771
6afaed53 3772 ret = flush_dir_items_batch(trans, inode, src, dst_path,
086dcbfa
FM
3773 batch_start, batch_size);
3774 if (ret < 0)
3775 return ret;
3776 }
3777
3778 return last_found ? 1 : 0;
eb10d85e
FM
3779}
3780
e02119d5
CM
3781/*
3782 * log all the items included in the current transaction for a given
3783 * directory. This also creates the range items in the log tree required
3784 * to replay anything deleted before the fsync
3785 */
3786static noinline int log_dir_items(struct btrfs_trans_handle *trans,
90d04510 3787 struct btrfs_inode *inode,
e02119d5 3788 struct btrfs_path *path,
339d0354 3789 struct btrfs_path *dst_path,
2f2ff0ee 3790 struct btrfs_log_ctx *ctx,
e02119d5
CM
3791 u64 min_offset, u64 *last_offset_ret)
3792{
3793 struct btrfs_key min_key;
90d04510 3794 struct btrfs_root *root = inode->root;
e02119d5 3795 struct btrfs_root *log = root->log_root;
e02119d5 3796 int ret;
732d591a 3797 u64 last_old_dentry_offset = min_offset - 1;
e02119d5 3798 u64 last_offset = (u64)-1;
684a5773 3799 u64 ino = btrfs_ino(inode);
e02119d5 3800
33345d01 3801 min_key.objectid = ino;
339d0354 3802 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5
CM
3803 min_key.offset = min_offset;
3804
6174d3cb 3805 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3806
3807 /*
3808 * we didn't find anything from this transaction, see if there
3809 * is anything at all
3810 */
339d0354
FM
3811 if (ret != 0 || min_key.objectid != ino ||
3812 min_key.type != BTRFS_DIR_INDEX_KEY) {
33345d01 3813 min_key.objectid = ino;
339d0354 3814 min_key.type = BTRFS_DIR_INDEX_KEY;
e02119d5 3815 min_key.offset = (u64)-1;
b3b4aa74 3816 btrfs_release_path(path);
e02119d5
CM
3817 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3818 if (ret < 0) {
b3b4aa74 3819 btrfs_release_path(path);
e02119d5
CM
3820 return ret;
3821 }
339d0354 3822 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3823
3824 /* if ret == 0 there are items for this type,
3825 * create a range to tell us the last key of this type.
3826 * otherwise, there are no items in this directory after
3827 * *min_offset, and we create a range to indicate that.
3828 */
3829 if (ret == 0) {
3830 struct btrfs_key tmp;
732d591a 3831
e02119d5
CM
3832 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3833 path->slots[0]);
339d0354 3834 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3835 last_old_dentry_offset = tmp.offset;
235e1c7b
FM
3836 } else if (ret > 0) {
3837 ret = 0;
e02119d5 3838 }
6d3d970b 3839
e02119d5
CM
3840 goto done;
3841 }
3842
3843 /* go backward to find any previous key */
339d0354 3844 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
e02119d5
CM
3845 if (ret == 0) {
3846 struct btrfs_key tmp;
a450a4af 3847
e02119d5 3848 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
a450a4af
FM
3849 /*
3850 * The dir index key before the first one we found that needs to
3851 * be logged might be in a previous leaf, and there might be a
3852 * gap between these keys, meaning that we had deletions that
3853 * happened. So the key range item we log (key type
3854 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3855 * previous key's offset plus 1, so that those deletes are replayed.
3856 */
3857 if (tmp.type == BTRFS_DIR_INDEX_KEY)
732d591a 3858 last_old_dentry_offset = tmp.offset;
6d3d970b 3859 } else if (ret < 0) {
6d3d970b 3860 goto done;
e02119d5 3861 }
6d3d970b 3862
b3b4aa74 3863 btrfs_release_path(path);
e02119d5 3864
2cc83342 3865 /*
8bb6898d
FM
3866 * Find the first key from this transaction again or the one we were at
3867 * in the loop below in case we had to reschedule. We may be logging the
3868 * directory without holding its VFS lock, which happen when logging new
3869 * dentries (through log_new_dir_dentries()) or in some cases when we
3870 * need to log the parent directory of an inode. This means a dir index
3871 * key might be deleted from the inode's root, and therefore we may not
3872 * find it anymore. If we can't find it, just move to the next key. We
3873 * can not bail out and ignore, because if we do that we will simply
3874 * not log dir index keys that come after the one that was just deleted
3875 * and we can end up logging a dir index range that ends at (u64)-1
3876 * (@last_offset is initialized to that), resulting in removing dir
3877 * entries we should not remove at log replay time.
2cc83342 3878 */
bb56f02f 3879search:
e02119d5 3880 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
235e1c7b 3881 if (ret > 0) {
8bb6898d 3882 ret = btrfs_next_item(root, path);
235e1c7b
FM
3883 if (ret > 0) {
3884 /* There are no more keys in the inode's root. */
3885 ret = 0;
3886 goto done;
3887 }
3888 }
6d3d970b 3889 if (ret < 0)
e02119d5 3890 goto done;
e02119d5
CM
3891
3892 /*
3893 * we have a block from this transaction, log every item in it
3894 * from our directory
3895 */
d397712b 3896 while (1) {
732d591a
FM
3897 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3898 &last_old_dentry_offset);
eb10d85e 3899 if (ret != 0) {
235e1c7b
FM
3900 if (ret > 0)
3901 ret = 0;
eb10d85e 3902 goto done;
e02119d5 3903 }
eb10d85e 3904 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
e02119d5
CM
3905
3906 /*
3907 * look ahead to the next item and see if it is also
3908 * from this directory and from this transaction
3909 */
3910 ret = btrfs_next_leaf(root, path);
80c0b421 3911 if (ret) {
235e1c7b 3912 if (ret == 1) {
80c0b421 3913 last_offset = (u64)-1;
235e1c7b
FM
3914 ret = 0;
3915 }
e02119d5
CM
3916 goto done;
3917 }
eb10d85e 3918 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
339d0354 3919 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
3920 last_offset = (u64)-1;
3921 goto done;
3922 }
3923 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
a450a4af
FM
3924 /*
3925 * The next leaf was not changed in the current transaction
3926 * and has at least one dir index key.
3927 * We check for the next key because there might have been
3928 * one or more deletions between the last key we logged and
3929 * that next key. So the key range item we log (key type
3930 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3931 * offset minus 1, so that those deletes are replayed.
3932 */
3933 last_offset = min_key.offset - 1;
e02119d5
CM
3934 goto done;
3935 }
eb10d85e
FM
3936 if (need_resched()) {
3937 btrfs_release_path(path);
3938 cond_resched();
3939 goto search;
3940 }
e02119d5
CM
3941 }
3942done:
b3b4aa74
DS
3943 btrfs_release_path(path);
3944 btrfs_release_path(dst_path);
e02119d5 3945
235e1c7b 3946 if (ret == 0) {
4a500fd1
YZ
3947 *last_offset_ret = last_offset;
3948 /*
732d591a
FM
3949 * In case the leaf was changed in the current transaction but
3950 * all its dir items are from a past transaction, the last item
3951 * in the leaf is a dir item and there's no gap between that last
3952 * dir item and the first one on the next leaf (which did not
3953 * change in the current transaction), then we don't need to log
3954 * a range, last_old_dentry_offset is == to last_offset.
4a500fd1 3955 */
732d591a 3956 ASSERT(last_old_dentry_offset <= last_offset);
235e1c7b 3957 if (last_old_dentry_offset < last_offset)
732d591a
FM
3958 ret = insert_dir_log_key(trans, log, path, ino,
3959 last_old_dentry_offset + 1,
3960 last_offset);
4a500fd1 3961 }
235e1c7b
FM
3962
3963 return ret;
e02119d5
CM
3964}
3965
193df624
FM
3966/*
3967 * If the inode was logged before and it was evicted, then its
3968 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3969 * key offset. If that's the case, search for it and update the inode. This
3970 * is to avoid lookups in the log tree every time we try to insert a dir index
3971 * key from a leaf changed in the current transaction, and to allow us to always
3972 * do batch insertions of dir index keys.
3973 */
3974static int update_last_dir_index_offset(struct btrfs_inode *inode,
3975 struct btrfs_path *path,
3976 const struct btrfs_log_ctx *ctx)
3977{
3978 const u64 ino = btrfs_ino(inode);
3979 struct btrfs_key key;
3980 int ret;
3981
3982 lockdep_assert_held(&inode->log_mutex);
3983
3984 if (inode->last_dir_index_offset != (u64)-1)
3985 return 0;
3986
3987 if (!ctx->logged_before) {
3988 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3989 return 0;
3990 }
3991
3992 key.objectid = ino;
3993 key.type = BTRFS_DIR_INDEX_KEY;
3994 key.offset = (u64)-1;
3995
3996 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3997 /*
3998 * An error happened or we actually have an index key with an offset
3999 * value of (u64)-1. Bail out, we're done.
4000 */
4001 if (ret <= 0)
4002 goto out;
4003
4004 ret = 0;
4005 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4006
4007 /*
4008 * No dir index items, bail out and leave last_dir_index_offset with
4009 * the value right before the first valid index value.
4010 */
4011 if (path->slots[0] == 0)
4012 goto out;
4013
4014 /*
4015 * btrfs_search_slot() left us at one slot beyond the slot with the last
4016 * index key, or beyond the last key of the directory that is not an
4017 * index key. If we have an index key before, set last_dir_index_offset
4018 * to its offset value, otherwise leave it with a value right before the
4019 * first valid index value, as it means we have an empty directory.
4020 */
4021 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4022 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4023 inode->last_dir_index_offset = key.offset;
4024
4025out:
4026 btrfs_release_path(path);
4027
4028 return ret;
4029}
4030
e02119d5
CM
4031/*
4032 * logging directories is very similar to logging inodes, We find all the items
4033 * from the current transaction and write them to the log.
4034 *
4035 * The recovery code scans the directory in the subvolume, and if it finds a
4036 * key in the range logged that is not present in the log tree, then it means
4037 * that dir entry was unlinked during the transaction.
4038 *
4039 * In order for that scan to work, we must include one key smaller than
4040 * the smallest logged by this transaction and one key larger than the largest
4041 * key logged by this transaction.
4042 */
4043static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
90d04510 4044 struct btrfs_inode *inode,
e02119d5 4045 struct btrfs_path *path,
2f2ff0ee
FM
4046 struct btrfs_path *dst_path,
4047 struct btrfs_log_ctx *ctx)
e02119d5
CM
4048{
4049 u64 min_key;
4050 u64 max_key;
4051 int ret;
e02119d5 4052
193df624
FM
4053 ret = update_last_dir_index_offset(inode, path, ctx);
4054 if (ret)
4055 return ret;
4056
732d591a 4057 min_key = BTRFS_DIR_START_INDEX;
e02119d5 4058 max_key = 0;
dc287224 4059
d397712b 4060 while (1) {
339d0354 4061 ret = log_dir_items(trans, inode, path, dst_path,
dbf39ea4 4062 ctx, min_key, &max_key);
4a500fd1
YZ
4063 if (ret)
4064 return ret;
e02119d5
CM
4065 if (max_key == (u64)-1)
4066 break;
4067 min_key = max_key + 1;
4068 }
4069
e02119d5
CM
4070 return 0;
4071}
4072
4073/*
4074 * a helper function to drop items from the log before we relog an
4075 * inode. max_key_type indicates the highest item type to remove.
4076 * This cannot be run for file data extents because it does not
4077 * free the extents they point to.
4078 */
88e221cd 4079static int drop_inode_items(struct btrfs_trans_handle *trans,
e02119d5
CM
4080 struct btrfs_root *log,
4081 struct btrfs_path *path,
88e221cd
FM
4082 struct btrfs_inode *inode,
4083 int max_key_type)
e02119d5
CM
4084{
4085 int ret;
4086 struct btrfs_key key;
4087 struct btrfs_key found_key;
18ec90d6 4088 int start_slot;
e02119d5 4089
88e221cd 4090 key.objectid = btrfs_ino(inode);
e02119d5
CM
4091 key.type = max_key_type;
4092 key.offset = (u64)-1;
4093
d397712b 4094 while (1) {
e02119d5 4095 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 4096 BUG_ON(ret == 0); /* Logic error */
4a500fd1 4097 if (ret < 0)
e02119d5
CM
4098 break;
4099
4100 if (path->slots[0] == 0)
4101 break;
4102
4103 path->slots[0]--;
4104 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4105 path->slots[0]);
4106
88e221cd 4107 if (found_key.objectid != key.objectid)
e02119d5
CM
4108 break;
4109
18ec90d6
JB
4110 found_key.offset = 0;
4111 found_key.type = 0;
e3b83361 4112 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
4113 if (ret < 0)
4114 break;
18ec90d6
JB
4115
4116 ret = btrfs_del_items(trans, log, path, start_slot,
4117 path->slots[0] - start_slot + 1);
4118 /*
4119 * If start slot isn't 0 then we don't need to re-search, we've
4120 * found the last guy with the objectid in this tree.
4121 */
4122 if (ret || start_slot != 0)
65a246c5 4123 break;
b3b4aa74 4124 btrfs_release_path(path);
e02119d5 4125 }
b3b4aa74 4126 btrfs_release_path(path);
5bdbeb21
JB
4127 if (ret > 0)
4128 ret = 0;
4a500fd1 4129 return ret;
e02119d5
CM
4130}
4131
8a2b3da1
FM
4132static int truncate_inode_items(struct btrfs_trans_handle *trans,
4133 struct btrfs_root *log_root,
4134 struct btrfs_inode *inode,
4135 u64 new_size, u32 min_type)
4136{
d9ac19c3
JB
4137 struct btrfs_truncate_control control = {
4138 .new_size = new_size,
487e81d2 4139 .ino = btrfs_ino(inode),
d9ac19c3 4140 .min_type = min_type,
5caa490e 4141 .skip_ref_updates = true,
d9ac19c3 4142 };
8a2b3da1 4143
8697b8f8 4144 return btrfs_truncate_inode_items(trans, log_root, &control);
8a2b3da1
FM
4145}
4146
94edf4ae
JB
4147static void fill_inode_item(struct btrfs_trans_handle *trans,
4148 struct extent_buffer *leaf,
4149 struct btrfs_inode_item *item,
1a4bcf47
FM
4150 struct inode *inode, int log_inode_only,
4151 u64 logged_isize)
94edf4ae 4152{
0b1c6cca 4153 struct btrfs_map_token token;
77eea05e 4154 u64 flags;
0b1c6cca 4155
c82f823c 4156 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
4157
4158 if (log_inode_only) {
4159 /* set the generation to zero so the recover code
4160 * can tell the difference between an logging
4161 * just to say 'this inode exists' and a logging
4162 * to say 'update this inode with these values'
4163 */
cc4c13d5
DS
4164 btrfs_set_token_inode_generation(&token, item, 0);
4165 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 4166 } else {
cc4c13d5
DS
4167 btrfs_set_token_inode_generation(&token, item,
4168 BTRFS_I(inode)->generation);
4169 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
4170 }
4171
cc4c13d5
DS
4172 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4173 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4174 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4175 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4176
4177 btrfs_set_token_timespec_sec(&token, &item->atime,
4178 inode->i_atime.tv_sec);
4179 btrfs_set_token_timespec_nsec(&token, &item->atime,
4180 inode->i_atime.tv_nsec);
4181
4182 btrfs_set_token_timespec_sec(&token, &item->mtime,
4183 inode->i_mtime.tv_sec);
4184 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4185 inode->i_mtime.tv_nsec);
4186
4187 btrfs_set_token_timespec_sec(&token, &item->ctime,
4188 inode->i_ctime.tv_sec);
4189 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4190 inode->i_ctime.tv_nsec);
4191
e593e54e
FM
4192 /*
4193 * We do not need to set the nbytes field, in fact during a fast fsync
4194 * its value may not even be correct, since a fast fsync does not wait
4195 * for ordered extent completion, which is where we update nbytes, it
4196 * only waits for writeback to complete. During log replay as we find
4197 * file extent items and replay them, we adjust the nbytes field of the
4198 * inode item in subvolume tree as needed (see overwrite_item()).
4199 */
cc4c13d5
DS
4200
4201 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4202 btrfs_set_token_inode_transid(&token, item, trans->transid);
4203 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4204 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4205 BTRFS_I(inode)->ro_flags);
4206 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4207 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
4208}
4209
a95249b3
JB
4210static int log_inode_item(struct btrfs_trans_handle *trans,
4211 struct btrfs_root *log, struct btrfs_path *path,
2ac691d8 4212 struct btrfs_inode *inode, bool inode_item_dropped)
a95249b3
JB
4213{
4214 struct btrfs_inode_item *inode_item;
a95249b3
JB
4215 int ret;
4216
2ac691d8
FM
4217 /*
4218 * If we are doing a fast fsync and the inode was logged before in the
4219 * current transaction, then we know the inode was previously logged and
4220 * it exists in the log tree. For performance reasons, in this case use
4221 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4222 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4223 * contention in case there are concurrent fsyncs for other inodes of the
4224 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4225 * already exists can also result in unnecessarily splitting a leaf.
4226 */
4227 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4228 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4229 ASSERT(ret <= 0);
4230 if (ret > 0)
4231 ret = -ENOENT;
4232 } else {
4233 /*
4234 * This means it is the first fsync in the current transaction,
4235 * so the inode item is not in the log and we need to insert it.
4236 * We can never get -EEXIST because we are only called for a fast
4237 * fsync and in case an inode eviction happens after the inode was
4238 * logged before in the current transaction, when we load again
4239 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4240 * flags and set ->logged_trans to 0.
4241 */
4242 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4243 sizeof(*inode_item));
4244 ASSERT(ret != -EEXIST);
4245 }
4246 if (ret)
a95249b3
JB
4247 return ret;
4248 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4249 struct btrfs_inode_item);
6d889a3b
NB
4250 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4251 0, 0);
a95249b3
JB
4252 btrfs_release_path(path);
4253 return 0;
4254}
4255
40e046ac 4256static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 4257 struct btrfs_inode *inode,
40e046ac
FM
4258 struct btrfs_root *log_root,
4259 struct btrfs_ordered_sum *sums)
4260{
e289f03e
FM
4261 const u64 lock_end = sums->bytenr + sums->len - 1;
4262 struct extent_state *cached_state = NULL;
40e046ac
FM
4263 int ret;
4264
3ebac17c
FM
4265 /*
4266 * If this inode was not used for reflink operations in the current
4267 * transaction with new extents, then do the fast path, no need to
4268 * worry about logging checksum items with overlapping ranges.
4269 */
4270 if (inode->last_reflink_trans < trans->transid)
4271 return btrfs_csum_file_blocks(trans, log_root, sums);
4272
e289f03e
FM
4273 /*
4274 * Serialize logging for checksums. This is to avoid racing with the
4275 * same checksum being logged by another task that is logging another
4276 * file which happens to refer to the same extent as well. Such races
4277 * can leave checksum items in the log with overlapping ranges.
4278 */
570eb97b
JB
4279 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4280 &cached_state);
e289f03e
FM
4281 if (ret)
4282 return ret;
40e046ac
FM
4283 /*
4284 * Due to extent cloning, we might have logged a csum item that covers a
4285 * subrange of a cloned extent, and later we can end up logging a csum
4286 * item for a larger subrange of the same extent or the entire range.
4287 * This would leave csum items in the log tree that cover the same range
4288 * and break the searches for checksums in the log tree, resulting in
4289 * some checksums missing in the fs/subvolume tree. So just delete (or
4290 * trim and adjust) any existing csum items in the log for this range.
4291 */
4292 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
4293 if (!ret)
4294 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 4295
570eb97b
JB
4296 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4297 &cached_state);
e289f03e
FM
4298
4299 return ret;
40e046ac
FM
4300}
4301
31ff1cd2 4302static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 4303 struct btrfs_inode *inode,
31ff1cd2 4304 struct btrfs_path *dst_path,
0e56315c 4305 struct btrfs_path *src_path,
1a4bcf47
FM
4306 int start_slot, int nr, int inode_only,
4307 u64 logged_isize)
31ff1cd2 4308{
44d70e19 4309 struct btrfs_root *log = inode->root->log_root;
31ff1cd2 4310 struct btrfs_file_extent_item *extent;
796787c9 4311 struct extent_buffer *src;
7f30c072 4312 int ret = 0;
31ff1cd2
CM
4313 struct btrfs_key *ins_keys;
4314 u32 *ins_sizes;
b7ef5f3a 4315 struct btrfs_item_batch batch;
31ff1cd2
CM
4316 char *ins_data;
4317 int i;
7f30c072 4318 int dst_index;
7f30c072
FM
4319 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4320 const u64 i_size = i_size_read(&inode->vfs_inode);
d20f7043 4321
796787c9
FM
4322 /*
4323 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4324 * use the clone. This is because otherwise we would be changing the log
4325 * tree, to insert items from the subvolume tree or insert csum items,
4326 * while holding a read lock on a leaf from the subvolume tree, which
4327 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4328 *
4329 * 1) Modifying the log tree triggers an extent buffer allocation while
4330 * holding a write lock on a parent extent buffer from the log tree.
4331 * Allocating the pages for an extent buffer, or the extent buffer
4332 * struct, can trigger inode eviction and finally the inode eviction
4333 * will trigger a release/remove of a delayed node, which requires
4334 * taking the delayed node's mutex;
4335 *
4336 * 2) Allocating a metadata extent for a log tree can trigger the async
4337 * reclaim thread and make us wait for it to release enough space and
4338 * unblock our reservation ticket. The reclaim thread can start
4339 * flushing delayed items, and that in turn results in the need to
4340 * lock delayed node mutexes and in the need to write lock extent
4341 * buffers of a subvolume tree - all this while holding a write lock
4342 * on the parent extent buffer in the log tree.
4343 *
4344 * So one task in scenario 1) running in parallel with another task in
4345 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4346 * node mutex while having a read lock on a leaf from the subvolume,
4347 * while the other is holding the delayed node's mutex and wants to
4348 * write lock the same subvolume leaf for flushing delayed items.
4349 */
4350 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4351 if (!src)
4352 return -ENOMEM;
4353
4354 i = src_path->slots[0];
4355 btrfs_release_path(src_path);
4356 src_path->nodes[0] = src;
4357 src_path->slots[0] = i;
4358
31ff1cd2
CM
4359 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4360 nr * sizeof(u32), GFP_NOFS);
2a29edc6 4361 if (!ins_data)
4362 return -ENOMEM;
4363
31ff1cd2
CM
4364 ins_sizes = (u32 *)ins_data;
4365 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
b7ef5f3a
FM
4366 batch.keys = ins_keys;
4367 batch.data_sizes = ins_sizes;
4368 batch.total_data_size = 0;
7f30c072 4369 batch.nr = 0;
31ff1cd2 4370
7f30c072 4371 dst_index = 0;
31ff1cd2 4372 for (i = 0; i < nr; i++) {
7f30c072
FM
4373 const int src_slot = start_slot + i;
4374 struct btrfs_root *csum_root;
5b7ce5e2
FM
4375 struct btrfs_ordered_sum *sums;
4376 struct btrfs_ordered_sum *sums_next;
4377 LIST_HEAD(ordered_sums);
7f30c072
FM
4378 u64 disk_bytenr;
4379 u64 disk_num_bytes;
4380 u64 extent_offset;
4381 u64 extent_num_bytes;
4382 bool is_old_extent;
4383
4384 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4385
4386 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4387 goto add_to_batch;
4388
4389 extent = btrfs_item_ptr(src, src_slot,
4390 struct btrfs_file_extent_item);
4391
4392 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4393 trans->transid);
4394
4395 /*
4396 * Don't copy extents from past generations. That would make us
4397 * log a lot more metadata for common cases like doing only a
4398 * few random writes into a file and then fsync it for the first
4399 * time or after the full sync flag is set on the inode. We can
4400 * get leaves full of extent items, most of which are from past
4401 * generations, so we can skip them - as long as the inode has
4402 * not been the target of a reflink operation in this transaction,
4403 * as in that case it might have had file extent items with old
4404 * generations copied into it. We also must always log prealloc
4405 * extents that start at or beyond eof, otherwise we would lose
4406 * them on log replay.
4407 */
4408 if (is_old_extent &&
4409 ins_keys[dst_index].offset < i_size &&
4410 inode->last_reflink_trans < trans->transid)
4411 continue;
4412
4413 if (skip_csum)
4414 goto add_to_batch;
4415
4416 /* Only regular extents have checksums. */
4417 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4418 goto add_to_batch;
4419
4420 /*
4421 * If it's an extent created in a past transaction, then its
4422 * checksums are already accessible from the committed csum tree,
4423 * no need to log them.
4424 */
4425 if (is_old_extent)
4426 goto add_to_batch;
4427
4428 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4429 /* If it's an explicit hole, there are no checksums. */
4430 if (disk_bytenr == 0)
4431 goto add_to_batch;
4432
4433 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4434
4435 if (btrfs_file_extent_compression(src, extent)) {
4436 extent_offset = 0;
4437 extent_num_bytes = disk_num_bytes;
4438 } else {
4439 extent_offset = btrfs_file_extent_offset(src, extent);
4440 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4441 }
4442
4443 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4444 disk_bytenr += extent_offset;
97e38239
QW
4445 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4446 disk_bytenr + extent_num_bytes - 1,
4447 &ordered_sums, 0, false);
7f30c072
FM
4448 if (ret)
4449 goto out;
4450
5b7ce5e2
FM
4451 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4452 if (!ret)
4453 ret = log_csums(trans, inode, log, sums);
4454 list_del(&sums->list);
4455 kfree(sums);
4456 }
4457 if (ret)
4458 goto out;
4459
7f30c072
FM
4460add_to_batch:
4461 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4462 batch.total_data_size += ins_sizes[dst_index];
4463 batch.nr++;
4464 dst_index++;
31ff1cd2 4465 }
7f30c072
FM
4466
4467 /*
4468 * We have a leaf full of old extent items that don't need to be logged,
4469 * so we don't need to do anything.
4470 */
4471 if (batch.nr == 0)
4472 goto out;
4473
b7ef5f3a 4474 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
7f30c072
FM
4475 if (ret)
4476 goto out;
4477
4478 dst_index = 0;
4479 for (i = 0; i < nr; i++) {
4480 const int src_slot = start_slot + i;
4481 const int dst_slot = dst_path->slots[0] + dst_index;
4482 struct btrfs_key key;
4483 unsigned long src_offset;
4484 unsigned long dst_offset;
4485
4486 /*
4487 * We're done, all the remaining items in the source leaf
4488 * correspond to old file extent items.
4489 */
4490 if (dst_index >= batch.nr)
4491 break;
4492
4493 btrfs_item_key_to_cpu(src, &key, src_slot);
4494
4495 if (key.type != BTRFS_EXTENT_DATA_KEY)
4496 goto copy_item;
31ff1cd2 4497
7f30c072
FM
4498 extent = btrfs_item_ptr(src, src_slot,
4499 struct btrfs_file_extent_item);
31ff1cd2 4500
7f30c072
FM
4501 /* See the comment in the previous loop, same logic. */
4502 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4503 key.offset < i_size &&
4504 inode->last_reflink_trans < trans->transid)
4505 continue;
4506
4507copy_item:
4508 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4509 src_offset = btrfs_item_ptr_offset(src, src_slot);
31ff1cd2 4510
7f30c072
FM
4511 if (key.type == BTRFS_INODE_ITEM_KEY) {
4512 struct btrfs_inode_item *inode_item;
4513
4514 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
31ff1cd2 4515 struct btrfs_inode_item);
94edf4ae 4516 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4517 &inode->vfs_inode,
4518 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4519 logged_isize);
94edf4ae
JB
4520 } else {
4521 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
7f30c072 4522 src_offset, ins_sizes[dst_index]);
31ff1cd2 4523 }
94edf4ae 4524
7f30c072 4525 dst_index++;
31ff1cd2
CM
4526 }
4527
4528 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4529 btrfs_release_path(dst_path);
7f30c072 4530out:
31ff1cd2 4531 kfree(ins_data);
d20f7043 4532
4a500fd1 4533 return ret;
31ff1cd2
CM
4534}
4535
4f0f586b
ST
4536static int extent_cmp(void *priv, const struct list_head *a,
4537 const struct list_head *b)
5dc562c5 4538{
214cc184 4539 const struct extent_map *em1, *em2;
5dc562c5
JB
4540
4541 em1 = list_entry(a, struct extent_map, list);
4542 em2 = list_entry(b, struct extent_map, list);
4543
4544 if (em1->start < em2->start)
4545 return -1;
4546 else if (em1->start > em2->start)
4547 return 1;
4548 return 0;
4549}
4550
e7175a69
JB
4551static int log_extent_csums(struct btrfs_trans_handle *trans,
4552 struct btrfs_inode *inode,
a9ecb653 4553 struct btrfs_root *log_root,
48778179
FM
4554 const struct extent_map *em,
4555 struct btrfs_log_ctx *ctx)
5dc562c5 4556{
48778179 4557 struct btrfs_ordered_extent *ordered;
fc28b25e 4558 struct btrfs_root *csum_root;
2ab28f32
JB
4559 u64 csum_offset;
4560 u64 csum_len;
48778179
FM
4561 u64 mod_start = em->mod_start;
4562 u64 mod_len = em->mod_len;
8407f553
FM
4563 LIST_HEAD(ordered_sums);
4564 int ret = 0;
0aa4a17d 4565
e7175a69
JB
4566 if (inode->flags & BTRFS_INODE_NODATASUM ||
4567 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4568 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4569 return 0;
5dc562c5 4570
48778179
FM
4571 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4572 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4573 const u64 mod_end = mod_start + mod_len;
4574 struct btrfs_ordered_sum *sums;
4575
4576 if (mod_len == 0)
4577 break;
4578
4579 if (ordered_end <= mod_start)
4580 continue;
4581 if (mod_end <= ordered->file_offset)
4582 break;
4583
4584 /*
4585 * We are going to copy all the csums on this ordered extent, so
4586 * go ahead and adjust mod_start and mod_len in case this ordered
4587 * extent has already been logged.
4588 */
4589 if (ordered->file_offset > mod_start) {
4590 if (ordered_end >= mod_end)
4591 mod_len = ordered->file_offset - mod_start;
4592 /*
4593 * If we have this case
4594 *
4595 * |--------- logged extent ---------|
4596 * |----- ordered extent ----|
4597 *
4598 * Just don't mess with mod_start and mod_len, we'll
4599 * just end up logging more csums than we need and it
4600 * will be ok.
4601 */
4602 } else {
4603 if (ordered_end < mod_end) {
4604 mod_len = mod_end - ordered_end;
4605 mod_start = ordered_end;
4606 } else {
4607 mod_len = 0;
4608 }
4609 }
4610
4611 /*
4612 * To keep us from looping for the above case of an ordered
4613 * extent that falls inside of the logged extent.
4614 */
4615 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4616 continue;
4617
4618 list_for_each_entry(sums, &ordered->list, list) {
4619 ret = log_csums(trans, inode, log_root, sums);
4620 if (ret)
4621 return ret;
4622 }
4623 }
4624
4625 /* We're done, found all csums in the ordered extents. */
4626 if (mod_len == 0)
4627 return 0;
4628
e7175a69 4629 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4630 if (em->compress_type) {
4631 csum_offset = 0;
8407f553 4632 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4633 } else {
48778179
FM
4634 csum_offset = mod_start - em->start;
4635 csum_len = mod_len;
488111aa 4636 }
2ab28f32 4637
70c8a91c 4638 /* block start is already adjusted for the file extent offset. */
fc28b25e 4639 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
97e38239
QW
4640 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4641 em->block_start + csum_offset +
4642 csum_len - 1, &ordered_sums, 0, false);
70c8a91c
JB
4643 if (ret)
4644 return ret;
5dc562c5 4645
70c8a91c
JB
4646 while (!list_empty(&ordered_sums)) {
4647 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4648 struct btrfs_ordered_sum,
4649 list);
4650 if (!ret)
3ebac17c 4651 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4652 list_del(&sums->list);
4653 kfree(sums);
5dc562c5
JB
4654 }
4655
70c8a91c 4656 return ret;
5dc562c5
JB
4657}
4658
8407f553 4659static int log_one_extent(struct btrfs_trans_handle *trans,
90d04510 4660 struct btrfs_inode *inode,
8407f553
FM
4661 const struct extent_map *em,
4662 struct btrfs_path *path,
8407f553
FM
4663 struct btrfs_log_ctx *ctx)
4664{
5893dfb9 4665 struct btrfs_drop_extents_args drop_args = { 0 };
90d04510 4666 struct btrfs_root *log = inode->root->log_root;
e1f53ed8 4667 struct btrfs_file_extent_item fi = { 0 };
8407f553 4668 struct extent_buffer *leaf;
8407f553
FM
4669 struct btrfs_key key;
4670 u64 extent_offset = em->start - em->orig_start;
4671 u64 block_len;
4672 int ret;
8407f553 4673
e1f53ed8
FM
4674 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4675 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4676 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4677 else
4678 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4679
4680 block_len = max(em->block_len, em->orig_block_len);
4681 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4682 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4683 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4684 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4685 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4686 extent_offset);
4687 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4688 }
4689
4690 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4691 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4692 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4693 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4694
48778179 4695 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4696 if (ret)
4697 return ret;
4698
5328b2a7
FM
4699 /*
4700 * If this is the first time we are logging the inode in the current
4701 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4702 * because it does a deletion search, which always acquires write locks
4703 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4704 * but also adds significant contention in a log tree, since log trees
4705 * are small, with a root at level 2 or 3 at most, due to their short
4706 * life span.
4707 */
0f8ce498 4708 if (ctx->logged_before) {
5328b2a7
FM
4709 drop_args.path = path;
4710 drop_args.start = em->start;
4711 drop_args.end = em->start + em->len;
4712 drop_args.replace_extent = true;
e1f53ed8 4713 drop_args.extent_item_size = sizeof(fi);
5328b2a7
FM
4714 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4715 if (ret)
4716 return ret;
4717 }
8407f553 4718
5893dfb9 4719 if (!drop_args.extent_inserted) {
9d122629 4720 key.objectid = btrfs_ino(inode);
8407f553
FM
4721 key.type = BTRFS_EXTENT_DATA_KEY;
4722 key.offset = em->start;
4723
4724 ret = btrfs_insert_empty_item(trans, log, path, &key,
e1f53ed8 4725 sizeof(fi));
8407f553
FM
4726 if (ret)
4727 return ret;
4728 }
4729 leaf = path->nodes[0];
e1f53ed8
FM
4730 write_extent_buffer(leaf, &fi,
4731 btrfs_item_ptr_offset(leaf, path->slots[0]),
4732 sizeof(fi));
8407f553
FM
4733 btrfs_mark_buffer_dirty(leaf);
4734
4735 btrfs_release_path(path);
4736
4737 return ret;
4738}
4739
31d11b83
FM
4740/*
4741 * Log all prealloc extents beyond the inode's i_size to make sure we do not
d9947887 4742 * lose them after doing a full/fast fsync and replaying the log. We scan the
31d11b83
FM
4743 * subvolume's root instead of iterating the inode's extent map tree because
4744 * otherwise we can log incorrect extent items based on extent map conversion.
4745 * That can happen due to the fact that extent maps are merged when they
4746 * are not in the extent map tree's list of modified extents.
4747 */
4748static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4749 struct btrfs_inode *inode,
4750 struct btrfs_path *path)
4751{
4752 struct btrfs_root *root = inode->root;
4753 struct btrfs_key key;
4754 const u64 i_size = i_size_read(&inode->vfs_inode);
4755 const u64 ino = btrfs_ino(inode);
4756 struct btrfs_path *dst_path = NULL;
0e56315c 4757 bool dropped_extents = false;
f135cea3
FM
4758 u64 truncate_offset = i_size;
4759 struct extent_buffer *leaf;
4760 int slot;
31d11b83
FM
4761 int ins_nr = 0;
4762 int start_slot;
4763 int ret;
4764
4765 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4766 return 0;
4767
4768 key.objectid = ino;
4769 key.type = BTRFS_EXTENT_DATA_KEY;
4770 key.offset = i_size;
4771 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4772 if (ret < 0)
4773 goto out;
4774
f135cea3
FM
4775 /*
4776 * We must check if there is a prealloc extent that starts before the
4777 * i_size and crosses the i_size boundary. This is to ensure later we
4778 * truncate down to the end of that extent and not to the i_size, as
4779 * otherwise we end up losing part of the prealloc extent after a log
4780 * replay and with an implicit hole if there is another prealloc extent
4781 * that starts at an offset beyond i_size.
4782 */
4783 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4784 if (ret < 0)
4785 goto out;
4786
4787 if (ret == 0) {
4788 struct btrfs_file_extent_item *ei;
4789
4790 leaf = path->nodes[0];
4791 slot = path->slots[0];
4792 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4793
4794 if (btrfs_file_extent_type(leaf, ei) ==
4795 BTRFS_FILE_EXTENT_PREALLOC) {
4796 u64 extent_end;
4797
4798 btrfs_item_key_to_cpu(leaf, &key, slot);
4799 extent_end = key.offset +
4800 btrfs_file_extent_num_bytes(leaf, ei);
4801
4802 if (extent_end > i_size)
4803 truncate_offset = extent_end;
4804 }
4805 } else {
4806 ret = 0;
4807 }
4808
31d11b83 4809 while (true) {
f135cea3
FM
4810 leaf = path->nodes[0];
4811 slot = path->slots[0];
31d11b83
FM
4812
4813 if (slot >= btrfs_header_nritems(leaf)) {
4814 if (ins_nr > 0) {
4815 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4816 start_slot, ins_nr, 1, 0);
31d11b83
FM
4817 if (ret < 0)
4818 goto out;
4819 ins_nr = 0;
4820 }
4821 ret = btrfs_next_leaf(root, path);
4822 if (ret < 0)
4823 goto out;
4824 if (ret > 0) {
4825 ret = 0;
4826 break;
4827 }
4828 continue;
4829 }
4830
4831 btrfs_item_key_to_cpu(leaf, &key, slot);
4832 if (key.objectid > ino)
4833 break;
4834 if (WARN_ON_ONCE(key.objectid < ino) ||
4835 key.type < BTRFS_EXTENT_DATA_KEY ||
4836 key.offset < i_size) {
4837 path->slots[0]++;
4838 continue;
4839 }
0e56315c 4840 if (!dropped_extents) {
31d11b83
FM
4841 /*
4842 * Avoid logging extent items logged in past fsync calls
4843 * and leading to duplicate keys in the log tree.
4844 */
8a2b3da1
FM
4845 ret = truncate_inode_items(trans, root->log_root, inode,
4846 truncate_offset,
4847 BTRFS_EXTENT_DATA_KEY);
31d11b83
FM
4848 if (ret)
4849 goto out;
0e56315c 4850 dropped_extents = true;
31d11b83
FM
4851 }
4852 if (ins_nr == 0)
4853 start_slot = slot;
4854 ins_nr++;
4855 path->slots[0]++;
4856 if (!dst_path) {
4857 dst_path = btrfs_alloc_path();
4858 if (!dst_path) {
4859 ret = -ENOMEM;
4860 goto out;
4861 }
4862 }
4863 }
0bc2d3c0 4864 if (ins_nr > 0)
0e56315c 4865 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4866 start_slot, ins_nr, 1, 0);
31d11b83
FM
4867out:
4868 btrfs_release_path(path);
4869 btrfs_free_path(dst_path);
4870 return ret;
4871}
4872
5dc562c5 4873static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
9d122629 4874 struct btrfs_inode *inode,
827463c4 4875 struct btrfs_path *path,
48778179 4876 struct btrfs_log_ctx *ctx)
5dc562c5 4877{
48778179
FM
4878 struct btrfs_ordered_extent *ordered;
4879 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4880 struct extent_map *em, *n;
4881 struct list_head extents;
9d122629 4882 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5 4883 int ret = 0;
2ab28f32 4884 int num = 0;
5dc562c5
JB
4885
4886 INIT_LIST_HEAD(&extents);
4887
5dc562c5 4888 write_lock(&tree->lock);
5dc562c5
JB
4889
4890 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4891 list_del_init(&em->list);
2ab28f32
JB
4892 /*
4893 * Just an arbitrary number, this can be really CPU intensive
4894 * once we start getting a lot of extents, and really once we
4895 * have a bunch of extents we just want to commit since it will
4896 * be faster.
4897 */
4898 if (++num > 32768) {
4899 list_del_init(&tree->modified_extents);
4900 ret = -EFBIG;
4901 goto process;
4902 }
4903
5f96bfb7 4904 if (em->generation < trans->transid)
5dc562c5 4905 continue;
8c6c5928 4906
31d11b83
FM
4907 /* We log prealloc extents beyond eof later. */
4908 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4909 em->start >= i_size_read(&inode->vfs_inode))
4910 continue;
4911
ff44c6e3 4912 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4913 refcount_inc(&em->refs);
ff44c6e3 4914 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4915 list_add_tail(&em->list, &extents);
2ab28f32 4916 num++;
5dc562c5
JB
4917 }
4918
4919 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4920process:
5dc562c5
JB
4921 while (!list_empty(&extents)) {
4922 em = list_entry(extents.next, struct extent_map, list);
4923
4924 list_del_init(&em->list);
4925
4926 /*
4927 * If we had an error we just need to delete everybody from our
4928 * private list.
4929 */
ff44c6e3 4930 if (ret) {
201a9038 4931 clear_em_logging(tree, em);
ff44c6e3 4932 free_extent_map(em);
5dc562c5 4933 continue;
ff44c6e3
JB
4934 }
4935
4936 write_unlock(&tree->lock);
5dc562c5 4937
90d04510 4938 ret = log_one_extent(trans, inode, em, path, ctx);
ff44c6e3 4939 write_lock(&tree->lock);
201a9038
JB
4940 clear_em_logging(tree, em);
4941 free_extent_map(em);
5dc562c5 4942 }
ff44c6e3
JB
4943 WARN_ON(!list_empty(&extents));
4944 write_unlock(&tree->lock);
5dc562c5 4945
31d11b83
FM
4946 if (!ret)
4947 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4948 if (ret)
4949 return ret;
31d11b83 4950
48778179
FM
4951 /*
4952 * We have logged all extents successfully, now make sure the commit of
4953 * the current transaction waits for the ordered extents to complete
4954 * before it commits and wipes out the log trees, otherwise we would
4955 * lose data if an ordered extents completes after the transaction
4956 * commits and a power failure happens after the transaction commit.
4957 */
4958 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4959 list_del_init(&ordered->log_list);
4960 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4961
4962 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4963 spin_lock_irq(&inode->ordered_tree.lock);
4964 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4965 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4966 atomic_inc(&trans->transaction->pending_ordered);
4967 }
4968 spin_unlock_irq(&inode->ordered_tree.lock);
4969 }
4970 btrfs_put_ordered_extent(ordered);
4971 }
4972
4973 return 0;
5dc562c5
JB
4974}
4975
481b01c0 4976static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4977 struct btrfs_path *path, u64 *size_ret)
4978{
4979 struct btrfs_key key;
4980 int ret;
4981
481b01c0 4982 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4983 key.type = BTRFS_INODE_ITEM_KEY;
4984 key.offset = 0;
4985
4986 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4987 if (ret < 0) {
4988 return ret;
4989 } else if (ret > 0) {
2f2ff0ee 4990 *size_ret = 0;
1a4bcf47
FM
4991 } else {
4992 struct btrfs_inode_item *item;
4993
4994 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4995 struct btrfs_inode_item);
4996 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4997 /*
4998 * If the in-memory inode's i_size is smaller then the inode
4999 * size stored in the btree, return the inode's i_size, so
5000 * that we get a correct inode size after replaying the log
5001 * when before a power failure we had a shrinking truncate
5002 * followed by addition of a new name (rename / new hard link).
5003 * Otherwise return the inode size from the btree, to avoid
5004 * data loss when replaying a log due to previously doing a
5005 * write that expands the inode's size and logging a new name
5006 * immediately after.
5007 */
5008 if (*size_ret > inode->vfs_inode.i_size)
5009 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
5010 }
5011
5012 btrfs_release_path(path);
5013 return 0;
5014}
5015
36283bf7
FM
5016/*
5017 * At the moment we always log all xattrs. This is to figure out at log replay
5018 * time which xattrs must have their deletion replayed. If a xattr is missing
5019 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5020 * because if a xattr is deleted, the inode is fsynced and a power failure
5021 * happens, causing the log to be replayed the next time the fs is mounted,
5022 * we want the xattr to not exist anymore (same behaviour as other filesystems
5023 * with a journal, ext3/4, xfs, f2fs, etc).
5024 */
5025static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
1a93c36a 5026 struct btrfs_inode *inode,
36283bf7
FM
5027 struct btrfs_path *path,
5028 struct btrfs_path *dst_path)
5029{
90d04510 5030 struct btrfs_root *root = inode->root;
36283bf7
FM
5031 int ret;
5032 struct btrfs_key key;
1a93c36a 5033 const u64 ino = btrfs_ino(inode);
36283bf7
FM
5034 int ins_nr = 0;
5035 int start_slot = 0;
f2f121ab
FM
5036 bool found_xattrs = false;
5037
5038 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5039 return 0;
36283bf7
FM
5040
5041 key.objectid = ino;
5042 key.type = BTRFS_XATTR_ITEM_KEY;
5043 key.offset = 0;
5044
5045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5046 if (ret < 0)
5047 return ret;
5048
5049 while (true) {
5050 int slot = path->slots[0];
5051 struct extent_buffer *leaf = path->nodes[0];
5052 int nritems = btrfs_header_nritems(leaf);
5053
5054 if (slot >= nritems) {
5055 if (ins_nr > 0) {
1a93c36a 5056 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5057 start_slot, ins_nr, 1, 0);
36283bf7
FM
5058 if (ret < 0)
5059 return ret;
5060 ins_nr = 0;
5061 }
5062 ret = btrfs_next_leaf(root, path);
5063 if (ret < 0)
5064 return ret;
5065 else if (ret > 0)
5066 break;
5067 continue;
5068 }
5069
5070 btrfs_item_key_to_cpu(leaf, &key, slot);
5071 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5072 break;
5073
5074 if (ins_nr == 0)
5075 start_slot = slot;
5076 ins_nr++;
5077 path->slots[0]++;
f2f121ab 5078 found_xattrs = true;
36283bf7
FM
5079 cond_resched();
5080 }
5081 if (ins_nr > 0) {
1a93c36a 5082 ret = copy_items(trans, inode, dst_path, path,
0e56315c 5083 start_slot, ins_nr, 1, 0);
36283bf7
FM
5084 if (ret < 0)
5085 return ret;
5086 }
5087
f2f121ab
FM
5088 if (!found_xattrs)
5089 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5090
36283bf7
FM
5091 return 0;
5092}
5093
a89ca6f2 5094/*
0e56315c
FM
5095 * When using the NO_HOLES feature if we punched a hole that causes the
5096 * deletion of entire leafs or all the extent items of the first leaf (the one
5097 * that contains the inode item and references) we may end up not processing
5098 * any extents, because there are no leafs with a generation matching the
5099 * current transaction that have extent items for our inode. So we need to find
5100 * if any holes exist and then log them. We also need to log holes after any
5101 * truncate operation that changes the inode's size.
a89ca6f2 5102 */
0e56315c 5103static int btrfs_log_holes(struct btrfs_trans_handle *trans,
0e56315c 5104 struct btrfs_inode *inode,
7af59743 5105 struct btrfs_path *path)
a89ca6f2 5106{
90d04510 5107 struct btrfs_root *root = inode->root;
0b246afa 5108 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 5109 struct btrfs_key key;
a0308dd7
NB
5110 const u64 ino = btrfs_ino(inode);
5111 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 5112 u64 prev_extent_end = 0;
0e56315c 5113 int ret;
a89ca6f2 5114
0e56315c 5115 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
5116 return 0;
5117
5118 key.objectid = ino;
5119 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 5120 key.offset = 0;
a89ca6f2
FM
5121
5122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
5123 if (ret < 0)
5124 return ret;
5125
0e56315c 5126 while (true) {
0e56315c 5127 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 5128
0e56315c
FM
5129 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5130 ret = btrfs_next_leaf(root, path);
5131 if (ret < 0)
5132 return ret;
5133 if (ret > 0) {
5134 ret = 0;
5135 break;
5136 }
5137 leaf = path->nodes[0];
5138 }
5139
5140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5141 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5142 break;
5143
5144 /* We have a hole, log it. */
5145 if (prev_extent_end < key.offset) {
7af59743 5146 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
5147
5148 /*
5149 * Release the path to avoid deadlocks with other code
5150 * paths that search the root while holding locks on
5151 * leafs from the log root.
5152 */
5153 btrfs_release_path(path);
d1f68ba0
OS
5154 ret = btrfs_insert_hole_extent(trans, root->log_root,
5155 ino, prev_extent_end,
5156 hole_len);
0e56315c
FM
5157 if (ret < 0)
5158 return ret;
5159
5160 /*
5161 * Search for the same key again in the root. Since it's
5162 * an extent item and we are holding the inode lock, the
5163 * key must still exist. If it doesn't just emit warning
5164 * and return an error to fall back to a transaction
5165 * commit.
5166 */
5167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5168 if (ret < 0)
5169 return ret;
5170 if (WARN_ON(ret > 0))
5171 return -ENOENT;
5172 leaf = path->nodes[0];
5173 }
a89ca6f2 5174
7af59743 5175 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
5176 path->slots[0]++;
5177 cond_resched();
a89ca6f2 5178 }
a89ca6f2 5179
7af59743 5180 if (prev_extent_end < i_size) {
0e56315c 5181 u64 hole_len;
a89ca6f2 5182
0e56315c 5183 btrfs_release_path(path);
7af59743 5184 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
d1f68ba0
OS
5185 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5186 prev_extent_end, hole_len);
0e56315c
FM
5187 if (ret < 0)
5188 return ret;
5189 }
5190
5191 return 0;
a89ca6f2
FM
5192}
5193
56f23fdb
FM
5194/*
5195 * When we are logging a new inode X, check if it doesn't have a reference that
5196 * matches the reference from some other inode Y created in a past transaction
5197 * and that was renamed in the current transaction. If we don't do this, then at
5198 * log replay time we can lose inode Y (and all its files if it's a directory):
5199 *
5200 * mkdir /mnt/x
5201 * echo "hello world" > /mnt/x/foobar
5202 * sync
5203 * mv /mnt/x /mnt/y
5204 * mkdir /mnt/x # or touch /mnt/x
5205 * xfs_io -c fsync /mnt/x
5206 * <power fail>
5207 * mount fs, trigger log replay
5208 *
5209 * After the log replay procedure, we would lose the first directory and all its
5210 * files (file foobar).
5211 * For the case where inode Y is not a directory we simply end up losing it:
5212 *
5213 * echo "123" > /mnt/foo
5214 * sync
5215 * mv /mnt/foo /mnt/bar
5216 * echo "abc" > /mnt/foo
5217 * xfs_io -c fsync /mnt/foo
5218 * <power fail>
5219 *
5220 * We also need this for cases where a snapshot entry is replaced by some other
5221 * entry (file or directory) otherwise we end up with an unreplayable log due to
5222 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5223 * if it were a regular entry:
5224 *
5225 * mkdir /mnt/x
5226 * btrfs subvolume snapshot /mnt /mnt/x/snap
5227 * btrfs subvolume delete /mnt/x/snap
5228 * rmdir /mnt/x
5229 * mkdir /mnt/x
5230 * fsync /mnt/x or fsync some new file inside it
5231 * <power fail>
5232 *
5233 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5234 * the same transaction.
5235 */
5236static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5237 const int slot,
5238 const struct btrfs_key *key,
4791c8f1 5239 struct btrfs_inode *inode,
a3baaf0d 5240 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
5241{
5242 int ret;
5243 struct btrfs_path *search_path;
5244 char *name = NULL;
5245 u32 name_len = 0;
3212fa14 5246 u32 item_size = btrfs_item_size(eb, slot);
56f23fdb
FM
5247 u32 cur_offset = 0;
5248 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5249
5250 search_path = btrfs_alloc_path();
5251 if (!search_path)
5252 return -ENOMEM;
5253 search_path->search_commit_root = 1;
5254 search_path->skip_locking = 1;
5255
5256 while (cur_offset < item_size) {
5257 u64 parent;
5258 u32 this_name_len;
5259 u32 this_len;
5260 unsigned long name_ptr;
5261 struct btrfs_dir_item *di;
6db75318 5262 struct fscrypt_str name_str;
56f23fdb
FM
5263
5264 if (key->type == BTRFS_INODE_REF_KEY) {
5265 struct btrfs_inode_ref *iref;
5266
5267 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5268 parent = key->offset;
5269 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5270 name_ptr = (unsigned long)(iref + 1);
5271 this_len = sizeof(*iref) + this_name_len;
5272 } else {
5273 struct btrfs_inode_extref *extref;
5274
5275 extref = (struct btrfs_inode_extref *)(ptr +
5276 cur_offset);
5277 parent = btrfs_inode_extref_parent(eb, extref);
5278 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5279 name_ptr = (unsigned long)&extref->name;
5280 this_len = sizeof(*extref) + this_name_len;
5281 }
5282
5283 if (this_name_len > name_len) {
5284 char *new_name;
5285
5286 new_name = krealloc(name, this_name_len, GFP_NOFS);
5287 if (!new_name) {
5288 ret = -ENOMEM;
5289 goto out;
5290 }
5291 name_len = this_name_len;
5292 name = new_name;
5293 }
5294
5295 read_extent_buffer(eb, name, name_ptr, this_name_len);
e43eec81
STD
5296
5297 name_str.name = name;
5298 name_str.len = this_name_len;
4791c8f1 5299 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
e43eec81 5300 parent, &name_str, 0);
56f23fdb 5301 if (di && !IS_ERR(di)) {
44f714da
FM
5302 struct btrfs_key di_key;
5303
5304 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5305 di, &di_key);
5306 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
5307 if (di_key.objectid != key->objectid) {
5308 ret = 1;
5309 *other_ino = di_key.objectid;
a3baaf0d 5310 *other_parent = parent;
6b5fc433
FM
5311 } else {
5312 ret = 0;
5313 }
44f714da
FM
5314 } else {
5315 ret = -EAGAIN;
5316 }
56f23fdb
FM
5317 goto out;
5318 } else if (IS_ERR(di)) {
5319 ret = PTR_ERR(di);
5320 goto out;
5321 }
5322 btrfs_release_path(search_path);
5323
5324 cur_offset += this_len;
5325 }
5326 ret = 0;
5327out:
5328 btrfs_free_path(search_path);
5329 kfree(name);
5330 return ret;
5331}
5332
a3751024
FM
5333/*
5334 * Check if we need to log an inode. This is used in contexts where while
5335 * logging an inode we need to log another inode (either that it exists or in
5336 * full mode). This is used instead of btrfs_inode_in_log() because the later
5337 * requires the inode to be in the log and have the log transaction committed,
5338 * while here we do not care if the log transaction was already committed - our
5339 * caller will commit the log later - and we want to avoid logging an inode
5340 * multiple times when multiple tasks have joined the same log transaction.
5341 */
5342static bool need_log_inode(const struct btrfs_trans_handle *trans,
5343 const struct btrfs_inode *inode)
5344{
5345 /*
5346 * If a directory was not modified, no dentries added or removed, we can
5347 * and should avoid logging it.
5348 */
5349 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5350 return false;
5351
5352 /*
5353 * If this inode does not have new/updated/deleted xattrs since the last
5354 * time it was logged and is flagged as logged in the current transaction,
5355 * we can skip logging it. As for new/deleted names, those are updated in
5356 * the log by link/unlink/rename operations.
5357 * In case the inode was logged and then evicted and reloaded, its
5358 * logged_trans will be 0, in which case we have to fully log it since
5359 * logged_trans is a transient field, not persisted.
5360 */
5361 if (inode->logged_trans == trans->transid &&
5362 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5363 return false;
5364
5365 return true;
5366}
5367
f6d86dbe
FM
5368struct btrfs_dir_list {
5369 u64 ino;
5370 struct list_head list;
5371};
5372
5373/*
5374 * Log the inodes of the new dentries of a directory.
5375 * See process_dir_items_leaf() for details about why it is needed.
5376 * This is a recursive operation - if an existing dentry corresponds to a
5377 * directory, that directory's new entries are logged too (same behaviour as
5378 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5379 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5380 * complains about the following circular lock dependency / possible deadlock:
5381 *
5382 * CPU0 CPU1
5383 * ---- ----
5384 * lock(&type->i_mutex_dir_key#3/2);
5385 * lock(sb_internal#2);
5386 * lock(&type->i_mutex_dir_key#3/2);
5387 * lock(&sb->s_type->i_mutex_key#14);
5388 *
5389 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5390 * sb_start_intwrite() in btrfs_start_transaction().
5391 * Not acquiring the VFS lock of the inodes is still safe because:
5392 *
5393 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5394 * that while logging the inode new references (names) are added or removed
5395 * from the inode, leaving the logged inode item with a link count that does
5396 * not match the number of logged inode reference items. This is fine because
5397 * at log replay time we compute the real number of links and correct the
5398 * link count in the inode item (see replay_one_buffer() and
5399 * link_to_fixup_dir());
5400 *
5401 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5402 * while logging the inode's items new index items (key type
5403 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5404 * has a size that doesn't match the sum of the lengths of all the logged
5405 * names - this is ok, not a problem, because at log replay time we set the
5406 * directory's i_size to the correct value (see replay_one_name() and
3a8d1db3 5407 * overwrite_item()).
f6d86dbe
FM
5408 */
5409static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5410 struct btrfs_inode *start_inode,
5411 struct btrfs_log_ctx *ctx)
5412{
5413 struct btrfs_root *root = start_inode->root;
5414 struct btrfs_fs_info *fs_info = root->fs_info;
5415 struct btrfs_path *path;
5416 LIST_HEAD(dir_list);
5417 struct btrfs_dir_list *dir_elem;
5418 u64 ino = btrfs_ino(start_inode);
5419 int ret = 0;
5420
5421 /*
5422 * If we are logging a new name, as part of a link or rename operation,
5423 * don't bother logging new dentries, as we just want to log the names
5424 * of an inode and that any new parents exist.
5425 */
5426 if (ctx->logging_new_name)
5427 return 0;
5428
5429 path = btrfs_alloc_path();
5430 if (!path)
5431 return -ENOMEM;
5432
5433 while (true) {
5434 struct extent_buffer *leaf;
5435 struct btrfs_key min_key;
5436 bool continue_curr_inode = true;
5437 int nritems;
5438 int i;
5439
5440 min_key.objectid = ino;
5441 min_key.type = BTRFS_DIR_INDEX_KEY;
5442 min_key.offset = 0;
5443again:
5444 btrfs_release_path(path);
5445 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5446 if (ret < 0) {
5447 break;
5448 } else if (ret > 0) {
5449 ret = 0;
5450 goto next;
5451 }
5452
5453 leaf = path->nodes[0];
5454 nritems = btrfs_header_nritems(leaf);
5455 for (i = path->slots[0]; i < nritems; i++) {
5456 struct btrfs_dir_item *di;
5457 struct btrfs_key di_key;
5458 struct inode *di_inode;
5459 int log_mode = LOG_INODE_EXISTS;
5460 int type;
5461
5462 btrfs_item_key_to_cpu(leaf, &min_key, i);
5463 if (min_key.objectid != ino ||
5464 min_key.type != BTRFS_DIR_INDEX_KEY) {
5465 continue_curr_inode = false;
5466 break;
5467 }
5468
5469 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
94a48aef 5470 type = btrfs_dir_ftype(leaf, di);
f6d86dbe
FM
5471 if (btrfs_dir_transid(leaf, di) < trans->transid)
5472 continue;
5473 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5474 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5475 continue;
5476
5477 btrfs_release_path(path);
5478 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5479 if (IS_ERR(di_inode)) {
5480 ret = PTR_ERR(di_inode);
5481 goto out;
5482 }
5483
5484 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 5485 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5486 break;
5487 }
5488
5489 ctx->log_new_dentries = false;
5490 if (type == BTRFS_FT_DIR)
5491 log_mode = LOG_INODE_ALL;
5492 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5493 log_mode, ctx);
e55cf7ca 5494 btrfs_add_delayed_iput(BTRFS_I(di_inode));
f6d86dbe
FM
5495 if (ret)
5496 goto out;
5497 if (ctx->log_new_dentries) {
5498 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5499 if (!dir_elem) {
5500 ret = -ENOMEM;
5501 goto out;
5502 }
5503 dir_elem->ino = di_key.objectid;
5504 list_add_tail(&dir_elem->list, &dir_list);
5505 }
5506 break;
5507 }
5508
5509 if (continue_curr_inode && min_key.offset < (u64)-1) {
5510 min_key.offset++;
5511 goto again;
5512 }
5513
5514next:
5515 if (list_empty(&dir_list))
5516 break;
5517
5518 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5519 ino = dir_elem->ino;
5520 list_del(&dir_elem->list);
5521 kfree(dir_elem);
5522 }
5523out:
5524 btrfs_free_path(path);
5525 if (ret) {
5526 struct btrfs_dir_list *next;
5527
5528 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5529 kfree(dir_elem);
5530 }
5531
5532 return ret;
5533}
5534
6b5fc433
FM
5535struct btrfs_ino_list {
5536 u64 ino;
a3baaf0d 5537 u64 parent;
6b5fc433
FM
5538 struct list_head list;
5539};
5540
e09d94c9
FM
5541static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5542{
5543 struct btrfs_ino_list *curr;
5544 struct btrfs_ino_list *next;
5545
5546 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5547 list_del(&curr->list);
5548 kfree(curr);
5549 }
5550}
5551
5557a069
FM
5552static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5553 struct btrfs_path *path)
5554{
5555 struct btrfs_key key;
5556 int ret;
5557
5558 key.objectid = ino;
5559 key.type = BTRFS_INODE_ITEM_KEY;
5560 key.offset = 0;
5561
5562 path->search_commit_root = 1;
5563 path->skip_locking = 1;
5564
5565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5566 if (WARN_ON_ONCE(ret > 0)) {
5567 /*
5568 * We have previously found the inode through the commit root
5569 * so this should not happen. If it does, just error out and
5570 * fallback to a transaction commit.
5571 */
5572 ret = -ENOENT;
5573 } else if (ret == 0) {
5574 struct btrfs_inode_item *item;
5575
5576 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5577 struct btrfs_inode_item);
5578 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5579 ret = 1;
5580 }
5581
5582 btrfs_release_path(path);
5583 path->search_commit_root = 0;
5584 path->skip_locking = 0;
5585
5586 return ret;
5587}
5588
e09d94c9
FM
5589static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5590 struct btrfs_root *root,
5557a069 5591 struct btrfs_path *path,
e09d94c9
FM
5592 u64 ino, u64 parent,
5593 struct btrfs_log_ctx *ctx)
6b5fc433
FM
5594{
5595 struct btrfs_ino_list *ino_elem;
e09d94c9
FM
5596 struct inode *inode;
5597
5598 /*
5599 * It's rare to have a lot of conflicting inodes, in practice it is not
5600 * common to have more than 1 or 2. We don't want to collect too many,
5601 * as we could end up logging too many inodes (even if only in
5602 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5603 * commits.
5604 */
5cce1780 5605 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
e09d94c9
FM
5606 return BTRFS_LOG_FORCE_COMMIT;
5607
5608 inode = btrfs_iget(root->fs_info->sb, ino, root);
5609 /*
5610 * If the other inode that had a conflicting dir entry was deleted in
5557a069
FM
5611 * the current transaction then we either:
5612 *
5613 * 1) Log the parent directory (later after adding it to the list) if
5614 * the inode is a directory. This is because it may be a deleted
5615 * subvolume/snapshot or it may be a regular directory that had
5616 * deleted subvolumes/snapshots (or subdirectories that had them),
5617 * and at the moment we can't deal with dropping subvolumes/snapshots
5618 * during log replay. So we just log the parent, which will result in
5619 * a fallback to a transaction commit if we are dealing with those
5620 * cases (last_unlink_trans will match the current transaction);
5621 *
5622 * 2) Do nothing if it's not a directory. During log replay we simply
5623 * unlink the conflicting dentry from the parent directory and then
5624 * add the dentry for our inode. Like this we can avoid logging the
5625 * parent directory (and maybe fallback to a transaction commit in
5626 * case it has a last_unlink_trans == trans->transid, due to moving
5627 * some inode from it to some other directory).
e09d94c9
FM
5628 */
5629 if (IS_ERR(inode)) {
5630 int ret = PTR_ERR(inode);
5631
5632 if (ret != -ENOENT)
5633 return ret;
5634
5557a069
FM
5635 ret = conflicting_inode_is_dir(root, ino, path);
5636 /* Not a directory or we got an error. */
5637 if (ret <= 0)
5638 return ret;
5639
5640 /* Conflicting inode is a directory, so we'll log its parent. */
e09d94c9
FM
5641 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5642 if (!ino_elem)
5643 return -ENOMEM;
5644 ino_elem->ino = ino;
5645 ino_elem->parent = parent;
5646 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5647 ctx->num_conflict_inodes++;
5648
5649 return 0;
5650 }
5651
5652 /*
5653 * If the inode was already logged skip it - otherwise we can hit an
5654 * infinite loop. Example:
5655 *
5656 * From the commit root (previous transaction) we have the following
5657 * inodes:
5658 *
5659 * inode 257 a directory
5660 * inode 258 with references "zz" and "zz_link" on inode 257
5661 * inode 259 with reference "a" on inode 257
5662 *
5663 * And in the current (uncommitted) transaction we have:
5664 *
5665 * inode 257 a directory, unchanged
5666 * inode 258 with references "a" and "a2" on inode 257
5667 * inode 259 with reference "zz_link" on inode 257
5668 * inode 261 with reference "zz" on inode 257
5669 *
5670 * When logging inode 261 the following infinite loop could
5671 * happen if we don't skip already logged inodes:
5672 *
5673 * - we detect inode 258 as a conflicting inode, with inode 261
5674 * on reference "zz", and log it;
5675 *
5676 * - we detect inode 259 as a conflicting inode, with inode 258
5677 * on reference "a", and log it;
5678 *
5679 * - we detect inode 258 as a conflicting inode, with inode 259
5680 * on reference "zz_link", and log it - again! After this we
5681 * repeat the above steps forever.
5682 *
5683 * Here we can use need_log_inode() because we only need to log the
5684 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5685 * so that the log ends up with the new name and without the old name.
5686 */
5687 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5688 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5689 return 0;
5690 }
5691
e55cf7ca 5692 btrfs_add_delayed_iput(BTRFS_I(inode));
6b5fc433
FM
5693
5694 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5695 if (!ino_elem)
5696 return -ENOMEM;
5697 ino_elem->ino = ino;
a3baaf0d 5698 ino_elem->parent = parent;
e09d94c9
FM
5699 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5700 ctx->num_conflict_inodes++;
6b5fc433 5701
e09d94c9
FM
5702 return 0;
5703}
6b5fc433 5704
e09d94c9
FM
5705static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5706 struct btrfs_root *root,
5707 struct btrfs_log_ctx *ctx)
5708{
5709 struct btrfs_fs_info *fs_info = root->fs_info;
5710 int ret = 0;
6b5fc433 5711
e09d94c9
FM
5712 /*
5713 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5714 * otherwise we could have unbounded recursion of btrfs_log_inode()
5715 * calls. This check guarantees we can have only 1 level of recursion.
5716 */
5717 if (ctx->logging_conflict_inodes)
5718 return 0;
5719
5720 ctx->logging_conflict_inodes = true;
5721
5722 /*
5723 * New conflicting inodes may be found and added to the list while we
5724 * are logging a conflicting inode, so keep iterating while the list is
5725 * not empty.
5726 */
5727 while (!list_empty(&ctx->conflict_inodes)) {
5728 struct btrfs_ino_list *curr;
5729 struct inode *inode;
5730 u64 ino;
5731 u64 parent;
5732
5733 curr = list_first_entry(&ctx->conflict_inodes,
5734 struct btrfs_ino_list, list);
5735 ino = curr->ino;
5736 parent = curr->parent;
5737 list_del(&curr->list);
5738 kfree(curr);
6b5fc433 5739
0202e83f 5740 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
5741 /*
5742 * If the other inode that had a conflicting dir entry was
a3baaf0d 5743 * deleted in the current transaction, we need to log its parent
e09d94c9 5744 * directory. See the comment at add_conflicting_inode().
6b5fc433
FM
5745 */
5746 if (IS_ERR(inode)) {
5747 ret = PTR_ERR(inode);
e09d94c9
FM
5748 if (ret != -ENOENT)
5749 break;
5750
5751 inode = btrfs_iget(fs_info->sb, parent, root);
5752 if (IS_ERR(inode)) {
5753 ret = PTR_ERR(inode);
5754 break;
a3baaf0d 5755 }
e09d94c9
FM
5756
5757 /*
5758 * Always log the directory, we cannot make this
5759 * conditional on need_log_inode() because the directory
5760 * might have been logged in LOG_INODE_EXISTS mode or
5761 * the dir index of the conflicting inode is not in a
5762 * dir index key range logged for the directory. So we
5763 * must make sure the deletion is recorded.
5764 */
5765 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5766 LOG_INODE_ALL, ctx);
e55cf7ca 5767 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5768 if (ret)
5769 break;
6b5fc433
FM
5770 continue;
5771 }
e09d94c9 5772
b5e4ff9d 5773 /*
e09d94c9
FM
5774 * Here we can use need_log_inode() because we only need to log
5775 * the inode in LOG_INODE_EXISTS mode and rename operations
5776 * update the log, so that the log ends up with the new name and
5777 * without the old name.
b5e4ff9d 5778 *
e09d94c9
FM
5779 * We did this check at add_conflicting_inode(), but here we do
5780 * it again because if some other task logged the inode after
5781 * that, we can avoid doing it again.
b5e4ff9d 5782 */
e09d94c9 5783 if (!need_log_inode(trans, BTRFS_I(inode))) {
e55cf7ca 5784 btrfs_add_delayed_iput(BTRFS_I(inode));
b5e4ff9d
FM
5785 continue;
5786 }
e09d94c9 5787
6b5fc433
FM
5788 /*
5789 * We are safe logging the other inode without acquiring its
5790 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5791 * are safe against concurrent renames of the other inode as
5792 * well because during a rename we pin the log and update the
5793 * log with the new name before we unpin it.
5794 */
e09d94c9 5795 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
e55cf7ca 5796 btrfs_add_delayed_iput(BTRFS_I(inode));
e09d94c9
FM
5797 if (ret)
5798 break;
6b5fc433
FM
5799 }
5800
e09d94c9
FM
5801 ctx->logging_conflict_inodes = false;
5802 if (ret)
5803 free_conflicting_inodes(ctx);
5804
6b5fc433
FM
5805 return ret;
5806}
5807
da447009
FM
5808static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5809 struct btrfs_inode *inode,
5810 struct btrfs_key *min_key,
5811 const struct btrfs_key *max_key,
5812 struct btrfs_path *path,
5813 struct btrfs_path *dst_path,
5814 const u64 logged_isize,
da447009
FM
5815 const int inode_only,
5816 struct btrfs_log_ctx *ctx,
5817 bool *need_log_inode_item)
5818{
d9947887 5819 const u64 i_size = i_size_read(&inode->vfs_inode);
da447009
FM
5820 struct btrfs_root *root = inode->root;
5821 int ins_start_slot = 0;
5822 int ins_nr = 0;
5823 int ret;
5824
5825 while (1) {
5826 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5827 if (ret < 0)
5828 return ret;
5829 if (ret > 0) {
5830 ret = 0;
5831 break;
5832 }
5833again:
5834 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5835 if (min_key->objectid != max_key->objectid)
5836 break;
5837 if (min_key->type > max_key->type)
5838 break;
5839
d9947887 5840 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
da447009 5841 *need_log_inode_item = false;
d9947887
FM
5842 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5843 min_key->offset >= i_size) {
5844 /*
5845 * Extents at and beyond eof are logged with
5846 * btrfs_log_prealloc_extents().
5847 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5848 * and no keys greater than that, so bail out.
5849 */
5850 break;
5851 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5852 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
e09d94c9
FM
5853 (inode->generation == trans->transid ||
5854 ctx->logging_conflict_inodes)) {
da447009
FM
5855 u64 other_ino = 0;
5856 u64 other_parent = 0;
5857
5858 ret = btrfs_check_ref_name_override(path->nodes[0],
5859 path->slots[0], min_key, inode,
5860 &other_ino, &other_parent);
5861 if (ret < 0) {
5862 return ret;
289cffcb 5863 } else if (ret > 0 &&
da447009
FM
5864 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5865 if (ins_nr > 0) {
5866 ins_nr++;
5867 } else {
5868 ins_nr = 1;
5869 ins_start_slot = path->slots[0];
5870 }
5871 ret = copy_items(trans, inode, dst_path, path,
5872 ins_start_slot, ins_nr,
5873 inode_only, logged_isize);
5874 if (ret < 0)
5875 return ret;
5876 ins_nr = 0;
5877
e09d94c9 5878 btrfs_release_path(path);
5557a069 5879 ret = add_conflicting_inode(trans, root, path,
e09d94c9
FM
5880 other_ino,
5881 other_parent, ctx);
da447009
FM
5882 if (ret)
5883 return ret;
da447009
FM
5884 goto next_key;
5885 }
d9947887
FM
5886 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5887 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
da447009
FM
5888 if (ins_nr == 0)
5889 goto next_slot;
5890 ret = copy_items(trans, inode, dst_path, path,
5891 ins_start_slot,
5892 ins_nr, inode_only, logged_isize);
5893 if (ret < 0)
5894 return ret;
5895 ins_nr = 0;
5896 goto next_slot;
5897 }
5898
5899 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5900 ins_nr++;
5901 goto next_slot;
5902 } else if (!ins_nr) {
5903 ins_start_slot = path->slots[0];
5904 ins_nr = 1;
5905 goto next_slot;
5906 }
5907
5908 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5909 ins_nr, inode_only, logged_isize);
5910 if (ret < 0)
5911 return ret;
5912 ins_nr = 1;
5913 ins_start_slot = path->slots[0];
5914next_slot:
5915 path->slots[0]++;
5916 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5917 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5918 path->slots[0]);
5919 goto again;
5920 }
5921 if (ins_nr) {
5922 ret = copy_items(trans, inode, dst_path, path,
5923 ins_start_slot, ins_nr, inode_only,
5924 logged_isize);
5925 if (ret < 0)
5926 return ret;
5927 ins_nr = 0;
5928 }
5929 btrfs_release_path(path);
5930next_key:
5931 if (min_key->offset < (u64)-1) {
5932 min_key->offset++;
5933 } else if (min_key->type < max_key->type) {
5934 min_key->type++;
5935 min_key->offset = 0;
5936 } else {
5937 break;
5938 }
96acb375
FM
5939
5940 /*
5941 * We may process many leaves full of items for our inode, so
5942 * avoid monopolizing a cpu for too long by rescheduling while
5943 * not holding locks on any tree.
5944 */
5945 cond_resched();
da447009 5946 }
d9947887 5947 if (ins_nr) {
da447009
FM
5948 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5949 ins_nr, inode_only, logged_isize);
d9947887
FM
5950 if (ret)
5951 return ret;
5952 }
5953
5954 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5955 /*
5956 * Release the path because otherwise we might attempt to double
5957 * lock the same leaf with btrfs_log_prealloc_extents() below.
5958 */
5959 btrfs_release_path(path);
5960 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5961 }
da447009
FM
5962
5963 return ret;
5964}
5965
30b80f3c
FM
5966static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5967 struct btrfs_root *log,
5968 struct btrfs_path *path,
5969 const struct btrfs_item_batch *batch,
5970 const struct btrfs_delayed_item *first_item)
5971{
5972 const struct btrfs_delayed_item *curr = first_item;
5973 int ret;
5974
5975 ret = btrfs_insert_empty_items(trans, log, path, batch);
5976 if (ret)
5977 return ret;
5978
5979 for (int i = 0; i < batch->nr; i++) {
5980 char *data_ptr;
5981
5982 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5983 write_extent_buffer(path->nodes[0], &curr->data,
5984 (unsigned long)data_ptr, curr->data_len);
5985 curr = list_next_entry(curr, log_list);
5986 path->slots[0]++;
5987 }
5988
5989 btrfs_release_path(path);
5990
5991 return 0;
5992}
5993
5994static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5995 struct btrfs_inode *inode,
5996 struct btrfs_path *path,
5997 const struct list_head *delayed_ins_list,
5998 struct btrfs_log_ctx *ctx)
5999{
6000 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6001 const int max_batch_size = 195;
6002 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6003 const u64 ino = btrfs_ino(inode);
6004 struct btrfs_root *log = inode->root->log_root;
6005 struct btrfs_item_batch batch = {
6006 .nr = 0,
6007 .total_data_size = 0,
6008 };
6009 const struct btrfs_delayed_item *first = NULL;
6010 const struct btrfs_delayed_item *curr;
6011 char *ins_data;
6012 struct btrfs_key *ins_keys;
6013 u32 *ins_sizes;
6014 u64 curr_batch_size = 0;
6015 int batch_idx = 0;
6016 int ret;
6017
6018 /* We are adding dir index items to the log tree. */
6019 lockdep_assert_held(&inode->log_mutex);
6020
6021 /*
6022 * We collect delayed items before copying index keys from the subvolume
6023 * to the log tree. However just after we collected them, they may have
6024 * been flushed (all of them or just some of them), and therefore we
6025 * could have copied them from the subvolume tree to the log tree.
6026 * So find the first delayed item that was not yet logged (they are
6027 * sorted by index number).
6028 */
6029 list_for_each_entry(curr, delayed_ins_list, log_list) {
6030 if (curr->index > inode->last_dir_index_offset) {
6031 first = curr;
6032 break;
6033 }
6034 }
6035
6036 /* Empty list or all delayed items were already logged. */
6037 if (!first)
6038 return 0;
6039
6040 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6041 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6042 if (!ins_data)
6043 return -ENOMEM;
6044 ins_sizes = (u32 *)ins_data;
6045 batch.data_sizes = ins_sizes;
6046 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6047 batch.keys = ins_keys;
6048
6049 curr = first;
6050 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6051 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6052
6053 if (curr_batch_size + curr_size > leaf_data_size ||
6054 batch.nr == max_batch_size) {
6055 ret = insert_delayed_items_batch(trans, log, path,
6056 &batch, first);
6057 if (ret)
6058 goto out;
6059 batch_idx = 0;
6060 batch.nr = 0;
6061 batch.total_data_size = 0;
6062 curr_batch_size = 0;
6063 first = curr;
6064 }
6065
6066 ins_sizes[batch_idx] = curr->data_len;
6067 ins_keys[batch_idx].objectid = ino;
6068 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6069 ins_keys[batch_idx].offset = curr->index;
6070 curr_batch_size += curr_size;
6071 batch.total_data_size += curr->data_len;
6072 batch.nr++;
6073 batch_idx++;
6074 curr = list_next_entry(curr, log_list);
6075 }
6076
6077 ASSERT(batch.nr >= 1);
6078 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6079
6080 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6081 log_list);
6082 inode->last_dir_index_offset = curr->index;
6083out:
6084 kfree(ins_data);
6085
6086 return ret;
6087}
6088
6089static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6090 struct btrfs_inode *inode,
6091 struct btrfs_path *path,
6092 const struct list_head *delayed_del_list,
6093 struct btrfs_log_ctx *ctx)
6094{
6095 const u64 ino = btrfs_ino(inode);
6096 const struct btrfs_delayed_item *curr;
6097
6098 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6099 log_list);
6100
6101 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6102 u64 first_dir_index = curr->index;
6103 u64 last_dir_index;
6104 const struct btrfs_delayed_item *next;
6105 int ret;
6106
6107 /*
6108 * Find a range of consecutive dir index items to delete. Like
6109 * this we log a single dir range item spanning several contiguous
6110 * dir items instead of logging one range item per dir index item.
6111 */
6112 next = list_next_entry(curr, log_list);
6113 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6114 if (next->index != curr->index + 1)
6115 break;
6116 curr = next;
6117 next = list_next_entry(next, log_list);
6118 }
6119
6120 last_dir_index = curr->index;
6121 ASSERT(last_dir_index >= first_dir_index);
6122
6123 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6124 ino, first_dir_index, last_dir_index);
6125 if (ret)
6126 return ret;
6127 curr = list_next_entry(curr, log_list);
6128 }
6129
6130 return 0;
6131}
6132
6133static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6134 struct btrfs_inode *inode,
6135 struct btrfs_path *path,
6136 struct btrfs_log_ctx *ctx,
6137 const struct list_head *delayed_del_list,
6138 const struct btrfs_delayed_item *first,
6139 const struct btrfs_delayed_item **last_ret)
6140{
6141 const struct btrfs_delayed_item *next;
6142 struct extent_buffer *leaf = path->nodes[0];
6143 const int last_slot = btrfs_header_nritems(leaf) - 1;
6144 int slot = path->slots[0] + 1;
6145 const u64 ino = btrfs_ino(inode);
6146
6147 next = list_next_entry(first, log_list);
6148
6149 while (slot < last_slot &&
6150 !list_entry_is_head(next, delayed_del_list, log_list)) {
6151 struct btrfs_key key;
6152
6153 btrfs_item_key_to_cpu(leaf, &key, slot);
6154 if (key.objectid != ino ||
6155 key.type != BTRFS_DIR_INDEX_KEY ||
6156 key.offset != next->index)
6157 break;
6158
6159 slot++;
6160 *last_ret = next;
6161 next = list_next_entry(next, log_list);
6162 }
6163
6164 return btrfs_del_items(trans, inode->root->log_root, path,
6165 path->slots[0], slot - path->slots[0]);
6166}
6167
6168static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6169 struct btrfs_inode *inode,
6170 struct btrfs_path *path,
6171 const struct list_head *delayed_del_list,
6172 struct btrfs_log_ctx *ctx)
6173{
6174 struct btrfs_root *log = inode->root->log_root;
6175 const struct btrfs_delayed_item *curr;
6176 u64 last_range_start;
6177 u64 last_range_end = 0;
6178 struct btrfs_key key;
6179
6180 key.objectid = btrfs_ino(inode);
6181 key.type = BTRFS_DIR_INDEX_KEY;
6182 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6183 log_list);
6184
6185 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6186 const struct btrfs_delayed_item *last = curr;
6187 u64 first_dir_index = curr->index;
6188 u64 last_dir_index;
6189 bool deleted_items = false;
6190 int ret;
6191
6192 key.offset = curr->index;
6193 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6194 if (ret < 0) {
6195 return ret;
6196 } else if (ret == 0) {
6197 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6198 delayed_del_list, curr,
6199 &last);
6200 if (ret)
6201 return ret;
6202 deleted_items = true;
6203 }
6204
6205 btrfs_release_path(path);
6206
6207 /*
6208 * If we deleted items from the leaf, it means we have a range
6209 * item logging their range, so no need to add one or update an
6210 * existing one. Otherwise we have to log a dir range item.
6211 */
6212 if (deleted_items)
6213 goto next_batch;
6214
6215 last_dir_index = last->index;
6216 ASSERT(last_dir_index >= first_dir_index);
6217 /*
6218 * If this range starts right after where the previous one ends,
6219 * then we want to reuse the previous range item and change its
6220 * end offset to the end of this range. This is just to minimize
6221 * leaf space usage, by avoiding adding a new range item.
6222 */
6223 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6224 first_dir_index = last_range_start;
6225
6226 ret = insert_dir_log_key(trans, log, path, key.objectid,
6227 first_dir_index, last_dir_index);
6228 if (ret)
6229 return ret;
6230
6231 last_range_start = first_dir_index;
6232 last_range_end = last_dir_index;
6233next_batch:
6234 curr = list_next_entry(last, log_list);
6235 }
6236
6237 return 0;
6238}
6239
6240static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6241 struct btrfs_inode *inode,
6242 struct btrfs_path *path,
6243 const struct list_head *delayed_del_list,
6244 struct btrfs_log_ctx *ctx)
6245{
6246 /*
6247 * We are deleting dir index items from the log tree or adding range
6248 * items to it.
6249 */
6250 lockdep_assert_held(&inode->log_mutex);
6251
6252 if (list_empty(delayed_del_list))
6253 return 0;
6254
6255 if (ctx->logged_before)
6256 return log_delayed_deletions_incremental(trans, inode, path,
6257 delayed_del_list, ctx);
6258
6259 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6260 ctx);
6261}
6262
6263/*
6264 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6265 * items instead of the subvolume tree.
6266 */
6267static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6268 struct btrfs_inode *inode,
6269 const struct list_head *delayed_ins_list,
6270 struct btrfs_log_ctx *ctx)
6271{
6272 const bool orig_log_new_dentries = ctx->log_new_dentries;
6273 struct btrfs_fs_info *fs_info = trans->fs_info;
6274 struct btrfs_delayed_item *item;
6275 int ret = 0;
6276
6277 /*
6278 * No need for the log mutex, plus to avoid potential deadlocks or
6279 * lockdep annotations due to nesting of delayed inode mutexes and log
6280 * mutexes.
6281 */
6282 lockdep_assert_not_held(&inode->log_mutex);
6283
6284 ASSERT(!ctx->logging_new_delayed_dentries);
6285 ctx->logging_new_delayed_dentries = true;
6286
6287 list_for_each_entry(item, delayed_ins_list, log_list) {
6288 struct btrfs_dir_item *dir_item;
6289 struct inode *di_inode;
6290 struct btrfs_key key;
6291 int log_mode = LOG_INODE_EXISTS;
6292
6293 dir_item = (struct btrfs_dir_item *)item->data;
6294 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6295
6296 if (key.type == BTRFS_ROOT_ITEM_KEY)
6297 continue;
6298
6299 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6300 if (IS_ERR(di_inode)) {
6301 ret = PTR_ERR(di_inode);
6302 break;
6303 }
6304
6305 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
e55cf7ca 6306 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6307 continue;
6308 }
6309
94a48aef 6310 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
30b80f3c
FM
6311 log_mode = LOG_INODE_ALL;
6312
6313 ctx->log_new_dentries = false;
6314 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6315
6316 if (!ret && ctx->log_new_dentries)
6317 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6318
e55cf7ca 6319 btrfs_add_delayed_iput(BTRFS_I(di_inode));
30b80f3c
FM
6320
6321 if (ret)
6322 break;
6323 }
6324
6325 ctx->log_new_dentries = orig_log_new_dentries;
6326 ctx->logging_new_delayed_dentries = false;
6327
6328 return ret;
6329}
6330
e02119d5
CM
6331/* log a single inode in the tree log.
6332 * At least one parent directory for this inode must exist in the tree
6333 * or be logged already.
6334 *
6335 * Any items from this inode changed by the current transaction are copied
6336 * to the log tree. An extra reference is taken on any extents in this
6337 * file, allowing us to avoid a whole pile of corner cases around logging
6338 * blocks that have been removed from the tree.
6339 *
6340 * See LOG_INODE_ALL and related defines for a description of what inode_only
6341 * does.
6342 *
6343 * This handles both files and directories.
6344 */
12fcfd22 6345static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90d04510 6346 struct btrfs_inode *inode,
49dae1bc 6347 int inode_only,
8407f553 6348 struct btrfs_log_ctx *ctx)
e02119d5
CM
6349{
6350 struct btrfs_path *path;
6351 struct btrfs_path *dst_path;
6352 struct btrfs_key min_key;
6353 struct btrfs_key max_key;
90d04510 6354 struct btrfs_root *log = inode->root->log_root;
65faced5 6355 int ret;
5dc562c5 6356 bool fast_search = false;
a59108a7
NB
6357 u64 ino = btrfs_ino(inode);
6358 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 6359 u64 logged_isize = 0;
e4545de5 6360 bool need_log_inode_item = true;
9a8fca62 6361 bool xattrs_logged = false;
2ac691d8 6362 bool inode_item_dropped = true;
30b80f3c
FM
6363 bool full_dir_logging = false;
6364 LIST_HEAD(delayed_ins_list);
6365 LIST_HEAD(delayed_del_list);
e02119d5 6366
e02119d5 6367 path = btrfs_alloc_path();
5df67083
TI
6368 if (!path)
6369 return -ENOMEM;
e02119d5 6370 dst_path = btrfs_alloc_path();
5df67083
TI
6371 if (!dst_path) {
6372 btrfs_free_path(path);
6373 return -ENOMEM;
6374 }
e02119d5 6375
33345d01 6376 min_key.objectid = ino;
e02119d5
CM
6377 min_key.type = BTRFS_INODE_ITEM_KEY;
6378 min_key.offset = 0;
6379
33345d01 6380 max_key.objectid = ino;
12fcfd22 6381
12fcfd22 6382
5dc562c5 6383 /* today the code can only do partial logging of directories */
a59108a7 6384 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 6385 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6386 &inode->runtime_flags) &&
781feef7 6387 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
6388 max_key.type = BTRFS_XATTR_ITEM_KEY;
6389 else
6390 max_key.type = (u8)-1;
6391 max_key.offset = (u64)-1;
6392
30b80f3c
FM
6393 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6394 full_dir_logging = true;
6395
2c2c452b 6396 /*
30b80f3c
FM
6397 * If we are logging a directory while we are logging dentries of the
6398 * delayed items of some other inode, then we need to flush the delayed
6399 * items of this directory and not log the delayed items directly. This
6400 * is to prevent more than one level of recursion into btrfs_log_inode()
6401 * by having something like this:
6402 *
6403 * $ mkdir -p a/b/c/d/e/f/g/h/...
6404 * $ xfs_io -c "fsync" a
6405 *
6406 * Where all directories in the path did not exist before and are
6407 * created in the current transaction.
6408 * So in such a case we directly log the delayed items of the main
6409 * directory ("a") without flushing them first, while for each of its
6410 * subdirectories we flush their delayed items before logging them.
6411 * This prevents a potential unbounded recursion like this:
6412 *
6413 * btrfs_log_inode()
6414 * log_new_delayed_dentries()
6415 * btrfs_log_inode()
6416 * log_new_delayed_dentries()
6417 * btrfs_log_inode()
6418 * log_new_delayed_dentries()
6419 * (...)
6420 *
6421 * We have thresholds for the maximum number of delayed items to have in
6422 * memory, and once they are hit, the items are flushed asynchronously.
6423 * However the limit is quite high, so lets prevent deep levels of
6424 * recursion to happen by limiting the maximum depth to be 1.
2c2c452b 6425 */
30b80f3c 6426 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
65faced5
FM
6427 ret = btrfs_commit_inode_delayed_items(trans, inode);
6428 if (ret)
f6df27dd 6429 goto out;
16cdcec7
MX
6430 }
6431
e09d94c9 6432 mutex_lock(&inode->log_mutex);
e02119d5 6433
d0e64a98
FM
6434 /*
6435 * For symlinks, we must always log their content, which is stored in an
6436 * inline extent, otherwise we could end up with an empty symlink after
6437 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6438 * one attempts to create an empty symlink).
6439 * We don't need to worry about flushing delalloc, because when we create
6440 * the inline extent when the symlink is created (we never have delalloc
6441 * for symlinks).
6442 */
6443 if (S_ISLNK(inode->vfs_inode.i_mode))
6444 inode_only = LOG_INODE_ALL;
6445
0f8ce498
FM
6446 /*
6447 * Before logging the inode item, cache the value returned by
6448 * inode_logged(), because after that we have the need to figure out if
6449 * the inode was previously logged in this transaction.
6450 */
6451 ret = inode_logged(trans, inode, path);
65faced5 6452 if (ret < 0)
0f8ce498 6453 goto out_unlock;
0f8ce498 6454 ctx->logged_before = (ret == 1);
65faced5 6455 ret = 0;
0f8ce498 6456
64d6b281
FM
6457 /*
6458 * This is for cases where logging a directory could result in losing a
6459 * a file after replaying the log. For example, if we move a file from a
6460 * directory A to a directory B, then fsync directory A, we have no way
6461 * to known the file was moved from A to B, so logging just A would
6462 * result in losing the file after a log replay.
6463 */
30b80f3c 6464 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
f31f09f6 6465 ret = BTRFS_LOG_FORCE_COMMIT;
64d6b281
FM
6466 goto out_unlock;
6467 }
6468
e02119d5
CM
6469 /*
6470 * a brute force approach to making sure we get the most uptodate
6471 * copies of everything.
6472 */
a59108a7 6473 if (S_ISDIR(inode->vfs_inode.i_mode)) {
ab12313a 6474 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
0f8ce498
FM
6475 if (ctx->logged_before)
6476 ret = drop_inode_items(trans, log, path, inode,
04fc7d51 6477 BTRFS_XATTR_ITEM_KEY);
e02119d5 6478 } else {
0f8ce498 6479 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
1a4bcf47
FM
6480 /*
6481 * Make sure the new inode item we write to the log has
6482 * the same isize as the current one (if it exists).
6483 * This is necessary to prevent data loss after log
6484 * replay, and also to prevent doing a wrong expanding
6485 * truncate - for e.g. create file, write 4K into offset
6486 * 0, fsync, write 4K into offset 4096, add hard link,
6487 * fsync some other file (to sync log), power fail - if
6488 * we use the inode's current i_size, after log replay
6489 * we get a 8Kb file, with the last 4Kb extent as a hole
6490 * (zeroes), as if an expanding truncate happened,
6491 * instead of getting a file of 4Kb only.
6492 */
65faced5
FM
6493 ret = logged_inode_size(log, inode, path, &logged_isize);
6494 if (ret)
1a4bcf47
FM
6495 goto out_unlock;
6496 }
a742994a 6497 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6498 &inode->runtime_flags)) {
a742994a 6499 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 6500 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6501 if (ctx->logged_before)
6502 ret = drop_inode_items(trans, log, path,
6503 inode, max_key.type);
a742994a
FM
6504 } else {
6505 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 6506 &inode->runtime_flags);
a742994a 6507 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6508 &inode->runtime_flags);
0f8ce498 6509 if (ctx->logged_before)
4934a815
FM
6510 ret = truncate_inode_items(trans, log,
6511 inode, 0, 0);
a742994a 6512 }
4f764e51 6513 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 6514 &inode->runtime_flags) ||
6cfab851 6515 inode_only == LOG_INODE_EXISTS) {
4f764e51 6516 if (inode_only == LOG_INODE_ALL)
183f37fa 6517 fast_search = true;
4f764e51 6518 max_key.type = BTRFS_XATTR_ITEM_KEY;
0f8ce498
FM
6519 if (ctx->logged_before)
6520 ret = drop_inode_items(trans, log, path, inode,
6521 max_key.type);
a95249b3
JB
6522 } else {
6523 if (inode_only == LOG_INODE_ALL)
6524 fast_search = true;
2ac691d8 6525 inode_item_dropped = false;
a95249b3 6526 goto log_extents;
5dc562c5 6527 }
a95249b3 6528
e02119d5 6529 }
65faced5 6530 if (ret)
4a500fd1 6531 goto out_unlock;
e02119d5 6532
30b80f3c
FM
6533 /*
6534 * If we are logging a directory in full mode, collect the delayed items
6535 * before iterating the subvolume tree, so that we don't miss any new
6536 * dir index items in case they get flushed while or right after we are
6537 * iterating the subvolume tree.
6538 */
6539 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6540 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6541 &delayed_del_list);
6542
65faced5 6543 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
da447009 6544 path, dst_path, logged_isize,
e09d94c9 6545 inode_only, ctx,
7af59743 6546 &need_log_inode_item);
65faced5 6547 if (ret)
da447009 6548 goto out_unlock;
5dc562c5 6549
36283bf7
FM
6550 btrfs_release_path(path);
6551 btrfs_release_path(dst_path);
65faced5
FM
6552 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6553 if (ret)
36283bf7 6554 goto out_unlock;
9a8fca62 6555 xattrs_logged = true;
a89ca6f2
FM
6556 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6557 btrfs_release_path(path);
6558 btrfs_release_path(dst_path);
65faced5
FM
6559 ret = btrfs_log_holes(trans, inode, path);
6560 if (ret)
a89ca6f2
FM
6561 goto out_unlock;
6562 }
a95249b3 6563log_extents:
f3b15ccd
JB
6564 btrfs_release_path(path);
6565 btrfs_release_path(dst_path);
e4545de5 6566 if (need_log_inode_item) {
65faced5
FM
6567 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6568 if (ret)
b590b839
FM
6569 goto out_unlock;
6570 /*
6571 * If we are doing a fast fsync and the inode was logged before
6572 * in this transaction, we don't need to log the xattrs because
6573 * they were logged before. If xattrs were added, changed or
6574 * deleted since the last time we logged the inode, then we have
6575 * already logged them because the inode had the runtime flag
6576 * BTRFS_INODE_COPY_EVERYTHING set.
6577 */
6578 if (!xattrs_logged && inode->logged_trans < trans->transid) {
65faced5
FM
6579 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6580 if (ret)
b590b839 6581 goto out_unlock;
9a8fca62
FM
6582 btrfs_release_path(path);
6583 }
e4545de5 6584 }
5dc562c5 6585 if (fast_search) {
90d04510 6586 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
65faced5 6587 if (ret)
5dc562c5 6588 goto out_unlock;
d006a048 6589 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
6590 struct extent_map *em, *n;
6591
49dae1bc 6592 write_lock(&em_tree->lock);
48778179
FM
6593 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6594 list_del_init(&em->list);
49dae1bc 6595 write_unlock(&em_tree->lock);
5dc562c5
JB
6596 }
6597
30b80f3c 6598 if (full_dir_logging) {
90d04510 6599 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
65faced5 6600 if (ret)
4a500fd1 6601 goto out_unlock;
30b80f3c
FM
6602 ret = log_delayed_insertion_items(trans, inode, path,
6603 &delayed_ins_list, ctx);
6604 if (ret)
6605 goto out_unlock;
6606 ret = log_delayed_deletion_items(trans, inode, path,
6607 &delayed_del_list, ctx);
6608 if (ret)
6609 goto out_unlock;
e02119d5 6610 }
49dae1bc 6611
130341be
FM
6612 spin_lock(&inode->lock);
6613 inode->logged_trans = trans->transid;
d1d832a0 6614 /*
130341be
FM
6615 * Don't update last_log_commit if we logged that an inode exists.
6616 * We do this for three reasons:
6617 *
6618 * 1) We might have had buffered writes to this inode that were
6619 * flushed and had their ordered extents completed in this
6620 * transaction, but we did not previously log the inode with
6621 * LOG_INODE_ALL. Later the inode was evicted and after that
6622 * it was loaded again and this LOG_INODE_EXISTS log operation
6623 * happened. We must make sure that if an explicit fsync against
6624 * the inode is performed later, it logs the new extents, an
6625 * updated inode item, etc, and syncs the log. The same logic
6626 * applies to direct IO writes instead of buffered writes.
6627 *
6628 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6629 * is logged with an i_size of 0 or whatever value was logged
6630 * before. If later the i_size of the inode is increased by a
6631 * truncate operation, the log is synced through an fsync of
6632 * some other inode and then finally an explicit fsync against
6633 * this inode is made, we must make sure this fsync logs the
6634 * inode with the new i_size, the hole between old i_size and
6635 * the new i_size, and syncs the log.
6636 *
6637 * 3) If we are logging that an ancestor inode exists as part of
6638 * logging a new name from a link or rename operation, don't update
6639 * its last_log_commit - otherwise if an explicit fsync is made
6640 * against an ancestor, the fsync considers the inode in the log
6641 * and doesn't sync the log, resulting in the ancestor missing after
6642 * a power failure unless the log was synced as part of an fsync
6643 * against any other unrelated inode.
d1d832a0 6644 */
130341be
FM
6645 if (inode_only != LOG_INODE_EXISTS)
6646 inode->last_log_commit = inode->last_sub_trans;
6647 spin_unlock(&inode->lock);
23e3337f
FM
6648
6649 /*
6650 * Reset the last_reflink_trans so that the next fsync does not need to
6651 * go through the slower path when logging extents and their checksums.
6652 */
6653 if (inode_only == LOG_INODE_ALL)
6654 inode->last_reflink_trans = 0;
6655
4a500fd1 6656out_unlock:
a59108a7 6657 mutex_unlock(&inode->log_mutex);
f6df27dd 6658out:
e02119d5
CM
6659 btrfs_free_path(path);
6660 btrfs_free_path(dst_path);
0f8ce498 6661
e09d94c9
FM
6662 if (ret)
6663 free_conflicting_inodes(ctx);
6664 else
6665 ret = log_conflicting_inodes(trans, inode->root, ctx);
0f8ce498 6666
30b80f3c
FM
6667 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6668 if (!ret)
6669 ret = log_new_delayed_dentries(trans, inode,
6670 &delayed_ins_list, ctx);
6671
6672 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6673 &delayed_del_list);
6674 }
6675
65faced5 6676 return ret;
e02119d5
CM
6677}
6678
18aa0922 6679static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 6680 struct btrfs_inode *inode,
18aa0922
FM
6681 struct btrfs_log_ctx *ctx)
6682{
3ffbd68c 6683 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
6684 int ret;
6685 struct btrfs_path *path;
6686 struct btrfs_key key;
d0a0b78d
NB
6687 struct btrfs_root *root = inode->root;
6688 const u64 ino = btrfs_ino(inode);
18aa0922
FM
6689
6690 path = btrfs_alloc_path();
6691 if (!path)
6692 return -ENOMEM;
6693 path->skip_locking = 1;
6694 path->search_commit_root = 1;
6695
6696 key.objectid = ino;
6697 key.type = BTRFS_INODE_REF_KEY;
6698 key.offset = 0;
6699 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6700 if (ret < 0)
6701 goto out;
6702
6703 while (true) {
6704 struct extent_buffer *leaf = path->nodes[0];
6705 int slot = path->slots[0];
6706 u32 cur_offset = 0;
6707 u32 item_size;
6708 unsigned long ptr;
6709
6710 if (slot >= btrfs_header_nritems(leaf)) {
6711 ret = btrfs_next_leaf(root, path);
6712 if (ret < 0)
6713 goto out;
6714 else if (ret > 0)
6715 break;
6716 continue;
6717 }
6718
6719 btrfs_item_key_to_cpu(leaf, &key, slot);
6720 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6721 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6722 break;
6723
3212fa14 6724 item_size = btrfs_item_size(leaf, slot);
18aa0922
FM
6725 ptr = btrfs_item_ptr_offset(leaf, slot);
6726 while (cur_offset < item_size) {
6727 struct btrfs_key inode_key;
6728 struct inode *dir_inode;
6729
6730 inode_key.type = BTRFS_INODE_ITEM_KEY;
6731 inode_key.offset = 0;
6732
6733 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6734 struct btrfs_inode_extref *extref;
6735
6736 extref = (struct btrfs_inode_extref *)
6737 (ptr + cur_offset);
6738 inode_key.objectid = btrfs_inode_extref_parent(
6739 leaf, extref);
6740 cur_offset += sizeof(*extref);
6741 cur_offset += btrfs_inode_extref_name_len(leaf,
6742 extref);
6743 } else {
6744 inode_key.objectid = key.offset;
6745 cur_offset = item_size;
6746 }
6747
0202e83f
DS
6748 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6749 root);
0f375eed
FM
6750 /*
6751 * If the parent inode was deleted, return an error to
6752 * fallback to a transaction commit. This is to prevent
6753 * getting an inode that was moved from one parent A to
6754 * a parent B, got its former parent A deleted and then
6755 * it got fsync'ed, from existing at both parents after
6756 * a log replay (and the old parent still existing).
6757 * Example:
6758 *
6759 * mkdir /mnt/A
6760 * mkdir /mnt/B
6761 * touch /mnt/B/bar
6762 * sync
6763 * mv /mnt/B/bar /mnt/A/bar
6764 * mv -T /mnt/A /mnt/B
6765 * fsync /mnt/B/bar
6766 * <power fail>
6767 *
6768 * If we ignore the old parent B which got deleted,
6769 * after a log replay we would have file bar linked
6770 * at both parents and the old parent B would still
6771 * exist.
6772 */
6773 if (IS_ERR(dir_inode)) {
6774 ret = PTR_ERR(dir_inode);
6775 goto out;
6776 }
18aa0922 6777
3e6a86a1 6778 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
e55cf7ca 6779 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
3e6a86a1
FM
6780 continue;
6781 }
6782
289cffcb 6783 ctx->log_new_dentries = false;
90d04510 6784 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
48778179 6785 LOG_INODE_ALL, ctx);
289cffcb 6786 if (!ret && ctx->log_new_dentries)
8786a6d7 6787 ret = log_new_dir_dentries(trans,
f85b7379 6788 BTRFS_I(dir_inode), ctx);
e55cf7ca 6789 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
18aa0922
FM
6790 if (ret)
6791 goto out;
6792 }
6793 path->slots[0]++;
6794 }
6795 ret = 0;
6796out:
6797 btrfs_free_path(path);
6798 return ret;
6799}
6800
b8aa330d
FM
6801static int log_new_ancestors(struct btrfs_trans_handle *trans,
6802 struct btrfs_root *root,
6803 struct btrfs_path *path,
6804 struct btrfs_log_ctx *ctx)
6805{
6806 struct btrfs_key found_key;
6807
6808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6809
6810 while (true) {
6811 struct btrfs_fs_info *fs_info = root->fs_info;
b8aa330d
FM
6812 struct extent_buffer *leaf = path->nodes[0];
6813 int slot = path->slots[0];
6814 struct btrfs_key search_key;
6815 struct inode *inode;
0202e83f 6816 u64 ino;
b8aa330d
FM
6817 int ret = 0;
6818
6819 btrfs_release_path(path);
6820
0202e83f
DS
6821 ino = found_key.offset;
6822
b8aa330d
FM
6823 search_key.objectid = found_key.offset;
6824 search_key.type = BTRFS_INODE_ITEM_KEY;
6825 search_key.offset = 0;
0202e83f 6826 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
6827 if (IS_ERR(inode))
6828 return PTR_ERR(inode);
6829
ab12313a
FM
6830 if (BTRFS_I(inode)->generation >= trans->transid &&
6831 need_log_inode(trans, BTRFS_I(inode)))
90d04510 6832 ret = btrfs_log_inode(trans, BTRFS_I(inode),
48778179 6833 LOG_INODE_EXISTS, ctx);
e55cf7ca 6834 btrfs_add_delayed_iput(BTRFS_I(inode));
b8aa330d
FM
6835 if (ret)
6836 return ret;
6837
6838 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6839 break;
6840
6841 search_key.type = BTRFS_INODE_REF_KEY;
6842 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6843 if (ret < 0)
6844 return ret;
6845
6846 leaf = path->nodes[0];
6847 slot = path->slots[0];
6848 if (slot >= btrfs_header_nritems(leaf)) {
6849 ret = btrfs_next_leaf(root, path);
6850 if (ret < 0)
6851 return ret;
6852 else if (ret > 0)
6853 return -ENOENT;
6854 leaf = path->nodes[0];
6855 slot = path->slots[0];
6856 }
6857
6858 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6859 if (found_key.objectid != search_key.objectid ||
6860 found_key.type != BTRFS_INODE_REF_KEY)
6861 return -ENOENT;
6862 }
6863 return 0;
6864}
6865
6866static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6867 struct btrfs_inode *inode,
6868 struct dentry *parent,
6869 struct btrfs_log_ctx *ctx)
6870{
6871 struct btrfs_root *root = inode->root;
b8aa330d
FM
6872 struct dentry *old_parent = NULL;
6873 struct super_block *sb = inode->vfs_inode.i_sb;
6874 int ret = 0;
6875
6876 while (true) {
6877 if (!parent || d_really_is_negative(parent) ||
6878 sb != parent->d_sb)
6879 break;
6880
6881 inode = BTRFS_I(d_inode(parent));
6882 if (root != inode->root)
6883 break;
6884
ab12313a
FM
6885 if (inode->generation >= trans->transid &&
6886 need_log_inode(trans, inode)) {
90d04510 6887 ret = btrfs_log_inode(trans, inode,
48778179 6888 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
6889 if (ret)
6890 break;
6891 }
6892 if (IS_ROOT(parent))
6893 break;
6894
6895 parent = dget_parent(parent);
6896 dput(old_parent);
6897 old_parent = parent;
6898 }
6899 dput(old_parent);
6900
6901 return ret;
6902}
6903
6904static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6905 struct btrfs_inode *inode,
6906 struct dentry *parent,
6907 struct btrfs_log_ctx *ctx)
6908{
6909 struct btrfs_root *root = inode->root;
6910 const u64 ino = btrfs_ino(inode);
6911 struct btrfs_path *path;
6912 struct btrfs_key search_key;
6913 int ret;
6914
6915 /*
6916 * For a single hard link case, go through a fast path that does not
6917 * need to iterate the fs/subvolume tree.
6918 */
6919 if (inode->vfs_inode.i_nlink < 2)
6920 return log_new_ancestors_fast(trans, inode, parent, ctx);
6921
6922 path = btrfs_alloc_path();
6923 if (!path)
6924 return -ENOMEM;
6925
6926 search_key.objectid = ino;
6927 search_key.type = BTRFS_INODE_REF_KEY;
6928 search_key.offset = 0;
6929again:
6930 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6931 if (ret < 0)
6932 goto out;
6933 if (ret == 0)
6934 path->slots[0]++;
6935
6936 while (true) {
6937 struct extent_buffer *leaf = path->nodes[0];
6938 int slot = path->slots[0];
6939 struct btrfs_key found_key;
6940
6941 if (slot >= btrfs_header_nritems(leaf)) {
6942 ret = btrfs_next_leaf(root, path);
6943 if (ret < 0)
6944 goto out;
6945 else if (ret > 0)
6946 break;
6947 continue;
6948 }
6949
6950 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6951 if (found_key.objectid != ino ||
6952 found_key.type > BTRFS_INODE_EXTREF_KEY)
6953 break;
6954
6955 /*
6956 * Don't deal with extended references because they are rare
6957 * cases and too complex to deal with (we would need to keep
6958 * track of which subitem we are processing for each item in
6959 * this loop, etc). So just return some error to fallback to
6960 * a transaction commit.
6961 */
6962 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6963 ret = -EMLINK;
6964 goto out;
6965 }
6966
6967 /*
6968 * Logging ancestors needs to do more searches on the fs/subvol
6969 * tree, so it releases the path as needed to avoid deadlocks.
6970 * Keep track of the last inode ref key and resume from that key
6971 * after logging all new ancestors for the current hard link.
6972 */
6973 memcpy(&search_key, &found_key, sizeof(search_key));
6974
6975 ret = log_new_ancestors(trans, root, path, ctx);
6976 if (ret)
6977 goto out;
6978 btrfs_release_path(path);
6979 goto again;
6980 }
6981 ret = 0;
6982out:
6983 btrfs_free_path(path);
6984 return ret;
6985}
6986
e02119d5
CM
6987/*
6988 * helper function around btrfs_log_inode to make sure newly created
6989 * parent directories also end up in the log. A minimal inode and backref
6990 * only logging is done of any parent directories that are older than
6991 * the last committed transaction
6992 */
48a3b636 6993static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6994 struct btrfs_inode *inode,
49dae1bc 6995 struct dentry *parent,
41a1eada 6996 int inode_only,
8b050d35 6997 struct btrfs_log_ctx *ctx)
e02119d5 6998{
f882274b 6999 struct btrfs_root *root = inode->root;
0b246afa 7000 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 7001 int ret = 0;
2f2ff0ee 7002 bool log_dentries = false;
12fcfd22 7003
0b246afa 7004 if (btrfs_test_opt(fs_info, NOTREELOG)) {
f31f09f6 7005 ret = BTRFS_LOG_FORCE_COMMIT;
3a5e1404
SW
7006 goto end_no_trans;
7007 }
7008
f882274b 7009 if (btrfs_root_refs(&root->root_item) == 0) {
f31f09f6 7010 ret = BTRFS_LOG_FORCE_COMMIT;
76dda93c
YZ
7011 goto end_no_trans;
7012 }
7013
f2d72f42
FM
7014 /*
7015 * Skip already logged inodes or inodes corresponding to tmpfiles
7016 * (since logging them is pointless, a link count of 0 means they
7017 * will never be accessible).
7018 */
626e9f41
FM
7019 if ((btrfs_inode_in_log(inode, trans->transid) &&
7020 list_empty(&ctx->ordered_extents)) ||
f2d72f42 7021 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
7022 ret = BTRFS_NO_LOG_SYNC;
7023 goto end_no_trans;
7024 }
7025
8b050d35 7026 ret = start_log_trans(trans, root, ctx);
4a500fd1 7027 if (ret)
e87ac136 7028 goto end_no_trans;
e02119d5 7029
90d04510 7030 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
4a500fd1
YZ
7031 if (ret)
7032 goto end_trans;
12fcfd22 7033
af4176b4
CM
7034 /*
7035 * for regular files, if its inode is already on disk, we don't
7036 * have to worry about the parents at all. This is because
7037 * we can use the last_unlink_trans field to record renames
7038 * and other fun in this file.
7039 */
19df27a9 7040 if (S_ISREG(inode->vfs_inode.i_mode) &&
47d3db41
FM
7041 inode->generation < trans->transid &&
7042 inode->last_unlink_trans < trans->transid) {
4a500fd1
YZ
7043 ret = 0;
7044 goto end_trans;
7045 }
af4176b4 7046
289cffcb 7047 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
2f2ff0ee
FM
7048 log_dentries = true;
7049
18aa0922 7050 /*
01327610 7051 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
7052 * inodes are fully logged. This is to prevent leaving dangling
7053 * directory index entries in directories that were our parents but are
7054 * not anymore. Not doing this results in old parent directory being
7055 * impossible to delete after log replay (rmdir will always fail with
7056 * error -ENOTEMPTY).
7057 *
7058 * Example 1:
7059 *
7060 * mkdir testdir
7061 * touch testdir/foo
7062 * ln testdir/foo testdir/bar
7063 * sync
7064 * unlink testdir/bar
7065 * xfs_io -c fsync testdir/foo
7066 * <power failure>
7067 * mount fs, triggers log replay
7068 *
7069 * If we don't log the parent directory (testdir), after log replay the
7070 * directory still has an entry pointing to the file inode using the bar
7071 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7072 * the file inode has a link count of 1.
7073 *
7074 * Example 2:
7075 *
7076 * mkdir testdir
7077 * touch foo
7078 * ln foo testdir/foo2
7079 * ln foo testdir/foo3
7080 * sync
7081 * unlink testdir/foo3
7082 * xfs_io -c fsync foo
7083 * <power failure>
7084 * mount fs, triggers log replay
7085 *
7086 * Similar as the first example, after log replay the parent directory
7087 * testdir still has an entry pointing to the inode file with name foo3
7088 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7089 * and has a link count of 2.
7090 */
47d3db41 7091 if (inode->last_unlink_trans >= trans->transid) {
b8aa330d 7092 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
7093 if (ret)
7094 goto end_trans;
7095 }
7096
b8aa330d
FM
7097 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7098 if (ret)
41bd6067 7099 goto end_trans;
76dda93c 7100
2f2ff0ee 7101 if (log_dentries)
8786a6d7 7102 ret = log_new_dir_dentries(trans, inode, ctx);
2f2ff0ee
FM
7103 else
7104 ret = 0;
4a500fd1
YZ
7105end_trans:
7106 if (ret < 0) {
90787766 7107 btrfs_set_log_full_commit(trans);
f31f09f6 7108 ret = BTRFS_LOG_FORCE_COMMIT;
4a500fd1 7109 }
8b050d35
MX
7110
7111 if (ret)
7112 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
7113 btrfs_end_log_trans(root);
7114end_no_trans:
7115 return ret;
e02119d5
CM
7116}
7117
7118/*
7119 * it is not safe to log dentry if the chunk root has added new
7120 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7121 * If this returns 1, you must commit the transaction to safely get your
7122 * data on disk.
7123 */
7124int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 7125 struct dentry *dentry,
8b050d35 7126 struct btrfs_log_ctx *ctx)
e02119d5 7127{
6a912213
JB
7128 struct dentry *parent = dget_parent(dentry);
7129 int ret;
7130
f882274b 7131 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 7132 LOG_INODE_ALL, ctx);
6a912213
JB
7133 dput(parent);
7134
7135 return ret;
e02119d5
CM
7136}
7137
7138/*
7139 * should be called during mount to recover any replay any log trees
7140 * from the FS
7141 */
7142int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7143{
7144 int ret;
7145 struct btrfs_path *path;
7146 struct btrfs_trans_handle *trans;
7147 struct btrfs_key key;
7148 struct btrfs_key found_key;
e02119d5
CM
7149 struct btrfs_root *log;
7150 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7151 struct walk_control wc = {
7152 .process_func = process_one_buffer,
430a6626 7153 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
7154 };
7155
e02119d5 7156 path = btrfs_alloc_path();
db5b493a
TI
7157 if (!path)
7158 return -ENOMEM;
7159
afcdd129 7160 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 7161
4a500fd1 7162 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
7163 if (IS_ERR(trans)) {
7164 ret = PTR_ERR(trans);
7165 goto error;
7166 }
e02119d5
CM
7167
7168 wc.trans = trans;
7169 wc.pin = 1;
7170
db5b493a 7171 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 7172 if (ret) {
ba51e2a1 7173 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7174 goto error;
7175 }
e02119d5
CM
7176
7177again:
7178 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7179 key.offset = (u64)-1;
962a298f 7180 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 7181
d397712b 7182 while (1) {
e02119d5 7183 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
7184
7185 if (ret < 0) {
ba51e2a1 7186 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7187 goto error;
7188 }
e02119d5
CM
7189 if (ret > 0) {
7190 if (path->slots[0] == 0)
7191 break;
7192 path->slots[0]--;
7193 }
7194 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7195 path->slots[0]);
b3b4aa74 7196 btrfs_release_path(path);
e02119d5
CM
7197 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7198 break;
7199
62a2c73e 7200 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
7201 if (IS_ERR(log)) {
7202 ret = PTR_ERR(log);
ba51e2a1 7203 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7204 goto error;
7205 }
e02119d5 7206
56e9357a
DS
7207 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7208 true);
79787eaa
JM
7209 if (IS_ERR(wc.replay_dest)) {
7210 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
7211
7212 /*
7213 * We didn't find the subvol, likely because it was
7214 * deleted. This is ok, simply skip this log and go to
7215 * the next one.
7216 *
7217 * We need to exclude the root because we can't have
7218 * other log replays overwriting this log as we'll read
7219 * it back in a few more times. This will keep our
7220 * block from being modified, and we'll just bail for
7221 * each subsequent pass.
7222 */
7223 if (ret == -ENOENT)
9fce5704 7224 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
7225 log->node->start,
7226 log->node->len);
00246528 7227 btrfs_put_root(log);
9bc574de
JB
7228
7229 if (!ret)
7230 goto next;
ba51e2a1 7231 btrfs_abort_transaction(trans, ret);
79787eaa
JM
7232 goto error;
7233 }
e02119d5 7234
07d400a6 7235 wc.replay_dest->log_root = log;
2002ae11
JB
7236 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7237 if (ret)
7238 /* The loop needs to continue due to the root refs */
ba51e2a1 7239 btrfs_abort_transaction(trans, ret);
2002ae11
JB
7240 else
7241 ret = walk_log_tree(trans, log, &wc);
e02119d5 7242
b50c6e25 7243 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
7244 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7245 path);
ba51e2a1
JB
7246 if (ret)
7247 btrfs_abort_transaction(trans, ret);
e02119d5
CM
7248 }
7249
900c9981
LB
7250 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7251 struct btrfs_root *root = wc.replay_dest;
7252
7253 btrfs_release_path(path);
7254
7255 /*
7256 * We have just replayed everything, and the highest
7257 * objectid of fs roots probably has changed in case
7258 * some inode_item's got replayed.
7259 *
7260 * root->objectid_mutex is not acquired as log replay
7261 * could only happen during mount.
7262 */
453e4873 7263 ret = btrfs_init_root_free_objectid(root);
ba51e2a1
JB
7264 if (ret)
7265 btrfs_abort_transaction(trans, ret);
900c9981
LB
7266 }
7267
07d400a6 7268 wc.replay_dest->log_root = NULL;
00246528 7269 btrfs_put_root(wc.replay_dest);
00246528 7270 btrfs_put_root(log);
e02119d5 7271
b50c6e25
JB
7272 if (ret)
7273 goto error;
9bc574de 7274next:
e02119d5
CM
7275 if (found_key.offset == 0)
7276 break;
9bc574de 7277 key.offset = found_key.offset - 1;
e02119d5 7278 }
b3b4aa74 7279 btrfs_release_path(path);
e02119d5
CM
7280
7281 /* step one is to pin it all, step two is to replay just inodes */
7282 if (wc.pin) {
7283 wc.pin = 0;
7284 wc.process_func = replay_one_buffer;
7285 wc.stage = LOG_WALK_REPLAY_INODES;
7286 goto again;
7287 }
7288 /* step three is to replay everything */
7289 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7290 wc.stage++;
7291 goto again;
7292 }
7293
7294 btrfs_free_path(path);
7295
abefa55a 7296 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 7297 ret = btrfs_commit_transaction(trans);
abefa55a
JB
7298 if (ret)
7299 return ret;
7300
e02119d5 7301 log_root_tree->log_root = NULL;
afcdd129 7302 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 7303 btrfs_put_root(log_root_tree);
79787eaa 7304
abefa55a 7305 return 0;
79787eaa 7306error:
b50c6e25 7307 if (wc.trans)
3a45bb20 7308 btrfs_end_transaction(wc.trans);
1aeb6b56 7309 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
79787eaa
JM
7310 btrfs_free_path(path);
7311 return ret;
e02119d5 7312}
12fcfd22
CM
7313
7314/*
7315 * there are some corner cases where we want to force a full
7316 * commit instead of allowing a directory to be logged.
7317 *
7318 * They revolve around files there were unlinked from the directory, and
7319 * this function updates the parent directory so that a full commit is
7320 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
7321 *
7322 * Must be called before the unlink operations (updates to the subvolume tree,
7323 * inodes, etc) are done.
12fcfd22
CM
7324 */
7325void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 7326 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
7327 int for_rename)
7328{
af4176b4
CM
7329 /*
7330 * when we're logging a file, if it hasn't been renamed
7331 * or unlinked, and its inode is fully committed on disk,
7332 * we don't have to worry about walking up the directory chain
7333 * to log its parents.
7334 *
7335 * So, we use the last_unlink_trans field to put this transid
7336 * into the file. When the file is logged we check it and
7337 * don't log the parents if the file is fully on disk.
7338 */
4176bdbf
NB
7339 mutex_lock(&inode->log_mutex);
7340 inode->last_unlink_trans = trans->transid;
7341 mutex_unlock(&inode->log_mutex);
af4176b4 7342
12fcfd22
CM
7343 /*
7344 * if this directory was already logged any new
7345 * names for this file/dir will get recorded
7346 */
4176bdbf 7347 if (dir->logged_trans == trans->transid)
12fcfd22
CM
7348 return;
7349
7350 /*
7351 * if the inode we're about to unlink was logged,
7352 * the log will be properly updated for any new names
7353 */
4176bdbf 7354 if (inode->logged_trans == trans->transid)
12fcfd22
CM
7355 return;
7356
7357 /*
7358 * when renaming files across directories, if the directory
7359 * there we're unlinking from gets fsync'd later on, there's
7360 * no way to find the destination directory later and fsync it
7361 * properly. So, we have to be conservative and force commits
7362 * so the new name gets discovered.
7363 */
7364 if (for_rename)
7365 goto record;
7366
7367 /* we can safely do the unlink without any special recording */
7368 return;
7369
7370record:
4176bdbf
NB
7371 mutex_lock(&dir->log_mutex);
7372 dir->last_unlink_trans = trans->transid;
7373 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
7374}
7375
7376/*
7377 * Make sure that if someone attempts to fsync the parent directory of a deleted
7378 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7379 * that after replaying the log tree of the parent directory's root we will not
7380 * see the snapshot anymore and at log replay time we will not see any log tree
7381 * corresponding to the deleted snapshot's root, which could lead to replaying
7382 * it after replaying the log tree of the parent directory (which would replay
7383 * the snapshot delete operation).
2be63d5c
FM
7384 *
7385 * Must be called before the actual snapshot destroy operation (updates to the
7386 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
7387 */
7388void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 7389 struct btrfs_inode *dir)
1ec9a1ae 7390{
43663557
NB
7391 mutex_lock(&dir->log_mutex);
7392 dir->last_unlink_trans = trans->transid;
7393 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
7394}
7395
43dd529a 7396/*
d5f5bd54
FM
7397 * Update the log after adding a new name for an inode.
7398 *
7399 * @trans: Transaction handle.
7400 * @old_dentry: The dentry associated with the old name and the old
7401 * parent directory.
7402 * @old_dir: The inode of the previous parent directory for the case
7403 * of a rename. For a link operation, it must be NULL.
88d2beec
FM
7404 * @old_dir_index: The index number associated with the old name, meaningful
7405 * only for rename operations (when @old_dir is not NULL).
7406 * Ignored for link operations.
d5f5bd54
FM
7407 * @parent: The dentry associated with the directory under which the
7408 * new name is located.
7409 *
7410 * Call this after adding a new name for an inode, as a result of a link or
7411 * rename operation, and it will properly update the log to reflect the new name.
12fcfd22 7412 */
75b463d2 7413void btrfs_log_new_name(struct btrfs_trans_handle *trans,
d5f5bd54 7414 struct dentry *old_dentry, struct btrfs_inode *old_dir,
88d2beec 7415 u64 old_dir_index, struct dentry *parent)
12fcfd22 7416{
d5f5bd54 7417 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
259c4b96 7418 struct btrfs_root *root = inode->root;
75b463d2 7419 struct btrfs_log_ctx ctx;
259c4b96 7420 bool log_pinned = false;
0f8ce498 7421 int ret;
12fcfd22 7422
af4176b4
CM
7423 /*
7424 * this will force the logging code to walk the dentry chain
7425 * up for the file
7426 */
9a6509c4 7427 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 7428 inode->last_unlink_trans = trans->transid;
af4176b4 7429
12fcfd22
CM
7430 /*
7431 * if this inode hasn't been logged and directory we're renaming it
7432 * from hasn't been logged, we don't need to log it
7433 */
0f8ce498
FM
7434 ret = inode_logged(trans, inode, NULL);
7435 if (ret < 0) {
7436 goto out;
7437 } else if (ret == 0) {
7438 if (!old_dir)
7439 return;
7440 /*
7441 * If the inode was not logged and we are doing a rename (old_dir is not
7442 * NULL), check if old_dir was logged - if it was not we can return and
7443 * do nothing.
7444 */
7445 ret = inode_logged(trans, old_dir, NULL);
7446 if (ret < 0)
7447 goto out;
7448 else if (ret == 0)
7449 return;
7450 }
7451 ret = 0;
12fcfd22 7452
54a40fc3
FM
7453 /*
7454 * If we are doing a rename (old_dir is not NULL) from a directory that
88d2beec
FM
7455 * was previously logged, make sure that on log replay we get the old
7456 * dir entry deleted. This is needed because we will also log the new
7457 * name of the renamed inode, so we need to make sure that after log
7458 * replay we don't end up with both the new and old dir entries existing.
54a40fc3 7459 */
88d2beec
FM
7460 if (old_dir && old_dir->logged_trans == trans->transid) {
7461 struct btrfs_root *log = old_dir->root->log_root;
7462 struct btrfs_path *path;
ab3c5c18 7463 struct fscrypt_name fname;
88d2beec
FM
7464
7465 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7466
ab3c5c18
STD
7467 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7468 &old_dentry->d_name, 0, &fname);
7469 if (ret)
7470 goto out;
259c4b96
FM
7471 /*
7472 * We have two inodes to update in the log, the old directory and
7473 * the inode that got renamed, so we must pin the log to prevent
7474 * anyone from syncing the log until we have updated both inodes
7475 * in the log.
7476 */
723df2bc
FM
7477 ret = join_running_log_trans(root);
7478 /*
7479 * At least one of the inodes was logged before, so this should
7480 * not fail, but if it does, it's not serious, just bail out and
7481 * mark the log for a full commit.
7482 */
fee4c199
FM
7483 if (WARN_ON_ONCE(ret < 0)) {
7484 fscrypt_free_filename(&fname);
723df2bc 7485 goto out;
fee4c199
FM
7486 }
7487
259c4b96 7488 log_pinned = true;
259c4b96 7489
88d2beec
FM
7490 path = btrfs_alloc_path();
7491 if (!path) {
259c4b96 7492 ret = -ENOMEM;
ab3c5c18 7493 fscrypt_free_filename(&fname);
259c4b96 7494 goto out;
88d2beec
FM
7495 }
7496
7497 /*
7498 * Other concurrent task might be logging the old directory,
7499 * as it can be triggered when logging other inode that had or
750ee454
FM
7500 * still has a dentry in the old directory. We lock the old
7501 * directory's log_mutex to ensure the deletion of the old
7502 * name is persisted, because during directory logging we
7503 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7504 * the old name's dir index item is in the delayed items, so
7505 * it could be missed by an in progress directory logging.
88d2beec
FM
7506 */
7507 mutex_lock(&old_dir->log_mutex);
7508 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
6db75318 7509 &fname.disk_name, old_dir_index);
88d2beec
FM
7510 if (ret > 0) {
7511 /*
7512 * The dentry does not exist in the log, so record its
7513 * deletion.
7514 */
7515 btrfs_release_path(path);
7516 ret = insert_dir_log_key(trans, log, path,
7517 btrfs_ino(old_dir),
7518 old_dir_index, old_dir_index);
7519 }
7520 mutex_unlock(&old_dir->log_mutex);
7521
7522 btrfs_free_path(path);
ab3c5c18 7523 fscrypt_free_filename(&fname);
259c4b96
FM
7524 if (ret < 0)
7525 goto out;
88d2beec 7526 }
54a40fc3 7527
75b463d2
FM
7528 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7529 ctx.logging_new_name = true;
7530 /*
7531 * We don't care about the return value. If we fail to log the new name
7532 * then we know the next attempt to sync the log will fallback to a full
7533 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7534 * we don't need to worry about getting a log committed that has an
7535 * inconsistent state after a rename operation.
7536 */
48778179 7537 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
e09d94c9 7538 ASSERT(list_empty(&ctx.conflict_inodes));
259c4b96 7539out:
0f8ce498
FM
7540 /*
7541 * If an error happened mark the log for a full commit because it's not
7542 * consistent and up to date or we couldn't find out if one of the
7543 * inodes was logged before in this transaction. Do it before unpinning
7544 * the log, to avoid any races with someone else trying to commit it.
7545 */
7546 if (ret < 0)
7547 btrfs_set_log_full_commit(trans);
7548 if (log_pinned)
259c4b96 7549 btrfs_end_log_trans(root);
12fcfd22
CM
7550}
7551
This page took 2.358678 seconds and 4 git commands to generate.