]> Git Repo - linux.git/blame - fs/btrfs/tree-log.c
btrfs: simplify btrfs_wait_cache_io prototype
[linux.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
ebb8765b 29#include "compression.h"
df2c95f3 30#include "qgroup.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40
12fcfd22
CM
41/*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
e02119d5
CM
84/*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93#define LOG_WALK_PIN_ONLY 0
94#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
95#define LOG_WALK_REPLAY_DIR_INDEX 2
96#define LOG_WALK_REPLAY_ALL 3
e02119d5 97
12fcfd22 98static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only,
101 const loff_t start,
8407f553
FM
102 const loff_t end,
103 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
104static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
107static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_root *log,
110 struct btrfs_path *path,
111 u64 dirid, int del_all);
e02119d5
CM
112
113/*
114 * tree logging is a special write ahead log used to make sure that
115 * fsyncs and O_SYNCs can happen without doing full tree commits.
116 *
117 * Full tree commits are expensive because they require commonly
118 * modified blocks to be recowed, creating many dirty pages in the
119 * extent tree an 4x-6x higher write load than ext3.
120 *
121 * Instead of doing a tree commit on every fsync, we use the
122 * key ranges and transaction ids to find items for a given file or directory
123 * that have changed in this transaction. Those items are copied into
124 * a special tree (one per subvolume root), that tree is written to disk
125 * and then the fsync is considered complete.
126 *
127 * After a crash, items are copied out of the log-tree back into the
128 * subvolume tree. Any file data extents found are recorded in the extent
129 * allocation tree, and the log-tree freed.
130 *
131 * The log tree is read three times, once to pin down all the extents it is
132 * using in ram and once, once to create all the inodes logged in the tree
133 * and once to do all the other items.
134 */
135
e02119d5
CM
136/*
137 * start a sub transaction and setup the log tree
138 * this increments the log tree writer count to make the people
139 * syncing the tree wait for us to finish
140 */
141static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
142 struct btrfs_root *root,
143 struct btrfs_log_ctx *ctx)
e02119d5 144{
0b246afa 145 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 146 int ret = 0;
7237f183
YZ
147
148 mutex_lock(&root->log_mutex);
34eb2a52 149
7237f183 150 if (root->log_root) {
0b246afa 151 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
152 ret = -EAGAIN;
153 goto out;
154 }
34eb2a52 155
ff782e0a 156 if (!root->log_start_pid) {
27cdeb70 157 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 158 root->log_start_pid = current->pid;
ff782e0a 159 } else if (root->log_start_pid != current->pid) {
27cdeb70 160 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 161 }
34eb2a52 162 } else {
0b246afa
JM
163 mutex_lock(&fs_info->tree_log_mutex);
164 if (!fs_info->log_root_tree)
165 ret = btrfs_init_log_root_tree(trans, fs_info);
166 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
167 if (ret)
168 goto out;
ff782e0a 169
e02119d5 170 ret = btrfs_add_log_tree(trans, root);
4a500fd1 171 if (ret)
e87ac136 172 goto out;
34eb2a52
Z
173
174 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
175 root->log_start_pid = current->pid;
e02119d5 176 }
34eb2a52 177
2ecb7923 178 atomic_inc(&root->log_batch);
7237f183 179 atomic_inc(&root->log_writers);
8b050d35 180 if (ctx) {
34eb2a52 181 int index = root->log_transid % 2;
8b050d35 182 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 183 ctx->log_transid = root->log_transid;
8b050d35 184 }
34eb2a52 185
e87ac136 186out:
7237f183 187 mutex_unlock(&root->log_mutex);
e87ac136 188 return ret;
e02119d5
CM
189}
190
191/*
192 * returns 0 if there was a log transaction running and we were able
193 * to join, or returns -ENOENT if there were not transactions
194 * in progress
195 */
196static int join_running_log_trans(struct btrfs_root *root)
197{
198 int ret = -ENOENT;
199
200 smp_mb();
201 if (!root->log_root)
202 return -ENOENT;
203
7237f183 204 mutex_lock(&root->log_mutex);
e02119d5
CM
205 if (root->log_root) {
206 ret = 0;
7237f183 207 atomic_inc(&root->log_writers);
e02119d5 208 }
7237f183 209 mutex_unlock(&root->log_mutex);
e02119d5
CM
210 return ret;
211}
212
12fcfd22
CM
213/*
214 * This either makes the current running log transaction wait
215 * until you call btrfs_end_log_trans() or it makes any future
216 * log transactions wait until you call btrfs_end_log_trans()
217 */
218int btrfs_pin_log_trans(struct btrfs_root *root)
219{
220 int ret = -ENOENT;
221
222 mutex_lock(&root->log_mutex);
223 atomic_inc(&root->log_writers);
224 mutex_unlock(&root->log_mutex);
225 return ret;
226}
227
e02119d5
CM
228/*
229 * indicate we're done making changes to the log tree
230 * and wake up anyone waiting to do a sync
231 */
143bede5 232void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 233{
7237f183 234 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
235 /*
236 * Implicit memory barrier after atomic_dec_and_test
237 */
7237f183
YZ
238 if (waitqueue_active(&root->log_writer_wait))
239 wake_up(&root->log_writer_wait);
240 }
e02119d5
CM
241}
242
243
244/*
245 * the walk control struct is used to pass state down the chain when
246 * processing the log tree. The stage field tells us which part
247 * of the log tree processing we are currently doing. The others
248 * are state fields used for that specific part
249 */
250struct walk_control {
251 /* should we free the extent on disk when done? This is used
252 * at transaction commit time while freeing a log tree
253 */
254 int free;
255
256 /* should we write out the extent buffer? This is used
257 * while flushing the log tree to disk during a sync
258 */
259 int write;
260
261 /* should we wait for the extent buffer io to finish? Also used
262 * while flushing the log tree to disk for a sync
263 */
264 int wait;
265
266 /* pin only walk, we record which extents on disk belong to the
267 * log trees
268 */
269 int pin;
270
271 /* what stage of the replay code we're currently in */
272 int stage;
273
274 /* the root we are currently replaying */
275 struct btrfs_root *replay_dest;
276
277 /* the trans handle for the current replay */
278 struct btrfs_trans_handle *trans;
279
280 /* the function that gets used to process blocks we find in the
281 * tree. Note the extent_buffer might not be up to date when it is
282 * passed in, and it must be checked or read if you need the data
283 * inside it
284 */
285 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
286 struct walk_control *wc, u64 gen);
287};
288
289/*
290 * process_func used to pin down extents, write them or wait on them
291 */
292static int process_one_buffer(struct btrfs_root *log,
293 struct extent_buffer *eb,
294 struct walk_control *wc, u64 gen)
295{
0b246afa 296 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
297 int ret = 0;
298
8c2a1a30
JB
299 /*
300 * If this fs is mixed then we need to be able to process the leaves to
301 * pin down any logged extents, so we have to read the block.
302 */
0b246afa 303 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8c2a1a30
JB
304 ret = btrfs_read_buffer(eb, gen);
305 if (ret)
306 return ret;
307 }
308
04018de5 309 if (wc->pin)
0b246afa 310 ret = btrfs_pin_extent_for_log_replay(fs_info->extent_root,
b50c6e25 311 eb->start, eb->len);
e02119d5 312
b50c6e25 313 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
314 if (wc->pin && btrfs_header_level(eb) == 0)
315 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
316 if (wc->write)
317 btrfs_write_tree_block(eb);
318 if (wc->wait)
319 btrfs_wait_tree_block_writeback(eb);
320 }
b50c6e25 321 return ret;
e02119d5
CM
322}
323
324/*
325 * Item overwrite used by replay and tree logging. eb, slot and key all refer
326 * to the src data we are copying out.
327 *
328 * root is the tree we are copying into, and path is a scratch
329 * path for use in this function (it should be released on entry and
330 * will be released on exit).
331 *
332 * If the key is already in the destination tree the existing item is
333 * overwritten. If the existing item isn't big enough, it is extended.
334 * If it is too large, it is truncated.
335 *
336 * If the key isn't in the destination yet, a new item is inserted.
337 */
338static noinline int overwrite_item(struct btrfs_trans_handle *trans,
339 struct btrfs_root *root,
340 struct btrfs_path *path,
341 struct extent_buffer *eb, int slot,
342 struct btrfs_key *key)
343{
344 int ret;
345 u32 item_size;
346 u64 saved_i_size = 0;
347 int save_old_i_size = 0;
348 unsigned long src_ptr;
349 unsigned long dst_ptr;
350 int overwrite_root = 0;
4bc4bee4 351 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
352
353 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
354 overwrite_root = 1;
355
356 item_size = btrfs_item_size_nr(eb, slot);
357 src_ptr = btrfs_item_ptr_offset(eb, slot);
358
359 /* look for the key in the destination tree */
360 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
361 if (ret < 0)
362 return ret;
363
e02119d5
CM
364 if (ret == 0) {
365 char *src_copy;
366 char *dst_copy;
367 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
368 path->slots[0]);
369 if (dst_size != item_size)
370 goto insert;
371
372 if (item_size == 0) {
b3b4aa74 373 btrfs_release_path(path);
e02119d5
CM
374 return 0;
375 }
376 dst_copy = kmalloc(item_size, GFP_NOFS);
377 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 378 if (!dst_copy || !src_copy) {
b3b4aa74 379 btrfs_release_path(path);
2a29edc6 380 kfree(dst_copy);
381 kfree(src_copy);
382 return -ENOMEM;
383 }
e02119d5
CM
384
385 read_extent_buffer(eb, src_copy, src_ptr, item_size);
386
387 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
388 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
389 item_size);
390 ret = memcmp(dst_copy, src_copy, item_size);
391
392 kfree(dst_copy);
393 kfree(src_copy);
394 /*
395 * they have the same contents, just return, this saves
396 * us from cowing blocks in the destination tree and doing
397 * extra writes that may not have been done by a previous
398 * sync
399 */
400 if (ret == 0) {
b3b4aa74 401 btrfs_release_path(path);
e02119d5
CM
402 return 0;
403 }
404
4bc4bee4
JB
405 /*
406 * We need to load the old nbytes into the inode so when we
407 * replay the extents we've logged we get the right nbytes.
408 */
409 if (inode_item) {
410 struct btrfs_inode_item *item;
411 u64 nbytes;
d555438b 412 u32 mode;
4bc4bee4
JB
413
414 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
415 struct btrfs_inode_item);
416 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
417 item = btrfs_item_ptr(eb, slot,
418 struct btrfs_inode_item);
419 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
420
421 /*
422 * If this is a directory we need to reset the i_size to
423 * 0 so that we can set it up properly when replaying
424 * the rest of the items in this log.
425 */
426 mode = btrfs_inode_mode(eb, item);
427 if (S_ISDIR(mode))
428 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
429 }
430 } else if (inode_item) {
431 struct btrfs_inode_item *item;
d555438b 432 u32 mode;
4bc4bee4
JB
433
434 /*
435 * New inode, set nbytes to 0 so that the nbytes comes out
436 * properly when we replay the extents.
437 */
438 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
439 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
440
441 /*
442 * If this is a directory we need to reset the i_size to 0 so
443 * that we can set it up properly when replaying the rest of
444 * the items in this log.
445 */
446 mode = btrfs_inode_mode(eb, item);
447 if (S_ISDIR(mode))
448 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
449 }
450insert:
b3b4aa74 451 btrfs_release_path(path);
e02119d5 452 /* try to insert the key into the destination tree */
df8d116f 453 path->skip_release_on_error = 1;
e02119d5
CM
454 ret = btrfs_insert_empty_item(trans, root, path,
455 key, item_size);
df8d116f 456 path->skip_release_on_error = 0;
e02119d5
CM
457
458 /* make sure any existing item is the correct size */
df8d116f 459 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
460 u32 found_size;
461 found_size = btrfs_item_size_nr(path->nodes[0],
462 path->slots[0]);
143bede5 463 if (found_size > item_size)
afe5fea7 464 btrfs_truncate_item(root, path, item_size, 1);
143bede5 465 else if (found_size < item_size)
4b90c680 466 btrfs_extend_item(root, path,
143bede5 467 item_size - found_size);
e02119d5 468 } else if (ret) {
4a500fd1 469 return ret;
e02119d5
CM
470 }
471 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
472 path->slots[0]);
473
474 /* don't overwrite an existing inode if the generation number
475 * was logged as zero. This is done when the tree logging code
476 * is just logging an inode to make sure it exists after recovery.
477 *
478 * Also, don't overwrite i_size on directories during replay.
479 * log replay inserts and removes directory items based on the
480 * state of the tree found in the subvolume, and i_size is modified
481 * as it goes
482 */
483 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
484 struct btrfs_inode_item *src_item;
485 struct btrfs_inode_item *dst_item;
486
487 src_item = (struct btrfs_inode_item *)src_ptr;
488 dst_item = (struct btrfs_inode_item *)dst_ptr;
489
1a4bcf47
FM
490 if (btrfs_inode_generation(eb, src_item) == 0) {
491 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 492 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 493
2f2ff0ee
FM
494 /*
495 * For regular files an ino_size == 0 is used only when
496 * logging that an inode exists, as part of a directory
497 * fsync, and the inode wasn't fsynced before. In this
498 * case don't set the size of the inode in the fs/subvol
499 * tree, otherwise we would be throwing valid data away.
500 */
1a4bcf47 501 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
502 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
503 ino_size != 0) {
1a4bcf47 504 struct btrfs_map_token token;
1a4bcf47
FM
505
506 btrfs_init_map_token(&token);
507 btrfs_set_token_inode_size(dst_eb, dst_item,
508 ino_size, &token);
509 }
e02119d5 510 goto no_copy;
1a4bcf47 511 }
e02119d5
CM
512
513 if (overwrite_root &&
514 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 save_old_i_size = 1;
517 saved_i_size = btrfs_inode_size(path->nodes[0],
518 dst_item);
519 }
520 }
521
522 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 src_ptr, item_size);
524
525 if (save_old_i_size) {
526 struct btrfs_inode_item *dst_item;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 }
530
531 /* make sure the generation is filled in */
532 if (key->type == BTRFS_INODE_ITEM_KEY) {
533 struct btrfs_inode_item *dst_item;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 btrfs_set_inode_generation(path->nodes[0], dst_item,
537 trans->transid);
538 }
539 }
540no_copy:
541 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 542 btrfs_release_path(path);
e02119d5
CM
543 return 0;
544}
545
546/*
547 * simple helper to read an inode off the disk from a given root
548 * This can only be called for subvolume roots and not for the log
549 */
550static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 u64 objectid)
552{
5d4f98a2 553 struct btrfs_key key;
e02119d5 554 struct inode *inode;
e02119d5 555
5d4f98a2
YZ
556 key.objectid = objectid;
557 key.type = BTRFS_INODE_ITEM_KEY;
558 key.offset = 0;
73f73415 559 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
560 if (IS_ERR(inode)) {
561 inode = NULL;
562 } else if (is_bad_inode(inode)) {
e02119d5
CM
563 iput(inode);
564 inode = NULL;
565 }
566 return inode;
567}
568
569/* replays a single extent in 'eb' at 'slot' with 'key' into the
570 * subvolume 'root'. path is released on entry and should be released
571 * on exit.
572 *
573 * extents in the log tree have not been allocated out of the extent
574 * tree yet. So, this completes the allocation, taking a reference
575 * as required if the extent already exists or creating a new extent
576 * if it isn't in the extent allocation tree yet.
577 *
578 * The extent is inserted into the file, dropping any existing extents
579 * from the file that overlap the new one.
580 */
581static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_path *path,
584 struct extent_buffer *eb, int slot,
585 struct btrfs_key *key)
586{
0b246afa 587 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 588 int found_type;
e02119d5 589 u64 extent_end;
e02119d5 590 u64 start = key->offset;
4bc4bee4 591 u64 nbytes = 0;
e02119d5
CM
592 struct btrfs_file_extent_item *item;
593 struct inode *inode = NULL;
594 unsigned long size;
595 int ret = 0;
596
597 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
598 found_type = btrfs_file_extent_type(eb, item);
599
d899e052 600 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
601 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
602 nbytes = btrfs_file_extent_num_bytes(eb, item);
603 extent_end = start + nbytes;
604
605 /*
606 * We don't add to the inodes nbytes if we are prealloc or a
607 * hole.
608 */
609 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
610 nbytes = 0;
611 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 612 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 613 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 614 extent_end = ALIGN(start + size,
0b246afa 615 fs_info->sectorsize);
e02119d5
CM
616 } else {
617 ret = 0;
618 goto out;
619 }
620
621 inode = read_one_inode(root, key->objectid);
622 if (!inode) {
623 ret = -EIO;
624 goto out;
625 }
626
627 /*
628 * first check to see if we already have this extent in the
629 * file. This must be done before the btrfs_drop_extents run
630 * so we don't try to drop this extent.
631 */
33345d01 632 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
633 start, 0);
634
d899e052
YZ
635 if (ret == 0 &&
636 (found_type == BTRFS_FILE_EXTENT_REG ||
637 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
638 struct btrfs_file_extent_item cmp1;
639 struct btrfs_file_extent_item cmp2;
640 struct btrfs_file_extent_item *existing;
641 struct extent_buffer *leaf;
642
643 leaf = path->nodes[0];
644 existing = btrfs_item_ptr(leaf, path->slots[0],
645 struct btrfs_file_extent_item);
646
647 read_extent_buffer(eb, &cmp1, (unsigned long)item,
648 sizeof(cmp1));
649 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
650 sizeof(cmp2));
651
652 /*
653 * we already have a pointer to this exact extent,
654 * we don't have to do anything
655 */
656 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 657 btrfs_release_path(path);
e02119d5
CM
658 goto out;
659 }
660 }
b3b4aa74 661 btrfs_release_path(path);
e02119d5
CM
662
663 /* drop any overlapping extents */
2671485d 664 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
665 if (ret)
666 goto out;
e02119d5 667
07d400a6
YZ
668 if (found_type == BTRFS_FILE_EXTENT_REG ||
669 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 670 u64 offset;
07d400a6
YZ
671 unsigned long dest_offset;
672 struct btrfs_key ins;
673
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
3650860b
JB
676 if (ret)
677 goto out;
07d400a6
YZ
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 686 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 687
df2c95f3
QW
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
0b246afa 696 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
07d400a6
YZ
703 if (ins.objectid > 0) {
704 u64 csum_start;
705 u64 csum_end;
706 LIST_HEAD(ordered_sums);
707 /*
708 * is this extent already allocated in the extent
709 * allocation tree? If so, just add a reference
710 */
1a4ed8fd 711 ret = btrfs_lookup_data_extent(root, ins.objectid,
07d400a6
YZ
712 ins.offset);
713 if (ret == 0) {
714 ret = btrfs_inc_extent_ref(trans, root,
715 ins.objectid, ins.offset,
5d4f98a2 716 0, root->root_key.objectid,
b06c4bf5 717 key->objectid, offset);
b50c6e25
JB
718 if (ret)
719 goto out;
07d400a6
YZ
720 } else {
721 /*
722 * insert the extent pointer in the extent
723 * allocation tree
724 */
5d4f98a2
YZ
725 ret = btrfs_alloc_logged_file_extent(trans,
726 root, root->root_key.objectid,
727 key->objectid, offset, &ins);
b50c6e25
JB
728 if (ret)
729 goto out;
07d400a6 730 }
b3b4aa74 731 btrfs_release_path(path);
07d400a6
YZ
732
733 if (btrfs_file_extent_compression(eb, item)) {
734 csum_start = ins.objectid;
735 csum_end = csum_start + ins.offset;
736 } else {
737 csum_start = ins.objectid +
738 btrfs_file_extent_offset(eb, item);
739 csum_end = csum_start +
740 btrfs_file_extent_num_bytes(eb, item);
741 }
742
743 ret = btrfs_lookup_csums_range(root->log_root,
744 csum_start, csum_end - 1,
a2de733c 745 &ordered_sums, 0);
3650860b
JB
746 if (ret)
747 goto out;
b84b8390
FM
748 /*
749 * Now delete all existing cums in the csum root that
750 * cover our range. We do this because we can have an
751 * extent that is completely referenced by one file
752 * extent item and partially referenced by another
753 * file extent item (like after using the clone or
754 * extent_same ioctls). In this case if we end up doing
755 * the replay of the one that partially references the
756 * extent first, and we do not do the csum deletion
757 * below, we can get 2 csum items in the csum tree that
758 * overlap each other. For example, imagine our log has
759 * the two following file extent items:
760 *
761 * key (257 EXTENT_DATA 409600)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 20480 nr 20480 ram 102400
764 *
765 * key (257 EXTENT_DATA 819200)
766 * extent data disk byte 12845056 nr 102400
767 * extent data offset 0 nr 102400 ram 102400
768 *
769 * Where the second one fully references the 100K extent
770 * that starts at disk byte 12845056, and the log tree
771 * has a single csum item that covers the entire range
772 * of the extent:
773 *
774 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
775 *
776 * After the first file extent item is replayed, the
777 * csum tree gets the following csum item:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
780 *
781 * Which covers the 20K sub-range starting at offset 20K
782 * of our extent. Now when we replay the second file
783 * extent item, if we do not delete existing csum items
784 * that cover any of its blocks, we end up getting two
785 * csum items in our csum tree that overlap each other:
786 *
787 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 *
790 * Which is a problem, because after this anyone trying
791 * to lookup up for the checksum of any block of our
792 * extent starting at an offset of 40K or higher, will
793 * end up looking at the second csum item only, which
794 * does not contain the checksum for any block starting
795 * at offset 40K or higher of our extent.
796 */
07d400a6
YZ
797 while (!list_empty(&ordered_sums)) {
798 struct btrfs_ordered_sum *sums;
799 sums = list_entry(ordered_sums.next,
800 struct btrfs_ordered_sum,
801 list);
b84b8390 802 if (!ret)
0b246afa 803 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
804 sums->bytenr,
805 sums->len);
3650860b
JB
806 if (!ret)
807 ret = btrfs_csum_file_blocks(trans,
0b246afa 808 fs_info->csum_root, sums);
07d400a6
YZ
809 list_del(&sums->list);
810 kfree(sums);
811 }
3650860b
JB
812 if (ret)
813 goto out;
07d400a6 814 } else {
b3b4aa74 815 btrfs_release_path(path);
07d400a6
YZ
816 }
817 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
818 /* inline extents are easy, we just overwrite them */
819 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
820 if (ret)
821 goto out;
07d400a6 822 }
e02119d5 823
4bc4bee4 824 inode_add_bytes(inode, nbytes);
b9959295 825 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
826out:
827 if (inode)
828 iput(inode);
829 return ret;
830}
831
832/*
833 * when cleaning up conflicts between the directory names in the
834 * subvolume, directory names in the log and directory names in the
835 * inode back references, we may have to unlink inodes from directories.
836 *
837 * This is a helper function to do the unlink of a specific directory
838 * item
839 */
840static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct inode *dir,
844 struct btrfs_dir_item *di)
845{
846 struct inode *inode;
847 char *name;
848 int name_len;
849 struct extent_buffer *leaf;
850 struct btrfs_key location;
851 int ret;
852
853 leaf = path->nodes[0];
854
855 btrfs_dir_item_key_to_cpu(leaf, di, &location);
856 name_len = btrfs_dir_name_len(leaf, di);
857 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 858 if (!name)
859 return -ENOMEM;
860
e02119d5 861 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 862 btrfs_release_path(path);
e02119d5
CM
863
864 inode = read_one_inode(root, location.objectid);
c00e9493 865 if (!inode) {
3650860b
JB
866 ret = -EIO;
867 goto out;
c00e9493 868 }
e02119d5 869
ec051c0f 870 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
871 if (ret)
872 goto out;
12fcfd22 873
e02119d5 874 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
875 if (ret)
876 goto out;
ada9af21
FDBM
877 else
878 ret = btrfs_run_delayed_items(trans, root);
3650860b 879out:
e02119d5 880 kfree(name);
e02119d5
CM
881 iput(inode);
882 return ret;
883}
884
885/*
886 * helper function to see if a given name and sequence number found
887 * in an inode back reference are already in a directory and correctly
888 * point to this inode
889 */
890static noinline int inode_in_dir(struct btrfs_root *root,
891 struct btrfs_path *path,
892 u64 dirid, u64 objectid, u64 index,
893 const char *name, int name_len)
894{
895 struct btrfs_dir_item *di;
896 struct btrfs_key location;
897 int match = 0;
898
899 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
900 index, name, name_len, 0);
901 if (di && !IS_ERR(di)) {
902 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
903 if (location.objectid != objectid)
904 goto out;
905 } else
906 goto out;
b3b4aa74 907 btrfs_release_path(path);
e02119d5
CM
908
909 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
910 if (di && !IS_ERR(di)) {
911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 if (location.objectid != objectid)
913 goto out;
914 } else
915 goto out;
916 match = 1;
917out:
b3b4aa74 918 btrfs_release_path(path);
e02119d5
CM
919 return match;
920}
921
922/*
923 * helper function to check a log tree for a named back reference in
924 * an inode. This is used to decide if a back reference that is
925 * found in the subvolume conflicts with what we find in the log.
926 *
927 * inode backreferences may have multiple refs in a single item,
928 * during replay we process one reference at a time, and we don't
929 * want to delete valid links to a file from the subvolume if that
930 * link is also in the log.
931 */
932static noinline int backref_in_log(struct btrfs_root *log,
933 struct btrfs_key *key,
f186373f 934 u64 ref_objectid,
df8d116f 935 const char *name, int namelen)
e02119d5
CM
936{
937 struct btrfs_path *path;
938 struct btrfs_inode_ref *ref;
939 unsigned long ptr;
940 unsigned long ptr_end;
941 unsigned long name_ptr;
942 int found_name_len;
943 int item_size;
944 int ret;
945 int match = 0;
946
947 path = btrfs_alloc_path();
2a29edc6 948 if (!path)
949 return -ENOMEM;
950
e02119d5
CM
951 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
952 if (ret != 0)
953 goto out;
954
e02119d5 955 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
956
957 if (key->type == BTRFS_INODE_EXTREF_KEY) {
958 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
959 name, namelen, NULL))
960 match = 1;
961
962 goto out;
963 }
964
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
973 name_ptr, namelen);
974 if (ret == 0) {
975 match = 1;
976 goto out;
977 }
978 }
979 ptr = (unsigned long)(ref + 1) + found_name_len;
980 }
981out:
982 btrfs_free_path(path);
983 return match;
984}
985
5a1d7843 986static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 987 struct btrfs_root *root,
e02119d5 988 struct btrfs_path *path,
5a1d7843
JS
989 struct btrfs_root *log_root,
990 struct inode *dir, struct inode *inode,
5a1d7843 991 struct extent_buffer *eb,
f186373f
MF
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
994 int *search_done)
e02119d5 995{
34f3e4f2 996 int ret;
f186373f
MF
997 char *victim_name;
998 int victim_name_len;
999 struct extent_buffer *leaf;
5a1d7843 1000 struct btrfs_dir_item *di;
f186373f
MF
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
c622ae60 1003
f186373f
MF
1004again:
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1010 if (ret == 0) {
e02119d5
CM
1011 struct btrfs_inode_ref *victim_ref;
1012 unsigned long ptr;
1013 unsigned long ptr_end;
f186373f
MF
1014
1015 leaf = path->nodes[0];
e02119d5
CM
1016
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1019 */
f186373f 1020 if (search_key.objectid == search_key.offset)
5a1d7843 1021 return 1;
e02119d5
CM
1022
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1026 */
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1029 while (ptr < ptr_end) {
e02119d5
CM
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 victim_ref);
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1034 if (!victim_name)
1035 return -ENOMEM;
e02119d5
CM
1036
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1039 victim_name_len);
1040
f186373f
MF
1041 if (!backref_in_log(log_root, &search_key,
1042 parent_objectid,
1043 victim_name,
e02119d5 1044 victim_name_len)) {
8b558c5f 1045 inc_nlink(inode);
b3b4aa74 1046 btrfs_release_path(path);
12fcfd22 1047
e02119d5
CM
1048 ret = btrfs_unlink_inode(trans, root, dir,
1049 inode, victim_name,
1050 victim_name_len);
f186373f 1051 kfree(victim_name);
3650860b
JB
1052 if (ret)
1053 return ret;
ada9af21
FDBM
1054 ret = btrfs_run_delayed_items(trans, root);
1055 if (ret)
1056 return ret;
f186373f
MF
1057 *search_done = 1;
1058 goto again;
e02119d5
CM
1059 }
1060 kfree(victim_name);
f186373f 1061
e02119d5
CM
1062 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1063 }
e02119d5 1064
c622ae60 1065 /*
1066 * NOTE: we have searched root tree and checked the
bb7ab3b9 1067 * corresponding ref, it does not need to check again.
c622ae60 1068 */
5a1d7843 1069 *search_done = 1;
e02119d5 1070 }
b3b4aa74 1071 btrfs_release_path(path);
e02119d5 1072
f186373f
MF
1073 /* Same search but for extended refs */
1074 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1075 inode_objectid, parent_objectid, 0,
1076 0);
1077 if (!IS_ERR_OR_NULL(extref)) {
1078 u32 item_size;
1079 u32 cur_offset = 0;
1080 unsigned long base;
1081 struct inode *victim_parent;
1082
1083 leaf = path->nodes[0];
1084
1085 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1086 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087
1088 while (cur_offset < item_size) {
dd9ef135 1089 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1090
1091 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1092
1093 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1094 goto next;
1095
1096 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1097 if (!victim_name)
1098 return -ENOMEM;
f186373f
MF
1099 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1100 victim_name_len);
1101
1102 search_key.objectid = inode_objectid;
1103 search_key.type = BTRFS_INODE_EXTREF_KEY;
1104 search_key.offset = btrfs_extref_hash(parent_objectid,
1105 victim_name,
1106 victim_name_len);
1107 ret = 0;
1108 if (!backref_in_log(log_root, &search_key,
1109 parent_objectid, victim_name,
1110 victim_name_len)) {
1111 ret = -ENOENT;
1112 victim_parent = read_one_inode(root,
1113 parent_objectid);
1114 if (victim_parent) {
8b558c5f 1115 inc_nlink(inode);
f186373f
MF
1116 btrfs_release_path(path);
1117
1118 ret = btrfs_unlink_inode(trans, root,
1119 victim_parent,
1120 inode,
1121 victim_name,
1122 victim_name_len);
ada9af21
FDBM
1123 if (!ret)
1124 ret = btrfs_run_delayed_items(
1125 trans, root);
f186373f 1126 }
f186373f
MF
1127 iput(victim_parent);
1128 kfree(victim_name);
3650860b
JB
1129 if (ret)
1130 return ret;
f186373f
MF
1131 *search_done = 1;
1132 goto again;
1133 }
1134 kfree(victim_name);
3650860b
JB
1135 if (ret)
1136 return ret;
f186373f
MF
1137next:
1138 cur_offset += victim_name_len + sizeof(*extref);
1139 }
1140 *search_done = 1;
1141 }
1142 btrfs_release_path(path);
1143
34f3e4f2 1144 /* look for a conflicting sequence number */
1145 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1146 ref_index, name, namelen, 0);
34f3e4f2 1147 if (di && !IS_ERR(di)) {
1148 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1149 if (ret)
1150 return ret;
34f3e4f2 1151 }
1152 btrfs_release_path(path);
1153
1154 /* look for a conflicing name */
1155 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1156 name, namelen, 0);
1157 if (di && !IS_ERR(di)) {
1158 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1159 if (ret)
1160 return ret;
34f3e4f2 1161 }
1162 btrfs_release_path(path);
1163
5a1d7843
JS
1164 return 0;
1165}
e02119d5 1166
f186373f
MF
1167static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1168 u32 *namelen, char **name, u64 *index,
1169 u64 *parent_objectid)
1170{
1171 struct btrfs_inode_extref *extref;
1172
1173 extref = (struct btrfs_inode_extref *)ref_ptr;
1174
1175 *namelen = btrfs_inode_extref_name_len(eb, extref);
1176 *name = kmalloc(*namelen, GFP_NOFS);
1177 if (*name == NULL)
1178 return -ENOMEM;
1179
1180 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1181 *namelen);
1182
1183 *index = btrfs_inode_extref_index(eb, extref);
1184 if (parent_objectid)
1185 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1186
1187 return 0;
1188}
1189
1190static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1191 u32 *namelen, char **name, u64 *index)
1192{
1193 struct btrfs_inode_ref *ref;
1194
1195 ref = (struct btrfs_inode_ref *)ref_ptr;
1196
1197 *namelen = btrfs_inode_ref_name_len(eb, ref);
1198 *name = kmalloc(*namelen, GFP_NOFS);
1199 if (*name == NULL)
1200 return -ENOMEM;
1201
1202 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1203
1204 *index = btrfs_inode_ref_index(eb, ref);
1205
1206 return 0;
1207}
1208
5a1d7843
JS
1209/*
1210 * replay one inode back reference item found in the log tree.
1211 * eb, slot and key refer to the buffer and key found in the log tree.
1212 * root is the destination we are replaying into, and path is for temp
1213 * use by this function. (it should be released on return).
1214 */
1215static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_root *log,
1218 struct btrfs_path *path,
1219 struct extent_buffer *eb, int slot,
1220 struct btrfs_key *key)
1221{
03b2f08b
GB
1222 struct inode *dir = NULL;
1223 struct inode *inode = NULL;
5a1d7843
JS
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
03b2f08b 1226 char *name = NULL;
5a1d7843
JS
1227 int namelen;
1228 int ret;
1229 int search_done = 0;
f186373f
MF
1230 int log_ref_ver = 0;
1231 u64 parent_objectid;
1232 u64 inode_objectid;
f46dbe3d 1233 u64 ref_index = 0;
f186373f
MF
1234 int ref_struct_size;
1235
1236 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1237 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1238
1239 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1240 struct btrfs_inode_extref *r;
1241
1242 ref_struct_size = sizeof(struct btrfs_inode_extref);
1243 log_ref_ver = 1;
1244 r = (struct btrfs_inode_extref *)ref_ptr;
1245 parent_objectid = btrfs_inode_extref_parent(eb, r);
1246 } else {
1247 ref_struct_size = sizeof(struct btrfs_inode_ref);
1248 parent_objectid = key->offset;
1249 }
1250 inode_objectid = key->objectid;
e02119d5 1251
5a1d7843
JS
1252 /*
1253 * it is possible that we didn't log all the parent directories
1254 * for a given inode. If we don't find the dir, just don't
1255 * copy the back ref in. The link count fixup code will take
1256 * care of the rest
1257 */
f186373f 1258 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1259 if (!dir) {
1260 ret = -ENOENT;
1261 goto out;
1262 }
5a1d7843 1263
f186373f 1264 inode = read_one_inode(root, inode_objectid);
5a1d7843 1265 if (!inode) {
03b2f08b
GB
1266 ret = -EIO;
1267 goto out;
5a1d7843
JS
1268 }
1269
5a1d7843 1270 while (ref_ptr < ref_end) {
f186373f
MF
1271 if (log_ref_ver) {
1272 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1273 &ref_index, &parent_objectid);
1274 /*
1275 * parent object can change from one array
1276 * item to another.
1277 */
1278 if (!dir)
1279 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1280 if (!dir) {
1281 ret = -ENOENT;
1282 goto out;
1283 }
f186373f
MF
1284 } else {
1285 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1286 &ref_index);
1287 }
1288 if (ret)
03b2f08b 1289 goto out;
5a1d7843
JS
1290
1291 /* if we already have a perfect match, we're done */
1292 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1293 ref_index, name, namelen)) {
5a1d7843
JS
1294 /*
1295 * look for a conflicting back reference in the
1296 * metadata. if we find one we have to unlink that name
1297 * of the file before we add our new link. Later on, we
1298 * overwrite any existing back reference, and we don't
1299 * want to create dangling pointers in the directory.
1300 */
1301
1302 if (!search_done) {
1303 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1304 dir, inode, eb,
1305 inode_objectid,
1306 parent_objectid,
1307 ref_index, name, namelen,
5a1d7843 1308 &search_done);
03b2f08b
GB
1309 if (ret) {
1310 if (ret == 1)
1311 ret = 0;
3650860b
JB
1312 goto out;
1313 }
5a1d7843
JS
1314 }
1315
1316 /* insert our name */
1317 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1318 0, ref_index);
3650860b
JB
1319 if (ret)
1320 goto out;
5a1d7843
JS
1321
1322 btrfs_update_inode(trans, root, inode);
1323 }
1324
f186373f 1325 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1326 kfree(name);
03b2f08b 1327 name = NULL;
f186373f
MF
1328 if (log_ref_ver) {
1329 iput(dir);
1330 dir = NULL;
1331 }
5a1d7843 1332 }
e02119d5
CM
1333
1334 /* finally write the back reference in the inode */
1335 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1336out:
b3b4aa74 1337 btrfs_release_path(path);
03b2f08b 1338 kfree(name);
e02119d5
CM
1339 iput(dir);
1340 iput(inode);
3650860b 1341 return ret;
e02119d5
CM
1342}
1343
c71bf099 1344static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1345 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1346{
1347 int ret;
381cf658 1348
9c4f61f0
DS
1349 ret = btrfs_insert_orphan_item(trans, root, ino);
1350 if (ret == -EEXIST)
1351 ret = 0;
381cf658 1352
c71bf099
YZ
1353 return ret;
1354}
1355
f186373f
MF
1356static int count_inode_extrefs(struct btrfs_root *root,
1357 struct inode *inode, struct btrfs_path *path)
1358{
1359 int ret = 0;
1360 int name_len;
1361 unsigned int nlink = 0;
1362 u32 item_size;
1363 u32 cur_offset = 0;
1364 u64 inode_objectid = btrfs_ino(inode);
1365 u64 offset = 0;
1366 unsigned long ptr;
1367 struct btrfs_inode_extref *extref;
1368 struct extent_buffer *leaf;
1369
1370 while (1) {
1371 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1372 &extref, &offset);
1373 if (ret)
1374 break;
c71bf099 1375
f186373f
MF
1376 leaf = path->nodes[0];
1377 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1378 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1379 cur_offset = 0;
f186373f
MF
1380
1381 while (cur_offset < item_size) {
1382 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1383 name_len = btrfs_inode_extref_name_len(leaf, extref);
1384
1385 nlink++;
1386
1387 cur_offset += name_len + sizeof(*extref);
1388 }
1389
1390 offset++;
1391 btrfs_release_path(path);
1392 }
1393 btrfs_release_path(path);
1394
2c2c452b 1395 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1396 return ret;
1397 return nlink;
1398}
1399
1400static int count_inode_refs(struct btrfs_root *root,
1401 struct inode *inode, struct btrfs_path *path)
e02119d5 1402{
e02119d5
CM
1403 int ret;
1404 struct btrfs_key key;
f186373f 1405 unsigned int nlink = 0;
e02119d5
CM
1406 unsigned long ptr;
1407 unsigned long ptr_end;
1408 int name_len;
33345d01 1409 u64 ino = btrfs_ino(inode);
e02119d5 1410
33345d01 1411 key.objectid = ino;
e02119d5
CM
1412 key.type = BTRFS_INODE_REF_KEY;
1413 key.offset = (u64)-1;
1414
d397712b 1415 while (1) {
e02119d5
CM
1416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1417 if (ret < 0)
1418 break;
1419 if (ret > 0) {
1420 if (path->slots[0] == 0)
1421 break;
1422 path->slots[0]--;
1423 }
e93ae26f 1424process_slot:
e02119d5
CM
1425 btrfs_item_key_to_cpu(path->nodes[0], &key,
1426 path->slots[0]);
33345d01 1427 if (key.objectid != ino ||
e02119d5
CM
1428 key.type != BTRFS_INODE_REF_KEY)
1429 break;
1430 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1431 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1432 path->slots[0]);
d397712b 1433 while (ptr < ptr_end) {
e02119d5
CM
1434 struct btrfs_inode_ref *ref;
1435
1436 ref = (struct btrfs_inode_ref *)ptr;
1437 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1438 ref);
1439 ptr = (unsigned long)(ref + 1) + name_len;
1440 nlink++;
1441 }
1442
1443 if (key.offset == 0)
1444 break;
e93ae26f
FDBM
1445 if (path->slots[0] > 0) {
1446 path->slots[0]--;
1447 goto process_slot;
1448 }
e02119d5 1449 key.offset--;
b3b4aa74 1450 btrfs_release_path(path);
e02119d5 1451 }
b3b4aa74 1452 btrfs_release_path(path);
f186373f
MF
1453
1454 return nlink;
1455}
1456
1457/*
1458 * There are a few corners where the link count of the file can't
1459 * be properly maintained during replay. So, instead of adding
1460 * lots of complexity to the log code, we just scan the backrefs
1461 * for any file that has been through replay.
1462 *
1463 * The scan will update the link count on the inode to reflect the
1464 * number of back refs found. If it goes down to zero, the iput
1465 * will free the inode.
1466 */
1467static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1468 struct btrfs_root *root,
1469 struct inode *inode)
1470{
1471 struct btrfs_path *path;
1472 int ret;
1473 u64 nlink = 0;
1474 u64 ino = btrfs_ino(inode);
1475
1476 path = btrfs_alloc_path();
1477 if (!path)
1478 return -ENOMEM;
1479
1480 ret = count_inode_refs(root, inode, path);
1481 if (ret < 0)
1482 goto out;
1483
1484 nlink = ret;
1485
1486 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1487 if (ret < 0)
1488 goto out;
1489
1490 nlink += ret;
1491
1492 ret = 0;
1493
e02119d5 1494 if (nlink != inode->i_nlink) {
bfe86848 1495 set_nlink(inode, nlink);
e02119d5
CM
1496 btrfs_update_inode(trans, root, inode);
1497 }
8d5bf1cb 1498 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1499
c71bf099
YZ
1500 if (inode->i_nlink == 0) {
1501 if (S_ISDIR(inode->i_mode)) {
1502 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1503 ino, 1);
3650860b
JB
1504 if (ret)
1505 goto out;
c71bf099 1506 }
33345d01 1507 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1508 }
12fcfd22 1509
f186373f
MF
1510out:
1511 btrfs_free_path(path);
1512 return ret;
e02119d5
CM
1513}
1514
1515static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1516 struct btrfs_root *root,
1517 struct btrfs_path *path)
1518{
1519 int ret;
1520 struct btrfs_key key;
1521 struct inode *inode;
1522
1523 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1524 key.type = BTRFS_ORPHAN_ITEM_KEY;
1525 key.offset = (u64)-1;
d397712b 1526 while (1) {
e02119d5
CM
1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 if (ret < 0)
1529 break;
1530
1531 if (ret == 1) {
1532 if (path->slots[0] == 0)
1533 break;
1534 path->slots[0]--;
1535 }
1536
1537 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1538 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1539 key.type != BTRFS_ORPHAN_ITEM_KEY)
1540 break;
1541
1542 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1543 if (ret)
1544 goto out;
e02119d5 1545
b3b4aa74 1546 btrfs_release_path(path);
e02119d5 1547 inode = read_one_inode(root, key.offset);
c00e9493
TI
1548 if (!inode)
1549 return -EIO;
e02119d5
CM
1550
1551 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1552 iput(inode);
3650860b
JB
1553 if (ret)
1554 goto out;
e02119d5 1555
12fcfd22
CM
1556 /*
1557 * fixup on a directory may create new entries,
1558 * make sure we always look for the highset possible
1559 * offset
1560 */
1561 key.offset = (u64)-1;
e02119d5 1562 }
65a246c5
TI
1563 ret = 0;
1564out:
b3b4aa74 1565 btrfs_release_path(path);
65a246c5 1566 return ret;
e02119d5
CM
1567}
1568
1569
1570/*
1571 * record a given inode in the fixup dir so we can check its link
1572 * count when replay is done. The link count is incremented here
1573 * so the inode won't go away until we check it
1574 */
1575static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1576 struct btrfs_root *root,
1577 struct btrfs_path *path,
1578 u64 objectid)
1579{
1580 struct btrfs_key key;
1581 int ret = 0;
1582 struct inode *inode;
1583
1584 inode = read_one_inode(root, objectid);
c00e9493
TI
1585 if (!inode)
1586 return -EIO;
e02119d5
CM
1587
1588 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1589 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1590 key.offset = objectid;
1591
1592 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1593
b3b4aa74 1594 btrfs_release_path(path);
e02119d5 1595 if (ret == 0) {
9bf7a489
JB
1596 if (!inode->i_nlink)
1597 set_nlink(inode, 1);
1598 else
8b558c5f 1599 inc_nlink(inode);
b9959295 1600 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1601 } else if (ret == -EEXIST) {
1602 ret = 0;
1603 } else {
3650860b 1604 BUG(); /* Logic Error */
e02119d5
CM
1605 }
1606 iput(inode);
1607
1608 return ret;
1609}
1610
1611/*
1612 * when replaying the log for a directory, we only insert names
1613 * for inodes that actually exist. This means an fsync on a directory
1614 * does not implicitly fsync all the new files in it
1615 */
1616static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1617 struct btrfs_root *root,
e02119d5 1618 u64 dirid, u64 index,
60d53eb3 1619 char *name, int name_len,
e02119d5
CM
1620 struct btrfs_key *location)
1621{
1622 struct inode *inode;
1623 struct inode *dir;
1624 int ret;
1625
1626 inode = read_one_inode(root, location->objectid);
1627 if (!inode)
1628 return -ENOENT;
1629
1630 dir = read_one_inode(root, dirid);
1631 if (!dir) {
1632 iput(inode);
1633 return -EIO;
1634 }
d555438b 1635
e02119d5
CM
1636 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1637
1638 /* FIXME, put inode into FIXUP list */
1639
1640 iput(inode);
1641 iput(dir);
1642 return ret;
1643}
1644
df8d116f
FM
1645/*
1646 * Return true if an inode reference exists in the log for the given name,
1647 * inode and parent inode.
1648 */
1649static bool name_in_log_ref(struct btrfs_root *log_root,
1650 const char *name, const int name_len,
1651 const u64 dirid, const u64 ino)
1652{
1653 struct btrfs_key search_key;
1654
1655 search_key.objectid = ino;
1656 search_key.type = BTRFS_INODE_REF_KEY;
1657 search_key.offset = dirid;
1658 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1659 return true;
1660
1661 search_key.type = BTRFS_INODE_EXTREF_KEY;
1662 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1663 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1664 return true;
1665
1666 return false;
1667}
1668
e02119d5
CM
1669/*
1670 * take a single entry in a log directory item and replay it into
1671 * the subvolume.
1672 *
1673 * if a conflicting item exists in the subdirectory already,
1674 * the inode it points to is unlinked and put into the link count
1675 * fix up tree.
1676 *
1677 * If a name from the log points to a file or directory that does
1678 * not exist in the FS, it is skipped. fsyncs on directories
1679 * do not force down inodes inside that directory, just changes to the
1680 * names or unlinks in a directory.
bb53eda9
FM
1681 *
1682 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1683 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1684 */
1685static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1686 struct btrfs_root *root,
1687 struct btrfs_path *path,
1688 struct extent_buffer *eb,
1689 struct btrfs_dir_item *di,
1690 struct btrfs_key *key)
1691{
1692 char *name;
1693 int name_len;
1694 struct btrfs_dir_item *dst_di;
1695 struct btrfs_key found_key;
1696 struct btrfs_key log_key;
1697 struct inode *dir;
e02119d5 1698 u8 log_type;
4bef0848 1699 int exists;
3650860b 1700 int ret = 0;
d555438b 1701 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1702 bool name_added = false;
e02119d5
CM
1703
1704 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1705 if (!dir)
1706 return -EIO;
e02119d5
CM
1707
1708 name_len = btrfs_dir_name_len(eb, di);
1709 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1710 if (!name) {
1711 ret = -ENOMEM;
1712 goto out;
1713 }
2a29edc6 1714
e02119d5
CM
1715 log_type = btrfs_dir_type(eb, di);
1716 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1717 name_len);
1718
1719 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1720 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1721 if (exists == 0)
1722 exists = 1;
1723 else
1724 exists = 0;
b3b4aa74 1725 btrfs_release_path(path);
4bef0848 1726
e02119d5
CM
1727 if (key->type == BTRFS_DIR_ITEM_KEY) {
1728 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1729 name, name_len, 1);
d397712b 1730 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1731 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1732 key->objectid,
1733 key->offset, name,
1734 name_len, 1);
1735 } else {
3650860b
JB
1736 /* Corruption */
1737 ret = -EINVAL;
1738 goto out;
e02119d5 1739 }
c704005d 1740 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1741 /* we need a sequence number to insert, so we only
1742 * do inserts for the BTRFS_DIR_INDEX_KEY types
1743 */
1744 if (key->type != BTRFS_DIR_INDEX_KEY)
1745 goto out;
1746 goto insert;
1747 }
1748
1749 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1750 /* the existing item matches the logged item */
1751 if (found_key.objectid == log_key.objectid &&
1752 found_key.type == log_key.type &&
1753 found_key.offset == log_key.offset &&
1754 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1755 update_size = false;
e02119d5
CM
1756 goto out;
1757 }
1758
1759 /*
1760 * don't drop the conflicting directory entry if the inode
1761 * for the new entry doesn't exist
1762 */
4bef0848 1763 if (!exists)
e02119d5
CM
1764 goto out;
1765
e02119d5 1766 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1767 if (ret)
1768 goto out;
e02119d5
CM
1769
1770 if (key->type == BTRFS_DIR_INDEX_KEY)
1771 goto insert;
1772out:
b3b4aa74 1773 btrfs_release_path(path);
d555438b
JB
1774 if (!ret && update_size) {
1775 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1776 ret = btrfs_update_inode(trans, root, dir);
1777 }
e02119d5
CM
1778 kfree(name);
1779 iput(dir);
bb53eda9
FM
1780 if (!ret && name_added)
1781 ret = 1;
3650860b 1782 return ret;
e02119d5
CM
1783
1784insert:
df8d116f
FM
1785 if (name_in_log_ref(root->log_root, name, name_len,
1786 key->objectid, log_key.objectid)) {
1787 /* The dentry will be added later. */
1788 ret = 0;
1789 update_size = false;
1790 goto out;
1791 }
b3b4aa74 1792 btrfs_release_path(path);
60d53eb3
Z
1793 ret = insert_one_name(trans, root, key->objectid, key->offset,
1794 name, name_len, &log_key);
df8d116f 1795 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1796 goto out;
bb53eda9
FM
1797 if (!ret)
1798 name_added = true;
d555438b 1799 update_size = false;
3650860b 1800 ret = 0;
e02119d5
CM
1801 goto out;
1802}
1803
1804/*
1805 * find all the names in a directory item and reconcile them into
1806 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1807 * one name in a directory item, but the same code gets used for
1808 * both directory index types
1809 */
1810static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_path *path,
1813 struct extent_buffer *eb, int slot,
1814 struct btrfs_key *key)
1815{
bb53eda9 1816 int ret = 0;
e02119d5
CM
1817 u32 item_size = btrfs_item_size_nr(eb, slot);
1818 struct btrfs_dir_item *di;
1819 int name_len;
1820 unsigned long ptr;
1821 unsigned long ptr_end;
bb53eda9 1822 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1823
1824 ptr = btrfs_item_ptr_offset(eb, slot);
1825 ptr_end = ptr + item_size;
d397712b 1826 while (ptr < ptr_end) {
e02119d5 1827 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1828 if (verify_dir_item(root, eb, di))
1829 return -EIO;
e02119d5
CM
1830 name_len = btrfs_dir_name_len(eb, di);
1831 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1832 if (ret < 0)
1833 break;
e02119d5
CM
1834 ptr = (unsigned long)(di + 1);
1835 ptr += name_len;
bb53eda9
FM
1836
1837 /*
1838 * If this entry refers to a non-directory (directories can not
1839 * have a link count > 1) and it was added in the transaction
1840 * that was not committed, make sure we fixup the link count of
1841 * the inode it the entry points to. Otherwise something like
1842 * the following would result in a directory pointing to an
1843 * inode with a wrong link that does not account for this dir
1844 * entry:
1845 *
1846 * mkdir testdir
1847 * touch testdir/foo
1848 * touch testdir/bar
1849 * sync
1850 *
1851 * ln testdir/bar testdir/bar_link
1852 * ln testdir/foo testdir/foo_link
1853 * xfs_io -c "fsync" testdir/bar
1854 *
1855 * <power failure>
1856 *
1857 * mount fs, log replay happens
1858 *
1859 * File foo would remain with a link count of 1 when it has two
1860 * entries pointing to it in the directory testdir. This would
1861 * make it impossible to ever delete the parent directory has
1862 * it would result in stale dentries that can never be deleted.
1863 */
1864 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1865 struct btrfs_key di_key;
1866
1867 if (!fixup_path) {
1868 fixup_path = btrfs_alloc_path();
1869 if (!fixup_path) {
1870 ret = -ENOMEM;
1871 break;
1872 }
1873 }
1874
1875 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1876 ret = link_to_fixup_dir(trans, root, fixup_path,
1877 di_key.objectid);
1878 if (ret)
1879 break;
1880 }
1881 ret = 0;
e02119d5 1882 }
bb53eda9
FM
1883 btrfs_free_path(fixup_path);
1884 return ret;
e02119d5
CM
1885}
1886
1887/*
1888 * directory replay has two parts. There are the standard directory
1889 * items in the log copied from the subvolume, and range items
1890 * created in the log while the subvolume was logged.
1891 *
1892 * The range items tell us which parts of the key space the log
1893 * is authoritative for. During replay, if a key in the subvolume
1894 * directory is in a logged range item, but not actually in the log
1895 * that means it was deleted from the directory before the fsync
1896 * and should be removed.
1897 */
1898static noinline int find_dir_range(struct btrfs_root *root,
1899 struct btrfs_path *path,
1900 u64 dirid, int key_type,
1901 u64 *start_ret, u64 *end_ret)
1902{
1903 struct btrfs_key key;
1904 u64 found_end;
1905 struct btrfs_dir_log_item *item;
1906 int ret;
1907 int nritems;
1908
1909 if (*start_ret == (u64)-1)
1910 return 1;
1911
1912 key.objectid = dirid;
1913 key.type = key_type;
1914 key.offset = *start_ret;
1915
1916 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1917 if (ret < 0)
1918 goto out;
1919 if (ret > 0) {
1920 if (path->slots[0] == 0)
1921 goto out;
1922 path->slots[0]--;
1923 }
1924 if (ret != 0)
1925 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1926
1927 if (key.type != key_type || key.objectid != dirid) {
1928 ret = 1;
1929 goto next;
1930 }
1931 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1932 struct btrfs_dir_log_item);
1933 found_end = btrfs_dir_log_end(path->nodes[0], item);
1934
1935 if (*start_ret >= key.offset && *start_ret <= found_end) {
1936 ret = 0;
1937 *start_ret = key.offset;
1938 *end_ret = found_end;
1939 goto out;
1940 }
1941 ret = 1;
1942next:
1943 /* check the next slot in the tree to see if it is a valid item */
1944 nritems = btrfs_header_nritems(path->nodes[0]);
1945 if (path->slots[0] >= nritems) {
1946 ret = btrfs_next_leaf(root, path);
1947 if (ret)
1948 goto out;
1949 } else {
1950 path->slots[0]++;
1951 }
1952
1953 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1954
1955 if (key.type != key_type || key.objectid != dirid) {
1956 ret = 1;
1957 goto out;
1958 }
1959 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1960 struct btrfs_dir_log_item);
1961 found_end = btrfs_dir_log_end(path->nodes[0], item);
1962 *start_ret = key.offset;
1963 *end_ret = found_end;
1964 ret = 0;
1965out:
b3b4aa74 1966 btrfs_release_path(path);
e02119d5
CM
1967 return ret;
1968}
1969
1970/*
1971 * this looks for a given directory item in the log. If the directory
1972 * item is not in the log, the item is removed and the inode it points
1973 * to is unlinked
1974 */
1975static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1976 struct btrfs_root *root,
1977 struct btrfs_root *log,
1978 struct btrfs_path *path,
1979 struct btrfs_path *log_path,
1980 struct inode *dir,
1981 struct btrfs_key *dir_key)
1982{
1983 int ret;
1984 struct extent_buffer *eb;
1985 int slot;
1986 u32 item_size;
1987 struct btrfs_dir_item *di;
1988 struct btrfs_dir_item *log_di;
1989 int name_len;
1990 unsigned long ptr;
1991 unsigned long ptr_end;
1992 char *name;
1993 struct inode *inode;
1994 struct btrfs_key location;
1995
1996again:
1997 eb = path->nodes[0];
1998 slot = path->slots[0];
1999 item_size = btrfs_item_size_nr(eb, slot);
2000 ptr = btrfs_item_ptr_offset(eb, slot);
2001 ptr_end = ptr + item_size;
d397712b 2002 while (ptr < ptr_end) {
e02119d5 2003 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
2004 if (verify_dir_item(root, eb, di)) {
2005 ret = -EIO;
2006 goto out;
2007 }
2008
e02119d5
CM
2009 name_len = btrfs_dir_name_len(eb, di);
2010 name = kmalloc(name_len, GFP_NOFS);
2011 if (!name) {
2012 ret = -ENOMEM;
2013 goto out;
2014 }
2015 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2016 name_len);
2017 log_di = NULL;
12fcfd22 2018 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2019 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2020 dir_key->objectid,
2021 name, name_len, 0);
12fcfd22 2022 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2023 log_di = btrfs_lookup_dir_index_item(trans, log,
2024 log_path,
2025 dir_key->objectid,
2026 dir_key->offset,
2027 name, name_len, 0);
2028 }
269d040f 2029 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2030 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2031 btrfs_release_path(path);
2032 btrfs_release_path(log_path);
e02119d5 2033 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2034 if (!inode) {
2035 kfree(name);
2036 return -EIO;
2037 }
e02119d5
CM
2038
2039 ret = link_to_fixup_dir(trans, root,
2040 path, location.objectid);
3650860b
JB
2041 if (ret) {
2042 kfree(name);
2043 iput(inode);
2044 goto out;
2045 }
2046
8b558c5f 2047 inc_nlink(inode);
e02119d5
CM
2048 ret = btrfs_unlink_inode(trans, root, dir, inode,
2049 name, name_len);
3650860b 2050 if (!ret)
ada9af21 2051 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
2052 kfree(name);
2053 iput(inode);
3650860b
JB
2054 if (ret)
2055 goto out;
e02119d5
CM
2056
2057 /* there might still be more names under this key
2058 * check and repeat if required
2059 */
2060 ret = btrfs_search_slot(NULL, root, dir_key, path,
2061 0, 0);
2062 if (ret == 0)
2063 goto again;
2064 ret = 0;
2065 goto out;
269d040f
FDBM
2066 } else if (IS_ERR(log_di)) {
2067 kfree(name);
2068 return PTR_ERR(log_di);
e02119d5 2069 }
b3b4aa74 2070 btrfs_release_path(log_path);
e02119d5
CM
2071 kfree(name);
2072
2073 ptr = (unsigned long)(di + 1);
2074 ptr += name_len;
2075 }
2076 ret = 0;
2077out:
b3b4aa74
DS
2078 btrfs_release_path(path);
2079 btrfs_release_path(log_path);
e02119d5
CM
2080 return ret;
2081}
2082
4f764e51
FM
2083static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2084 struct btrfs_root *root,
2085 struct btrfs_root *log,
2086 struct btrfs_path *path,
2087 const u64 ino)
2088{
2089 struct btrfs_key search_key;
2090 struct btrfs_path *log_path;
2091 int i;
2092 int nritems;
2093 int ret;
2094
2095 log_path = btrfs_alloc_path();
2096 if (!log_path)
2097 return -ENOMEM;
2098
2099 search_key.objectid = ino;
2100 search_key.type = BTRFS_XATTR_ITEM_KEY;
2101 search_key.offset = 0;
2102again:
2103 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2104 if (ret < 0)
2105 goto out;
2106process_leaf:
2107 nritems = btrfs_header_nritems(path->nodes[0]);
2108 for (i = path->slots[0]; i < nritems; i++) {
2109 struct btrfs_key key;
2110 struct btrfs_dir_item *di;
2111 struct btrfs_dir_item *log_di;
2112 u32 total_size;
2113 u32 cur;
2114
2115 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2116 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2117 ret = 0;
2118 goto out;
2119 }
2120
2121 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2122 total_size = btrfs_item_size_nr(path->nodes[0], i);
2123 cur = 0;
2124 while (cur < total_size) {
2125 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2126 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2127 u32 this_len = sizeof(*di) + name_len + data_len;
2128 char *name;
2129
2130 name = kmalloc(name_len, GFP_NOFS);
2131 if (!name) {
2132 ret = -ENOMEM;
2133 goto out;
2134 }
2135 read_extent_buffer(path->nodes[0], name,
2136 (unsigned long)(di + 1), name_len);
2137
2138 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2139 name, name_len, 0);
2140 btrfs_release_path(log_path);
2141 if (!log_di) {
2142 /* Doesn't exist in log tree, so delete it. */
2143 btrfs_release_path(path);
2144 di = btrfs_lookup_xattr(trans, root, path, ino,
2145 name, name_len, -1);
2146 kfree(name);
2147 if (IS_ERR(di)) {
2148 ret = PTR_ERR(di);
2149 goto out;
2150 }
2151 ASSERT(di);
2152 ret = btrfs_delete_one_dir_name(trans, root,
2153 path, di);
2154 if (ret)
2155 goto out;
2156 btrfs_release_path(path);
2157 search_key = key;
2158 goto again;
2159 }
2160 kfree(name);
2161 if (IS_ERR(log_di)) {
2162 ret = PTR_ERR(log_di);
2163 goto out;
2164 }
2165 cur += this_len;
2166 di = (struct btrfs_dir_item *)((char *)di + this_len);
2167 }
2168 }
2169 ret = btrfs_next_leaf(root, path);
2170 if (ret > 0)
2171 ret = 0;
2172 else if (ret == 0)
2173 goto process_leaf;
2174out:
2175 btrfs_free_path(log_path);
2176 btrfs_release_path(path);
2177 return ret;
2178}
2179
2180
e02119d5
CM
2181/*
2182 * deletion replay happens before we copy any new directory items
2183 * out of the log or out of backreferences from inodes. It
2184 * scans the log to find ranges of keys that log is authoritative for,
2185 * and then scans the directory to find items in those ranges that are
2186 * not present in the log.
2187 *
2188 * Anything we don't find in the log is unlinked and removed from the
2189 * directory.
2190 */
2191static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root,
2193 struct btrfs_root *log,
2194 struct btrfs_path *path,
12fcfd22 2195 u64 dirid, int del_all)
e02119d5
CM
2196{
2197 u64 range_start;
2198 u64 range_end;
2199 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2200 int ret = 0;
2201 struct btrfs_key dir_key;
2202 struct btrfs_key found_key;
2203 struct btrfs_path *log_path;
2204 struct inode *dir;
2205
2206 dir_key.objectid = dirid;
2207 dir_key.type = BTRFS_DIR_ITEM_KEY;
2208 log_path = btrfs_alloc_path();
2209 if (!log_path)
2210 return -ENOMEM;
2211
2212 dir = read_one_inode(root, dirid);
2213 /* it isn't an error if the inode isn't there, that can happen
2214 * because we replay the deletes before we copy in the inode item
2215 * from the log
2216 */
2217 if (!dir) {
2218 btrfs_free_path(log_path);
2219 return 0;
2220 }
2221again:
2222 range_start = 0;
2223 range_end = 0;
d397712b 2224 while (1) {
12fcfd22
CM
2225 if (del_all)
2226 range_end = (u64)-1;
2227 else {
2228 ret = find_dir_range(log, path, dirid, key_type,
2229 &range_start, &range_end);
2230 if (ret != 0)
2231 break;
2232 }
e02119d5
CM
2233
2234 dir_key.offset = range_start;
d397712b 2235 while (1) {
e02119d5
CM
2236 int nritems;
2237 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2238 0, 0);
2239 if (ret < 0)
2240 goto out;
2241
2242 nritems = btrfs_header_nritems(path->nodes[0]);
2243 if (path->slots[0] >= nritems) {
2244 ret = btrfs_next_leaf(root, path);
2245 if (ret)
2246 break;
2247 }
2248 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2249 path->slots[0]);
2250 if (found_key.objectid != dirid ||
2251 found_key.type != dir_key.type)
2252 goto next_type;
2253
2254 if (found_key.offset > range_end)
2255 break;
2256
2257 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2258 log_path, dir,
2259 &found_key);
3650860b
JB
2260 if (ret)
2261 goto out;
e02119d5
CM
2262 if (found_key.offset == (u64)-1)
2263 break;
2264 dir_key.offset = found_key.offset + 1;
2265 }
b3b4aa74 2266 btrfs_release_path(path);
e02119d5
CM
2267 if (range_end == (u64)-1)
2268 break;
2269 range_start = range_end + 1;
2270 }
2271
2272next_type:
2273 ret = 0;
2274 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2275 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2276 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2277 btrfs_release_path(path);
e02119d5
CM
2278 goto again;
2279 }
2280out:
b3b4aa74 2281 btrfs_release_path(path);
e02119d5
CM
2282 btrfs_free_path(log_path);
2283 iput(dir);
2284 return ret;
2285}
2286
2287/*
2288 * the process_func used to replay items from the log tree. This
2289 * gets called in two different stages. The first stage just looks
2290 * for inodes and makes sure they are all copied into the subvolume.
2291 *
2292 * The second stage copies all the other item types from the log into
2293 * the subvolume. The two stage approach is slower, but gets rid of
2294 * lots of complexity around inodes referencing other inodes that exist
2295 * only in the log (references come from either directory items or inode
2296 * back refs).
2297 */
2298static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2299 struct walk_control *wc, u64 gen)
2300{
2301 int nritems;
2302 struct btrfs_path *path;
2303 struct btrfs_root *root = wc->replay_dest;
2304 struct btrfs_key key;
e02119d5
CM
2305 int level;
2306 int i;
2307 int ret;
2308
018642a1
TI
2309 ret = btrfs_read_buffer(eb, gen);
2310 if (ret)
2311 return ret;
e02119d5
CM
2312
2313 level = btrfs_header_level(eb);
2314
2315 if (level != 0)
2316 return 0;
2317
2318 path = btrfs_alloc_path();
1e5063d0
MF
2319 if (!path)
2320 return -ENOMEM;
e02119d5
CM
2321
2322 nritems = btrfs_header_nritems(eb);
2323 for (i = 0; i < nritems; i++) {
2324 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2325
2326 /* inode keys are done during the first stage */
2327 if (key.type == BTRFS_INODE_ITEM_KEY &&
2328 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2329 struct btrfs_inode_item *inode_item;
2330 u32 mode;
2331
2332 inode_item = btrfs_item_ptr(eb, i,
2333 struct btrfs_inode_item);
4f764e51
FM
2334 ret = replay_xattr_deletes(wc->trans, root, log,
2335 path, key.objectid);
2336 if (ret)
2337 break;
e02119d5
CM
2338 mode = btrfs_inode_mode(eb, inode_item);
2339 if (S_ISDIR(mode)) {
2340 ret = replay_dir_deletes(wc->trans,
12fcfd22 2341 root, log, path, key.objectid, 0);
b50c6e25
JB
2342 if (ret)
2343 break;
e02119d5
CM
2344 }
2345 ret = overwrite_item(wc->trans, root, path,
2346 eb, i, &key);
b50c6e25
JB
2347 if (ret)
2348 break;
e02119d5 2349
c71bf099 2350 /* for regular files, make sure corresponding
01327610 2351 * orphan item exist. extents past the new EOF
c71bf099 2352 * will be truncated later by orphan cleanup.
e02119d5
CM
2353 */
2354 if (S_ISREG(mode)) {
c71bf099
YZ
2355 ret = insert_orphan_item(wc->trans, root,
2356 key.objectid);
b50c6e25
JB
2357 if (ret)
2358 break;
e02119d5 2359 }
c71bf099 2360
e02119d5
CM
2361 ret = link_to_fixup_dir(wc->trans, root,
2362 path, key.objectid);
b50c6e25
JB
2363 if (ret)
2364 break;
e02119d5 2365 }
dd8e7217
JB
2366
2367 if (key.type == BTRFS_DIR_INDEX_KEY &&
2368 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2369 ret = replay_one_dir_item(wc->trans, root, path,
2370 eb, i, &key);
2371 if (ret)
2372 break;
2373 }
2374
e02119d5
CM
2375 if (wc->stage < LOG_WALK_REPLAY_ALL)
2376 continue;
2377
2378 /* these keys are simply copied */
2379 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2380 ret = overwrite_item(wc->trans, root, path,
2381 eb, i, &key);
b50c6e25
JB
2382 if (ret)
2383 break;
2da1c669
LB
2384 } else if (key.type == BTRFS_INODE_REF_KEY ||
2385 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2386 ret = add_inode_ref(wc->trans, root, log, path,
2387 eb, i, &key);
b50c6e25
JB
2388 if (ret && ret != -ENOENT)
2389 break;
2390 ret = 0;
e02119d5
CM
2391 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2392 ret = replay_one_extent(wc->trans, root, path,
2393 eb, i, &key);
b50c6e25
JB
2394 if (ret)
2395 break;
dd8e7217 2396 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2397 ret = replay_one_dir_item(wc->trans, root, path,
2398 eb, i, &key);
b50c6e25
JB
2399 if (ret)
2400 break;
e02119d5
CM
2401 }
2402 }
2403 btrfs_free_path(path);
b50c6e25 2404 return ret;
e02119d5
CM
2405}
2406
d397712b 2407static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2408 struct btrfs_root *root,
2409 struct btrfs_path *path, int *level,
2410 struct walk_control *wc)
2411{
0b246afa 2412 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2413 u64 root_owner;
e02119d5
CM
2414 u64 bytenr;
2415 u64 ptr_gen;
2416 struct extent_buffer *next;
2417 struct extent_buffer *cur;
2418 struct extent_buffer *parent;
2419 u32 blocksize;
2420 int ret = 0;
2421
2422 WARN_ON(*level < 0);
2423 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2424
d397712b 2425 while (*level > 0) {
e02119d5
CM
2426 WARN_ON(*level < 0);
2427 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2428 cur = path->nodes[*level];
2429
fae7f21c 2430 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2431
2432 if (path->slots[*level] >=
2433 btrfs_header_nritems(cur))
2434 break;
2435
2436 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2437 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
0b246afa 2438 blocksize = fs_info->nodesize;
e02119d5
CM
2439
2440 parent = path->nodes[*level];
2441 root_owner = btrfs_header_owner(parent);
e02119d5 2442
a83fffb7 2443 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
2444 if (IS_ERR(next))
2445 return PTR_ERR(next);
e02119d5 2446
e02119d5 2447 if (*level == 1) {
1e5063d0 2448 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2449 if (ret) {
2450 free_extent_buffer(next);
1e5063d0 2451 return ret;
b50c6e25 2452 }
4a500fd1 2453
e02119d5
CM
2454 path->slots[*level]++;
2455 if (wc->free) {
018642a1
TI
2456 ret = btrfs_read_buffer(next, ptr_gen);
2457 if (ret) {
2458 free_extent_buffer(next);
2459 return ret;
2460 }
e02119d5 2461
681ae509
JB
2462 if (trans) {
2463 btrfs_tree_lock(next);
2464 btrfs_set_lock_blocking(next);
0b246afa 2465 clean_tree_block(trans, fs_info, next);
681ae509
JB
2466 btrfs_wait_tree_block_writeback(next);
2467 btrfs_tree_unlock(next);
2468 }
e02119d5 2469
e02119d5
CM
2470 WARN_ON(root_owner !=
2471 BTRFS_TREE_LOG_OBJECTID);
e688b725 2472 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2473 bytenr, blocksize);
3650860b
JB
2474 if (ret) {
2475 free_extent_buffer(next);
2476 return ret;
2477 }
e02119d5
CM
2478 }
2479 free_extent_buffer(next);
2480 continue;
2481 }
018642a1
TI
2482 ret = btrfs_read_buffer(next, ptr_gen);
2483 if (ret) {
2484 free_extent_buffer(next);
2485 return ret;
2486 }
e02119d5
CM
2487
2488 WARN_ON(*level <= 0);
2489 if (path->nodes[*level-1])
2490 free_extent_buffer(path->nodes[*level-1]);
2491 path->nodes[*level-1] = next;
2492 *level = btrfs_header_level(next);
2493 path->slots[*level] = 0;
2494 cond_resched();
2495 }
2496 WARN_ON(*level < 0);
2497 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2498
4a500fd1 2499 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2500
2501 cond_resched();
2502 return 0;
2503}
2504
d397712b 2505static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2506 struct btrfs_root *root,
2507 struct btrfs_path *path, int *level,
2508 struct walk_control *wc)
2509{
0b246afa 2510 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2511 u64 root_owner;
e02119d5
CM
2512 int i;
2513 int slot;
2514 int ret;
2515
d397712b 2516 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2517 slot = path->slots[i];
4a500fd1 2518 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2519 path->slots[i]++;
2520 *level = i;
2521 WARN_ON(*level == 0);
2522 return 0;
2523 } else {
31840ae1
ZY
2524 struct extent_buffer *parent;
2525 if (path->nodes[*level] == root->node)
2526 parent = path->nodes[*level];
2527 else
2528 parent = path->nodes[*level + 1];
2529
2530 root_owner = btrfs_header_owner(parent);
1e5063d0 2531 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2532 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2533 if (ret)
2534 return ret;
2535
e02119d5
CM
2536 if (wc->free) {
2537 struct extent_buffer *next;
2538
2539 next = path->nodes[*level];
2540
681ae509
JB
2541 if (trans) {
2542 btrfs_tree_lock(next);
2543 btrfs_set_lock_blocking(next);
0b246afa 2544 clean_tree_block(trans, fs_info, next);
681ae509
JB
2545 btrfs_wait_tree_block_writeback(next);
2546 btrfs_tree_unlock(next);
2547 }
e02119d5 2548
e02119d5 2549 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2550 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2551 path->nodes[*level]->start,
d00aff00 2552 path->nodes[*level]->len);
3650860b
JB
2553 if (ret)
2554 return ret;
e02119d5
CM
2555 }
2556 free_extent_buffer(path->nodes[*level]);
2557 path->nodes[*level] = NULL;
2558 *level = i + 1;
2559 }
2560 }
2561 return 1;
2562}
2563
2564/*
2565 * drop the reference count on the tree rooted at 'snap'. This traverses
2566 * the tree freeing any blocks that have a ref count of zero after being
2567 * decremented.
2568 */
2569static int walk_log_tree(struct btrfs_trans_handle *trans,
2570 struct btrfs_root *log, struct walk_control *wc)
2571{
2572 int ret = 0;
2573 int wret;
2574 int level;
2575 struct btrfs_path *path;
e02119d5
CM
2576 int orig_level;
2577
2578 path = btrfs_alloc_path();
db5b493a
TI
2579 if (!path)
2580 return -ENOMEM;
e02119d5
CM
2581
2582 level = btrfs_header_level(log->node);
2583 orig_level = level;
2584 path->nodes[level] = log->node;
2585 extent_buffer_get(log->node);
2586 path->slots[level] = 0;
2587
d397712b 2588 while (1) {
e02119d5
CM
2589 wret = walk_down_log_tree(trans, log, path, &level, wc);
2590 if (wret > 0)
2591 break;
79787eaa 2592 if (wret < 0) {
e02119d5 2593 ret = wret;
79787eaa
JM
2594 goto out;
2595 }
e02119d5
CM
2596
2597 wret = walk_up_log_tree(trans, log, path, &level, wc);
2598 if (wret > 0)
2599 break;
79787eaa 2600 if (wret < 0) {
e02119d5 2601 ret = wret;
79787eaa
JM
2602 goto out;
2603 }
e02119d5
CM
2604 }
2605
2606 /* was the root node processed? if not, catch it here */
2607 if (path->nodes[orig_level]) {
79787eaa 2608 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2609 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2610 if (ret)
2611 goto out;
e02119d5
CM
2612 if (wc->free) {
2613 struct extent_buffer *next;
2614
2615 next = path->nodes[orig_level];
2616
681ae509
JB
2617 if (trans) {
2618 btrfs_tree_lock(next);
2619 btrfs_set_lock_blocking(next);
01d58472 2620 clean_tree_block(trans, log->fs_info, next);
681ae509
JB
2621 btrfs_wait_tree_block_writeback(next);
2622 btrfs_tree_unlock(next);
2623 }
e02119d5 2624
e02119d5
CM
2625 WARN_ON(log->root_key.objectid !=
2626 BTRFS_TREE_LOG_OBJECTID);
e688b725 2627 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2628 next->len);
3650860b
JB
2629 if (ret)
2630 goto out;
e02119d5
CM
2631 }
2632 }
2633
79787eaa 2634out:
e02119d5 2635 btrfs_free_path(path);
e02119d5
CM
2636 return ret;
2637}
2638
7237f183
YZ
2639/*
2640 * helper function to update the item for a given subvolumes log root
2641 * in the tree of log roots
2642 */
2643static int update_log_root(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *log)
2645{
0b246afa 2646 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2647 int ret;
2648
2649 if (log->log_transid == 1) {
2650 /* insert root item on the first sync */
0b246afa 2651 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2652 &log->root_key, &log->root_item);
2653 } else {
0b246afa 2654 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2655 &log->root_key, &log->root_item);
2656 }
2657 return ret;
2658}
2659
60d53eb3 2660static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2661{
2662 DEFINE_WAIT(wait);
7237f183 2663 int index = transid % 2;
e02119d5 2664
7237f183
YZ
2665 /*
2666 * we only allow two pending log transactions at a time,
2667 * so we know that if ours is more than 2 older than the
2668 * current transaction, we're done
2669 */
e02119d5 2670 do {
7237f183
YZ
2671 prepare_to_wait(&root->log_commit_wait[index],
2672 &wait, TASK_UNINTERRUPTIBLE);
2673 mutex_unlock(&root->log_mutex);
12fcfd22 2674
d1433deb 2675 if (root->log_transid_committed < transid &&
7237f183
YZ
2676 atomic_read(&root->log_commit[index]))
2677 schedule();
12fcfd22 2678
7237f183
YZ
2679 finish_wait(&root->log_commit_wait[index], &wait);
2680 mutex_lock(&root->log_mutex);
d1433deb 2681 } while (root->log_transid_committed < transid &&
7237f183 2682 atomic_read(&root->log_commit[index]));
7237f183
YZ
2683}
2684
60d53eb3 2685static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2686{
2687 DEFINE_WAIT(wait);
8b050d35
MX
2688
2689 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2690 prepare_to_wait(&root->log_writer_wait,
2691 &wait, TASK_UNINTERRUPTIBLE);
2692 mutex_unlock(&root->log_mutex);
8b050d35 2693 if (atomic_read(&root->log_writers))
e02119d5 2694 schedule();
7237f183 2695 finish_wait(&root->log_writer_wait, &wait);
575849ec 2696 mutex_lock(&root->log_mutex);
7237f183 2697 }
e02119d5
CM
2698}
2699
8b050d35
MX
2700static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2701 struct btrfs_log_ctx *ctx)
2702{
2703 if (!ctx)
2704 return;
2705
2706 mutex_lock(&root->log_mutex);
2707 list_del_init(&ctx->list);
2708 mutex_unlock(&root->log_mutex);
2709}
2710
2711/*
2712 * Invoked in log mutex context, or be sure there is no other task which
2713 * can access the list.
2714 */
2715static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2716 int index, int error)
2717{
2718 struct btrfs_log_ctx *ctx;
570dd450 2719 struct btrfs_log_ctx *safe;
8b050d35 2720
570dd450
CM
2721 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2722 list_del_init(&ctx->list);
8b050d35 2723 ctx->log_ret = error;
570dd450 2724 }
8b050d35
MX
2725
2726 INIT_LIST_HEAD(&root->log_ctxs[index]);
2727}
2728
e02119d5
CM
2729/*
2730 * btrfs_sync_log does sends a given tree log down to the disk and
2731 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2732 * you know that any inodes previously logged are safely on disk only
2733 * if it returns 0.
2734 *
2735 * Any other return value means you need to call btrfs_commit_transaction.
2736 * Some of the edge cases for fsyncing directories that have had unlinks
2737 * or renames done in the past mean that sometimes the only safe
2738 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2739 * that has happened.
e02119d5
CM
2740 */
2741int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2742 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2743{
7237f183
YZ
2744 int index1;
2745 int index2;
8cef4e16 2746 int mark;
e02119d5 2747 int ret;
0b246afa 2748 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2749 struct btrfs_root *log = root->log_root;
0b246afa 2750 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2751 int log_transid = 0;
8b050d35 2752 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2753 struct blk_plug plug;
e02119d5 2754
7237f183 2755 mutex_lock(&root->log_mutex);
d1433deb
MX
2756 log_transid = ctx->log_transid;
2757 if (root->log_transid_committed >= log_transid) {
2758 mutex_unlock(&root->log_mutex);
2759 return ctx->log_ret;
2760 }
2761
2762 index1 = log_transid % 2;
7237f183 2763 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2764 wait_log_commit(root, log_transid);
7237f183 2765 mutex_unlock(&root->log_mutex);
8b050d35 2766 return ctx->log_ret;
e02119d5 2767 }
d1433deb 2768 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2769 atomic_set(&root->log_commit[index1], 1);
2770
2771 /* wait for previous tree log sync to complete */
2772 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2773 wait_log_commit(root, log_transid - 1);
48cab2e0 2774
86df7eb9 2775 while (1) {
2ecb7923 2776 int batch = atomic_read(&root->log_batch);
cd354ad6 2777 /* when we're on an ssd, just kick the log commit out */
0b246afa 2778 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2779 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2780 mutex_unlock(&root->log_mutex);
2781 schedule_timeout_uninterruptible(1);
2782 mutex_lock(&root->log_mutex);
2783 }
60d53eb3 2784 wait_for_writer(root);
2ecb7923 2785 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2786 break;
2787 }
e02119d5 2788
12fcfd22 2789 /* bail out if we need to do a full commit */
0b246afa 2790 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2791 ret = -EAGAIN;
2ab28f32 2792 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2793 mutex_unlock(&root->log_mutex);
2794 goto out;
2795 }
2796
8cef4e16
YZ
2797 if (log_transid % 2 == 0)
2798 mark = EXTENT_DIRTY;
2799 else
2800 mark = EXTENT_NEW;
2801
690587d1
CM
2802 /* we start IO on all the marked extents here, but we don't actually
2803 * wait for them until later.
2804 */
c6adc9cc 2805 blk_start_plug(&plug);
8cef4e16 2806 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2807 if (ret) {
c6adc9cc 2808 blk_finish_plug(&plug);
66642832 2809 btrfs_abort_transaction(trans, ret);
2ab28f32 2810 btrfs_free_logged_extents(log, log_transid);
0b246afa 2811 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2812 mutex_unlock(&root->log_mutex);
2813 goto out;
2814 }
7237f183 2815
5d4f98a2 2816 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2817
7237f183
YZ
2818 root->log_transid++;
2819 log->log_transid = root->log_transid;
ff782e0a 2820 root->log_start_pid = 0;
7237f183 2821 /*
8cef4e16
YZ
2822 * IO has been started, blocks of the log tree have WRITTEN flag set
2823 * in their headers. new modifications of the log will be written to
2824 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2825 */
2826 mutex_unlock(&root->log_mutex);
2827
28a23593 2828 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2829
7237f183 2830 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2831 atomic_inc(&log_root_tree->log_batch);
7237f183 2832 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2833
2834 index2 = log_root_tree->log_transid % 2;
2835 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2836 root_log_ctx.log_transid = log_root_tree->log_transid;
2837
7237f183
YZ
2838 mutex_unlock(&log_root_tree->log_mutex);
2839
2840 ret = update_log_root(trans, log);
7237f183
YZ
2841
2842 mutex_lock(&log_root_tree->log_mutex);
2843 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2844 /*
2845 * Implicit memory barrier after atomic_dec_and_test
2846 */
7237f183
YZ
2847 if (waitqueue_active(&log_root_tree->log_writer_wait))
2848 wake_up(&log_root_tree->log_writer_wait);
2849 }
2850
4a500fd1 2851 if (ret) {
d1433deb
MX
2852 if (!list_empty(&root_log_ctx.list))
2853 list_del_init(&root_log_ctx.list);
2854
c6adc9cc 2855 blk_finish_plug(&plug);
0b246afa 2856 btrfs_set_log_full_commit(fs_info, trans);
995946dd 2857
79787eaa 2858 if (ret != -ENOSPC) {
66642832 2859 btrfs_abort_transaction(trans, ret);
79787eaa
JM
2860 mutex_unlock(&log_root_tree->log_mutex);
2861 goto out;
2862 }
4a500fd1 2863 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2864 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2865 mutex_unlock(&log_root_tree->log_mutex);
2866 ret = -EAGAIN;
2867 goto out;
2868 }
2869
d1433deb 2870 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2871 blk_finish_plug(&plug);
cbd60aa7 2872 list_del_init(&root_log_ctx.list);
d1433deb
MX
2873 mutex_unlock(&log_root_tree->log_mutex);
2874 ret = root_log_ctx.log_ret;
2875 goto out;
2876 }
8b050d35 2877
d1433deb 2878 index2 = root_log_ctx.log_transid % 2;
7237f183 2879 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2880 blk_finish_plug(&plug);
5ab5e44a
FM
2881 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2882 mark);
50d9aa99 2883 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 2884 wait_log_commit(log_root_tree,
d1433deb 2885 root_log_ctx.log_transid);
7237f183 2886 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2887 if (!ret)
2888 ret = root_log_ctx.log_ret;
7237f183
YZ
2889 goto out;
2890 }
d1433deb 2891 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2892 atomic_set(&log_root_tree->log_commit[index2], 1);
2893
12fcfd22 2894 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 2895 wait_log_commit(log_root_tree,
d1433deb 2896 root_log_ctx.log_transid - 1);
12fcfd22
CM
2897 }
2898
60d53eb3 2899 wait_for_writer(log_root_tree);
7237f183 2900
12fcfd22
CM
2901 /*
2902 * now that we've moved on to the tree of log tree roots,
2903 * check the full commit flag again
2904 */
0b246afa 2905 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 2906 blk_finish_plug(&plug);
8cef4e16 2907 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2908 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2909 mutex_unlock(&log_root_tree->log_mutex);
2910 ret = -EAGAIN;
2911 goto out_wake_log_root;
2912 }
7237f183 2913
c6adc9cc
MX
2914 ret = btrfs_write_marked_extents(log_root_tree,
2915 &log_root_tree->dirty_log_pages,
2916 EXTENT_DIRTY | EXTENT_NEW);
2917 blk_finish_plug(&plug);
79787eaa 2918 if (ret) {
0b246afa 2919 btrfs_set_log_full_commit(fs_info, trans);
66642832 2920 btrfs_abort_transaction(trans, ret);
2ab28f32 2921 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2922 mutex_unlock(&log_root_tree->log_mutex);
2923 goto out_wake_log_root;
2924 }
5ab5e44a
FM
2925 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2926 if (!ret)
2927 ret = btrfs_wait_marked_extents(log_root_tree,
2928 &log_root_tree->dirty_log_pages,
2929 EXTENT_NEW | EXTENT_DIRTY);
2930 if (ret) {
0b246afa 2931 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
2932 btrfs_free_logged_extents(log, log_transid);
2933 mutex_unlock(&log_root_tree->log_mutex);
2934 goto out_wake_log_root;
2935 }
50d9aa99 2936 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2937
0b246afa
JM
2938 btrfs_set_super_log_root(fs_info->super_for_commit,
2939 log_root_tree->node->start);
2940 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2941 btrfs_header_level(log_root_tree->node));
e02119d5 2942
7237f183 2943 log_root_tree->log_transid++;
7237f183
YZ
2944 mutex_unlock(&log_root_tree->log_mutex);
2945
2946 /*
2947 * nobody else is going to jump in and write the the ctree
2948 * super here because the log_commit atomic below is protecting
2949 * us. We must be called with a transaction handle pinning
2950 * the running transaction open, so a full commit can't hop
2951 * in and cause problems either.
2952 */
0b246afa 2953 ret = write_ctree_super(trans, fs_info->tree_root, 1);
5af3e8cc 2954 if (ret) {
0b246afa 2955 btrfs_set_log_full_commit(fs_info, trans);
66642832 2956 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
2957 goto out_wake_log_root;
2958 }
7237f183 2959
257c62e1
CM
2960 mutex_lock(&root->log_mutex);
2961 if (root->last_log_commit < log_transid)
2962 root->last_log_commit = log_transid;
2963 mutex_unlock(&root->log_mutex);
2964
12fcfd22 2965out_wake_log_root:
570dd450 2966 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
2967 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2968
d1433deb 2969 log_root_tree->log_transid_committed++;
7237f183 2970 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2971 mutex_unlock(&log_root_tree->log_mutex);
2972
33a9eca7
DS
2973 /*
2974 * The barrier before waitqueue_active is implied by mutex_unlock
2975 */
7237f183
YZ
2976 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2977 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2978out:
d1433deb 2979 mutex_lock(&root->log_mutex);
570dd450 2980 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 2981 root->log_transid_committed++;
7237f183 2982 atomic_set(&root->log_commit[index1], 0);
d1433deb 2983 mutex_unlock(&root->log_mutex);
8b050d35 2984
33a9eca7
DS
2985 /*
2986 * The barrier before waitqueue_active is implied by mutex_unlock
2987 */
7237f183
YZ
2988 if (waitqueue_active(&root->log_commit_wait[index1]))
2989 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2990 return ret;
e02119d5
CM
2991}
2992
4a500fd1
YZ
2993static void free_log_tree(struct btrfs_trans_handle *trans,
2994 struct btrfs_root *log)
e02119d5
CM
2995{
2996 int ret;
d0c803c4
CM
2997 u64 start;
2998 u64 end;
e02119d5
CM
2999 struct walk_control wc = {
3000 .free = 1,
3001 .process_func = process_one_buffer
3002 };
3003
681ae509
JB
3004 ret = walk_log_tree(trans, log, &wc);
3005 /* I don't think this can happen but just in case */
3006 if (ret)
66642832 3007 btrfs_abort_transaction(trans, ret);
e02119d5 3008
d397712b 3009 while (1) {
d0c803c4 3010 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
3011 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3012 NULL);
d0c803c4
CM
3013 if (ret)
3014 break;
3015
8cef4e16 3016 clear_extent_bits(&log->dirty_log_pages, start, end,
91166212 3017 EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
3018 }
3019
2ab28f32
JB
3020 /*
3021 * We may have short-circuited the log tree with the full commit logic
3022 * and left ordered extents on our list, so clear these out to keep us
3023 * from leaking inodes and memory.
3024 */
3025 btrfs_free_logged_extents(log, 0);
3026 btrfs_free_logged_extents(log, 1);
3027
7237f183
YZ
3028 free_extent_buffer(log->node);
3029 kfree(log);
4a500fd1
YZ
3030}
3031
3032/*
3033 * free all the extents used by the tree log. This should be called
3034 * at commit time of the full transaction
3035 */
3036int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3037{
3038 if (root->log_root) {
3039 free_log_tree(trans, root->log_root);
3040 root->log_root = NULL;
3041 }
3042 return 0;
3043}
3044
3045int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3046 struct btrfs_fs_info *fs_info)
3047{
3048 if (fs_info->log_root_tree) {
3049 free_log_tree(trans, fs_info->log_root_tree);
3050 fs_info->log_root_tree = NULL;
3051 }
e02119d5
CM
3052 return 0;
3053}
3054
e02119d5
CM
3055/*
3056 * If both a file and directory are logged, and unlinks or renames are
3057 * mixed in, we have a few interesting corners:
3058 *
3059 * create file X in dir Y
3060 * link file X to X.link in dir Y
3061 * fsync file X
3062 * unlink file X but leave X.link
3063 * fsync dir Y
3064 *
3065 * After a crash we would expect only X.link to exist. But file X
3066 * didn't get fsync'd again so the log has back refs for X and X.link.
3067 *
3068 * We solve this by removing directory entries and inode backrefs from the
3069 * log when a file that was logged in the current transaction is
3070 * unlinked. Any later fsync will include the updated log entries, and
3071 * we'll be able to reconstruct the proper directory items from backrefs.
3072 *
3073 * This optimizations allows us to avoid relogging the entire inode
3074 * or the entire directory.
3075 */
3076int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root,
3078 const char *name, int name_len,
3079 struct inode *dir, u64 index)
3080{
3081 struct btrfs_root *log;
3082 struct btrfs_dir_item *di;
3083 struct btrfs_path *path;
3084 int ret;
4a500fd1 3085 int err = 0;
e02119d5 3086 int bytes_del = 0;
33345d01 3087 u64 dir_ino = btrfs_ino(dir);
e02119d5 3088
3a5f1d45
CM
3089 if (BTRFS_I(dir)->logged_trans < trans->transid)
3090 return 0;
3091
e02119d5
CM
3092 ret = join_running_log_trans(root);
3093 if (ret)
3094 return 0;
3095
3096 mutex_lock(&BTRFS_I(dir)->log_mutex);
3097
3098 log = root->log_root;
3099 path = btrfs_alloc_path();
a62f44a5
TI
3100 if (!path) {
3101 err = -ENOMEM;
3102 goto out_unlock;
3103 }
2a29edc6 3104
33345d01 3105 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3106 name, name_len, -1);
4a500fd1
YZ
3107 if (IS_ERR(di)) {
3108 err = PTR_ERR(di);
3109 goto fail;
3110 }
3111 if (di) {
e02119d5
CM
3112 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3113 bytes_del += name_len;
3650860b
JB
3114 if (ret) {
3115 err = ret;
3116 goto fail;
3117 }
e02119d5 3118 }
b3b4aa74 3119 btrfs_release_path(path);
33345d01 3120 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3121 index, name, name_len, -1);
4a500fd1
YZ
3122 if (IS_ERR(di)) {
3123 err = PTR_ERR(di);
3124 goto fail;
3125 }
3126 if (di) {
e02119d5
CM
3127 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3128 bytes_del += name_len;
3650860b
JB
3129 if (ret) {
3130 err = ret;
3131 goto fail;
3132 }
e02119d5
CM
3133 }
3134
3135 /* update the directory size in the log to reflect the names
3136 * we have removed
3137 */
3138 if (bytes_del) {
3139 struct btrfs_key key;
3140
33345d01 3141 key.objectid = dir_ino;
e02119d5
CM
3142 key.offset = 0;
3143 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3144 btrfs_release_path(path);
e02119d5
CM
3145
3146 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3147 if (ret < 0) {
3148 err = ret;
3149 goto fail;
3150 }
e02119d5
CM
3151 if (ret == 0) {
3152 struct btrfs_inode_item *item;
3153 u64 i_size;
3154
3155 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3156 struct btrfs_inode_item);
3157 i_size = btrfs_inode_size(path->nodes[0], item);
3158 if (i_size > bytes_del)
3159 i_size -= bytes_del;
3160 else
3161 i_size = 0;
3162 btrfs_set_inode_size(path->nodes[0], item, i_size);
3163 btrfs_mark_buffer_dirty(path->nodes[0]);
3164 } else
3165 ret = 0;
b3b4aa74 3166 btrfs_release_path(path);
e02119d5 3167 }
4a500fd1 3168fail:
e02119d5 3169 btrfs_free_path(path);
a62f44a5 3170out_unlock:
e02119d5 3171 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 3172 if (ret == -ENOSPC) {
995946dd 3173 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3174 ret = 0;
79787eaa 3175 } else if (ret < 0)
66642832 3176 btrfs_abort_transaction(trans, ret);
79787eaa 3177
12fcfd22 3178 btrfs_end_log_trans(root);
e02119d5 3179
411fc6bc 3180 return err;
e02119d5
CM
3181}
3182
3183/* see comments for btrfs_del_dir_entries_in_log */
3184int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3185 struct btrfs_root *root,
3186 const char *name, int name_len,
3187 struct inode *inode, u64 dirid)
3188{
0b246afa 3189 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3190 struct btrfs_root *log;
3191 u64 index;
3192 int ret;
3193
3a5f1d45
CM
3194 if (BTRFS_I(inode)->logged_trans < trans->transid)
3195 return 0;
3196
e02119d5
CM
3197 ret = join_running_log_trans(root);
3198 if (ret)
3199 return 0;
3200 log = root->log_root;
3201 mutex_lock(&BTRFS_I(inode)->log_mutex);
3202
33345d01 3203 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
3204 dirid, &index);
3205 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 3206 if (ret == -ENOSPC) {
0b246afa 3207 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3208 ret = 0;
79787eaa 3209 } else if (ret < 0 && ret != -ENOENT)
66642832 3210 btrfs_abort_transaction(trans, ret);
12fcfd22 3211 btrfs_end_log_trans(root);
e02119d5 3212
e02119d5
CM
3213 return ret;
3214}
3215
3216/*
3217 * creates a range item in the log for 'dirid'. first_offset and
3218 * last_offset tell us which parts of the key space the log should
3219 * be considered authoritative for.
3220 */
3221static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3222 struct btrfs_root *log,
3223 struct btrfs_path *path,
3224 int key_type, u64 dirid,
3225 u64 first_offset, u64 last_offset)
3226{
3227 int ret;
3228 struct btrfs_key key;
3229 struct btrfs_dir_log_item *item;
3230
3231 key.objectid = dirid;
3232 key.offset = first_offset;
3233 if (key_type == BTRFS_DIR_ITEM_KEY)
3234 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3235 else
3236 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3237 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3238 if (ret)
3239 return ret;
e02119d5
CM
3240
3241 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3242 struct btrfs_dir_log_item);
3243 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3244 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3245 btrfs_release_path(path);
e02119d5
CM
3246 return 0;
3247}
3248
3249/*
3250 * log all the items included in the current transaction for a given
3251 * directory. This also creates the range items in the log tree required
3252 * to replay anything deleted before the fsync
3253 */
3254static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3255 struct btrfs_root *root, struct inode *inode,
3256 struct btrfs_path *path,
3257 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3258 struct btrfs_log_ctx *ctx,
e02119d5
CM
3259 u64 min_offset, u64 *last_offset_ret)
3260{
3261 struct btrfs_key min_key;
e02119d5
CM
3262 struct btrfs_root *log = root->log_root;
3263 struct extent_buffer *src;
4a500fd1 3264 int err = 0;
e02119d5
CM
3265 int ret;
3266 int i;
3267 int nritems;
3268 u64 first_offset = min_offset;
3269 u64 last_offset = (u64)-1;
33345d01 3270 u64 ino = btrfs_ino(inode);
e02119d5
CM
3271
3272 log = root->log_root;
e02119d5 3273
33345d01 3274 min_key.objectid = ino;
e02119d5
CM
3275 min_key.type = key_type;
3276 min_key.offset = min_offset;
3277
6174d3cb 3278 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3279
3280 /*
3281 * we didn't find anything from this transaction, see if there
3282 * is anything at all
3283 */
33345d01
LZ
3284 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3285 min_key.objectid = ino;
e02119d5
CM
3286 min_key.type = key_type;
3287 min_key.offset = (u64)-1;
b3b4aa74 3288 btrfs_release_path(path);
e02119d5
CM
3289 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3290 if (ret < 0) {
b3b4aa74 3291 btrfs_release_path(path);
e02119d5
CM
3292 return ret;
3293 }
33345d01 3294 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3295
3296 /* if ret == 0 there are items for this type,
3297 * create a range to tell us the last key of this type.
3298 * otherwise, there are no items in this directory after
3299 * *min_offset, and we create a range to indicate that.
3300 */
3301 if (ret == 0) {
3302 struct btrfs_key tmp;
3303 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3304 path->slots[0]);
d397712b 3305 if (key_type == tmp.type)
e02119d5 3306 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3307 }
3308 goto done;
3309 }
3310
3311 /* go backward to find any previous key */
33345d01 3312 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3313 if (ret == 0) {
3314 struct btrfs_key tmp;
3315 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3316 if (key_type == tmp.type) {
3317 first_offset = tmp.offset;
3318 ret = overwrite_item(trans, log, dst_path,
3319 path->nodes[0], path->slots[0],
3320 &tmp);
4a500fd1
YZ
3321 if (ret) {
3322 err = ret;
3323 goto done;
3324 }
e02119d5
CM
3325 }
3326 }
b3b4aa74 3327 btrfs_release_path(path);
e02119d5
CM
3328
3329 /* find the first key from this transaction again */
3330 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3331 if (WARN_ON(ret != 0))
e02119d5 3332 goto done;
e02119d5
CM
3333
3334 /*
3335 * we have a block from this transaction, log every item in it
3336 * from our directory
3337 */
d397712b 3338 while (1) {
e02119d5
CM
3339 struct btrfs_key tmp;
3340 src = path->nodes[0];
3341 nritems = btrfs_header_nritems(src);
3342 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3343 struct btrfs_dir_item *di;
3344
e02119d5
CM
3345 btrfs_item_key_to_cpu(src, &min_key, i);
3346
33345d01 3347 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3348 goto done;
3349 ret = overwrite_item(trans, log, dst_path, src, i,
3350 &min_key);
4a500fd1
YZ
3351 if (ret) {
3352 err = ret;
3353 goto done;
3354 }
2f2ff0ee
FM
3355
3356 /*
3357 * We must make sure that when we log a directory entry,
3358 * the corresponding inode, after log replay, has a
3359 * matching link count. For example:
3360 *
3361 * touch foo
3362 * mkdir mydir
3363 * sync
3364 * ln foo mydir/bar
3365 * xfs_io -c "fsync" mydir
3366 * <crash>
3367 * <mount fs and log replay>
3368 *
3369 * Would result in a fsync log that when replayed, our
3370 * file inode would have a link count of 1, but we get
3371 * two directory entries pointing to the same inode.
3372 * After removing one of the names, it would not be
3373 * possible to remove the other name, which resulted
3374 * always in stale file handle errors, and would not
3375 * be possible to rmdir the parent directory, since
3376 * its i_size could never decrement to the value
3377 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3378 */
3379 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3380 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3381 if (ctx &&
3382 (btrfs_dir_transid(src, di) == trans->transid ||
3383 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3384 tmp.type != BTRFS_ROOT_ITEM_KEY)
3385 ctx->log_new_dentries = true;
e02119d5
CM
3386 }
3387 path->slots[0] = nritems;
3388
3389 /*
3390 * look ahead to the next item and see if it is also
3391 * from this directory and from this transaction
3392 */
3393 ret = btrfs_next_leaf(root, path);
3394 if (ret == 1) {
3395 last_offset = (u64)-1;
3396 goto done;
3397 }
3398 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3399 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3400 last_offset = (u64)-1;
3401 goto done;
3402 }
3403 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3404 ret = overwrite_item(trans, log, dst_path,
3405 path->nodes[0], path->slots[0],
3406 &tmp);
4a500fd1
YZ
3407 if (ret)
3408 err = ret;
3409 else
3410 last_offset = tmp.offset;
e02119d5
CM
3411 goto done;
3412 }
3413 }
3414done:
b3b4aa74
DS
3415 btrfs_release_path(path);
3416 btrfs_release_path(dst_path);
e02119d5 3417
4a500fd1
YZ
3418 if (err == 0) {
3419 *last_offset_ret = last_offset;
3420 /*
3421 * insert the log range keys to indicate where the log
3422 * is valid
3423 */
3424 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3425 ino, first_offset, last_offset);
4a500fd1
YZ
3426 if (ret)
3427 err = ret;
3428 }
3429 return err;
e02119d5
CM
3430}
3431
3432/*
3433 * logging directories is very similar to logging inodes, We find all the items
3434 * from the current transaction and write them to the log.
3435 *
3436 * The recovery code scans the directory in the subvolume, and if it finds a
3437 * key in the range logged that is not present in the log tree, then it means
3438 * that dir entry was unlinked during the transaction.
3439 *
3440 * In order for that scan to work, we must include one key smaller than
3441 * the smallest logged by this transaction and one key larger than the largest
3442 * key logged by this transaction.
3443 */
3444static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3445 struct btrfs_root *root, struct inode *inode,
3446 struct btrfs_path *path,
2f2ff0ee
FM
3447 struct btrfs_path *dst_path,
3448 struct btrfs_log_ctx *ctx)
e02119d5
CM
3449{
3450 u64 min_key;
3451 u64 max_key;
3452 int ret;
3453 int key_type = BTRFS_DIR_ITEM_KEY;
3454
3455again:
3456 min_key = 0;
3457 max_key = 0;
d397712b 3458 while (1) {
e02119d5 3459 ret = log_dir_items(trans, root, inode, path,
2f2ff0ee 3460 dst_path, key_type, ctx, min_key,
e02119d5 3461 &max_key);
4a500fd1
YZ
3462 if (ret)
3463 return ret;
e02119d5
CM
3464 if (max_key == (u64)-1)
3465 break;
3466 min_key = max_key + 1;
3467 }
3468
3469 if (key_type == BTRFS_DIR_ITEM_KEY) {
3470 key_type = BTRFS_DIR_INDEX_KEY;
3471 goto again;
3472 }
3473 return 0;
3474}
3475
3476/*
3477 * a helper function to drop items from the log before we relog an
3478 * inode. max_key_type indicates the highest item type to remove.
3479 * This cannot be run for file data extents because it does not
3480 * free the extents they point to.
3481 */
3482static int drop_objectid_items(struct btrfs_trans_handle *trans,
3483 struct btrfs_root *log,
3484 struct btrfs_path *path,
3485 u64 objectid, int max_key_type)
3486{
3487 int ret;
3488 struct btrfs_key key;
3489 struct btrfs_key found_key;
18ec90d6 3490 int start_slot;
e02119d5
CM
3491
3492 key.objectid = objectid;
3493 key.type = max_key_type;
3494 key.offset = (u64)-1;
3495
d397712b 3496 while (1) {
e02119d5 3497 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3498 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3499 if (ret < 0)
e02119d5
CM
3500 break;
3501
3502 if (path->slots[0] == 0)
3503 break;
3504
3505 path->slots[0]--;
3506 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3507 path->slots[0]);
3508
3509 if (found_key.objectid != objectid)
3510 break;
3511
18ec90d6
JB
3512 found_key.offset = 0;
3513 found_key.type = 0;
3514 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3515 &start_slot);
3516
3517 ret = btrfs_del_items(trans, log, path, start_slot,
3518 path->slots[0] - start_slot + 1);
3519 /*
3520 * If start slot isn't 0 then we don't need to re-search, we've
3521 * found the last guy with the objectid in this tree.
3522 */
3523 if (ret || start_slot != 0)
65a246c5 3524 break;
b3b4aa74 3525 btrfs_release_path(path);
e02119d5 3526 }
b3b4aa74 3527 btrfs_release_path(path);
5bdbeb21
JB
3528 if (ret > 0)
3529 ret = 0;
4a500fd1 3530 return ret;
e02119d5
CM
3531}
3532
94edf4ae
JB
3533static void fill_inode_item(struct btrfs_trans_handle *trans,
3534 struct extent_buffer *leaf,
3535 struct btrfs_inode_item *item,
1a4bcf47
FM
3536 struct inode *inode, int log_inode_only,
3537 u64 logged_isize)
94edf4ae 3538{
0b1c6cca
JB
3539 struct btrfs_map_token token;
3540
3541 btrfs_init_map_token(&token);
94edf4ae
JB
3542
3543 if (log_inode_only) {
3544 /* set the generation to zero so the recover code
3545 * can tell the difference between an logging
3546 * just to say 'this inode exists' and a logging
3547 * to say 'update this inode with these values'
3548 */
0b1c6cca 3549 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3550 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3551 } else {
0b1c6cca
JB
3552 btrfs_set_token_inode_generation(leaf, item,
3553 BTRFS_I(inode)->generation,
3554 &token);
3555 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3556 }
3557
3558 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3559 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3560 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3561 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3562
a937b979 3563 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3564 inode->i_atime.tv_sec, &token);
a937b979 3565 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3566 inode->i_atime.tv_nsec, &token);
3567
a937b979 3568 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3569 inode->i_mtime.tv_sec, &token);
a937b979 3570 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3571 inode->i_mtime.tv_nsec, &token);
3572
a937b979 3573 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3574 inode->i_ctime.tv_sec, &token);
a937b979 3575 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3576 inode->i_ctime.tv_nsec, &token);
3577
3578 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3579 &token);
3580
3581 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3582 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3583 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3584 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3585 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3586}
3587
a95249b3
JB
3588static int log_inode_item(struct btrfs_trans_handle *trans,
3589 struct btrfs_root *log, struct btrfs_path *path,
3590 struct inode *inode)
3591{
3592 struct btrfs_inode_item *inode_item;
a95249b3
JB
3593 int ret;
3594
efd0c405
FDBM
3595 ret = btrfs_insert_empty_item(trans, log, path,
3596 &BTRFS_I(inode)->location,
a95249b3
JB
3597 sizeof(*inode_item));
3598 if (ret && ret != -EEXIST)
3599 return ret;
3600 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3601 struct btrfs_inode_item);
1a4bcf47 3602 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
a95249b3
JB
3603 btrfs_release_path(path);
3604 return 0;
3605}
3606
31ff1cd2 3607static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3608 struct inode *inode,
31ff1cd2 3609 struct btrfs_path *dst_path,
16e7549f 3610 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3611 int start_slot, int nr, int inode_only,
3612 u64 logged_isize)
31ff1cd2 3613{
0b246afa 3614 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
31ff1cd2
CM
3615 unsigned long src_offset;
3616 unsigned long dst_offset;
d2794405 3617 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3618 struct btrfs_file_extent_item *extent;
3619 struct btrfs_inode_item *inode_item;
16e7549f
JB
3620 struct extent_buffer *src = src_path->nodes[0];
3621 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3622 int ret;
3623 struct btrfs_key *ins_keys;
3624 u32 *ins_sizes;
3625 char *ins_data;
3626 int i;
d20f7043 3627 struct list_head ordered_sums;
d2794405 3628 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3629 bool has_extents = false;
74121f7c 3630 bool need_find_last_extent = true;
16e7549f 3631 bool done = false;
d20f7043
CM
3632
3633 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3634
3635 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3636 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3637 if (!ins_data)
3638 return -ENOMEM;
3639
16e7549f
JB
3640 first_key.objectid = (u64)-1;
3641
31ff1cd2
CM
3642 ins_sizes = (u32 *)ins_data;
3643 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3644
3645 for (i = 0; i < nr; i++) {
3646 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3647 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3648 }
3649 ret = btrfs_insert_empty_items(trans, log, dst_path,
3650 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3651 if (ret) {
3652 kfree(ins_data);
3653 return ret;
3654 }
31ff1cd2 3655
5d4f98a2 3656 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3657 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3658 dst_path->slots[0]);
3659
3660 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3661
16e7549f
JB
3662 if ((i == (nr - 1)))
3663 last_key = ins_keys[i];
3664
94edf4ae 3665 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3666 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3667 dst_path->slots[0],
3668 struct btrfs_inode_item);
94edf4ae 3669 fill_inode_item(trans, dst_path->nodes[0], inode_item,
1a4bcf47
FM
3670 inode, inode_only == LOG_INODE_EXISTS,
3671 logged_isize);
94edf4ae
JB
3672 } else {
3673 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3674 src_offset, ins_sizes[i]);
31ff1cd2 3675 }
94edf4ae 3676
16e7549f
JB
3677 /*
3678 * We set need_find_last_extent here in case we know we were
3679 * processing other items and then walk into the first extent in
3680 * the inode. If we don't hit an extent then nothing changes,
3681 * we'll do the last search the next time around.
3682 */
3683 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3684 has_extents = true;
74121f7c 3685 if (first_key.objectid == (u64)-1)
16e7549f
JB
3686 first_key = ins_keys[i];
3687 } else {
3688 need_find_last_extent = false;
3689 }
3690
31ff1cd2
CM
3691 /* take a reference on file data extents so that truncates
3692 * or deletes of this inode don't have to relog the inode
3693 * again
3694 */
962a298f 3695 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3696 !skip_csum) {
31ff1cd2
CM
3697 int found_type;
3698 extent = btrfs_item_ptr(src, start_slot + i,
3699 struct btrfs_file_extent_item);
3700
8e531cdf 3701 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3702 continue;
3703
31ff1cd2 3704 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3705 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3706 u64 ds, dl, cs, cl;
3707 ds = btrfs_file_extent_disk_bytenr(src,
3708 extent);
3709 /* ds == 0 is a hole */
3710 if (ds == 0)
3711 continue;
3712
3713 dl = btrfs_file_extent_disk_num_bytes(src,
3714 extent);
3715 cs = btrfs_file_extent_offset(src, extent);
3716 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3717 extent);
580afd76
CM
3718 if (btrfs_file_extent_compression(src,
3719 extent)) {
3720 cs = 0;
3721 cl = dl;
3722 }
5d4f98a2
YZ
3723
3724 ret = btrfs_lookup_csums_range(
0b246afa 3725 fs_info->csum_root,
5d4f98a2 3726 ds + cs, ds + cs + cl - 1,
a2de733c 3727 &ordered_sums, 0);
3650860b
JB
3728 if (ret) {
3729 btrfs_release_path(dst_path);
3730 kfree(ins_data);
3731 return ret;
3732 }
31ff1cd2
CM
3733 }
3734 }
31ff1cd2
CM
3735 }
3736
3737 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3738 btrfs_release_path(dst_path);
31ff1cd2 3739 kfree(ins_data);
d20f7043
CM
3740
3741 /*
3742 * we have to do this after the loop above to avoid changing the
3743 * log tree while trying to change the log tree.
3744 */
4a500fd1 3745 ret = 0;
d397712b 3746 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3747 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3748 struct btrfs_ordered_sum,
3749 list);
4a500fd1
YZ
3750 if (!ret)
3751 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3752 list_del(&sums->list);
3753 kfree(sums);
3754 }
16e7549f
JB
3755
3756 if (!has_extents)
3757 return ret;
3758
74121f7c
FM
3759 if (need_find_last_extent && *last_extent == first_key.offset) {
3760 /*
3761 * We don't have any leafs between our current one and the one
3762 * we processed before that can have file extent items for our
3763 * inode (and have a generation number smaller than our current
3764 * transaction id).
3765 */
3766 need_find_last_extent = false;
3767 }
3768
16e7549f
JB
3769 /*
3770 * Because we use btrfs_search_forward we could skip leaves that were
3771 * not modified and then assume *last_extent is valid when it really
3772 * isn't. So back up to the previous leaf and read the end of the last
3773 * extent before we go and fill in holes.
3774 */
3775 if (need_find_last_extent) {
3776 u64 len;
3777
3778 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3779 if (ret < 0)
3780 return ret;
3781 if (ret)
3782 goto fill_holes;
3783 if (src_path->slots[0])
3784 src_path->slots[0]--;
3785 src = src_path->nodes[0];
3786 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3787 if (key.objectid != btrfs_ino(inode) ||
3788 key.type != BTRFS_EXTENT_DATA_KEY)
3789 goto fill_holes;
3790 extent = btrfs_item_ptr(src, src_path->slots[0],
3791 struct btrfs_file_extent_item);
3792 if (btrfs_file_extent_type(src, extent) ==
3793 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3794 len = btrfs_file_extent_inline_len(src,
3795 src_path->slots[0],
3796 extent);
16e7549f 3797 *last_extent = ALIGN(key.offset + len,
0b246afa 3798 fs_info->sectorsize);
16e7549f
JB
3799 } else {
3800 len = btrfs_file_extent_num_bytes(src, extent);
3801 *last_extent = key.offset + len;
3802 }
3803 }
3804fill_holes:
3805 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3806 * things could have happened
3807 *
3808 * 1) A merge could have happened, so we could currently be on a leaf
3809 * that holds what we were copying in the first place.
3810 * 2) A split could have happened, and now not all of the items we want
3811 * are on the same leaf.
3812 *
3813 * So we need to adjust how we search for holes, we need to drop the
3814 * path and re-search for the first extent key we found, and then walk
3815 * forward until we hit the last one we copied.
3816 */
3817 if (need_find_last_extent) {
3818 /* btrfs_prev_leaf could return 1 without releasing the path */
3819 btrfs_release_path(src_path);
3820 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3821 src_path, 0, 0);
3822 if (ret < 0)
3823 return ret;
3824 ASSERT(ret == 0);
3825 src = src_path->nodes[0];
3826 i = src_path->slots[0];
3827 } else {
3828 i = start_slot;
3829 }
3830
3831 /*
3832 * Ok so here we need to go through and fill in any holes we may have
3833 * to make sure that holes are punched for those areas in case they had
3834 * extents previously.
3835 */
3836 while (!done) {
3837 u64 offset, len;
3838 u64 extent_end;
3839
3840 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3841 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3842 if (ret < 0)
3843 return ret;
3844 ASSERT(ret == 0);
3845 src = src_path->nodes[0];
3846 i = 0;
3847 }
3848
3849 btrfs_item_key_to_cpu(src, &key, i);
3850 if (!btrfs_comp_cpu_keys(&key, &last_key))
3851 done = true;
3852 if (key.objectid != btrfs_ino(inode) ||
3853 key.type != BTRFS_EXTENT_DATA_KEY) {
3854 i++;
3855 continue;
3856 }
3857 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3858 if (btrfs_file_extent_type(src, extent) ==
3859 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3860 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 3861 extent_end = ALIGN(key.offset + len,
0b246afa 3862 fs_info->sectorsize);
16e7549f
JB
3863 } else {
3864 len = btrfs_file_extent_num_bytes(src, extent);
3865 extent_end = key.offset + len;
3866 }
3867 i++;
3868
3869 if (*last_extent == key.offset) {
3870 *last_extent = extent_end;
3871 continue;
3872 }
3873 offset = *last_extent;
3874 len = key.offset - *last_extent;
3875 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3876 offset, 0, 0, len, 0, len, 0,
3877 0, 0);
3878 if (ret)
3879 break;
74121f7c 3880 *last_extent = extent_end;
16e7549f
JB
3881 }
3882 /*
3883 * Need to let the callers know we dropped the path so they should
3884 * re-search.
3885 */
3886 if (!ret && need_find_last_extent)
3887 ret = 1;
4a500fd1 3888 return ret;
31ff1cd2
CM
3889}
3890
5dc562c5
JB
3891static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3892{
3893 struct extent_map *em1, *em2;
3894
3895 em1 = list_entry(a, struct extent_map, list);
3896 em2 = list_entry(b, struct extent_map, list);
3897
3898 if (em1->start < em2->start)
3899 return -1;
3900 else if (em1->start > em2->start)
3901 return 1;
3902 return 0;
3903}
3904
8407f553
FM
3905static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3906 struct inode *inode,
3907 struct btrfs_root *root,
3908 const struct extent_map *em,
3909 const struct list_head *logged_list,
3910 bool *ordered_io_error)
5dc562c5 3911{
0b246afa 3912 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 3913 struct btrfs_ordered_extent *ordered;
8407f553 3914 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3915 u64 mod_start = em->mod_start;
3916 u64 mod_len = em->mod_len;
8407f553 3917 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3918 u64 csum_offset;
3919 u64 csum_len;
8407f553
FM
3920 LIST_HEAD(ordered_sums);
3921 int ret = 0;
0aa4a17d 3922
8407f553 3923 *ordered_io_error = false;
0aa4a17d 3924
8407f553
FM
3925 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3926 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3927 return 0;
5dc562c5 3928
2ab28f32 3929 /*
8407f553
FM
3930 * Wait far any ordered extent that covers our extent map. If it
3931 * finishes without an error, first check and see if our csums are on
3932 * our outstanding ordered extents.
2ab28f32 3933 */
827463c4 3934 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3935 struct btrfs_ordered_sum *sum;
3936
3937 if (!mod_len)
3938 break;
3939
2ab28f32
JB
3940 if (ordered->file_offset + ordered->len <= mod_start ||
3941 mod_start + mod_len <= ordered->file_offset)
3942 continue;
3943
8407f553
FM
3944 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3945 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3946 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3947 const u64 start = ordered->file_offset;
3948 const u64 end = ordered->file_offset + ordered->len - 1;
3949
3950 WARN_ON(ordered->inode != inode);
3951 filemap_fdatawrite_range(inode->i_mapping, start, end);
3952 }
3953
3954 wait_event(ordered->wait,
3955 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3956 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3957
3958 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3959 /*
3960 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3961 * i_mapping flags, so that the next fsync won't get
3962 * an outdated io error too.
3963 */
f0312210 3964 filemap_check_errors(inode->i_mapping);
8407f553
FM
3965 *ordered_io_error = true;
3966 break;
3967 }
2ab28f32
JB
3968 /*
3969 * We are going to copy all the csums on this ordered extent, so
3970 * go ahead and adjust mod_start and mod_len in case this
3971 * ordered extent has already been logged.
3972 */
3973 if (ordered->file_offset > mod_start) {
3974 if (ordered->file_offset + ordered->len >=
3975 mod_start + mod_len)
3976 mod_len = ordered->file_offset - mod_start;
3977 /*
3978 * If we have this case
3979 *
3980 * |--------- logged extent ---------|
3981 * |----- ordered extent ----|
3982 *
3983 * Just don't mess with mod_start and mod_len, we'll
3984 * just end up logging more csums than we need and it
3985 * will be ok.
3986 */
3987 } else {
3988 if (ordered->file_offset + ordered->len <
3989 mod_start + mod_len) {
3990 mod_len = (mod_start + mod_len) -
3991 (ordered->file_offset + ordered->len);
3992 mod_start = ordered->file_offset +
3993 ordered->len;
3994 } else {
3995 mod_len = 0;
3996 }
3997 }
3998
8407f553
FM
3999 if (skip_csum)
4000 continue;
4001
2ab28f32
JB
4002 /*
4003 * To keep us from looping for the above case of an ordered
4004 * extent that falls inside of the logged extent.
4005 */
4006 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4007 &ordered->flags))
4008 continue;
2ab28f32 4009
2ab28f32
JB
4010 list_for_each_entry(sum, &ordered->list, list) {
4011 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4012 if (ret)
8407f553 4013 break;
2ab28f32 4014 }
2ab28f32 4015 }
2ab28f32 4016
8407f553 4017 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4018 return ret;
4019
488111aa
FDBM
4020 if (em->compress_type) {
4021 csum_offset = 0;
8407f553 4022 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4023 } else {
4024 csum_offset = mod_start - em->start;
4025 csum_len = mod_len;
4026 }
2ab28f32 4027
70c8a91c 4028 /* block start is already adjusted for the file extent offset. */
0b246afa 4029 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4030 em->block_start + csum_offset,
4031 em->block_start + csum_offset +
4032 csum_len - 1, &ordered_sums, 0);
4033 if (ret)
4034 return ret;
5dc562c5 4035
70c8a91c
JB
4036 while (!list_empty(&ordered_sums)) {
4037 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4038 struct btrfs_ordered_sum,
4039 list);
4040 if (!ret)
4041 ret = btrfs_csum_file_blocks(trans, log, sums);
4042 list_del(&sums->list);
4043 kfree(sums);
5dc562c5
JB
4044 }
4045
70c8a91c 4046 return ret;
5dc562c5
JB
4047}
4048
8407f553
FM
4049static int log_one_extent(struct btrfs_trans_handle *trans,
4050 struct inode *inode, struct btrfs_root *root,
4051 const struct extent_map *em,
4052 struct btrfs_path *path,
4053 const struct list_head *logged_list,
4054 struct btrfs_log_ctx *ctx)
4055{
4056 struct btrfs_root *log = root->log_root;
4057 struct btrfs_file_extent_item *fi;
4058 struct extent_buffer *leaf;
4059 struct btrfs_map_token token;
4060 struct btrfs_key key;
4061 u64 extent_offset = em->start - em->orig_start;
4062 u64 block_len;
4063 int ret;
4064 int extent_inserted = 0;
4065 bool ordered_io_err = false;
4066
4067 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4068 &ordered_io_err);
4069 if (ret)
4070 return ret;
4071
4072 if (ordered_io_err) {
4073 ctx->io_err = -EIO;
4074 return 0;
4075 }
4076
4077 btrfs_init_map_token(&token);
4078
4079 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4080 em->start + em->len, NULL, 0, 1,
4081 sizeof(*fi), &extent_inserted);
4082 if (ret)
4083 return ret;
4084
4085 if (!extent_inserted) {
4086 key.objectid = btrfs_ino(inode);
4087 key.type = BTRFS_EXTENT_DATA_KEY;
4088 key.offset = em->start;
4089
4090 ret = btrfs_insert_empty_item(trans, log, path, &key,
4091 sizeof(*fi));
4092 if (ret)
4093 return ret;
4094 }
4095 leaf = path->nodes[0];
4096 fi = btrfs_item_ptr(leaf, path->slots[0],
4097 struct btrfs_file_extent_item);
4098
50d9aa99 4099 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4100 &token);
4101 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4102 btrfs_set_token_file_extent_type(leaf, fi,
4103 BTRFS_FILE_EXTENT_PREALLOC,
4104 &token);
4105 else
4106 btrfs_set_token_file_extent_type(leaf, fi,
4107 BTRFS_FILE_EXTENT_REG,
4108 &token);
4109
4110 block_len = max(em->block_len, em->orig_block_len);
4111 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4112 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4113 em->block_start,
4114 &token);
4115 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4116 &token);
4117 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4118 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4119 em->block_start -
4120 extent_offset, &token);
4121 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4122 &token);
4123 } else {
4124 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4125 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4126 &token);
4127 }
4128
4129 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4130 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4131 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4132 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4133 &token);
4134 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4135 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4136 btrfs_mark_buffer_dirty(leaf);
4137
4138 btrfs_release_path(path);
4139
4140 return ret;
4141}
4142
5dc562c5
JB
4143static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4144 struct btrfs_root *root,
4145 struct inode *inode,
827463c4 4146 struct btrfs_path *path,
8407f553 4147 struct list_head *logged_list,
de0ee0ed
FM
4148 struct btrfs_log_ctx *ctx,
4149 const u64 start,
4150 const u64 end)
5dc562c5 4151{
5dc562c5
JB
4152 struct extent_map *em, *n;
4153 struct list_head extents;
4154 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4155 u64 test_gen;
4156 int ret = 0;
2ab28f32 4157 int num = 0;
5dc562c5
JB
4158
4159 INIT_LIST_HEAD(&extents);
4160
5f9a8a51 4161 down_write(&BTRFS_I(inode)->dio_sem);
5dc562c5
JB
4162 write_lock(&tree->lock);
4163 test_gen = root->fs_info->last_trans_committed;
4164
4165 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4166 list_del_init(&em->list);
2ab28f32
JB
4167
4168 /*
4169 * Just an arbitrary number, this can be really CPU intensive
4170 * once we start getting a lot of extents, and really once we
4171 * have a bunch of extents we just want to commit since it will
4172 * be faster.
4173 */
4174 if (++num > 32768) {
4175 list_del_init(&tree->modified_extents);
4176 ret = -EFBIG;
4177 goto process;
4178 }
4179
5dc562c5
JB
4180 if (em->generation <= test_gen)
4181 continue;
ff44c6e3
JB
4182 /* Need a ref to keep it from getting evicted from cache */
4183 atomic_inc(&em->refs);
4184 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4185 list_add_tail(&em->list, &extents);
2ab28f32 4186 num++;
5dc562c5
JB
4187 }
4188
4189 list_sort(NULL, &extents, extent_cmp);
5f9a8a51 4190 btrfs_get_logged_extents(inode, logged_list, start, end);
de0ee0ed 4191 /*
5f9a8a51
FM
4192 * Some ordered extents started by fsync might have completed
4193 * before we could collect them into the list logged_list, which
4194 * means they're gone, not in our logged_list nor in the inode's
4195 * ordered tree. We want the application/user space to know an
4196 * error happened while attempting to persist file data so that
4197 * it can take proper action. If such error happened, we leave
4198 * without writing to the log tree and the fsync must report the
4199 * file data write error and not commit the current transaction.
de0ee0ed 4200 */
f0312210 4201 ret = filemap_check_errors(inode->i_mapping);
5f9a8a51
FM
4202 if (ret)
4203 ctx->io_err = ret;
2ab28f32 4204process:
5dc562c5
JB
4205 while (!list_empty(&extents)) {
4206 em = list_entry(extents.next, struct extent_map, list);
4207
4208 list_del_init(&em->list);
4209
4210 /*
4211 * If we had an error we just need to delete everybody from our
4212 * private list.
4213 */
ff44c6e3 4214 if (ret) {
201a9038 4215 clear_em_logging(tree, em);
ff44c6e3 4216 free_extent_map(em);
5dc562c5 4217 continue;
ff44c6e3
JB
4218 }
4219
4220 write_unlock(&tree->lock);
5dc562c5 4221
8407f553
FM
4222 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4223 ctx);
ff44c6e3 4224 write_lock(&tree->lock);
201a9038
JB
4225 clear_em_logging(tree, em);
4226 free_extent_map(em);
5dc562c5 4227 }
ff44c6e3
JB
4228 WARN_ON(!list_empty(&extents));
4229 write_unlock(&tree->lock);
5f9a8a51 4230 up_write(&BTRFS_I(inode)->dio_sem);
5dc562c5 4231
5dc562c5 4232 btrfs_release_path(path);
5dc562c5
JB
4233 return ret;
4234}
4235
1a4bcf47
FM
4236static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4237 struct btrfs_path *path, u64 *size_ret)
4238{
4239 struct btrfs_key key;
4240 int ret;
4241
4242 key.objectid = btrfs_ino(inode);
4243 key.type = BTRFS_INODE_ITEM_KEY;
4244 key.offset = 0;
4245
4246 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4247 if (ret < 0) {
4248 return ret;
4249 } else if (ret > 0) {
2f2ff0ee 4250 *size_ret = 0;
1a4bcf47
FM
4251 } else {
4252 struct btrfs_inode_item *item;
4253
4254 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4255 struct btrfs_inode_item);
4256 *size_ret = btrfs_inode_size(path->nodes[0], item);
4257 }
4258
4259 btrfs_release_path(path);
4260 return 0;
4261}
4262
36283bf7
FM
4263/*
4264 * At the moment we always log all xattrs. This is to figure out at log replay
4265 * time which xattrs must have their deletion replayed. If a xattr is missing
4266 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4267 * because if a xattr is deleted, the inode is fsynced and a power failure
4268 * happens, causing the log to be replayed the next time the fs is mounted,
4269 * we want the xattr to not exist anymore (same behaviour as other filesystems
4270 * with a journal, ext3/4, xfs, f2fs, etc).
4271 */
4272static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4273 struct btrfs_root *root,
4274 struct inode *inode,
4275 struct btrfs_path *path,
4276 struct btrfs_path *dst_path)
4277{
4278 int ret;
4279 struct btrfs_key key;
4280 const u64 ino = btrfs_ino(inode);
4281 int ins_nr = 0;
4282 int start_slot = 0;
4283
4284 key.objectid = ino;
4285 key.type = BTRFS_XATTR_ITEM_KEY;
4286 key.offset = 0;
4287
4288 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4289 if (ret < 0)
4290 return ret;
4291
4292 while (true) {
4293 int slot = path->slots[0];
4294 struct extent_buffer *leaf = path->nodes[0];
4295 int nritems = btrfs_header_nritems(leaf);
4296
4297 if (slot >= nritems) {
4298 if (ins_nr > 0) {
4299 u64 last_extent = 0;
4300
4301 ret = copy_items(trans, inode, dst_path, path,
4302 &last_extent, start_slot,
4303 ins_nr, 1, 0);
4304 /* can't be 1, extent items aren't processed */
4305 ASSERT(ret <= 0);
4306 if (ret < 0)
4307 return ret;
4308 ins_nr = 0;
4309 }
4310 ret = btrfs_next_leaf(root, path);
4311 if (ret < 0)
4312 return ret;
4313 else if (ret > 0)
4314 break;
4315 continue;
4316 }
4317
4318 btrfs_item_key_to_cpu(leaf, &key, slot);
4319 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4320 break;
4321
4322 if (ins_nr == 0)
4323 start_slot = slot;
4324 ins_nr++;
4325 path->slots[0]++;
4326 cond_resched();
4327 }
4328 if (ins_nr > 0) {
4329 u64 last_extent = 0;
4330
4331 ret = copy_items(trans, inode, dst_path, path,
4332 &last_extent, start_slot,
4333 ins_nr, 1, 0);
4334 /* can't be 1, extent items aren't processed */
4335 ASSERT(ret <= 0);
4336 if (ret < 0)
4337 return ret;
4338 }
4339
4340 return 0;
4341}
4342
a89ca6f2
FM
4343/*
4344 * If the no holes feature is enabled we need to make sure any hole between the
4345 * last extent and the i_size of our inode is explicitly marked in the log. This
4346 * is to make sure that doing something like:
4347 *
4348 * 1) create file with 128Kb of data
4349 * 2) truncate file to 64Kb
4350 * 3) truncate file to 256Kb
4351 * 4) fsync file
4352 * 5) <crash/power failure>
4353 * 6) mount fs and trigger log replay
4354 *
4355 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4356 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4357 * file correspond to a hole. The presence of explicit holes in a log tree is
4358 * what guarantees that log replay will remove/adjust file extent items in the
4359 * fs/subvol tree.
4360 *
4361 * Here we do not need to care about holes between extents, that is already done
4362 * by copy_items(). We also only need to do this in the full sync path, where we
4363 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4364 * lookup the list of modified extent maps and if any represents a hole, we
4365 * insert a corresponding extent representing a hole in the log tree.
4366 */
4367static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4368 struct btrfs_root *root,
4369 struct inode *inode,
4370 struct btrfs_path *path)
4371{
0b246afa 4372 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4373 int ret;
4374 struct btrfs_key key;
4375 u64 hole_start;
4376 u64 hole_size;
4377 struct extent_buffer *leaf;
4378 struct btrfs_root *log = root->log_root;
4379 const u64 ino = btrfs_ino(inode);
4380 const u64 i_size = i_size_read(inode);
4381
0b246afa 4382 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4383 return 0;
4384
4385 key.objectid = ino;
4386 key.type = BTRFS_EXTENT_DATA_KEY;
4387 key.offset = (u64)-1;
4388
4389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4390 ASSERT(ret != 0);
4391 if (ret < 0)
4392 return ret;
4393
4394 ASSERT(path->slots[0] > 0);
4395 path->slots[0]--;
4396 leaf = path->nodes[0];
4397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4398
4399 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4400 /* inode does not have any extents */
4401 hole_start = 0;
4402 hole_size = i_size;
4403 } else {
4404 struct btrfs_file_extent_item *extent;
4405 u64 len;
4406
4407 /*
4408 * If there's an extent beyond i_size, an explicit hole was
4409 * already inserted by copy_items().
4410 */
4411 if (key.offset >= i_size)
4412 return 0;
4413
4414 extent = btrfs_item_ptr(leaf, path->slots[0],
4415 struct btrfs_file_extent_item);
4416
4417 if (btrfs_file_extent_type(leaf, extent) ==
4418 BTRFS_FILE_EXTENT_INLINE) {
4419 len = btrfs_file_extent_inline_len(leaf,
4420 path->slots[0],
4421 extent);
4422 ASSERT(len == i_size);
4423 return 0;
4424 }
4425
4426 len = btrfs_file_extent_num_bytes(leaf, extent);
4427 /* Last extent goes beyond i_size, no need to log a hole. */
4428 if (key.offset + len > i_size)
4429 return 0;
4430 hole_start = key.offset + len;
4431 hole_size = i_size - hole_start;
4432 }
4433 btrfs_release_path(path);
4434
4435 /* Last extent ends at i_size. */
4436 if (hole_size == 0)
4437 return 0;
4438
0b246afa 4439 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4440 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4441 hole_size, 0, hole_size, 0, 0, 0);
4442 return ret;
4443}
4444
56f23fdb
FM
4445/*
4446 * When we are logging a new inode X, check if it doesn't have a reference that
4447 * matches the reference from some other inode Y created in a past transaction
4448 * and that was renamed in the current transaction. If we don't do this, then at
4449 * log replay time we can lose inode Y (and all its files if it's a directory):
4450 *
4451 * mkdir /mnt/x
4452 * echo "hello world" > /mnt/x/foobar
4453 * sync
4454 * mv /mnt/x /mnt/y
4455 * mkdir /mnt/x # or touch /mnt/x
4456 * xfs_io -c fsync /mnt/x
4457 * <power fail>
4458 * mount fs, trigger log replay
4459 *
4460 * After the log replay procedure, we would lose the first directory and all its
4461 * files (file foobar).
4462 * For the case where inode Y is not a directory we simply end up losing it:
4463 *
4464 * echo "123" > /mnt/foo
4465 * sync
4466 * mv /mnt/foo /mnt/bar
4467 * echo "abc" > /mnt/foo
4468 * xfs_io -c fsync /mnt/foo
4469 * <power fail>
4470 *
4471 * We also need this for cases where a snapshot entry is replaced by some other
4472 * entry (file or directory) otherwise we end up with an unreplayable log due to
4473 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4474 * if it were a regular entry:
4475 *
4476 * mkdir /mnt/x
4477 * btrfs subvolume snapshot /mnt /mnt/x/snap
4478 * btrfs subvolume delete /mnt/x/snap
4479 * rmdir /mnt/x
4480 * mkdir /mnt/x
4481 * fsync /mnt/x or fsync some new file inside it
4482 * <power fail>
4483 *
4484 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4485 * the same transaction.
4486 */
4487static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4488 const int slot,
4489 const struct btrfs_key *key,
44f714da
FM
4490 struct inode *inode,
4491 u64 *other_ino)
56f23fdb
FM
4492{
4493 int ret;
4494 struct btrfs_path *search_path;
4495 char *name = NULL;
4496 u32 name_len = 0;
4497 u32 item_size = btrfs_item_size_nr(eb, slot);
4498 u32 cur_offset = 0;
4499 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4500
4501 search_path = btrfs_alloc_path();
4502 if (!search_path)
4503 return -ENOMEM;
4504 search_path->search_commit_root = 1;
4505 search_path->skip_locking = 1;
4506
4507 while (cur_offset < item_size) {
4508 u64 parent;
4509 u32 this_name_len;
4510 u32 this_len;
4511 unsigned long name_ptr;
4512 struct btrfs_dir_item *di;
4513
4514 if (key->type == BTRFS_INODE_REF_KEY) {
4515 struct btrfs_inode_ref *iref;
4516
4517 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4518 parent = key->offset;
4519 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4520 name_ptr = (unsigned long)(iref + 1);
4521 this_len = sizeof(*iref) + this_name_len;
4522 } else {
4523 struct btrfs_inode_extref *extref;
4524
4525 extref = (struct btrfs_inode_extref *)(ptr +
4526 cur_offset);
4527 parent = btrfs_inode_extref_parent(eb, extref);
4528 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4529 name_ptr = (unsigned long)&extref->name;
4530 this_len = sizeof(*extref) + this_name_len;
4531 }
4532
4533 if (this_name_len > name_len) {
4534 char *new_name;
4535
4536 new_name = krealloc(name, this_name_len, GFP_NOFS);
4537 if (!new_name) {
4538 ret = -ENOMEM;
4539 goto out;
4540 }
4541 name_len = this_name_len;
4542 name = new_name;
4543 }
4544
4545 read_extent_buffer(eb, name, name_ptr, this_name_len);
4546 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4547 search_path, parent,
4548 name, this_name_len, 0);
4549 if (di && !IS_ERR(di)) {
44f714da
FM
4550 struct btrfs_key di_key;
4551
4552 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4553 di, &di_key);
4554 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4555 ret = 1;
4556 *other_ino = di_key.objectid;
4557 } else {
4558 ret = -EAGAIN;
4559 }
56f23fdb
FM
4560 goto out;
4561 } else if (IS_ERR(di)) {
4562 ret = PTR_ERR(di);
4563 goto out;
4564 }
4565 btrfs_release_path(search_path);
4566
4567 cur_offset += this_len;
4568 }
4569 ret = 0;
4570out:
4571 btrfs_free_path(search_path);
4572 kfree(name);
4573 return ret;
4574}
4575
e02119d5
CM
4576/* log a single inode in the tree log.
4577 * At least one parent directory for this inode must exist in the tree
4578 * or be logged already.
4579 *
4580 * Any items from this inode changed by the current transaction are copied
4581 * to the log tree. An extra reference is taken on any extents in this
4582 * file, allowing us to avoid a whole pile of corner cases around logging
4583 * blocks that have been removed from the tree.
4584 *
4585 * See LOG_INODE_ALL and related defines for a description of what inode_only
4586 * does.
4587 *
4588 * This handles both files and directories.
4589 */
12fcfd22 4590static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
4591 struct btrfs_root *root, struct inode *inode,
4592 int inode_only,
4593 const loff_t start,
8407f553
FM
4594 const loff_t end,
4595 struct btrfs_log_ctx *ctx)
e02119d5 4596{
0b246afa 4597 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4598 struct btrfs_path *path;
4599 struct btrfs_path *dst_path;
4600 struct btrfs_key min_key;
4601 struct btrfs_key max_key;
4602 struct btrfs_root *log = root->log_root;
31ff1cd2 4603 struct extent_buffer *src = NULL;
827463c4 4604 LIST_HEAD(logged_list);
16e7549f 4605 u64 last_extent = 0;
4a500fd1 4606 int err = 0;
e02119d5 4607 int ret;
3a5f1d45 4608 int nritems;
31ff1cd2
CM
4609 int ins_start_slot = 0;
4610 int ins_nr;
5dc562c5 4611 bool fast_search = false;
33345d01 4612 u64 ino = btrfs_ino(inode);
49dae1bc 4613 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1a4bcf47 4614 u64 logged_isize = 0;
e4545de5 4615 bool need_log_inode_item = true;
e02119d5 4616
e02119d5 4617 path = btrfs_alloc_path();
5df67083
TI
4618 if (!path)
4619 return -ENOMEM;
e02119d5 4620 dst_path = btrfs_alloc_path();
5df67083
TI
4621 if (!dst_path) {
4622 btrfs_free_path(path);
4623 return -ENOMEM;
4624 }
e02119d5 4625
33345d01 4626 min_key.objectid = ino;
e02119d5
CM
4627 min_key.type = BTRFS_INODE_ITEM_KEY;
4628 min_key.offset = 0;
4629
33345d01 4630 max_key.objectid = ino;
12fcfd22 4631
12fcfd22 4632
5dc562c5 4633 /* today the code can only do partial logging of directories */
5269b67e
MX
4634 if (S_ISDIR(inode->i_mode) ||
4635 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4636 &BTRFS_I(inode)->runtime_flags) &&
4637 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
4638 max_key.type = BTRFS_XATTR_ITEM_KEY;
4639 else
4640 max_key.type = (u8)-1;
4641 max_key.offset = (u64)-1;
4642
2c2c452b
FM
4643 /*
4644 * Only run delayed items if we are a dir or a new file.
4645 * Otherwise commit the delayed inode only, which is needed in
4646 * order for the log replay code to mark inodes for link count
4647 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4648 */
94edf4ae 4649 if (S_ISDIR(inode->i_mode) ||
0b246afa 4650 BTRFS_I(inode)->generation > fs_info->last_trans_committed)
94edf4ae 4651 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b
FM
4652 else
4653 ret = btrfs_commit_inode_delayed_inode(inode);
4654
4655 if (ret) {
4656 btrfs_free_path(path);
4657 btrfs_free_path(dst_path);
4658 return ret;
16cdcec7
MX
4659 }
4660
e02119d5
CM
4661 mutex_lock(&BTRFS_I(inode)->log_mutex);
4662
4663 /*
4664 * a brute force approach to making sure we get the most uptodate
4665 * copies of everything.
4666 */
4667 if (S_ISDIR(inode->i_mode)) {
4668 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4669
4f764e51
FM
4670 if (inode_only == LOG_INODE_EXISTS)
4671 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4672 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4673 } else {
1a4bcf47
FM
4674 if (inode_only == LOG_INODE_EXISTS) {
4675 /*
4676 * Make sure the new inode item we write to the log has
4677 * the same isize as the current one (if it exists).
4678 * This is necessary to prevent data loss after log
4679 * replay, and also to prevent doing a wrong expanding
4680 * truncate - for e.g. create file, write 4K into offset
4681 * 0, fsync, write 4K into offset 4096, add hard link,
4682 * fsync some other file (to sync log), power fail - if
4683 * we use the inode's current i_size, after log replay
4684 * we get a 8Kb file, with the last 4Kb extent as a hole
4685 * (zeroes), as if an expanding truncate happened,
4686 * instead of getting a file of 4Kb only.
4687 */
4688 err = logged_inode_size(log, inode, path,
4689 &logged_isize);
4690 if (err)
4691 goto out_unlock;
4692 }
a742994a
FM
4693 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4694 &BTRFS_I(inode)->runtime_flags)) {
4695 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4696 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4697 ret = drop_objectid_items(trans, log, path, ino,
4698 max_key.type);
4699 } else {
4700 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4701 &BTRFS_I(inode)->runtime_flags);
4702 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4703 &BTRFS_I(inode)->runtime_flags);
28ed1345
CM
4704 while(1) {
4705 ret = btrfs_truncate_inode_items(trans,
4706 log, inode, 0, 0);
4707 if (ret != -EAGAIN)
4708 break;
4709 }
a742994a 4710 }
4f764e51
FM
4711 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4712 &BTRFS_I(inode)->runtime_flags) ||
6cfab851 4713 inode_only == LOG_INODE_EXISTS) {
4f764e51 4714 if (inode_only == LOG_INODE_ALL)
183f37fa 4715 fast_search = true;
4f764e51 4716 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4717 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4718 max_key.type);
a95249b3
JB
4719 } else {
4720 if (inode_only == LOG_INODE_ALL)
4721 fast_search = true;
a95249b3 4722 goto log_extents;
5dc562c5 4723 }
a95249b3 4724
e02119d5 4725 }
4a500fd1
YZ
4726 if (ret) {
4727 err = ret;
4728 goto out_unlock;
4729 }
e02119d5 4730
d397712b 4731 while (1) {
31ff1cd2 4732 ins_nr = 0;
6174d3cb 4733 ret = btrfs_search_forward(root, &min_key,
de78b51a 4734 path, trans->transid);
fb770ae4
LB
4735 if (ret < 0) {
4736 err = ret;
4737 goto out_unlock;
4738 }
e02119d5
CM
4739 if (ret != 0)
4740 break;
3a5f1d45 4741again:
31ff1cd2 4742 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4743 if (min_key.objectid != ino)
e02119d5
CM
4744 break;
4745 if (min_key.type > max_key.type)
4746 break;
31ff1cd2 4747
e4545de5
FM
4748 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4749 need_log_inode_item = false;
4750
56f23fdb
FM
4751 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4752 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4753 BTRFS_I(inode)->generation == trans->transid) {
44f714da
FM
4754 u64 other_ino = 0;
4755
56f23fdb
FM
4756 ret = btrfs_check_ref_name_override(path->nodes[0],
4757 path->slots[0],
44f714da
FM
4758 &min_key, inode,
4759 &other_ino);
56f23fdb
FM
4760 if (ret < 0) {
4761 err = ret;
4762 goto out_unlock;
28a23593
FM
4763 } else if (ret > 0 && ctx &&
4764 other_ino != btrfs_ino(ctx->inode)) {
44f714da
FM
4765 struct btrfs_key inode_key;
4766 struct inode *other_inode;
4767
4768 if (ins_nr > 0) {
4769 ins_nr++;
4770 } else {
4771 ins_nr = 1;
4772 ins_start_slot = path->slots[0];
4773 }
4774 ret = copy_items(trans, inode, dst_path, path,
4775 &last_extent, ins_start_slot,
4776 ins_nr, inode_only,
4777 logged_isize);
4778 if (ret < 0) {
4779 err = ret;
4780 goto out_unlock;
4781 }
4782 ins_nr = 0;
4783 btrfs_release_path(path);
4784 inode_key.objectid = other_ino;
4785 inode_key.type = BTRFS_INODE_ITEM_KEY;
4786 inode_key.offset = 0;
0b246afa 4787 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
4788 &inode_key, root,
4789 NULL);
4790 /*
4791 * If the other inode that had a conflicting dir
4792 * entry was deleted in the current transaction,
4793 * we don't need to do more work nor fallback to
4794 * a transaction commit.
4795 */
4796 if (IS_ERR(other_inode) &&
4797 PTR_ERR(other_inode) == -ENOENT) {
4798 goto next_key;
4799 } else if (IS_ERR(other_inode)) {
4800 err = PTR_ERR(other_inode);
4801 goto out_unlock;
4802 }
4803 /*
4804 * We are safe logging the other inode without
4805 * acquiring its i_mutex as long as we log with
4806 * the LOG_INODE_EXISTS mode. We're safe against
4807 * concurrent renames of the other inode as well
4808 * because during a rename we pin the log and
4809 * update the log with the new name before we
4810 * unpin it.
4811 */
4812 err = btrfs_log_inode(trans, root, other_inode,
4813 LOG_INODE_EXISTS,
4814 0, LLONG_MAX, ctx);
4815 iput(other_inode);
4816 if (err)
4817 goto out_unlock;
4818 else
4819 goto next_key;
56f23fdb
FM
4820 }
4821 }
4822
36283bf7
FM
4823 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4824 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4825 if (ins_nr == 0)
4826 goto next_slot;
4827 ret = copy_items(trans, inode, dst_path, path,
4828 &last_extent, ins_start_slot,
4829 ins_nr, inode_only, logged_isize);
4830 if (ret < 0) {
4831 err = ret;
4832 goto out_unlock;
4833 }
4834 ins_nr = 0;
4835 if (ret) {
4836 btrfs_release_path(path);
4837 continue;
4838 }
4839 goto next_slot;
4840 }
4841
e02119d5 4842 src = path->nodes[0];
31ff1cd2
CM
4843 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4844 ins_nr++;
4845 goto next_slot;
4846 } else if (!ins_nr) {
4847 ins_start_slot = path->slots[0];
4848 ins_nr = 1;
4849 goto next_slot;
e02119d5
CM
4850 }
4851
16e7549f 4852 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4853 ins_start_slot, ins_nr, inode_only,
4854 logged_isize);
16e7549f 4855 if (ret < 0) {
4a500fd1
YZ
4856 err = ret;
4857 goto out_unlock;
a71db86e
RV
4858 }
4859 if (ret) {
16e7549f
JB
4860 ins_nr = 0;
4861 btrfs_release_path(path);
4862 continue;
4a500fd1 4863 }
31ff1cd2
CM
4864 ins_nr = 1;
4865 ins_start_slot = path->slots[0];
4866next_slot:
e02119d5 4867
3a5f1d45
CM
4868 nritems = btrfs_header_nritems(path->nodes[0]);
4869 path->slots[0]++;
4870 if (path->slots[0] < nritems) {
4871 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4872 path->slots[0]);
4873 goto again;
4874 }
31ff1cd2 4875 if (ins_nr) {
16e7549f
JB
4876 ret = copy_items(trans, inode, dst_path, path,
4877 &last_extent, ins_start_slot,
1a4bcf47 4878 ins_nr, inode_only, logged_isize);
16e7549f 4879 if (ret < 0) {
4a500fd1
YZ
4880 err = ret;
4881 goto out_unlock;
4882 }
16e7549f 4883 ret = 0;
31ff1cd2
CM
4884 ins_nr = 0;
4885 }
b3b4aa74 4886 btrfs_release_path(path);
44f714da 4887next_key:
3d41d702 4888 if (min_key.offset < (u64)-1) {
e02119d5 4889 min_key.offset++;
3d41d702 4890 } else if (min_key.type < max_key.type) {
e02119d5 4891 min_key.type++;
3d41d702
FDBM
4892 min_key.offset = 0;
4893 } else {
e02119d5 4894 break;
3d41d702 4895 }
e02119d5 4896 }
31ff1cd2 4897 if (ins_nr) {
16e7549f 4898 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4899 ins_start_slot, ins_nr, inode_only,
4900 logged_isize);
16e7549f 4901 if (ret < 0) {
4a500fd1
YZ
4902 err = ret;
4903 goto out_unlock;
4904 }
16e7549f 4905 ret = 0;
31ff1cd2
CM
4906 ins_nr = 0;
4907 }
5dc562c5 4908
36283bf7
FM
4909 btrfs_release_path(path);
4910 btrfs_release_path(dst_path);
4911 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4912 if (err)
4913 goto out_unlock;
a89ca6f2
FM
4914 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4915 btrfs_release_path(path);
4916 btrfs_release_path(dst_path);
4917 err = btrfs_log_trailing_hole(trans, root, inode, path);
4918 if (err)
4919 goto out_unlock;
4920 }
a95249b3 4921log_extents:
f3b15ccd
JB
4922 btrfs_release_path(path);
4923 btrfs_release_path(dst_path);
e4545de5
FM
4924 if (need_log_inode_item) {
4925 err = log_inode_item(trans, log, dst_path, inode);
4926 if (err)
4927 goto out_unlock;
4928 }
5dc562c5 4929 if (fast_search) {
827463c4 4930 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 4931 &logged_list, ctx, start, end);
5dc562c5
JB
4932 if (ret) {
4933 err = ret;
4934 goto out_unlock;
4935 }
d006a048 4936 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4937 struct extent_map *em, *n;
4938
49dae1bc
FM
4939 write_lock(&em_tree->lock);
4940 /*
4941 * We can't just remove every em if we're called for a ranged
4942 * fsync - that is, one that doesn't cover the whole possible
4943 * file range (0 to LLONG_MAX). This is because we can have
4944 * em's that fall outside the range we're logging and therefore
4945 * their ordered operations haven't completed yet
4946 * (btrfs_finish_ordered_io() not invoked yet). This means we
4947 * didn't get their respective file extent item in the fs/subvol
4948 * tree yet, and need to let the next fast fsync (one which
4949 * consults the list of modified extent maps) find the em so
4950 * that it logs a matching file extent item and waits for the
4951 * respective ordered operation to complete (if it's still
4952 * running).
4953 *
4954 * Removing every em outside the range we're logging would make
4955 * the next fast fsync not log their matching file extent items,
4956 * therefore making us lose data after a log replay.
4957 */
4958 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4959 list) {
4960 const u64 mod_end = em->mod_start + em->mod_len - 1;
4961
4962 if (em->mod_start >= start && mod_end <= end)
4963 list_del_init(&em->list);
4964 }
4965 write_unlock(&em_tree->lock);
5dc562c5
JB
4966 }
4967
9623f9a3 4968 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2f2ff0ee
FM
4969 ret = log_directory_changes(trans, root, inode, path, dst_path,
4970 ctx);
4a500fd1
YZ
4971 if (ret) {
4972 err = ret;
4973 goto out_unlock;
4974 }
e02119d5 4975 }
49dae1bc 4976
2f2ff0ee 4977 spin_lock(&BTRFS_I(inode)->lock);
125c4cf9
FM
4978 BTRFS_I(inode)->logged_trans = trans->transid;
4979 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
2f2ff0ee 4980 spin_unlock(&BTRFS_I(inode)->lock);
4a500fd1 4981out_unlock:
827463c4
MX
4982 if (unlikely(err))
4983 btrfs_put_logged_extents(&logged_list);
4984 else
4985 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4986 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4987
4988 btrfs_free_path(path);
4989 btrfs_free_path(dst_path);
4a500fd1 4990 return err;
e02119d5
CM
4991}
4992
2be63d5c
FM
4993/*
4994 * Check if we must fallback to a transaction commit when logging an inode.
4995 * This must be called after logging the inode and is used only in the context
4996 * when fsyncing an inode requires the need to log some other inode - in which
4997 * case we can't lock the i_mutex of each other inode we need to log as that
4998 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4999 * log inodes up or down in the hierarchy) or rename operations for example. So
5000 * we take the log_mutex of the inode after we have logged it and then check for
5001 * its last_unlink_trans value - this is safe because any task setting
5002 * last_unlink_trans must take the log_mutex and it must do this before it does
5003 * the actual unlink operation, so if we do this check before a concurrent task
5004 * sets last_unlink_trans it means we've logged a consistent version/state of
5005 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5006 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5007 * we logged the inode or it might have also done the unlink).
5008 */
5009static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5010 struct inode *inode)
5011{
5012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5013 bool ret = false;
5014
5015 mutex_lock(&BTRFS_I(inode)->log_mutex);
5016 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5017 /*
5018 * Make sure any commits to the log are forced to be full
5019 * commits.
5020 */
5021 btrfs_set_log_full_commit(fs_info, trans);
5022 ret = true;
5023 }
5024 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5025
5026 return ret;
5027}
5028
12fcfd22
CM
5029/*
5030 * follow the dentry parent pointers up the chain and see if any
5031 * of the directories in it require a full commit before they can
5032 * be logged. Returns zero if nothing special needs to be done or 1 if
5033 * a full commit is required.
5034 */
5035static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5036 struct inode *inode,
5037 struct dentry *parent,
5038 struct super_block *sb,
5039 u64 last_committed)
e02119d5 5040{
12fcfd22 5041 int ret = 0;
6a912213 5042 struct dentry *old_parent = NULL;
de2b530b 5043 struct inode *orig_inode = inode;
e02119d5 5044
af4176b4
CM
5045 /*
5046 * for regular files, if its inode is already on disk, we don't
5047 * have to worry about the parents at all. This is because
5048 * we can use the last_unlink_trans field to record renames
5049 * and other fun in this file.
5050 */
5051 if (S_ISREG(inode->i_mode) &&
5052 BTRFS_I(inode)->generation <= last_committed &&
5053 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5054 goto out;
5055
12fcfd22 5056 if (!S_ISDIR(inode->i_mode)) {
fc64005c 5057 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5058 goto out;
2b0143b5 5059 inode = d_inode(parent);
12fcfd22
CM
5060 }
5061
5062 while (1) {
de2b530b
JB
5063 /*
5064 * If we are logging a directory then we start with our inode,
01327610 5065 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5066 * logged_trans so that further down in the log code we don't
5067 * think this inode has already been logged.
5068 */
5069 if (inode != orig_inode)
5070 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
5071 smp_mb();
5072
2be63d5c 5073 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5074 ret = 1;
5075 break;
5076 }
5077
fc64005c 5078 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5079 break;
5080
44f714da
FM
5081 if (IS_ROOT(parent)) {
5082 inode = d_inode(parent);
5083 if (btrfs_must_commit_transaction(trans, inode))
5084 ret = 1;
12fcfd22 5085 break;
44f714da 5086 }
12fcfd22 5087
6a912213
JB
5088 parent = dget_parent(parent);
5089 dput(old_parent);
5090 old_parent = parent;
2b0143b5 5091 inode = d_inode(parent);
12fcfd22
CM
5092
5093 }
6a912213 5094 dput(old_parent);
12fcfd22 5095out:
e02119d5
CM
5096 return ret;
5097}
5098
2f2ff0ee
FM
5099struct btrfs_dir_list {
5100 u64 ino;
5101 struct list_head list;
5102};
5103
5104/*
5105 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5106 * details about the why it is needed.
5107 * This is a recursive operation - if an existing dentry corresponds to a
5108 * directory, that directory's new entries are logged too (same behaviour as
5109 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5110 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5111 * complains about the following circular lock dependency / possible deadlock:
5112 *
5113 * CPU0 CPU1
5114 * ---- ----
5115 * lock(&type->i_mutex_dir_key#3/2);
5116 * lock(sb_internal#2);
5117 * lock(&type->i_mutex_dir_key#3/2);
5118 * lock(&sb->s_type->i_mutex_key#14);
5119 *
5120 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5121 * sb_start_intwrite() in btrfs_start_transaction().
5122 * Not locking i_mutex of the inodes is still safe because:
5123 *
5124 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5125 * that while logging the inode new references (names) are added or removed
5126 * from the inode, leaving the logged inode item with a link count that does
5127 * not match the number of logged inode reference items. This is fine because
5128 * at log replay time we compute the real number of links and correct the
5129 * link count in the inode item (see replay_one_buffer() and
5130 * link_to_fixup_dir());
5131 *
5132 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5133 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5134 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5135 * has a size that doesn't match the sum of the lengths of all the logged
5136 * names. This does not result in a problem because if a dir_item key is
5137 * logged but its matching dir_index key is not logged, at log replay time we
5138 * don't use it to replay the respective name (see replay_one_name()). On the
5139 * other hand if only the dir_index key ends up being logged, the respective
5140 * name is added to the fs/subvol tree with both the dir_item and dir_index
5141 * keys created (see replay_one_name()).
5142 * The directory's inode item with a wrong i_size is not a problem as well,
5143 * since we don't use it at log replay time to set the i_size in the inode
5144 * item of the fs/subvol tree (see overwrite_item()).
5145 */
5146static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5147 struct btrfs_root *root,
5148 struct inode *start_inode,
5149 struct btrfs_log_ctx *ctx)
5150{
0b246afa 5151 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5152 struct btrfs_root *log = root->log_root;
5153 struct btrfs_path *path;
5154 LIST_HEAD(dir_list);
5155 struct btrfs_dir_list *dir_elem;
5156 int ret = 0;
5157
5158 path = btrfs_alloc_path();
5159 if (!path)
5160 return -ENOMEM;
5161
5162 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5163 if (!dir_elem) {
5164 btrfs_free_path(path);
5165 return -ENOMEM;
5166 }
5167 dir_elem->ino = btrfs_ino(start_inode);
5168 list_add_tail(&dir_elem->list, &dir_list);
5169
5170 while (!list_empty(&dir_list)) {
5171 struct extent_buffer *leaf;
5172 struct btrfs_key min_key;
5173 int nritems;
5174 int i;
5175
5176 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5177 list);
5178 if (ret)
5179 goto next_dir_inode;
5180
5181 min_key.objectid = dir_elem->ino;
5182 min_key.type = BTRFS_DIR_ITEM_KEY;
5183 min_key.offset = 0;
5184again:
5185 btrfs_release_path(path);
5186 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5187 if (ret < 0) {
5188 goto next_dir_inode;
5189 } else if (ret > 0) {
5190 ret = 0;
5191 goto next_dir_inode;
5192 }
5193
5194process_leaf:
5195 leaf = path->nodes[0];
5196 nritems = btrfs_header_nritems(leaf);
5197 for (i = path->slots[0]; i < nritems; i++) {
5198 struct btrfs_dir_item *di;
5199 struct btrfs_key di_key;
5200 struct inode *di_inode;
5201 struct btrfs_dir_list *new_dir_elem;
5202 int log_mode = LOG_INODE_EXISTS;
5203 int type;
5204
5205 btrfs_item_key_to_cpu(leaf, &min_key, i);
5206 if (min_key.objectid != dir_elem->ino ||
5207 min_key.type != BTRFS_DIR_ITEM_KEY)
5208 goto next_dir_inode;
5209
5210 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5211 type = btrfs_dir_type(leaf, di);
5212 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5213 type != BTRFS_FT_DIR)
5214 continue;
5215 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5216 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5217 continue;
5218
0b246afa 5219 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5220 if (IS_ERR(di_inode)) {
5221 ret = PTR_ERR(di_inode);
5222 goto next_dir_inode;
5223 }
5224
5225 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5226 iput(di_inode);
5227 continue;
5228 }
5229
5230 ctx->log_new_dentries = false;
3f9749f6 5231 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee
FM
5232 log_mode = LOG_INODE_ALL;
5233 btrfs_release_path(path);
5234 ret = btrfs_log_inode(trans, root, di_inode,
5235 log_mode, 0, LLONG_MAX, ctx);
2be63d5c
FM
5236 if (!ret &&
5237 btrfs_must_commit_transaction(trans, di_inode))
5238 ret = 1;
2f2ff0ee
FM
5239 iput(di_inode);
5240 if (ret)
5241 goto next_dir_inode;
5242 if (ctx->log_new_dentries) {
5243 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5244 GFP_NOFS);
5245 if (!new_dir_elem) {
5246 ret = -ENOMEM;
5247 goto next_dir_inode;
5248 }
5249 new_dir_elem->ino = di_key.objectid;
5250 list_add_tail(&new_dir_elem->list, &dir_list);
5251 }
5252 break;
5253 }
5254 if (i == nritems) {
5255 ret = btrfs_next_leaf(log, path);
5256 if (ret < 0) {
5257 goto next_dir_inode;
5258 } else if (ret > 0) {
5259 ret = 0;
5260 goto next_dir_inode;
5261 }
5262 goto process_leaf;
5263 }
5264 if (min_key.offset < (u64)-1) {
5265 min_key.offset++;
5266 goto again;
5267 }
5268next_dir_inode:
5269 list_del(&dir_elem->list);
5270 kfree(dir_elem);
5271 }
5272
5273 btrfs_free_path(path);
5274 return ret;
5275}
5276
18aa0922
FM
5277static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5278 struct inode *inode,
5279 struct btrfs_log_ctx *ctx)
5280{
0b246afa 5281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18aa0922
FM
5282 int ret;
5283 struct btrfs_path *path;
5284 struct btrfs_key key;
5285 struct btrfs_root *root = BTRFS_I(inode)->root;
5286 const u64 ino = btrfs_ino(inode);
5287
5288 path = btrfs_alloc_path();
5289 if (!path)
5290 return -ENOMEM;
5291 path->skip_locking = 1;
5292 path->search_commit_root = 1;
5293
5294 key.objectid = ino;
5295 key.type = BTRFS_INODE_REF_KEY;
5296 key.offset = 0;
5297 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5298 if (ret < 0)
5299 goto out;
5300
5301 while (true) {
5302 struct extent_buffer *leaf = path->nodes[0];
5303 int slot = path->slots[0];
5304 u32 cur_offset = 0;
5305 u32 item_size;
5306 unsigned long ptr;
5307
5308 if (slot >= btrfs_header_nritems(leaf)) {
5309 ret = btrfs_next_leaf(root, path);
5310 if (ret < 0)
5311 goto out;
5312 else if (ret > 0)
5313 break;
5314 continue;
5315 }
5316
5317 btrfs_item_key_to_cpu(leaf, &key, slot);
5318 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5319 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5320 break;
5321
5322 item_size = btrfs_item_size_nr(leaf, slot);
5323 ptr = btrfs_item_ptr_offset(leaf, slot);
5324 while (cur_offset < item_size) {
5325 struct btrfs_key inode_key;
5326 struct inode *dir_inode;
5327
5328 inode_key.type = BTRFS_INODE_ITEM_KEY;
5329 inode_key.offset = 0;
5330
5331 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5332 struct btrfs_inode_extref *extref;
5333
5334 extref = (struct btrfs_inode_extref *)
5335 (ptr + cur_offset);
5336 inode_key.objectid = btrfs_inode_extref_parent(
5337 leaf, extref);
5338 cur_offset += sizeof(*extref);
5339 cur_offset += btrfs_inode_extref_name_len(leaf,
5340 extref);
5341 } else {
5342 inode_key.objectid = key.offset;
5343 cur_offset = item_size;
5344 }
5345
0b246afa 5346 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5347 root, NULL);
5348 /* If parent inode was deleted, skip it. */
5349 if (IS_ERR(dir_inode))
5350 continue;
5351
657ed1aa
FM
5352 if (ctx)
5353 ctx->log_new_dentries = false;
18aa0922
FM
5354 ret = btrfs_log_inode(trans, root, dir_inode,
5355 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c
FM
5356 if (!ret &&
5357 btrfs_must_commit_transaction(trans, dir_inode))
5358 ret = 1;
657ed1aa
FM
5359 if (!ret && ctx && ctx->log_new_dentries)
5360 ret = log_new_dir_dentries(trans, root,
5361 dir_inode, ctx);
18aa0922
FM
5362 iput(dir_inode);
5363 if (ret)
5364 goto out;
5365 }
5366 path->slots[0]++;
5367 }
5368 ret = 0;
5369out:
5370 btrfs_free_path(path);
5371 return ret;
5372}
5373
e02119d5
CM
5374/*
5375 * helper function around btrfs_log_inode to make sure newly created
5376 * parent directories also end up in the log. A minimal inode and backref
5377 * only logging is done of any parent directories that are older than
5378 * the last committed transaction
5379 */
48a3b636
ES
5380static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5381 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
5382 struct dentry *parent,
5383 const loff_t start,
5384 const loff_t end,
5385 int exists_only,
8b050d35 5386 struct btrfs_log_ctx *ctx)
e02119d5 5387{
0b246afa 5388 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 5389 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 5390 struct super_block *sb;
6a912213 5391 struct dentry *old_parent = NULL;
12fcfd22 5392 int ret = 0;
0b246afa 5393 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee
FM
5394 bool log_dentries = false;
5395 struct inode *orig_inode = inode;
12fcfd22
CM
5396
5397 sb = inode->i_sb;
5398
0b246afa 5399 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5400 ret = 1;
5401 goto end_no_trans;
5402 }
5403
995946dd
MX
5404 /*
5405 * The prev transaction commit doesn't complete, we need do
5406 * full commit by ourselves.
5407 */
0b246afa
JM
5408 if (fs_info->last_trans_log_full_commit >
5409 fs_info->last_trans_committed) {
12fcfd22
CM
5410 ret = 1;
5411 goto end_no_trans;
5412 }
5413
76dda93c
YZ
5414 if (root != BTRFS_I(inode)->root ||
5415 btrfs_root_refs(&root->root_item) == 0) {
5416 ret = 1;
5417 goto end_no_trans;
5418 }
5419
12fcfd22
CM
5420 ret = check_parent_dirs_for_sync(trans, inode, parent,
5421 sb, last_committed);
5422 if (ret)
5423 goto end_no_trans;
e02119d5 5424
22ee6985 5425 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5426 ret = BTRFS_NO_LOG_SYNC;
5427 goto end_no_trans;
5428 }
5429
8b050d35 5430 ret = start_log_trans(trans, root, ctx);
4a500fd1 5431 if (ret)
e87ac136 5432 goto end_no_trans;
e02119d5 5433
8407f553 5434 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5435 if (ret)
5436 goto end_trans;
12fcfd22 5437
af4176b4
CM
5438 /*
5439 * for regular files, if its inode is already on disk, we don't
5440 * have to worry about the parents at all. This is because
5441 * we can use the last_unlink_trans field to record renames
5442 * and other fun in this file.
5443 */
5444 if (S_ISREG(inode->i_mode) &&
5445 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
5446 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5447 ret = 0;
5448 goto end_trans;
5449 }
af4176b4 5450
2f2ff0ee
FM
5451 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5452 log_dentries = true;
5453
18aa0922 5454 /*
01327610 5455 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5456 * inodes are fully logged. This is to prevent leaving dangling
5457 * directory index entries in directories that were our parents but are
5458 * not anymore. Not doing this results in old parent directory being
5459 * impossible to delete after log replay (rmdir will always fail with
5460 * error -ENOTEMPTY).
5461 *
5462 * Example 1:
5463 *
5464 * mkdir testdir
5465 * touch testdir/foo
5466 * ln testdir/foo testdir/bar
5467 * sync
5468 * unlink testdir/bar
5469 * xfs_io -c fsync testdir/foo
5470 * <power failure>
5471 * mount fs, triggers log replay
5472 *
5473 * If we don't log the parent directory (testdir), after log replay the
5474 * directory still has an entry pointing to the file inode using the bar
5475 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5476 * the file inode has a link count of 1.
5477 *
5478 * Example 2:
5479 *
5480 * mkdir testdir
5481 * touch foo
5482 * ln foo testdir/foo2
5483 * ln foo testdir/foo3
5484 * sync
5485 * unlink testdir/foo3
5486 * xfs_io -c fsync foo
5487 * <power failure>
5488 * mount fs, triggers log replay
5489 *
5490 * Similar as the first example, after log replay the parent directory
5491 * testdir still has an entry pointing to the inode file with name foo3
5492 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5493 * and has a link count of 2.
5494 */
5495 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5496 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5497 if (ret)
5498 goto end_trans;
5499 }
5500
12fcfd22 5501 while (1) {
fc64005c 5502 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5503 break;
5504
2b0143b5 5505 inode = d_inode(parent);
76dda93c
YZ
5506 if (root != BTRFS_I(inode)->root)
5507 break;
5508
18aa0922
FM
5509 if (BTRFS_I(inode)->generation > last_committed) {
5510 ret = btrfs_log_inode(trans, root, inode,
5511 LOG_INODE_EXISTS,
8407f553 5512 0, LLONG_MAX, ctx);
4a500fd1
YZ
5513 if (ret)
5514 goto end_trans;
12fcfd22 5515 }
76dda93c 5516 if (IS_ROOT(parent))
e02119d5 5517 break;
12fcfd22 5518
6a912213
JB
5519 parent = dget_parent(parent);
5520 dput(old_parent);
5521 old_parent = parent;
e02119d5 5522 }
2f2ff0ee
FM
5523 if (log_dentries)
5524 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5525 else
5526 ret = 0;
4a500fd1 5527end_trans:
6a912213 5528 dput(old_parent);
4a500fd1 5529 if (ret < 0) {
0b246afa 5530 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5531 ret = 1;
5532 }
8b050d35
MX
5533
5534 if (ret)
5535 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5536 btrfs_end_log_trans(root);
5537end_no_trans:
5538 return ret;
e02119d5
CM
5539}
5540
5541/*
5542 * it is not safe to log dentry if the chunk root has added new
5543 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5544 * If this returns 1, you must commit the transaction to safely get your
5545 * data on disk.
5546 */
5547int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5548 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5549 const loff_t start,
5550 const loff_t end,
8b050d35 5551 struct btrfs_log_ctx *ctx)
e02119d5 5552{
6a912213
JB
5553 struct dentry *parent = dget_parent(dentry);
5554 int ret;
5555
2b0143b5 5556 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
49dae1bc 5557 start, end, 0, ctx);
6a912213
JB
5558 dput(parent);
5559
5560 return ret;
e02119d5
CM
5561}
5562
5563/*
5564 * should be called during mount to recover any replay any log trees
5565 * from the FS
5566 */
5567int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5568{
5569 int ret;
5570 struct btrfs_path *path;
5571 struct btrfs_trans_handle *trans;
5572 struct btrfs_key key;
5573 struct btrfs_key found_key;
5574 struct btrfs_key tmp_key;
5575 struct btrfs_root *log;
5576 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5577 struct walk_control wc = {
5578 .process_func = process_one_buffer,
5579 .stage = 0,
5580 };
5581
e02119d5 5582 path = btrfs_alloc_path();
db5b493a
TI
5583 if (!path)
5584 return -ENOMEM;
5585
afcdd129 5586 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5587
4a500fd1 5588 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5589 if (IS_ERR(trans)) {
5590 ret = PTR_ERR(trans);
5591 goto error;
5592 }
e02119d5
CM
5593
5594 wc.trans = trans;
5595 wc.pin = 1;
5596
db5b493a 5597 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5598 if (ret) {
5d163e0e
JM
5599 btrfs_handle_fs_error(fs_info, ret,
5600 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5601 goto error;
5602 }
e02119d5
CM
5603
5604again:
5605 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5606 key.offset = (u64)-1;
962a298f 5607 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5608
d397712b 5609 while (1) {
e02119d5 5610 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5611
5612 if (ret < 0) {
34d97007 5613 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5614 "Couldn't find tree log root.");
5615 goto error;
5616 }
e02119d5
CM
5617 if (ret > 0) {
5618 if (path->slots[0] == 0)
5619 break;
5620 path->slots[0]--;
5621 }
5622 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5623 path->slots[0]);
b3b4aa74 5624 btrfs_release_path(path);
e02119d5
CM
5625 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5626 break;
5627
cb517eab 5628 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5629 if (IS_ERR(log)) {
5630 ret = PTR_ERR(log);
34d97007 5631 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5632 "Couldn't read tree log root.");
5633 goto error;
5634 }
e02119d5
CM
5635
5636 tmp_key.objectid = found_key.offset;
5637 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5638 tmp_key.offset = (u64)-1;
5639
5640 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5641 if (IS_ERR(wc.replay_dest)) {
5642 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5643 free_extent_buffer(log->node);
5644 free_extent_buffer(log->commit_root);
5645 kfree(log);
5d163e0e
JM
5646 btrfs_handle_fs_error(fs_info, ret,
5647 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5648 goto error;
5649 }
e02119d5 5650
07d400a6 5651 wc.replay_dest->log_root = log;
5d4f98a2 5652 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5653 ret = walk_log_tree(trans, log, &wc);
e02119d5 5654
b50c6e25 5655 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5656 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5657 path);
e02119d5
CM
5658 }
5659
5660 key.offset = found_key.offset - 1;
07d400a6 5661 wc.replay_dest->log_root = NULL;
e02119d5 5662 free_extent_buffer(log->node);
b263c2c8 5663 free_extent_buffer(log->commit_root);
e02119d5
CM
5664 kfree(log);
5665
b50c6e25
JB
5666 if (ret)
5667 goto error;
5668
e02119d5
CM
5669 if (found_key.offset == 0)
5670 break;
5671 }
b3b4aa74 5672 btrfs_release_path(path);
e02119d5
CM
5673
5674 /* step one is to pin it all, step two is to replay just inodes */
5675 if (wc.pin) {
5676 wc.pin = 0;
5677 wc.process_func = replay_one_buffer;
5678 wc.stage = LOG_WALK_REPLAY_INODES;
5679 goto again;
5680 }
5681 /* step three is to replay everything */
5682 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5683 wc.stage++;
5684 goto again;
5685 }
5686
5687 btrfs_free_path(path);
5688
abefa55a
JB
5689 /* step 4: commit the transaction, which also unpins the blocks */
5690 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5691 if (ret)
5692 return ret;
5693
e02119d5
CM
5694 free_extent_buffer(log_root_tree->node);
5695 log_root_tree->log_root = NULL;
afcdd129 5696 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5697 kfree(log_root_tree);
79787eaa 5698
abefa55a 5699 return 0;
79787eaa 5700error:
b50c6e25
JB
5701 if (wc.trans)
5702 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
5703 btrfs_free_path(path);
5704 return ret;
e02119d5 5705}
12fcfd22
CM
5706
5707/*
5708 * there are some corner cases where we want to force a full
5709 * commit instead of allowing a directory to be logged.
5710 *
5711 * They revolve around files there were unlinked from the directory, and
5712 * this function updates the parent directory so that a full commit is
5713 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5714 *
5715 * Must be called before the unlink operations (updates to the subvolume tree,
5716 * inodes, etc) are done.
12fcfd22
CM
5717 */
5718void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5719 struct inode *dir, struct inode *inode,
5720 int for_rename)
5721{
af4176b4
CM
5722 /*
5723 * when we're logging a file, if it hasn't been renamed
5724 * or unlinked, and its inode is fully committed on disk,
5725 * we don't have to worry about walking up the directory chain
5726 * to log its parents.
5727 *
5728 * So, we use the last_unlink_trans field to put this transid
5729 * into the file. When the file is logged we check it and
5730 * don't log the parents if the file is fully on disk.
5731 */
657ed1aa
FM
5732 mutex_lock(&BTRFS_I(inode)->log_mutex);
5733 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5734 mutex_unlock(&BTRFS_I(inode)->log_mutex);
af4176b4 5735
12fcfd22
CM
5736 /*
5737 * if this directory was already logged any new
5738 * names for this file/dir will get recorded
5739 */
5740 smp_mb();
5741 if (BTRFS_I(dir)->logged_trans == trans->transid)
5742 return;
5743
5744 /*
5745 * if the inode we're about to unlink was logged,
5746 * the log will be properly updated for any new names
5747 */
5748 if (BTRFS_I(inode)->logged_trans == trans->transid)
5749 return;
5750
5751 /*
5752 * when renaming files across directories, if the directory
5753 * there we're unlinking from gets fsync'd later on, there's
5754 * no way to find the destination directory later and fsync it
5755 * properly. So, we have to be conservative and force commits
5756 * so the new name gets discovered.
5757 */
5758 if (for_rename)
5759 goto record;
5760
5761 /* we can safely do the unlink without any special recording */
5762 return;
5763
5764record:
2be63d5c 5765 mutex_lock(&BTRFS_I(dir)->log_mutex);
12fcfd22 5766 BTRFS_I(dir)->last_unlink_trans = trans->transid;
2be63d5c 5767 mutex_unlock(&BTRFS_I(dir)->log_mutex);
1ec9a1ae
FM
5768}
5769
5770/*
5771 * Make sure that if someone attempts to fsync the parent directory of a deleted
5772 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5773 * that after replaying the log tree of the parent directory's root we will not
5774 * see the snapshot anymore and at log replay time we will not see any log tree
5775 * corresponding to the deleted snapshot's root, which could lead to replaying
5776 * it after replaying the log tree of the parent directory (which would replay
5777 * the snapshot delete operation).
2be63d5c
FM
5778 *
5779 * Must be called before the actual snapshot destroy operation (updates to the
5780 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
5781 */
5782void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5783 struct inode *dir)
5784{
2be63d5c 5785 mutex_lock(&BTRFS_I(dir)->log_mutex);
1ec9a1ae 5786 BTRFS_I(dir)->last_unlink_trans = trans->transid;
2be63d5c 5787 mutex_unlock(&BTRFS_I(dir)->log_mutex);
12fcfd22
CM
5788}
5789
5790/*
5791 * Call this after adding a new name for a file and it will properly
5792 * update the log to reflect the new name.
5793 *
5794 * It will return zero if all goes well, and it will return 1 if a
5795 * full transaction commit is required.
5796 */
5797int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5798 struct inode *inode, struct inode *old_dir,
5799 struct dentry *parent)
5800{
0b246afa 5801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
12fcfd22
CM
5802 struct btrfs_root * root = BTRFS_I(inode)->root;
5803
af4176b4
CM
5804 /*
5805 * this will force the logging code to walk the dentry chain
5806 * up for the file
5807 */
5808 if (S_ISREG(inode->i_mode))
5809 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5810
12fcfd22
CM
5811 /*
5812 * if this inode hasn't been logged and directory we're renaming it
5813 * from hasn't been logged, we don't need to log it
5814 */
5815 if (BTRFS_I(inode)->logged_trans <=
0b246afa 5816 fs_info->last_trans_committed &&
12fcfd22 5817 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
0b246afa 5818 fs_info->last_trans_committed))
12fcfd22
CM
5819 return 0;
5820
49dae1bc
FM
5821 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5822 LLONG_MAX, 1, NULL);
12fcfd22
CM
5823}
5824
This page took 1.276059 seconds and 4 git commands to generate.