]> Git Repo - linux.git/blame - fs/btrfs/tree-log.c
btrfs: Make __add_inode_ref take btrfs_inode
[linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
ebb8765b 29#include "compression.h"
df2c95f3 30#include "qgroup.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
781feef7 40#define LOG_OTHER_INODE 2
e02119d5 41
12fcfd22
CM
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
e02119d5
CM
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
e02119d5 98
12fcfd22 99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
100 struct btrfs_root *root, struct inode *inode,
101 int inode_only,
102 const loff_t start,
8407f553
FM
103 const loff_t end,
104 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
e02119d5
CM
113
114/*
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 *
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
121 *
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
127 *
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
131 *
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
135 */
136
e02119d5
CM
137/*
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
141 */
142static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
e02119d5 145{
0b246afa 146 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 147 int ret = 0;
7237f183
YZ
148
149 mutex_lock(&root->log_mutex);
34eb2a52 150
7237f183 151 if (root->log_root) {
0b246afa 152 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
153 ret = -EAGAIN;
154 goto out;
155 }
34eb2a52 156
ff782e0a 157 if (!root->log_start_pid) {
27cdeb70 158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 159 root->log_start_pid = current->pid;
ff782e0a 160 } else if (root->log_start_pid != current->pid) {
27cdeb70 161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 162 }
34eb2a52 163 } else {
0b246afa
JM
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
168 if (ret)
169 goto out;
ff782e0a 170
e02119d5 171 ret = btrfs_add_log_tree(trans, root);
4a500fd1 172 if (ret)
e87ac136 173 goto out;
34eb2a52
Z
174
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
e02119d5 177 }
34eb2a52 178
2ecb7923 179 atomic_inc(&root->log_batch);
7237f183 180 atomic_inc(&root->log_writers);
8b050d35 181 if (ctx) {
34eb2a52 182 int index = root->log_transid % 2;
8b050d35 183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 184 ctx->log_transid = root->log_transid;
8b050d35 185 }
34eb2a52 186
e87ac136 187out:
7237f183 188 mutex_unlock(&root->log_mutex);
e87ac136 189 return ret;
e02119d5
CM
190}
191
192/*
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
195 * in progress
196 */
197static int join_running_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 smp_mb();
202 if (!root->log_root)
203 return -ENOENT;
204
7237f183 205 mutex_lock(&root->log_mutex);
e02119d5
CM
206 if (root->log_root) {
207 ret = 0;
7237f183 208 atomic_inc(&root->log_writers);
e02119d5 209 }
7237f183 210 mutex_unlock(&root->log_mutex);
e02119d5
CM
211 return ret;
212}
213
12fcfd22
CM
214/*
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
218 */
219int btrfs_pin_log_trans(struct btrfs_root *root)
220{
221 int ret = -ENOENT;
222
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
e02119d5
CM
229/*
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
232 */
143bede5 233void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 234{
7237f183 235 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
236 /*
237 * Implicit memory barrier after atomic_dec_and_test
238 */
7237f183
YZ
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
241 }
e02119d5
CM
242}
243
244
245/*
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
250 */
251struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
254 */
255 int free;
256
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
259 */
260 int write;
261
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
264 */
265 int wait;
266
267 /* pin only walk, we record which extents on disk belong to the
268 * log trees
269 */
270 int pin;
271
272 /* what stage of the replay code we're currently in */
273 int stage;
274
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
277
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
280
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
284 * inside it
285 */
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
288};
289
290/*
291 * process_func used to pin down extents, write them or wait on them
292 */
293static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
296{
0b246afa 297 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
298 int ret = 0;
299
8c2a1a30
JB
300 /*
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
303 */
0b246afa 304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8c2a1a30
JB
305 ret = btrfs_read_buffer(eb, gen);
306 if (ret)
307 return ret;
308 }
309
04018de5 310 if (wc->pin)
2ff7e61e
JM
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 eb->len);
e02119d5 313
b50c6e25 314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 315 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 316 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
317 if (wc->write)
318 btrfs_write_tree_block(eb);
319 if (wc->wait)
320 btrfs_wait_tree_block_writeback(eb);
321 }
b50c6e25 322 return ret;
e02119d5
CM
323}
324
325/*
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
328 *
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
332 *
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
336 *
337 * If the key isn't in the destination yet, a new item is inserted.
338 */
339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
344{
2ff7e61e 345 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
4bc4bee4 353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
363 if (ret < 0)
364 return ret;
365
e02119d5
CM
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
b3b4aa74 375 btrfs_release_path(path);
e02119d5
CM
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 380 if (!dst_copy || !src_copy) {
b3b4aa74 381 btrfs_release_path(path);
2a29edc6 382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
e02119d5
CM
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
b3b4aa74 403 btrfs_release_path(path);
e02119d5
CM
404 return 0;
405 }
406
4bc4bee4
JB
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
d555438b 414 u32 mode;
4bc4bee4
JB
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
d555438b 434 u32 mode;
4bc4bee4
JB
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
451 }
452insert:
b3b4aa74 453 btrfs_release_path(path);
e02119d5 454 /* try to insert the key into the destination tree */
df8d116f 455 path->skip_release_on_error = 1;
e02119d5
CM
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
df8d116f 458 path->skip_release_on_error = 0;
e02119d5
CM
459
460 /* make sure any existing item is the correct size */
df8d116f 461 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
143bede5 465 if (found_size > item_size)
2ff7e61e 466 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 467 else if (found_size < item_size)
2ff7e61e 468 btrfs_extend_item(fs_info, path,
143bede5 469 item_size - found_size);
e02119d5 470 } else if (ret) {
4a500fd1 471 return ret;
e02119d5
CM
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
1a4bcf47
FM
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 494 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 495
2f2ff0ee
FM
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
1a4bcf47 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
1a4bcf47 506 struct btrfs_map_token token;
1a4bcf47
FM
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
e02119d5 512 goto no_copy;
1a4bcf47 513 }
e02119d5
CM
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 544 btrfs_release_path(path);
e02119d5
CM
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
5d4f98a2 555 struct btrfs_key key;
e02119d5 556 struct inode *inode;
e02119d5 557
5d4f98a2
YZ
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
73f73415 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
562 if (IS_ERR(inode)) {
563 inode = NULL;
564 } else if (is_bad_inode(inode)) {
e02119d5
CM
565 iput(inode);
566 inode = NULL;
567 }
568 return inode;
569}
570
571/* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
573 * on exit.
574 *
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
579 *
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
582 */
583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
588{
0b246afa 589 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 590 int found_type;
e02119d5 591 u64 extent_end;
e02119d5 592 u64 start = key->offset;
4bc4bee4 593 u64 nbytes = 0;
e02119d5
CM
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
d899e052 602 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 614 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 616 extent_end = ALIGN(start + size,
0b246afa 617 fs_info->sectorsize);
e02119d5
CM
618 } else {
619 ret = 0;
620 goto out;
621 }
622
623 inode = read_one_inode(root, key->objectid);
624 if (!inode) {
625 ret = -EIO;
626 goto out;
627 }
628
629 /*
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
633 */
4a0cc7ca 634 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(BTRFS_I(inode)),
e02119d5
CM
635 start, 0);
636
d899e052
YZ
637 if (ret == 0 &&
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
644
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
648
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 sizeof(cmp1));
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 sizeof(cmp2));
653
654 /*
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
657 */
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 659 btrfs_release_path(path);
e02119d5
CM
660 goto out;
661 }
662 }
b3b4aa74 663 btrfs_release_path(path);
e02119d5
CM
664
665 /* drop any overlapping extents */
2671485d 666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
667 if (ret)
668 goto out;
e02119d5 669
07d400a6
YZ
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 672 u64 offset;
07d400a6
YZ
673 unsigned long dest_offset;
674 struct btrfs_key ins;
675
676 ret = btrfs_insert_empty_item(trans, root, path, key,
677 sizeof(*item));
3650860b
JB
678 if (ret)
679 goto out;
07d400a6
YZ
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 path->slots[0]);
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
684
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 688 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 689
df2c95f3
QW
690 /*
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 */
0b246afa 698 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
701 GFP_NOFS);
702 if (ret < 0)
703 goto out;
704
07d400a6
YZ
705 if (ins.objectid > 0) {
706 u64 csum_start;
707 u64 csum_end;
708 LIST_HEAD(ordered_sums);
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
2ff7e61e 713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
714 ins.offset);
715 if (ret == 0) {
2ff7e61e 716 ret = btrfs_inc_extent_ref(trans, fs_info,
07d400a6 717 ins.objectid, ins.offset,
5d4f98a2 718 0, root->root_key.objectid,
b06c4bf5 719 key->objectid, offset);
b50c6e25
JB
720 if (ret)
721 goto out;
07d400a6
YZ
722 } else {
723 /*
724 * insert the extent pointer in the extent
725 * allocation tree
726 */
5d4f98a2 727 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
728 fs_info,
729 root->root_key.objectid,
5d4f98a2 730 key->objectid, offset, &ins);
b50c6e25
JB
731 if (ret)
732 goto out;
07d400a6 733 }
b3b4aa74 734 btrfs_release_path(path);
07d400a6
YZ
735
736 if (btrfs_file_extent_compression(eb, item)) {
737 csum_start = ins.objectid;
738 csum_end = csum_start + ins.offset;
739 } else {
740 csum_start = ins.objectid +
741 btrfs_file_extent_offset(eb, item);
742 csum_end = csum_start +
743 btrfs_file_extent_num_bytes(eb, item);
744 }
745
746 ret = btrfs_lookup_csums_range(root->log_root,
747 csum_start, csum_end - 1,
a2de733c 748 &ordered_sums, 0);
3650860b
JB
749 if (ret)
750 goto out;
b84b8390
FM
751 /*
752 * Now delete all existing cums in the csum root that
753 * cover our range. We do this because we can have an
754 * extent that is completely referenced by one file
755 * extent item and partially referenced by another
756 * file extent item (like after using the clone or
757 * extent_same ioctls). In this case if we end up doing
758 * the replay of the one that partially references the
759 * extent first, and we do not do the csum deletion
760 * below, we can get 2 csum items in the csum tree that
761 * overlap each other. For example, imagine our log has
762 * the two following file extent items:
763 *
764 * key (257 EXTENT_DATA 409600)
765 * extent data disk byte 12845056 nr 102400
766 * extent data offset 20480 nr 20480 ram 102400
767 *
768 * key (257 EXTENT_DATA 819200)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 0 nr 102400 ram 102400
771 *
772 * Where the second one fully references the 100K extent
773 * that starts at disk byte 12845056, and the log tree
774 * has a single csum item that covers the entire range
775 * of the extent:
776 *
777 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 *
779 * After the first file extent item is replayed, the
780 * csum tree gets the following csum item:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 *
784 * Which covers the 20K sub-range starting at offset 20K
785 * of our extent. Now when we replay the second file
786 * extent item, if we do not delete existing csum items
787 * that cover any of its blocks, we end up getting two
788 * csum items in our csum tree that overlap each other:
789 *
790 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 *
793 * Which is a problem, because after this anyone trying
794 * to lookup up for the checksum of any block of our
795 * extent starting at an offset of 40K or higher, will
796 * end up looking at the second csum item only, which
797 * does not contain the checksum for any block starting
798 * at offset 40K or higher of our extent.
799 */
07d400a6
YZ
800 while (!list_empty(&ordered_sums)) {
801 struct btrfs_ordered_sum *sums;
802 sums = list_entry(ordered_sums.next,
803 struct btrfs_ordered_sum,
804 list);
b84b8390 805 if (!ret)
0b246afa 806 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
807 sums->bytenr,
808 sums->len);
3650860b
JB
809 if (!ret)
810 ret = btrfs_csum_file_blocks(trans,
0b246afa 811 fs_info->csum_root, sums);
07d400a6
YZ
812 list_del(&sums->list);
813 kfree(sums);
814 }
3650860b
JB
815 if (ret)
816 goto out;
07d400a6 817 } else {
b3b4aa74 818 btrfs_release_path(path);
07d400a6
YZ
819 }
820 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
821 /* inline extents are easy, we just overwrite them */
822 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
823 if (ret)
824 goto out;
07d400a6 825 }
e02119d5 826
4bc4bee4 827 inode_add_bytes(inode, nbytes);
b9959295 828 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
829out:
830 if (inode)
831 iput(inode);
832 return ret;
833}
834
835/*
836 * when cleaning up conflicts between the directory names in the
837 * subvolume, directory names in the log and directory names in the
838 * inode back references, we may have to unlink inodes from directories.
839 *
840 * This is a helper function to do the unlink of a specific directory
841 * item
842 */
843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
207e7d92 846 struct btrfs_inode *dir,
e02119d5
CM
847 struct btrfs_dir_item *di)
848{
2ff7e61e 849 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
850 struct inode *inode;
851 char *name;
852 int name_len;
853 struct extent_buffer *leaf;
854 struct btrfs_key location;
855 int ret;
856
857 leaf = path->nodes[0];
858
859 btrfs_dir_item_key_to_cpu(leaf, di, &location);
860 name_len = btrfs_dir_name_len(leaf, di);
861 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 862 if (!name)
863 return -ENOMEM;
864
e02119d5 865 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 866 btrfs_release_path(path);
e02119d5
CM
867
868 inode = read_one_inode(root, location.objectid);
c00e9493 869 if (!inode) {
3650860b
JB
870 ret = -EIO;
871 goto out;
c00e9493 872 }
e02119d5 873
ec051c0f 874 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
875 if (ret)
876 goto out;
12fcfd22 877
207e7d92
NB
878 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
879 name_len);
3650860b
JB
880 if (ret)
881 goto out;
ada9af21 882 else
2ff7e61e 883 ret = btrfs_run_delayed_items(trans, fs_info);
3650860b 884out:
e02119d5 885 kfree(name);
e02119d5
CM
886 iput(inode);
887 return ret;
888}
889
890/*
891 * helper function to see if a given name and sequence number found
892 * in an inode back reference are already in a directory and correctly
893 * point to this inode
894 */
895static noinline int inode_in_dir(struct btrfs_root *root,
896 struct btrfs_path *path,
897 u64 dirid, u64 objectid, u64 index,
898 const char *name, int name_len)
899{
900 struct btrfs_dir_item *di;
901 struct btrfs_key location;
902 int match = 0;
903
904 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
905 index, name, name_len, 0);
906 if (di && !IS_ERR(di)) {
907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
908 if (location.objectid != objectid)
909 goto out;
910 } else
911 goto out;
b3b4aa74 912 btrfs_release_path(path);
e02119d5
CM
913
914 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
915 if (di && !IS_ERR(di)) {
916 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
917 if (location.objectid != objectid)
918 goto out;
919 } else
920 goto out;
921 match = 1;
922out:
b3b4aa74 923 btrfs_release_path(path);
e02119d5
CM
924 return match;
925}
926
927/*
928 * helper function to check a log tree for a named back reference in
929 * an inode. This is used to decide if a back reference that is
930 * found in the subvolume conflicts with what we find in the log.
931 *
932 * inode backreferences may have multiple refs in a single item,
933 * during replay we process one reference at a time, and we don't
934 * want to delete valid links to a file from the subvolume if that
935 * link is also in the log.
936 */
937static noinline int backref_in_log(struct btrfs_root *log,
938 struct btrfs_key *key,
f186373f 939 u64 ref_objectid,
df8d116f 940 const char *name, int namelen)
e02119d5
CM
941{
942 struct btrfs_path *path;
943 struct btrfs_inode_ref *ref;
944 unsigned long ptr;
945 unsigned long ptr_end;
946 unsigned long name_ptr;
947 int found_name_len;
948 int item_size;
949 int ret;
950 int match = 0;
951
952 path = btrfs_alloc_path();
2a29edc6 953 if (!path)
954 return -ENOMEM;
955
e02119d5
CM
956 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
957 if (ret != 0)
958 goto out;
959
e02119d5 960 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
961
962 if (key->type == BTRFS_INODE_EXTREF_KEY) {
963 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
964 name, namelen, NULL))
965 match = 1;
966
967 goto out;
968 }
969
970 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
971 ptr_end = ptr + item_size;
972 while (ptr < ptr_end) {
973 ref = (struct btrfs_inode_ref *)ptr;
974 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
975 if (found_name_len == namelen) {
976 name_ptr = (unsigned long)(ref + 1);
977 ret = memcmp_extent_buffer(path->nodes[0], name,
978 name_ptr, namelen);
979 if (ret == 0) {
980 match = 1;
981 goto out;
982 }
983 }
984 ptr = (unsigned long)(ref + 1) + found_name_len;
985 }
986out:
987 btrfs_free_path(path);
988 return match;
989}
990
5a1d7843 991static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 992 struct btrfs_root *root,
e02119d5 993 struct btrfs_path *path,
5a1d7843 994 struct btrfs_root *log_root,
94c91a1f
NB
995 struct btrfs_inode *dir,
996 struct btrfs_inode *inode,
5a1d7843 997 struct extent_buffer *eb,
f186373f
MF
998 u64 inode_objectid, u64 parent_objectid,
999 u64 ref_index, char *name, int namelen,
1000 int *search_done)
e02119d5 1001{
2ff7e61e 1002 struct btrfs_fs_info *fs_info = root->fs_info;
34f3e4f2 1003 int ret;
f186373f
MF
1004 char *victim_name;
1005 int victim_name_len;
1006 struct extent_buffer *leaf;
5a1d7843 1007 struct btrfs_dir_item *di;
f186373f
MF
1008 struct btrfs_key search_key;
1009 struct btrfs_inode_extref *extref;
c622ae60 1010
f186373f
MF
1011again:
1012 /* Search old style refs */
1013 search_key.objectid = inode_objectid;
1014 search_key.type = BTRFS_INODE_REF_KEY;
1015 search_key.offset = parent_objectid;
1016 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1017 if (ret == 0) {
e02119d5
CM
1018 struct btrfs_inode_ref *victim_ref;
1019 unsigned long ptr;
1020 unsigned long ptr_end;
f186373f
MF
1021
1022 leaf = path->nodes[0];
e02119d5
CM
1023
1024 /* are we trying to overwrite a back ref for the root directory
1025 * if so, just jump out, we're done
1026 */
f186373f 1027 if (search_key.objectid == search_key.offset)
5a1d7843 1028 return 1;
e02119d5
CM
1029
1030 /* check all the names in this back reference to see
1031 * if they are in the log. if so, we allow them to stay
1032 * otherwise they must be unlinked as a conflict
1033 */
1034 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1035 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1036 while (ptr < ptr_end) {
e02119d5
CM
1037 victim_ref = (struct btrfs_inode_ref *)ptr;
1038 victim_name_len = btrfs_inode_ref_name_len(leaf,
1039 victim_ref);
1040 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1041 if (!victim_name)
1042 return -ENOMEM;
e02119d5
CM
1043
1044 read_extent_buffer(leaf, victim_name,
1045 (unsigned long)(victim_ref + 1),
1046 victim_name_len);
1047
f186373f
MF
1048 if (!backref_in_log(log_root, &search_key,
1049 parent_objectid,
1050 victim_name,
e02119d5 1051 victim_name_len)) {
94c91a1f 1052 inc_nlink(&inode->vfs_inode);
b3b4aa74 1053 btrfs_release_path(path);
12fcfd22 1054
94c91a1f 1055 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1056 victim_name, victim_name_len);
f186373f 1057 kfree(victim_name);
3650860b
JB
1058 if (ret)
1059 return ret;
2ff7e61e 1060 ret = btrfs_run_delayed_items(trans, fs_info);
ada9af21
FDBM
1061 if (ret)
1062 return ret;
f186373f
MF
1063 *search_done = 1;
1064 goto again;
e02119d5
CM
1065 }
1066 kfree(victim_name);
f186373f 1067
e02119d5
CM
1068 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1069 }
e02119d5 1070
c622ae60 1071 /*
1072 * NOTE: we have searched root tree and checked the
bb7ab3b9 1073 * corresponding ref, it does not need to check again.
c622ae60 1074 */
5a1d7843 1075 *search_done = 1;
e02119d5 1076 }
b3b4aa74 1077 btrfs_release_path(path);
e02119d5 1078
f186373f
MF
1079 /* Same search but for extended refs */
1080 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1081 inode_objectid, parent_objectid, 0,
1082 0);
1083 if (!IS_ERR_OR_NULL(extref)) {
1084 u32 item_size;
1085 u32 cur_offset = 0;
1086 unsigned long base;
1087 struct inode *victim_parent;
1088
1089 leaf = path->nodes[0];
1090
1091 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1092 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1093
1094 while (cur_offset < item_size) {
dd9ef135 1095 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1096
1097 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1098
1099 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1100 goto next;
1101
1102 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1103 if (!victim_name)
1104 return -ENOMEM;
f186373f
MF
1105 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1106 victim_name_len);
1107
1108 search_key.objectid = inode_objectid;
1109 search_key.type = BTRFS_INODE_EXTREF_KEY;
1110 search_key.offset = btrfs_extref_hash(parent_objectid,
1111 victim_name,
1112 victim_name_len);
1113 ret = 0;
1114 if (!backref_in_log(log_root, &search_key,
1115 parent_objectid, victim_name,
1116 victim_name_len)) {
1117 ret = -ENOENT;
1118 victim_parent = read_one_inode(root,
94c91a1f 1119 parent_objectid);
f186373f 1120 if (victim_parent) {
94c91a1f 1121 inc_nlink(&inode->vfs_inode);
f186373f
MF
1122 btrfs_release_path(path);
1123
1124 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1125 BTRFS_I(victim_parent),
94c91a1f 1126 inode,
4ec5934e
NB
1127 victim_name,
1128 victim_name_len);
ada9af21
FDBM
1129 if (!ret)
1130 ret = btrfs_run_delayed_items(
2ff7e61e
JM
1131 trans,
1132 fs_info);
f186373f 1133 }
f186373f
MF
1134 iput(victim_parent);
1135 kfree(victim_name);
3650860b
JB
1136 if (ret)
1137 return ret;
f186373f
MF
1138 *search_done = 1;
1139 goto again;
1140 }
1141 kfree(victim_name);
3650860b
JB
1142 if (ret)
1143 return ret;
f186373f
MF
1144next:
1145 cur_offset += victim_name_len + sizeof(*extref);
1146 }
1147 *search_done = 1;
1148 }
1149 btrfs_release_path(path);
1150
34f3e4f2 1151 /* look for a conflicting sequence number */
94c91a1f 1152 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1153 ref_index, name, namelen, 0);
34f3e4f2 1154 if (di && !IS_ERR(di)) {
94c91a1f 1155 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1156 if (ret)
1157 return ret;
34f3e4f2 1158 }
1159 btrfs_release_path(path);
1160
1161 /* look for a conflicing name */
94c91a1f 1162 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1163 name, namelen, 0);
1164 if (di && !IS_ERR(di)) {
94c91a1f 1165 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1166 if (ret)
1167 return ret;
34f3e4f2 1168 }
1169 btrfs_release_path(path);
1170
5a1d7843
JS
1171 return 0;
1172}
e02119d5 1173
f186373f
MF
1174static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1175 u32 *namelen, char **name, u64 *index,
1176 u64 *parent_objectid)
1177{
1178 struct btrfs_inode_extref *extref;
1179
1180 extref = (struct btrfs_inode_extref *)ref_ptr;
1181
1182 *namelen = btrfs_inode_extref_name_len(eb, extref);
1183 *name = kmalloc(*namelen, GFP_NOFS);
1184 if (*name == NULL)
1185 return -ENOMEM;
1186
1187 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1188 *namelen);
1189
1190 *index = btrfs_inode_extref_index(eb, extref);
1191 if (parent_objectid)
1192 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1193
1194 return 0;
1195}
1196
1197static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1198 u32 *namelen, char **name, u64 *index)
1199{
1200 struct btrfs_inode_ref *ref;
1201
1202 ref = (struct btrfs_inode_ref *)ref_ptr;
1203
1204 *namelen = btrfs_inode_ref_name_len(eb, ref);
1205 *name = kmalloc(*namelen, GFP_NOFS);
1206 if (*name == NULL)
1207 return -ENOMEM;
1208
1209 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1210
1211 *index = btrfs_inode_ref_index(eb, ref);
1212
1213 return 0;
1214}
1215
5a1d7843
JS
1216/*
1217 * replay one inode back reference item found in the log tree.
1218 * eb, slot and key refer to the buffer and key found in the log tree.
1219 * root is the destination we are replaying into, and path is for temp
1220 * use by this function. (it should be released on return).
1221 */
1222static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root,
1224 struct btrfs_root *log,
1225 struct btrfs_path *path,
1226 struct extent_buffer *eb, int slot,
1227 struct btrfs_key *key)
1228{
03b2f08b
GB
1229 struct inode *dir = NULL;
1230 struct inode *inode = NULL;
5a1d7843
JS
1231 unsigned long ref_ptr;
1232 unsigned long ref_end;
03b2f08b 1233 char *name = NULL;
5a1d7843
JS
1234 int namelen;
1235 int ret;
1236 int search_done = 0;
f186373f
MF
1237 int log_ref_ver = 0;
1238 u64 parent_objectid;
1239 u64 inode_objectid;
f46dbe3d 1240 u64 ref_index = 0;
f186373f
MF
1241 int ref_struct_size;
1242
1243 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1244 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1245
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 struct btrfs_inode_extref *r;
1248
1249 ref_struct_size = sizeof(struct btrfs_inode_extref);
1250 log_ref_ver = 1;
1251 r = (struct btrfs_inode_extref *)ref_ptr;
1252 parent_objectid = btrfs_inode_extref_parent(eb, r);
1253 } else {
1254 ref_struct_size = sizeof(struct btrfs_inode_ref);
1255 parent_objectid = key->offset;
1256 }
1257 inode_objectid = key->objectid;
e02119d5 1258
5a1d7843
JS
1259 /*
1260 * it is possible that we didn't log all the parent directories
1261 * for a given inode. If we don't find the dir, just don't
1262 * copy the back ref in. The link count fixup code will take
1263 * care of the rest
1264 */
f186373f 1265 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1266 if (!dir) {
1267 ret = -ENOENT;
1268 goto out;
1269 }
5a1d7843 1270
f186373f 1271 inode = read_one_inode(root, inode_objectid);
5a1d7843 1272 if (!inode) {
03b2f08b
GB
1273 ret = -EIO;
1274 goto out;
5a1d7843
JS
1275 }
1276
5a1d7843 1277 while (ref_ptr < ref_end) {
f186373f
MF
1278 if (log_ref_ver) {
1279 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1280 &ref_index, &parent_objectid);
1281 /*
1282 * parent object can change from one array
1283 * item to another.
1284 */
1285 if (!dir)
1286 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1287 if (!dir) {
1288 ret = -ENOENT;
1289 goto out;
1290 }
f186373f
MF
1291 } else {
1292 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1293 &ref_index);
1294 }
1295 if (ret)
03b2f08b 1296 goto out;
5a1d7843
JS
1297
1298 /* if we already have a perfect match, we're done */
4a0cc7ca 1299 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), btrfs_ino(BTRFS_I(inode)),
f186373f 1300 ref_index, name, namelen)) {
5a1d7843
JS
1301 /*
1302 * look for a conflicting back reference in the
1303 * metadata. if we find one we have to unlink that name
1304 * of the file before we add our new link. Later on, we
1305 * overwrite any existing back reference, and we don't
1306 * want to create dangling pointers in the directory.
1307 */
1308
1309 if (!search_done) {
1310 ret = __add_inode_ref(trans, root, path, log,
94c91a1f
NB
1311 BTRFS_I(dir),
1312 BTRFS_I(inode), eb,
f186373f
MF
1313 inode_objectid,
1314 parent_objectid,
1315 ref_index, name, namelen,
5a1d7843 1316 &search_done);
03b2f08b
GB
1317 if (ret) {
1318 if (ret == 1)
1319 ret = 0;
3650860b
JB
1320 goto out;
1321 }
5a1d7843
JS
1322 }
1323
1324 /* insert our name */
1325 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1326 0, ref_index);
3650860b
JB
1327 if (ret)
1328 goto out;
5a1d7843
JS
1329
1330 btrfs_update_inode(trans, root, inode);
1331 }
1332
f186373f 1333 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1334 kfree(name);
03b2f08b 1335 name = NULL;
f186373f
MF
1336 if (log_ref_ver) {
1337 iput(dir);
1338 dir = NULL;
1339 }
5a1d7843 1340 }
e02119d5
CM
1341
1342 /* finally write the back reference in the inode */
1343 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1344out:
b3b4aa74 1345 btrfs_release_path(path);
03b2f08b 1346 kfree(name);
e02119d5
CM
1347 iput(dir);
1348 iput(inode);
3650860b 1349 return ret;
e02119d5
CM
1350}
1351
c71bf099 1352static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1353 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1354{
1355 int ret;
381cf658 1356
9c4f61f0
DS
1357 ret = btrfs_insert_orphan_item(trans, root, ino);
1358 if (ret == -EEXIST)
1359 ret = 0;
381cf658 1360
c71bf099
YZ
1361 return ret;
1362}
1363
f186373f
MF
1364static int count_inode_extrefs(struct btrfs_root *root,
1365 struct inode *inode, struct btrfs_path *path)
1366{
1367 int ret = 0;
1368 int name_len;
1369 unsigned int nlink = 0;
1370 u32 item_size;
1371 u32 cur_offset = 0;
4a0cc7ca 1372 u64 inode_objectid = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1373 u64 offset = 0;
1374 unsigned long ptr;
1375 struct btrfs_inode_extref *extref;
1376 struct extent_buffer *leaf;
1377
1378 while (1) {
1379 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1380 &extref, &offset);
1381 if (ret)
1382 break;
c71bf099 1383
f186373f
MF
1384 leaf = path->nodes[0];
1385 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1386 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1387 cur_offset = 0;
f186373f
MF
1388
1389 while (cur_offset < item_size) {
1390 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1391 name_len = btrfs_inode_extref_name_len(leaf, extref);
1392
1393 nlink++;
1394
1395 cur_offset += name_len + sizeof(*extref);
1396 }
1397
1398 offset++;
1399 btrfs_release_path(path);
1400 }
1401 btrfs_release_path(path);
1402
2c2c452b 1403 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1404 return ret;
1405 return nlink;
1406}
1407
1408static int count_inode_refs(struct btrfs_root *root,
1409 struct inode *inode, struct btrfs_path *path)
e02119d5 1410{
e02119d5
CM
1411 int ret;
1412 struct btrfs_key key;
f186373f 1413 unsigned int nlink = 0;
e02119d5
CM
1414 unsigned long ptr;
1415 unsigned long ptr_end;
1416 int name_len;
4a0cc7ca 1417 u64 ino = btrfs_ino(BTRFS_I(inode));
e02119d5 1418
33345d01 1419 key.objectid = ino;
e02119d5
CM
1420 key.type = BTRFS_INODE_REF_KEY;
1421 key.offset = (u64)-1;
1422
d397712b 1423 while (1) {
e02119d5
CM
1424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1425 if (ret < 0)
1426 break;
1427 if (ret > 0) {
1428 if (path->slots[0] == 0)
1429 break;
1430 path->slots[0]--;
1431 }
e93ae26f 1432process_slot:
e02119d5
CM
1433 btrfs_item_key_to_cpu(path->nodes[0], &key,
1434 path->slots[0]);
33345d01 1435 if (key.objectid != ino ||
e02119d5
CM
1436 key.type != BTRFS_INODE_REF_KEY)
1437 break;
1438 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1439 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1440 path->slots[0]);
d397712b 1441 while (ptr < ptr_end) {
e02119d5
CM
1442 struct btrfs_inode_ref *ref;
1443
1444 ref = (struct btrfs_inode_ref *)ptr;
1445 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1446 ref);
1447 ptr = (unsigned long)(ref + 1) + name_len;
1448 nlink++;
1449 }
1450
1451 if (key.offset == 0)
1452 break;
e93ae26f
FDBM
1453 if (path->slots[0] > 0) {
1454 path->slots[0]--;
1455 goto process_slot;
1456 }
e02119d5 1457 key.offset--;
b3b4aa74 1458 btrfs_release_path(path);
e02119d5 1459 }
b3b4aa74 1460 btrfs_release_path(path);
f186373f
MF
1461
1462 return nlink;
1463}
1464
1465/*
1466 * There are a few corners where the link count of the file can't
1467 * be properly maintained during replay. So, instead of adding
1468 * lots of complexity to the log code, we just scan the backrefs
1469 * for any file that has been through replay.
1470 *
1471 * The scan will update the link count on the inode to reflect the
1472 * number of back refs found. If it goes down to zero, the iput
1473 * will free the inode.
1474 */
1475static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1476 struct btrfs_root *root,
1477 struct inode *inode)
1478{
1479 struct btrfs_path *path;
1480 int ret;
1481 u64 nlink = 0;
4a0cc7ca 1482 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1483
1484 path = btrfs_alloc_path();
1485 if (!path)
1486 return -ENOMEM;
1487
1488 ret = count_inode_refs(root, inode, path);
1489 if (ret < 0)
1490 goto out;
1491
1492 nlink = ret;
1493
1494 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1495 if (ret < 0)
1496 goto out;
1497
1498 nlink += ret;
1499
1500 ret = 0;
1501
e02119d5 1502 if (nlink != inode->i_nlink) {
bfe86848 1503 set_nlink(inode, nlink);
e02119d5
CM
1504 btrfs_update_inode(trans, root, inode);
1505 }
8d5bf1cb 1506 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1507
c71bf099
YZ
1508 if (inode->i_nlink == 0) {
1509 if (S_ISDIR(inode->i_mode)) {
1510 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1511 ino, 1);
3650860b
JB
1512 if (ret)
1513 goto out;
c71bf099 1514 }
33345d01 1515 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1516 }
12fcfd22 1517
f186373f
MF
1518out:
1519 btrfs_free_path(path);
1520 return ret;
e02119d5
CM
1521}
1522
1523static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1524 struct btrfs_root *root,
1525 struct btrfs_path *path)
1526{
1527 int ret;
1528 struct btrfs_key key;
1529 struct inode *inode;
1530
1531 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1532 key.type = BTRFS_ORPHAN_ITEM_KEY;
1533 key.offset = (u64)-1;
d397712b 1534 while (1) {
e02119d5
CM
1535 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1536 if (ret < 0)
1537 break;
1538
1539 if (ret == 1) {
1540 if (path->slots[0] == 0)
1541 break;
1542 path->slots[0]--;
1543 }
1544
1545 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1546 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1547 key.type != BTRFS_ORPHAN_ITEM_KEY)
1548 break;
1549
1550 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1551 if (ret)
1552 goto out;
e02119d5 1553
b3b4aa74 1554 btrfs_release_path(path);
e02119d5 1555 inode = read_one_inode(root, key.offset);
c00e9493
TI
1556 if (!inode)
1557 return -EIO;
e02119d5
CM
1558
1559 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1560 iput(inode);
3650860b
JB
1561 if (ret)
1562 goto out;
e02119d5 1563
12fcfd22
CM
1564 /*
1565 * fixup on a directory may create new entries,
1566 * make sure we always look for the highset possible
1567 * offset
1568 */
1569 key.offset = (u64)-1;
e02119d5 1570 }
65a246c5
TI
1571 ret = 0;
1572out:
b3b4aa74 1573 btrfs_release_path(path);
65a246c5 1574 return ret;
e02119d5
CM
1575}
1576
1577
1578/*
1579 * record a given inode in the fixup dir so we can check its link
1580 * count when replay is done. The link count is incremented here
1581 * so the inode won't go away until we check it
1582 */
1583static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1584 struct btrfs_root *root,
1585 struct btrfs_path *path,
1586 u64 objectid)
1587{
1588 struct btrfs_key key;
1589 int ret = 0;
1590 struct inode *inode;
1591
1592 inode = read_one_inode(root, objectid);
c00e9493
TI
1593 if (!inode)
1594 return -EIO;
e02119d5
CM
1595
1596 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1597 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1598 key.offset = objectid;
1599
1600 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1601
b3b4aa74 1602 btrfs_release_path(path);
e02119d5 1603 if (ret == 0) {
9bf7a489
JB
1604 if (!inode->i_nlink)
1605 set_nlink(inode, 1);
1606 else
8b558c5f 1607 inc_nlink(inode);
b9959295 1608 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1609 } else if (ret == -EEXIST) {
1610 ret = 0;
1611 } else {
3650860b 1612 BUG(); /* Logic Error */
e02119d5
CM
1613 }
1614 iput(inode);
1615
1616 return ret;
1617}
1618
1619/*
1620 * when replaying the log for a directory, we only insert names
1621 * for inodes that actually exist. This means an fsync on a directory
1622 * does not implicitly fsync all the new files in it
1623 */
1624static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1625 struct btrfs_root *root,
e02119d5 1626 u64 dirid, u64 index,
60d53eb3 1627 char *name, int name_len,
e02119d5
CM
1628 struct btrfs_key *location)
1629{
1630 struct inode *inode;
1631 struct inode *dir;
1632 int ret;
1633
1634 inode = read_one_inode(root, location->objectid);
1635 if (!inode)
1636 return -ENOENT;
1637
1638 dir = read_one_inode(root, dirid);
1639 if (!dir) {
1640 iput(inode);
1641 return -EIO;
1642 }
d555438b 1643
e02119d5
CM
1644 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1645
1646 /* FIXME, put inode into FIXUP list */
1647
1648 iput(inode);
1649 iput(dir);
1650 return ret;
1651}
1652
df8d116f
FM
1653/*
1654 * Return true if an inode reference exists in the log for the given name,
1655 * inode and parent inode.
1656 */
1657static bool name_in_log_ref(struct btrfs_root *log_root,
1658 const char *name, const int name_len,
1659 const u64 dirid, const u64 ino)
1660{
1661 struct btrfs_key search_key;
1662
1663 search_key.objectid = ino;
1664 search_key.type = BTRFS_INODE_REF_KEY;
1665 search_key.offset = dirid;
1666 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1667 return true;
1668
1669 search_key.type = BTRFS_INODE_EXTREF_KEY;
1670 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1671 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1672 return true;
1673
1674 return false;
1675}
1676
e02119d5
CM
1677/*
1678 * take a single entry in a log directory item and replay it into
1679 * the subvolume.
1680 *
1681 * if a conflicting item exists in the subdirectory already,
1682 * the inode it points to is unlinked and put into the link count
1683 * fix up tree.
1684 *
1685 * If a name from the log points to a file or directory that does
1686 * not exist in the FS, it is skipped. fsyncs on directories
1687 * do not force down inodes inside that directory, just changes to the
1688 * names or unlinks in a directory.
bb53eda9
FM
1689 *
1690 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1691 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1692 */
1693static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct extent_buffer *eb,
1697 struct btrfs_dir_item *di,
1698 struct btrfs_key *key)
1699{
1700 char *name;
1701 int name_len;
1702 struct btrfs_dir_item *dst_di;
1703 struct btrfs_key found_key;
1704 struct btrfs_key log_key;
1705 struct inode *dir;
e02119d5 1706 u8 log_type;
4bef0848 1707 int exists;
3650860b 1708 int ret = 0;
d555438b 1709 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1710 bool name_added = false;
e02119d5
CM
1711
1712 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1713 if (!dir)
1714 return -EIO;
e02119d5
CM
1715
1716 name_len = btrfs_dir_name_len(eb, di);
1717 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1718 if (!name) {
1719 ret = -ENOMEM;
1720 goto out;
1721 }
2a29edc6 1722
e02119d5
CM
1723 log_type = btrfs_dir_type(eb, di);
1724 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1725 name_len);
1726
1727 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1728 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1729 if (exists == 0)
1730 exists = 1;
1731 else
1732 exists = 0;
b3b4aa74 1733 btrfs_release_path(path);
4bef0848 1734
e02119d5
CM
1735 if (key->type == BTRFS_DIR_ITEM_KEY) {
1736 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1737 name, name_len, 1);
d397712b 1738 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1739 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1740 key->objectid,
1741 key->offset, name,
1742 name_len, 1);
1743 } else {
3650860b
JB
1744 /* Corruption */
1745 ret = -EINVAL;
1746 goto out;
e02119d5 1747 }
c704005d 1748 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1749 /* we need a sequence number to insert, so we only
1750 * do inserts for the BTRFS_DIR_INDEX_KEY types
1751 */
1752 if (key->type != BTRFS_DIR_INDEX_KEY)
1753 goto out;
1754 goto insert;
1755 }
1756
1757 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1758 /* the existing item matches the logged item */
1759 if (found_key.objectid == log_key.objectid &&
1760 found_key.type == log_key.type &&
1761 found_key.offset == log_key.offset &&
1762 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1763 update_size = false;
e02119d5
CM
1764 goto out;
1765 }
1766
1767 /*
1768 * don't drop the conflicting directory entry if the inode
1769 * for the new entry doesn't exist
1770 */
4bef0848 1771 if (!exists)
e02119d5
CM
1772 goto out;
1773
207e7d92 1774 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1775 if (ret)
1776 goto out;
e02119d5
CM
1777
1778 if (key->type == BTRFS_DIR_INDEX_KEY)
1779 goto insert;
1780out:
b3b4aa74 1781 btrfs_release_path(path);
d555438b
JB
1782 if (!ret && update_size) {
1783 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1784 ret = btrfs_update_inode(trans, root, dir);
1785 }
e02119d5
CM
1786 kfree(name);
1787 iput(dir);
bb53eda9
FM
1788 if (!ret && name_added)
1789 ret = 1;
3650860b 1790 return ret;
e02119d5
CM
1791
1792insert:
df8d116f
FM
1793 if (name_in_log_ref(root->log_root, name, name_len,
1794 key->objectid, log_key.objectid)) {
1795 /* The dentry will be added later. */
1796 ret = 0;
1797 update_size = false;
1798 goto out;
1799 }
b3b4aa74 1800 btrfs_release_path(path);
60d53eb3
Z
1801 ret = insert_one_name(trans, root, key->objectid, key->offset,
1802 name, name_len, &log_key);
df8d116f 1803 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1804 goto out;
bb53eda9
FM
1805 if (!ret)
1806 name_added = true;
d555438b 1807 update_size = false;
3650860b 1808 ret = 0;
e02119d5
CM
1809 goto out;
1810}
1811
1812/*
1813 * find all the names in a directory item and reconcile them into
1814 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1815 * one name in a directory item, but the same code gets used for
1816 * both directory index types
1817 */
1818static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 struct extent_buffer *eb, int slot,
1822 struct btrfs_key *key)
1823{
2ff7e61e 1824 struct btrfs_fs_info *fs_info = root->fs_info;
bb53eda9 1825 int ret = 0;
e02119d5
CM
1826 u32 item_size = btrfs_item_size_nr(eb, slot);
1827 struct btrfs_dir_item *di;
1828 int name_len;
1829 unsigned long ptr;
1830 unsigned long ptr_end;
bb53eda9 1831 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1832
1833 ptr = btrfs_item_ptr_offset(eb, slot);
1834 ptr_end = ptr + item_size;
d397712b 1835 while (ptr < ptr_end) {
e02119d5 1836 di = (struct btrfs_dir_item *)ptr;
2ff7e61e 1837 if (verify_dir_item(fs_info, eb, di))
22a94d44 1838 return -EIO;
e02119d5
CM
1839 name_len = btrfs_dir_name_len(eb, di);
1840 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1841 if (ret < 0)
1842 break;
e02119d5
CM
1843 ptr = (unsigned long)(di + 1);
1844 ptr += name_len;
bb53eda9
FM
1845
1846 /*
1847 * If this entry refers to a non-directory (directories can not
1848 * have a link count > 1) and it was added in the transaction
1849 * that was not committed, make sure we fixup the link count of
1850 * the inode it the entry points to. Otherwise something like
1851 * the following would result in a directory pointing to an
1852 * inode with a wrong link that does not account for this dir
1853 * entry:
1854 *
1855 * mkdir testdir
1856 * touch testdir/foo
1857 * touch testdir/bar
1858 * sync
1859 *
1860 * ln testdir/bar testdir/bar_link
1861 * ln testdir/foo testdir/foo_link
1862 * xfs_io -c "fsync" testdir/bar
1863 *
1864 * <power failure>
1865 *
1866 * mount fs, log replay happens
1867 *
1868 * File foo would remain with a link count of 1 when it has two
1869 * entries pointing to it in the directory testdir. This would
1870 * make it impossible to ever delete the parent directory has
1871 * it would result in stale dentries that can never be deleted.
1872 */
1873 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1874 struct btrfs_key di_key;
1875
1876 if (!fixup_path) {
1877 fixup_path = btrfs_alloc_path();
1878 if (!fixup_path) {
1879 ret = -ENOMEM;
1880 break;
1881 }
1882 }
1883
1884 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1885 ret = link_to_fixup_dir(trans, root, fixup_path,
1886 di_key.objectid);
1887 if (ret)
1888 break;
1889 }
1890 ret = 0;
e02119d5 1891 }
bb53eda9
FM
1892 btrfs_free_path(fixup_path);
1893 return ret;
e02119d5
CM
1894}
1895
1896/*
1897 * directory replay has two parts. There are the standard directory
1898 * items in the log copied from the subvolume, and range items
1899 * created in the log while the subvolume was logged.
1900 *
1901 * The range items tell us which parts of the key space the log
1902 * is authoritative for. During replay, if a key in the subvolume
1903 * directory is in a logged range item, but not actually in the log
1904 * that means it was deleted from the directory before the fsync
1905 * and should be removed.
1906 */
1907static noinline int find_dir_range(struct btrfs_root *root,
1908 struct btrfs_path *path,
1909 u64 dirid, int key_type,
1910 u64 *start_ret, u64 *end_ret)
1911{
1912 struct btrfs_key key;
1913 u64 found_end;
1914 struct btrfs_dir_log_item *item;
1915 int ret;
1916 int nritems;
1917
1918 if (*start_ret == (u64)-1)
1919 return 1;
1920
1921 key.objectid = dirid;
1922 key.type = key_type;
1923 key.offset = *start_ret;
1924
1925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1926 if (ret < 0)
1927 goto out;
1928 if (ret > 0) {
1929 if (path->slots[0] == 0)
1930 goto out;
1931 path->slots[0]--;
1932 }
1933 if (ret != 0)
1934 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1935
1936 if (key.type != key_type || key.objectid != dirid) {
1937 ret = 1;
1938 goto next;
1939 }
1940 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1941 struct btrfs_dir_log_item);
1942 found_end = btrfs_dir_log_end(path->nodes[0], item);
1943
1944 if (*start_ret >= key.offset && *start_ret <= found_end) {
1945 ret = 0;
1946 *start_ret = key.offset;
1947 *end_ret = found_end;
1948 goto out;
1949 }
1950 ret = 1;
1951next:
1952 /* check the next slot in the tree to see if it is a valid item */
1953 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 1954 path->slots[0]++;
e02119d5
CM
1955 if (path->slots[0] >= nritems) {
1956 ret = btrfs_next_leaf(root, path);
1957 if (ret)
1958 goto out;
e02119d5
CM
1959 }
1960
1961 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1962
1963 if (key.type != key_type || key.objectid != dirid) {
1964 ret = 1;
1965 goto out;
1966 }
1967 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1968 struct btrfs_dir_log_item);
1969 found_end = btrfs_dir_log_end(path->nodes[0], item);
1970 *start_ret = key.offset;
1971 *end_ret = found_end;
1972 ret = 0;
1973out:
b3b4aa74 1974 btrfs_release_path(path);
e02119d5
CM
1975 return ret;
1976}
1977
1978/*
1979 * this looks for a given directory item in the log. If the directory
1980 * item is not in the log, the item is removed and the inode it points
1981 * to is unlinked
1982 */
1983static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1984 struct btrfs_root *root,
1985 struct btrfs_root *log,
1986 struct btrfs_path *path,
1987 struct btrfs_path *log_path,
1988 struct inode *dir,
1989 struct btrfs_key *dir_key)
1990{
2ff7e61e 1991 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
1992 int ret;
1993 struct extent_buffer *eb;
1994 int slot;
1995 u32 item_size;
1996 struct btrfs_dir_item *di;
1997 struct btrfs_dir_item *log_di;
1998 int name_len;
1999 unsigned long ptr;
2000 unsigned long ptr_end;
2001 char *name;
2002 struct inode *inode;
2003 struct btrfs_key location;
2004
2005again:
2006 eb = path->nodes[0];
2007 slot = path->slots[0];
2008 item_size = btrfs_item_size_nr(eb, slot);
2009 ptr = btrfs_item_ptr_offset(eb, slot);
2010 ptr_end = ptr + item_size;
d397712b 2011 while (ptr < ptr_end) {
e02119d5 2012 di = (struct btrfs_dir_item *)ptr;
2ff7e61e 2013 if (verify_dir_item(fs_info, eb, di)) {
22a94d44
JB
2014 ret = -EIO;
2015 goto out;
2016 }
2017
e02119d5
CM
2018 name_len = btrfs_dir_name_len(eb, di);
2019 name = kmalloc(name_len, GFP_NOFS);
2020 if (!name) {
2021 ret = -ENOMEM;
2022 goto out;
2023 }
2024 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2025 name_len);
2026 log_di = NULL;
12fcfd22 2027 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2028 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2029 dir_key->objectid,
2030 name, name_len, 0);
12fcfd22 2031 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2032 log_di = btrfs_lookup_dir_index_item(trans, log,
2033 log_path,
2034 dir_key->objectid,
2035 dir_key->offset,
2036 name, name_len, 0);
2037 }
269d040f 2038 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2039 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2040 btrfs_release_path(path);
2041 btrfs_release_path(log_path);
e02119d5 2042 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2043 if (!inode) {
2044 kfree(name);
2045 return -EIO;
2046 }
e02119d5
CM
2047
2048 ret = link_to_fixup_dir(trans, root,
2049 path, location.objectid);
3650860b
JB
2050 if (ret) {
2051 kfree(name);
2052 iput(inode);
2053 goto out;
2054 }
2055
8b558c5f 2056 inc_nlink(inode);
4ec5934e
NB
2057 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2058 BTRFS_I(inode), name, name_len);
3650860b 2059 if (!ret)
2ff7e61e 2060 ret = btrfs_run_delayed_items(trans, fs_info);
e02119d5
CM
2061 kfree(name);
2062 iput(inode);
3650860b
JB
2063 if (ret)
2064 goto out;
e02119d5
CM
2065
2066 /* there might still be more names under this key
2067 * check and repeat if required
2068 */
2069 ret = btrfs_search_slot(NULL, root, dir_key, path,
2070 0, 0);
2071 if (ret == 0)
2072 goto again;
2073 ret = 0;
2074 goto out;
269d040f
FDBM
2075 } else if (IS_ERR(log_di)) {
2076 kfree(name);
2077 return PTR_ERR(log_di);
e02119d5 2078 }
b3b4aa74 2079 btrfs_release_path(log_path);
e02119d5
CM
2080 kfree(name);
2081
2082 ptr = (unsigned long)(di + 1);
2083 ptr += name_len;
2084 }
2085 ret = 0;
2086out:
b3b4aa74
DS
2087 btrfs_release_path(path);
2088 btrfs_release_path(log_path);
e02119d5
CM
2089 return ret;
2090}
2091
4f764e51
FM
2092static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2093 struct btrfs_root *root,
2094 struct btrfs_root *log,
2095 struct btrfs_path *path,
2096 const u64 ino)
2097{
2098 struct btrfs_key search_key;
2099 struct btrfs_path *log_path;
2100 int i;
2101 int nritems;
2102 int ret;
2103
2104 log_path = btrfs_alloc_path();
2105 if (!log_path)
2106 return -ENOMEM;
2107
2108 search_key.objectid = ino;
2109 search_key.type = BTRFS_XATTR_ITEM_KEY;
2110 search_key.offset = 0;
2111again:
2112 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2113 if (ret < 0)
2114 goto out;
2115process_leaf:
2116 nritems = btrfs_header_nritems(path->nodes[0]);
2117 for (i = path->slots[0]; i < nritems; i++) {
2118 struct btrfs_key key;
2119 struct btrfs_dir_item *di;
2120 struct btrfs_dir_item *log_di;
2121 u32 total_size;
2122 u32 cur;
2123
2124 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2125 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2126 ret = 0;
2127 goto out;
2128 }
2129
2130 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2131 total_size = btrfs_item_size_nr(path->nodes[0], i);
2132 cur = 0;
2133 while (cur < total_size) {
2134 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2135 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2136 u32 this_len = sizeof(*di) + name_len + data_len;
2137 char *name;
2138
2139 name = kmalloc(name_len, GFP_NOFS);
2140 if (!name) {
2141 ret = -ENOMEM;
2142 goto out;
2143 }
2144 read_extent_buffer(path->nodes[0], name,
2145 (unsigned long)(di + 1), name_len);
2146
2147 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2148 name, name_len, 0);
2149 btrfs_release_path(log_path);
2150 if (!log_di) {
2151 /* Doesn't exist in log tree, so delete it. */
2152 btrfs_release_path(path);
2153 di = btrfs_lookup_xattr(trans, root, path, ino,
2154 name, name_len, -1);
2155 kfree(name);
2156 if (IS_ERR(di)) {
2157 ret = PTR_ERR(di);
2158 goto out;
2159 }
2160 ASSERT(di);
2161 ret = btrfs_delete_one_dir_name(trans, root,
2162 path, di);
2163 if (ret)
2164 goto out;
2165 btrfs_release_path(path);
2166 search_key = key;
2167 goto again;
2168 }
2169 kfree(name);
2170 if (IS_ERR(log_di)) {
2171 ret = PTR_ERR(log_di);
2172 goto out;
2173 }
2174 cur += this_len;
2175 di = (struct btrfs_dir_item *)((char *)di + this_len);
2176 }
2177 }
2178 ret = btrfs_next_leaf(root, path);
2179 if (ret > 0)
2180 ret = 0;
2181 else if (ret == 0)
2182 goto process_leaf;
2183out:
2184 btrfs_free_path(log_path);
2185 btrfs_release_path(path);
2186 return ret;
2187}
2188
2189
e02119d5
CM
2190/*
2191 * deletion replay happens before we copy any new directory items
2192 * out of the log or out of backreferences from inodes. It
2193 * scans the log to find ranges of keys that log is authoritative for,
2194 * and then scans the directory to find items in those ranges that are
2195 * not present in the log.
2196 *
2197 * Anything we don't find in the log is unlinked and removed from the
2198 * directory.
2199 */
2200static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct btrfs_root *log,
2203 struct btrfs_path *path,
12fcfd22 2204 u64 dirid, int del_all)
e02119d5
CM
2205{
2206 u64 range_start;
2207 u64 range_end;
2208 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2209 int ret = 0;
2210 struct btrfs_key dir_key;
2211 struct btrfs_key found_key;
2212 struct btrfs_path *log_path;
2213 struct inode *dir;
2214
2215 dir_key.objectid = dirid;
2216 dir_key.type = BTRFS_DIR_ITEM_KEY;
2217 log_path = btrfs_alloc_path();
2218 if (!log_path)
2219 return -ENOMEM;
2220
2221 dir = read_one_inode(root, dirid);
2222 /* it isn't an error if the inode isn't there, that can happen
2223 * because we replay the deletes before we copy in the inode item
2224 * from the log
2225 */
2226 if (!dir) {
2227 btrfs_free_path(log_path);
2228 return 0;
2229 }
2230again:
2231 range_start = 0;
2232 range_end = 0;
d397712b 2233 while (1) {
12fcfd22
CM
2234 if (del_all)
2235 range_end = (u64)-1;
2236 else {
2237 ret = find_dir_range(log, path, dirid, key_type,
2238 &range_start, &range_end);
2239 if (ret != 0)
2240 break;
2241 }
e02119d5
CM
2242
2243 dir_key.offset = range_start;
d397712b 2244 while (1) {
e02119d5
CM
2245 int nritems;
2246 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2247 0, 0);
2248 if (ret < 0)
2249 goto out;
2250
2251 nritems = btrfs_header_nritems(path->nodes[0]);
2252 if (path->slots[0] >= nritems) {
2253 ret = btrfs_next_leaf(root, path);
2254 if (ret)
2255 break;
2256 }
2257 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2258 path->slots[0]);
2259 if (found_key.objectid != dirid ||
2260 found_key.type != dir_key.type)
2261 goto next_type;
2262
2263 if (found_key.offset > range_end)
2264 break;
2265
2266 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2267 log_path, dir,
2268 &found_key);
3650860b
JB
2269 if (ret)
2270 goto out;
e02119d5
CM
2271 if (found_key.offset == (u64)-1)
2272 break;
2273 dir_key.offset = found_key.offset + 1;
2274 }
b3b4aa74 2275 btrfs_release_path(path);
e02119d5
CM
2276 if (range_end == (u64)-1)
2277 break;
2278 range_start = range_end + 1;
2279 }
2280
2281next_type:
2282 ret = 0;
2283 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2284 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2285 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2286 btrfs_release_path(path);
e02119d5
CM
2287 goto again;
2288 }
2289out:
b3b4aa74 2290 btrfs_release_path(path);
e02119d5
CM
2291 btrfs_free_path(log_path);
2292 iput(dir);
2293 return ret;
2294}
2295
2296/*
2297 * the process_func used to replay items from the log tree. This
2298 * gets called in two different stages. The first stage just looks
2299 * for inodes and makes sure they are all copied into the subvolume.
2300 *
2301 * The second stage copies all the other item types from the log into
2302 * the subvolume. The two stage approach is slower, but gets rid of
2303 * lots of complexity around inodes referencing other inodes that exist
2304 * only in the log (references come from either directory items or inode
2305 * back refs).
2306 */
2307static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2308 struct walk_control *wc, u64 gen)
2309{
2310 int nritems;
2311 struct btrfs_path *path;
2312 struct btrfs_root *root = wc->replay_dest;
2313 struct btrfs_key key;
e02119d5
CM
2314 int level;
2315 int i;
2316 int ret;
2317
018642a1
TI
2318 ret = btrfs_read_buffer(eb, gen);
2319 if (ret)
2320 return ret;
e02119d5
CM
2321
2322 level = btrfs_header_level(eb);
2323
2324 if (level != 0)
2325 return 0;
2326
2327 path = btrfs_alloc_path();
1e5063d0
MF
2328 if (!path)
2329 return -ENOMEM;
e02119d5
CM
2330
2331 nritems = btrfs_header_nritems(eb);
2332 for (i = 0; i < nritems; i++) {
2333 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2334
2335 /* inode keys are done during the first stage */
2336 if (key.type == BTRFS_INODE_ITEM_KEY &&
2337 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2338 struct btrfs_inode_item *inode_item;
2339 u32 mode;
2340
2341 inode_item = btrfs_item_ptr(eb, i,
2342 struct btrfs_inode_item);
4f764e51
FM
2343 ret = replay_xattr_deletes(wc->trans, root, log,
2344 path, key.objectid);
2345 if (ret)
2346 break;
e02119d5
CM
2347 mode = btrfs_inode_mode(eb, inode_item);
2348 if (S_ISDIR(mode)) {
2349 ret = replay_dir_deletes(wc->trans,
12fcfd22 2350 root, log, path, key.objectid, 0);
b50c6e25
JB
2351 if (ret)
2352 break;
e02119d5
CM
2353 }
2354 ret = overwrite_item(wc->trans, root, path,
2355 eb, i, &key);
b50c6e25
JB
2356 if (ret)
2357 break;
e02119d5 2358
c71bf099 2359 /* for regular files, make sure corresponding
01327610 2360 * orphan item exist. extents past the new EOF
c71bf099 2361 * will be truncated later by orphan cleanup.
e02119d5
CM
2362 */
2363 if (S_ISREG(mode)) {
c71bf099
YZ
2364 ret = insert_orphan_item(wc->trans, root,
2365 key.objectid);
b50c6e25
JB
2366 if (ret)
2367 break;
e02119d5 2368 }
c71bf099 2369
e02119d5
CM
2370 ret = link_to_fixup_dir(wc->trans, root,
2371 path, key.objectid);
b50c6e25
JB
2372 if (ret)
2373 break;
e02119d5 2374 }
dd8e7217
JB
2375
2376 if (key.type == BTRFS_DIR_INDEX_KEY &&
2377 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2378 ret = replay_one_dir_item(wc->trans, root, path,
2379 eb, i, &key);
2380 if (ret)
2381 break;
2382 }
2383
e02119d5
CM
2384 if (wc->stage < LOG_WALK_REPLAY_ALL)
2385 continue;
2386
2387 /* these keys are simply copied */
2388 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2389 ret = overwrite_item(wc->trans, root, path,
2390 eb, i, &key);
b50c6e25
JB
2391 if (ret)
2392 break;
2da1c669
LB
2393 } else if (key.type == BTRFS_INODE_REF_KEY ||
2394 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2395 ret = add_inode_ref(wc->trans, root, log, path,
2396 eb, i, &key);
b50c6e25
JB
2397 if (ret && ret != -ENOENT)
2398 break;
2399 ret = 0;
e02119d5
CM
2400 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2401 ret = replay_one_extent(wc->trans, root, path,
2402 eb, i, &key);
b50c6e25
JB
2403 if (ret)
2404 break;
dd8e7217 2405 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2406 ret = replay_one_dir_item(wc->trans, root, path,
2407 eb, i, &key);
b50c6e25
JB
2408 if (ret)
2409 break;
e02119d5
CM
2410 }
2411 }
2412 btrfs_free_path(path);
b50c6e25 2413 return ret;
e02119d5
CM
2414}
2415
d397712b 2416static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2417 struct btrfs_root *root,
2418 struct btrfs_path *path, int *level,
2419 struct walk_control *wc)
2420{
0b246afa 2421 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2422 u64 root_owner;
e02119d5
CM
2423 u64 bytenr;
2424 u64 ptr_gen;
2425 struct extent_buffer *next;
2426 struct extent_buffer *cur;
2427 struct extent_buffer *parent;
2428 u32 blocksize;
2429 int ret = 0;
2430
2431 WARN_ON(*level < 0);
2432 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2433
d397712b 2434 while (*level > 0) {
e02119d5
CM
2435 WARN_ON(*level < 0);
2436 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2437 cur = path->nodes[*level];
2438
fae7f21c 2439 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2440
2441 if (path->slots[*level] >=
2442 btrfs_header_nritems(cur))
2443 break;
2444
2445 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2446 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
0b246afa 2447 blocksize = fs_info->nodesize;
e02119d5
CM
2448
2449 parent = path->nodes[*level];
2450 root_owner = btrfs_header_owner(parent);
e02119d5 2451
2ff7e61e 2452 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2453 if (IS_ERR(next))
2454 return PTR_ERR(next);
e02119d5 2455
e02119d5 2456 if (*level == 1) {
1e5063d0 2457 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2458 if (ret) {
2459 free_extent_buffer(next);
1e5063d0 2460 return ret;
b50c6e25 2461 }
4a500fd1 2462
e02119d5
CM
2463 path->slots[*level]++;
2464 if (wc->free) {
018642a1
TI
2465 ret = btrfs_read_buffer(next, ptr_gen);
2466 if (ret) {
2467 free_extent_buffer(next);
2468 return ret;
2469 }
e02119d5 2470
681ae509
JB
2471 if (trans) {
2472 btrfs_tree_lock(next);
2473 btrfs_set_lock_blocking(next);
0b246afa 2474 clean_tree_block(trans, fs_info, next);
681ae509
JB
2475 btrfs_wait_tree_block_writeback(next);
2476 btrfs_tree_unlock(next);
2477 }
e02119d5 2478
e02119d5
CM
2479 WARN_ON(root_owner !=
2480 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2481 ret = btrfs_free_and_pin_reserved_extent(
2482 fs_info, bytenr,
2483 blocksize);
3650860b
JB
2484 if (ret) {
2485 free_extent_buffer(next);
2486 return ret;
2487 }
e02119d5
CM
2488 }
2489 free_extent_buffer(next);
2490 continue;
2491 }
018642a1
TI
2492 ret = btrfs_read_buffer(next, ptr_gen);
2493 if (ret) {
2494 free_extent_buffer(next);
2495 return ret;
2496 }
e02119d5
CM
2497
2498 WARN_ON(*level <= 0);
2499 if (path->nodes[*level-1])
2500 free_extent_buffer(path->nodes[*level-1]);
2501 path->nodes[*level-1] = next;
2502 *level = btrfs_header_level(next);
2503 path->slots[*level] = 0;
2504 cond_resched();
2505 }
2506 WARN_ON(*level < 0);
2507 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2508
4a500fd1 2509 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2510
2511 cond_resched();
2512 return 0;
2513}
2514
d397712b 2515static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2516 struct btrfs_root *root,
2517 struct btrfs_path *path, int *level,
2518 struct walk_control *wc)
2519{
0b246afa 2520 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2521 u64 root_owner;
e02119d5
CM
2522 int i;
2523 int slot;
2524 int ret;
2525
d397712b 2526 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2527 slot = path->slots[i];
4a500fd1 2528 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2529 path->slots[i]++;
2530 *level = i;
2531 WARN_ON(*level == 0);
2532 return 0;
2533 } else {
31840ae1
ZY
2534 struct extent_buffer *parent;
2535 if (path->nodes[*level] == root->node)
2536 parent = path->nodes[*level];
2537 else
2538 parent = path->nodes[*level + 1];
2539
2540 root_owner = btrfs_header_owner(parent);
1e5063d0 2541 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2542 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2543 if (ret)
2544 return ret;
2545
e02119d5
CM
2546 if (wc->free) {
2547 struct extent_buffer *next;
2548
2549 next = path->nodes[*level];
2550
681ae509
JB
2551 if (trans) {
2552 btrfs_tree_lock(next);
2553 btrfs_set_lock_blocking(next);
0b246afa 2554 clean_tree_block(trans, fs_info, next);
681ae509
JB
2555 btrfs_wait_tree_block_writeback(next);
2556 btrfs_tree_unlock(next);
2557 }
e02119d5 2558
e02119d5 2559 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2560 ret = btrfs_free_and_pin_reserved_extent(
2561 fs_info,
e02119d5 2562 path->nodes[*level]->start,
d00aff00 2563 path->nodes[*level]->len);
3650860b
JB
2564 if (ret)
2565 return ret;
e02119d5
CM
2566 }
2567 free_extent_buffer(path->nodes[*level]);
2568 path->nodes[*level] = NULL;
2569 *level = i + 1;
2570 }
2571 }
2572 return 1;
2573}
2574
2575/*
2576 * drop the reference count on the tree rooted at 'snap'. This traverses
2577 * the tree freeing any blocks that have a ref count of zero after being
2578 * decremented.
2579 */
2580static int walk_log_tree(struct btrfs_trans_handle *trans,
2581 struct btrfs_root *log, struct walk_control *wc)
2582{
2ff7e61e 2583 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2584 int ret = 0;
2585 int wret;
2586 int level;
2587 struct btrfs_path *path;
e02119d5
CM
2588 int orig_level;
2589
2590 path = btrfs_alloc_path();
db5b493a
TI
2591 if (!path)
2592 return -ENOMEM;
e02119d5
CM
2593
2594 level = btrfs_header_level(log->node);
2595 orig_level = level;
2596 path->nodes[level] = log->node;
2597 extent_buffer_get(log->node);
2598 path->slots[level] = 0;
2599
d397712b 2600 while (1) {
e02119d5
CM
2601 wret = walk_down_log_tree(trans, log, path, &level, wc);
2602 if (wret > 0)
2603 break;
79787eaa 2604 if (wret < 0) {
e02119d5 2605 ret = wret;
79787eaa
JM
2606 goto out;
2607 }
e02119d5
CM
2608
2609 wret = walk_up_log_tree(trans, log, path, &level, wc);
2610 if (wret > 0)
2611 break;
79787eaa 2612 if (wret < 0) {
e02119d5 2613 ret = wret;
79787eaa
JM
2614 goto out;
2615 }
e02119d5
CM
2616 }
2617
2618 /* was the root node processed? if not, catch it here */
2619 if (path->nodes[orig_level]) {
79787eaa 2620 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2621 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2622 if (ret)
2623 goto out;
e02119d5
CM
2624 if (wc->free) {
2625 struct extent_buffer *next;
2626
2627 next = path->nodes[orig_level];
2628
681ae509
JB
2629 if (trans) {
2630 btrfs_tree_lock(next);
2631 btrfs_set_lock_blocking(next);
2ff7e61e 2632 clean_tree_block(trans, fs_info, next);
681ae509
JB
2633 btrfs_wait_tree_block_writeback(next);
2634 btrfs_tree_unlock(next);
2635 }
e02119d5 2636
e02119d5
CM
2637 WARN_ON(log->root_key.objectid !=
2638 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2639 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2640 next->start, next->len);
3650860b
JB
2641 if (ret)
2642 goto out;
e02119d5
CM
2643 }
2644 }
2645
79787eaa 2646out:
e02119d5 2647 btrfs_free_path(path);
e02119d5
CM
2648 return ret;
2649}
2650
7237f183
YZ
2651/*
2652 * helper function to update the item for a given subvolumes log root
2653 * in the tree of log roots
2654 */
2655static int update_log_root(struct btrfs_trans_handle *trans,
2656 struct btrfs_root *log)
2657{
0b246afa 2658 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2659 int ret;
2660
2661 if (log->log_transid == 1) {
2662 /* insert root item on the first sync */
0b246afa 2663 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2664 &log->root_key, &log->root_item);
2665 } else {
0b246afa 2666 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2667 &log->root_key, &log->root_item);
2668 }
2669 return ret;
2670}
2671
60d53eb3 2672static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2673{
2674 DEFINE_WAIT(wait);
7237f183 2675 int index = transid % 2;
e02119d5 2676
7237f183
YZ
2677 /*
2678 * we only allow two pending log transactions at a time,
2679 * so we know that if ours is more than 2 older than the
2680 * current transaction, we're done
2681 */
e02119d5 2682 do {
7237f183
YZ
2683 prepare_to_wait(&root->log_commit_wait[index],
2684 &wait, TASK_UNINTERRUPTIBLE);
2685 mutex_unlock(&root->log_mutex);
12fcfd22 2686
d1433deb 2687 if (root->log_transid_committed < transid &&
7237f183
YZ
2688 atomic_read(&root->log_commit[index]))
2689 schedule();
12fcfd22 2690
7237f183
YZ
2691 finish_wait(&root->log_commit_wait[index], &wait);
2692 mutex_lock(&root->log_mutex);
d1433deb 2693 } while (root->log_transid_committed < transid &&
7237f183 2694 atomic_read(&root->log_commit[index]));
7237f183
YZ
2695}
2696
60d53eb3 2697static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2698{
2699 DEFINE_WAIT(wait);
8b050d35
MX
2700
2701 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2702 prepare_to_wait(&root->log_writer_wait,
2703 &wait, TASK_UNINTERRUPTIBLE);
2704 mutex_unlock(&root->log_mutex);
8b050d35 2705 if (atomic_read(&root->log_writers))
e02119d5 2706 schedule();
7237f183 2707 finish_wait(&root->log_writer_wait, &wait);
575849ec 2708 mutex_lock(&root->log_mutex);
7237f183 2709 }
e02119d5
CM
2710}
2711
8b050d35
MX
2712static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2713 struct btrfs_log_ctx *ctx)
2714{
2715 if (!ctx)
2716 return;
2717
2718 mutex_lock(&root->log_mutex);
2719 list_del_init(&ctx->list);
2720 mutex_unlock(&root->log_mutex);
2721}
2722
2723/*
2724 * Invoked in log mutex context, or be sure there is no other task which
2725 * can access the list.
2726 */
2727static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2728 int index, int error)
2729{
2730 struct btrfs_log_ctx *ctx;
570dd450 2731 struct btrfs_log_ctx *safe;
8b050d35 2732
570dd450
CM
2733 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2734 list_del_init(&ctx->list);
8b050d35 2735 ctx->log_ret = error;
570dd450 2736 }
8b050d35
MX
2737
2738 INIT_LIST_HEAD(&root->log_ctxs[index]);
2739}
2740
e02119d5
CM
2741/*
2742 * btrfs_sync_log does sends a given tree log down to the disk and
2743 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2744 * you know that any inodes previously logged are safely on disk only
2745 * if it returns 0.
2746 *
2747 * Any other return value means you need to call btrfs_commit_transaction.
2748 * Some of the edge cases for fsyncing directories that have had unlinks
2749 * or renames done in the past mean that sometimes the only safe
2750 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2751 * that has happened.
e02119d5
CM
2752 */
2753int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2754 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2755{
7237f183
YZ
2756 int index1;
2757 int index2;
8cef4e16 2758 int mark;
e02119d5 2759 int ret;
0b246afa 2760 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2761 struct btrfs_root *log = root->log_root;
0b246afa 2762 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2763 int log_transid = 0;
8b050d35 2764 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2765 struct blk_plug plug;
e02119d5 2766
7237f183 2767 mutex_lock(&root->log_mutex);
d1433deb
MX
2768 log_transid = ctx->log_transid;
2769 if (root->log_transid_committed >= log_transid) {
2770 mutex_unlock(&root->log_mutex);
2771 return ctx->log_ret;
2772 }
2773
2774 index1 = log_transid % 2;
7237f183 2775 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2776 wait_log_commit(root, log_transid);
7237f183 2777 mutex_unlock(&root->log_mutex);
8b050d35 2778 return ctx->log_ret;
e02119d5 2779 }
d1433deb 2780 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2781 atomic_set(&root->log_commit[index1], 1);
2782
2783 /* wait for previous tree log sync to complete */
2784 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2785 wait_log_commit(root, log_transid - 1);
48cab2e0 2786
86df7eb9 2787 while (1) {
2ecb7923 2788 int batch = atomic_read(&root->log_batch);
cd354ad6 2789 /* when we're on an ssd, just kick the log commit out */
0b246afa 2790 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2791 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2792 mutex_unlock(&root->log_mutex);
2793 schedule_timeout_uninterruptible(1);
2794 mutex_lock(&root->log_mutex);
2795 }
60d53eb3 2796 wait_for_writer(root);
2ecb7923 2797 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2798 break;
2799 }
e02119d5 2800
12fcfd22 2801 /* bail out if we need to do a full commit */
0b246afa 2802 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2803 ret = -EAGAIN;
2ab28f32 2804 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2805 mutex_unlock(&root->log_mutex);
2806 goto out;
2807 }
2808
8cef4e16
YZ
2809 if (log_transid % 2 == 0)
2810 mark = EXTENT_DIRTY;
2811 else
2812 mark = EXTENT_NEW;
2813
690587d1
CM
2814 /* we start IO on all the marked extents here, but we don't actually
2815 * wait for them until later.
2816 */
c6adc9cc 2817 blk_start_plug(&plug);
2ff7e61e 2818 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2819 if (ret) {
c6adc9cc 2820 blk_finish_plug(&plug);
66642832 2821 btrfs_abort_transaction(trans, ret);
2ab28f32 2822 btrfs_free_logged_extents(log, log_transid);
0b246afa 2823 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2824 mutex_unlock(&root->log_mutex);
2825 goto out;
2826 }
7237f183 2827
5d4f98a2 2828 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2829
7237f183
YZ
2830 root->log_transid++;
2831 log->log_transid = root->log_transid;
ff782e0a 2832 root->log_start_pid = 0;
7237f183 2833 /*
8cef4e16
YZ
2834 * IO has been started, blocks of the log tree have WRITTEN flag set
2835 * in their headers. new modifications of the log will be written to
2836 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2837 */
2838 mutex_unlock(&root->log_mutex);
2839
28a23593 2840 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2841
7237f183 2842 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2843 atomic_inc(&log_root_tree->log_batch);
7237f183 2844 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2845
2846 index2 = log_root_tree->log_transid % 2;
2847 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2848 root_log_ctx.log_transid = log_root_tree->log_transid;
2849
7237f183
YZ
2850 mutex_unlock(&log_root_tree->log_mutex);
2851
2852 ret = update_log_root(trans, log);
7237f183
YZ
2853
2854 mutex_lock(&log_root_tree->log_mutex);
2855 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2856 /*
2857 * Implicit memory barrier after atomic_dec_and_test
2858 */
7237f183
YZ
2859 if (waitqueue_active(&log_root_tree->log_writer_wait))
2860 wake_up(&log_root_tree->log_writer_wait);
2861 }
2862
4a500fd1 2863 if (ret) {
d1433deb
MX
2864 if (!list_empty(&root_log_ctx.list))
2865 list_del_init(&root_log_ctx.list);
2866
c6adc9cc 2867 blk_finish_plug(&plug);
0b246afa 2868 btrfs_set_log_full_commit(fs_info, trans);
995946dd 2869
79787eaa 2870 if (ret != -ENOSPC) {
66642832 2871 btrfs_abort_transaction(trans, ret);
79787eaa
JM
2872 mutex_unlock(&log_root_tree->log_mutex);
2873 goto out;
2874 }
bf89d38f 2875 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2876 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2877 mutex_unlock(&log_root_tree->log_mutex);
2878 ret = -EAGAIN;
2879 goto out;
2880 }
2881
d1433deb 2882 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2883 blk_finish_plug(&plug);
cbd60aa7 2884 list_del_init(&root_log_ctx.list);
d1433deb
MX
2885 mutex_unlock(&log_root_tree->log_mutex);
2886 ret = root_log_ctx.log_ret;
2887 goto out;
2888 }
8b050d35 2889
d1433deb 2890 index2 = root_log_ctx.log_transid % 2;
7237f183 2891 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2892 blk_finish_plug(&plug);
bf89d38f 2893 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 2894 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 2895 wait_log_commit(log_root_tree,
d1433deb 2896 root_log_ctx.log_transid);
7237f183 2897 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2898 if (!ret)
2899 ret = root_log_ctx.log_ret;
7237f183
YZ
2900 goto out;
2901 }
d1433deb 2902 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2903 atomic_set(&log_root_tree->log_commit[index2], 1);
2904
12fcfd22 2905 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 2906 wait_log_commit(log_root_tree,
d1433deb 2907 root_log_ctx.log_transid - 1);
12fcfd22
CM
2908 }
2909
60d53eb3 2910 wait_for_writer(log_root_tree);
7237f183 2911
12fcfd22
CM
2912 /*
2913 * now that we've moved on to the tree of log tree roots,
2914 * check the full commit flag again
2915 */
0b246afa 2916 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 2917 blk_finish_plug(&plug);
bf89d38f 2918 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2919 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2920 mutex_unlock(&log_root_tree->log_mutex);
2921 ret = -EAGAIN;
2922 goto out_wake_log_root;
2923 }
7237f183 2924
2ff7e61e 2925 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
2926 &log_root_tree->dirty_log_pages,
2927 EXTENT_DIRTY | EXTENT_NEW);
2928 blk_finish_plug(&plug);
79787eaa 2929 if (ret) {
0b246afa 2930 btrfs_set_log_full_commit(fs_info, trans);
66642832 2931 btrfs_abort_transaction(trans, ret);
2ab28f32 2932 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2933 mutex_unlock(&log_root_tree->log_mutex);
2934 goto out_wake_log_root;
2935 }
bf89d38f 2936 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 2937 if (!ret)
bf89d38f
JM
2938 ret = btrfs_wait_tree_log_extents(log_root_tree,
2939 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 2940 if (ret) {
0b246afa 2941 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
2942 btrfs_free_logged_extents(log, log_transid);
2943 mutex_unlock(&log_root_tree->log_mutex);
2944 goto out_wake_log_root;
2945 }
50d9aa99 2946 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2947
0b246afa
JM
2948 btrfs_set_super_log_root(fs_info->super_for_commit,
2949 log_root_tree->node->start);
2950 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2951 btrfs_header_level(log_root_tree->node));
e02119d5 2952
7237f183 2953 log_root_tree->log_transid++;
7237f183
YZ
2954 mutex_unlock(&log_root_tree->log_mutex);
2955
2956 /*
2957 * nobody else is going to jump in and write the the ctree
2958 * super here because the log_commit atomic below is protecting
2959 * us. We must be called with a transaction handle pinning
2960 * the running transaction open, so a full commit can't hop
2961 * in and cause problems either.
2962 */
2ff7e61e 2963 ret = write_ctree_super(trans, fs_info, 1);
5af3e8cc 2964 if (ret) {
0b246afa 2965 btrfs_set_log_full_commit(fs_info, trans);
66642832 2966 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
2967 goto out_wake_log_root;
2968 }
7237f183 2969
257c62e1
CM
2970 mutex_lock(&root->log_mutex);
2971 if (root->last_log_commit < log_transid)
2972 root->last_log_commit = log_transid;
2973 mutex_unlock(&root->log_mutex);
2974
12fcfd22 2975out_wake_log_root:
570dd450 2976 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
2977 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2978
d1433deb 2979 log_root_tree->log_transid_committed++;
7237f183 2980 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2981 mutex_unlock(&log_root_tree->log_mutex);
2982
33a9eca7
DS
2983 /*
2984 * The barrier before waitqueue_active is implied by mutex_unlock
2985 */
7237f183
YZ
2986 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2987 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2988out:
d1433deb 2989 mutex_lock(&root->log_mutex);
570dd450 2990 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 2991 root->log_transid_committed++;
7237f183 2992 atomic_set(&root->log_commit[index1], 0);
d1433deb 2993 mutex_unlock(&root->log_mutex);
8b050d35 2994
33a9eca7
DS
2995 /*
2996 * The barrier before waitqueue_active is implied by mutex_unlock
2997 */
7237f183
YZ
2998 if (waitqueue_active(&root->log_commit_wait[index1]))
2999 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3000 return ret;
e02119d5
CM
3001}
3002
4a500fd1
YZ
3003static void free_log_tree(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *log)
e02119d5
CM
3005{
3006 int ret;
d0c803c4
CM
3007 u64 start;
3008 u64 end;
e02119d5
CM
3009 struct walk_control wc = {
3010 .free = 1,
3011 .process_func = process_one_buffer
3012 };
3013
681ae509
JB
3014 ret = walk_log_tree(trans, log, &wc);
3015 /* I don't think this can happen but just in case */
3016 if (ret)
66642832 3017 btrfs_abort_transaction(trans, ret);
e02119d5 3018
d397712b 3019 while (1) {
d0c803c4 3020 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
3021 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3022 NULL);
d0c803c4
CM
3023 if (ret)
3024 break;
3025
8cef4e16 3026 clear_extent_bits(&log->dirty_log_pages, start, end,
91166212 3027 EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
3028 }
3029
2ab28f32
JB
3030 /*
3031 * We may have short-circuited the log tree with the full commit logic
3032 * and left ordered extents on our list, so clear these out to keep us
3033 * from leaking inodes and memory.
3034 */
3035 btrfs_free_logged_extents(log, 0);
3036 btrfs_free_logged_extents(log, 1);
3037
7237f183
YZ
3038 free_extent_buffer(log->node);
3039 kfree(log);
4a500fd1
YZ
3040}
3041
3042/*
3043 * free all the extents used by the tree log. This should be called
3044 * at commit time of the full transaction
3045 */
3046int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3047{
3048 if (root->log_root) {
3049 free_log_tree(trans, root->log_root);
3050 root->log_root = NULL;
3051 }
3052 return 0;
3053}
3054
3055int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3056 struct btrfs_fs_info *fs_info)
3057{
3058 if (fs_info->log_root_tree) {
3059 free_log_tree(trans, fs_info->log_root_tree);
3060 fs_info->log_root_tree = NULL;
3061 }
e02119d5
CM
3062 return 0;
3063}
3064
e02119d5
CM
3065/*
3066 * If both a file and directory are logged, and unlinks or renames are
3067 * mixed in, we have a few interesting corners:
3068 *
3069 * create file X in dir Y
3070 * link file X to X.link in dir Y
3071 * fsync file X
3072 * unlink file X but leave X.link
3073 * fsync dir Y
3074 *
3075 * After a crash we would expect only X.link to exist. But file X
3076 * didn't get fsync'd again so the log has back refs for X and X.link.
3077 *
3078 * We solve this by removing directory entries and inode backrefs from the
3079 * log when a file that was logged in the current transaction is
3080 * unlinked. Any later fsync will include the updated log entries, and
3081 * we'll be able to reconstruct the proper directory items from backrefs.
3082 *
3083 * This optimizations allows us to avoid relogging the entire inode
3084 * or the entire directory.
3085 */
3086int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root,
3088 const char *name, int name_len,
49f34d1f 3089 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3090{
3091 struct btrfs_root *log;
3092 struct btrfs_dir_item *di;
3093 struct btrfs_path *path;
3094 int ret;
4a500fd1 3095 int err = 0;
e02119d5 3096 int bytes_del = 0;
49f34d1f 3097 u64 dir_ino = btrfs_ino(dir);
e02119d5 3098
49f34d1f 3099 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3100 return 0;
3101
e02119d5
CM
3102 ret = join_running_log_trans(root);
3103 if (ret)
3104 return 0;
3105
49f34d1f 3106 mutex_lock(&dir->log_mutex);
e02119d5
CM
3107
3108 log = root->log_root;
3109 path = btrfs_alloc_path();
a62f44a5
TI
3110 if (!path) {
3111 err = -ENOMEM;
3112 goto out_unlock;
3113 }
2a29edc6 3114
33345d01 3115 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3116 name, name_len, -1);
4a500fd1
YZ
3117 if (IS_ERR(di)) {
3118 err = PTR_ERR(di);
3119 goto fail;
3120 }
3121 if (di) {
e02119d5
CM
3122 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3123 bytes_del += name_len;
3650860b
JB
3124 if (ret) {
3125 err = ret;
3126 goto fail;
3127 }
e02119d5 3128 }
b3b4aa74 3129 btrfs_release_path(path);
33345d01 3130 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3131 index, name, name_len, -1);
4a500fd1
YZ
3132 if (IS_ERR(di)) {
3133 err = PTR_ERR(di);
3134 goto fail;
3135 }
3136 if (di) {
e02119d5
CM
3137 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3138 bytes_del += name_len;
3650860b
JB
3139 if (ret) {
3140 err = ret;
3141 goto fail;
3142 }
e02119d5
CM
3143 }
3144
3145 /* update the directory size in the log to reflect the names
3146 * we have removed
3147 */
3148 if (bytes_del) {
3149 struct btrfs_key key;
3150
33345d01 3151 key.objectid = dir_ino;
e02119d5
CM
3152 key.offset = 0;
3153 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3154 btrfs_release_path(path);
e02119d5
CM
3155
3156 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3157 if (ret < 0) {
3158 err = ret;
3159 goto fail;
3160 }
e02119d5
CM
3161 if (ret == 0) {
3162 struct btrfs_inode_item *item;
3163 u64 i_size;
3164
3165 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3166 struct btrfs_inode_item);
3167 i_size = btrfs_inode_size(path->nodes[0], item);
3168 if (i_size > bytes_del)
3169 i_size -= bytes_del;
3170 else
3171 i_size = 0;
3172 btrfs_set_inode_size(path->nodes[0], item, i_size);
3173 btrfs_mark_buffer_dirty(path->nodes[0]);
3174 } else
3175 ret = 0;
b3b4aa74 3176 btrfs_release_path(path);
e02119d5 3177 }
4a500fd1 3178fail:
e02119d5 3179 btrfs_free_path(path);
a62f44a5 3180out_unlock:
49f34d1f 3181 mutex_unlock(&dir->log_mutex);
4a500fd1 3182 if (ret == -ENOSPC) {
995946dd 3183 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3184 ret = 0;
79787eaa 3185 } else if (ret < 0)
66642832 3186 btrfs_abort_transaction(trans, ret);
79787eaa 3187
12fcfd22 3188 btrfs_end_log_trans(root);
e02119d5 3189
411fc6bc 3190 return err;
e02119d5
CM
3191}
3192
3193/* see comments for btrfs_del_dir_entries_in_log */
3194int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3195 struct btrfs_root *root,
3196 const char *name, int name_len,
a491abb2 3197 struct btrfs_inode *inode, u64 dirid)
e02119d5 3198{
0b246afa 3199 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3200 struct btrfs_root *log;
3201 u64 index;
3202 int ret;
3203
a491abb2 3204 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3205 return 0;
3206
e02119d5
CM
3207 ret = join_running_log_trans(root);
3208 if (ret)
3209 return 0;
3210 log = root->log_root;
a491abb2 3211 mutex_lock(&inode->log_mutex);
e02119d5 3212
a491abb2 3213 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3214 dirid, &index);
a491abb2 3215 mutex_unlock(&inode->log_mutex);
4a500fd1 3216 if (ret == -ENOSPC) {
0b246afa 3217 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3218 ret = 0;
79787eaa 3219 } else if (ret < 0 && ret != -ENOENT)
66642832 3220 btrfs_abort_transaction(trans, ret);
12fcfd22 3221 btrfs_end_log_trans(root);
e02119d5 3222
e02119d5
CM
3223 return ret;
3224}
3225
3226/*
3227 * creates a range item in the log for 'dirid'. first_offset and
3228 * last_offset tell us which parts of the key space the log should
3229 * be considered authoritative for.
3230 */
3231static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *log,
3233 struct btrfs_path *path,
3234 int key_type, u64 dirid,
3235 u64 first_offset, u64 last_offset)
3236{
3237 int ret;
3238 struct btrfs_key key;
3239 struct btrfs_dir_log_item *item;
3240
3241 key.objectid = dirid;
3242 key.offset = first_offset;
3243 if (key_type == BTRFS_DIR_ITEM_KEY)
3244 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3245 else
3246 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3247 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3248 if (ret)
3249 return ret;
e02119d5
CM
3250
3251 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3252 struct btrfs_dir_log_item);
3253 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3254 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3255 btrfs_release_path(path);
e02119d5
CM
3256 return 0;
3257}
3258
3259/*
3260 * log all the items included in the current transaction for a given
3261 * directory. This also creates the range items in the log tree required
3262 * to replay anything deleted before the fsync
3263 */
3264static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3265 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3266 struct btrfs_path *path,
3267 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3268 struct btrfs_log_ctx *ctx,
e02119d5
CM
3269 u64 min_offset, u64 *last_offset_ret)
3270{
3271 struct btrfs_key min_key;
e02119d5
CM
3272 struct btrfs_root *log = root->log_root;
3273 struct extent_buffer *src;
4a500fd1 3274 int err = 0;
e02119d5
CM
3275 int ret;
3276 int i;
3277 int nritems;
3278 u64 first_offset = min_offset;
3279 u64 last_offset = (u64)-1;
684a5773 3280 u64 ino = btrfs_ino(inode);
e02119d5
CM
3281
3282 log = root->log_root;
e02119d5 3283
33345d01 3284 min_key.objectid = ino;
e02119d5
CM
3285 min_key.type = key_type;
3286 min_key.offset = min_offset;
3287
6174d3cb 3288 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3289
3290 /*
3291 * we didn't find anything from this transaction, see if there
3292 * is anything at all
3293 */
33345d01
LZ
3294 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3295 min_key.objectid = ino;
e02119d5
CM
3296 min_key.type = key_type;
3297 min_key.offset = (u64)-1;
b3b4aa74 3298 btrfs_release_path(path);
e02119d5
CM
3299 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3300 if (ret < 0) {
b3b4aa74 3301 btrfs_release_path(path);
e02119d5
CM
3302 return ret;
3303 }
33345d01 3304 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3305
3306 /* if ret == 0 there are items for this type,
3307 * create a range to tell us the last key of this type.
3308 * otherwise, there are no items in this directory after
3309 * *min_offset, and we create a range to indicate that.
3310 */
3311 if (ret == 0) {
3312 struct btrfs_key tmp;
3313 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3314 path->slots[0]);
d397712b 3315 if (key_type == tmp.type)
e02119d5 3316 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3317 }
3318 goto done;
3319 }
3320
3321 /* go backward to find any previous key */
33345d01 3322 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3323 if (ret == 0) {
3324 struct btrfs_key tmp;
3325 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3326 if (key_type == tmp.type) {
3327 first_offset = tmp.offset;
3328 ret = overwrite_item(trans, log, dst_path,
3329 path->nodes[0], path->slots[0],
3330 &tmp);
4a500fd1
YZ
3331 if (ret) {
3332 err = ret;
3333 goto done;
3334 }
e02119d5
CM
3335 }
3336 }
b3b4aa74 3337 btrfs_release_path(path);
e02119d5
CM
3338
3339 /* find the first key from this transaction again */
3340 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3341 if (WARN_ON(ret != 0))
e02119d5 3342 goto done;
e02119d5
CM
3343
3344 /*
3345 * we have a block from this transaction, log every item in it
3346 * from our directory
3347 */
d397712b 3348 while (1) {
e02119d5
CM
3349 struct btrfs_key tmp;
3350 src = path->nodes[0];
3351 nritems = btrfs_header_nritems(src);
3352 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3353 struct btrfs_dir_item *di;
3354
e02119d5
CM
3355 btrfs_item_key_to_cpu(src, &min_key, i);
3356
33345d01 3357 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3358 goto done;
3359 ret = overwrite_item(trans, log, dst_path, src, i,
3360 &min_key);
4a500fd1
YZ
3361 if (ret) {
3362 err = ret;
3363 goto done;
3364 }
2f2ff0ee
FM
3365
3366 /*
3367 * We must make sure that when we log a directory entry,
3368 * the corresponding inode, after log replay, has a
3369 * matching link count. For example:
3370 *
3371 * touch foo
3372 * mkdir mydir
3373 * sync
3374 * ln foo mydir/bar
3375 * xfs_io -c "fsync" mydir
3376 * <crash>
3377 * <mount fs and log replay>
3378 *
3379 * Would result in a fsync log that when replayed, our
3380 * file inode would have a link count of 1, but we get
3381 * two directory entries pointing to the same inode.
3382 * After removing one of the names, it would not be
3383 * possible to remove the other name, which resulted
3384 * always in stale file handle errors, and would not
3385 * be possible to rmdir the parent directory, since
3386 * its i_size could never decrement to the value
3387 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3388 */
3389 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3390 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3391 if (ctx &&
3392 (btrfs_dir_transid(src, di) == trans->transid ||
3393 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3394 tmp.type != BTRFS_ROOT_ITEM_KEY)
3395 ctx->log_new_dentries = true;
e02119d5
CM
3396 }
3397 path->slots[0] = nritems;
3398
3399 /*
3400 * look ahead to the next item and see if it is also
3401 * from this directory and from this transaction
3402 */
3403 ret = btrfs_next_leaf(root, path);
3404 if (ret == 1) {
3405 last_offset = (u64)-1;
3406 goto done;
3407 }
3408 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3409 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3410 last_offset = (u64)-1;
3411 goto done;
3412 }
3413 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3414 ret = overwrite_item(trans, log, dst_path,
3415 path->nodes[0], path->slots[0],
3416 &tmp);
4a500fd1
YZ
3417 if (ret)
3418 err = ret;
3419 else
3420 last_offset = tmp.offset;
e02119d5
CM
3421 goto done;
3422 }
3423 }
3424done:
b3b4aa74
DS
3425 btrfs_release_path(path);
3426 btrfs_release_path(dst_path);
e02119d5 3427
4a500fd1
YZ
3428 if (err == 0) {
3429 *last_offset_ret = last_offset;
3430 /*
3431 * insert the log range keys to indicate where the log
3432 * is valid
3433 */
3434 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3435 ino, first_offset, last_offset);
4a500fd1
YZ
3436 if (ret)
3437 err = ret;
3438 }
3439 return err;
e02119d5
CM
3440}
3441
3442/*
3443 * logging directories is very similar to logging inodes, We find all the items
3444 * from the current transaction and write them to the log.
3445 *
3446 * The recovery code scans the directory in the subvolume, and if it finds a
3447 * key in the range logged that is not present in the log tree, then it means
3448 * that dir entry was unlinked during the transaction.
3449 *
3450 * In order for that scan to work, we must include one key smaller than
3451 * the smallest logged by this transaction and one key larger than the largest
3452 * key logged by this transaction.
3453 */
3454static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3455 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3456 struct btrfs_path *path,
2f2ff0ee
FM
3457 struct btrfs_path *dst_path,
3458 struct btrfs_log_ctx *ctx)
e02119d5
CM
3459{
3460 u64 min_key;
3461 u64 max_key;
3462 int ret;
3463 int key_type = BTRFS_DIR_ITEM_KEY;
3464
3465again:
3466 min_key = 0;
3467 max_key = 0;
d397712b 3468 while (1) {
dbf39ea4
NB
3469 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3470 ctx, min_key, &max_key);
4a500fd1
YZ
3471 if (ret)
3472 return ret;
e02119d5
CM
3473 if (max_key == (u64)-1)
3474 break;
3475 min_key = max_key + 1;
3476 }
3477
3478 if (key_type == BTRFS_DIR_ITEM_KEY) {
3479 key_type = BTRFS_DIR_INDEX_KEY;
3480 goto again;
3481 }
3482 return 0;
3483}
3484
3485/*
3486 * a helper function to drop items from the log before we relog an
3487 * inode. max_key_type indicates the highest item type to remove.
3488 * This cannot be run for file data extents because it does not
3489 * free the extents they point to.
3490 */
3491static int drop_objectid_items(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *log,
3493 struct btrfs_path *path,
3494 u64 objectid, int max_key_type)
3495{
3496 int ret;
3497 struct btrfs_key key;
3498 struct btrfs_key found_key;
18ec90d6 3499 int start_slot;
e02119d5
CM
3500
3501 key.objectid = objectid;
3502 key.type = max_key_type;
3503 key.offset = (u64)-1;
3504
d397712b 3505 while (1) {
e02119d5 3506 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3507 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3508 if (ret < 0)
e02119d5
CM
3509 break;
3510
3511 if (path->slots[0] == 0)
3512 break;
3513
3514 path->slots[0]--;
3515 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3516 path->slots[0]);
3517
3518 if (found_key.objectid != objectid)
3519 break;
3520
18ec90d6
JB
3521 found_key.offset = 0;
3522 found_key.type = 0;
3523 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3524 &start_slot);
3525
3526 ret = btrfs_del_items(trans, log, path, start_slot,
3527 path->slots[0] - start_slot + 1);
3528 /*
3529 * If start slot isn't 0 then we don't need to re-search, we've
3530 * found the last guy with the objectid in this tree.
3531 */
3532 if (ret || start_slot != 0)
65a246c5 3533 break;
b3b4aa74 3534 btrfs_release_path(path);
e02119d5 3535 }
b3b4aa74 3536 btrfs_release_path(path);
5bdbeb21
JB
3537 if (ret > 0)
3538 ret = 0;
4a500fd1 3539 return ret;
e02119d5
CM
3540}
3541
94edf4ae
JB
3542static void fill_inode_item(struct btrfs_trans_handle *trans,
3543 struct extent_buffer *leaf,
3544 struct btrfs_inode_item *item,
1a4bcf47
FM
3545 struct inode *inode, int log_inode_only,
3546 u64 logged_isize)
94edf4ae 3547{
0b1c6cca
JB
3548 struct btrfs_map_token token;
3549
3550 btrfs_init_map_token(&token);
94edf4ae
JB
3551
3552 if (log_inode_only) {
3553 /* set the generation to zero so the recover code
3554 * can tell the difference between an logging
3555 * just to say 'this inode exists' and a logging
3556 * to say 'update this inode with these values'
3557 */
0b1c6cca 3558 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3559 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3560 } else {
0b1c6cca
JB
3561 btrfs_set_token_inode_generation(leaf, item,
3562 BTRFS_I(inode)->generation,
3563 &token);
3564 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3565 }
3566
3567 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3568 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3569 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3570 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3571
a937b979 3572 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3573 inode->i_atime.tv_sec, &token);
a937b979 3574 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3575 inode->i_atime.tv_nsec, &token);
3576
a937b979 3577 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3578 inode->i_mtime.tv_sec, &token);
a937b979 3579 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3580 inode->i_mtime.tv_nsec, &token);
3581
a937b979 3582 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3583 inode->i_ctime.tv_sec, &token);
a937b979 3584 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3585 inode->i_ctime.tv_nsec, &token);
3586
3587 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3588 &token);
3589
3590 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3591 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3592 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3593 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3594 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3595}
3596
a95249b3
JB
3597static int log_inode_item(struct btrfs_trans_handle *trans,
3598 struct btrfs_root *log, struct btrfs_path *path,
3599 struct inode *inode)
3600{
3601 struct btrfs_inode_item *inode_item;
a95249b3
JB
3602 int ret;
3603
efd0c405
FDBM
3604 ret = btrfs_insert_empty_item(trans, log, path,
3605 &BTRFS_I(inode)->location,
a95249b3
JB
3606 sizeof(*inode_item));
3607 if (ret && ret != -EEXIST)
3608 return ret;
3609 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3610 struct btrfs_inode_item);
1a4bcf47 3611 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
a95249b3
JB
3612 btrfs_release_path(path);
3613 return 0;
3614}
3615
31ff1cd2 3616static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3617 struct btrfs_inode *inode,
31ff1cd2 3618 struct btrfs_path *dst_path,
16e7549f 3619 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3620 int start_slot, int nr, int inode_only,
3621 u64 logged_isize)
31ff1cd2 3622{
44d70e19 3623 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3624 unsigned long src_offset;
3625 unsigned long dst_offset;
44d70e19 3626 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3627 struct btrfs_file_extent_item *extent;
3628 struct btrfs_inode_item *inode_item;
16e7549f
JB
3629 struct extent_buffer *src = src_path->nodes[0];
3630 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3631 int ret;
3632 struct btrfs_key *ins_keys;
3633 u32 *ins_sizes;
3634 char *ins_data;
3635 int i;
d20f7043 3636 struct list_head ordered_sums;
44d70e19 3637 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3638 bool has_extents = false;
74121f7c 3639 bool need_find_last_extent = true;
16e7549f 3640 bool done = false;
d20f7043
CM
3641
3642 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3643
3644 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3645 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3646 if (!ins_data)
3647 return -ENOMEM;
3648
16e7549f
JB
3649 first_key.objectid = (u64)-1;
3650
31ff1cd2
CM
3651 ins_sizes = (u32 *)ins_data;
3652 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3653
3654 for (i = 0; i < nr; i++) {
3655 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3656 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3657 }
3658 ret = btrfs_insert_empty_items(trans, log, dst_path,
3659 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3660 if (ret) {
3661 kfree(ins_data);
3662 return ret;
3663 }
31ff1cd2 3664
5d4f98a2 3665 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3666 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3667 dst_path->slots[0]);
3668
3669 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3670
16e7549f
JB
3671 if ((i == (nr - 1)))
3672 last_key = ins_keys[i];
3673
94edf4ae 3674 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3675 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3676 dst_path->slots[0],
3677 struct btrfs_inode_item);
94edf4ae 3678 fill_inode_item(trans, dst_path->nodes[0], inode_item,
44d70e19 3679 &inode->vfs_inode, inode_only == LOG_INODE_EXISTS,
1a4bcf47 3680 logged_isize);
94edf4ae
JB
3681 } else {
3682 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3683 src_offset, ins_sizes[i]);
31ff1cd2 3684 }
94edf4ae 3685
16e7549f
JB
3686 /*
3687 * We set need_find_last_extent here in case we know we were
3688 * processing other items and then walk into the first extent in
3689 * the inode. If we don't hit an extent then nothing changes,
3690 * we'll do the last search the next time around.
3691 */
3692 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3693 has_extents = true;
74121f7c 3694 if (first_key.objectid == (u64)-1)
16e7549f
JB
3695 first_key = ins_keys[i];
3696 } else {
3697 need_find_last_extent = false;
3698 }
3699
31ff1cd2
CM
3700 /* take a reference on file data extents so that truncates
3701 * or deletes of this inode don't have to relog the inode
3702 * again
3703 */
962a298f 3704 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3705 !skip_csum) {
31ff1cd2
CM
3706 int found_type;
3707 extent = btrfs_item_ptr(src, start_slot + i,
3708 struct btrfs_file_extent_item);
3709
8e531cdf 3710 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3711 continue;
3712
31ff1cd2 3713 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3714 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3715 u64 ds, dl, cs, cl;
3716 ds = btrfs_file_extent_disk_bytenr(src,
3717 extent);
3718 /* ds == 0 is a hole */
3719 if (ds == 0)
3720 continue;
3721
3722 dl = btrfs_file_extent_disk_num_bytes(src,
3723 extent);
3724 cs = btrfs_file_extent_offset(src, extent);
3725 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3726 extent);
580afd76
CM
3727 if (btrfs_file_extent_compression(src,
3728 extent)) {
3729 cs = 0;
3730 cl = dl;
3731 }
5d4f98a2
YZ
3732
3733 ret = btrfs_lookup_csums_range(
0b246afa 3734 fs_info->csum_root,
5d4f98a2 3735 ds + cs, ds + cs + cl - 1,
a2de733c 3736 &ordered_sums, 0);
3650860b
JB
3737 if (ret) {
3738 btrfs_release_path(dst_path);
3739 kfree(ins_data);
3740 return ret;
3741 }
31ff1cd2
CM
3742 }
3743 }
31ff1cd2
CM
3744 }
3745
3746 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3747 btrfs_release_path(dst_path);
31ff1cd2 3748 kfree(ins_data);
d20f7043
CM
3749
3750 /*
3751 * we have to do this after the loop above to avoid changing the
3752 * log tree while trying to change the log tree.
3753 */
4a500fd1 3754 ret = 0;
d397712b 3755 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3756 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3757 struct btrfs_ordered_sum,
3758 list);
4a500fd1
YZ
3759 if (!ret)
3760 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3761 list_del(&sums->list);
3762 kfree(sums);
3763 }
16e7549f
JB
3764
3765 if (!has_extents)
3766 return ret;
3767
74121f7c
FM
3768 if (need_find_last_extent && *last_extent == first_key.offset) {
3769 /*
3770 * We don't have any leafs between our current one and the one
3771 * we processed before that can have file extent items for our
3772 * inode (and have a generation number smaller than our current
3773 * transaction id).
3774 */
3775 need_find_last_extent = false;
3776 }
3777
16e7549f
JB
3778 /*
3779 * Because we use btrfs_search_forward we could skip leaves that were
3780 * not modified and then assume *last_extent is valid when it really
3781 * isn't. So back up to the previous leaf and read the end of the last
3782 * extent before we go and fill in holes.
3783 */
3784 if (need_find_last_extent) {
3785 u64 len;
3786
44d70e19 3787 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3788 if (ret < 0)
3789 return ret;
3790 if (ret)
3791 goto fill_holes;
3792 if (src_path->slots[0])
3793 src_path->slots[0]--;
3794 src = src_path->nodes[0];
3795 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3796 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3797 key.type != BTRFS_EXTENT_DATA_KEY)
3798 goto fill_holes;
3799 extent = btrfs_item_ptr(src, src_path->slots[0],
3800 struct btrfs_file_extent_item);
3801 if (btrfs_file_extent_type(src, extent) ==
3802 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3803 len = btrfs_file_extent_inline_len(src,
3804 src_path->slots[0],
3805 extent);
16e7549f 3806 *last_extent = ALIGN(key.offset + len,
0b246afa 3807 fs_info->sectorsize);
16e7549f
JB
3808 } else {
3809 len = btrfs_file_extent_num_bytes(src, extent);
3810 *last_extent = key.offset + len;
3811 }
3812 }
3813fill_holes:
3814 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3815 * things could have happened
3816 *
3817 * 1) A merge could have happened, so we could currently be on a leaf
3818 * that holds what we were copying in the first place.
3819 * 2) A split could have happened, and now not all of the items we want
3820 * are on the same leaf.
3821 *
3822 * So we need to adjust how we search for holes, we need to drop the
3823 * path and re-search for the first extent key we found, and then walk
3824 * forward until we hit the last one we copied.
3825 */
3826 if (need_find_last_extent) {
3827 /* btrfs_prev_leaf could return 1 without releasing the path */
3828 btrfs_release_path(src_path);
44d70e19 3829 ret = btrfs_search_slot(NULL, inode->root, &first_key, src_path, 0, 0);
16e7549f
JB
3830 if (ret < 0)
3831 return ret;
3832 ASSERT(ret == 0);
3833 src = src_path->nodes[0];
3834 i = src_path->slots[0];
3835 } else {
3836 i = start_slot;
3837 }
3838
3839 /*
3840 * Ok so here we need to go through and fill in any holes we may have
3841 * to make sure that holes are punched for those areas in case they had
3842 * extents previously.
3843 */
3844 while (!done) {
3845 u64 offset, len;
3846 u64 extent_end;
3847
3848 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 3849 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
3850 if (ret < 0)
3851 return ret;
3852 ASSERT(ret == 0);
3853 src = src_path->nodes[0];
3854 i = 0;
3855 }
3856
3857 btrfs_item_key_to_cpu(src, &key, i);
3858 if (!btrfs_comp_cpu_keys(&key, &last_key))
3859 done = true;
44d70e19 3860 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3861 key.type != BTRFS_EXTENT_DATA_KEY) {
3862 i++;
3863 continue;
3864 }
3865 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866 if (btrfs_file_extent_type(src, extent) ==
3867 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3868 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 3869 extent_end = ALIGN(key.offset + len,
0b246afa 3870 fs_info->sectorsize);
16e7549f
JB
3871 } else {
3872 len = btrfs_file_extent_num_bytes(src, extent);
3873 extent_end = key.offset + len;
3874 }
3875 i++;
3876
3877 if (*last_extent == key.offset) {
3878 *last_extent = extent_end;
3879 continue;
3880 }
3881 offset = *last_extent;
3882 len = key.offset - *last_extent;
44d70e19
NB
3883 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
3885 if (ret)
3886 break;
74121f7c 3887 *last_extent = extent_end;
16e7549f
JB
3888 }
3889 /*
3890 * Need to let the callers know we dropped the path so they should
3891 * re-search.
3892 */
3893 if (!ret && need_find_last_extent)
3894 ret = 1;
4a500fd1 3895 return ret;
31ff1cd2
CM
3896}
3897
5dc562c5
JB
3898static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3899{
3900 struct extent_map *em1, *em2;
3901
3902 em1 = list_entry(a, struct extent_map, list);
3903 em2 = list_entry(b, struct extent_map, list);
3904
3905 if (em1->start < em2->start)
3906 return -1;
3907 else if (em1->start > em2->start)
3908 return 1;
3909 return 0;
3910}
3911
8407f553
FM
3912static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3913 struct inode *inode,
3914 struct btrfs_root *root,
3915 const struct extent_map *em,
3916 const struct list_head *logged_list,
3917 bool *ordered_io_error)
5dc562c5 3918{
0b246afa 3919 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 3920 struct btrfs_ordered_extent *ordered;
8407f553 3921 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3922 u64 mod_start = em->mod_start;
3923 u64 mod_len = em->mod_len;
8407f553 3924 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3925 u64 csum_offset;
3926 u64 csum_len;
8407f553
FM
3927 LIST_HEAD(ordered_sums);
3928 int ret = 0;
0aa4a17d 3929
8407f553 3930 *ordered_io_error = false;
0aa4a17d 3931
8407f553
FM
3932 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3933 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3934 return 0;
5dc562c5 3935
2ab28f32 3936 /*
8407f553
FM
3937 * Wait far any ordered extent that covers our extent map. If it
3938 * finishes without an error, first check and see if our csums are on
3939 * our outstanding ordered extents.
2ab28f32 3940 */
827463c4 3941 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3942 struct btrfs_ordered_sum *sum;
3943
3944 if (!mod_len)
3945 break;
3946
2ab28f32
JB
3947 if (ordered->file_offset + ordered->len <= mod_start ||
3948 mod_start + mod_len <= ordered->file_offset)
3949 continue;
3950
8407f553
FM
3951 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3952 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3953 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3954 const u64 start = ordered->file_offset;
3955 const u64 end = ordered->file_offset + ordered->len - 1;
3956
3957 WARN_ON(ordered->inode != inode);
3958 filemap_fdatawrite_range(inode->i_mapping, start, end);
3959 }
3960
3961 wait_event(ordered->wait,
3962 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3963 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3964
3965 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3966 /*
3967 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3968 * i_mapping flags, so that the next fsync won't get
3969 * an outdated io error too.
3970 */
f0312210 3971 filemap_check_errors(inode->i_mapping);
8407f553
FM
3972 *ordered_io_error = true;
3973 break;
3974 }
2ab28f32
JB
3975 /*
3976 * We are going to copy all the csums on this ordered extent, so
3977 * go ahead and adjust mod_start and mod_len in case this
3978 * ordered extent has already been logged.
3979 */
3980 if (ordered->file_offset > mod_start) {
3981 if (ordered->file_offset + ordered->len >=
3982 mod_start + mod_len)
3983 mod_len = ordered->file_offset - mod_start;
3984 /*
3985 * If we have this case
3986 *
3987 * |--------- logged extent ---------|
3988 * |----- ordered extent ----|
3989 *
3990 * Just don't mess with mod_start and mod_len, we'll
3991 * just end up logging more csums than we need and it
3992 * will be ok.
3993 */
3994 } else {
3995 if (ordered->file_offset + ordered->len <
3996 mod_start + mod_len) {
3997 mod_len = (mod_start + mod_len) -
3998 (ordered->file_offset + ordered->len);
3999 mod_start = ordered->file_offset +
4000 ordered->len;
4001 } else {
4002 mod_len = 0;
4003 }
4004 }
4005
8407f553
FM
4006 if (skip_csum)
4007 continue;
4008
2ab28f32
JB
4009 /*
4010 * To keep us from looping for the above case of an ordered
4011 * extent that falls inside of the logged extent.
4012 */
4013 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4014 &ordered->flags))
4015 continue;
2ab28f32 4016
2ab28f32
JB
4017 list_for_each_entry(sum, &ordered->list, list) {
4018 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4019 if (ret)
8407f553 4020 break;
2ab28f32 4021 }
2ab28f32 4022 }
2ab28f32 4023
8407f553 4024 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4025 return ret;
4026
488111aa
FDBM
4027 if (em->compress_type) {
4028 csum_offset = 0;
8407f553 4029 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4030 } else {
4031 csum_offset = mod_start - em->start;
4032 csum_len = mod_len;
4033 }
2ab28f32 4034
70c8a91c 4035 /* block start is already adjusted for the file extent offset. */
0b246afa 4036 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4037 em->block_start + csum_offset,
4038 em->block_start + csum_offset +
4039 csum_len - 1, &ordered_sums, 0);
4040 if (ret)
4041 return ret;
5dc562c5 4042
70c8a91c
JB
4043 while (!list_empty(&ordered_sums)) {
4044 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4045 struct btrfs_ordered_sum,
4046 list);
4047 if (!ret)
4048 ret = btrfs_csum_file_blocks(trans, log, sums);
4049 list_del(&sums->list);
4050 kfree(sums);
5dc562c5
JB
4051 }
4052
70c8a91c 4053 return ret;
5dc562c5
JB
4054}
4055
8407f553 4056static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4057 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4058 const struct extent_map *em,
4059 struct btrfs_path *path,
4060 const struct list_head *logged_list,
4061 struct btrfs_log_ctx *ctx)
4062{
4063 struct btrfs_root *log = root->log_root;
4064 struct btrfs_file_extent_item *fi;
4065 struct extent_buffer *leaf;
4066 struct btrfs_map_token token;
4067 struct btrfs_key key;
4068 u64 extent_offset = em->start - em->orig_start;
4069 u64 block_len;
4070 int ret;
4071 int extent_inserted = 0;
4072 bool ordered_io_err = false;
4073
9d122629 4074 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em, logged_list,
8407f553
FM
4075 &ordered_io_err);
4076 if (ret)
4077 return ret;
4078
4079 if (ordered_io_err) {
4080 ctx->io_err = -EIO;
4081 return 0;
4082 }
4083
4084 btrfs_init_map_token(&token);
4085
9d122629 4086 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4087 em->start + em->len, NULL, 0, 1,
4088 sizeof(*fi), &extent_inserted);
4089 if (ret)
4090 return ret;
4091
4092 if (!extent_inserted) {
9d122629 4093 key.objectid = btrfs_ino(inode);
8407f553
FM
4094 key.type = BTRFS_EXTENT_DATA_KEY;
4095 key.offset = em->start;
4096
4097 ret = btrfs_insert_empty_item(trans, log, path, &key,
4098 sizeof(*fi));
4099 if (ret)
4100 return ret;
4101 }
4102 leaf = path->nodes[0];
4103 fi = btrfs_item_ptr(leaf, path->slots[0],
4104 struct btrfs_file_extent_item);
4105
50d9aa99 4106 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4107 &token);
4108 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4109 btrfs_set_token_file_extent_type(leaf, fi,
4110 BTRFS_FILE_EXTENT_PREALLOC,
4111 &token);
4112 else
4113 btrfs_set_token_file_extent_type(leaf, fi,
4114 BTRFS_FILE_EXTENT_REG,
4115 &token);
4116
4117 block_len = max(em->block_len, em->orig_block_len);
4118 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4119 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4120 em->block_start,
4121 &token);
4122 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4123 &token);
4124 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4125 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4126 em->block_start -
4127 extent_offset, &token);
4128 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4129 &token);
4130 } else {
4131 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4132 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4133 &token);
4134 }
4135
4136 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4137 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4138 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4139 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4140 &token);
4141 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4142 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4143 btrfs_mark_buffer_dirty(leaf);
4144
4145 btrfs_release_path(path);
4146
4147 return ret;
4148}
4149
5dc562c5
JB
4150static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
9d122629 4152 struct btrfs_inode *inode,
827463c4 4153 struct btrfs_path *path,
8407f553 4154 struct list_head *logged_list,
de0ee0ed
FM
4155 struct btrfs_log_ctx *ctx,
4156 const u64 start,
4157 const u64 end)
5dc562c5 4158{
5dc562c5
JB
4159 struct extent_map *em, *n;
4160 struct list_head extents;
9d122629 4161 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4162 u64 test_gen;
4163 int ret = 0;
2ab28f32 4164 int num = 0;
5dc562c5
JB
4165
4166 INIT_LIST_HEAD(&extents);
4167
9d122629 4168 down_write(&inode->dio_sem);
5dc562c5
JB
4169 write_lock(&tree->lock);
4170 test_gen = root->fs_info->last_trans_committed;
4171
4172 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4173 list_del_init(&em->list);
2ab28f32
JB
4174
4175 /*
4176 * Just an arbitrary number, this can be really CPU intensive
4177 * once we start getting a lot of extents, and really once we
4178 * have a bunch of extents we just want to commit since it will
4179 * be faster.
4180 */
4181 if (++num > 32768) {
4182 list_del_init(&tree->modified_extents);
4183 ret = -EFBIG;
4184 goto process;
4185 }
4186
5dc562c5
JB
4187 if (em->generation <= test_gen)
4188 continue;
ff44c6e3
JB
4189 /* Need a ref to keep it from getting evicted from cache */
4190 atomic_inc(&em->refs);
4191 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4192 list_add_tail(&em->list, &extents);
2ab28f32 4193 num++;
5dc562c5
JB
4194 }
4195
4196 list_sort(NULL, &extents, extent_cmp);
9d122629 4197 btrfs_get_logged_extents(inode, logged_list, start, end);
de0ee0ed 4198 /*
5f9a8a51
FM
4199 * Some ordered extents started by fsync might have completed
4200 * before we could collect them into the list logged_list, which
4201 * means they're gone, not in our logged_list nor in the inode's
4202 * ordered tree. We want the application/user space to know an
4203 * error happened while attempting to persist file data so that
4204 * it can take proper action. If such error happened, we leave
4205 * without writing to the log tree and the fsync must report the
4206 * file data write error and not commit the current transaction.
de0ee0ed 4207 */
9d122629 4208 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4209 if (ret)
4210 ctx->io_err = ret;
2ab28f32 4211process:
5dc562c5
JB
4212 while (!list_empty(&extents)) {
4213 em = list_entry(extents.next, struct extent_map, list);
4214
4215 list_del_init(&em->list);
4216
4217 /*
4218 * If we had an error we just need to delete everybody from our
4219 * private list.
4220 */
ff44c6e3 4221 if (ret) {
201a9038 4222 clear_em_logging(tree, em);
ff44c6e3 4223 free_extent_map(em);
5dc562c5 4224 continue;
ff44c6e3
JB
4225 }
4226
4227 write_unlock(&tree->lock);
5dc562c5 4228
8407f553
FM
4229 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4230 ctx);
ff44c6e3 4231 write_lock(&tree->lock);
201a9038
JB
4232 clear_em_logging(tree, em);
4233 free_extent_map(em);
5dc562c5 4234 }
ff44c6e3
JB
4235 WARN_ON(!list_empty(&extents));
4236 write_unlock(&tree->lock);
9d122629 4237 up_write(&inode->dio_sem);
5dc562c5 4238
5dc562c5 4239 btrfs_release_path(path);
5dc562c5
JB
4240 return ret;
4241}
4242
481b01c0 4243static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4244 struct btrfs_path *path, u64 *size_ret)
4245{
4246 struct btrfs_key key;
4247 int ret;
4248
481b01c0 4249 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4250 key.type = BTRFS_INODE_ITEM_KEY;
4251 key.offset = 0;
4252
4253 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4254 if (ret < 0) {
4255 return ret;
4256 } else if (ret > 0) {
2f2ff0ee 4257 *size_ret = 0;
1a4bcf47
FM
4258 } else {
4259 struct btrfs_inode_item *item;
4260
4261 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4262 struct btrfs_inode_item);
4263 *size_ret = btrfs_inode_size(path->nodes[0], item);
4264 }
4265
4266 btrfs_release_path(path);
4267 return 0;
4268}
4269
36283bf7
FM
4270/*
4271 * At the moment we always log all xattrs. This is to figure out at log replay
4272 * time which xattrs must have their deletion replayed. If a xattr is missing
4273 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4274 * because if a xattr is deleted, the inode is fsynced and a power failure
4275 * happens, causing the log to be replayed the next time the fs is mounted,
4276 * we want the xattr to not exist anymore (same behaviour as other filesystems
4277 * with a journal, ext3/4, xfs, f2fs, etc).
4278 */
4279static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
1a93c36a 4281 struct btrfs_inode *inode,
36283bf7
FM
4282 struct btrfs_path *path,
4283 struct btrfs_path *dst_path)
4284{
4285 int ret;
4286 struct btrfs_key key;
1a93c36a 4287 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4288 int ins_nr = 0;
4289 int start_slot = 0;
4290
4291 key.objectid = ino;
4292 key.type = BTRFS_XATTR_ITEM_KEY;
4293 key.offset = 0;
4294
4295 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4296 if (ret < 0)
4297 return ret;
4298
4299 while (true) {
4300 int slot = path->slots[0];
4301 struct extent_buffer *leaf = path->nodes[0];
4302 int nritems = btrfs_header_nritems(leaf);
4303
4304 if (slot >= nritems) {
4305 if (ins_nr > 0) {
4306 u64 last_extent = 0;
4307
1a93c36a 4308 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4309 &last_extent, start_slot,
4310 ins_nr, 1, 0);
4311 /* can't be 1, extent items aren't processed */
4312 ASSERT(ret <= 0);
4313 if (ret < 0)
4314 return ret;
4315 ins_nr = 0;
4316 }
4317 ret = btrfs_next_leaf(root, path);
4318 if (ret < 0)
4319 return ret;
4320 else if (ret > 0)
4321 break;
4322 continue;
4323 }
4324
4325 btrfs_item_key_to_cpu(leaf, &key, slot);
4326 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4327 break;
4328
4329 if (ins_nr == 0)
4330 start_slot = slot;
4331 ins_nr++;
4332 path->slots[0]++;
4333 cond_resched();
4334 }
4335 if (ins_nr > 0) {
4336 u64 last_extent = 0;
4337
1a93c36a 4338 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4339 &last_extent, start_slot,
4340 ins_nr, 1, 0);
4341 /* can't be 1, extent items aren't processed */
4342 ASSERT(ret <= 0);
4343 if (ret < 0)
4344 return ret;
4345 }
4346
4347 return 0;
4348}
4349
a89ca6f2
FM
4350/*
4351 * If the no holes feature is enabled we need to make sure any hole between the
4352 * last extent and the i_size of our inode is explicitly marked in the log. This
4353 * is to make sure that doing something like:
4354 *
4355 * 1) create file with 128Kb of data
4356 * 2) truncate file to 64Kb
4357 * 3) truncate file to 256Kb
4358 * 4) fsync file
4359 * 5) <crash/power failure>
4360 * 6) mount fs and trigger log replay
4361 *
4362 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4363 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4364 * file correspond to a hole. The presence of explicit holes in a log tree is
4365 * what guarantees that log replay will remove/adjust file extent items in the
4366 * fs/subvol tree.
4367 *
4368 * Here we do not need to care about holes between extents, that is already done
4369 * by copy_items(). We also only need to do this in the full sync path, where we
4370 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4371 * lookup the list of modified extent maps and if any represents a hole, we
4372 * insert a corresponding extent representing a hole in the log tree.
4373 */
4374static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4375 struct btrfs_root *root,
a0308dd7 4376 struct btrfs_inode *inode,
a89ca6f2
FM
4377 struct btrfs_path *path)
4378{
0b246afa 4379 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4380 int ret;
4381 struct btrfs_key key;
4382 u64 hole_start;
4383 u64 hole_size;
4384 struct extent_buffer *leaf;
4385 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4386 const u64 ino = btrfs_ino(inode);
4387 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4388
0b246afa 4389 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4390 return 0;
4391
4392 key.objectid = ino;
4393 key.type = BTRFS_EXTENT_DATA_KEY;
4394 key.offset = (u64)-1;
4395
4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4397 ASSERT(ret != 0);
4398 if (ret < 0)
4399 return ret;
4400
4401 ASSERT(path->slots[0] > 0);
4402 path->slots[0]--;
4403 leaf = path->nodes[0];
4404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4405
4406 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4407 /* inode does not have any extents */
4408 hole_start = 0;
4409 hole_size = i_size;
4410 } else {
4411 struct btrfs_file_extent_item *extent;
4412 u64 len;
4413
4414 /*
4415 * If there's an extent beyond i_size, an explicit hole was
4416 * already inserted by copy_items().
4417 */
4418 if (key.offset >= i_size)
4419 return 0;
4420
4421 extent = btrfs_item_ptr(leaf, path->slots[0],
4422 struct btrfs_file_extent_item);
4423
4424 if (btrfs_file_extent_type(leaf, extent) ==
4425 BTRFS_FILE_EXTENT_INLINE) {
4426 len = btrfs_file_extent_inline_len(leaf,
4427 path->slots[0],
4428 extent);
4429 ASSERT(len == i_size);
4430 return 0;
4431 }
4432
4433 len = btrfs_file_extent_num_bytes(leaf, extent);
4434 /* Last extent goes beyond i_size, no need to log a hole. */
4435 if (key.offset + len > i_size)
4436 return 0;
4437 hole_start = key.offset + len;
4438 hole_size = i_size - hole_start;
4439 }
4440 btrfs_release_path(path);
4441
4442 /* Last extent ends at i_size. */
4443 if (hole_size == 0)
4444 return 0;
4445
0b246afa 4446 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4447 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4448 hole_size, 0, hole_size, 0, 0, 0);
4449 return ret;
4450}
4451
56f23fdb
FM
4452/*
4453 * When we are logging a new inode X, check if it doesn't have a reference that
4454 * matches the reference from some other inode Y created in a past transaction
4455 * and that was renamed in the current transaction. If we don't do this, then at
4456 * log replay time we can lose inode Y (and all its files if it's a directory):
4457 *
4458 * mkdir /mnt/x
4459 * echo "hello world" > /mnt/x/foobar
4460 * sync
4461 * mv /mnt/x /mnt/y
4462 * mkdir /mnt/x # or touch /mnt/x
4463 * xfs_io -c fsync /mnt/x
4464 * <power fail>
4465 * mount fs, trigger log replay
4466 *
4467 * After the log replay procedure, we would lose the first directory and all its
4468 * files (file foobar).
4469 * For the case where inode Y is not a directory we simply end up losing it:
4470 *
4471 * echo "123" > /mnt/foo
4472 * sync
4473 * mv /mnt/foo /mnt/bar
4474 * echo "abc" > /mnt/foo
4475 * xfs_io -c fsync /mnt/foo
4476 * <power fail>
4477 *
4478 * We also need this for cases where a snapshot entry is replaced by some other
4479 * entry (file or directory) otherwise we end up with an unreplayable log due to
4480 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4481 * if it were a regular entry:
4482 *
4483 * mkdir /mnt/x
4484 * btrfs subvolume snapshot /mnt /mnt/x/snap
4485 * btrfs subvolume delete /mnt/x/snap
4486 * rmdir /mnt/x
4487 * mkdir /mnt/x
4488 * fsync /mnt/x or fsync some new file inside it
4489 * <power fail>
4490 *
4491 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4492 * the same transaction.
4493 */
4494static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4495 const int slot,
4496 const struct btrfs_key *key,
4791c8f1 4497 struct btrfs_inode *inode,
44f714da 4498 u64 *other_ino)
56f23fdb
FM
4499{
4500 int ret;
4501 struct btrfs_path *search_path;
4502 char *name = NULL;
4503 u32 name_len = 0;
4504 u32 item_size = btrfs_item_size_nr(eb, slot);
4505 u32 cur_offset = 0;
4506 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4507
4508 search_path = btrfs_alloc_path();
4509 if (!search_path)
4510 return -ENOMEM;
4511 search_path->search_commit_root = 1;
4512 search_path->skip_locking = 1;
4513
4514 while (cur_offset < item_size) {
4515 u64 parent;
4516 u32 this_name_len;
4517 u32 this_len;
4518 unsigned long name_ptr;
4519 struct btrfs_dir_item *di;
4520
4521 if (key->type == BTRFS_INODE_REF_KEY) {
4522 struct btrfs_inode_ref *iref;
4523
4524 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4525 parent = key->offset;
4526 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4527 name_ptr = (unsigned long)(iref + 1);
4528 this_len = sizeof(*iref) + this_name_len;
4529 } else {
4530 struct btrfs_inode_extref *extref;
4531
4532 extref = (struct btrfs_inode_extref *)(ptr +
4533 cur_offset);
4534 parent = btrfs_inode_extref_parent(eb, extref);
4535 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4536 name_ptr = (unsigned long)&extref->name;
4537 this_len = sizeof(*extref) + this_name_len;
4538 }
4539
4540 if (this_name_len > name_len) {
4541 char *new_name;
4542
4543 new_name = krealloc(name, this_name_len, GFP_NOFS);
4544 if (!new_name) {
4545 ret = -ENOMEM;
4546 goto out;
4547 }
4548 name_len = this_name_len;
4549 name = new_name;
4550 }
4551
4552 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4553 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4554 parent, name, this_name_len, 0);
56f23fdb 4555 if (di && !IS_ERR(di)) {
44f714da
FM
4556 struct btrfs_key di_key;
4557
4558 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4559 di, &di_key);
4560 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4561 ret = 1;
4562 *other_ino = di_key.objectid;
4563 } else {
4564 ret = -EAGAIN;
4565 }
56f23fdb
FM
4566 goto out;
4567 } else if (IS_ERR(di)) {
4568 ret = PTR_ERR(di);
4569 goto out;
4570 }
4571 btrfs_release_path(search_path);
4572
4573 cur_offset += this_len;
4574 }
4575 ret = 0;
4576out:
4577 btrfs_free_path(search_path);
4578 kfree(name);
4579 return ret;
4580}
4581
e02119d5
CM
4582/* log a single inode in the tree log.
4583 * At least one parent directory for this inode must exist in the tree
4584 * or be logged already.
4585 *
4586 * Any items from this inode changed by the current transaction are copied
4587 * to the log tree. An extra reference is taken on any extents in this
4588 * file, allowing us to avoid a whole pile of corner cases around logging
4589 * blocks that have been removed from the tree.
4590 *
4591 * See LOG_INODE_ALL and related defines for a description of what inode_only
4592 * does.
4593 *
4594 * This handles both files and directories.
4595 */
12fcfd22 4596static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
4597 struct btrfs_root *root, struct inode *inode,
4598 int inode_only,
4599 const loff_t start,
8407f553
FM
4600 const loff_t end,
4601 struct btrfs_log_ctx *ctx)
e02119d5 4602{
0b246afa 4603 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4604 struct btrfs_path *path;
4605 struct btrfs_path *dst_path;
4606 struct btrfs_key min_key;
4607 struct btrfs_key max_key;
4608 struct btrfs_root *log = root->log_root;
31ff1cd2 4609 struct extent_buffer *src = NULL;
827463c4 4610 LIST_HEAD(logged_list);
16e7549f 4611 u64 last_extent = 0;
4a500fd1 4612 int err = 0;
e02119d5 4613 int ret;
3a5f1d45 4614 int nritems;
31ff1cd2
CM
4615 int ins_start_slot = 0;
4616 int ins_nr;
5dc562c5 4617 bool fast_search = false;
4a0cc7ca 4618 u64 ino = btrfs_ino(BTRFS_I(inode));
49dae1bc 4619 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1a4bcf47 4620 u64 logged_isize = 0;
e4545de5 4621 bool need_log_inode_item = true;
e02119d5 4622
e02119d5 4623 path = btrfs_alloc_path();
5df67083
TI
4624 if (!path)
4625 return -ENOMEM;
e02119d5 4626 dst_path = btrfs_alloc_path();
5df67083
TI
4627 if (!dst_path) {
4628 btrfs_free_path(path);
4629 return -ENOMEM;
4630 }
e02119d5 4631
33345d01 4632 min_key.objectid = ino;
e02119d5
CM
4633 min_key.type = BTRFS_INODE_ITEM_KEY;
4634 min_key.offset = 0;
4635
33345d01 4636 max_key.objectid = ino;
12fcfd22 4637
12fcfd22 4638
5dc562c5 4639 /* today the code can only do partial logging of directories */
5269b67e
MX
4640 if (S_ISDIR(inode->i_mode) ||
4641 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4642 &BTRFS_I(inode)->runtime_flags) &&
781feef7 4643 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4644 max_key.type = BTRFS_XATTR_ITEM_KEY;
4645 else
4646 max_key.type = (u8)-1;
4647 max_key.offset = (u64)-1;
4648
2c2c452b
FM
4649 /*
4650 * Only run delayed items if we are a dir or a new file.
4651 * Otherwise commit the delayed inode only, which is needed in
4652 * order for the log replay code to mark inodes for link count
4653 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4654 */
94edf4ae 4655 if (S_ISDIR(inode->i_mode) ||
0b246afa 4656 BTRFS_I(inode)->generation > fs_info->last_trans_committed)
5f4b32e9 4657 ret = btrfs_commit_inode_delayed_items(trans, BTRFS_I(inode));
2c2c452b 4658 else
aa79021f 4659 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
2c2c452b
FM
4660
4661 if (ret) {
4662 btrfs_free_path(path);
4663 btrfs_free_path(dst_path);
4664 return ret;
16cdcec7
MX
4665 }
4666
781feef7
LB
4667 if (inode_only == LOG_OTHER_INODE) {
4668 inode_only = LOG_INODE_EXISTS;
4669 mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4670 SINGLE_DEPTH_NESTING);
4671 } else {
4672 mutex_lock(&BTRFS_I(inode)->log_mutex);
4673 }
e02119d5
CM
4674
4675 /*
4676 * a brute force approach to making sure we get the most uptodate
4677 * copies of everything.
4678 */
4679 if (S_ISDIR(inode->i_mode)) {
4680 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4681
4f764e51
FM
4682 if (inode_only == LOG_INODE_EXISTS)
4683 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4684 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4685 } else {
1a4bcf47
FM
4686 if (inode_only == LOG_INODE_EXISTS) {
4687 /*
4688 * Make sure the new inode item we write to the log has
4689 * the same isize as the current one (if it exists).
4690 * This is necessary to prevent data loss after log
4691 * replay, and also to prevent doing a wrong expanding
4692 * truncate - for e.g. create file, write 4K into offset
4693 * 0, fsync, write 4K into offset 4096, add hard link,
4694 * fsync some other file (to sync log), power fail - if
4695 * we use the inode's current i_size, after log replay
4696 * we get a 8Kb file, with the last 4Kb extent as a hole
4697 * (zeroes), as if an expanding truncate happened,
4698 * instead of getting a file of 4Kb only.
4699 */
481b01c0 4700 err = logged_inode_size(log, BTRFS_I(inode), path,
1a4bcf47
FM
4701 &logged_isize);
4702 if (err)
4703 goto out_unlock;
4704 }
a742994a
FM
4705 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4706 &BTRFS_I(inode)->runtime_flags)) {
4707 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4708 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4709 ret = drop_objectid_items(trans, log, path, ino,
4710 max_key.type);
4711 } else {
4712 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4713 &BTRFS_I(inode)->runtime_flags);
4714 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4715 &BTRFS_I(inode)->runtime_flags);
28ed1345
CM
4716 while(1) {
4717 ret = btrfs_truncate_inode_items(trans,
4718 log, inode, 0, 0);
4719 if (ret != -EAGAIN)
4720 break;
4721 }
a742994a 4722 }
4f764e51
FM
4723 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4724 &BTRFS_I(inode)->runtime_flags) ||
6cfab851 4725 inode_only == LOG_INODE_EXISTS) {
4f764e51 4726 if (inode_only == LOG_INODE_ALL)
183f37fa 4727 fast_search = true;
4f764e51 4728 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4729 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4730 max_key.type);
a95249b3
JB
4731 } else {
4732 if (inode_only == LOG_INODE_ALL)
4733 fast_search = true;
a95249b3 4734 goto log_extents;
5dc562c5 4735 }
a95249b3 4736
e02119d5 4737 }
4a500fd1
YZ
4738 if (ret) {
4739 err = ret;
4740 goto out_unlock;
4741 }
e02119d5 4742
d397712b 4743 while (1) {
31ff1cd2 4744 ins_nr = 0;
6174d3cb 4745 ret = btrfs_search_forward(root, &min_key,
de78b51a 4746 path, trans->transid);
fb770ae4
LB
4747 if (ret < 0) {
4748 err = ret;
4749 goto out_unlock;
4750 }
e02119d5
CM
4751 if (ret != 0)
4752 break;
3a5f1d45 4753again:
31ff1cd2 4754 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4755 if (min_key.objectid != ino)
e02119d5
CM
4756 break;
4757 if (min_key.type > max_key.type)
4758 break;
31ff1cd2 4759
e4545de5
FM
4760 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4761 need_log_inode_item = false;
4762
56f23fdb
FM
4763 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4764 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4765 BTRFS_I(inode)->generation == trans->transid) {
44f714da
FM
4766 u64 other_ino = 0;
4767
56f23fdb
FM
4768 ret = btrfs_check_ref_name_override(path->nodes[0],
4769 path->slots[0],
4791c8f1 4770 &min_key, BTRFS_I(inode),
44f714da 4771 &other_ino);
56f23fdb
FM
4772 if (ret < 0) {
4773 err = ret;
4774 goto out_unlock;
28a23593 4775 } else if (ret > 0 && ctx &&
4a0cc7ca 4776 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4777 struct btrfs_key inode_key;
4778 struct inode *other_inode;
4779
4780 if (ins_nr > 0) {
4781 ins_nr++;
4782 } else {
4783 ins_nr = 1;
4784 ins_start_slot = path->slots[0];
4785 }
44d70e19 4786 ret = copy_items(trans, BTRFS_I(inode), dst_path, path,
44f714da
FM
4787 &last_extent, ins_start_slot,
4788 ins_nr, inode_only,
4789 logged_isize);
4790 if (ret < 0) {
4791 err = ret;
4792 goto out_unlock;
4793 }
4794 ins_nr = 0;
4795 btrfs_release_path(path);
4796 inode_key.objectid = other_ino;
4797 inode_key.type = BTRFS_INODE_ITEM_KEY;
4798 inode_key.offset = 0;
0b246afa 4799 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
4800 &inode_key, root,
4801 NULL);
4802 /*
4803 * If the other inode that had a conflicting dir
4804 * entry was deleted in the current transaction,
4805 * we don't need to do more work nor fallback to
4806 * a transaction commit.
4807 */
4808 if (IS_ERR(other_inode) &&
4809 PTR_ERR(other_inode) == -ENOENT) {
4810 goto next_key;
4811 } else if (IS_ERR(other_inode)) {
4812 err = PTR_ERR(other_inode);
4813 goto out_unlock;
4814 }
4815 /*
4816 * We are safe logging the other inode without
4817 * acquiring its i_mutex as long as we log with
4818 * the LOG_INODE_EXISTS mode. We're safe against
4819 * concurrent renames of the other inode as well
4820 * because during a rename we pin the log and
4821 * update the log with the new name before we
4822 * unpin it.
4823 */
4824 err = btrfs_log_inode(trans, root, other_inode,
781feef7 4825 LOG_OTHER_INODE,
44f714da
FM
4826 0, LLONG_MAX, ctx);
4827 iput(other_inode);
4828 if (err)
4829 goto out_unlock;
4830 else
4831 goto next_key;
56f23fdb
FM
4832 }
4833 }
4834
36283bf7
FM
4835 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4836 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4837 if (ins_nr == 0)
4838 goto next_slot;
44d70e19 4839 ret = copy_items(trans, BTRFS_I(inode), dst_path, path,
36283bf7
FM
4840 &last_extent, ins_start_slot,
4841 ins_nr, inode_only, logged_isize);
4842 if (ret < 0) {
4843 err = ret;
4844 goto out_unlock;
4845 }
4846 ins_nr = 0;
4847 if (ret) {
4848 btrfs_release_path(path);
4849 continue;
4850 }
4851 goto next_slot;
4852 }
4853
e02119d5 4854 src = path->nodes[0];
31ff1cd2
CM
4855 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4856 ins_nr++;
4857 goto next_slot;
4858 } else if (!ins_nr) {
4859 ins_start_slot = path->slots[0];
4860 ins_nr = 1;
4861 goto next_slot;
e02119d5
CM
4862 }
4863
44d70e19 4864 ret = copy_items(trans, BTRFS_I(inode), dst_path, path, &last_extent,
1a4bcf47
FM
4865 ins_start_slot, ins_nr, inode_only,
4866 logged_isize);
16e7549f 4867 if (ret < 0) {
4a500fd1
YZ
4868 err = ret;
4869 goto out_unlock;
a71db86e
RV
4870 }
4871 if (ret) {
16e7549f
JB
4872 ins_nr = 0;
4873 btrfs_release_path(path);
4874 continue;
4a500fd1 4875 }
31ff1cd2
CM
4876 ins_nr = 1;
4877 ins_start_slot = path->slots[0];
4878next_slot:
e02119d5 4879
3a5f1d45
CM
4880 nritems = btrfs_header_nritems(path->nodes[0]);
4881 path->slots[0]++;
4882 if (path->slots[0] < nritems) {
4883 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4884 path->slots[0]);
4885 goto again;
4886 }
31ff1cd2 4887 if (ins_nr) {
44d70e19 4888 ret = copy_items(trans, BTRFS_I(inode), dst_path, path,
16e7549f 4889 &last_extent, ins_start_slot,
1a4bcf47 4890 ins_nr, inode_only, logged_isize);
16e7549f 4891 if (ret < 0) {
4a500fd1
YZ
4892 err = ret;
4893 goto out_unlock;
4894 }
16e7549f 4895 ret = 0;
31ff1cd2
CM
4896 ins_nr = 0;
4897 }
b3b4aa74 4898 btrfs_release_path(path);
44f714da 4899next_key:
3d41d702 4900 if (min_key.offset < (u64)-1) {
e02119d5 4901 min_key.offset++;
3d41d702 4902 } else if (min_key.type < max_key.type) {
e02119d5 4903 min_key.type++;
3d41d702
FDBM
4904 min_key.offset = 0;
4905 } else {
e02119d5 4906 break;
3d41d702 4907 }
e02119d5 4908 }
31ff1cd2 4909 if (ins_nr) {
44d70e19 4910 ret = copy_items(trans, BTRFS_I(inode), dst_path, path, &last_extent,
1a4bcf47
FM
4911 ins_start_slot, ins_nr, inode_only,
4912 logged_isize);
16e7549f 4913 if (ret < 0) {
4a500fd1
YZ
4914 err = ret;
4915 goto out_unlock;
4916 }
16e7549f 4917 ret = 0;
31ff1cd2
CM
4918 ins_nr = 0;
4919 }
5dc562c5 4920
36283bf7
FM
4921 btrfs_release_path(path);
4922 btrfs_release_path(dst_path);
1a93c36a 4923 err = btrfs_log_all_xattrs(trans, root, BTRFS_I(inode), path, dst_path);
36283bf7
FM
4924 if (err)
4925 goto out_unlock;
a89ca6f2
FM
4926 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4927 btrfs_release_path(path);
4928 btrfs_release_path(dst_path);
a0308dd7 4929 err = btrfs_log_trailing_hole(trans, root, BTRFS_I(inode), path);
a89ca6f2
FM
4930 if (err)
4931 goto out_unlock;
4932 }
a95249b3 4933log_extents:
f3b15ccd
JB
4934 btrfs_release_path(path);
4935 btrfs_release_path(dst_path);
e4545de5
FM
4936 if (need_log_inode_item) {
4937 err = log_inode_item(trans, log, dst_path, inode);
4938 if (err)
4939 goto out_unlock;
4940 }
5dc562c5 4941 if (fast_search) {
9d122629 4942 ret = btrfs_log_changed_extents(trans, root, BTRFS_I(inode), dst_path,
de0ee0ed 4943 &logged_list, ctx, start, end);
5dc562c5
JB
4944 if (ret) {
4945 err = ret;
4946 goto out_unlock;
4947 }
d006a048 4948 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4949 struct extent_map *em, *n;
4950
49dae1bc
FM
4951 write_lock(&em_tree->lock);
4952 /*
4953 * We can't just remove every em if we're called for a ranged
4954 * fsync - that is, one that doesn't cover the whole possible
4955 * file range (0 to LLONG_MAX). This is because we can have
4956 * em's that fall outside the range we're logging and therefore
4957 * their ordered operations haven't completed yet
4958 * (btrfs_finish_ordered_io() not invoked yet). This means we
4959 * didn't get their respective file extent item in the fs/subvol
4960 * tree yet, and need to let the next fast fsync (one which
4961 * consults the list of modified extent maps) find the em so
4962 * that it logs a matching file extent item and waits for the
4963 * respective ordered operation to complete (if it's still
4964 * running).
4965 *
4966 * Removing every em outside the range we're logging would make
4967 * the next fast fsync not log their matching file extent items,
4968 * therefore making us lose data after a log replay.
4969 */
4970 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4971 list) {
4972 const u64 mod_end = em->mod_start + em->mod_len - 1;
4973
4974 if (em->mod_start >= start && mod_end <= end)
4975 list_del_init(&em->list);
4976 }
4977 write_unlock(&em_tree->lock);
5dc562c5
JB
4978 }
4979
9623f9a3 4980 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
dbf39ea4
NB
4981 ret = log_directory_changes(trans, root, BTRFS_I(inode), path,
4982 dst_path, ctx);
4a500fd1
YZ
4983 if (ret) {
4984 err = ret;
4985 goto out_unlock;
4986 }
e02119d5 4987 }
49dae1bc 4988
2f2ff0ee 4989 spin_lock(&BTRFS_I(inode)->lock);
125c4cf9
FM
4990 BTRFS_I(inode)->logged_trans = trans->transid;
4991 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
2f2ff0ee 4992 spin_unlock(&BTRFS_I(inode)->lock);
4a500fd1 4993out_unlock:
827463c4
MX
4994 if (unlikely(err))
4995 btrfs_put_logged_extents(&logged_list);
4996 else
4997 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4998 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4999
5000 btrfs_free_path(path);
5001 btrfs_free_path(dst_path);
4a500fd1 5002 return err;
e02119d5
CM
5003}
5004
2be63d5c
FM
5005/*
5006 * Check if we must fallback to a transaction commit when logging an inode.
5007 * This must be called after logging the inode and is used only in the context
5008 * when fsyncing an inode requires the need to log some other inode - in which
5009 * case we can't lock the i_mutex of each other inode we need to log as that
5010 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5011 * log inodes up or down in the hierarchy) or rename operations for example. So
5012 * we take the log_mutex of the inode after we have logged it and then check for
5013 * its last_unlink_trans value - this is safe because any task setting
5014 * last_unlink_trans must take the log_mutex and it must do this before it does
5015 * the actual unlink operation, so if we do this check before a concurrent task
5016 * sets last_unlink_trans it means we've logged a consistent version/state of
5017 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5018 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5019 * we logged the inode or it might have also done the unlink).
5020 */
5021static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5022 struct btrfs_inode *inode)
2be63d5c 5023{
ab1717b2 5024 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5025 bool ret = false;
5026
ab1717b2
NB
5027 mutex_lock(&inode->log_mutex);
5028 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5029 /*
5030 * Make sure any commits to the log are forced to be full
5031 * commits.
5032 */
5033 btrfs_set_log_full_commit(fs_info, trans);
5034 ret = true;
5035 }
ab1717b2 5036 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5037
5038 return ret;
5039}
5040
12fcfd22
CM
5041/*
5042 * follow the dentry parent pointers up the chain and see if any
5043 * of the directories in it require a full commit before they can
5044 * be logged. Returns zero if nothing special needs to be done or 1 if
5045 * a full commit is required.
5046 */
5047static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5048 struct inode *inode,
5049 struct dentry *parent,
5050 struct super_block *sb,
5051 u64 last_committed)
e02119d5 5052{
12fcfd22 5053 int ret = 0;
6a912213 5054 struct dentry *old_parent = NULL;
de2b530b 5055 struct inode *orig_inode = inode;
e02119d5 5056
af4176b4
CM
5057 /*
5058 * for regular files, if its inode is already on disk, we don't
5059 * have to worry about the parents at all. This is because
5060 * we can use the last_unlink_trans field to record renames
5061 * and other fun in this file.
5062 */
5063 if (S_ISREG(inode->i_mode) &&
5064 BTRFS_I(inode)->generation <= last_committed &&
5065 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5066 goto out;
5067
12fcfd22 5068 if (!S_ISDIR(inode->i_mode)) {
fc64005c 5069 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5070 goto out;
2b0143b5 5071 inode = d_inode(parent);
12fcfd22
CM
5072 }
5073
5074 while (1) {
de2b530b
JB
5075 /*
5076 * If we are logging a directory then we start with our inode,
01327610 5077 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5078 * logged_trans so that further down in the log code we don't
5079 * think this inode has already been logged.
5080 */
5081 if (inode != orig_inode)
5082 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
5083 smp_mb();
5084
ab1717b2 5085 if (btrfs_must_commit_transaction(trans, BTRFS_I(inode))) {
12fcfd22
CM
5086 ret = 1;
5087 break;
5088 }
5089
fc64005c 5090 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5091 break;
5092
44f714da
FM
5093 if (IS_ROOT(parent)) {
5094 inode = d_inode(parent);
ab1717b2 5095 if (btrfs_must_commit_transaction(trans, BTRFS_I(inode)))
44f714da 5096 ret = 1;
12fcfd22 5097 break;
44f714da 5098 }
12fcfd22 5099
6a912213
JB
5100 parent = dget_parent(parent);
5101 dput(old_parent);
5102 old_parent = parent;
2b0143b5 5103 inode = d_inode(parent);
12fcfd22
CM
5104
5105 }
6a912213 5106 dput(old_parent);
12fcfd22 5107out:
e02119d5
CM
5108 return ret;
5109}
5110
2f2ff0ee
FM
5111struct btrfs_dir_list {
5112 u64 ino;
5113 struct list_head list;
5114};
5115
5116/*
5117 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5118 * details about the why it is needed.
5119 * This is a recursive operation - if an existing dentry corresponds to a
5120 * directory, that directory's new entries are logged too (same behaviour as
5121 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5122 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5123 * complains about the following circular lock dependency / possible deadlock:
5124 *
5125 * CPU0 CPU1
5126 * ---- ----
5127 * lock(&type->i_mutex_dir_key#3/2);
5128 * lock(sb_internal#2);
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 * lock(&sb->s_type->i_mutex_key#14);
5131 *
5132 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5133 * sb_start_intwrite() in btrfs_start_transaction().
5134 * Not locking i_mutex of the inodes is still safe because:
5135 *
5136 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5137 * that while logging the inode new references (names) are added or removed
5138 * from the inode, leaving the logged inode item with a link count that does
5139 * not match the number of logged inode reference items. This is fine because
5140 * at log replay time we compute the real number of links and correct the
5141 * link count in the inode item (see replay_one_buffer() and
5142 * link_to_fixup_dir());
5143 *
5144 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5145 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5146 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5147 * has a size that doesn't match the sum of the lengths of all the logged
5148 * names. This does not result in a problem because if a dir_item key is
5149 * logged but its matching dir_index key is not logged, at log replay time we
5150 * don't use it to replay the respective name (see replay_one_name()). On the
5151 * other hand if only the dir_index key ends up being logged, the respective
5152 * name is added to the fs/subvol tree with both the dir_item and dir_index
5153 * keys created (see replay_one_name()).
5154 * The directory's inode item with a wrong i_size is not a problem as well,
5155 * since we don't use it at log replay time to set the i_size in the inode
5156 * item of the fs/subvol tree (see overwrite_item()).
5157 */
5158static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5159 struct btrfs_root *root,
51cc0d32 5160 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5161 struct btrfs_log_ctx *ctx)
5162{
0b246afa 5163 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5164 struct btrfs_root *log = root->log_root;
5165 struct btrfs_path *path;
5166 LIST_HEAD(dir_list);
5167 struct btrfs_dir_list *dir_elem;
5168 int ret = 0;
5169
5170 path = btrfs_alloc_path();
5171 if (!path)
5172 return -ENOMEM;
5173
5174 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5175 if (!dir_elem) {
5176 btrfs_free_path(path);
5177 return -ENOMEM;
5178 }
51cc0d32 5179 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5180 list_add_tail(&dir_elem->list, &dir_list);
5181
5182 while (!list_empty(&dir_list)) {
5183 struct extent_buffer *leaf;
5184 struct btrfs_key min_key;
5185 int nritems;
5186 int i;
5187
5188 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5189 list);
5190 if (ret)
5191 goto next_dir_inode;
5192
5193 min_key.objectid = dir_elem->ino;
5194 min_key.type = BTRFS_DIR_ITEM_KEY;
5195 min_key.offset = 0;
5196again:
5197 btrfs_release_path(path);
5198 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5199 if (ret < 0) {
5200 goto next_dir_inode;
5201 } else if (ret > 0) {
5202 ret = 0;
5203 goto next_dir_inode;
5204 }
5205
5206process_leaf:
5207 leaf = path->nodes[0];
5208 nritems = btrfs_header_nritems(leaf);
5209 for (i = path->slots[0]; i < nritems; i++) {
5210 struct btrfs_dir_item *di;
5211 struct btrfs_key di_key;
5212 struct inode *di_inode;
5213 struct btrfs_dir_list *new_dir_elem;
5214 int log_mode = LOG_INODE_EXISTS;
5215 int type;
5216
5217 btrfs_item_key_to_cpu(leaf, &min_key, i);
5218 if (min_key.objectid != dir_elem->ino ||
5219 min_key.type != BTRFS_DIR_ITEM_KEY)
5220 goto next_dir_inode;
5221
5222 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5223 type = btrfs_dir_type(leaf, di);
5224 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5225 type != BTRFS_FT_DIR)
5226 continue;
5227 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5228 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5229 continue;
5230
ec125cfb 5231 btrfs_release_path(path);
0b246afa 5232 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5233 if (IS_ERR(di_inode)) {
5234 ret = PTR_ERR(di_inode);
5235 goto next_dir_inode;
5236 }
5237
0f8939b8 5238 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5239 iput(di_inode);
ec125cfb 5240 break;
2f2ff0ee
FM
5241 }
5242
5243 ctx->log_new_dentries = false;
3f9749f6 5244 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5245 log_mode = LOG_INODE_ALL;
2f2ff0ee
FM
5246 ret = btrfs_log_inode(trans, root, di_inode,
5247 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5248 if (!ret &&
ab1717b2 5249 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5250 ret = 1;
2f2ff0ee
FM
5251 iput(di_inode);
5252 if (ret)
5253 goto next_dir_inode;
5254 if (ctx->log_new_dentries) {
5255 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5256 GFP_NOFS);
5257 if (!new_dir_elem) {
5258 ret = -ENOMEM;
5259 goto next_dir_inode;
5260 }
5261 new_dir_elem->ino = di_key.objectid;
5262 list_add_tail(&new_dir_elem->list, &dir_list);
5263 }
5264 break;
5265 }
5266 if (i == nritems) {
5267 ret = btrfs_next_leaf(log, path);
5268 if (ret < 0) {
5269 goto next_dir_inode;
5270 } else if (ret > 0) {
5271 ret = 0;
5272 goto next_dir_inode;
5273 }
5274 goto process_leaf;
5275 }
5276 if (min_key.offset < (u64)-1) {
5277 min_key.offset++;
5278 goto again;
5279 }
5280next_dir_inode:
5281 list_del(&dir_elem->list);
5282 kfree(dir_elem);
5283 }
5284
5285 btrfs_free_path(path);
5286 return ret;
5287}
5288
18aa0922
FM
5289static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5290 struct inode *inode,
5291 struct btrfs_log_ctx *ctx)
5292{
0b246afa 5293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18aa0922
FM
5294 int ret;
5295 struct btrfs_path *path;
5296 struct btrfs_key key;
5297 struct btrfs_root *root = BTRFS_I(inode)->root;
4a0cc7ca 5298 const u64 ino = btrfs_ino(BTRFS_I(inode));
18aa0922
FM
5299
5300 path = btrfs_alloc_path();
5301 if (!path)
5302 return -ENOMEM;
5303 path->skip_locking = 1;
5304 path->search_commit_root = 1;
5305
5306 key.objectid = ino;
5307 key.type = BTRFS_INODE_REF_KEY;
5308 key.offset = 0;
5309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5310 if (ret < 0)
5311 goto out;
5312
5313 while (true) {
5314 struct extent_buffer *leaf = path->nodes[0];
5315 int slot = path->slots[0];
5316 u32 cur_offset = 0;
5317 u32 item_size;
5318 unsigned long ptr;
5319
5320 if (slot >= btrfs_header_nritems(leaf)) {
5321 ret = btrfs_next_leaf(root, path);
5322 if (ret < 0)
5323 goto out;
5324 else if (ret > 0)
5325 break;
5326 continue;
5327 }
5328
5329 btrfs_item_key_to_cpu(leaf, &key, slot);
5330 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5331 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5332 break;
5333
5334 item_size = btrfs_item_size_nr(leaf, slot);
5335 ptr = btrfs_item_ptr_offset(leaf, slot);
5336 while (cur_offset < item_size) {
5337 struct btrfs_key inode_key;
5338 struct inode *dir_inode;
5339
5340 inode_key.type = BTRFS_INODE_ITEM_KEY;
5341 inode_key.offset = 0;
5342
5343 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5344 struct btrfs_inode_extref *extref;
5345
5346 extref = (struct btrfs_inode_extref *)
5347 (ptr + cur_offset);
5348 inode_key.objectid = btrfs_inode_extref_parent(
5349 leaf, extref);
5350 cur_offset += sizeof(*extref);
5351 cur_offset += btrfs_inode_extref_name_len(leaf,
5352 extref);
5353 } else {
5354 inode_key.objectid = key.offset;
5355 cur_offset = item_size;
5356 }
5357
0b246afa 5358 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5359 root, NULL);
5360 /* If parent inode was deleted, skip it. */
5361 if (IS_ERR(dir_inode))
5362 continue;
5363
657ed1aa
FM
5364 if (ctx)
5365 ctx->log_new_dentries = false;
18aa0922
FM
5366 ret = btrfs_log_inode(trans, root, dir_inode,
5367 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5368 if (!ret &&
ab1717b2 5369 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5370 ret = 1;
657ed1aa
FM
5371 if (!ret && ctx && ctx->log_new_dentries)
5372 ret = log_new_dir_dentries(trans, root,
51cc0d32 5373 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5374 iput(dir_inode);
5375 if (ret)
5376 goto out;
5377 }
5378 path->slots[0]++;
5379 }
5380 ret = 0;
5381out:
5382 btrfs_free_path(path);
5383 return ret;
5384}
5385
e02119d5
CM
5386/*
5387 * helper function around btrfs_log_inode to make sure newly created
5388 * parent directories also end up in the log. A minimal inode and backref
5389 * only logging is done of any parent directories that are older than
5390 * the last committed transaction
5391 */
48a3b636
ES
5392static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5393 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
5394 struct dentry *parent,
5395 const loff_t start,
5396 const loff_t end,
5397 int exists_only,
8b050d35 5398 struct btrfs_log_ctx *ctx)
e02119d5 5399{
0b246afa 5400 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 5401 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 5402 struct super_block *sb;
6a912213 5403 struct dentry *old_parent = NULL;
12fcfd22 5404 int ret = 0;
0b246afa 5405 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee
FM
5406 bool log_dentries = false;
5407 struct inode *orig_inode = inode;
12fcfd22
CM
5408
5409 sb = inode->i_sb;
5410
0b246afa 5411 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5412 ret = 1;
5413 goto end_no_trans;
5414 }
5415
995946dd
MX
5416 /*
5417 * The prev transaction commit doesn't complete, we need do
5418 * full commit by ourselves.
5419 */
0b246afa
JM
5420 if (fs_info->last_trans_log_full_commit >
5421 fs_info->last_trans_committed) {
12fcfd22
CM
5422 ret = 1;
5423 goto end_no_trans;
5424 }
5425
76dda93c
YZ
5426 if (root != BTRFS_I(inode)->root ||
5427 btrfs_root_refs(&root->root_item) == 0) {
5428 ret = 1;
5429 goto end_no_trans;
5430 }
5431
12fcfd22
CM
5432 ret = check_parent_dirs_for_sync(trans, inode, parent,
5433 sb, last_committed);
5434 if (ret)
5435 goto end_no_trans;
e02119d5 5436
0f8939b8 5437 if (btrfs_inode_in_log(BTRFS_I(inode), trans->transid)) {
257c62e1
CM
5438 ret = BTRFS_NO_LOG_SYNC;
5439 goto end_no_trans;
5440 }
5441
8b050d35 5442 ret = start_log_trans(trans, root, ctx);
4a500fd1 5443 if (ret)
e87ac136 5444 goto end_no_trans;
e02119d5 5445
8407f553 5446 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5447 if (ret)
5448 goto end_trans;
12fcfd22 5449
af4176b4
CM
5450 /*
5451 * for regular files, if its inode is already on disk, we don't
5452 * have to worry about the parents at all. This is because
5453 * we can use the last_unlink_trans field to record renames
5454 * and other fun in this file.
5455 */
5456 if (S_ISREG(inode->i_mode) &&
5457 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
5458 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5459 ret = 0;
5460 goto end_trans;
5461 }
af4176b4 5462
2f2ff0ee
FM
5463 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5464 log_dentries = true;
5465
18aa0922 5466 /*
01327610 5467 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5468 * inodes are fully logged. This is to prevent leaving dangling
5469 * directory index entries in directories that were our parents but are
5470 * not anymore. Not doing this results in old parent directory being
5471 * impossible to delete after log replay (rmdir will always fail with
5472 * error -ENOTEMPTY).
5473 *
5474 * Example 1:
5475 *
5476 * mkdir testdir
5477 * touch testdir/foo
5478 * ln testdir/foo testdir/bar
5479 * sync
5480 * unlink testdir/bar
5481 * xfs_io -c fsync testdir/foo
5482 * <power failure>
5483 * mount fs, triggers log replay
5484 *
5485 * If we don't log the parent directory (testdir), after log replay the
5486 * directory still has an entry pointing to the file inode using the bar
5487 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5488 * the file inode has a link count of 1.
5489 *
5490 * Example 2:
5491 *
5492 * mkdir testdir
5493 * touch foo
5494 * ln foo testdir/foo2
5495 * ln foo testdir/foo3
5496 * sync
5497 * unlink testdir/foo3
5498 * xfs_io -c fsync foo
5499 * <power failure>
5500 * mount fs, triggers log replay
5501 *
5502 * Similar as the first example, after log replay the parent directory
5503 * testdir still has an entry pointing to the inode file with name foo3
5504 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5505 * and has a link count of 2.
5506 */
5507 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5508 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5509 if (ret)
5510 goto end_trans;
5511 }
5512
12fcfd22 5513 while (1) {
fc64005c 5514 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5515 break;
5516
2b0143b5 5517 inode = d_inode(parent);
76dda93c
YZ
5518 if (root != BTRFS_I(inode)->root)
5519 break;
5520
18aa0922
FM
5521 if (BTRFS_I(inode)->generation > last_committed) {
5522 ret = btrfs_log_inode(trans, root, inode,
5523 LOG_INODE_EXISTS,
8407f553 5524 0, LLONG_MAX, ctx);
4a500fd1
YZ
5525 if (ret)
5526 goto end_trans;
12fcfd22 5527 }
76dda93c 5528 if (IS_ROOT(parent))
e02119d5 5529 break;
12fcfd22 5530
6a912213
JB
5531 parent = dget_parent(parent);
5532 dput(old_parent);
5533 old_parent = parent;
e02119d5 5534 }
2f2ff0ee 5535 if (log_dentries)
51cc0d32 5536 ret = log_new_dir_dentries(trans, root, BTRFS_I(orig_inode), ctx);
2f2ff0ee
FM
5537 else
5538 ret = 0;
4a500fd1 5539end_trans:
6a912213 5540 dput(old_parent);
4a500fd1 5541 if (ret < 0) {
0b246afa 5542 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5543 ret = 1;
5544 }
8b050d35
MX
5545
5546 if (ret)
5547 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5548 btrfs_end_log_trans(root);
5549end_no_trans:
5550 return ret;
e02119d5
CM
5551}
5552
5553/*
5554 * it is not safe to log dentry if the chunk root has added new
5555 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5556 * If this returns 1, you must commit the transaction to safely get your
5557 * data on disk.
5558 */
5559int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5560 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5561 const loff_t start,
5562 const loff_t end,
8b050d35 5563 struct btrfs_log_ctx *ctx)
e02119d5 5564{
6a912213
JB
5565 struct dentry *parent = dget_parent(dentry);
5566 int ret;
5567
2b0143b5 5568 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
49dae1bc 5569 start, end, 0, ctx);
6a912213
JB
5570 dput(parent);
5571
5572 return ret;
e02119d5
CM
5573}
5574
5575/*
5576 * should be called during mount to recover any replay any log trees
5577 * from the FS
5578 */
5579int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5580{
5581 int ret;
5582 struct btrfs_path *path;
5583 struct btrfs_trans_handle *trans;
5584 struct btrfs_key key;
5585 struct btrfs_key found_key;
5586 struct btrfs_key tmp_key;
5587 struct btrfs_root *log;
5588 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5589 struct walk_control wc = {
5590 .process_func = process_one_buffer,
5591 .stage = 0,
5592 };
5593
e02119d5 5594 path = btrfs_alloc_path();
db5b493a
TI
5595 if (!path)
5596 return -ENOMEM;
5597
afcdd129 5598 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5599
4a500fd1 5600 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5601 if (IS_ERR(trans)) {
5602 ret = PTR_ERR(trans);
5603 goto error;
5604 }
e02119d5
CM
5605
5606 wc.trans = trans;
5607 wc.pin = 1;
5608
db5b493a 5609 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5610 if (ret) {
5d163e0e
JM
5611 btrfs_handle_fs_error(fs_info, ret,
5612 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5613 goto error;
5614 }
e02119d5
CM
5615
5616again:
5617 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5618 key.offset = (u64)-1;
962a298f 5619 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5620
d397712b 5621 while (1) {
e02119d5 5622 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5623
5624 if (ret < 0) {
34d97007 5625 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5626 "Couldn't find tree log root.");
5627 goto error;
5628 }
e02119d5
CM
5629 if (ret > 0) {
5630 if (path->slots[0] == 0)
5631 break;
5632 path->slots[0]--;
5633 }
5634 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5635 path->slots[0]);
b3b4aa74 5636 btrfs_release_path(path);
e02119d5
CM
5637 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5638 break;
5639
cb517eab 5640 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5641 if (IS_ERR(log)) {
5642 ret = PTR_ERR(log);
34d97007 5643 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5644 "Couldn't read tree log root.");
5645 goto error;
5646 }
e02119d5
CM
5647
5648 tmp_key.objectid = found_key.offset;
5649 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5650 tmp_key.offset = (u64)-1;
5651
5652 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5653 if (IS_ERR(wc.replay_dest)) {
5654 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5655 free_extent_buffer(log->node);
5656 free_extent_buffer(log->commit_root);
5657 kfree(log);
5d163e0e
JM
5658 btrfs_handle_fs_error(fs_info, ret,
5659 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5660 goto error;
5661 }
e02119d5 5662
07d400a6 5663 wc.replay_dest->log_root = log;
5d4f98a2 5664 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5665 ret = walk_log_tree(trans, log, &wc);
e02119d5 5666
b50c6e25 5667 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5668 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5669 path);
e02119d5
CM
5670 }
5671
5672 key.offset = found_key.offset - 1;
07d400a6 5673 wc.replay_dest->log_root = NULL;
e02119d5 5674 free_extent_buffer(log->node);
b263c2c8 5675 free_extent_buffer(log->commit_root);
e02119d5
CM
5676 kfree(log);
5677
b50c6e25
JB
5678 if (ret)
5679 goto error;
5680
e02119d5
CM
5681 if (found_key.offset == 0)
5682 break;
5683 }
b3b4aa74 5684 btrfs_release_path(path);
e02119d5
CM
5685
5686 /* step one is to pin it all, step two is to replay just inodes */
5687 if (wc.pin) {
5688 wc.pin = 0;
5689 wc.process_func = replay_one_buffer;
5690 wc.stage = LOG_WALK_REPLAY_INODES;
5691 goto again;
5692 }
5693 /* step three is to replay everything */
5694 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5695 wc.stage++;
5696 goto again;
5697 }
5698
5699 btrfs_free_path(path);
5700
abefa55a 5701 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5702 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5703 if (ret)
5704 return ret;
5705
e02119d5
CM
5706 free_extent_buffer(log_root_tree->node);
5707 log_root_tree->log_root = NULL;
afcdd129 5708 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5709 kfree(log_root_tree);
79787eaa 5710
abefa55a 5711 return 0;
79787eaa 5712error:
b50c6e25 5713 if (wc.trans)
3a45bb20 5714 btrfs_end_transaction(wc.trans);
79787eaa
JM
5715 btrfs_free_path(path);
5716 return ret;
e02119d5 5717}
12fcfd22
CM
5718
5719/*
5720 * there are some corner cases where we want to force a full
5721 * commit instead of allowing a directory to be logged.
5722 *
5723 * They revolve around files there were unlinked from the directory, and
5724 * this function updates the parent directory so that a full commit is
5725 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5726 *
5727 * Must be called before the unlink operations (updates to the subvolume tree,
5728 * inodes, etc) are done.
12fcfd22
CM
5729 */
5730void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5731 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5732 int for_rename)
5733{
af4176b4
CM
5734 /*
5735 * when we're logging a file, if it hasn't been renamed
5736 * or unlinked, and its inode is fully committed on disk,
5737 * we don't have to worry about walking up the directory chain
5738 * to log its parents.
5739 *
5740 * So, we use the last_unlink_trans field to put this transid
5741 * into the file. When the file is logged we check it and
5742 * don't log the parents if the file is fully on disk.
5743 */
4176bdbf
NB
5744 mutex_lock(&inode->log_mutex);
5745 inode->last_unlink_trans = trans->transid;
5746 mutex_unlock(&inode->log_mutex);
af4176b4 5747
12fcfd22
CM
5748 /*
5749 * if this directory was already logged any new
5750 * names for this file/dir will get recorded
5751 */
5752 smp_mb();
4176bdbf 5753 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5754 return;
5755
5756 /*
5757 * if the inode we're about to unlink was logged,
5758 * the log will be properly updated for any new names
5759 */
4176bdbf 5760 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5761 return;
5762
5763 /*
5764 * when renaming files across directories, if the directory
5765 * there we're unlinking from gets fsync'd later on, there's
5766 * no way to find the destination directory later and fsync it
5767 * properly. So, we have to be conservative and force commits
5768 * so the new name gets discovered.
5769 */
5770 if (for_rename)
5771 goto record;
5772
5773 /* we can safely do the unlink without any special recording */
5774 return;
5775
5776record:
4176bdbf
NB
5777 mutex_lock(&dir->log_mutex);
5778 dir->last_unlink_trans = trans->transid;
5779 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
5780}
5781
5782/*
5783 * Make sure that if someone attempts to fsync the parent directory of a deleted
5784 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5785 * that after replaying the log tree of the parent directory's root we will not
5786 * see the snapshot anymore and at log replay time we will not see any log tree
5787 * corresponding to the deleted snapshot's root, which could lead to replaying
5788 * it after replaying the log tree of the parent directory (which would replay
5789 * the snapshot delete operation).
2be63d5c
FM
5790 *
5791 * Must be called before the actual snapshot destroy operation (updates to the
5792 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
5793 */
5794void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 5795 struct btrfs_inode *dir)
1ec9a1ae 5796{
43663557
NB
5797 mutex_lock(&dir->log_mutex);
5798 dir->last_unlink_trans = trans->transid;
5799 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
5800}
5801
5802/*
5803 * Call this after adding a new name for a file and it will properly
5804 * update the log to reflect the new name.
5805 *
5806 * It will return zero if all goes well, and it will return 1 if a
5807 * full transaction commit is required.
5808 */
5809int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 5810 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
5811 struct dentry *parent)
5812{
9ca5fbfb
NB
5813 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5814 struct btrfs_root * root = inode->root;
12fcfd22 5815
af4176b4
CM
5816 /*
5817 * this will force the logging code to walk the dentry chain
5818 * up for the file
5819 */
9ca5fbfb
NB
5820 if (S_ISREG(inode->vfs_inode.i_mode))
5821 inode->last_unlink_trans = trans->transid;
af4176b4 5822
12fcfd22
CM
5823 /*
5824 * if this inode hasn't been logged and directory we're renaming it
5825 * from hasn't been logged, we don't need to log it
5826 */
9ca5fbfb
NB
5827 if (inode->logged_trans <= fs_info->last_trans_committed &&
5828 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
5829 return 0;
5830
9ca5fbfb 5831 return btrfs_log_inode_parent(trans, root, &inode->vfs_inode, parent, 0,
49dae1bc 5832 LLONG_MAX, 1, NULL);
12fcfd22
CM
5833}
5834
This page took 1.397614 seconds and 4 git commands to generate.