]> Git Repo - linux.git/blame - fs/btrfs/tree-log.c
Btrfs: fix log replay failure after linking special file and fsync
[linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
ebb8765b 29#include "compression.h"
df2c95f3 30#include "qgroup.h"
900c9981 31#include "inode-map.h"
e02119d5
CM
32
33/* magic values for the inode_only field in btrfs_log_inode:
34 *
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 * during log replay
38 */
39#define LOG_INODE_ALL 0
40#define LOG_INODE_EXISTS 1
781feef7 41#define LOG_OTHER_INODE 2
e02119d5 42
12fcfd22
CM
43/*
44 * directory trouble cases
45 *
46 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
47 * log, we must force a full commit before doing an fsync of the directory
48 * where the unlink was done.
49 * ---> record transid of last unlink/rename per directory
50 *
51 * mkdir foo/some_dir
52 * normal commit
53 * rename foo/some_dir foo2/some_dir
54 * mkdir foo/some_dir
55 * fsync foo/some_dir/some_file
56 *
57 * The fsync above will unlink the original some_dir without recording
58 * it in its new location (foo2). After a crash, some_dir will be gone
59 * unless the fsync of some_file forces a full commit
60 *
61 * 2) we must log any new names for any file or dir that is in the fsync
62 * log. ---> check inode while renaming/linking.
63 *
64 * 2a) we must log any new names for any file or dir during rename
65 * when the directory they are being removed from was logged.
66 * ---> check inode and old parent dir during rename
67 *
68 * 2a is actually the more important variant. With the extra logging
69 * a crash might unlink the old name without recreating the new one
70 *
71 * 3) after a crash, we must go through any directories with a link count
72 * of zero and redo the rm -rf
73 *
74 * mkdir f1/foo
75 * normal commit
76 * rm -rf f1/foo
77 * fsync(f1)
78 *
79 * The directory f1 was fully removed from the FS, but fsync was never
80 * called on f1, only its parent dir. After a crash the rm -rf must
81 * be replayed. This must be able to recurse down the entire
82 * directory tree. The inode link count fixup code takes care of the
83 * ugly details.
84 */
85
e02119d5
CM
86/*
87 * stages for the tree walking. The first
88 * stage (0) is to only pin down the blocks we find
89 * the second stage (1) is to make sure that all the inodes
90 * we find in the log are created in the subvolume.
91 *
92 * The last stage is to deal with directories and links and extents
93 * and all the other fun semantics
94 */
95#define LOG_WALK_PIN_ONLY 0
96#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
97#define LOG_WALK_REPLAY_DIR_INDEX 2
98#define LOG_WALK_REPLAY_ALL 3
e02119d5 99
12fcfd22 100static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 101 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
102 int inode_only,
103 const loff_t start,
8407f553
FM
104 const loff_t end,
105 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
106static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root,
108 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
109static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
110 struct btrfs_root *root,
111 struct btrfs_root *log,
112 struct btrfs_path *path,
113 u64 dirid, int del_all);
e02119d5
CM
114
115/*
116 * tree logging is a special write ahead log used to make sure that
117 * fsyncs and O_SYNCs can happen without doing full tree commits.
118 *
119 * Full tree commits are expensive because they require commonly
120 * modified blocks to be recowed, creating many dirty pages in the
121 * extent tree an 4x-6x higher write load than ext3.
122 *
123 * Instead of doing a tree commit on every fsync, we use the
124 * key ranges and transaction ids to find items for a given file or directory
125 * that have changed in this transaction. Those items are copied into
126 * a special tree (one per subvolume root), that tree is written to disk
127 * and then the fsync is considered complete.
128 *
129 * After a crash, items are copied out of the log-tree back into the
130 * subvolume tree. Any file data extents found are recorded in the extent
131 * allocation tree, and the log-tree freed.
132 *
133 * The log tree is read three times, once to pin down all the extents it is
134 * using in ram and once, once to create all the inodes logged in the tree
135 * and once to do all the other items.
136 */
137
e02119d5
CM
138/*
139 * start a sub transaction and setup the log tree
140 * this increments the log tree writer count to make the people
141 * syncing the tree wait for us to finish
142 */
143static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
144 struct btrfs_root *root,
145 struct btrfs_log_ctx *ctx)
e02119d5 146{
0b246afa 147 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 148 int ret = 0;
7237f183
YZ
149
150 mutex_lock(&root->log_mutex);
34eb2a52 151
7237f183 152 if (root->log_root) {
0b246afa 153 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
154 ret = -EAGAIN;
155 goto out;
156 }
34eb2a52 157
ff782e0a 158 if (!root->log_start_pid) {
27cdeb70 159 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 160 root->log_start_pid = current->pid;
ff782e0a 161 } else if (root->log_start_pid != current->pid) {
27cdeb70 162 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 163 }
34eb2a52 164 } else {
0b246afa
JM
165 mutex_lock(&fs_info->tree_log_mutex);
166 if (!fs_info->log_root_tree)
167 ret = btrfs_init_log_root_tree(trans, fs_info);
168 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
169 if (ret)
170 goto out;
ff782e0a 171
e02119d5 172 ret = btrfs_add_log_tree(trans, root);
4a500fd1 173 if (ret)
e87ac136 174 goto out;
34eb2a52
Z
175
176 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
177 root->log_start_pid = current->pid;
e02119d5 178 }
34eb2a52 179
2ecb7923 180 atomic_inc(&root->log_batch);
7237f183 181 atomic_inc(&root->log_writers);
8b050d35 182 if (ctx) {
34eb2a52 183 int index = root->log_transid % 2;
8b050d35 184 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 185 ctx->log_transid = root->log_transid;
8b050d35 186 }
34eb2a52 187
e87ac136 188out:
7237f183 189 mutex_unlock(&root->log_mutex);
e87ac136 190 return ret;
e02119d5
CM
191}
192
193/*
194 * returns 0 if there was a log transaction running and we were able
195 * to join, or returns -ENOENT if there were not transactions
196 * in progress
197 */
198static int join_running_log_trans(struct btrfs_root *root)
199{
200 int ret = -ENOENT;
201
202 smp_mb();
203 if (!root->log_root)
204 return -ENOENT;
205
7237f183 206 mutex_lock(&root->log_mutex);
e02119d5
CM
207 if (root->log_root) {
208 ret = 0;
7237f183 209 atomic_inc(&root->log_writers);
e02119d5 210 }
7237f183 211 mutex_unlock(&root->log_mutex);
e02119d5
CM
212 return ret;
213}
214
12fcfd22
CM
215/*
216 * This either makes the current running log transaction wait
217 * until you call btrfs_end_log_trans() or it makes any future
218 * log transactions wait until you call btrfs_end_log_trans()
219 */
220int btrfs_pin_log_trans(struct btrfs_root *root)
221{
222 int ret = -ENOENT;
223
224 mutex_lock(&root->log_mutex);
225 atomic_inc(&root->log_writers);
226 mutex_unlock(&root->log_mutex);
227 return ret;
228}
229
e02119d5
CM
230/*
231 * indicate we're done making changes to the log tree
232 * and wake up anyone waiting to do a sync
233 */
143bede5 234void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 235{
7237f183 236 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
237 /*
238 * Implicit memory barrier after atomic_dec_and_test
239 */
7237f183
YZ
240 if (waitqueue_active(&root->log_writer_wait))
241 wake_up(&root->log_writer_wait);
242 }
e02119d5
CM
243}
244
245
246/*
247 * the walk control struct is used to pass state down the chain when
248 * processing the log tree. The stage field tells us which part
249 * of the log tree processing we are currently doing. The others
250 * are state fields used for that specific part
251 */
252struct walk_control {
253 /* should we free the extent on disk when done? This is used
254 * at transaction commit time while freeing a log tree
255 */
256 int free;
257
258 /* should we write out the extent buffer? This is used
259 * while flushing the log tree to disk during a sync
260 */
261 int write;
262
263 /* should we wait for the extent buffer io to finish? Also used
264 * while flushing the log tree to disk for a sync
265 */
266 int wait;
267
268 /* pin only walk, we record which extents on disk belong to the
269 * log trees
270 */
271 int pin;
272
273 /* what stage of the replay code we're currently in */
274 int stage;
275
276 /* the root we are currently replaying */
277 struct btrfs_root *replay_dest;
278
279 /* the trans handle for the current replay */
280 struct btrfs_trans_handle *trans;
281
282 /* the function that gets used to process blocks we find in the
283 * tree. Note the extent_buffer might not be up to date when it is
284 * passed in, and it must be checked or read if you need the data
285 * inside it
286 */
287 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
288 struct walk_control *wc, u64 gen);
289};
290
291/*
292 * process_func used to pin down extents, write them or wait on them
293 */
294static int process_one_buffer(struct btrfs_root *log,
295 struct extent_buffer *eb,
296 struct walk_control *wc, u64 gen)
297{
0b246afa 298 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
299 int ret = 0;
300
8c2a1a30
JB
301 /*
302 * If this fs is mixed then we need to be able to process the leaves to
303 * pin down any logged extents, so we have to read the block.
304 */
0b246afa 305 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8c2a1a30
JB
306 ret = btrfs_read_buffer(eb, gen);
307 if (ret)
308 return ret;
309 }
310
04018de5 311 if (wc->pin)
2ff7e61e
JM
312 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
313 eb->len);
e02119d5 314
b50c6e25 315 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 316 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 317 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
318 if (wc->write)
319 btrfs_write_tree_block(eb);
320 if (wc->wait)
321 btrfs_wait_tree_block_writeback(eb);
322 }
b50c6e25 323 return ret;
e02119d5
CM
324}
325
326/*
327 * Item overwrite used by replay and tree logging. eb, slot and key all refer
328 * to the src data we are copying out.
329 *
330 * root is the tree we are copying into, and path is a scratch
331 * path for use in this function (it should be released on entry and
332 * will be released on exit).
333 *
334 * If the key is already in the destination tree the existing item is
335 * overwritten. If the existing item isn't big enough, it is extended.
336 * If it is too large, it is truncated.
337 *
338 * If the key isn't in the destination yet, a new item is inserted.
339 */
340static noinline int overwrite_item(struct btrfs_trans_handle *trans,
341 struct btrfs_root *root,
342 struct btrfs_path *path,
343 struct extent_buffer *eb, int slot,
344 struct btrfs_key *key)
345{
2ff7e61e 346 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
2ff7e61e 467 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 468 else if (found_size < item_size)
2ff7e61e 469 btrfs_extend_item(fs_info, path,
143bede5 470 item_size - found_size);
e02119d5 471 } else if (ret) {
4a500fd1 472 return ret;
e02119d5
CM
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
1a4bcf47
FM
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 495 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 496
2f2ff0ee
FM
497 /*
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
503 */
1a4bcf47 504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
1a4bcf47 507 struct btrfs_map_token token;
1a4bcf47
FM
508
509 btrfs_init_map_token(&token);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
512 }
e02119d5 513 goto no_copy;
1a4bcf47 514 }
e02119d5
CM
515
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
522 }
523 }
524
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
527
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 }
533
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
541 }
542 }
543no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 545 btrfs_release_path(path);
e02119d5
CM
546 return 0;
547}
548
549/*
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
552 */
553static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
555{
5d4f98a2 556 struct btrfs_key key;
e02119d5 557 struct inode *inode;
e02119d5 558
5d4f98a2
YZ
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
73f73415 562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
563 if (IS_ERR(inode)) {
564 inode = NULL;
565 } else if (is_bad_inode(inode)) {
e02119d5
CM
566 iput(inode);
567 inode = NULL;
568 }
569 return inode;
570}
571
572/* replays a single extent in 'eb' at 'slot' with 'key' into the
573 * subvolume 'root'. path is released on entry and should be released
574 * on exit.
575 *
576 * extents in the log tree have not been allocated out of the extent
577 * tree yet. So, this completes the allocation, taking a reference
578 * as required if the extent already exists or creating a new extent
579 * if it isn't in the extent allocation tree yet.
580 *
581 * The extent is inserted into the file, dropping any existing extents
582 * from the file that overlap the new one.
583 */
584static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
585 struct btrfs_root *root,
586 struct btrfs_path *path,
587 struct extent_buffer *eb, int slot,
588 struct btrfs_key *key)
589{
0b246afa 590 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 591 int found_type;
e02119d5 592 u64 extent_end;
e02119d5 593 u64 start = key->offset;
4bc4bee4 594 u64 nbytes = 0;
e02119d5
CM
595 struct btrfs_file_extent_item *item;
596 struct inode *inode = NULL;
597 unsigned long size;
598 int ret = 0;
599
600 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
601 found_type = btrfs_file_extent_type(eb, item);
602
d899e052 603 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
604 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
605 nbytes = btrfs_file_extent_num_bytes(eb, item);
606 extent_end = start + nbytes;
607
608 /*
609 * We don't add to the inodes nbytes if we are prealloc or a
610 * hole.
611 */
612 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
613 nbytes = 0;
614 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 615 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 616 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 617 extent_end = ALIGN(start + size,
0b246afa 618 fs_info->sectorsize);
e02119d5
CM
619 } else {
620 ret = 0;
621 goto out;
622 }
623
624 inode = read_one_inode(root, key->objectid);
625 if (!inode) {
626 ret = -EIO;
627 goto out;
628 }
629
630 /*
631 * first check to see if we already have this extent in the
632 * file. This must be done before the btrfs_drop_extents run
633 * so we don't try to drop this extent.
634 */
f85b7379
DS
635 ret = btrfs_lookup_file_extent(trans, root, path,
636 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 637
d899e052
YZ
638 if (ret == 0 &&
639 (found_type == BTRFS_FILE_EXTENT_REG ||
640 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
641 struct btrfs_file_extent_item cmp1;
642 struct btrfs_file_extent_item cmp2;
643 struct btrfs_file_extent_item *existing;
644 struct extent_buffer *leaf;
645
646 leaf = path->nodes[0];
647 existing = btrfs_item_ptr(leaf, path->slots[0],
648 struct btrfs_file_extent_item);
649
650 read_extent_buffer(eb, &cmp1, (unsigned long)item,
651 sizeof(cmp1));
652 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
653 sizeof(cmp2));
654
655 /*
656 * we already have a pointer to this exact extent,
657 * we don't have to do anything
658 */
659 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 660 btrfs_release_path(path);
e02119d5
CM
661 goto out;
662 }
663 }
b3b4aa74 664 btrfs_release_path(path);
e02119d5
CM
665
666 /* drop any overlapping extents */
2671485d 667 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
668 if (ret)
669 goto out;
e02119d5 670
07d400a6
YZ
671 if (found_type == BTRFS_FILE_EXTENT_REG ||
672 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 673 u64 offset;
07d400a6
YZ
674 unsigned long dest_offset;
675 struct btrfs_key ins;
676
3168021c
FM
677 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
678 btrfs_fs_incompat(fs_info, NO_HOLES))
679 goto update_inode;
680
07d400a6
YZ
681 ret = btrfs_insert_empty_item(trans, root, path, key,
682 sizeof(*item));
3650860b
JB
683 if (ret)
684 goto out;
07d400a6
YZ
685 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
686 path->slots[0]);
687 copy_extent_buffer(path->nodes[0], eb, dest_offset,
688 (unsigned long)item, sizeof(*item));
689
690 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
691 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
692 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 693 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 694
df2c95f3
QW
695 /*
696 * Manually record dirty extent, as here we did a shallow
697 * file extent item copy and skip normal backref update,
698 * but modifying extent tree all by ourselves.
699 * So need to manually record dirty extent for qgroup,
700 * as the owner of the file extent changed from log tree
701 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
702 */
0b246afa 703 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
704 btrfs_file_extent_disk_bytenr(eb, item),
705 btrfs_file_extent_disk_num_bytes(eb, item),
706 GFP_NOFS);
707 if (ret < 0)
708 goto out;
709
07d400a6
YZ
710 if (ins.objectid > 0) {
711 u64 csum_start;
712 u64 csum_end;
713 LIST_HEAD(ordered_sums);
714 /*
715 * is this extent already allocated in the extent
716 * allocation tree? If so, just add a reference
717 */
2ff7e61e 718 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
719 ins.offset);
720 if (ret == 0) {
84f7d8e6 721 ret = btrfs_inc_extent_ref(trans, root,
07d400a6 722 ins.objectid, ins.offset,
5d4f98a2 723 0, root->root_key.objectid,
b06c4bf5 724 key->objectid, offset);
b50c6e25
JB
725 if (ret)
726 goto out;
07d400a6
YZ
727 } else {
728 /*
729 * insert the extent pointer in the extent
730 * allocation tree
731 */
5d4f98a2 732 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
733 fs_info,
734 root->root_key.objectid,
5d4f98a2 735 key->objectid, offset, &ins);
b50c6e25
JB
736 if (ret)
737 goto out;
07d400a6 738 }
b3b4aa74 739 btrfs_release_path(path);
07d400a6
YZ
740
741 if (btrfs_file_extent_compression(eb, item)) {
742 csum_start = ins.objectid;
743 csum_end = csum_start + ins.offset;
744 } else {
745 csum_start = ins.objectid +
746 btrfs_file_extent_offset(eb, item);
747 csum_end = csum_start +
748 btrfs_file_extent_num_bytes(eb, item);
749 }
750
751 ret = btrfs_lookup_csums_range(root->log_root,
752 csum_start, csum_end - 1,
a2de733c 753 &ordered_sums, 0);
3650860b
JB
754 if (ret)
755 goto out;
b84b8390
FM
756 /*
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
768 *
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
772 *
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
776 *
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
780 * of the extent:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 *
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
786 *
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 *
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
794 *
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 *
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
804 */
07d400a6
YZ
805 while (!list_empty(&ordered_sums)) {
806 struct btrfs_ordered_sum *sums;
807 sums = list_entry(ordered_sums.next,
808 struct btrfs_ordered_sum,
809 list);
b84b8390 810 if (!ret)
0b246afa 811 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
812 sums->bytenr,
813 sums->len);
3650860b
JB
814 if (!ret)
815 ret = btrfs_csum_file_blocks(trans,
0b246afa 816 fs_info->csum_root, sums);
07d400a6
YZ
817 list_del(&sums->list);
818 kfree(sums);
819 }
3650860b
JB
820 if (ret)
821 goto out;
07d400a6 822 } else {
b3b4aa74 823 btrfs_release_path(path);
07d400a6
YZ
824 }
825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826 /* inline extents are easy, we just overwrite them */
827 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
828 if (ret)
829 goto out;
07d400a6 830 }
e02119d5 831
4bc4bee4 832 inode_add_bytes(inode, nbytes);
3168021c 833update_inode:
b9959295 834 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
835out:
836 if (inode)
837 iput(inode);
838 return ret;
839}
840
841/*
842 * when cleaning up conflicts between the directory names in the
843 * subvolume, directory names in the log and directory names in the
844 * inode back references, we may have to unlink inodes from directories.
845 *
846 * This is a helper function to do the unlink of a specific directory
847 * item
848 */
849static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850 struct btrfs_root *root,
851 struct btrfs_path *path,
207e7d92 852 struct btrfs_inode *dir,
e02119d5
CM
853 struct btrfs_dir_item *di)
854{
2ff7e61e 855 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
856 struct inode *inode;
857 char *name;
858 int name_len;
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
861 int ret;
862
863 leaf = path->nodes[0];
864
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 868 if (!name)
869 return -ENOMEM;
870
e02119d5 871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 872 btrfs_release_path(path);
e02119d5
CM
873
874 inode = read_one_inode(root, location.objectid);
c00e9493 875 if (!inode) {
3650860b
JB
876 ret = -EIO;
877 goto out;
c00e9493 878 }
e02119d5 879
ec051c0f 880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
881 if (ret)
882 goto out;
12fcfd22 883
207e7d92
NB
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 name_len);
3650860b
JB
886 if (ret)
887 goto out;
ada9af21 888 else
2ff7e61e 889 ret = btrfs_run_delayed_items(trans, fs_info);
3650860b 890out:
e02119d5 891 kfree(name);
e02119d5
CM
892 iput(inode);
893 return ret;
894}
895
896/*
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
900 */
901static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
905{
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
908 int match = 0;
909
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
915 goto out;
916 } else
917 goto out;
b3b4aa74 918 btrfs_release_path(path);
e02119d5
CM
919
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
924 goto out;
925 } else
926 goto out;
927 match = 1;
928out:
b3b4aa74 929 btrfs_release_path(path);
e02119d5
CM
930 return match;
931}
932
933/*
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
937 *
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
942 */
943static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
f186373f 945 u64 ref_objectid,
df8d116f 946 const char *name, int namelen)
e02119d5
CM
947{
948 struct btrfs_path *path;
949 struct btrfs_inode_ref *ref;
950 unsigned long ptr;
951 unsigned long ptr_end;
952 unsigned long name_ptr;
953 int found_name_len;
954 int item_size;
955 int ret;
956 int match = 0;
957
958 path = btrfs_alloc_path();
2a29edc6 959 if (!path)
960 return -ENOMEM;
961
e02119d5
CM
962 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 if (ret != 0)
964 goto out;
965
e02119d5 966 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
967
968 if (key->type == BTRFS_INODE_EXTREF_KEY) {
969 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
970 name, namelen, NULL))
971 match = 1;
972
973 goto out;
974 }
975
976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
977 ptr_end = ptr + item_size;
978 while (ptr < ptr_end) {
979 ref = (struct btrfs_inode_ref *)ptr;
980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
981 if (found_name_len == namelen) {
982 name_ptr = (unsigned long)(ref + 1);
983 ret = memcmp_extent_buffer(path->nodes[0], name,
984 name_ptr, namelen);
985 if (ret == 0) {
986 match = 1;
987 goto out;
988 }
989 }
990 ptr = (unsigned long)(ref + 1) + found_name_len;
991 }
992out:
993 btrfs_free_path(path);
994 return match;
995}
996
5a1d7843 997static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 998 struct btrfs_root *root,
e02119d5 999 struct btrfs_path *path,
5a1d7843 1000 struct btrfs_root *log_root,
94c91a1f
NB
1001 struct btrfs_inode *dir,
1002 struct btrfs_inode *inode,
f186373f
MF
1003 u64 inode_objectid, u64 parent_objectid,
1004 u64 ref_index, char *name, int namelen,
1005 int *search_done)
e02119d5 1006{
2ff7e61e 1007 struct btrfs_fs_info *fs_info = root->fs_info;
34f3e4f2 1008 int ret;
f186373f
MF
1009 char *victim_name;
1010 int victim_name_len;
1011 struct extent_buffer *leaf;
5a1d7843 1012 struct btrfs_dir_item *di;
f186373f
MF
1013 struct btrfs_key search_key;
1014 struct btrfs_inode_extref *extref;
c622ae60 1015
f186373f
MF
1016again:
1017 /* Search old style refs */
1018 search_key.objectid = inode_objectid;
1019 search_key.type = BTRFS_INODE_REF_KEY;
1020 search_key.offset = parent_objectid;
1021 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1022 if (ret == 0) {
e02119d5
CM
1023 struct btrfs_inode_ref *victim_ref;
1024 unsigned long ptr;
1025 unsigned long ptr_end;
f186373f
MF
1026
1027 leaf = path->nodes[0];
e02119d5
CM
1028
1029 /* are we trying to overwrite a back ref for the root directory
1030 * if so, just jump out, we're done
1031 */
f186373f 1032 if (search_key.objectid == search_key.offset)
5a1d7843 1033 return 1;
e02119d5
CM
1034
1035 /* check all the names in this back reference to see
1036 * if they are in the log. if so, we allow them to stay
1037 * otherwise they must be unlinked as a conflict
1038 */
1039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1041 while (ptr < ptr_end) {
e02119d5
CM
1042 victim_ref = (struct btrfs_inode_ref *)ptr;
1043 victim_name_len = btrfs_inode_ref_name_len(leaf,
1044 victim_ref);
1045 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1046 if (!victim_name)
1047 return -ENOMEM;
e02119d5
CM
1048
1049 read_extent_buffer(leaf, victim_name,
1050 (unsigned long)(victim_ref + 1),
1051 victim_name_len);
1052
f186373f
MF
1053 if (!backref_in_log(log_root, &search_key,
1054 parent_objectid,
1055 victim_name,
e02119d5 1056 victim_name_len)) {
94c91a1f 1057 inc_nlink(&inode->vfs_inode);
b3b4aa74 1058 btrfs_release_path(path);
12fcfd22 1059
94c91a1f 1060 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1061 victim_name, victim_name_len);
f186373f 1062 kfree(victim_name);
3650860b
JB
1063 if (ret)
1064 return ret;
2ff7e61e 1065 ret = btrfs_run_delayed_items(trans, fs_info);
ada9af21
FDBM
1066 if (ret)
1067 return ret;
f186373f
MF
1068 *search_done = 1;
1069 goto again;
e02119d5
CM
1070 }
1071 kfree(victim_name);
f186373f 1072
e02119d5
CM
1073 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074 }
e02119d5 1075
c622ae60 1076 /*
1077 * NOTE: we have searched root tree and checked the
bb7ab3b9 1078 * corresponding ref, it does not need to check again.
c622ae60 1079 */
5a1d7843 1080 *search_done = 1;
e02119d5 1081 }
b3b4aa74 1082 btrfs_release_path(path);
e02119d5 1083
f186373f
MF
1084 /* Same search but for extended refs */
1085 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086 inode_objectid, parent_objectid, 0,
1087 0);
1088 if (!IS_ERR_OR_NULL(extref)) {
1089 u32 item_size;
1090 u32 cur_offset = 0;
1091 unsigned long base;
1092 struct inode *victim_parent;
1093
1094 leaf = path->nodes[0];
1095
1096 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098
1099 while (cur_offset < item_size) {
dd9ef135 1100 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1101
1102 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103
1104 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105 goto next;
1106
1107 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1108 if (!victim_name)
1109 return -ENOMEM;
f186373f
MF
1110 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111 victim_name_len);
1112
1113 search_key.objectid = inode_objectid;
1114 search_key.type = BTRFS_INODE_EXTREF_KEY;
1115 search_key.offset = btrfs_extref_hash(parent_objectid,
1116 victim_name,
1117 victim_name_len);
1118 ret = 0;
1119 if (!backref_in_log(log_root, &search_key,
1120 parent_objectid, victim_name,
1121 victim_name_len)) {
1122 ret = -ENOENT;
1123 victim_parent = read_one_inode(root,
94c91a1f 1124 parent_objectid);
f186373f 1125 if (victim_parent) {
94c91a1f 1126 inc_nlink(&inode->vfs_inode);
f186373f
MF
1127 btrfs_release_path(path);
1128
1129 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1130 BTRFS_I(victim_parent),
94c91a1f 1131 inode,
4ec5934e
NB
1132 victim_name,
1133 victim_name_len);
ada9af21
FDBM
1134 if (!ret)
1135 ret = btrfs_run_delayed_items(
2ff7e61e
JM
1136 trans,
1137 fs_info);
f186373f 1138 }
f186373f
MF
1139 iput(victim_parent);
1140 kfree(victim_name);
3650860b
JB
1141 if (ret)
1142 return ret;
f186373f
MF
1143 *search_done = 1;
1144 goto again;
1145 }
1146 kfree(victim_name);
f186373f
MF
1147next:
1148 cur_offset += victim_name_len + sizeof(*extref);
1149 }
1150 *search_done = 1;
1151 }
1152 btrfs_release_path(path);
1153
34f3e4f2 1154 /* look for a conflicting sequence number */
94c91a1f 1155 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1156 ref_index, name, namelen, 0);
34f3e4f2 1157 if (di && !IS_ERR(di)) {
94c91a1f 1158 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1159 if (ret)
1160 return ret;
34f3e4f2 1161 }
1162 btrfs_release_path(path);
1163
1164 /* look for a conflicing name */
94c91a1f 1165 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1166 name, namelen, 0);
1167 if (di && !IS_ERR(di)) {
94c91a1f 1168 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1169 if (ret)
1170 return ret;
34f3e4f2 1171 }
1172 btrfs_release_path(path);
1173
5a1d7843
JS
1174 return 0;
1175}
e02119d5 1176
bae15d95
QW
1177static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 u32 *namelen, char **name, u64 *index,
1179 u64 *parent_objectid)
f186373f
MF
1180{
1181 struct btrfs_inode_extref *extref;
1182
1183 extref = (struct btrfs_inode_extref *)ref_ptr;
1184
1185 *namelen = btrfs_inode_extref_name_len(eb, extref);
1186 *name = kmalloc(*namelen, GFP_NOFS);
1187 if (*name == NULL)
1188 return -ENOMEM;
1189
1190 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1191 *namelen);
1192
1193 *index = btrfs_inode_extref_index(eb, extref);
1194 if (parent_objectid)
1195 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196
1197 return 0;
1198}
1199
bae15d95
QW
1200static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 u32 *namelen, char **name, u64 *index)
f186373f
MF
1202{
1203 struct btrfs_inode_ref *ref;
1204
1205 ref = (struct btrfs_inode_ref *)ref_ptr;
1206
1207 *namelen = btrfs_inode_ref_name_len(eb, ref);
1208 *name = kmalloc(*namelen, GFP_NOFS);
1209 if (*name == NULL)
1210 return -ENOMEM;
1211
1212 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213
1214 *index = btrfs_inode_ref_index(eb, ref);
1215
1216 return 0;
1217}
1218
5a1d7843
JS
1219/*
1220 * replay one inode back reference item found in the log tree.
1221 * eb, slot and key refer to the buffer and key found in the log tree.
1222 * root is the destination we are replaying into, and path is for temp
1223 * use by this function. (it should be released on return).
1224 */
1225static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1226 struct btrfs_root *root,
1227 struct btrfs_root *log,
1228 struct btrfs_path *path,
1229 struct extent_buffer *eb, int slot,
1230 struct btrfs_key *key)
1231{
03b2f08b
GB
1232 struct inode *dir = NULL;
1233 struct inode *inode = NULL;
5a1d7843
JS
1234 unsigned long ref_ptr;
1235 unsigned long ref_end;
03b2f08b 1236 char *name = NULL;
5a1d7843
JS
1237 int namelen;
1238 int ret;
1239 int search_done = 0;
f186373f
MF
1240 int log_ref_ver = 0;
1241 u64 parent_objectid;
1242 u64 inode_objectid;
f46dbe3d 1243 u64 ref_index = 0;
f186373f
MF
1244 int ref_struct_size;
1245
1246 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1247 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1248
1249 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1250 struct btrfs_inode_extref *r;
1251
1252 ref_struct_size = sizeof(struct btrfs_inode_extref);
1253 log_ref_ver = 1;
1254 r = (struct btrfs_inode_extref *)ref_ptr;
1255 parent_objectid = btrfs_inode_extref_parent(eb, r);
1256 } else {
1257 ref_struct_size = sizeof(struct btrfs_inode_ref);
1258 parent_objectid = key->offset;
1259 }
1260 inode_objectid = key->objectid;
e02119d5 1261
5a1d7843
JS
1262 /*
1263 * it is possible that we didn't log all the parent directories
1264 * for a given inode. If we don't find the dir, just don't
1265 * copy the back ref in. The link count fixup code will take
1266 * care of the rest
1267 */
f186373f 1268 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1269 if (!dir) {
1270 ret = -ENOENT;
1271 goto out;
1272 }
5a1d7843 1273
f186373f 1274 inode = read_one_inode(root, inode_objectid);
5a1d7843 1275 if (!inode) {
03b2f08b
GB
1276 ret = -EIO;
1277 goto out;
5a1d7843
JS
1278 }
1279
5a1d7843 1280 while (ref_ptr < ref_end) {
f186373f 1281 if (log_ref_ver) {
bae15d95
QW
1282 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1283 &ref_index, &parent_objectid);
f186373f
MF
1284 /*
1285 * parent object can change from one array
1286 * item to another.
1287 */
1288 if (!dir)
1289 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1290 if (!dir) {
1291 ret = -ENOENT;
1292 goto out;
1293 }
f186373f 1294 } else {
bae15d95
QW
1295 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1296 &ref_index);
f186373f
MF
1297 }
1298 if (ret)
03b2f08b 1299 goto out;
5a1d7843
JS
1300
1301 /* if we already have a perfect match, we're done */
f85b7379
DS
1302 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1303 btrfs_ino(BTRFS_I(inode)), ref_index,
1304 name, namelen)) {
5a1d7843
JS
1305 /*
1306 * look for a conflicting back reference in the
1307 * metadata. if we find one we have to unlink that name
1308 * of the file before we add our new link. Later on, we
1309 * overwrite any existing back reference, and we don't
1310 * want to create dangling pointers in the directory.
1311 */
1312
1313 if (!search_done) {
1314 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1315 BTRFS_I(dir),
d75eefdf 1316 BTRFS_I(inode),
f186373f
MF
1317 inode_objectid,
1318 parent_objectid,
1319 ref_index, name, namelen,
5a1d7843 1320 &search_done);
03b2f08b
GB
1321 if (ret) {
1322 if (ret == 1)
1323 ret = 0;
3650860b
JB
1324 goto out;
1325 }
5a1d7843
JS
1326 }
1327
1328 /* insert our name */
db0a669f
NB
1329 ret = btrfs_add_link(trans, BTRFS_I(dir),
1330 BTRFS_I(inode),
1331 name, namelen, 0, ref_index);
3650860b
JB
1332 if (ret)
1333 goto out;
5a1d7843
JS
1334
1335 btrfs_update_inode(trans, root, inode);
1336 }
1337
f186373f 1338 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1339 kfree(name);
03b2f08b 1340 name = NULL;
f186373f
MF
1341 if (log_ref_ver) {
1342 iput(dir);
1343 dir = NULL;
1344 }
5a1d7843 1345 }
e02119d5
CM
1346
1347 /* finally write the back reference in the inode */
1348 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1349out:
b3b4aa74 1350 btrfs_release_path(path);
03b2f08b 1351 kfree(name);
e02119d5
CM
1352 iput(dir);
1353 iput(inode);
3650860b 1354 return ret;
e02119d5
CM
1355}
1356
c71bf099 1357static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1358 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1359{
1360 int ret;
381cf658 1361
9c4f61f0
DS
1362 ret = btrfs_insert_orphan_item(trans, root, ino);
1363 if (ret == -EEXIST)
1364 ret = 0;
381cf658 1365
c71bf099
YZ
1366 return ret;
1367}
1368
f186373f 1369static int count_inode_extrefs(struct btrfs_root *root,
36283658 1370 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1371{
1372 int ret = 0;
1373 int name_len;
1374 unsigned int nlink = 0;
1375 u32 item_size;
1376 u32 cur_offset = 0;
36283658 1377 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1378 u64 offset = 0;
1379 unsigned long ptr;
1380 struct btrfs_inode_extref *extref;
1381 struct extent_buffer *leaf;
1382
1383 while (1) {
1384 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1385 &extref, &offset);
1386 if (ret)
1387 break;
c71bf099 1388
f186373f
MF
1389 leaf = path->nodes[0];
1390 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1391 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1392 cur_offset = 0;
f186373f
MF
1393
1394 while (cur_offset < item_size) {
1395 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1396 name_len = btrfs_inode_extref_name_len(leaf, extref);
1397
1398 nlink++;
1399
1400 cur_offset += name_len + sizeof(*extref);
1401 }
1402
1403 offset++;
1404 btrfs_release_path(path);
1405 }
1406 btrfs_release_path(path);
1407
2c2c452b 1408 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1409 return ret;
1410 return nlink;
1411}
1412
1413static int count_inode_refs(struct btrfs_root *root,
f329e319 1414 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1415{
e02119d5
CM
1416 int ret;
1417 struct btrfs_key key;
f186373f 1418 unsigned int nlink = 0;
e02119d5
CM
1419 unsigned long ptr;
1420 unsigned long ptr_end;
1421 int name_len;
f329e319 1422 u64 ino = btrfs_ino(inode);
e02119d5 1423
33345d01 1424 key.objectid = ino;
e02119d5
CM
1425 key.type = BTRFS_INODE_REF_KEY;
1426 key.offset = (u64)-1;
1427
d397712b 1428 while (1) {
e02119d5
CM
1429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1430 if (ret < 0)
1431 break;
1432 if (ret > 0) {
1433 if (path->slots[0] == 0)
1434 break;
1435 path->slots[0]--;
1436 }
e93ae26f 1437process_slot:
e02119d5
CM
1438 btrfs_item_key_to_cpu(path->nodes[0], &key,
1439 path->slots[0]);
33345d01 1440 if (key.objectid != ino ||
e02119d5
CM
1441 key.type != BTRFS_INODE_REF_KEY)
1442 break;
1443 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1444 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1445 path->slots[0]);
d397712b 1446 while (ptr < ptr_end) {
e02119d5
CM
1447 struct btrfs_inode_ref *ref;
1448
1449 ref = (struct btrfs_inode_ref *)ptr;
1450 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1451 ref);
1452 ptr = (unsigned long)(ref + 1) + name_len;
1453 nlink++;
1454 }
1455
1456 if (key.offset == 0)
1457 break;
e93ae26f
FDBM
1458 if (path->slots[0] > 0) {
1459 path->slots[0]--;
1460 goto process_slot;
1461 }
e02119d5 1462 key.offset--;
b3b4aa74 1463 btrfs_release_path(path);
e02119d5 1464 }
b3b4aa74 1465 btrfs_release_path(path);
f186373f
MF
1466
1467 return nlink;
1468}
1469
1470/*
1471 * There are a few corners where the link count of the file can't
1472 * be properly maintained during replay. So, instead of adding
1473 * lots of complexity to the log code, we just scan the backrefs
1474 * for any file that has been through replay.
1475 *
1476 * The scan will update the link count on the inode to reflect the
1477 * number of back refs found. If it goes down to zero, the iput
1478 * will free the inode.
1479 */
1480static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1481 struct btrfs_root *root,
1482 struct inode *inode)
1483{
1484 struct btrfs_path *path;
1485 int ret;
1486 u64 nlink = 0;
4a0cc7ca 1487 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1488
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
f329e319 1493 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1494 if (ret < 0)
1495 goto out;
1496
1497 nlink = ret;
1498
36283658 1499 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1500 if (ret < 0)
1501 goto out;
1502
1503 nlink += ret;
1504
1505 ret = 0;
1506
e02119d5 1507 if (nlink != inode->i_nlink) {
bfe86848 1508 set_nlink(inode, nlink);
e02119d5
CM
1509 btrfs_update_inode(trans, root, inode);
1510 }
8d5bf1cb 1511 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1512
c71bf099
YZ
1513 if (inode->i_nlink == 0) {
1514 if (S_ISDIR(inode->i_mode)) {
1515 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1516 ino, 1);
3650860b
JB
1517 if (ret)
1518 goto out;
c71bf099 1519 }
33345d01 1520 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1521 }
12fcfd22 1522
f186373f
MF
1523out:
1524 btrfs_free_path(path);
1525 return ret;
e02119d5
CM
1526}
1527
1528static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1529 struct btrfs_root *root,
1530 struct btrfs_path *path)
1531{
1532 int ret;
1533 struct btrfs_key key;
1534 struct inode *inode;
1535
1536 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1537 key.type = BTRFS_ORPHAN_ITEM_KEY;
1538 key.offset = (u64)-1;
d397712b 1539 while (1) {
e02119d5
CM
1540 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1541 if (ret < 0)
1542 break;
1543
1544 if (ret == 1) {
1545 if (path->slots[0] == 0)
1546 break;
1547 path->slots[0]--;
1548 }
1549
1550 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1551 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1552 key.type != BTRFS_ORPHAN_ITEM_KEY)
1553 break;
1554
1555 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1556 if (ret)
1557 goto out;
e02119d5 1558
b3b4aa74 1559 btrfs_release_path(path);
e02119d5 1560 inode = read_one_inode(root, key.offset);
c00e9493
TI
1561 if (!inode)
1562 return -EIO;
e02119d5
CM
1563
1564 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1565 iput(inode);
3650860b
JB
1566 if (ret)
1567 goto out;
e02119d5 1568
12fcfd22
CM
1569 /*
1570 * fixup on a directory may create new entries,
1571 * make sure we always look for the highset possible
1572 * offset
1573 */
1574 key.offset = (u64)-1;
e02119d5 1575 }
65a246c5
TI
1576 ret = 0;
1577out:
b3b4aa74 1578 btrfs_release_path(path);
65a246c5 1579 return ret;
e02119d5
CM
1580}
1581
1582
1583/*
1584 * record a given inode in the fixup dir so we can check its link
1585 * count when replay is done. The link count is incremented here
1586 * so the inode won't go away until we check it
1587 */
1588static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1589 struct btrfs_root *root,
1590 struct btrfs_path *path,
1591 u64 objectid)
1592{
1593 struct btrfs_key key;
1594 int ret = 0;
1595 struct inode *inode;
1596
1597 inode = read_one_inode(root, objectid);
c00e9493
TI
1598 if (!inode)
1599 return -EIO;
e02119d5
CM
1600
1601 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1602 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1603 key.offset = objectid;
1604
1605 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1606
b3b4aa74 1607 btrfs_release_path(path);
e02119d5 1608 if (ret == 0) {
9bf7a489
JB
1609 if (!inode->i_nlink)
1610 set_nlink(inode, 1);
1611 else
8b558c5f 1612 inc_nlink(inode);
b9959295 1613 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1614 } else if (ret == -EEXIST) {
1615 ret = 0;
1616 } else {
3650860b 1617 BUG(); /* Logic Error */
e02119d5
CM
1618 }
1619 iput(inode);
1620
1621 return ret;
1622}
1623
1624/*
1625 * when replaying the log for a directory, we only insert names
1626 * for inodes that actually exist. This means an fsync on a directory
1627 * does not implicitly fsync all the new files in it
1628 */
1629static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
e02119d5 1631 u64 dirid, u64 index,
60d53eb3 1632 char *name, int name_len,
e02119d5
CM
1633 struct btrfs_key *location)
1634{
1635 struct inode *inode;
1636 struct inode *dir;
1637 int ret;
1638
1639 inode = read_one_inode(root, location->objectid);
1640 if (!inode)
1641 return -ENOENT;
1642
1643 dir = read_one_inode(root, dirid);
1644 if (!dir) {
1645 iput(inode);
1646 return -EIO;
1647 }
d555438b 1648
db0a669f
NB
1649 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1650 name_len, 1, index);
e02119d5
CM
1651
1652 /* FIXME, put inode into FIXUP list */
1653
1654 iput(inode);
1655 iput(dir);
1656 return ret;
1657}
1658
df8d116f
FM
1659/*
1660 * Return true if an inode reference exists in the log for the given name,
1661 * inode and parent inode.
1662 */
1663static bool name_in_log_ref(struct btrfs_root *log_root,
1664 const char *name, const int name_len,
1665 const u64 dirid, const u64 ino)
1666{
1667 struct btrfs_key search_key;
1668
1669 search_key.objectid = ino;
1670 search_key.type = BTRFS_INODE_REF_KEY;
1671 search_key.offset = dirid;
1672 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1673 return true;
1674
1675 search_key.type = BTRFS_INODE_EXTREF_KEY;
1676 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1677 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1678 return true;
1679
1680 return false;
1681}
1682
e02119d5
CM
1683/*
1684 * take a single entry in a log directory item and replay it into
1685 * the subvolume.
1686 *
1687 * if a conflicting item exists in the subdirectory already,
1688 * the inode it points to is unlinked and put into the link count
1689 * fix up tree.
1690 *
1691 * If a name from the log points to a file or directory that does
1692 * not exist in the FS, it is skipped. fsyncs on directories
1693 * do not force down inodes inside that directory, just changes to the
1694 * names or unlinks in a directory.
bb53eda9
FM
1695 *
1696 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1697 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1698 */
1699static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1700 struct btrfs_root *root,
1701 struct btrfs_path *path,
1702 struct extent_buffer *eb,
1703 struct btrfs_dir_item *di,
1704 struct btrfs_key *key)
1705{
1706 char *name;
1707 int name_len;
1708 struct btrfs_dir_item *dst_di;
1709 struct btrfs_key found_key;
1710 struct btrfs_key log_key;
1711 struct inode *dir;
e02119d5 1712 u8 log_type;
4bef0848 1713 int exists;
3650860b 1714 int ret = 0;
d555438b 1715 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1716 bool name_added = false;
e02119d5
CM
1717
1718 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1719 if (!dir)
1720 return -EIO;
e02119d5
CM
1721
1722 name_len = btrfs_dir_name_len(eb, di);
1723 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1724 if (!name) {
1725 ret = -ENOMEM;
1726 goto out;
1727 }
2a29edc6 1728
e02119d5
CM
1729 log_type = btrfs_dir_type(eb, di);
1730 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1731 name_len);
1732
1733 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1734 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1735 if (exists == 0)
1736 exists = 1;
1737 else
1738 exists = 0;
b3b4aa74 1739 btrfs_release_path(path);
4bef0848 1740
e02119d5
CM
1741 if (key->type == BTRFS_DIR_ITEM_KEY) {
1742 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1743 name, name_len, 1);
d397712b 1744 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1745 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1746 key->objectid,
1747 key->offset, name,
1748 name_len, 1);
1749 } else {
3650860b
JB
1750 /* Corruption */
1751 ret = -EINVAL;
1752 goto out;
e02119d5 1753 }
c704005d 1754 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1755 /* we need a sequence number to insert, so we only
1756 * do inserts for the BTRFS_DIR_INDEX_KEY types
1757 */
1758 if (key->type != BTRFS_DIR_INDEX_KEY)
1759 goto out;
1760 goto insert;
1761 }
1762
1763 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1764 /* the existing item matches the logged item */
1765 if (found_key.objectid == log_key.objectid &&
1766 found_key.type == log_key.type &&
1767 found_key.offset == log_key.offset &&
1768 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1769 update_size = false;
e02119d5
CM
1770 goto out;
1771 }
1772
1773 /*
1774 * don't drop the conflicting directory entry if the inode
1775 * for the new entry doesn't exist
1776 */
4bef0848 1777 if (!exists)
e02119d5
CM
1778 goto out;
1779
207e7d92 1780 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1781 if (ret)
1782 goto out;
e02119d5
CM
1783
1784 if (key->type == BTRFS_DIR_INDEX_KEY)
1785 goto insert;
1786out:
b3b4aa74 1787 btrfs_release_path(path);
d555438b 1788 if (!ret && update_size) {
6ef06d27 1789 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1790 ret = btrfs_update_inode(trans, root, dir);
1791 }
e02119d5
CM
1792 kfree(name);
1793 iput(dir);
bb53eda9
FM
1794 if (!ret && name_added)
1795 ret = 1;
3650860b 1796 return ret;
e02119d5
CM
1797
1798insert:
df8d116f
FM
1799 if (name_in_log_ref(root->log_root, name, name_len,
1800 key->objectid, log_key.objectid)) {
1801 /* The dentry will be added later. */
1802 ret = 0;
1803 update_size = false;
1804 goto out;
1805 }
b3b4aa74 1806 btrfs_release_path(path);
60d53eb3
Z
1807 ret = insert_one_name(trans, root, key->objectid, key->offset,
1808 name, name_len, &log_key);
df8d116f 1809 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1810 goto out;
bb53eda9
FM
1811 if (!ret)
1812 name_added = true;
d555438b 1813 update_size = false;
3650860b 1814 ret = 0;
e02119d5
CM
1815 goto out;
1816}
1817
1818/*
1819 * find all the names in a directory item and reconcile them into
1820 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1821 * one name in a directory item, but the same code gets used for
1822 * both directory index types
1823 */
1824static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 struct extent_buffer *eb, int slot,
1828 struct btrfs_key *key)
1829{
bb53eda9 1830 int ret = 0;
e02119d5
CM
1831 u32 item_size = btrfs_item_size_nr(eb, slot);
1832 struct btrfs_dir_item *di;
1833 int name_len;
1834 unsigned long ptr;
1835 unsigned long ptr_end;
bb53eda9 1836 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1837
1838 ptr = btrfs_item_ptr_offset(eb, slot);
1839 ptr_end = ptr + item_size;
d397712b 1840 while (ptr < ptr_end) {
e02119d5
CM
1841 di = (struct btrfs_dir_item *)ptr;
1842 name_len = btrfs_dir_name_len(eb, di);
1843 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1844 if (ret < 0)
1845 break;
e02119d5
CM
1846 ptr = (unsigned long)(di + 1);
1847 ptr += name_len;
bb53eda9
FM
1848
1849 /*
1850 * If this entry refers to a non-directory (directories can not
1851 * have a link count > 1) and it was added in the transaction
1852 * that was not committed, make sure we fixup the link count of
1853 * the inode it the entry points to. Otherwise something like
1854 * the following would result in a directory pointing to an
1855 * inode with a wrong link that does not account for this dir
1856 * entry:
1857 *
1858 * mkdir testdir
1859 * touch testdir/foo
1860 * touch testdir/bar
1861 * sync
1862 *
1863 * ln testdir/bar testdir/bar_link
1864 * ln testdir/foo testdir/foo_link
1865 * xfs_io -c "fsync" testdir/bar
1866 *
1867 * <power failure>
1868 *
1869 * mount fs, log replay happens
1870 *
1871 * File foo would remain with a link count of 1 when it has two
1872 * entries pointing to it in the directory testdir. This would
1873 * make it impossible to ever delete the parent directory has
1874 * it would result in stale dentries that can never be deleted.
1875 */
1876 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1877 struct btrfs_key di_key;
1878
1879 if (!fixup_path) {
1880 fixup_path = btrfs_alloc_path();
1881 if (!fixup_path) {
1882 ret = -ENOMEM;
1883 break;
1884 }
1885 }
1886
1887 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1888 ret = link_to_fixup_dir(trans, root, fixup_path,
1889 di_key.objectid);
1890 if (ret)
1891 break;
1892 }
1893 ret = 0;
e02119d5 1894 }
bb53eda9
FM
1895 btrfs_free_path(fixup_path);
1896 return ret;
e02119d5
CM
1897}
1898
1899/*
1900 * directory replay has two parts. There are the standard directory
1901 * items in the log copied from the subvolume, and range items
1902 * created in the log while the subvolume was logged.
1903 *
1904 * The range items tell us which parts of the key space the log
1905 * is authoritative for. During replay, if a key in the subvolume
1906 * directory is in a logged range item, but not actually in the log
1907 * that means it was deleted from the directory before the fsync
1908 * and should be removed.
1909 */
1910static noinline int find_dir_range(struct btrfs_root *root,
1911 struct btrfs_path *path,
1912 u64 dirid, int key_type,
1913 u64 *start_ret, u64 *end_ret)
1914{
1915 struct btrfs_key key;
1916 u64 found_end;
1917 struct btrfs_dir_log_item *item;
1918 int ret;
1919 int nritems;
1920
1921 if (*start_ret == (u64)-1)
1922 return 1;
1923
1924 key.objectid = dirid;
1925 key.type = key_type;
1926 key.offset = *start_ret;
1927
1928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1929 if (ret < 0)
1930 goto out;
1931 if (ret > 0) {
1932 if (path->slots[0] == 0)
1933 goto out;
1934 path->slots[0]--;
1935 }
1936 if (ret != 0)
1937 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1938
1939 if (key.type != key_type || key.objectid != dirid) {
1940 ret = 1;
1941 goto next;
1942 }
1943 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1944 struct btrfs_dir_log_item);
1945 found_end = btrfs_dir_log_end(path->nodes[0], item);
1946
1947 if (*start_ret >= key.offset && *start_ret <= found_end) {
1948 ret = 0;
1949 *start_ret = key.offset;
1950 *end_ret = found_end;
1951 goto out;
1952 }
1953 ret = 1;
1954next:
1955 /* check the next slot in the tree to see if it is a valid item */
1956 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 1957 path->slots[0]++;
e02119d5
CM
1958 if (path->slots[0] >= nritems) {
1959 ret = btrfs_next_leaf(root, path);
1960 if (ret)
1961 goto out;
e02119d5
CM
1962 }
1963
1964 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1965
1966 if (key.type != key_type || key.objectid != dirid) {
1967 ret = 1;
1968 goto out;
1969 }
1970 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1971 struct btrfs_dir_log_item);
1972 found_end = btrfs_dir_log_end(path->nodes[0], item);
1973 *start_ret = key.offset;
1974 *end_ret = found_end;
1975 ret = 0;
1976out:
b3b4aa74 1977 btrfs_release_path(path);
e02119d5
CM
1978 return ret;
1979}
1980
1981/*
1982 * this looks for a given directory item in the log. If the directory
1983 * item is not in the log, the item is removed and the inode it points
1984 * to is unlinked
1985 */
1986static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1987 struct btrfs_root *root,
1988 struct btrfs_root *log,
1989 struct btrfs_path *path,
1990 struct btrfs_path *log_path,
1991 struct inode *dir,
1992 struct btrfs_key *dir_key)
1993{
2ff7e61e 1994 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
1995 int ret;
1996 struct extent_buffer *eb;
1997 int slot;
1998 u32 item_size;
1999 struct btrfs_dir_item *di;
2000 struct btrfs_dir_item *log_di;
2001 int name_len;
2002 unsigned long ptr;
2003 unsigned long ptr_end;
2004 char *name;
2005 struct inode *inode;
2006 struct btrfs_key location;
2007
2008again:
2009 eb = path->nodes[0];
2010 slot = path->slots[0];
2011 item_size = btrfs_item_size_nr(eb, slot);
2012 ptr = btrfs_item_ptr_offset(eb, slot);
2013 ptr_end = ptr + item_size;
d397712b 2014 while (ptr < ptr_end) {
e02119d5
CM
2015 di = (struct btrfs_dir_item *)ptr;
2016 name_len = btrfs_dir_name_len(eb, di);
2017 name = kmalloc(name_len, GFP_NOFS);
2018 if (!name) {
2019 ret = -ENOMEM;
2020 goto out;
2021 }
2022 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023 name_len);
2024 log_di = NULL;
12fcfd22 2025 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2026 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027 dir_key->objectid,
2028 name, name_len, 0);
12fcfd22 2029 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2030 log_di = btrfs_lookup_dir_index_item(trans, log,
2031 log_path,
2032 dir_key->objectid,
2033 dir_key->offset,
2034 name, name_len, 0);
2035 }
269d040f 2036 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2037 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2038 btrfs_release_path(path);
2039 btrfs_release_path(log_path);
e02119d5 2040 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2041 if (!inode) {
2042 kfree(name);
2043 return -EIO;
2044 }
e02119d5
CM
2045
2046 ret = link_to_fixup_dir(trans, root,
2047 path, location.objectid);
3650860b
JB
2048 if (ret) {
2049 kfree(name);
2050 iput(inode);
2051 goto out;
2052 }
2053
8b558c5f 2054 inc_nlink(inode);
4ec5934e
NB
2055 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2056 BTRFS_I(inode), name, name_len);
3650860b 2057 if (!ret)
2ff7e61e 2058 ret = btrfs_run_delayed_items(trans, fs_info);
e02119d5
CM
2059 kfree(name);
2060 iput(inode);
3650860b
JB
2061 if (ret)
2062 goto out;
e02119d5
CM
2063
2064 /* there might still be more names under this key
2065 * check and repeat if required
2066 */
2067 ret = btrfs_search_slot(NULL, root, dir_key, path,
2068 0, 0);
2069 if (ret == 0)
2070 goto again;
2071 ret = 0;
2072 goto out;
269d040f
FDBM
2073 } else if (IS_ERR(log_di)) {
2074 kfree(name);
2075 return PTR_ERR(log_di);
e02119d5 2076 }
b3b4aa74 2077 btrfs_release_path(log_path);
e02119d5
CM
2078 kfree(name);
2079
2080 ptr = (unsigned long)(di + 1);
2081 ptr += name_len;
2082 }
2083 ret = 0;
2084out:
b3b4aa74
DS
2085 btrfs_release_path(path);
2086 btrfs_release_path(log_path);
e02119d5
CM
2087 return ret;
2088}
2089
4f764e51
FM
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 const u64 ino)
2095{
2096 struct btrfs_key search_key;
2097 struct btrfs_path *log_path;
2098 int i;
2099 int nritems;
2100 int ret;
2101
2102 log_path = btrfs_alloc_path();
2103 if (!log_path)
2104 return -ENOMEM;
2105
2106 search_key.objectid = ino;
2107 search_key.type = BTRFS_XATTR_ITEM_KEY;
2108 search_key.offset = 0;
2109again:
2110 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111 if (ret < 0)
2112 goto out;
2113process_leaf:
2114 nritems = btrfs_header_nritems(path->nodes[0]);
2115 for (i = path->slots[0]; i < nritems; i++) {
2116 struct btrfs_key key;
2117 struct btrfs_dir_item *di;
2118 struct btrfs_dir_item *log_di;
2119 u32 total_size;
2120 u32 cur;
2121
2122 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124 ret = 0;
2125 goto out;
2126 }
2127
2128 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129 total_size = btrfs_item_size_nr(path->nodes[0], i);
2130 cur = 0;
2131 while (cur < total_size) {
2132 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134 u32 this_len = sizeof(*di) + name_len + data_len;
2135 char *name;
2136
2137 name = kmalloc(name_len, GFP_NOFS);
2138 if (!name) {
2139 ret = -ENOMEM;
2140 goto out;
2141 }
2142 read_extent_buffer(path->nodes[0], name,
2143 (unsigned long)(di + 1), name_len);
2144
2145 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146 name, name_len, 0);
2147 btrfs_release_path(log_path);
2148 if (!log_di) {
2149 /* Doesn't exist in log tree, so delete it. */
2150 btrfs_release_path(path);
2151 di = btrfs_lookup_xattr(trans, root, path, ino,
2152 name, name_len, -1);
2153 kfree(name);
2154 if (IS_ERR(di)) {
2155 ret = PTR_ERR(di);
2156 goto out;
2157 }
2158 ASSERT(di);
2159 ret = btrfs_delete_one_dir_name(trans, root,
2160 path, di);
2161 if (ret)
2162 goto out;
2163 btrfs_release_path(path);
2164 search_key = key;
2165 goto again;
2166 }
2167 kfree(name);
2168 if (IS_ERR(log_di)) {
2169 ret = PTR_ERR(log_di);
2170 goto out;
2171 }
2172 cur += this_len;
2173 di = (struct btrfs_dir_item *)((char *)di + this_len);
2174 }
2175 }
2176 ret = btrfs_next_leaf(root, path);
2177 if (ret > 0)
2178 ret = 0;
2179 else if (ret == 0)
2180 goto process_leaf;
2181out:
2182 btrfs_free_path(log_path);
2183 btrfs_release_path(path);
2184 return ret;
2185}
2186
2187
e02119d5
CM
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes. It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct btrfs_root *log,
2201 struct btrfs_path *path,
12fcfd22 2202 u64 dirid, int del_all)
e02119d5
CM
2203{
2204 u64 range_start;
2205 u64 range_end;
2206 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207 int ret = 0;
2208 struct btrfs_key dir_key;
2209 struct btrfs_key found_key;
2210 struct btrfs_path *log_path;
2211 struct inode *dir;
2212
2213 dir_key.objectid = dirid;
2214 dir_key.type = BTRFS_DIR_ITEM_KEY;
2215 log_path = btrfs_alloc_path();
2216 if (!log_path)
2217 return -ENOMEM;
2218
2219 dir = read_one_inode(root, dirid);
2220 /* it isn't an error if the inode isn't there, that can happen
2221 * because we replay the deletes before we copy in the inode item
2222 * from the log
2223 */
2224 if (!dir) {
2225 btrfs_free_path(log_path);
2226 return 0;
2227 }
2228again:
2229 range_start = 0;
2230 range_end = 0;
d397712b 2231 while (1) {
12fcfd22
CM
2232 if (del_all)
2233 range_end = (u64)-1;
2234 else {
2235 ret = find_dir_range(log, path, dirid, key_type,
2236 &range_start, &range_end);
2237 if (ret != 0)
2238 break;
2239 }
e02119d5
CM
2240
2241 dir_key.offset = range_start;
d397712b 2242 while (1) {
e02119d5
CM
2243 int nritems;
2244 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245 0, 0);
2246 if (ret < 0)
2247 goto out;
2248
2249 nritems = btrfs_header_nritems(path->nodes[0]);
2250 if (path->slots[0] >= nritems) {
2251 ret = btrfs_next_leaf(root, path);
2252 if (ret)
2253 break;
2254 }
2255 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256 path->slots[0]);
2257 if (found_key.objectid != dirid ||
2258 found_key.type != dir_key.type)
2259 goto next_type;
2260
2261 if (found_key.offset > range_end)
2262 break;
2263
2264 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2265 log_path, dir,
2266 &found_key);
3650860b
JB
2267 if (ret)
2268 goto out;
e02119d5
CM
2269 if (found_key.offset == (u64)-1)
2270 break;
2271 dir_key.offset = found_key.offset + 1;
2272 }
b3b4aa74 2273 btrfs_release_path(path);
e02119d5
CM
2274 if (range_end == (u64)-1)
2275 break;
2276 range_start = range_end + 1;
2277 }
2278
2279next_type:
2280 ret = 0;
2281 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2284 btrfs_release_path(path);
e02119d5
CM
2285 goto again;
2286 }
2287out:
b3b4aa74 2288 btrfs_release_path(path);
e02119d5
CM
2289 btrfs_free_path(log_path);
2290 iput(dir);
2291 return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree. This
2296 * gets called in two different stages. The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume. The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306 struct walk_control *wc, u64 gen)
2307{
2308 int nritems;
2309 struct btrfs_path *path;
2310 struct btrfs_root *root = wc->replay_dest;
2311 struct btrfs_key key;
e02119d5
CM
2312 int level;
2313 int i;
2314 int ret;
2315
018642a1
TI
2316 ret = btrfs_read_buffer(eb, gen);
2317 if (ret)
2318 return ret;
e02119d5
CM
2319
2320 level = btrfs_header_level(eb);
2321
2322 if (level != 0)
2323 return 0;
2324
2325 path = btrfs_alloc_path();
1e5063d0
MF
2326 if (!path)
2327 return -ENOMEM;
e02119d5
CM
2328
2329 nritems = btrfs_header_nritems(eb);
2330 for (i = 0; i < nritems; i++) {
2331 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2332
2333 /* inode keys are done during the first stage */
2334 if (key.type == BTRFS_INODE_ITEM_KEY &&
2335 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2336 struct btrfs_inode_item *inode_item;
2337 u32 mode;
2338
2339 inode_item = btrfs_item_ptr(eb, i,
2340 struct btrfs_inode_item);
4f764e51
FM
2341 ret = replay_xattr_deletes(wc->trans, root, log,
2342 path, key.objectid);
2343 if (ret)
2344 break;
e02119d5
CM
2345 mode = btrfs_inode_mode(eb, inode_item);
2346 if (S_ISDIR(mode)) {
2347 ret = replay_dir_deletes(wc->trans,
12fcfd22 2348 root, log, path, key.objectid, 0);
b50c6e25
JB
2349 if (ret)
2350 break;
e02119d5
CM
2351 }
2352 ret = overwrite_item(wc->trans, root, path,
2353 eb, i, &key);
b50c6e25
JB
2354 if (ret)
2355 break;
e02119d5 2356
c71bf099 2357 /* for regular files, make sure corresponding
01327610 2358 * orphan item exist. extents past the new EOF
c71bf099 2359 * will be truncated later by orphan cleanup.
e02119d5
CM
2360 */
2361 if (S_ISREG(mode)) {
c71bf099
YZ
2362 ret = insert_orphan_item(wc->trans, root,
2363 key.objectid);
b50c6e25
JB
2364 if (ret)
2365 break;
e02119d5 2366 }
c71bf099 2367
e02119d5
CM
2368 ret = link_to_fixup_dir(wc->trans, root,
2369 path, key.objectid);
b50c6e25
JB
2370 if (ret)
2371 break;
e02119d5 2372 }
dd8e7217
JB
2373
2374 if (key.type == BTRFS_DIR_INDEX_KEY &&
2375 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376 ret = replay_one_dir_item(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2380 }
2381
e02119d5
CM
2382 if (wc->stage < LOG_WALK_REPLAY_ALL)
2383 continue;
2384
2385 /* these keys are simply copied */
2386 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387 ret = overwrite_item(wc->trans, root, path,
2388 eb, i, &key);
b50c6e25
JB
2389 if (ret)
2390 break;
2da1c669
LB
2391 } else if (key.type == BTRFS_INODE_REF_KEY ||
2392 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2393 ret = add_inode_ref(wc->trans, root, log, path,
2394 eb, i, &key);
b50c6e25
JB
2395 if (ret && ret != -ENOENT)
2396 break;
2397 ret = 0;
e02119d5
CM
2398 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399 ret = replay_one_extent(wc->trans, root, path,
2400 eb, i, &key);
b50c6e25
JB
2401 if (ret)
2402 break;
dd8e7217 2403 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2404 ret = replay_one_dir_item(wc->trans, root, path,
2405 eb, i, &key);
b50c6e25
JB
2406 if (ret)
2407 break;
e02119d5
CM
2408 }
2409 }
2410 btrfs_free_path(path);
b50c6e25 2411 return ret;
e02119d5
CM
2412}
2413
d397712b 2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2415 struct btrfs_root *root,
2416 struct btrfs_path *path, int *level,
2417 struct walk_control *wc)
2418{
0b246afa 2419 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2420 u64 root_owner;
e02119d5
CM
2421 u64 bytenr;
2422 u64 ptr_gen;
2423 struct extent_buffer *next;
2424 struct extent_buffer *cur;
2425 struct extent_buffer *parent;
2426 u32 blocksize;
2427 int ret = 0;
2428
2429 WARN_ON(*level < 0);
2430 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
d397712b 2432 while (*level > 0) {
e02119d5
CM
2433 WARN_ON(*level < 0);
2434 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435 cur = path->nodes[*level];
2436
fae7f21c 2437 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2438
2439 if (path->slots[*level] >=
2440 btrfs_header_nritems(cur))
2441 break;
2442
2443 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
0b246afa 2445 blocksize = fs_info->nodesize;
e02119d5
CM
2446
2447 parent = path->nodes[*level];
2448 root_owner = btrfs_header_owner(parent);
e02119d5 2449
2ff7e61e 2450 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2451 if (IS_ERR(next))
2452 return PTR_ERR(next);
e02119d5 2453
e02119d5 2454 if (*level == 1) {
1e5063d0 2455 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2456 if (ret) {
2457 free_extent_buffer(next);
1e5063d0 2458 return ret;
b50c6e25 2459 }
4a500fd1 2460
e02119d5
CM
2461 path->slots[*level]++;
2462 if (wc->free) {
018642a1
TI
2463 ret = btrfs_read_buffer(next, ptr_gen);
2464 if (ret) {
2465 free_extent_buffer(next);
2466 return ret;
2467 }
e02119d5 2468
681ae509
JB
2469 if (trans) {
2470 btrfs_tree_lock(next);
2471 btrfs_set_lock_blocking(next);
7c302b49 2472 clean_tree_block(fs_info, next);
681ae509
JB
2473 btrfs_wait_tree_block_writeback(next);
2474 btrfs_tree_unlock(next);
1846430c
LB
2475 } else {
2476 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2477 clear_extent_buffer_dirty(next);
681ae509 2478 }
e02119d5 2479
e02119d5
CM
2480 WARN_ON(root_owner !=
2481 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2482 ret = btrfs_free_and_pin_reserved_extent(
2483 fs_info, bytenr,
2484 blocksize);
3650860b
JB
2485 if (ret) {
2486 free_extent_buffer(next);
2487 return ret;
2488 }
e02119d5
CM
2489 }
2490 free_extent_buffer(next);
2491 continue;
2492 }
018642a1
TI
2493 ret = btrfs_read_buffer(next, ptr_gen);
2494 if (ret) {
2495 free_extent_buffer(next);
2496 return ret;
2497 }
e02119d5
CM
2498
2499 WARN_ON(*level <= 0);
2500 if (path->nodes[*level-1])
2501 free_extent_buffer(path->nodes[*level-1]);
2502 path->nodes[*level-1] = next;
2503 *level = btrfs_header_level(next);
2504 path->slots[*level] = 0;
2505 cond_resched();
2506 }
2507 WARN_ON(*level < 0);
2508 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2509
4a500fd1 2510 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2511
2512 cond_resched();
2513 return 0;
2514}
2515
d397712b 2516static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2517 struct btrfs_root *root,
2518 struct btrfs_path *path, int *level,
2519 struct walk_control *wc)
2520{
0b246afa 2521 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2522 u64 root_owner;
e02119d5
CM
2523 int i;
2524 int slot;
2525 int ret;
2526
d397712b 2527 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2528 slot = path->slots[i];
4a500fd1 2529 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2530 path->slots[i]++;
2531 *level = i;
2532 WARN_ON(*level == 0);
2533 return 0;
2534 } else {
31840ae1
ZY
2535 struct extent_buffer *parent;
2536 if (path->nodes[*level] == root->node)
2537 parent = path->nodes[*level];
2538 else
2539 parent = path->nodes[*level + 1];
2540
2541 root_owner = btrfs_header_owner(parent);
1e5063d0 2542 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2543 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2544 if (ret)
2545 return ret;
2546
e02119d5
CM
2547 if (wc->free) {
2548 struct extent_buffer *next;
2549
2550 next = path->nodes[*level];
2551
681ae509
JB
2552 if (trans) {
2553 btrfs_tree_lock(next);
2554 btrfs_set_lock_blocking(next);
7c302b49 2555 clean_tree_block(fs_info, next);
681ae509
JB
2556 btrfs_wait_tree_block_writeback(next);
2557 btrfs_tree_unlock(next);
1846430c
LB
2558 } else {
2559 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2560 clear_extent_buffer_dirty(next);
681ae509 2561 }
e02119d5 2562
e02119d5 2563 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2564 ret = btrfs_free_and_pin_reserved_extent(
2565 fs_info,
e02119d5 2566 path->nodes[*level]->start,
d00aff00 2567 path->nodes[*level]->len);
3650860b
JB
2568 if (ret)
2569 return ret;
e02119d5
CM
2570 }
2571 free_extent_buffer(path->nodes[*level]);
2572 path->nodes[*level] = NULL;
2573 *level = i + 1;
2574 }
2575 }
2576 return 1;
2577}
2578
2579/*
2580 * drop the reference count on the tree rooted at 'snap'. This traverses
2581 * the tree freeing any blocks that have a ref count of zero after being
2582 * decremented.
2583 */
2584static int walk_log_tree(struct btrfs_trans_handle *trans,
2585 struct btrfs_root *log, struct walk_control *wc)
2586{
2ff7e61e 2587 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2588 int ret = 0;
2589 int wret;
2590 int level;
2591 struct btrfs_path *path;
e02119d5
CM
2592 int orig_level;
2593
2594 path = btrfs_alloc_path();
db5b493a
TI
2595 if (!path)
2596 return -ENOMEM;
e02119d5
CM
2597
2598 level = btrfs_header_level(log->node);
2599 orig_level = level;
2600 path->nodes[level] = log->node;
2601 extent_buffer_get(log->node);
2602 path->slots[level] = 0;
2603
d397712b 2604 while (1) {
e02119d5
CM
2605 wret = walk_down_log_tree(trans, log, path, &level, wc);
2606 if (wret > 0)
2607 break;
79787eaa 2608 if (wret < 0) {
e02119d5 2609 ret = wret;
79787eaa
JM
2610 goto out;
2611 }
e02119d5
CM
2612
2613 wret = walk_up_log_tree(trans, log, path, &level, wc);
2614 if (wret > 0)
2615 break;
79787eaa 2616 if (wret < 0) {
e02119d5 2617 ret = wret;
79787eaa
JM
2618 goto out;
2619 }
e02119d5
CM
2620 }
2621
2622 /* was the root node processed? if not, catch it here */
2623 if (path->nodes[orig_level]) {
79787eaa 2624 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2625 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2626 if (ret)
2627 goto out;
e02119d5
CM
2628 if (wc->free) {
2629 struct extent_buffer *next;
2630
2631 next = path->nodes[orig_level];
2632
681ae509
JB
2633 if (trans) {
2634 btrfs_tree_lock(next);
2635 btrfs_set_lock_blocking(next);
7c302b49 2636 clean_tree_block(fs_info, next);
681ae509
JB
2637 btrfs_wait_tree_block_writeback(next);
2638 btrfs_tree_unlock(next);
1846430c
LB
2639 } else {
2640 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 clear_extent_buffer_dirty(next);
681ae509 2642 }
e02119d5 2643
e02119d5
CM
2644 WARN_ON(log->root_key.objectid !=
2645 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2646 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2647 next->start, next->len);
3650860b
JB
2648 if (ret)
2649 goto out;
e02119d5
CM
2650 }
2651 }
2652
79787eaa 2653out:
e02119d5 2654 btrfs_free_path(path);
e02119d5
CM
2655 return ret;
2656}
2657
7237f183
YZ
2658/*
2659 * helper function to update the item for a given subvolumes log root
2660 * in the tree of log roots
2661 */
2662static int update_log_root(struct btrfs_trans_handle *trans,
2663 struct btrfs_root *log)
2664{
0b246afa 2665 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2666 int ret;
2667
2668 if (log->log_transid == 1) {
2669 /* insert root item on the first sync */
0b246afa 2670 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2671 &log->root_key, &log->root_item);
2672 } else {
0b246afa 2673 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2674 &log->root_key, &log->root_item);
2675 }
2676 return ret;
2677}
2678
60d53eb3 2679static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2680{
2681 DEFINE_WAIT(wait);
7237f183 2682 int index = transid % 2;
e02119d5 2683
7237f183
YZ
2684 /*
2685 * we only allow two pending log transactions at a time,
2686 * so we know that if ours is more than 2 older than the
2687 * current transaction, we're done
2688 */
49e83f57 2689 for (;;) {
7237f183
YZ
2690 prepare_to_wait(&root->log_commit_wait[index],
2691 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2692
49e83f57
LB
2693 if (!(root->log_transid_committed < transid &&
2694 atomic_read(&root->log_commit[index])))
2695 break;
12fcfd22 2696
49e83f57
LB
2697 mutex_unlock(&root->log_mutex);
2698 schedule();
7237f183 2699 mutex_lock(&root->log_mutex);
49e83f57
LB
2700 }
2701 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2702}
2703
60d53eb3 2704static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2705{
2706 DEFINE_WAIT(wait);
8b050d35 2707
49e83f57
LB
2708 for (;;) {
2709 prepare_to_wait(&root->log_writer_wait, &wait,
2710 TASK_UNINTERRUPTIBLE);
2711 if (!atomic_read(&root->log_writers))
2712 break;
2713
7237f183 2714 mutex_unlock(&root->log_mutex);
49e83f57 2715 schedule();
575849ec 2716 mutex_lock(&root->log_mutex);
7237f183 2717 }
49e83f57 2718 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2719}
2720
8b050d35
MX
2721static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2722 struct btrfs_log_ctx *ctx)
2723{
2724 if (!ctx)
2725 return;
2726
2727 mutex_lock(&root->log_mutex);
2728 list_del_init(&ctx->list);
2729 mutex_unlock(&root->log_mutex);
2730}
2731
2732/*
2733 * Invoked in log mutex context, or be sure there is no other task which
2734 * can access the list.
2735 */
2736static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2737 int index, int error)
2738{
2739 struct btrfs_log_ctx *ctx;
570dd450 2740 struct btrfs_log_ctx *safe;
8b050d35 2741
570dd450
CM
2742 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2743 list_del_init(&ctx->list);
8b050d35 2744 ctx->log_ret = error;
570dd450 2745 }
8b050d35
MX
2746
2747 INIT_LIST_HEAD(&root->log_ctxs[index]);
2748}
2749
e02119d5
CM
2750/*
2751 * btrfs_sync_log does sends a given tree log down to the disk and
2752 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2753 * you know that any inodes previously logged are safely on disk only
2754 * if it returns 0.
2755 *
2756 * Any other return value means you need to call btrfs_commit_transaction.
2757 * Some of the edge cases for fsyncing directories that have had unlinks
2758 * or renames done in the past mean that sometimes the only safe
2759 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2760 * that has happened.
e02119d5
CM
2761 */
2762int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2763 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2764{
7237f183
YZ
2765 int index1;
2766 int index2;
8cef4e16 2767 int mark;
e02119d5 2768 int ret;
0b246afa 2769 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2770 struct btrfs_root *log = root->log_root;
0b246afa 2771 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2772 int log_transid = 0;
8b050d35 2773 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2774 struct blk_plug plug;
e02119d5 2775
7237f183 2776 mutex_lock(&root->log_mutex);
d1433deb
MX
2777 log_transid = ctx->log_transid;
2778 if (root->log_transid_committed >= log_transid) {
2779 mutex_unlock(&root->log_mutex);
2780 return ctx->log_ret;
2781 }
2782
2783 index1 = log_transid % 2;
7237f183 2784 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2785 wait_log_commit(root, log_transid);
7237f183 2786 mutex_unlock(&root->log_mutex);
8b050d35 2787 return ctx->log_ret;
e02119d5 2788 }
d1433deb 2789 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2790 atomic_set(&root->log_commit[index1], 1);
2791
2792 /* wait for previous tree log sync to complete */
2793 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2794 wait_log_commit(root, log_transid - 1);
48cab2e0 2795
86df7eb9 2796 while (1) {
2ecb7923 2797 int batch = atomic_read(&root->log_batch);
cd354ad6 2798 /* when we're on an ssd, just kick the log commit out */
0b246afa 2799 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2800 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2801 mutex_unlock(&root->log_mutex);
2802 schedule_timeout_uninterruptible(1);
2803 mutex_lock(&root->log_mutex);
2804 }
60d53eb3 2805 wait_for_writer(root);
2ecb7923 2806 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2807 break;
2808 }
e02119d5 2809
12fcfd22 2810 /* bail out if we need to do a full commit */
0b246afa 2811 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2812 ret = -EAGAIN;
2ab28f32 2813 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2814 mutex_unlock(&root->log_mutex);
2815 goto out;
2816 }
2817
8cef4e16
YZ
2818 if (log_transid % 2 == 0)
2819 mark = EXTENT_DIRTY;
2820 else
2821 mark = EXTENT_NEW;
2822
690587d1
CM
2823 /* we start IO on all the marked extents here, but we don't actually
2824 * wait for them until later.
2825 */
c6adc9cc 2826 blk_start_plug(&plug);
2ff7e61e 2827 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2828 if (ret) {
c6adc9cc 2829 blk_finish_plug(&plug);
66642832 2830 btrfs_abort_transaction(trans, ret);
2ab28f32 2831 btrfs_free_logged_extents(log, log_transid);
0b246afa 2832 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2833 mutex_unlock(&root->log_mutex);
2834 goto out;
2835 }
7237f183 2836
5d4f98a2 2837 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2838
7237f183
YZ
2839 root->log_transid++;
2840 log->log_transid = root->log_transid;
ff782e0a 2841 root->log_start_pid = 0;
7237f183 2842 /*
8cef4e16
YZ
2843 * IO has been started, blocks of the log tree have WRITTEN flag set
2844 * in their headers. new modifications of the log will be written to
2845 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2846 */
2847 mutex_unlock(&root->log_mutex);
2848
28a23593 2849 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2850
7237f183 2851 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2852 atomic_inc(&log_root_tree->log_batch);
7237f183 2853 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2854
2855 index2 = log_root_tree->log_transid % 2;
2856 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2857 root_log_ctx.log_transid = log_root_tree->log_transid;
2858
7237f183
YZ
2859 mutex_unlock(&log_root_tree->log_mutex);
2860
2861 ret = update_log_root(trans, log);
7237f183
YZ
2862
2863 mutex_lock(&log_root_tree->log_mutex);
2864 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2865 /*
2866 * Implicit memory barrier after atomic_dec_and_test
2867 */
7237f183
YZ
2868 if (waitqueue_active(&log_root_tree->log_writer_wait))
2869 wake_up(&log_root_tree->log_writer_wait);
2870 }
2871
4a500fd1 2872 if (ret) {
d1433deb
MX
2873 if (!list_empty(&root_log_ctx.list))
2874 list_del_init(&root_log_ctx.list);
2875
c6adc9cc 2876 blk_finish_plug(&plug);
0b246afa 2877 btrfs_set_log_full_commit(fs_info, trans);
995946dd 2878
79787eaa 2879 if (ret != -ENOSPC) {
66642832 2880 btrfs_abort_transaction(trans, ret);
79787eaa
JM
2881 mutex_unlock(&log_root_tree->log_mutex);
2882 goto out;
2883 }
bf89d38f 2884 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2885 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2886 mutex_unlock(&log_root_tree->log_mutex);
2887 ret = -EAGAIN;
2888 goto out;
2889 }
2890
d1433deb 2891 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2892 blk_finish_plug(&plug);
cbd60aa7 2893 list_del_init(&root_log_ctx.list);
d1433deb
MX
2894 mutex_unlock(&log_root_tree->log_mutex);
2895 ret = root_log_ctx.log_ret;
2896 goto out;
2897 }
8b050d35 2898
d1433deb 2899 index2 = root_log_ctx.log_transid % 2;
7237f183 2900 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2901 blk_finish_plug(&plug);
bf89d38f 2902 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 2903 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 2904 wait_log_commit(log_root_tree,
d1433deb 2905 root_log_ctx.log_transid);
7237f183 2906 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2907 if (!ret)
2908 ret = root_log_ctx.log_ret;
7237f183
YZ
2909 goto out;
2910 }
d1433deb 2911 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2912 atomic_set(&log_root_tree->log_commit[index2], 1);
2913
12fcfd22 2914 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 2915 wait_log_commit(log_root_tree,
d1433deb 2916 root_log_ctx.log_transid - 1);
12fcfd22
CM
2917 }
2918
60d53eb3 2919 wait_for_writer(log_root_tree);
7237f183 2920
12fcfd22
CM
2921 /*
2922 * now that we've moved on to the tree of log tree roots,
2923 * check the full commit flag again
2924 */
0b246afa 2925 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 2926 blk_finish_plug(&plug);
bf89d38f 2927 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2928 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2929 mutex_unlock(&log_root_tree->log_mutex);
2930 ret = -EAGAIN;
2931 goto out_wake_log_root;
2932 }
7237f183 2933
2ff7e61e 2934 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
2935 &log_root_tree->dirty_log_pages,
2936 EXTENT_DIRTY | EXTENT_NEW);
2937 blk_finish_plug(&plug);
79787eaa 2938 if (ret) {
0b246afa 2939 btrfs_set_log_full_commit(fs_info, trans);
66642832 2940 btrfs_abort_transaction(trans, ret);
2ab28f32 2941 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2942 mutex_unlock(&log_root_tree->log_mutex);
2943 goto out_wake_log_root;
2944 }
bf89d38f 2945 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 2946 if (!ret)
bf89d38f
JM
2947 ret = btrfs_wait_tree_log_extents(log_root_tree,
2948 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 2949 if (ret) {
0b246afa 2950 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
2951 btrfs_free_logged_extents(log, log_transid);
2952 mutex_unlock(&log_root_tree->log_mutex);
2953 goto out_wake_log_root;
2954 }
50d9aa99 2955 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2956
0b246afa
JM
2957 btrfs_set_super_log_root(fs_info->super_for_commit,
2958 log_root_tree->node->start);
2959 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2960 btrfs_header_level(log_root_tree->node));
e02119d5 2961
7237f183 2962 log_root_tree->log_transid++;
7237f183
YZ
2963 mutex_unlock(&log_root_tree->log_mutex);
2964
2965 /*
2966 * nobody else is going to jump in and write the the ctree
2967 * super here because the log_commit atomic below is protecting
2968 * us. We must be called with a transaction handle pinning
2969 * the running transaction open, so a full commit can't hop
2970 * in and cause problems either.
2971 */
eece6a9c 2972 ret = write_all_supers(fs_info, 1);
5af3e8cc 2973 if (ret) {
0b246afa 2974 btrfs_set_log_full_commit(fs_info, trans);
66642832 2975 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
2976 goto out_wake_log_root;
2977 }
7237f183 2978
257c62e1
CM
2979 mutex_lock(&root->log_mutex);
2980 if (root->last_log_commit < log_transid)
2981 root->last_log_commit = log_transid;
2982 mutex_unlock(&root->log_mutex);
2983
12fcfd22 2984out_wake_log_root:
570dd450 2985 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
2986 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2987
d1433deb 2988 log_root_tree->log_transid_committed++;
7237f183 2989 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2990 mutex_unlock(&log_root_tree->log_mutex);
2991
33a9eca7
DS
2992 /*
2993 * The barrier before waitqueue_active is implied by mutex_unlock
2994 */
7237f183
YZ
2995 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2996 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2997out:
d1433deb 2998 mutex_lock(&root->log_mutex);
570dd450 2999 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3000 root->log_transid_committed++;
7237f183 3001 atomic_set(&root->log_commit[index1], 0);
d1433deb 3002 mutex_unlock(&root->log_mutex);
8b050d35 3003
33a9eca7
DS
3004 /*
3005 * The barrier before waitqueue_active is implied by mutex_unlock
3006 */
7237f183
YZ
3007 if (waitqueue_active(&root->log_commit_wait[index1]))
3008 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3009 return ret;
e02119d5
CM
3010}
3011
4a500fd1
YZ
3012static void free_log_tree(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *log)
e02119d5
CM
3014{
3015 int ret;
d0c803c4
CM
3016 u64 start;
3017 u64 end;
e02119d5
CM
3018 struct walk_control wc = {
3019 .free = 1,
3020 .process_func = process_one_buffer
3021 };
3022
681ae509
JB
3023 ret = walk_log_tree(trans, log, &wc);
3024 /* I don't think this can happen but just in case */
3025 if (ret)
66642832 3026 btrfs_abort_transaction(trans, ret);
e02119d5 3027
d397712b 3028 while (1) {
d0c803c4 3029 ret = find_first_extent_bit(&log->dirty_log_pages,
55237a5f
LB
3030 0, &start, &end,
3031 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
e6138876 3032 NULL);
d0c803c4
CM
3033 if (ret)
3034 break;
3035
8cef4e16 3036 clear_extent_bits(&log->dirty_log_pages, start, end,
55237a5f 3037 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
d0c803c4
CM
3038 }
3039
2ab28f32
JB
3040 /*
3041 * We may have short-circuited the log tree with the full commit logic
3042 * and left ordered extents on our list, so clear these out to keep us
3043 * from leaking inodes and memory.
3044 */
3045 btrfs_free_logged_extents(log, 0);
3046 btrfs_free_logged_extents(log, 1);
3047
7237f183
YZ
3048 free_extent_buffer(log->node);
3049 kfree(log);
4a500fd1
YZ
3050}
3051
3052/*
3053 * free all the extents used by the tree log. This should be called
3054 * at commit time of the full transaction
3055 */
3056int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3057{
3058 if (root->log_root) {
3059 free_log_tree(trans, root->log_root);
3060 root->log_root = NULL;
3061 }
3062 return 0;
3063}
3064
3065int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3066 struct btrfs_fs_info *fs_info)
3067{
3068 if (fs_info->log_root_tree) {
3069 free_log_tree(trans, fs_info->log_root_tree);
3070 fs_info->log_root_tree = NULL;
3071 }
e02119d5
CM
3072 return 0;
3073}
3074
e02119d5
CM
3075/*
3076 * If both a file and directory are logged, and unlinks or renames are
3077 * mixed in, we have a few interesting corners:
3078 *
3079 * create file X in dir Y
3080 * link file X to X.link in dir Y
3081 * fsync file X
3082 * unlink file X but leave X.link
3083 * fsync dir Y
3084 *
3085 * After a crash we would expect only X.link to exist. But file X
3086 * didn't get fsync'd again so the log has back refs for X and X.link.
3087 *
3088 * We solve this by removing directory entries and inode backrefs from the
3089 * log when a file that was logged in the current transaction is
3090 * unlinked. Any later fsync will include the updated log entries, and
3091 * we'll be able to reconstruct the proper directory items from backrefs.
3092 *
3093 * This optimizations allows us to avoid relogging the entire inode
3094 * or the entire directory.
3095 */
3096int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3097 struct btrfs_root *root,
3098 const char *name, int name_len,
49f34d1f 3099 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3100{
3101 struct btrfs_root *log;
3102 struct btrfs_dir_item *di;
3103 struct btrfs_path *path;
3104 int ret;
4a500fd1 3105 int err = 0;
e02119d5 3106 int bytes_del = 0;
49f34d1f 3107 u64 dir_ino = btrfs_ino(dir);
e02119d5 3108
49f34d1f 3109 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3110 return 0;
3111
e02119d5
CM
3112 ret = join_running_log_trans(root);
3113 if (ret)
3114 return 0;
3115
49f34d1f 3116 mutex_lock(&dir->log_mutex);
e02119d5
CM
3117
3118 log = root->log_root;
3119 path = btrfs_alloc_path();
a62f44a5
TI
3120 if (!path) {
3121 err = -ENOMEM;
3122 goto out_unlock;
3123 }
2a29edc6 3124
33345d01 3125 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3126 name, name_len, -1);
4a500fd1
YZ
3127 if (IS_ERR(di)) {
3128 err = PTR_ERR(di);
3129 goto fail;
3130 }
3131 if (di) {
e02119d5
CM
3132 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3133 bytes_del += name_len;
3650860b
JB
3134 if (ret) {
3135 err = ret;
3136 goto fail;
3137 }
e02119d5 3138 }
b3b4aa74 3139 btrfs_release_path(path);
33345d01 3140 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3141 index, name, name_len, -1);
4a500fd1
YZ
3142 if (IS_ERR(di)) {
3143 err = PTR_ERR(di);
3144 goto fail;
3145 }
3146 if (di) {
e02119d5
CM
3147 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3148 bytes_del += name_len;
3650860b
JB
3149 if (ret) {
3150 err = ret;
3151 goto fail;
3152 }
e02119d5
CM
3153 }
3154
3155 /* update the directory size in the log to reflect the names
3156 * we have removed
3157 */
3158 if (bytes_del) {
3159 struct btrfs_key key;
3160
33345d01 3161 key.objectid = dir_ino;
e02119d5
CM
3162 key.offset = 0;
3163 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3164 btrfs_release_path(path);
e02119d5
CM
3165
3166 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3167 if (ret < 0) {
3168 err = ret;
3169 goto fail;
3170 }
e02119d5
CM
3171 if (ret == 0) {
3172 struct btrfs_inode_item *item;
3173 u64 i_size;
3174
3175 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3176 struct btrfs_inode_item);
3177 i_size = btrfs_inode_size(path->nodes[0], item);
3178 if (i_size > bytes_del)
3179 i_size -= bytes_del;
3180 else
3181 i_size = 0;
3182 btrfs_set_inode_size(path->nodes[0], item, i_size);
3183 btrfs_mark_buffer_dirty(path->nodes[0]);
3184 } else
3185 ret = 0;
b3b4aa74 3186 btrfs_release_path(path);
e02119d5 3187 }
4a500fd1 3188fail:
e02119d5 3189 btrfs_free_path(path);
a62f44a5 3190out_unlock:
49f34d1f 3191 mutex_unlock(&dir->log_mutex);
4a500fd1 3192 if (ret == -ENOSPC) {
995946dd 3193 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3194 ret = 0;
79787eaa 3195 } else if (ret < 0)
66642832 3196 btrfs_abort_transaction(trans, ret);
79787eaa 3197
12fcfd22 3198 btrfs_end_log_trans(root);
e02119d5 3199
411fc6bc 3200 return err;
e02119d5
CM
3201}
3202
3203/* see comments for btrfs_del_dir_entries_in_log */
3204int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3205 struct btrfs_root *root,
3206 const char *name, int name_len,
a491abb2 3207 struct btrfs_inode *inode, u64 dirid)
e02119d5 3208{
0b246afa 3209 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3210 struct btrfs_root *log;
3211 u64 index;
3212 int ret;
3213
a491abb2 3214 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3215 return 0;
3216
e02119d5
CM
3217 ret = join_running_log_trans(root);
3218 if (ret)
3219 return 0;
3220 log = root->log_root;
a491abb2 3221 mutex_lock(&inode->log_mutex);
e02119d5 3222
a491abb2 3223 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3224 dirid, &index);
a491abb2 3225 mutex_unlock(&inode->log_mutex);
4a500fd1 3226 if (ret == -ENOSPC) {
0b246afa 3227 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3228 ret = 0;
79787eaa 3229 } else if (ret < 0 && ret != -ENOENT)
66642832 3230 btrfs_abort_transaction(trans, ret);
12fcfd22 3231 btrfs_end_log_trans(root);
e02119d5 3232
e02119d5
CM
3233 return ret;
3234}
3235
3236/*
3237 * creates a range item in the log for 'dirid'. first_offset and
3238 * last_offset tell us which parts of the key space the log should
3239 * be considered authoritative for.
3240 */
3241static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3242 struct btrfs_root *log,
3243 struct btrfs_path *path,
3244 int key_type, u64 dirid,
3245 u64 first_offset, u64 last_offset)
3246{
3247 int ret;
3248 struct btrfs_key key;
3249 struct btrfs_dir_log_item *item;
3250
3251 key.objectid = dirid;
3252 key.offset = first_offset;
3253 if (key_type == BTRFS_DIR_ITEM_KEY)
3254 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3255 else
3256 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3257 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3258 if (ret)
3259 return ret;
e02119d5
CM
3260
3261 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 struct btrfs_dir_log_item);
3263 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3264 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3265 btrfs_release_path(path);
e02119d5
CM
3266 return 0;
3267}
3268
3269/*
3270 * log all the items included in the current transaction for a given
3271 * directory. This also creates the range items in the log tree required
3272 * to replay anything deleted before the fsync
3273 */
3274static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3275 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3276 struct btrfs_path *path,
3277 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3278 struct btrfs_log_ctx *ctx,
e02119d5
CM
3279 u64 min_offset, u64 *last_offset_ret)
3280{
3281 struct btrfs_key min_key;
e02119d5
CM
3282 struct btrfs_root *log = root->log_root;
3283 struct extent_buffer *src;
4a500fd1 3284 int err = 0;
e02119d5
CM
3285 int ret;
3286 int i;
3287 int nritems;
3288 u64 first_offset = min_offset;
3289 u64 last_offset = (u64)-1;
684a5773 3290 u64 ino = btrfs_ino(inode);
e02119d5
CM
3291
3292 log = root->log_root;
e02119d5 3293
33345d01 3294 min_key.objectid = ino;
e02119d5
CM
3295 min_key.type = key_type;
3296 min_key.offset = min_offset;
3297
6174d3cb 3298 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3299
3300 /*
3301 * we didn't find anything from this transaction, see if there
3302 * is anything at all
3303 */
33345d01
LZ
3304 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3305 min_key.objectid = ino;
e02119d5
CM
3306 min_key.type = key_type;
3307 min_key.offset = (u64)-1;
b3b4aa74 3308 btrfs_release_path(path);
e02119d5
CM
3309 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3310 if (ret < 0) {
b3b4aa74 3311 btrfs_release_path(path);
e02119d5
CM
3312 return ret;
3313 }
33345d01 3314 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3315
3316 /* if ret == 0 there are items for this type,
3317 * create a range to tell us the last key of this type.
3318 * otherwise, there are no items in this directory after
3319 * *min_offset, and we create a range to indicate that.
3320 */
3321 if (ret == 0) {
3322 struct btrfs_key tmp;
3323 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3324 path->slots[0]);
d397712b 3325 if (key_type == tmp.type)
e02119d5 3326 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3327 }
3328 goto done;
3329 }
3330
3331 /* go backward to find any previous key */
33345d01 3332 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3333 if (ret == 0) {
3334 struct btrfs_key tmp;
3335 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3336 if (key_type == tmp.type) {
3337 first_offset = tmp.offset;
3338 ret = overwrite_item(trans, log, dst_path,
3339 path->nodes[0], path->slots[0],
3340 &tmp);
4a500fd1
YZ
3341 if (ret) {
3342 err = ret;
3343 goto done;
3344 }
e02119d5
CM
3345 }
3346 }
b3b4aa74 3347 btrfs_release_path(path);
e02119d5
CM
3348
3349 /* find the first key from this transaction again */
3350 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3351 if (WARN_ON(ret != 0))
e02119d5 3352 goto done;
e02119d5
CM
3353
3354 /*
3355 * we have a block from this transaction, log every item in it
3356 * from our directory
3357 */
d397712b 3358 while (1) {
e02119d5
CM
3359 struct btrfs_key tmp;
3360 src = path->nodes[0];
3361 nritems = btrfs_header_nritems(src);
3362 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3363 struct btrfs_dir_item *di;
3364
e02119d5
CM
3365 btrfs_item_key_to_cpu(src, &min_key, i);
3366
33345d01 3367 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3368 goto done;
3369 ret = overwrite_item(trans, log, dst_path, src, i,
3370 &min_key);
4a500fd1
YZ
3371 if (ret) {
3372 err = ret;
3373 goto done;
3374 }
2f2ff0ee
FM
3375
3376 /*
3377 * We must make sure that when we log a directory entry,
3378 * the corresponding inode, after log replay, has a
3379 * matching link count. For example:
3380 *
3381 * touch foo
3382 * mkdir mydir
3383 * sync
3384 * ln foo mydir/bar
3385 * xfs_io -c "fsync" mydir
3386 * <crash>
3387 * <mount fs and log replay>
3388 *
3389 * Would result in a fsync log that when replayed, our
3390 * file inode would have a link count of 1, but we get
3391 * two directory entries pointing to the same inode.
3392 * After removing one of the names, it would not be
3393 * possible to remove the other name, which resulted
3394 * always in stale file handle errors, and would not
3395 * be possible to rmdir the parent directory, since
3396 * its i_size could never decrement to the value
3397 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3398 */
3399 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3400 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3401 if (ctx &&
3402 (btrfs_dir_transid(src, di) == trans->transid ||
3403 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3404 tmp.type != BTRFS_ROOT_ITEM_KEY)
3405 ctx->log_new_dentries = true;
e02119d5
CM
3406 }
3407 path->slots[0] = nritems;
3408
3409 /*
3410 * look ahead to the next item and see if it is also
3411 * from this directory and from this transaction
3412 */
3413 ret = btrfs_next_leaf(root, path);
3414 if (ret == 1) {
3415 last_offset = (u64)-1;
3416 goto done;
3417 }
3418 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3419 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3420 last_offset = (u64)-1;
3421 goto done;
3422 }
3423 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3424 ret = overwrite_item(trans, log, dst_path,
3425 path->nodes[0], path->slots[0],
3426 &tmp);
4a500fd1
YZ
3427 if (ret)
3428 err = ret;
3429 else
3430 last_offset = tmp.offset;
e02119d5
CM
3431 goto done;
3432 }
3433 }
3434done:
b3b4aa74
DS
3435 btrfs_release_path(path);
3436 btrfs_release_path(dst_path);
e02119d5 3437
4a500fd1
YZ
3438 if (err == 0) {
3439 *last_offset_ret = last_offset;
3440 /*
3441 * insert the log range keys to indicate where the log
3442 * is valid
3443 */
3444 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3445 ino, first_offset, last_offset);
4a500fd1
YZ
3446 if (ret)
3447 err = ret;
3448 }
3449 return err;
e02119d5
CM
3450}
3451
3452/*
3453 * logging directories is very similar to logging inodes, We find all the items
3454 * from the current transaction and write them to the log.
3455 *
3456 * The recovery code scans the directory in the subvolume, and if it finds a
3457 * key in the range logged that is not present in the log tree, then it means
3458 * that dir entry was unlinked during the transaction.
3459 *
3460 * In order for that scan to work, we must include one key smaller than
3461 * the smallest logged by this transaction and one key larger than the largest
3462 * key logged by this transaction.
3463 */
3464static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3465 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3466 struct btrfs_path *path,
2f2ff0ee
FM
3467 struct btrfs_path *dst_path,
3468 struct btrfs_log_ctx *ctx)
e02119d5
CM
3469{
3470 u64 min_key;
3471 u64 max_key;
3472 int ret;
3473 int key_type = BTRFS_DIR_ITEM_KEY;
3474
3475again:
3476 min_key = 0;
3477 max_key = 0;
d397712b 3478 while (1) {
dbf39ea4
NB
3479 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3480 ctx, min_key, &max_key);
4a500fd1
YZ
3481 if (ret)
3482 return ret;
e02119d5
CM
3483 if (max_key == (u64)-1)
3484 break;
3485 min_key = max_key + 1;
3486 }
3487
3488 if (key_type == BTRFS_DIR_ITEM_KEY) {
3489 key_type = BTRFS_DIR_INDEX_KEY;
3490 goto again;
3491 }
3492 return 0;
3493}
3494
3495/*
3496 * a helper function to drop items from the log before we relog an
3497 * inode. max_key_type indicates the highest item type to remove.
3498 * This cannot be run for file data extents because it does not
3499 * free the extents they point to.
3500 */
3501static int drop_objectid_items(struct btrfs_trans_handle *trans,
3502 struct btrfs_root *log,
3503 struct btrfs_path *path,
3504 u64 objectid, int max_key_type)
3505{
3506 int ret;
3507 struct btrfs_key key;
3508 struct btrfs_key found_key;
18ec90d6 3509 int start_slot;
e02119d5
CM
3510
3511 key.objectid = objectid;
3512 key.type = max_key_type;
3513 key.offset = (u64)-1;
3514
d397712b 3515 while (1) {
e02119d5 3516 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3517 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3518 if (ret < 0)
e02119d5
CM
3519 break;
3520
3521 if (path->slots[0] == 0)
3522 break;
3523
3524 path->slots[0]--;
3525 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3526 path->slots[0]);
3527
3528 if (found_key.objectid != objectid)
3529 break;
3530
18ec90d6
JB
3531 found_key.offset = 0;
3532 found_key.type = 0;
3533 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3534 &start_slot);
3535
3536 ret = btrfs_del_items(trans, log, path, start_slot,
3537 path->slots[0] - start_slot + 1);
3538 /*
3539 * If start slot isn't 0 then we don't need to re-search, we've
3540 * found the last guy with the objectid in this tree.
3541 */
3542 if (ret || start_slot != 0)
65a246c5 3543 break;
b3b4aa74 3544 btrfs_release_path(path);
e02119d5 3545 }
b3b4aa74 3546 btrfs_release_path(path);
5bdbeb21
JB
3547 if (ret > 0)
3548 ret = 0;
4a500fd1 3549 return ret;
e02119d5
CM
3550}
3551
94edf4ae
JB
3552static void fill_inode_item(struct btrfs_trans_handle *trans,
3553 struct extent_buffer *leaf,
3554 struct btrfs_inode_item *item,
1a4bcf47
FM
3555 struct inode *inode, int log_inode_only,
3556 u64 logged_isize)
94edf4ae 3557{
0b1c6cca
JB
3558 struct btrfs_map_token token;
3559
3560 btrfs_init_map_token(&token);
94edf4ae
JB
3561
3562 if (log_inode_only) {
3563 /* set the generation to zero so the recover code
3564 * can tell the difference between an logging
3565 * just to say 'this inode exists' and a logging
3566 * to say 'update this inode with these values'
3567 */
0b1c6cca 3568 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3569 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3570 } else {
0b1c6cca
JB
3571 btrfs_set_token_inode_generation(leaf, item,
3572 BTRFS_I(inode)->generation,
3573 &token);
3574 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3575 }
3576
3577 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3578 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3579 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3580 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3581
a937b979 3582 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3583 inode->i_atime.tv_sec, &token);
a937b979 3584 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3585 inode->i_atime.tv_nsec, &token);
3586
a937b979 3587 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3588 inode->i_mtime.tv_sec, &token);
a937b979 3589 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3590 inode->i_mtime.tv_nsec, &token);
3591
a937b979 3592 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3593 inode->i_ctime.tv_sec, &token);
a937b979 3594 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3595 inode->i_ctime.tv_nsec, &token);
3596
3597 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3598 &token);
3599
3600 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3601 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3602 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3603 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3604 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3605}
3606
a95249b3
JB
3607static int log_inode_item(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3609 struct btrfs_inode *inode)
a95249b3
JB
3610{
3611 struct btrfs_inode_item *inode_item;
a95249b3
JB
3612 int ret;
3613
efd0c405 3614 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3615 &inode->location, sizeof(*inode_item));
a95249b3
JB
3616 if (ret && ret != -EEXIST)
3617 return ret;
3618 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3619 struct btrfs_inode_item);
6d889a3b
NB
3620 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3621 0, 0);
a95249b3
JB
3622 btrfs_release_path(path);
3623 return 0;
3624}
3625
31ff1cd2 3626static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3627 struct btrfs_inode *inode,
31ff1cd2 3628 struct btrfs_path *dst_path,
16e7549f 3629 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3630 int start_slot, int nr, int inode_only,
3631 u64 logged_isize)
31ff1cd2 3632{
44d70e19 3633 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3634 unsigned long src_offset;
3635 unsigned long dst_offset;
44d70e19 3636 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3637 struct btrfs_file_extent_item *extent;
3638 struct btrfs_inode_item *inode_item;
16e7549f
JB
3639 struct extent_buffer *src = src_path->nodes[0];
3640 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3641 int ret;
3642 struct btrfs_key *ins_keys;
3643 u32 *ins_sizes;
3644 char *ins_data;
3645 int i;
d20f7043 3646 struct list_head ordered_sums;
44d70e19 3647 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3648 bool has_extents = false;
74121f7c 3649 bool need_find_last_extent = true;
16e7549f 3650 bool done = false;
d20f7043
CM
3651
3652 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3653
3654 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3655 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3656 if (!ins_data)
3657 return -ENOMEM;
3658
16e7549f
JB
3659 first_key.objectid = (u64)-1;
3660
31ff1cd2
CM
3661 ins_sizes = (u32 *)ins_data;
3662 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3663
3664 for (i = 0; i < nr; i++) {
3665 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3666 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3667 }
3668 ret = btrfs_insert_empty_items(trans, log, dst_path,
3669 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3670 if (ret) {
3671 kfree(ins_data);
3672 return ret;
3673 }
31ff1cd2 3674
5d4f98a2 3675 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3676 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3677 dst_path->slots[0]);
3678
3679 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3680
0dde10be 3681 if (i == nr - 1)
16e7549f
JB
3682 last_key = ins_keys[i];
3683
94edf4ae 3684 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3685 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3686 dst_path->slots[0],
3687 struct btrfs_inode_item);
94edf4ae 3688 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3689 &inode->vfs_inode,
3690 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3691 logged_isize);
94edf4ae
JB
3692 } else {
3693 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3694 src_offset, ins_sizes[i]);
31ff1cd2 3695 }
94edf4ae 3696
16e7549f
JB
3697 /*
3698 * We set need_find_last_extent here in case we know we were
3699 * processing other items and then walk into the first extent in
3700 * the inode. If we don't hit an extent then nothing changes,
3701 * we'll do the last search the next time around.
3702 */
3703 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3704 has_extents = true;
74121f7c 3705 if (first_key.objectid == (u64)-1)
16e7549f
JB
3706 first_key = ins_keys[i];
3707 } else {
3708 need_find_last_extent = false;
3709 }
3710
31ff1cd2
CM
3711 /* take a reference on file data extents so that truncates
3712 * or deletes of this inode don't have to relog the inode
3713 * again
3714 */
962a298f 3715 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3716 !skip_csum) {
31ff1cd2
CM
3717 int found_type;
3718 extent = btrfs_item_ptr(src, start_slot + i,
3719 struct btrfs_file_extent_item);
3720
8e531cdf 3721 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3722 continue;
3723
31ff1cd2 3724 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3725 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3726 u64 ds, dl, cs, cl;
3727 ds = btrfs_file_extent_disk_bytenr(src,
3728 extent);
3729 /* ds == 0 is a hole */
3730 if (ds == 0)
3731 continue;
3732
3733 dl = btrfs_file_extent_disk_num_bytes(src,
3734 extent);
3735 cs = btrfs_file_extent_offset(src, extent);
3736 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3737 extent);
580afd76
CM
3738 if (btrfs_file_extent_compression(src,
3739 extent)) {
3740 cs = 0;
3741 cl = dl;
3742 }
5d4f98a2
YZ
3743
3744 ret = btrfs_lookup_csums_range(
0b246afa 3745 fs_info->csum_root,
5d4f98a2 3746 ds + cs, ds + cs + cl - 1,
a2de733c 3747 &ordered_sums, 0);
3650860b
JB
3748 if (ret) {
3749 btrfs_release_path(dst_path);
3750 kfree(ins_data);
3751 return ret;
3752 }
31ff1cd2
CM
3753 }
3754 }
31ff1cd2
CM
3755 }
3756
3757 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3758 btrfs_release_path(dst_path);
31ff1cd2 3759 kfree(ins_data);
d20f7043
CM
3760
3761 /*
3762 * we have to do this after the loop above to avoid changing the
3763 * log tree while trying to change the log tree.
3764 */
4a500fd1 3765 ret = 0;
d397712b 3766 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3767 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3768 struct btrfs_ordered_sum,
3769 list);
4a500fd1
YZ
3770 if (!ret)
3771 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3772 list_del(&sums->list);
3773 kfree(sums);
3774 }
16e7549f
JB
3775
3776 if (!has_extents)
3777 return ret;
3778
74121f7c
FM
3779 if (need_find_last_extent && *last_extent == first_key.offset) {
3780 /*
3781 * We don't have any leafs between our current one and the one
3782 * we processed before that can have file extent items for our
3783 * inode (and have a generation number smaller than our current
3784 * transaction id).
3785 */
3786 need_find_last_extent = false;
3787 }
3788
16e7549f
JB
3789 /*
3790 * Because we use btrfs_search_forward we could skip leaves that were
3791 * not modified and then assume *last_extent is valid when it really
3792 * isn't. So back up to the previous leaf and read the end of the last
3793 * extent before we go and fill in holes.
3794 */
3795 if (need_find_last_extent) {
3796 u64 len;
3797
44d70e19 3798 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3799 if (ret < 0)
3800 return ret;
3801 if (ret)
3802 goto fill_holes;
3803 if (src_path->slots[0])
3804 src_path->slots[0]--;
3805 src = src_path->nodes[0];
3806 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3807 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3808 key.type != BTRFS_EXTENT_DATA_KEY)
3809 goto fill_holes;
3810 extent = btrfs_item_ptr(src, src_path->slots[0],
3811 struct btrfs_file_extent_item);
3812 if (btrfs_file_extent_type(src, extent) ==
3813 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3814 len = btrfs_file_extent_inline_len(src,
3815 src_path->slots[0],
3816 extent);
16e7549f 3817 *last_extent = ALIGN(key.offset + len,
0b246afa 3818 fs_info->sectorsize);
16e7549f
JB
3819 } else {
3820 len = btrfs_file_extent_num_bytes(src, extent);
3821 *last_extent = key.offset + len;
3822 }
3823 }
3824fill_holes:
3825 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3826 * things could have happened
3827 *
3828 * 1) A merge could have happened, so we could currently be on a leaf
3829 * that holds what we were copying in the first place.
3830 * 2) A split could have happened, and now not all of the items we want
3831 * are on the same leaf.
3832 *
3833 * So we need to adjust how we search for holes, we need to drop the
3834 * path and re-search for the first extent key we found, and then walk
3835 * forward until we hit the last one we copied.
3836 */
3837 if (need_find_last_extent) {
3838 /* btrfs_prev_leaf could return 1 without releasing the path */
3839 btrfs_release_path(src_path);
f85b7379
DS
3840 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3841 src_path, 0, 0);
16e7549f
JB
3842 if (ret < 0)
3843 return ret;
3844 ASSERT(ret == 0);
3845 src = src_path->nodes[0];
3846 i = src_path->slots[0];
3847 } else {
3848 i = start_slot;
3849 }
3850
3851 /*
3852 * Ok so here we need to go through and fill in any holes we may have
3853 * to make sure that holes are punched for those areas in case they had
3854 * extents previously.
3855 */
3856 while (!done) {
3857 u64 offset, len;
3858 u64 extent_end;
3859
3860 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 3861 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
3862 if (ret < 0)
3863 return ret;
3864 ASSERT(ret == 0);
3865 src = src_path->nodes[0];
3866 i = 0;
3867 }
3868
3869 btrfs_item_key_to_cpu(src, &key, i);
3870 if (!btrfs_comp_cpu_keys(&key, &last_key))
3871 done = true;
44d70e19 3872 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3873 key.type != BTRFS_EXTENT_DATA_KEY) {
3874 i++;
3875 continue;
3876 }
3877 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3878 if (btrfs_file_extent_type(src, extent) ==
3879 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3880 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 3881 extent_end = ALIGN(key.offset + len,
0b246afa 3882 fs_info->sectorsize);
16e7549f
JB
3883 } else {
3884 len = btrfs_file_extent_num_bytes(src, extent);
3885 extent_end = key.offset + len;
3886 }
3887 i++;
3888
3889 if (*last_extent == key.offset) {
3890 *last_extent = extent_end;
3891 continue;
3892 }
3893 offset = *last_extent;
3894 len = key.offset - *last_extent;
44d70e19 3895 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 3896 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
3897 if (ret)
3898 break;
74121f7c 3899 *last_extent = extent_end;
16e7549f
JB
3900 }
3901 /*
3902 * Need to let the callers know we dropped the path so they should
3903 * re-search.
3904 */
3905 if (!ret && need_find_last_extent)
3906 ret = 1;
4a500fd1 3907 return ret;
31ff1cd2
CM
3908}
3909
5dc562c5
JB
3910static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3911{
3912 struct extent_map *em1, *em2;
3913
3914 em1 = list_entry(a, struct extent_map, list);
3915 em2 = list_entry(b, struct extent_map, list);
3916
3917 if (em1->start < em2->start)
3918 return -1;
3919 else if (em1->start > em2->start)
3920 return 1;
3921 return 0;
3922}
3923
8407f553
FM
3924static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3925 struct inode *inode,
3926 struct btrfs_root *root,
3927 const struct extent_map *em,
3928 const struct list_head *logged_list,
3929 bool *ordered_io_error)
5dc562c5 3930{
0b246afa 3931 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 3932 struct btrfs_ordered_extent *ordered;
8407f553 3933 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3934 u64 mod_start = em->mod_start;
3935 u64 mod_len = em->mod_len;
8407f553 3936 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3937 u64 csum_offset;
3938 u64 csum_len;
8407f553
FM
3939 LIST_HEAD(ordered_sums);
3940 int ret = 0;
0aa4a17d 3941
8407f553 3942 *ordered_io_error = false;
0aa4a17d 3943
8407f553
FM
3944 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3945 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3946 return 0;
5dc562c5 3947
2ab28f32 3948 /*
8407f553
FM
3949 * Wait far any ordered extent that covers our extent map. If it
3950 * finishes without an error, first check and see if our csums are on
3951 * our outstanding ordered extents.
2ab28f32 3952 */
827463c4 3953 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3954 struct btrfs_ordered_sum *sum;
3955
3956 if (!mod_len)
3957 break;
3958
2ab28f32
JB
3959 if (ordered->file_offset + ordered->len <= mod_start ||
3960 mod_start + mod_len <= ordered->file_offset)
3961 continue;
3962
8407f553
FM
3963 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3964 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3965 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3966 const u64 start = ordered->file_offset;
3967 const u64 end = ordered->file_offset + ordered->len - 1;
3968
3969 WARN_ON(ordered->inode != inode);
3970 filemap_fdatawrite_range(inode->i_mapping, start, end);
3971 }
3972
3973 wait_event(ordered->wait,
3974 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3975 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3976
3977 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3978 /*
3979 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3980 * i_mapping flags, so that the next fsync won't get
3981 * an outdated io error too.
3982 */
f0312210 3983 filemap_check_errors(inode->i_mapping);
8407f553
FM
3984 *ordered_io_error = true;
3985 break;
3986 }
2ab28f32
JB
3987 /*
3988 * We are going to copy all the csums on this ordered extent, so
3989 * go ahead and adjust mod_start and mod_len in case this
3990 * ordered extent has already been logged.
3991 */
3992 if (ordered->file_offset > mod_start) {
3993 if (ordered->file_offset + ordered->len >=
3994 mod_start + mod_len)
3995 mod_len = ordered->file_offset - mod_start;
3996 /*
3997 * If we have this case
3998 *
3999 * |--------- logged extent ---------|
4000 * |----- ordered extent ----|
4001 *
4002 * Just don't mess with mod_start and mod_len, we'll
4003 * just end up logging more csums than we need and it
4004 * will be ok.
4005 */
4006 } else {
4007 if (ordered->file_offset + ordered->len <
4008 mod_start + mod_len) {
4009 mod_len = (mod_start + mod_len) -
4010 (ordered->file_offset + ordered->len);
4011 mod_start = ordered->file_offset +
4012 ordered->len;
4013 } else {
4014 mod_len = 0;
4015 }
4016 }
4017
8407f553
FM
4018 if (skip_csum)
4019 continue;
4020
2ab28f32
JB
4021 /*
4022 * To keep us from looping for the above case of an ordered
4023 * extent that falls inside of the logged extent.
4024 */
4025 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4026 &ordered->flags))
4027 continue;
2ab28f32 4028
2ab28f32
JB
4029 list_for_each_entry(sum, &ordered->list, list) {
4030 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4031 if (ret)
8407f553 4032 break;
2ab28f32 4033 }
2ab28f32 4034 }
2ab28f32 4035
8407f553 4036 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4037 return ret;
4038
488111aa
FDBM
4039 if (em->compress_type) {
4040 csum_offset = 0;
8407f553 4041 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4042 } else {
4043 csum_offset = mod_start - em->start;
4044 csum_len = mod_len;
4045 }
2ab28f32 4046
70c8a91c 4047 /* block start is already adjusted for the file extent offset. */
0b246afa 4048 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4049 em->block_start + csum_offset,
4050 em->block_start + csum_offset +
4051 csum_len - 1, &ordered_sums, 0);
4052 if (ret)
4053 return ret;
5dc562c5 4054
70c8a91c
JB
4055 while (!list_empty(&ordered_sums)) {
4056 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057 struct btrfs_ordered_sum,
4058 list);
4059 if (!ret)
4060 ret = btrfs_csum_file_blocks(trans, log, sums);
4061 list_del(&sums->list);
4062 kfree(sums);
5dc562c5
JB
4063 }
4064
70c8a91c 4065 return ret;
5dc562c5
JB
4066}
4067
8407f553 4068static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4069 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4070 const struct extent_map *em,
4071 struct btrfs_path *path,
4072 const struct list_head *logged_list,
4073 struct btrfs_log_ctx *ctx)
4074{
4075 struct btrfs_root *log = root->log_root;
4076 struct btrfs_file_extent_item *fi;
4077 struct extent_buffer *leaf;
4078 struct btrfs_map_token token;
4079 struct btrfs_key key;
4080 u64 extent_offset = em->start - em->orig_start;
4081 u64 block_len;
4082 int ret;
4083 int extent_inserted = 0;
4084 bool ordered_io_err = false;
4085
f85b7379
DS
4086 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4087 logged_list, &ordered_io_err);
8407f553
FM
4088 if (ret)
4089 return ret;
4090
4091 if (ordered_io_err) {
4092 ctx->io_err = -EIO;
ebb70442 4093 return ctx->io_err;
8407f553
FM
4094 }
4095
4096 btrfs_init_map_token(&token);
4097
9d122629 4098 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4099 em->start + em->len, NULL, 0, 1,
4100 sizeof(*fi), &extent_inserted);
4101 if (ret)
4102 return ret;
4103
4104 if (!extent_inserted) {
9d122629 4105 key.objectid = btrfs_ino(inode);
8407f553
FM
4106 key.type = BTRFS_EXTENT_DATA_KEY;
4107 key.offset = em->start;
4108
4109 ret = btrfs_insert_empty_item(trans, log, path, &key,
4110 sizeof(*fi));
4111 if (ret)
4112 return ret;
4113 }
4114 leaf = path->nodes[0];
4115 fi = btrfs_item_ptr(leaf, path->slots[0],
4116 struct btrfs_file_extent_item);
4117
50d9aa99 4118 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4119 &token);
4120 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4121 btrfs_set_token_file_extent_type(leaf, fi,
4122 BTRFS_FILE_EXTENT_PREALLOC,
4123 &token);
4124 else
4125 btrfs_set_token_file_extent_type(leaf, fi,
4126 BTRFS_FILE_EXTENT_REG,
4127 &token);
4128
4129 block_len = max(em->block_len, em->orig_block_len);
4130 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4131 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4132 em->block_start,
4133 &token);
4134 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4135 &token);
4136 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4137 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4138 em->block_start -
4139 extent_offset, &token);
4140 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4141 &token);
4142 } else {
4143 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4144 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4145 &token);
4146 }
4147
4148 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4149 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4150 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4151 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4152 &token);
4153 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4154 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4155 btrfs_mark_buffer_dirty(leaf);
4156
4157 btrfs_release_path(path);
4158
4159 return ret;
4160}
4161
5dc562c5
JB
4162static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4163 struct btrfs_root *root,
9d122629 4164 struct btrfs_inode *inode,
827463c4 4165 struct btrfs_path *path,
8407f553 4166 struct list_head *logged_list,
de0ee0ed
FM
4167 struct btrfs_log_ctx *ctx,
4168 const u64 start,
4169 const u64 end)
5dc562c5 4170{
5dc562c5
JB
4171 struct extent_map *em, *n;
4172 struct list_head extents;
9d122629 4173 struct extent_map_tree *tree = &inode->extent_tree;
8c6c5928 4174 u64 logged_start, logged_end;
5dc562c5
JB
4175 u64 test_gen;
4176 int ret = 0;
2ab28f32 4177 int num = 0;
5dc562c5
JB
4178
4179 INIT_LIST_HEAD(&extents);
4180
9d122629 4181 down_write(&inode->dio_sem);
5dc562c5
JB
4182 write_lock(&tree->lock);
4183 test_gen = root->fs_info->last_trans_committed;
8c6c5928
JB
4184 logged_start = start;
4185 logged_end = end;
5dc562c5
JB
4186
4187 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4188 list_del_init(&em->list);
2ab28f32
JB
4189 /*
4190 * Just an arbitrary number, this can be really CPU intensive
4191 * once we start getting a lot of extents, and really once we
4192 * have a bunch of extents we just want to commit since it will
4193 * be faster.
4194 */
4195 if (++num > 32768) {
4196 list_del_init(&tree->modified_extents);
4197 ret = -EFBIG;
4198 goto process;
4199 }
4200
5dc562c5
JB
4201 if (em->generation <= test_gen)
4202 continue;
8c6c5928
JB
4203
4204 if (em->start < logged_start)
4205 logged_start = em->start;
4206 if ((em->start + em->len - 1) > logged_end)
4207 logged_end = em->start + em->len - 1;
4208
ff44c6e3 4209 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4210 refcount_inc(&em->refs);
ff44c6e3 4211 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4212 list_add_tail(&em->list, &extents);
2ab28f32 4213 num++;
5dc562c5
JB
4214 }
4215
4216 list_sort(NULL, &extents, extent_cmp);
8c6c5928 4217 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
de0ee0ed 4218 /*
5f9a8a51
FM
4219 * Some ordered extents started by fsync might have completed
4220 * before we could collect them into the list logged_list, which
4221 * means they're gone, not in our logged_list nor in the inode's
4222 * ordered tree. We want the application/user space to know an
4223 * error happened while attempting to persist file data so that
4224 * it can take proper action. If such error happened, we leave
4225 * without writing to the log tree and the fsync must report the
4226 * file data write error and not commit the current transaction.
de0ee0ed 4227 */
9d122629 4228 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4229 if (ret)
4230 ctx->io_err = ret;
2ab28f32 4231process:
5dc562c5
JB
4232 while (!list_empty(&extents)) {
4233 em = list_entry(extents.next, struct extent_map, list);
4234
4235 list_del_init(&em->list);
4236
4237 /*
4238 * If we had an error we just need to delete everybody from our
4239 * private list.
4240 */
ff44c6e3 4241 if (ret) {
201a9038 4242 clear_em_logging(tree, em);
ff44c6e3 4243 free_extent_map(em);
5dc562c5 4244 continue;
ff44c6e3
JB
4245 }
4246
4247 write_unlock(&tree->lock);
5dc562c5 4248
8407f553
FM
4249 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4250 ctx);
ff44c6e3 4251 write_lock(&tree->lock);
201a9038
JB
4252 clear_em_logging(tree, em);
4253 free_extent_map(em);
5dc562c5 4254 }
ff44c6e3
JB
4255 WARN_ON(!list_empty(&extents));
4256 write_unlock(&tree->lock);
9d122629 4257 up_write(&inode->dio_sem);
5dc562c5 4258
5dc562c5 4259 btrfs_release_path(path);
5dc562c5
JB
4260 return ret;
4261}
4262
481b01c0 4263static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4264 struct btrfs_path *path, u64 *size_ret)
4265{
4266 struct btrfs_key key;
4267 int ret;
4268
481b01c0 4269 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4270 key.type = BTRFS_INODE_ITEM_KEY;
4271 key.offset = 0;
4272
4273 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4274 if (ret < 0) {
4275 return ret;
4276 } else if (ret > 0) {
2f2ff0ee 4277 *size_ret = 0;
1a4bcf47
FM
4278 } else {
4279 struct btrfs_inode_item *item;
4280
4281 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4282 struct btrfs_inode_item);
4283 *size_ret = btrfs_inode_size(path->nodes[0], item);
4284 }
4285
4286 btrfs_release_path(path);
4287 return 0;
4288}
4289
36283bf7
FM
4290/*
4291 * At the moment we always log all xattrs. This is to figure out at log replay
4292 * time which xattrs must have their deletion replayed. If a xattr is missing
4293 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4294 * because if a xattr is deleted, the inode is fsynced and a power failure
4295 * happens, causing the log to be replayed the next time the fs is mounted,
4296 * we want the xattr to not exist anymore (same behaviour as other filesystems
4297 * with a journal, ext3/4, xfs, f2fs, etc).
4298 */
4299static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4300 struct btrfs_root *root,
1a93c36a 4301 struct btrfs_inode *inode,
36283bf7
FM
4302 struct btrfs_path *path,
4303 struct btrfs_path *dst_path)
4304{
4305 int ret;
4306 struct btrfs_key key;
1a93c36a 4307 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4308 int ins_nr = 0;
4309 int start_slot = 0;
4310
4311 key.objectid = ino;
4312 key.type = BTRFS_XATTR_ITEM_KEY;
4313 key.offset = 0;
4314
4315 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4316 if (ret < 0)
4317 return ret;
4318
4319 while (true) {
4320 int slot = path->slots[0];
4321 struct extent_buffer *leaf = path->nodes[0];
4322 int nritems = btrfs_header_nritems(leaf);
4323
4324 if (slot >= nritems) {
4325 if (ins_nr > 0) {
4326 u64 last_extent = 0;
4327
1a93c36a 4328 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4329 &last_extent, start_slot,
4330 ins_nr, 1, 0);
4331 /* can't be 1, extent items aren't processed */
4332 ASSERT(ret <= 0);
4333 if (ret < 0)
4334 return ret;
4335 ins_nr = 0;
4336 }
4337 ret = btrfs_next_leaf(root, path);
4338 if (ret < 0)
4339 return ret;
4340 else if (ret > 0)
4341 break;
4342 continue;
4343 }
4344
4345 btrfs_item_key_to_cpu(leaf, &key, slot);
4346 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4347 break;
4348
4349 if (ins_nr == 0)
4350 start_slot = slot;
4351 ins_nr++;
4352 path->slots[0]++;
4353 cond_resched();
4354 }
4355 if (ins_nr > 0) {
4356 u64 last_extent = 0;
4357
1a93c36a 4358 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4359 &last_extent, start_slot,
4360 ins_nr, 1, 0);
4361 /* can't be 1, extent items aren't processed */
4362 ASSERT(ret <= 0);
4363 if (ret < 0)
4364 return ret;
4365 }
4366
4367 return 0;
4368}
4369
a89ca6f2
FM
4370/*
4371 * If the no holes feature is enabled we need to make sure any hole between the
4372 * last extent and the i_size of our inode is explicitly marked in the log. This
4373 * is to make sure that doing something like:
4374 *
4375 * 1) create file with 128Kb of data
4376 * 2) truncate file to 64Kb
4377 * 3) truncate file to 256Kb
4378 * 4) fsync file
4379 * 5) <crash/power failure>
4380 * 6) mount fs and trigger log replay
4381 *
4382 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4383 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4384 * file correspond to a hole. The presence of explicit holes in a log tree is
4385 * what guarantees that log replay will remove/adjust file extent items in the
4386 * fs/subvol tree.
4387 *
4388 * Here we do not need to care about holes between extents, that is already done
4389 * by copy_items(). We also only need to do this in the full sync path, where we
4390 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4391 * lookup the list of modified extent maps and if any represents a hole, we
4392 * insert a corresponding extent representing a hole in the log tree.
4393 */
4394static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4395 struct btrfs_root *root,
a0308dd7 4396 struct btrfs_inode *inode,
a89ca6f2
FM
4397 struct btrfs_path *path)
4398{
0b246afa 4399 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4400 int ret;
4401 struct btrfs_key key;
4402 u64 hole_start;
4403 u64 hole_size;
4404 struct extent_buffer *leaf;
4405 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4406 const u64 ino = btrfs_ino(inode);
4407 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4408
0b246afa 4409 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4410 return 0;
4411
4412 key.objectid = ino;
4413 key.type = BTRFS_EXTENT_DATA_KEY;
4414 key.offset = (u64)-1;
4415
4416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4417 ASSERT(ret != 0);
4418 if (ret < 0)
4419 return ret;
4420
4421 ASSERT(path->slots[0] > 0);
4422 path->slots[0]--;
4423 leaf = path->nodes[0];
4424 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4425
4426 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4427 /* inode does not have any extents */
4428 hole_start = 0;
4429 hole_size = i_size;
4430 } else {
4431 struct btrfs_file_extent_item *extent;
4432 u64 len;
4433
4434 /*
4435 * If there's an extent beyond i_size, an explicit hole was
4436 * already inserted by copy_items().
4437 */
4438 if (key.offset >= i_size)
4439 return 0;
4440
4441 extent = btrfs_item_ptr(leaf, path->slots[0],
4442 struct btrfs_file_extent_item);
4443
4444 if (btrfs_file_extent_type(leaf, extent) ==
4445 BTRFS_FILE_EXTENT_INLINE) {
4446 len = btrfs_file_extent_inline_len(leaf,
4447 path->slots[0],
4448 extent);
6399fb5a
FM
4449 ASSERT(len == i_size ||
4450 (len == fs_info->sectorsize &&
4451 btrfs_file_extent_compression(leaf, extent) !=
4452 BTRFS_COMPRESS_NONE));
a89ca6f2
FM
4453 return 0;
4454 }
4455
4456 len = btrfs_file_extent_num_bytes(leaf, extent);
4457 /* Last extent goes beyond i_size, no need to log a hole. */
4458 if (key.offset + len > i_size)
4459 return 0;
4460 hole_start = key.offset + len;
4461 hole_size = i_size - hole_start;
4462 }
4463 btrfs_release_path(path);
4464
4465 /* Last extent ends at i_size. */
4466 if (hole_size == 0)
4467 return 0;
4468
0b246afa 4469 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4470 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4471 hole_size, 0, hole_size, 0, 0, 0);
4472 return ret;
4473}
4474
56f23fdb
FM
4475/*
4476 * When we are logging a new inode X, check if it doesn't have a reference that
4477 * matches the reference from some other inode Y created in a past transaction
4478 * and that was renamed in the current transaction. If we don't do this, then at
4479 * log replay time we can lose inode Y (and all its files if it's a directory):
4480 *
4481 * mkdir /mnt/x
4482 * echo "hello world" > /mnt/x/foobar
4483 * sync
4484 * mv /mnt/x /mnt/y
4485 * mkdir /mnt/x # or touch /mnt/x
4486 * xfs_io -c fsync /mnt/x
4487 * <power fail>
4488 * mount fs, trigger log replay
4489 *
4490 * After the log replay procedure, we would lose the first directory and all its
4491 * files (file foobar).
4492 * For the case where inode Y is not a directory we simply end up losing it:
4493 *
4494 * echo "123" > /mnt/foo
4495 * sync
4496 * mv /mnt/foo /mnt/bar
4497 * echo "abc" > /mnt/foo
4498 * xfs_io -c fsync /mnt/foo
4499 * <power fail>
4500 *
4501 * We also need this for cases where a snapshot entry is replaced by some other
4502 * entry (file or directory) otherwise we end up with an unreplayable log due to
4503 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4504 * if it were a regular entry:
4505 *
4506 * mkdir /mnt/x
4507 * btrfs subvolume snapshot /mnt /mnt/x/snap
4508 * btrfs subvolume delete /mnt/x/snap
4509 * rmdir /mnt/x
4510 * mkdir /mnt/x
4511 * fsync /mnt/x or fsync some new file inside it
4512 * <power fail>
4513 *
4514 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4515 * the same transaction.
4516 */
4517static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4518 const int slot,
4519 const struct btrfs_key *key,
4791c8f1 4520 struct btrfs_inode *inode,
44f714da 4521 u64 *other_ino)
56f23fdb
FM
4522{
4523 int ret;
4524 struct btrfs_path *search_path;
4525 char *name = NULL;
4526 u32 name_len = 0;
4527 u32 item_size = btrfs_item_size_nr(eb, slot);
4528 u32 cur_offset = 0;
4529 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4530
4531 search_path = btrfs_alloc_path();
4532 if (!search_path)
4533 return -ENOMEM;
4534 search_path->search_commit_root = 1;
4535 search_path->skip_locking = 1;
4536
4537 while (cur_offset < item_size) {
4538 u64 parent;
4539 u32 this_name_len;
4540 u32 this_len;
4541 unsigned long name_ptr;
4542 struct btrfs_dir_item *di;
4543
4544 if (key->type == BTRFS_INODE_REF_KEY) {
4545 struct btrfs_inode_ref *iref;
4546
4547 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4548 parent = key->offset;
4549 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4550 name_ptr = (unsigned long)(iref + 1);
4551 this_len = sizeof(*iref) + this_name_len;
4552 } else {
4553 struct btrfs_inode_extref *extref;
4554
4555 extref = (struct btrfs_inode_extref *)(ptr +
4556 cur_offset);
4557 parent = btrfs_inode_extref_parent(eb, extref);
4558 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4559 name_ptr = (unsigned long)&extref->name;
4560 this_len = sizeof(*extref) + this_name_len;
4561 }
4562
4563 if (this_name_len > name_len) {
4564 char *new_name;
4565
4566 new_name = krealloc(name, this_name_len, GFP_NOFS);
4567 if (!new_name) {
4568 ret = -ENOMEM;
4569 goto out;
4570 }
4571 name_len = this_name_len;
4572 name = new_name;
4573 }
4574
4575 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4576 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4577 parent, name, this_name_len, 0);
56f23fdb 4578 if (di && !IS_ERR(di)) {
44f714da
FM
4579 struct btrfs_key di_key;
4580
4581 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4582 di, &di_key);
4583 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4584 ret = 1;
4585 *other_ino = di_key.objectid;
4586 } else {
4587 ret = -EAGAIN;
4588 }
56f23fdb
FM
4589 goto out;
4590 } else if (IS_ERR(di)) {
4591 ret = PTR_ERR(di);
4592 goto out;
4593 }
4594 btrfs_release_path(search_path);
4595
4596 cur_offset += this_len;
4597 }
4598 ret = 0;
4599out:
4600 btrfs_free_path(search_path);
4601 kfree(name);
4602 return ret;
4603}
4604
e02119d5
CM
4605/* log a single inode in the tree log.
4606 * At least one parent directory for this inode must exist in the tree
4607 * or be logged already.
4608 *
4609 * Any items from this inode changed by the current transaction are copied
4610 * to the log tree. An extra reference is taken on any extents in this
4611 * file, allowing us to avoid a whole pile of corner cases around logging
4612 * blocks that have been removed from the tree.
4613 *
4614 * See LOG_INODE_ALL and related defines for a description of what inode_only
4615 * does.
4616 *
4617 * This handles both files and directories.
4618 */
12fcfd22 4619static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 4620 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
4621 int inode_only,
4622 const loff_t start,
8407f553
FM
4623 const loff_t end,
4624 struct btrfs_log_ctx *ctx)
e02119d5 4625{
0b246afa 4626 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4627 struct btrfs_path *path;
4628 struct btrfs_path *dst_path;
4629 struct btrfs_key min_key;
4630 struct btrfs_key max_key;
4631 struct btrfs_root *log = root->log_root;
827463c4 4632 LIST_HEAD(logged_list);
16e7549f 4633 u64 last_extent = 0;
4a500fd1 4634 int err = 0;
e02119d5 4635 int ret;
3a5f1d45 4636 int nritems;
31ff1cd2
CM
4637 int ins_start_slot = 0;
4638 int ins_nr;
5dc562c5 4639 bool fast_search = false;
a59108a7
NB
4640 u64 ino = btrfs_ino(inode);
4641 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 4642 u64 logged_isize = 0;
e4545de5 4643 bool need_log_inode_item = true;
e02119d5 4644
e02119d5 4645 path = btrfs_alloc_path();
5df67083
TI
4646 if (!path)
4647 return -ENOMEM;
e02119d5 4648 dst_path = btrfs_alloc_path();
5df67083
TI
4649 if (!dst_path) {
4650 btrfs_free_path(path);
4651 return -ENOMEM;
4652 }
e02119d5 4653
33345d01 4654 min_key.objectid = ino;
e02119d5
CM
4655 min_key.type = BTRFS_INODE_ITEM_KEY;
4656 min_key.offset = 0;
4657
33345d01 4658 max_key.objectid = ino;
12fcfd22 4659
12fcfd22 4660
5dc562c5 4661 /* today the code can only do partial logging of directories */
a59108a7 4662 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 4663 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4664 &inode->runtime_flags) &&
781feef7 4665 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4666 max_key.type = BTRFS_XATTR_ITEM_KEY;
4667 else
4668 max_key.type = (u8)-1;
4669 max_key.offset = (u64)-1;
4670
2c2c452b
FM
4671 /*
4672 * Only run delayed items if we are a dir or a new file.
4673 * Otherwise commit the delayed inode only, which is needed in
4674 * order for the log replay code to mark inodes for link count
4675 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4676 */
a59108a7
NB
4677 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4678 inode->generation > fs_info->last_trans_committed)
4679 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 4680 else
a59108a7 4681 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
4682
4683 if (ret) {
4684 btrfs_free_path(path);
4685 btrfs_free_path(dst_path);
4686 return ret;
16cdcec7
MX
4687 }
4688
781feef7
LB
4689 if (inode_only == LOG_OTHER_INODE) {
4690 inode_only = LOG_INODE_EXISTS;
a59108a7 4691 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 4692 } else {
a59108a7 4693 mutex_lock(&inode->log_mutex);
781feef7 4694 }
e02119d5
CM
4695
4696 /*
4697 * a brute force approach to making sure we get the most uptodate
4698 * copies of everything.
4699 */
a59108a7 4700 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
4701 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4702
4f764e51
FM
4703 if (inode_only == LOG_INODE_EXISTS)
4704 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4705 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4706 } else {
1a4bcf47
FM
4707 if (inode_only == LOG_INODE_EXISTS) {
4708 /*
4709 * Make sure the new inode item we write to the log has
4710 * the same isize as the current one (if it exists).
4711 * This is necessary to prevent data loss after log
4712 * replay, and also to prevent doing a wrong expanding
4713 * truncate - for e.g. create file, write 4K into offset
4714 * 0, fsync, write 4K into offset 4096, add hard link,
4715 * fsync some other file (to sync log), power fail - if
4716 * we use the inode's current i_size, after log replay
4717 * we get a 8Kb file, with the last 4Kb extent as a hole
4718 * (zeroes), as if an expanding truncate happened,
4719 * instead of getting a file of 4Kb only.
4720 */
a59108a7 4721 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
4722 if (err)
4723 goto out_unlock;
4724 }
a742994a 4725 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4726 &inode->runtime_flags)) {
a742994a 4727 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4728 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4729 ret = drop_objectid_items(trans, log, path, ino,
4730 max_key.type);
4731 } else {
4732 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4733 &inode->runtime_flags);
a742994a 4734 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4735 &inode->runtime_flags);
28ed1345
CM
4736 while(1) {
4737 ret = btrfs_truncate_inode_items(trans,
a59108a7 4738 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
4739 if (ret != -EAGAIN)
4740 break;
4741 }
a742994a 4742 }
4f764e51 4743 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4744 &inode->runtime_flags) ||
6cfab851 4745 inode_only == LOG_INODE_EXISTS) {
4f764e51 4746 if (inode_only == LOG_INODE_ALL)
183f37fa 4747 fast_search = true;
4f764e51 4748 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4749 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4750 max_key.type);
a95249b3
JB
4751 } else {
4752 if (inode_only == LOG_INODE_ALL)
4753 fast_search = true;
a95249b3 4754 goto log_extents;
5dc562c5 4755 }
a95249b3 4756
e02119d5 4757 }
4a500fd1
YZ
4758 if (ret) {
4759 err = ret;
4760 goto out_unlock;
4761 }
e02119d5 4762
d397712b 4763 while (1) {
31ff1cd2 4764 ins_nr = 0;
6174d3cb 4765 ret = btrfs_search_forward(root, &min_key,
de78b51a 4766 path, trans->transid);
fb770ae4
LB
4767 if (ret < 0) {
4768 err = ret;
4769 goto out_unlock;
4770 }
e02119d5
CM
4771 if (ret != 0)
4772 break;
3a5f1d45 4773again:
31ff1cd2 4774 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4775 if (min_key.objectid != ino)
e02119d5
CM
4776 break;
4777 if (min_key.type > max_key.type)
4778 break;
31ff1cd2 4779
e4545de5
FM
4780 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4781 need_log_inode_item = false;
4782
56f23fdb
FM
4783 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4784 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
a59108a7 4785 inode->generation == trans->transid) {
44f714da
FM
4786 u64 other_ino = 0;
4787
56f23fdb 4788 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7
NB
4789 path->slots[0], &min_key, inode,
4790 &other_ino);
56f23fdb
FM
4791 if (ret < 0) {
4792 err = ret;
4793 goto out_unlock;
28a23593 4794 } else if (ret > 0 && ctx &&
4a0cc7ca 4795 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4796 struct btrfs_key inode_key;
4797 struct inode *other_inode;
4798
4799 if (ins_nr > 0) {
4800 ins_nr++;
4801 } else {
4802 ins_nr = 1;
4803 ins_start_slot = path->slots[0];
4804 }
a59108a7 4805 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
4806 &last_extent, ins_start_slot,
4807 ins_nr, inode_only,
4808 logged_isize);
4809 if (ret < 0) {
4810 err = ret;
4811 goto out_unlock;
4812 }
4813 ins_nr = 0;
4814 btrfs_release_path(path);
4815 inode_key.objectid = other_ino;
4816 inode_key.type = BTRFS_INODE_ITEM_KEY;
4817 inode_key.offset = 0;
0b246afa 4818 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
4819 &inode_key, root,
4820 NULL);
4821 /*
4822 * If the other inode that had a conflicting dir
4823 * entry was deleted in the current transaction,
4824 * we don't need to do more work nor fallback to
4825 * a transaction commit.
4826 */
4827 if (IS_ERR(other_inode) &&
4828 PTR_ERR(other_inode) == -ENOENT) {
4829 goto next_key;
4830 } else if (IS_ERR(other_inode)) {
4831 err = PTR_ERR(other_inode);
4832 goto out_unlock;
4833 }
4834 /*
4835 * We are safe logging the other inode without
4836 * acquiring its i_mutex as long as we log with
4837 * the LOG_INODE_EXISTS mode. We're safe against
4838 * concurrent renames of the other inode as well
4839 * because during a rename we pin the log and
4840 * update the log with the new name before we
4841 * unpin it.
4842 */
a59108a7
NB
4843 err = btrfs_log_inode(trans, root,
4844 BTRFS_I(other_inode),
4845 LOG_OTHER_INODE, 0, LLONG_MAX,
4846 ctx);
44f714da
FM
4847 iput(other_inode);
4848 if (err)
4849 goto out_unlock;
4850 else
4851 goto next_key;
56f23fdb
FM
4852 }
4853 }
4854
36283bf7
FM
4855 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4856 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4857 if (ins_nr == 0)
4858 goto next_slot;
a59108a7 4859 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4860 &last_extent, ins_start_slot,
4861 ins_nr, inode_only, logged_isize);
4862 if (ret < 0) {
4863 err = ret;
4864 goto out_unlock;
4865 }
4866 ins_nr = 0;
4867 if (ret) {
4868 btrfs_release_path(path);
4869 continue;
4870 }
4871 goto next_slot;
4872 }
4873
31ff1cd2
CM
4874 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4875 ins_nr++;
4876 goto next_slot;
4877 } else if (!ins_nr) {
4878 ins_start_slot = path->slots[0];
4879 ins_nr = 1;
4880 goto next_slot;
e02119d5
CM
4881 }
4882
a59108a7 4883 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4884 ins_start_slot, ins_nr, inode_only,
4885 logged_isize);
16e7549f 4886 if (ret < 0) {
4a500fd1
YZ
4887 err = ret;
4888 goto out_unlock;
a71db86e
RV
4889 }
4890 if (ret) {
16e7549f
JB
4891 ins_nr = 0;
4892 btrfs_release_path(path);
4893 continue;
4a500fd1 4894 }
31ff1cd2
CM
4895 ins_nr = 1;
4896 ins_start_slot = path->slots[0];
4897next_slot:
e02119d5 4898
3a5f1d45
CM
4899 nritems = btrfs_header_nritems(path->nodes[0]);
4900 path->slots[0]++;
4901 if (path->slots[0] < nritems) {
4902 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4903 path->slots[0]);
4904 goto again;
4905 }
31ff1cd2 4906 if (ins_nr) {
a59108a7 4907 ret = copy_items(trans, inode, dst_path, path,
16e7549f 4908 &last_extent, ins_start_slot,
1a4bcf47 4909 ins_nr, inode_only, logged_isize);
16e7549f 4910 if (ret < 0) {
4a500fd1
YZ
4911 err = ret;
4912 goto out_unlock;
4913 }
16e7549f 4914 ret = 0;
31ff1cd2
CM
4915 ins_nr = 0;
4916 }
b3b4aa74 4917 btrfs_release_path(path);
44f714da 4918next_key:
3d41d702 4919 if (min_key.offset < (u64)-1) {
e02119d5 4920 min_key.offset++;
3d41d702 4921 } else if (min_key.type < max_key.type) {
e02119d5 4922 min_key.type++;
3d41d702
FDBM
4923 min_key.offset = 0;
4924 } else {
e02119d5 4925 break;
3d41d702 4926 }
e02119d5 4927 }
31ff1cd2 4928 if (ins_nr) {
a59108a7 4929 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4930 ins_start_slot, ins_nr, inode_only,
4931 logged_isize);
16e7549f 4932 if (ret < 0) {
4a500fd1
YZ
4933 err = ret;
4934 goto out_unlock;
4935 }
16e7549f 4936 ret = 0;
31ff1cd2
CM
4937 ins_nr = 0;
4938 }
5dc562c5 4939
36283bf7
FM
4940 btrfs_release_path(path);
4941 btrfs_release_path(dst_path);
a59108a7 4942 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
4943 if (err)
4944 goto out_unlock;
a89ca6f2
FM
4945 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4946 btrfs_release_path(path);
4947 btrfs_release_path(dst_path);
a59108a7 4948 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
4949 if (err)
4950 goto out_unlock;
4951 }
a95249b3 4952log_extents:
f3b15ccd
JB
4953 btrfs_release_path(path);
4954 btrfs_release_path(dst_path);
e4545de5 4955 if (need_log_inode_item) {
a59108a7 4956 err = log_inode_item(trans, log, dst_path, inode);
e4545de5
FM
4957 if (err)
4958 goto out_unlock;
4959 }
5dc562c5 4960 if (fast_search) {
a59108a7 4961 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 4962 &logged_list, ctx, start, end);
5dc562c5
JB
4963 if (ret) {
4964 err = ret;
4965 goto out_unlock;
4966 }
d006a048 4967 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4968 struct extent_map *em, *n;
4969
49dae1bc
FM
4970 write_lock(&em_tree->lock);
4971 /*
4972 * We can't just remove every em if we're called for a ranged
4973 * fsync - that is, one that doesn't cover the whole possible
4974 * file range (0 to LLONG_MAX). This is because we can have
4975 * em's that fall outside the range we're logging and therefore
4976 * their ordered operations haven't completed yet
4977 * (btrfs_finish_ordered_io() not invoked yet). This means we
4978 * didn't get their respective file extent item in the fs/subvol
4979 * tree yet, and need to let the next fast fsync (one which
4980 * consults the list of modified extent maps) find the em so
4981 * that it logs a matching file extent item and waits for the
4982 * respective ordered operation to complete (if it's still
4983 * running).
4984 *
4985 * Removing every em outside the range we're logging would make
4986 * the next fast fsync not log their matching file extent items,
4987 * therefore making us lose data after a log replay.
4988 */
4989 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4990 list) {
4991 const u64 mod_end = em->mod_start + em->mod_len - 1;
4992
4993 if (em->mod_start >= start && mod_end <= end)
4994 list_del_init(&em->list);
4995 }
4996 write_unlock(&em_tree->lock);
5dc562c5
JB
4997 }
4998
a59108a7
NB
4999 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5000 ret = log_directory_changes(trans, root, inode, path, dst_path,
5001 ctx);
4a500fd1
YZ
5002 if (ret) {
5003 err = ret;
5004 goto out_unlock;
5005 }
e02119d5 5006 }
49dae1bc 5007
a59108a7
NB
5008 spin_lock(&inode->lock);
5009 inode->logged_trans = trans->transid;
5010 inode->last_log_commit = inode->last_sub_trans;
5011 spin_unlock(&inode->lock);
4a500fd1 5012out_unlock:
827463c4
MX
5013 if (unlikely(err))
5014 btrfs_put_logged_extents(&logged_list);
5015 else
5016 btrfs_submit_logged_extents(&logged_list, log);
a59108a7 5017 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5018
5019 btrfs_free_path(path);
5020 btrfs_free_path(dst_path);
4a500fd1 5021 return err;
e02119d5
CM
5022}
5023
2be63d5c
FM
5024/*
5025 * Check if we must fallback to a transaction commit when logging an inode.
5026 * This must be called after logging the inode and is used only in the context
5027 * when fsyncing an inode requires the need to log some other inode - in which
5028 * case we can't lock the i_mutex of each other inode we need to log as that
5029 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5030 * log inodes up or down in the hierarchy) or rename operations for example. So
5031 * we take the log_mutex of the inode after we have logged it and then check for
5032 * its last_unlink_trans value - this is safe because any task setting
5033 * last_unlink_trans must take the log_mutex and it must do this before it does
5034 * the actual unlink operation, so if we do this check before a concurrent task
5035 * sets last_unlink_trans it means we've logged a consistent version/state of
5036 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5037 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5038 * we logged the inode or it might have also done the unlink).
5039 */
5040static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5041 struct btrfs_inode *inode)
2be63d5c 5042{
ab1717b2 5043 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5044 bool ret = false;
5045
ab1717b2
NB
5046 mutex_lock(&inode->log_mutex);
5047 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5048 /*
5049 * Make sure any commits to the log are forced to be full
5050 * commits.
5051 */
5052 btrfs_set_log_full_commit(fs_info, trans);
5053 ret = true;
5054 }
ab1717b2 5055 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5056
5057 return ret;
5058}
5059
12fcfd22
CM
5060/*
5061 * follow the dentry parent pointers up the chain and see if any
5062 * of the directories in it require a full commit before they can
5063 * be logged. Returns zero if nothing special needs to be done or 1 if
5064 * a full commit is required.
5065 */
5066static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5067 struct btrfs_inode *inode,
12fcfd22
CM
5068 struct dentry *parent,
5069 struct super_block *sb,
5070 u64 last_committed)
e02119d5 5071{
12fcfd22 5072 int ret = 0;
6a912213 5073 struct dentry *old_parent = NULL;
aefa6115 5074 struct btrfs_inode *orig_inode = inode;
e02119d5 5075
af4176b4
CM
5076 /*
5077 * for regular files, if its inode is already on disk, we don't
5078 * have to worry about the parents at all. This is because
5079 * we can use the last_unlink_trans field to record renames
5080 * and other fun in this file.
5081 */
aefa6115
NB
5082 if (S_ISREG(inode->vfs_inode.i_mode) &&
5083 inode->generation <= last_committed &&
5084 inode->last_unlink_trans <= last_committed)
5085 goto out;
af4176b4 5086
aefa6115 5087 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5088 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5089 goto out;
aefa6115 5090 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5091 }
5092
5093 while (1) {
de2b530b
JB
5094 /*
5095 * If we are logging a directory then we start with our inode,
01327610 5096 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5097 * logged_trans so that further down in the log code we don't
5098 * think this inode has already been logged.
5099 */
5100 if (inode != orig_inode)
aefa6115 5101 inode->logged_trans = trans->transid;
12fcfd22
CM
5102 smp_mb();
5103
aefa6115 5104 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5105 ret = 1;
5106 break;
5107 }
5108
fc64005c 5109 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5110 break;
5111
44f714da 5112 if (IS_ROOT(parent)) {
aefa6115
NB
5113 inode = BTRFS_I(d_inode(parent));
5114 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5115 ret = 1;
12fcfd22 5116 break;
44f714da 5117 }
12fcfd22 5118
6a912213
JB
5119 parent = dget_parent(parent);
5120 dput(old_parent);
5121 old_parent = parent;
aefa6115 5122 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5123
5124 }
6a912213 5125 dput(old_parent);
12fcfd22 5126out:
e02119d5
CM
5127 return ret;
5128}
5129
2f2ff0ee
FM
5130struct btrfs_dir_list {
5131 u64 ino;
5132 struct list_head list;
5133};
5134
5135/*
5136 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5137 * details about the why it is needed.
5138 * This is a recursive operation - if an existing dentry corresponds to a
5139 * directory, that directory's new entries are logged too (same behaviour as
5140 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5141 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5142 * complains about the following circular lock dependency / possible deadlock:
5143 *
5144 * CPU0 CPU1
5145 * ---- ----
5146 * lock(&type->i_mutex_dir_key#3/2);
5147 * lock(sb_internal#2);
5148 * lock(&type->i_mutex_dir_key#3/2);
5149 * lock(&sb->s_type->i_mutex_key#14);
5150 *
5151 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5152 * sb_start_intwrite() in btrfs_start_transaction().
5153 * Not locking i_mutex of the inodes is still safe because:
5154 *
5155 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5156 * that while logging the inode new references (names) are added or removed
5157 * from the inode, leaving the logged inode item with a link count that does
5158 * not match the number of logged inode reference items. This is fine because
5159 * at log replay time we compute the real number of links and correct the
5160 * link count in the inode item (see replay_one_buffer() and
5161 * link_to_fixup_dir());
5162 *
5163 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5164 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5165 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5166 * has a size that doesn't match the sum of the lengths of all the logged
5167 * names. This does not result in a problem because if a dir_item key is
5168 * logged but its matching dir_index key is not logged, at log replay time we
5169 * don't use it to replay the respective name (see replay_one_name()). On the
5170 * other hand if only the dir_index key ends up being logged, the respective
5171 * name is added to the fs/subvol tree with both the dir_item and dir_index
5172 * keys created (see replay_one_name()).
5173 * The directory's inode item with a wrong i_size is not a problem as well,
5174 * since we don't use it at log replay time to set the i_size in the inode
5175 * item of the fs/subvol tree (see overwrite_item()).
5176 */
5177static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5178 struct btrfs_root *root,
51cc0d32 5179 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5180 struct btrfs_log_ctx *ctx)
5181{
0b246afa 5182 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5183 struct btrfs_root *log = root->log_root;
5184 struct btrfs_path *path;
5185 LIST_HEAD(dir_list);
5186 struct btrfs_dir_list *dir_elem;
5187 int ret = 0;
5188
5189 path = btrfs_alloc_path();
5190 if (!path)
5191 return -ENOMEM;
5192
5193 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5194 if (!dir_elem) {
5195 btrfs_free_path(path);
5196 return -ENOMEM;
5197 }
51cc0d32 5198 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5199 list_add_tail(&dir_elem->list, &dir_list);
5200
5201 while (!list_empty(&dir_list)) {
5202 struct extent_buffer *leaf;
5203 struct btrfs_key min_key;
5204 int nritems;
5205 int i;
5206
5207 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5208 list);
5209 if (ret)
5210 goto next_dir_inode;
5211
5212 min_key.objectid = dir_elem->ino;
5213 min_key.type = BTRFS_DIR_ITEM_KEY;
5214 min_key.offset = 0;
5215again:
5216 btrfs_release_path(path);
5217 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5218 if (ret < 0) {
5219 goto next_dir_inode;
5220 } else if (ret > 0) {
5221 ret = 0;
5222 goto next_dir_inode;
5223 }
5224
5225process_leaf:
5226 leaf = path->nodes[0];
5227 nritems = btrfs_header_nritems(leaf);
5228 for (i = path->slots[0]; i < nritems; i++) {
5229 struct btrfs_dir_item *di;
5230 struct btrfs_key di_key;
5231 struct inode *di_inode;
5232 struct btrfs_dir_list *new_dir_elem;
5233 int log_mode = LOG_INODE_EXISTS;
5234 int type;
5235
5236 btrfs_item_key_to_cpu(leaf, &min_key, i);
5237 if (min_key.objectid != dir_elem->ino ||
5238 min_key.type != BTRFS_DIR_ITEM_KEY)
5239 goto next_dir_inode;
5240
5241 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5242 type = btrfs_dir_type(leaf, di);
5243 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5244 type != BTRFS_FT_DIR)
5245 continue;
5246 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5247 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5248 continue;
5249
ec125cfb 5250 btrfs_release_path(path);
0b246afa 5251 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5252 if (IS_ERR(di_inode)) {
5253 ret = PTR_ERR(di_inode);
5254 goto next_dir_inode;
5255 }
5256
0f8939b8 5257 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5258 iput(di_inode);
ec125cfb 5259 break;
2f2ff0ee
FM
5260 }
5261
5262 ctx->log_new_dentries = false;
3f9749f6 5263 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5264 log_mode = LOG_INODE_ALL;
a59108a7 5265 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5266 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5267 if (!ret &&
ab1717b2 5268 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5269 ret = 1;
2f2ff0ee
FM
5270 iput(di_inode);
5271 if (ret)
5272 goto next_dir_inode;
5273 if (ctx->log_new_dentries) {
5274 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5275 GFP_NOFS);
5276 if (!new_dir_elem) {
5277 ret = -ENOMEM;
5278 goto next_dir_inode;
5279 }
5280 new_dir_elem->ino = di_key.objectid;
5281 list_add_tail(&new_dir_elem->list, &dir_list);
5282 }
5283 break;
5284 }
5285 if (i == nritems) {
5286 ret = btrfs_next_leaf(log, path);
5287 if (ret < 0) {
5288 goto next_dir_inode;
5289 } else if (ret > 0) {
5290 ret = 0;
5291 goto next_dir_inode;
5292 }
5293 goto process_leaf;
5294 }
5295 if (min_key.offset < (u64)-1) {
5296 min_key.offset++;
5297 goto again;
5298 }
5299next_dir_inode:
5300 list_del(&dir_elem->list);
5301 kfree(dir_elem);
5302 }
5303
5304 btrfs_free_path(path);
5305 return ret;
5306}
5307
18aa0922 5308static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5309 struct btrfs_inode *inode,
18aa0922
FM
5310 struct btrfs_log_ctx *ctx)
5311{
d0a0b78d 5312 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
18aa0922
FM
5313 int ret;
5314 struct btrfs_path *path;
5315 struct btrfs_key key;
d0a0b78d
NB
5316 struct btrfs_root *root = inode->root;
5317 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5318
5319 path = btrfs_alloc_path();
5320 if (!path)
5321 return -ENOMEM;
5322 path->skip_locking = 1;
5323 path->search_commit_root = 1;
5324
5325 key.objectid = ino;
5326 key.type = BTRFS_INODE_REF_KEY;
5327 key.offset = 0;
5328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5329 if (ret < 0)
5330 goto out;
5331
5332 while (true) {
5333 struct extent_buffer *leaf = path->nodes[0];
5334 int slot = path->slots[0];
5335 u32 cur_offset = 0;
5336 u32 item_size;
5337 unsigned long ptr;
5338
5339 if (slot >= btrfs_header_nritems(leaf)) {
5340 ret = btrfs_next_leaf(root, path);
5341 if (ret < 0)
5342 goto out;
5343 else if (ret > 0)
5344 break;
5345 continue;
5346 }
5347
5348 btrfs_item_key_to_cpu(leaf, &key, slot);
5349 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5350 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5351 break;
5352
5353 item_size = btrfs_item_size_nr(leaf, slot);
5354 ptr = btrfs_item_ptr_offset(leaf, slot);
5355 while (cur_offset < item_size) {
5356 struct btrfs_key inode_key;
5357 struct inode *dir_inode;
5358
5359 inode_key.type = BTRFS_INODE_ITEM_KEY;
5360 inode_key.offset = 0;
5361
5362 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5363 struct btrfs_inode_extref *extref;
5364
5365 extref = (struct btrfs_inode_extref *)
5366 (ptr + cur_offset);
5367 inode_key.objectid = btrfs_inode_extref_parent(
5368 leaf, extref);
5369 cur_offset += sizeof(*extref);
5370 cur_offset += btrfs_inode_extref_name_len(leaf,
5371 extref);
5372 } else {
5373 inode_key.objectid = key.offset;
5374 cur_offset = item_size;
5375 }
5376
0b246afa 5377 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5378 root, NULL);
5379 /* If parent inode was deleted, skip it. */
5380 if (IS_ERR(dir_inode))
5381 continue;
5382
657ed1aa
FM
5383 if (ctx)
5384 ctx->log_new_dentries = false;
a59108a7 5385 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5386 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5387 if (!ret &&
ab1717b2 5388 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5389 ret = 1;
657ed1aa
FM
5390 if (!ret && ctx && ctx->log_new_dentries)
5391 ret = log_new_dir_dentries(trans, root,
f85b7379 5392 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5393 iput(dir_inode);
5394 if (ret)
5395 goto out;
5396 }
5397 path->slots[0]++;
5398 }
5399 ret = 0;
5400out:
5401 btrfs_free_path(path);
5402 return ret;
5403}
5404
e02119d5
CM
5405/*
5406 * helper function around btrfs_log_inode to make sure newly created
5407 * parent directories also end up in the log. A minimal inode and backref
5408 * only logging is done of any parent directories that are older than
5409 * the last committed transaction
5410 */
48a3b636 5411static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9
NB
5412 struct btrfs_root *root,
5413 struct btrfs_inode *inode,
49dae1bc
FM
5414 struct dentry *parent,
5415 const loff_t start,
5416 const loff_t end,
41a1eada 5417 int inode_only,
8b050d35 5418 struct btrfs_log_ctx *ctx)
e02119d5 5419{
0b246afa 5420 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5421 struct super_block *sb;
6a912213 5422 struct dentry *old_parent = NULL;
12fcfd22 5423 int ret = 0;
0b246afa 5424 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5425 bool log_dentries = false;
19df27a9 5426 struct btrfs_inode *orig_inode = inode;
12fcfd22 5427
19df27a9 5428 sb = inode->vfs_inode.i_sb;
12fcfd22 5429
0b246afa 5430 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5431 ret = 1;
5432 goto end_no_trans;
5433 }
5434
995946dd
MX
5435 /*
5436 * The prev transaction commit doesn't complete, we need do
5437 * full commit by ourselves.
5438 */
0b246afa
JM
5439 if (fs_info->last_trans_log_full_commit >
5440 fs_info->last_trans_committed) {
12fcfd22
CM
5441 ret = 1;
5442 goto end_no_trans;
5443 }
5444
19df27a9 5445 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5446 ret = 1;
5447 goto end_no_trans;
5448 }
5449
19df27a9
NB
5450 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5451 last_committed);
12fcfd22
CM
5452 if (ret)
5453 goto end_no_trans;
e02119d5 5454
19df27a9 5455 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5456 ret = BTRFS_NO_LOG_SYNC;
5457 goto end_no_trans;
5458 }
5459
8b050d35 5460 ret = start_log_trans(trans, root, ctx);
4a500fd1 5461 if (ret)
e87ac136 5462 goto end_no_trans;
e02119d5 5463
19df27a9 5464 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5465 if (ret)
5466 goto end_trans;
12fcfd22 5467
af4176b4
CM
5468 /*
5469 * for regular files, if its inode is already on disk, we don't
5470 * have to worry about the parents at all. This is because
5471 * we can use the last_unlink_trans field to record renames
5472 * and other fun in this file.
5473 */
19df27a9
NB
5474 if (S_ISREG(inode->vfs_inode.i_mode) &&
5475 inode->generation <= last_committed &&
5476 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5477 ret = 0;
5478 goto end_trans;
5479 }
af4176b4 5480
19df27a9 5481 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5482 log_dentries = true;
5483
18aa0922 5484 /*
01327610 5485 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5486 * inodes are fully logged. This is to prevent leaving dangling
5487 * directory index entries in directories that were our parents but are
5488 * not anymore. Not doing this results in old parent directory being
5489 * impossible to delete after log replay (rmdir will always fail with
5490 * error -ENOTEMPTY).
5491 *
5492 * Example 1:
5493 *
5494 * mkdir testdir
5495 * touch testdir/foo
5496 * ln testdir/foo testdir/bar
5497 * sync
5498 * unlink testdir/bar
5499 * xfs_io -c fsync testdir/foo
5500 * <power failure>
5501 * mount fs, triggers log replay
5502 *
5503 * If we don't log the parent directory (testdir), after log replay the
5504 * directory still has an entry pointing to the file inode using the bar
5505 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5506 * the file inode has a link count of 1.
5507 *
5508 * Example 2:
5509 *
5510 * mkdir testdir
5511 * touch foo
5512 * ln foo testdir/foo2
5513 * ln foo testdir/foo3
5514 * sync
5515 * unlink testdir/foo3
5516 * xfs_io -c fsync foo
5517 * <power failure>
5518 * mount fs, triggers log replay
5519 *
5520 * Similar as the first example, after log replay the parent directory
5521 * testdir still has an entry pointing to the inode file with name foo3
5522 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5523 * and has a link count of 2.
5524 */
19df27a9 5525 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5526 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5527 if (ret)
5528 goto end_trans;
5529 }
5530
12fcfd22 5531 while (1) {
fc64005c 5532 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5533 break;
5534
19df27a9
NB
5535 inode = BTRFS_I(d_inode(parent));
5536 if (root != inode->root)
76dda93c
YZ
5537 break;
5538
19df27a9
NB
5539 if (inode->generation > last_committed) {
5540 ret = btrfs_log_inode(trans, root, inode,
5541 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5542 if (ret)
5543 goto end_trans;
12fcfd22 5544 }
76dda93c 5545 if (IS_ROOT(parent))
e02119d5 5546 break;
12fcfd22 5547
6a912213
JB
5548 parent = dget_parent(parent);
5549 dput(old_parent);
5550 old_parent = parent;
e02119d5 5551 }
2f2ff0ee 5552 if (log_dentries)
19df27a9 5553 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5554 else
5555 ret = 0;
4a500fd1 5556end_trans:
6a912213 5557 dput(old_parent);
4a500fd1 5558 if (ret < 0) {
0b246afa 5559 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5560 ret = 1;
5561 }
8b050d35
MX
5562
5563 if (ret)
5564 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5565 btrfs_end_log_trans(root);
5566end_no_trans:
5567 return ret;
e02119d5
CM
5568}
5569
5570/*
5571 * it is not safe to log dentry if the chunk root has added new
5572 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5573 * If this returns 1, you must commit the transaction to safely get your
5574 * data on disk.
5575 */
5576int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5577 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5578 const loff_t start,
5579 const loff_t end,
8b050d35 5580 struct btrfs_log_ctx *ctx)
e02119d5 5581{
6a912213
JB
5582 struct dentry *parent = dget_parent(dentry);
5583 int ret;
5584
19df27a9 5585 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
41a1eada 5586 parent, start, end, LOG_INODE_ALL, ctx);
6a912213
JB
5587 dput(parent);
5588
5589 return ret;
e02119d5
CM
5590}
5591
5592/*
5593 * should be called during mount to recover any replay any log trees
5594 * from the FS
5595 */
5596int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5597{
5598 int ret;
5599 struct btrfs_path *path;
5600 struct btrfs_trans_handle *trans;
5601 struct btrfs_key key;
5602 struct btrfs_key found_key;
5603 struct btrfs_key tmp_key;
5604 struct btrfs_root *log;
5605 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5606 struct walk_control wc = {
5607 .process_func = process_one_buffer,
5608 .stage = 0,
5609 };
5610
e02119d5 5611 path = btrfs_alloc_path();
db5b493a
TI
5612 if (!path)
5613 return -ENOMEM;
5614
afcdd129 5615 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5616
4a500fd1 5617 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5618 if (IS_ERR(trans)) {
5619 ret = PTR_ERR(trans);
5620 goto error;
5621 }
e02119d5
CM
5622
5623 wc.trans = trans;
5624 wc.pin = 1;
5625
db5b493a 5626 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5627 if (ret) {
5d163e0e
JM
5628 btrfs_handle_fs_error(fs_info, ret,
5629 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5630 goto error;
5631 }
e02119d5
CM
5632
5633again:
5634 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5635 key.offset = (u64)-1;
962a298f 5636 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5637
d397712b 5638 while (1) {
e02119d5 5639 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5640
5641 if (ret < 0) {
34d97007 5642 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5643 "Couldn't find tree log root.");
5644 goto error;
5645 }
e02119d5
CM
5646 if (ret > 0) {
5647 if (path->slots[0] == 0)
5648 break;
5649 path->slots[0]--;
5650 }
5651 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5652 path->slots[0]);
b3b4aa74 5653 btrfs_release_path(path);
e02119d5
CM
5654 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5655 break;
5656
cb517eab 5657 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5658 if (IS_ERR(log)) {
5659 ret = PTR_ERR(log);
34d97007 5660 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5661 "Couldn't read tree log root.");
5662 goto error;
5663 }
e02119d5
CM
5664
5665 tmp_key.objectid = found_key.offset;
5666 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5667 tmp_key.offset = (u64)-1;
5668
5669 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5670 if (IS_ERR(wc.replay_dest)) {
5671 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5672 free_extent_buffer(log->node);
5673 free_extent_buffer(log->commit_root);
5674 kfree(log);
5d163e0e
JM
5675 btrfs_handle_fs_error(fs_info, ret,
5676 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5677 goto error;
5678 }
e02119d5 5679
07d400a6 5680 wc.replay_dest->log_root = log;
5d4f98a2 5681 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5682 ret = walk_log_tree(trans, log, &wc);
e02119d5 5683
b50c6e25 5684 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5685 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5686 path);
e02119d5
CM
5687 }
5688
900c9981
LB
5689 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5690 struct btrfs_root *root = wc.replay_dest;
5691
5692 btrfs_release_path(path);
5693
5694 /*
5695 * We have just replayed everything, and the highest
5696 * objectid of fs roots probably has changed in case
5697 * some inode_item's got replayed.
5698 *
5699 * root->objectid_mutex is not acquired as log replay
5700 * could only happen during mount.
5701 */
5702 ret = btrfs_find_highest_objectid(root,
5703 &root->highest_objectid);
5704 }
5705
e02119d5 5706 key.offset = found_key.offset - 1;
07d400a6 5707 wc.replay_dest->log_root = NULL;
e02119d5 5708 free_extent_buffer(log->node);
b263c2c8 5709 free_extent_buffer(log->commit_root);
e02119d5
CM
5710 kfree(log);
5711
b50c6e25
JB
5712 if (ret)
5713 goto error;
5714
e02119d5
CM
5715 if (found_key.offset == 0)
5716 break;
5717 }
b3b4aa74 5718 btrfs_release_path(path);
e02119d5
CM
5719
5720 /* step one is to pin it all, step two is to replay just inodes */
5721 if (wc.pin) {
5722 wc.pin = 0;
5723 wc.process_func = replay_one_buffer;
5724 wc.stage = LOG_WALK_REPLAY_INODES;
5725 goto again;
5726 }
5727 /* step three is to replay everything */
5728 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5729 wc.stage++;
5730 goto again;
5731 }
5732
5733 btrfs_free_path(path);
5734
abefa55a 5735 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5736 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5737 if (ret)
5738 return ret;
5739
e02119d5
CM
5740 free_extent_buffer(log_root_tree->node);
5741 log_root_tree->log_root = NULL;
afcdd129 5742 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5743 kfree(log_root_tree);
79787eaa 5744
abefa55a 5745 return 0;
79787eaa 5746error:
b50c6e25 5747 if (wc.trans)
3a45bb20 5748 btrfs_end_transaction(wc.trans);
79787eaa
JM
5749 btrfs_free_path(path);
5750 return ret;
e02119d5 5751}
12fcfd22
CM
5752
5753/*
5754 * there are some corner cases where we want to force a full
5755 * commit instead of allowing a directory to be logged.
5756 *
5757 * They revolve around files there were unlinked from the directory, and
5758 * this function updates the parent directory so that a full commit is
5759 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5760 *
5761 * Must be called before the unlink operations (updates to the subvolume tree,
5762 * inodes, etc) are done.
12fcfd22
CM
5763 */
5764void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5765 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5766 int for_rename)
5767{
af4176b4
CM
5768 /*
5769 * when we're logging a file, if it hasn't been renamed
5770 * or unlinked, and its inode is fully committed on disk,
5771 * we don't have to worry about walking up the directory chain
5772 * to log its parents.
5773 *
5774 * So, we use the last_unlink_trans field to put this transid
5775 * into the file. When the file is logged we check it and
5776 * don't log the parents if the file is fully on disk.
5777 */
4176bdbf
NB
5778 mutex_lock(&inode->log_mutex);
5779 inode->last_unlink_trans = trans->transid;
5780 mutex_unlock(&inode->log_mutex);
af4176b4 5781
12fcfd22
CM
5782 /*
5783 * if this directory was already logged any new
5784 * names for this file/dir will get recorded
5785 */
5786 smp_mb();
4176bdbf 5787 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5788 return;
5789
5790 /*
5791 * if the inode we're about to unlink was logged,
5792 * the log will be properly updated for any new names
5793 */
4176bdbf 5794 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5795 return;
5796
5797 /*
5798 * when renaming files across directories, if the directory
5799 * there we're unlinking from gets fsync'd later on, there's
5800 * no way to find the destination directory later and fsync it
5801 * properly. So, we have to be conservative and force commits
5802 * so the new name gets discovered.
5803 */
5804 if (for_rename)
5805 goto record;
5806
5807 /* we can safely do the unlink without any special recording */
5808 return;
5809
5810record:
4176bdbf
NB
5811 mutex_lock(&dir->log_mutex);
5812 dir->last_unlink_trans = trans->transid;
5813 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
5814}
5815
5816/*
5817 * Make sure that if someone attempts to fsync the parent directory of a deleted
5818 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5819 * that after replaying the log tree of the parent directory's root we will not
5820 * see the snapshot anymore and at log replay time we will not see any log tree
5821 * corresponding to the deleted snapshot's root, which could lead to replaying
5822 * it after replaying the log tree of the parent directory (which would replay
5823 * the snapshot delete operation).
2be63d5c
FM
5824 *
5825 * Must be called before the actual snapshot destroy operation (updates to the
5826 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
5827 */
5828void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 5829 struct btrfs_inode *dir)
1ec9a1ae 5830{
43663557
NB
5831 mutex_lock(&dir->log_mutex);
5832 dir->last_unlink_trans = trans->transid;
5833 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
5834}
5835
5836/*
5837 * Call this after adding a new name for a file and it will properly
5838 * update the log to reflect the new name.
5839 *
5840 * It will return zero if all goes well, and it will return 1 if a
5841 * full transaction commit is required.
5842 */
5843int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 5844 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
5845 struct dentry *parent)
5846{
9ca5fbfb 5847 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
f85b7379 5848 struct btrfs_root *root = inode->root;
12fcfd22 5849
af4176b4
CM
5850 /*
5851 * this will force the logging code to walk the dentry chain
5852 * up for the file
5853 */
9a6509c4 5854 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 5855 inode->last_unlink_trans = trans->transid;
af4176b4 5856
12fcfd22
CM
5857 /*
5858 * if this inode hasn't been logged and directory we're renaming it
5859 * from hasn't been logged, we don't need to log it
5860 */
9ca5fbfb
NB
5861 if (inode->logged_trans <= fs_info->last_trans_committed &&
5862 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
5863 return 0;
5864
19df27a9 5865 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
41a1eada 5866 LLONG_MAX, LOG_INODE_EXISTS, NULL);
12fcfd22
CM
5867}
5868
This page took 1.442568 seconds and 4 git commands to generate.