]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
9a840895 | 48 | #include <linux/ksm.h> |
1da177e4 LT |
49 | #include <linux/rmap.h> |
50 | #include <linux/module.h> | |
0ff92245 | 51 | #include <linux/delayacct.h> |
1da177e4 | 52 | #include <linux/init.h> |
edc79b2a | 53 | #include <linux/writeback.h> |
8a9f3ccd | 54 | #include <linux/memcontrol.h> |
cddb8a5c | 55 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
56 | #include <linux/kallsyms.h> |
57 | #include <linux/swapops.h> | |
58 | #include <linux/elf.h> | |
1da177e4 | 59 | |
6952b61d | 60 | #include <asm/io.h> |
1da177e4 LT |
61 | #include <asm/pgalloc.h> |
62 | #include <asm/uaccess.h> | |
63 | #include <asm/tlb.h> | |
64 | #include <asm/tlbflush.h> | |
65 | #include <asm/pgtable.h> | |
66 | ||
42b77728 JB |
67 | #include "internal.h" |
68 | ||
d41dee36 | 69 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
70 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
71 | unsigned long max_mapnr; | |
72 | struct page *mem_map; | |
73 | ||
74 | EXPORT_SYMBOL(max_mapnr); | |
75 | EXPORT_SYMBOL(mem_map); | |
76 | #endif | |
77 | ||
78 | unsigned long num_physpages; | |
79 | /* | |
80 | * A number of key systems in x86 including ioremap() rely on the assumption | |
81 | * that high_memory defines the upper bound on direct map memory, then end | |
82 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
83 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
84 | * and ZONE_HIGHMEM. | |
85 | */ | |
86 | void * high_memory; | |
1da177e4 LT |
87 | |
88 | EXPORT_SYMBOL(num_physpages); | |
89 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 90 | |
32a93233 IM |
91 | /* |
92 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
93 | * | |
94 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
95 | * as ancient (libc5 based) binaries can segfault. ) | |
96 | */ | |
97 | int randomize_va_space __read_mostly = | |
98 | #ifdef CONFIG_COMPAT_BRK | |
99 | 1; | |
100 | #else | |
101 | 2; | |
102 | #endif | |
a62eaf15 AK |
103 | |
104 | static int __init disable_randmaps(char *s) | |
105 | { | |
106 | randomize_va_space = 0; | |
9b41046c | 107 | return 1; |
a62eaf15 AK |
108 | } |
109 | __setup("norandmaps", disable_randmaps); | |
110 | ||
62eede62 | 111 | unsigned long zero_pfn __read_mostly; |
03f6462a | 112 | unsigned long highest_memmap_pfn __read_mostly; |
a13ea5b7 HD |
113 | |
114 | /* | |
115 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
116 | */ | |
117 | static int __init init_zero_pfn(void) | |
118 | { | |
119 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
120 | return 0; | |
121 | } | |
122 | core_initcall(init_zero_pfn); | |
a62eaf15 | 123 | |
1da177e4 LT |
124 | /* |
125 | * If a p?d_bad entry is found while walking page tables, report | |
126 | * the error, before resetting entry to p?d_none. Usually (but | |
127 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
128 | */ | |
129 | ||
130 | void pgd_clear_bad(pgd_t *pgd) | |
131 | { | |
132 | pgd_ERROR(*pgd); | |
133 | pgd_clear(pgd); | |
134 | } | |
135 | ||
136 | void pud_clear_bad(pud_t *pud) | |
137 | { | |
138 | pud_ERROR(*pud); | |
139 | pud_clear(pud); | |
140 | } | |
141 | ||
142 | void pmd_clear_bad(pmd_t *pmd) | |
143 | { | |
144 | pmd_ERROR(*pmd); | |
145 | pmd_clear(pmd); | |
146 | } | |
147 | ||
148 | /* | |
149 | * Note: this doesn't free the actual pages themselves. That | |
150 | * has been handled earlier when unmapping all the memory regions. | |
151 | */ | |
9e1b32ca BH |
152 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
153 | unsigned long addr) | |
1da177e4 | 154 | { |
2f569afd | 155 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 156 | pmd_clear(pmd); |
9e1b32ca | 157 | pte_free_tlb(tlb, token, addr); |
e0da382c | 158 | tlb->mm->nr_ptes--; |
1da177e4 LT |
159 | } |
160 | ||
e0da382c HD |
161 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
162 | unsigned long addr, unsigned long end, | |
163 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
164 | { |
165 | pmd_t *pmd; | |
166 | unsigned long next; | |
e0da382c | 167 | unsigned long start; |
1da177e4 | 168 | |
e0da382c | 169 | start = addr; |
1da177e4 | 170 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
171 | do { |
172 | next = pmd_addr_end(addr, end); | |
173 | if (pmd_none_or_clear_bad(pmd)) | |
174 | continue; | |
9e1b32ca | 175 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
176 | } while (pmd++, addr = next, addr != end); |
177 | ||
e0da382c HD |
178 | start &= PUD_MASK; |
179 | if (start < floor) | |
180 | return; | |
181 | if (ceiling) { | |
182 | ceiling &= PUD_MASK; | |
183 | if (!ceiling) | |
184 | return; | |
1da177e4 | 185 | } |
e0da382c HD |
186 | if (end - 1 > ceiling - 1) |
187 | return; | |
188 | ||
189 | pmd = pmd_offset(pud, start); | |
190 | pud_clear(pud); | |
9e1b32ca | 191 | pmd_free_tlb(tlb, pmd, start); |
1da177e4 LT |
192 | } |
193 | ||
e0da382c HD |
194 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
195 | unsigned long addr, unsigned long end, | |
196 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
197 | { |
198 | pud_t *pud; | |
199 | unsigned long next; | |
e0da382c | 200 | unsigned long start; |
1da177e4 | 201 | |
e0da382c | 202 | start = addr; |
1da177e4 | 203 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
204 | do { |
205 | next = pud_addr_end(addr, end); | |
206 | if (pud_none_or_clear_bad(pud)) | |
207 | continue; | |
e0da382c | 208 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
209 | } while (pud++, addr = next, addr != end); |
210 | ||
e0da382c HD |
211 | start &= PGDIR_MASK; |
212 | if (start < floor) | |
213 | return; | |
214 | if (ceiling) { | |
215 | ceiling &= PGDIR_MASK; | |
216 | if (!ceiling) | |
217 | return; | |
1da177e4 | 218 | } |
e0da382c HD |
219 | if (end - 1 > ceiling - 1) |
220 | return; | |
221 | ||
222 | pud = pud_offset(pgd, start); | |
223 | pgd_clear(pgd); | |
9e1b32ca | 224 | pud_free_tlb(tlb, pud, start); |
1da177e4 LT |
225 | } |
226 | ||
227 | /* | |
e0da382c HD |
228 | * This function frees user-level page tables of a process. |
229 | * | |
1da177e4 LT |
230 | * Must be called with pagetable lock held. |
231 | */ | |
42b77728 | 232 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
233 | unsigned long addr, unsigned long end, |
234 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
235 | { |
236 | pgd_t *pgd; | |
237 | unsigned long next; | |
e0da382c HD |
238 | unsigned long start; |
239 | ||
240 | /* | |
241 | * The next few lines have given us lots of grief... | |
242 | * | |
243 | * Why are we testing PMD* at this top level? Because often | |
244 | * there will be no work to do at all, and we'd prefer not to | |
245 | * go all the way down to the bottom just to discover that. | |
246 | * | |
247 | * Why all these "- 1"s? Because 0 represents both the bottom | |
248 | * of the address space and the top of it (using -1 for the | |
249 | * top wouldn't help much: the masks would do the wrong thing). | |
250 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
251 | * the address space, but end 0 and ceiling 0 refer to the top | |
252 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
253 | * that end 0 case should be mythical). | |
254 | * | |
255 | * Wherever addr is brought up or ceiling brought down, we must | |
256 | * be careful to reject "the opposite 0" before it confuses the | |
257 | * subsequent tests. But what about where end is brought down | |
258 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
259 | * | |
260 | * Whereas we round start (addr) and ceiling down, by different | |
261 | * masks at different levels, in order to test whether a table | |
262 | * now has no other vmas using it, so can be freed, we don't | |
263 | * bother to round floor or end up - the tests don't need that. | |
264 | */ | |
1da177e4 | 265 | |
e0da382c HD |
266 | addr &= PMD_MASK; |
267 | if (addr < floor) { | |
268 | addr += PMD_SIZE; | |
269 | if (!addr) | |
270 | return; | |
271 | } | |
272 | if (ceiling) { | |
273 | ceiling &= PMD_MASK; | |
274 | if (!ceiling) | |
275 | return; | |
276 | } | |
277 | if (end - 1 > ceiling - 1) | |
278 | end -= PMD_SIZE; | |
279 | if (addr > end - 1) | |
280 | return; | |
281 | ||
282 | start = addr; | |
42b77728 | 283 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
284 | do { |
285 | next = pgd_addr_end(addr, end); | |
286 | if (pgd_none_or_clear_bad(pgd)) | |
287 | continue; | |
42b77728 | 288 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 289 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
290 | } |
291 | ||
42b77728 | 292 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 293 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
294 | { |
295 | while (vma) { | |
296 | struct vm_area_struct *next = vma->vm_next; | |
297 | unsigned long addr = vma->vm_start; | |
298 | ||
8f4f8c16 | 299 | /* |
25d9e2d1 NP |
300 | * Hide vma from rmap and truncate_pagecache before freeing |
301 | * pgtables | |
8f4f8c16 HD |
302 | */ |
303 | anon_vma_unlink(vma); | |
304 | unlink_file_vma(vma); | |
305 | ||
9da61aef | 306 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 307 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 308 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
309 | } else { |
310 | /* | |
311 | * Optimization: gather nearby vmas into one call down | |
312 | */ | |
313 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 314 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
315 | vma = next; |
316 | next = vma->vm_next; | |
8f4f8c16 HD |
317 | anon_vma_unlink(vma); |
318 | unlink_file_vma(vma); | |
3bf5ee95 HD |
319 | } |
320 | free_pgd_range(tlb, addr, vma->vm_end, | |
321 | floor, next? next->vm_start: ceiling); | |
322 | } | |
e0da382c HD |
323 | vma = next; |
324 | } | |
1da177e4 LT |
325 | } |
326 | ||
1bb3630e | 327 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 328 | { |
2f569afd | 329 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
330 | if (!new) |
331 | return -ENOMEM; | |
332 | ||
362a61ad NP |
333 | /* |
334 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
335 | * visible before the pte is made visible to other CPUs by being | |
336 | * put into page tables. | |
337 | * | |
338 | * The other side of the story is the pointer chasing in the page | |
339 | * table walking code (when walking the page table without locking; | |
340 | * ie. most of the time). Fortunately, these data accesses consist | |
341 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
342 | * being the notable exception) will already guarantee loads are | |
343 | * seen in-order. See the alpha page table accessors for the | |
344 | * smp_read_barrier_depends() barriers in page table walking code. | |
345 | */ | |
346 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
347 | ||
c74df32c | 348 | spin_lock(&mm->page_table_lock); |
2f569afd | 349 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1da177e4 | 350 | mm->nr_ptes++; |
1da177e4 | 351 | pmd_populate(mm, pmd, new); |
2f569afd | 352 | new = NULL; |
1da177e4 | 353 | } |
c74df32c | 354 | spin_unlock(&mm->page_table_lock); |
2f569afd MS |
355 | if (new) |
356 | pte_free(mm, new); | |
1bb3630e | 357 | return 0; |
1da177e4 LT |
358 | } |
359 | ||
1bb3630e | 360 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 361 | { |
1bb3630e HD |
362 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
363 | if (!new) | |
364 | return -ENOMEM; | |
365 | ||
362a61ad NP |
366 | smp_wmb(); /* See comment in __pte_alloc */ |
367 | ||
1bb3630e | 368 | spin_lock(&init_mm.page_table_lock); |
2f569afd | 369 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1bb3630e | 370 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd MS |
371 | new = NULL; |
372 | } | |
1bb3630e | 373 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
374 | if (new) |
375 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 376 | return 0; |
1da177e4 LT |
377 | } |
378 | ||
ae859762 HD |
379 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
380 | { | |
381 | if (file_rss) | |
382 | add_mm_counter(mm, file_rss, file_rss); | |
383 | if (anon_rss) | |
384 | add_mm_counter(mm, anon_rss, anon_rss); | |
385 | } | |
386 | ||
b5810039 | 387 | /* |
6aab341e LT |
388 | * This function is called to print an error when a bad pte |
389 | * is found. For example, we might have a PFN-mapped pte in | |
390 | * a region that doesn't allow it. | |
b5810039 NP |
391 | * |
392 | * The calling function must still handle the error. | |
393 | */ | |
3dc14741 HD |
394 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
395 | pte_t pte, struct page *page) | |
b5810039 | 396 | { |
3dc14741 HD |
397 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
398 | pud_t *pud = pud_offset(pgd, addr); | |
399 | pmd_t *pmd = pmd_offset(pud, addr); | |
400 | struct address_space *mapping; | |
401 | pgoff_t index; | |
d936cf9b HD |
402 | static unsigned long resume; |
403 | static unsigned long nr_shown; | |
404 | static unsigned long nr_unshown; | |
405 | ||
406 | /* | |
407 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
408 | * or allow a steady drip of one report per second. | |
409 | */ | |
410 | if (nr_shown == 60) { | |
411 | if (time_before(jiffies, resume)) { | |
412 | nr_unshown++; | |
413 | return; | |
414 | } | |
415 | if (nr_unshown) { | |
1e9e6365 HD |
416 | printk(KERN_ALERT |
417 | "BUG: Bad page map: %lu messages suppressed\n", | |
d936cf9b HD |
418 | nr_unshown); |
419 | nr_unshown = 0; | |
420 | } | |
421 | nr_shown = 0; | |
422 | } | |
423 | if (nr_shown++ == 0) | |
424 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
425 | |
426 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
427 | index = linear_page_index(vma, addr); | |
428 | ||
1e9e6365 HD |
429 | printk(KERN_ALERT |
430 | "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", | |
3dc14741 HD |
431 | current->comm, |
432 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
433 | if (page) { | |
1e9e6365 | 434 | printk(KERN_ALERT |
3dc14741 HD |
435 | "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", |
436 | page, (void *)page->flags, page_count(page), | |
437 | page_mapcount(page), page->mapping, page->index); | |
438 | } | |
1e9e6365 | 439 | printk(KERN_ALERT |
3dc14741 HD |
440 | "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
441 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
442 | /* | |
443 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | |
444 | */ | |
445 | if (vma->vm_ops) | |
1e9e6365 | 446 | print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", |
3dc14741 HD |
447 | (unsigned long)vma->vm_ops->fault); |
448 | if (vma->vm_file && vma->vm_file->f_op) | |
1e9e6365 | 449 | print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", |
3dc14741 | 450 | (unsigned long)vma->vm_file->f_op->mmap); |
b5810039 | 451 | dump_stack(); |
3dc14741 | 452 | add_taint(TAINT_BAD_PAGE); |
b5810039 NP |
453 | } |
454 | ||
67121172 LT |
455 | static inline int is_cow_mapping(unsigned int flags) |
456 | { | |
457 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
458 | } | |
459 | ||
62eede62 HD |
460 | #ifndef is_zero_pfn |
461 | static inline int is_zero_pfn(unsigned long pfn) | |
462 | { | |
463 | return pfn == zero_pfn; | |
464 | } | |
465 | #endif | |
466 | ||
467 | #ifndef my_zero_pfn | |
468 | static inline unsigned long my_zero_pfn(unsigned long addr) | |
469 | { | |
470 | return zero_pfn; | |
471 | } | |
472 | #endif | |
473 | ||
ee498ed7 | 474 | /* |
7e675137 | 475 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 476 | * |
7e675137 NP |
477 | * "Special" mappings do not wish to be associated with a "struct page" (either |
478 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
479 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 480 | * |
7e675137 NP |
481 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
482 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
483 | * may not have a spare pte bit, which requires a more complicated scheme, | |
484 | * described below. | |
485 | * | |
486 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
487 | * special mapping (even if there are underlying and valid "struct pages"). | |
488 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 489 | * |
b379d790 JH |
490 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
491 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
492 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
493 | * mapping will always honor the rule | |
6aab341e LT |
494 | * |
495 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
496 | * | |
7e675137 NP |
497 | * And for normal mappings this is false. |
498 | * | |
499 | * This restricts such mappings to be a linear translation from virtual address | |
500 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
501 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
502 | * special (because none can have been COWed). | |
b379d790 | 503 | * |
b379d790 | 504 | * |
7e675137 | 505 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
506 | * |
507 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
508 | * page" backing, however the difference is that _all_ pages with a struct | |
509 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
510 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
511 | * (which can be slower and simply not an option for some PFNMAP users). The | |
512 | * advantage is that we don't have to follow the strict linearity rule of | |
513 | * PFNMAP mappings in order to support COWable mappings. | |
514 | * | |
ee498ed7 | 515 | */ |
7e675137 NP |
516 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
517 | # define HAVE_PTE_SPECIAL 1 | |
518 | #else | |
519 | # define HAVE_PTE_SPECIAL 0 | |
520 | #endif | |
521 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
522 | pte_t pte) | |
ee498ed7 | 523 | { |
22b31eec | 524 | unsigned long pfn = pte_pfn(pte); |
7e675137 NP |
525 | |
526 | if (HAVE_PTE_SPECIAL) { | |
22b31eec HD |
527 | if (likely(!pte_special(pte))) |
528 | goto check_pfn; | |
a13ea5b7 HD |
529 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
530 | return NULL; | |
62eede62 | 531 | if (!is_zero_pfn(pfn)) |
22b31eec | 532 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
533 | return NULL; |
534 | } | |
535 | ||
536 | /* !HAVE_PTE_SPECIAL case follows: */ | |
537 | ||
b379d790 JH |
538 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
539 | if (vma->vm_flags & VM_MIXEDMAP) { | |
540 | if (!pfn_valid(pfn)) | |
541 | return NULL; | |
542 | goto out; | |
543 | } else { | |
7e675137 NP |
544 | unsigned long off; |
545 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
546 | if (pfn == vma->vm_pgoff + off) |
547 | return NULL; | |
548 | if (!is_cow_mapping(vma->vm_flags)) | |
549 | return NULL; | |
550 | } | |
6aab341e LT |
551 | } |
552 | ||
62eede62 HD |
553 | if (is_zero_pfn(pfn)) |
554 | return NULL; | |
22b31eec HD |
555 | check_pfn: |
556 | if (unlikely(pfn > highest_memmap_pfn)) { | |
557 | print_bad_pte(vma, addr, pte, NULL); | |
558 | return NULL; | |
559 | } | |
6aab341e LT |
560 | |
561 | /* | |
7e675137 | 562 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 563 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 564 | */ |
b379d790 | 565 | out: |
6aab341e | 566 | return pfn_to_page(pfn); |
ee498ed7 HD |
567 | } |
568 | ||
1da177e4 LT |
569 | /* |
570 | * copy one vm_area from one task to the other. Assumes the page tables | |
571 | * already present in the new task to be cleared in the whole range | |
572 | * covered by this vma. | |
1da177e4 LT |
573 | */ |
574 | ||
570a335b | 575 | static inline unsigned long |
1da177e4 | 576 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 577 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 578 | unsigned long addr, int *rss) |
1da177e4 | 579 | { |
b5810039 | 580 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
581 | pte_t pte = *src_pte; |
582 | struct page *page; | |
1da177e4 LT |
583 | |
584 | /* pte contains position in swap or file, so copy. */ | |
585 | if (unlikely(!pte_present(pte))) { | |
586 | if (!pte_file(pte)) { | |
0697212a CL |
587 | swp_entry_t entry = pte_to_swp_entry(pte); |
588 | ||
570a335b HD |
589 | if (swap_duplicate(entry) < 0) |
590 | return entry.val; | |
591 | ||
1da177e4 LT |
592 | /* make sure dst_mm is on swapoff's mmlist. */ |
593 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
594 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
595 | if (list_empty(&dst_mm->mmlist)) |
596 | list_add(&dst_mm->mmlist, | |
597 | &src_mm->mmlist); | |
1da177e4 LT |
598 | spin_unlock(&mmlist_lock); |
599 | } | |
0697212a CL |
600 | if (is_write_migration_entry(entry) && |
601 | is_cow_mapping(vm_flags)) { | |
602 | /* | |
603 | * COW mappings require pages in both parent | |
604 | * and child to be set to read. | |
605 | */ | |
606 | make_migration_entry_read(&entry); | |
607 | pte = swp_entry_to_pte(entry); | |
608 | set_pte_at(src_mm, addr, src_pte, pte); | |
609 | } | |
1da177e4 | 610 | } |
ae859762 | 611 | goto out_set_pte; |
1da177e4 LT |
612 | } |
613 | ||
1da177e4 LT |
614 | /* |
615 | * If it's a COW mapping, write protect it both | |
616 | * in the parent and the child | |
617 | */ | |
67121172 | 618 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 619 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 620 | pte = pte_wrprotect(pte); |
1da177e4 LT |
621 | } |
622 | ||
623 | /* | |
624 | * If it's a shared mapping, mark it clean in | |
625 | * the child | |
626 | */ | |
627 | if (vm_flags & VM_SHARED) | |
628 | pte = pte_mkclean(pte); | |
629 | pte = pte_mkold(pte); | |
6aab341e LT |
630 | |
631 | page = vm_normal_page(vma, addr, pte); | |
632 | if (page) { | |
633 | get_page(page); | |
21333b2b | 634 | page_dup_rmap(page); |
b7c46d15 | 635 | rss[PageAnon(page)]++; |
6aab341e | 636 | } |
ae859762 HD |
637 | |
638 | out_set_pte: | |
639 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
570a335b | 640 | return 0; |
1da177e4 LT |
641 | } |
642 | ||
643 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
644 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
645 | unsigned long addr, unsigned long end) | |
646 | { | |
c36987e2 | 647 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 648 | pte_t *src_pte, *dst_pte; |
c74df32c | 649 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 650 | int progress = 0; |
8c103762 | 651 | int rss[2]; |
570a335b | 652 | swp_entry_t entry = (swp_entry_t){0}; |
1da177e4 LT |
653 | |
654 | again: | |
ae859762 | 655 | rss[1] = rss[0] = 0; |
c74df32c | 656 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
657 | if (!dst_pte) |
658 | return -ENOMEM; | |
659 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 660 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 661 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
662 | orig_src_pte = src_pte; |
663 | orig_dst_pte = dst_pte; | |
6606c3e0 | 664 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 665 | |
1da177e4 LT |
666 | do { |
667 | /* | |
668 | * We are holding two locks at this point - either of them | |
669 | * could generate latencies in another task on another CPU. | |
670 | */ | |
e040f218 HD |
671 | if (progress >= 32) { |
672 | progress = 0; | |
673 | if (need_resched() || | |
95c354fe | 674 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
675 | break; |
676 | } | |
1da177e4 LT |
677 | if (pte_none(*src_pte)) { |
678 | progress++; | |
679 | continue; | |
680 | } | |
570a335b HD |
681 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
682 | vma, addr, rss); | |
683 | if (entry.val) | |
684 | break; | |
1da177e4 LT |
685 | progress += 8; |
686 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 687 | |
6606c3e0 | 688 | arch_leave_lazy_mmu_mode(); |
c74df32c | 689 | spin_unlock(src_ptl); |
c36987e2 | 690 | pte_unmap_nested(orig_src_pte); |
ae859762 | 691 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c36987e2 | 692 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 693 | cond_resched(); |
570a335b HD |
694 | |
695 | if (entry.val) { | |
696 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | |
697 | return -ENOMEM; | |
698 | progress = 0; | |
699 | } | |
1da177e4 LT |
700 | if (addr != end) |
701 | goto again; | |
702 | return 0; | |
703 | } | |
704 | ||
705 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
706 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
707 | unsigned long addr, unsigned long end) | |
708 | { | |
709 | pmd_t *src_pmd, *dst_pmd; | |
710 | unsigned long next; | |
711 | ||
712 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
713 | if (!dst_pmd) | |
714 | return -ENOMEM; | |
715 | src_pmd = pmd_offset(src_pud, addr); | |
716 | do { | |
717 | next = pmd_addr_end(addr, end); | |
718 | if (pmd_none_or_clear_bad(src_pmd)) | |
719 | continue; | |
720 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
721 | vma, addr, next)) | |
722 | return -ENOMEM; | |
723 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
724 | return 0; | |
725 | } | |
726 | ||
727 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
728 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
729 | unsigned long addr, unsigned long end) | |
730 | { | |
731 | pud_t *src_pud, *dst_pud; | |
732 | unsigned long next; | |
733 | ||
734 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
735 | if (!dst_pud) | |
736 | return -ENOMEM; | |
737 | src_pud = pud_offset(src_pgd, addr); | |
738 | do { | |
739 | next = pud_addr_end(addr, end); | |
740 | if (pud_none_or_clear_bad(src_pud)) | |
741 | continue; | |
742 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
743 | vma, addr, next)) | |
744 | return -ENOMEM; | |
745 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
746 | return 0; | |
747 | } | |
748 | ||
749 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
750 | struct vm_area_struct *vma) | |
751 | { | |
752 | pgd_t *src_pgd, *dst_pgd; | |
753 | unsigned long next; | |
754 | unsigned long addr = vma->vm_start; | |
755 | unsigned long end = vma->vm_end; | |
cddb8a5c | 756 | int ret; |
1da177e4 | 757 | |
d992895b NP |
758 | /* |
759 | * Don't copy ptes where a page fault will fill them correctly. | |
760 | * Fork becomes much lighter when there are big shared or private | |
761 | * readonly mappings. The tradeoff is that copy_page_range is more | |
762 | * efficient than faulting. | |
763 | */ | |
4d7672b4 | 764 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
765 | if (!vma->anon_vma) |
766 | return 0; | |
767 | } | |
768 | ||
1da177e4 LT |
769 | if (is_vm_hugetlb_page(vma)) |
770 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
771 | ||
34801ba9 | 772 | if (unlikely(is_pfn_mapping(vma))) { |
2ab64037 | 773 | /* |
774 | * We do not free on error cases below as remove_vma | |
775 | * gets called on error from higher level routine | |
776 | */ | |
777 | ret = track_pfn_vma_copy(vma); | |
778 | if (ret) | |
779 | return ret; | |
780 | } | |
781 | ||
cddb8a5c AA |
782 | /* |
783 | * We need to invalidate the secondary MMU mappings only when | |
784 | * there could be a permission downgrade on the ptes of the | |
785 | * parent mm. And a permission downgrade will only happen if | |
786 | * is_cow_mapping() returns true. | |
787 | */ | |
788 | if (is_cow_mapping(vma->vm_flags)) | |
789 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | |
790 | ||
791 | ret = 0; | |
1da177e4 LT |
792 | dst_pgd = pgd_offset(dst_mm, addr); |
793 | src_pgd = pgd_offset(src_mm, addr); | |
794 | do { | |
795 | next = pgd_addr_end(addr, end); | |
796 | if (pgd_none_or_clear_bad(src_pgd)) | |
797 | continue; | |
cddb8a5c AA |
798 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
799 | vma, addr, next))) { | |
800 | ret = -ENOMEM; | |
801 | break; | |
802 | } | |
1da177e4 | 803 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c AA |
804 | |
805 | if (is_cow_mapping(vma->vm_flags)) | |
806 | mmu_notifier_invalidate_range_end(src_mm, | |
807 | vma->vm_start, end); | |
808 | return ret; | |
1da177e4 LT |
809 | } |
810 | ||
51c6f666 | 811 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 812 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 813 | unsigned long addr, unsigned long end, |
51c6f666 | 814 | long *zap_work, struct zap_details *details) |
1da177e4 | 815 | { |
b5810039 | 816 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 817 | pte_t *pte; |
508034a3 | 818 | spinlock_t *ptl; |
ae859762 HD |
819 | int file_rss = 0; |
820 | int anon_rss = 0; | |
1da177e4 | 821 | |
508034a3 | 822 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 823 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
824 | do { |
825 | pte_t ptent = *pte; | |
51c6f666 RH |
826 | if (pte_none(ptent)) { |
827 | (*zap_work)--; | |
1da177e4 | 828 | continue; |
51c6f666 | 829 | } |
6f5e6b9e HD |
830 | |
831 | (*zap_work) -= PAGE_SIZE; | |
832 | ||
1da177e4 | 833 | if (pte_present(ptent)) { |
ee498ed7 | 834 | struct page *page; |
51c6f666 | 835 | |
6aab341e | 836 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
837 | if (unlikely(details) && page) { |
838 | /* | |
839 | * unmap_shared_mapping_pages() wants to | |
840 | * invalidate cache without truncating: | |
841 | * unmap shared but keep private pages. | |
842 | */ | |
843 | if (details->check_mapping && | |
844 | details->check_mapping != page->mapping) | |
845 | continue; | |
846 | /* | |
847 | * Each page->index must be checked when | |
848 | * invalidating or truncating nonlinear. | |
849 | */ | |
850 | if (details->nonlinear_vma && | |
851 | (page->index < details->first_index || | |
852 | page->index > details->last_index)) | |
853 | continue; | |
854 | } | |
b5810039 | 855 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 856 | tlb->fullmm); |
1da177e4 LT |
857 | tlb_remove_tlb_entry(tlb, pte, addr); |
858 | if (unlikely(!page)) | |
859 | continue; | |
860 | if (unlikely(details) && details->nonlinear_vma | |
861 | && linear_page_index(details->nonlinear_vma, | |
862 | addr) != page->index) | |
b5810039 | 863 | set_pte_at(mm, addr, pte, |
1da177e4 | 864 | pgoff_to_pte(page->index)); |
1da177e4 | 865 | if (PageAnon(page)) |
86d912f4 | 866 | anon_rss--; |
6237bcd9 HD |
867 | else { |
868 | if (pte_dirty(ptent)) | |
869 | set_page_dirty(page); | |
4917e5d0 JW |
870 | if (pte_young(ptent) && |
871 | likely(!VM_SequentialReadHint(vma))) | |
bf3f3bc5 | 872 | mark_page_accessed(page); |
86d912f4 | 873 | file_rss--; |
6237bcd9 | 874 | } |
edc315fd | 875 | page_remove_rmap(page); |
3dc14741 HD |
876 | if (unlikely(page_mapcount(page) < 0)) |
877 | print_bad_pte(vma, addr, ptent, page); | |
1da177e4 LT |
878 | tlb_remove_page(tlb, page); |
879 | continue; | |
880 | } | |
881 | /* | |
882 | * If details->check_mapping, we leave swap entries; | |
883 | * if details->nonlinear_vma, we leave file entries. | |
884 | */ | |
885 | if (unlikely(details)) | |
886 | continue; | |
2509ef26 HD |
887 | if (pte_file(ptent)) { |
888 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) | |
889 | print_bad_pte(vma, addr, ptent, NULL); | |
890 | } else if | |
891 | (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) | |
892 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 893 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 894 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 895 | |
86d912f4 | 896 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 897 | arch_leave_lazy_mmu_mode(); |
508034a3 | 898 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
899 | |
900 | return addr; | |
1da177e4 LT |
901 | } |
902 | ||
51c6f666 | 903 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 904 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 905 | unsigned long addr, unsigned long end, |
51c6f666 | 906 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
907 | { |
908 | pmd_t *pmd; | |
909 | unsigned long next; | |
910 | ||
911 | pmd = pmd_offset(pud, addr); | |
912 | do { | |
913 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
914 | if (pmd_none_or_clear_bad(pmd)) { |
915 | (*zap_work)--; | |
1da177e4 | 916 | continue; |
51c6f666 RH |
917 | } |
918 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
919 | zap_work, details); | |
920 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
921 | ||
922 | return addr; | |
1da177e4 LT |
923 | } |
924 | ||
51c6f666 | 925 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 926 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 927 | unsigned long addr, unsigned long end, |
51c6f666 | 928 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
929 | { |
930 | pud_t *pud; | |
931 | unsigned long next; | |
932 | ||
933 | pud = pud_offset(pgd, addr); | |
934 | do { | |
935 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
936 | if (pud_none_or_clear_bad(pud)) { |
937 | (*zap_work)--; | |
1da177e4 | 938 | continue; |
51c6f666 RH |
939 | } |
940 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
941 | zap_work, details); | |
942 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
943 | ||
944 | return addr; | |
1da177e4 LT |
945 | } |
946 | ||
51c6f666 RH |
947 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
948 | struct vm_area_struct *vma, | |
1da177e4 | 949 | unsigned long addr, unsigned long end, |
51c6f666 | 950 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
951 | { |
952 | pgd_t *pgd; | |
953 | unsigned long next; | |
954 | ||
955 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
956 | details = NULL; | |
957 | ||
958 | BUG_ON(addr >= end); | |
569b846d | 959 | mem_cgroup_uncharge_start(); |
1da177e4 LT |
960 | tlb_start_vma(tlb, vma); |
961 | pgd = pgd_offset(vma->vm_mm, addr); | |
962 | do { | |
963 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
964 | if (pgd_none_or_clear_bad(pgd)) { |
965 | (*zap_work)--; | |
1da177e4 | 966 | continue; |
51c6f666 RH |
967 | } |
968 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
969 | zap_work, details); | |
970 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 971 | tlb_end_vma(tlb, vma); |
569b846d | 972 | mem_cgroup_uncharge_end(); |
51c6f666 RH |
973 | |
974 | return addr; | |
1da177e4 LT |
975 | } |
976 | ||
977 | #ifdef CONFIG_PREEMPT | |
978 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
979 | #else | |
980 | /* No preempt: go for improved straight-line efficiency */ | |
981 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
982 | #endif | |
983 | ||
984 | /** | |
985 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
986 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
987 | * @vma: the starting vma |
988 | * @start_addr: virtual address at which to start unmapping | |
989 | * @end_addr: virtual address at which to end unmapping | |
990 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
991 | * @details: details of nonlinear truncation or shared cache invalidation | |
992 | * | |
ee39b37b | 993 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 994 | * |
508034a3 | 995 | * Unmap all pages in the vma list. |
1da177e4 | 996 | * |
508034a3 HD |
997 | * We aim to not hold locks for too long (for scheduling latency reasons). |
998 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
999 | * return the ending mmu_gather to the caller. |
1000 | * | |
1001 | * Only addresses between `start' and `end' will be unmapped. | |
1002 | * | |
1003 | * The VMA list must be sorted in ascending virtual address order. | |
1004 | * | |
1005 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1006 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1007 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1008 | * drops the lock and schedules. | |
1009 | */ | |
508034a3 | 1010 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
1011 | struct vm_area_struct *vma, unsigned long start_addr, |
1012 | unsigned long end_addr, unsigned long *nr_accounted, | |
1013 | struct zap_details *details) | |
1014 | { | |
51c6f666 | 1015 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
1016 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
1017 | int tlb_start_valid = 0; | |
ee39b37b | 1018 | unsigned long start = start_addr; |
1da177e4 | 1019 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 1020 | int fullmm = (*tlbp)->fullmm; |
cddb8a5c | 1021 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1022 | |
cddb8a5c | 1023 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
1da177e4 | 1024 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
1da177e4 LT |
1025 | unsigned long end; |
1026 | ||
1027 | start = max(vma->vm_start, start_addr); | |
1028 | if (start >= vma->vm_end) | |
1029 | continue; | |
1030 | end = min(vma->vm_end, end_addr); | |
1031 | if (end <= vma->vm_start) | |
1032 | continue; | |
1033 | ||
1034 | if (vma->vm_flags & VM_ACCOUNT) | |
1035 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
1036 | ||
34801ba9 | 1037 | if (unlikely(is_pfn_mapping(vma))) |
2ab64037 | 1038 | untrack_pfn_vma(vma, 0, 0); |
1039 | ||
1da177e4 | 1040 | while (start != end) { |
1da177e4 LT |
1041 | if (!tlb_start_valid) { |
1042 | tlb_start = start; | |
1043 | tlb_start_valid = 1; | |
1044 | } | |
1045 | ||
51c6f666 | 1046 | if (unlikely(is_vm_hugetlb_page(vma))) { |
a137e1cc AK |
1047 | /* |
1048 | * It is undesirable to test vma->vm_file as it | |
1049 | * should be non-null for valid hugetlb area. | |
1050 | * However, vm_file will be NULL in the error | |
1051 | * cleanup path of do_mmap_pgoff. When | |
1052 | * hugetlbfs ->mmap method fails, | |
1053 | * do_mmap_pgoff() nullifies vma->vm_file | |
1054 | * before calling this function to clean up. | |
1055 | * Since no pte has actually been setup, it is | |
1056 | * safe to do nothing in this case. | |
1057 | */ | |
1058 | if (vma->vm_file) { | |
1059 | unmap_hugepage_range(vma, start, end, NULL); | |
1060 | zap_work -= (end - start) / | |
a5516438 | 1061 | pages_per_huge_page(hstate_vma(vma)); |
a137e1cc AK |
1062 | } |
1063 | ||
51c6f666 RH |
1064 | start = end; |
1065 | } else | |
1066 | start = unmap_page_range(*tlbp, vma, | |
1067 | start, end, &zap_work, details); | |
1068 | ||
1069 | if (zap_work > 0) { | |
1070 | BUG_ON(start != end); | |
1071 | break; | |
1da177e4 LT |
1072 | } |
1073 | ||
1da177e4 LT |
1074 | tlb_finish_mmu(*tlbp, tlb_start, start); |
1075 | ||
1076 | if (need_resched() || | |
95c354fe | 1077 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1da177e4 | 1078 | if (i_mmap_lock) { |
508034a3 | 1079 | *tlbp = NULL; |
1da177e4 LT |
1080 | goto out; |
1081 | } | |
1da177e4 | 1082 | cond_resched(); |
1da177e4 LT |
1083 | } |
1084 | ||
508034a3 | 1085 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 1086 | tlb_start_valid = 0; |
51c6f666 | 1087 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
1088 | } |
1089 | } | |
1090 | out: | |
cddb8a5c | 1091 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
ee39b37b | 1092 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
1093 | } |
1094 | ||
1095 | /** | |
1096 | * zap_page_range - remove user pages in a given range | |
1097 | * @vma: vm_area_struct holding the applicable pages | |
1098 | * @address: starting address of pages to zap | |
1099 | * @size: number of bytes to zap | |
1100 | * @details: details of nonlinear truncation or shared cache invalidation | |
1101 | */ | |
ee39b37b | 1102 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1103 | unsigned long size, struct zap_details *details) |
1104 | { | |
1105 | struct mm_struct *mm = vma->vm_mm; | |
1106 | struct mmu_gather *tlb; | |
1107 | unsigned long end = address + size; | |
1108 | unsigned long nr_accounted = 0; | |
1109 | ||
1da177e4 | 1110 | lru_add_drain(); |
1da177e4 | 1111 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 1112 | update_hiwater_rss(mm); |
508034a3 HD |
1113 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
1114 | if (tlb) | |
1115 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 1116 | return end; |
1da177e4 LT |
1117 | } |
1118 | ||
c627f9cc JS |
1119 | /** |
1120 | * zap_vma_ptes - remove ptes mapping the vma | |
1121 | * @vma: vm_area_struct holding ptes to be zapped | |
1122 | * @address: starting address of pages to zap | |
1123 | * @size: number of bytes to zap | |
1124 | * | |
1125 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1126 | * | |
1127 | * The entire address range must be fully contained within the vma. | |
1128 | * | |
1129 | * Returns 0 if successful. | |
1130 | */ | |
1131 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1132 | unsigned long size) | |
1133 | { | |
1134 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1135 | !(vma->vm_flags & VM_PFNMAP)) | |
1136 | return -1; | |
1137 | zap_page_range(vma, address, size, NULL); | |
1138 | return 0; | |
1139 | } | |
1140 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1141 | ||
1da177e4 LT |
1142 | /* |
1143 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 1144 | */ |
6aab341e | 1145 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 1146 | unsigned int flags) |
1da177e4 LT |
1147 | { |
1148 | pgd_t *pgd; | |
1149 | pud_t *pud; | |
1150 | pmd_t *pmd; | |
1151 | pte_t *ptep, pte; | |
deceb6cd | 1152 | spinlock_t *ptl; |
1da177e4 | 1153 | struct page *page; |
6aab341e | 1154 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1155 | |
deceb6cd HD |
1156 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
1157 | if (!IS_ERR(page)) { | |
1158 | BUG_ON(flags & FOLL_GET); | |
1159 | goto out; | |
1160 | } | |
1da177e4 | 1161 | |
deceb6cd | 1162 | page = NULL; |
1da177e4 LT |
1163 | pgd = pgd_offset(mm, address); |
1164 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 1165 | goto no_page_table; |
1da177e4 LT |
1166 | |
1167 | pud = pud_offset(pgd, address); | |
ceb86879 | 1168 | if (pud_none(*pud)) |
deceb6cd | 1169 | goto no_page_table; |
ceb86879 AK |
1170 | if (pud_huge(*pud)) { |
1171 | BUG_ON(flags & FOLL_GET); | |
1172 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | |
1173 | goto out; | |
1174 | } | |
1175 | if (unlikely(pud_bad(*pud))) | |
1176 | goto no_page_table; | |
1177 | ||
1da177e4 | 1178 | pmd = pmd_offset(pud, address); |
aeed5fce | 1179 | if (pmd_none(*pmd)) |
deceb6cd | 1180 | goto no_page_table; |
deceb6cd HD |
1181 | if (pmd_huge(*pmd)) { |
1182 | BUG_ON(flags & FOLL_GET); | |
1183 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 1184 | goto out; |
deceb6cd | 1185 | } |
aeed5fce HD |
1186 | if (unlikely(pmd_bad(*pmd))) |
1187 | goto no_page_table; | |
1188 | ||
deceb6cd | 1189 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1190 | |
1191 | pte = *ptep; | |
deceb6cd | 1192 | if (!pte_present(pte)) |
89f5b7da | 1193 | goto no_page; |
deceb6cd HD |
1194 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1195 | goto unlock; | |
a13ea5b7 | 1196 | |
6aab341e | 1197 | page = vm_normal_page(vma, address, pte); |
a13ea5b7 HD |
1198 | if (unlikely(!page)) { |
1199 | if ((flags & FOLL_DUMP) || | |
62eede62 | 1200 | !is_zero_pfn(pte_pfn(pte))) |
a13ea5b7 HD |
1201 | goto bad_page; |
1202 | page = pte_page(pte); | |
1203 | } | |
1da177e4 | 1204 | |
deceb6cd HD |
1205 | if (flags & FOLL_GET) |
1206 | get_page(page); | |
1207 | if (flags & FOLL_TOUCH) { | |
1208 | if ((flags & FOLL_WRITE) && | |
1209 | !pte_dirty(pte) && !PageDirty(page)) | |
1210 | set_page_dirty(page); | |
bd775c42 KM |
1211 | /* |
1212 | * pte_mkyoung() would be more correct here, but atomic care | |
1213 | * is needed to avoid losing the dirty bit: it is easier to use | |
1214 | * mark_page_accessed(). | |
1215 | */ | |
deceb6cd HD |
1216 | mark_page_accessed(page); |
1217 | } | |
1218 | unlock: | |
1219 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 1220 | out: |
deceb6cd | 1221 | return page; |
1da177e4 | 1222 | |
89f5b7da LT |
1223 | bad_page: |
1224 | pte_unmap_unlock(ptep, ptl); | |
1225 | return ERR_PTR(-EFAULT); | |
1226 | ||
1227 | no_page: | |
1228 | pte_unmap_unlock(ptep, ptl); | |
1229 | if (!pte_none(pte)) | |
1230 | return page; | |
8e4b9a60 | 1231 | |
deceb6cd HD |
1232 | no_page_table: |
1233 | /* | |
1234 | * When core dumping an enormous anonymous area that nobody | |
8e4b9a60 HD |
1235 | * has touched so far, we don't want to allocate unnecessary pages or |
1236 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
1237 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
1238 | * But we can only make this optimization where a hole would surely | |
1239 | * be zero-filled if handle_mm_fault() actually did handle it. | |
deceb6cd | 1240 | */ |
8e4b9a60 HD |
1241 | if ((flags & FOLL_DUMP) && |
1242 | (!vma->vm_ops || !vma->vm_ops->fault)) | |
1243 | return ERR_PTR(-EFAULT); | |
deceb6cd | 1244 | return page; |
1da177e4 LT |
1245 | } |
1246 | ||
b291f000 | 1247 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
58fa879e | 1248 | unsigned long start, int nr_pages, unsigned int gup_flags, |
9d73777e | 1249 | struct page **pages, struct vm_area_struct **vmas) |
1da177e4 LT |
1250 | { |
1251 | int i; | |
58fa879e | 1252 | unsigned long vm_flags; |
1da177e4 | 1253 | |
9d73777e | 1254 | if (nr_pages <= 0) |
900cf086 | 1255 | return 0; |
58fa879e HD |
1256 | |
1257 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); | |
1258 | ||
1da177e4 LT |
1259 | /* |
1260 | * Require read or write permissions. | |
58fa879e | 1261 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
1da177e4 | 1262 | */ |
58fa879e HD |
1263 | vm_flags = (gup_flags & FOLL_WRITE) ? |
1264 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1265 | vm_flags &= (gup_flags & FOLL_FORCE) ? | |
1266 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
1267 | i = 0; |
1268 | ||
1269 | do { | |
deceb6cd | 1270 | struct vm_area_struct *vma; |
1da177e4 LT |
1271 | |
1272 | vma = find_extend_vma(mm, start); | |
1273 | if (!vma && in_gate_area(tsk, start)) { | |
1274 | unsigned long pg = start & PAGE_MASK; | |
1275 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1276 | pgd_t *pgd; | |
1277 | pud_t *pud; | |
1278 | pmd_t *pmd; | |
1279 | pte_t *pte; | |
b291f000 NP |
1280 | |
1281 | /* user gate pages are read-only */ | |
58fa879e | 1282 | if (gup_flags & FOLL_WRITE) |
1da177e4 LT |
1283 | return i ? : -EFAULT; |
1284 | if (pg > TASK_SIZE) | |
1285 | pgd = pgd_offset_k(pg); | |
1286 | else | |
1287 | pgd = pgd_offset_gate(mm, pg); | |
1288 | BUG_ON(pgd_none(*pgd)); | |
1289 | pud = pud_offset(pgd, pg); | |
1290 | BUG_ON(pud_none(*pud)); | |
1291 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1292 | if (pmd_none(*pmd)) |
1293 | return i ? : -EFAULT; | |
1da177e4 | 1294 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1295 | if (pte_none(*pte)) { |
1296 | pte_unmap(pte); | |
1297 | return i ? : -EFAULT; | |
1298 | } | |
1da177e4 | 1299 | if (pages) { |
fa2a455b | 1300 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1301 | pages[i] = page; |
1302 | if (page) | |
1303 | get_page(page); | |
1da177e4 LT |
1304 | } |
1305 | pte_unmap(pte); | |
1306 | if (vmas) | |
1307 | vmas[i] = gate_vma; | |
1308 | i++; | |
1309 | start += PAGE_SIZE; | |
9d73777e | 1310 | nr_pages--; |
1da177e4 LT |
1311 | continue; |
1312 | } | |
1313 | ||
b291f000 NP |
1314 | if (!vma || |
1315 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1c3aff1c | 1316 | !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
1317 | return i ? : -EFAULT; |
1318 | ||
2a15efc9 HD |
1319 | if (is_vm_hugetlb_page(vma)) { |
1320 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
58fa879e | 1321 | &start, &nr_pages, i, gup_flags); |
2a15efc9 HD |
1322 | continue; |
1323 | } | |
deceb6cd | 1324 | |
1da177e4 | 1325 | do { |
08ef4729 | 1326 | struct page *page; |
58fa879e | 1327 | unsigned int foll_flags = gup_flags; |
1da177e4 | 1328 | |
462e00cc | 1329 | /* |
4779280d | 1330 | * If we have a pending SIGKILL, don't keep faulting |
1c3aff1c | 1331 | * pages and potentially allocating memory. |
462e00cc | 1332 | */ |
1c3aff1c | 1333 | if (unlikely(fatal_signal_pending(current))) |
4779280d | 1334 | return i ? i : -ERESTARTSYS; |
462e00cc | 1335 | |
deceb6cd | 1336 | cond_resched(); |
6aab341e | 1337 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1338 | int ret; |
d06063cc | 1339 | |
d26ed650 HD |
1340 | ret = handle_mm_fault(mm, vma, start, |
1341 | (foll_flags & FOLL_WRITE) ? | |
1342 | FAULT_FLAG_WRITE : 0); | |
1343 | ||
83c54070 NP |
1344 | if (ret & VM_FAULT_ERROR) { |
1345 | if (ret & VM_FAULT_OOM) | |
1346 | return i ? i : -ENOMEM; | |
d1737fdb AK |
1347 | if (ret & |
1348 | (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) | |
83c54070 NP |
1349 | return i ? i : -EFAULT; |
1350 | BUG(); | |
1351 | } | |
1352 | if (ret & VM_FAULT_MAJOR) | |
1353 | tsk->maj_flt++; | |
1354 | else | |
1355 | tsk->min_flt++; | |
1356 | ||
a68d2ebc | 1357 | /* |
83c54070 NP |
1358 | * The VM_FAULT_WRITE bit tells us that |
1359 | * do_wp_page has broken COW when necessary, | |
1360 | * even if maybe_mkwrite decided not to set | |
1361 | * pte_write. We can thus safely do subsequent | |
878b63ac HD |
1362 | * page lookups as if they were reads. But only |
1363 | * do so when looping for pte_write is futile: | |
1364 | * in some cases userspace may also be wanting | |
1365 | * to write to the gotten user page, which a | |
1366 | * read fault here might prevent (a readonly | |
1367 | * page might get reCOWed by userspace write). | |
a68d2ebc | 1368 | */ |
878b63ac HD |
1369 | if ((ret & VM_FAULT_WRITE) && |
1370 | !(vma->vm_flags & VM_WRITE)) | |
deceb6cd | 1371 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1372 | |
7f7bbbe5 | 1373 | cond_resched(); |
1da177e4 | 1374 | } |
89f5b7da LT |
1375 | if (IS_ERR(page)) |
1376 | return i ? i : PTR_ERR(page); | |
1da177e4 | 1377 | if (pages) { |
08ef4729 | 1378 | pages[i] = page; |
03beb076 | 1379 | |
a6f36be3 | 1380 | flush_anon_page(vma, page, start); |
08ef4729 | 1381 | flush_dcache_page(page); |
1da177e4 LT |
1382 | } |
1383 | if (vmas) | |
1384 | vmas[i] = vma; | |
1385 | i++; | |
1386 | start += PAGE_SIZE; | |
9d73777e PZ |
1387 | nr_pages--; |
1388 | } while (nr_pages && start < vma->vm_end); | |
1389 | } while (nr_pages); | |
1da177e4 LT |
1390 | return i; |
1391 | } | |
b291f000 | 1392 | |
d2bf6be8 NP |
1393 | /** |
1394 | * get_user_pages() - pin user pages in memory | |
1395 | * @tsk: task_struct of target task | |
1396 | * @mm: mm_struct of target mm | |
1397 | * @start: starting user address | |
9d73777e | 1398 | * @nr_pages: number of pages from start to pin |
d2bf6be8 NP |
1399 | * @write: whether pages will be written to by the caller |
1400 | * @force: whether to force write access even if user mapping is | |
1401 | * readonly. This will result in the page being COWed even | |
1402 | * in MAP_SHARED mappings. You do not want this. | |
1403 | * @pages: array that receives pointers to the pages pinned. | |
1404 | * Should be at least nr_pages long. Or NULL, if caller | |
1405 | * only intends to ensure the pages are faulted in. | |
1406 | * @vmas: array of pointers to vmas corresponding to each page. | |
1407 | * Or NULL if the caller does not require them. | |
1408 | * | |
1409 | * Returns number of pages pinned. This may be fewer than the number | |
9d73777e | 1410 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
d2bf6be8 NP |
1411 | * were pinned, returns -errno. Each page returned must be released |
1412 | * with a put_page() call when it is finished with. vmas will only | |
1413 | * remain valid while mmap_sem is held. | |
1414 | * | |
1415 | * Must be called with mmap_sem held for read or write. | |
1416 | * | |
1417 | * get_user_pages walks a process's page tables and takes a reference to | |
1418 | * each struct page that each user address corresponds to at a given | |
1419 | * instant. That is, it takes the page that would be accessed if a user | |
1420 | * thread accesses the given user virtual address at that instant. | |
1421 | * | |
1422 | * This does not guarantee that the page exists in the user mappings when | |
1423 | * get_user_pages returns, and there may even be a completely different | |
1424 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1425 | * and subsequently re faulted). However it does guarantee that the page | |
1426 | * won't be freed completely. And mostly callers simply care that the page | |
1427 | * contains data that was valid *at some point in time*. Typically, an IO | |
1428 | * or similar operation cannot guarantee anything stronger anyway because | |
1429 | * locks can't be held over the syscall boundary. | |
1430 | * | |
1431 | * If write=0, the page must not be written to. If the page is written to, | |
1432 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | |
1433 | * after the page is finished with, and before put_page is called. | |
1434 | * | |
1435 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1436 | * handle on the memory by some means other than accesses via the user virtual | |
1437 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1438 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1439 | * use the correct cache flushing APIs. | |
1440 | * | |
1441 | * See also get_user_pages_fast, for performance critical applications. | |
1442 | */ | |
b291f000 | 1443 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
9d73777e | 1444 | unsigned long start, int nr_pages, int write, int force, |
b291f000 NP |
1445 | struct page **pages, struct vm_area_struct **vmas) |
1446 | { | |
58fa879e | 1447 | int flags = FOLL_TOUCH; |
b291f000 | 1448 | |
58fa879e HD |
1449 | if (pages) |
1450 | flags |= FOLL_GET; | |
b291f000 | 1451 | if (write) |
58fa879e | 1452 | flags |= FOLL_WRITE; |
b291f000 | 1453 | if (force) |
58fa879e | 1454 | flags |= FOLL_FORCE; |
b291f000 | 1455 | |
9d73777e | 1456 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); |
b291f000 | 1457 | } |
1da177e4 LT |
1458 | EXPORT_SYMBOL(get_user_pages); |
1459 | ||
f3e8fccd HD |
1460 | /** |
1461 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1462 | * @addr: user address | |
1463 | * | |
1464 | * Returns struct page pointer of user page pinned for dump, | |
1465 | * to be freed afterwards by page_cache_release() or put_page(). | |
1466 | * | |
1467 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1468 | * the corefile, to preserve alignment with its headers; and also returns | |
1469 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1470 | * allowing a hole to be left in the corefile to save diskspace. | |
1471 | * | |
1472 | * Called without mmap_sem, but after all other threads have been killed. | |
1473 | */ | |
1474 | #ifdef CONFIG_ELF_CORE | |
1475 | struct page *get_dump_page(unsigned long addr) | |
1476 | { | |
1477 | struct vm_area_struct *vma; | |
1478 | struct page *page; | |
1479 | ||
1480 | if (__get_user_pages(current, current->mm, addr, 1, | |
58fa879e | 1481 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) |
f3e8fccd | 1482 | return NULL; |
f3e8fccd HD |
1483 | flush_cache_page(vma, addr, page_to_pfn(page)); |
1484 | return page; | |
1485 | } | |
1486 | #endif /* CONFIG_ELF_CORE */ | |
1487 | ||
920c7a5d HH |
1488 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1489 | spinlock_t **ptl) | |
c9cfcddf LT |
1490 | { |
1491 | pgd_t * pgd = pgd_offset(mm, addr); | |
1492 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1493 | if (pud) { | |
49c91fb0 | 1494 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1495 | if (pmd) |
1496 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1497 | } | |
1498 | return NULL; | |
1499 | } | |
1500 | ||
238f58d8 LT |
1501 | /* |
1502 | * This is the old fallback for page remapping. | |
1503 | * | |
1504 | * For historical reasons, it only allows reserved pages. Only | |
1505 | * old drivers should use this, and they needed to mark their | |
1506 | * pages reserved for the old functions anyway. | |
1507 | */ | |
423bad60 NP |
1508 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1509 | struct page *page, pgprot_t prot) | |
238f58d8 | 1510 | { |
423bad60 | 1511 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1512 | int retval; |
c9cfcddf | 1513 | pte_t *pte; |
8a9f3ccd BS |
1514 | spinlock_t *ptl; |
1515 | ||
238f58d8 | 1516 | retval = -EINVAL; |
a145dd41 | 1517 | if (PageAnon(page)) |
5b4e655e | 1518 | goto out; |
238f58d8 LT |
1519 | retval = -ENOMEM; |
1520 | flush_dcache_page(page); | |
c9cfcddf | 1521 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1522 | if (!pte) |
5b4e655e | 1523 | goto out; |
238f58d8 LT |
1524 | retval = -EBUSY; |
1525 | if (!pte_none(*pte)) | |
1526 | goto out_unlock; | |
1527 | ||
1528 | /* Ok, finally just insert the thing.. */ | |
1529 | get_page(page); | |
1530 | inc_mm_counter(mm, file_rss); | |
1531 | page_add_file_rmap(page); | |
1532 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1533 | ||
1534 | retval = 0; | |
8a9f3ccd BS |
1535 | pte_unmap_unlock(pte, ptl); |
1536 | return retval; | |
238f58d8 LT |
1537 | out_unlock: |
1538 | pte_unmap_unlock(pte, ptl); | |
1539 | out: | |
1540 | return retval; | |
1541 | } | |
1542 | ||
bfa5bf6d REB |
1543 | /** |
1544 | * vm_insert_page - insert single page into user vma | |
1545 | * @vma: user vma to map to | |
1546 | * @addr: target user address of this page | |
1547 | * @page: source kernel page | |
1548 | * | |
a145dd41 LT |
1549 | * This allows drivers to insert individual pages they've allocated |
1550 | * into a user vma. | |
1551 | * | |
1552 | * The page has to be a nice clean _individual_ kernel allocation. | |
1553 | * If you allocate a compound page, you need to have marked it as | |
1554 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1555 | * (see split_page()). |
a145dd41 LT |
1556 | * |
1557 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1558 | * took an arbitrary page protection parameter. This doesn't allow | |
1559 | * that. Your vma protection will have to be set up correctly, which | |
1560 | * means that if you want a shared writable mapping, you'd better | |
1561 | * ask for a shared writable mapping! | |
1562 | * | |
1563 | * The page does not need to be reserved. | |
1564 | */ | |
423bad60 NP |
1565 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1566 | struct page *page) | |
a145dd41 LT |
1567 | { |
1568 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1569 | return -EFAULT; | |
1570 | if (!page_count(page)) | |
1571 | return -EINVAL; | |
4d7672b4 | 1572 | vma->vm_flags |= VM_INSERTPAGE; |
423bad60 | 1573 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1574 | } |
e3c3374f | 1575 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1576 | |
423bad60 NP |
1577 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1578 | unsigned long pfn, pgprot_t prot) | |
1579 | { | |
1580 | struct mm_struct *mm = vma->vm_mm; | |
1581 | int retval; | |
1582 | pte_t *pte, entry; | |
1583 | spinlock_t *ptl; | |
1584 | ||
1585 | retval = -ENOMEM; | |
1586 | pte = get_locked_pte(mm, addr, &ptl); | |
1587 | if (!pte) | |
1588 | goto out; | |
1589 | retval = -EBUSY; | |
1590 | if (!pte_none(*pte)) | |
1591 | goto out_unlock; | |
1592 | ||
1593 | /* Ok, finally just insert the thing.. */ | |
1594 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | |
1595 | set_pte_at(mm, addr, pte, entry); | |
1596 | update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ | |
1597 | ||
1598 | retval = 0; | |
1599 | out_unlock: | |
1600 | pte_unmap_unlock(pte, ptl); | |
1601 | out: | |
1602 | return retval; | |
1603 | } | |
1604 | ||
e0dc0d8f NP |
1605 | /** |
1606 | * vm_insert_pfn - insert single pfn into user vma | |
1607 | * @vma: user vma to map to | |
1608 | * @addr: target user address of this page | |
1609 | * @pfn: source kernel pfn | |
1610 | * | |
1611 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1612 | * they've allocated into a user vma. Same comments apply. | |
1613 | * | |
1614 | * This function should only be called from a vm_ops->fault handler, and | |
1615 | * in that case the handler should return NULL. | |
0d71d10a NP |
1616 | * |
1617 | * vma cannot be a COW mapping. | |
1618 | * | |
1619 | * As this is called only for pages that do not currently exist, we | |
1620 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1621 | */ |
1622 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1623 | unsigned long pfn) |
e0dc0d8f | 1624 | { |
2ab64037 | 1625 | int ret; |
e4b866ed | 1626 | pgprot_t pgprot = vma->vm_page_prot; |
7e675137 NP |
1627 | /* |
1628 | * Technically, architectures with pte_special can avoid all these | |
1629 | * restrictions (same for remap_pfn_range). However we would like | |
1630 | * consistency in testing and feature parity among all, so we should | |
1631 | * try to keep these invariants in place for everybody. | |
1632 | */ | |
b379d790 JH |
1633 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1634 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1635 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1636 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1637 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1638 | |
423bad60 NP |
1639 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1640 | return -EFAULT; | |
e4b866ed | 1641 | if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) |
2ab64037 | 1642 | return -EINVAL; |
1643 | ||
e4b866ed | 1644 | ret = insert_pfn(vma, addr, pfn, pgprot); |
2ab64037 | 1645 | |
1646 | if (ret) | |
1647 | untrack_pfn_vma(vma, pfn, PAGE_SIZE); | |
1648 | ||
1649 | return ret; | |
423bad60 NP |
1650 | } |
1651 | EXPORT_SYMBOL(vm_insert_pfn); | |
e0dc0d8f | 1652 | |
423bad60 NP |
1653 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1654 | unsigned long pfn) | |
1655 | { | |
1656 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1657 | |
423bad60 NP |
1658 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1659 | return -EFAULT; | |
e0dc0d8f | 1660 | |
423bad60 NP |
1661 | /* |
1662 | * If we don't have pte special, then we have to use the pfn_valid() | |
1663 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1664 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
1665 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1666 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 NP |
1667 | */ |
1668 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | |
1669 | struct page *page; | |
1670 | ||
1671 | page = pfn_to_page(pfn); | |
1672 | return insert_page(vma, addr, page, vma->vm_page_prot); | |
1673 | } | |
1674 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1675 | } |
423bad60 | 1676 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1677 | |
1da177e4 LT |
1678 | /* |
1679 | * maps a range of physical memory into the requested pages. the old | |
1680 | * mappings are removed. any references to nonexistent pages results | |
1681 | * in null mappings (currently treated as "copy-on-access") | |
1682 | */ | |
1683 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1684 | unsigned long addr, unsigned long end, | |
1685 | unsigned long pfn, pgprot_t prot) | |
1686 | { | |
1687 | pte_t *pte; | |
c74df32c | 1688 | spinlock_t *ptl; |
1da177e4 | 1689 | |
c74df32c | 1690 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1691 | if (!pte) |
1692 | return -ENOMEM; | |
6606c3e0 | 1693 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1694 | do { |
1695 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1696 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1697 | pfn++; |
1698 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1699 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1700 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1701 | return 0; |
1702 | } | |
1703 | ||
1704 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1705 | unsigned long addr, unsigned long end, | |
1706 | unsigned long pfn, pgprot_t prot) | |
1707 | { | |
1708 | pmd_t *pmd; | |
1709 | unsigned long next; | |
1710 | ||
1711 | pfn -= addr >> PAGE_SHIFT; | |
1712 | pmd = pmd_alloc(mm, pud, addr); | |
1713 | if (!pmd) | |
1714 | return -ENOMEM; | |
1715 | do { | |
1716 | next = pmd_addr_end(addr, end); | |
1717 | if (remap_pte_range(mm, pmd, addr, next, | |
1718 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1719 | return -ENOMEM; | |
1720 | } while (pmd++, addr = next, addr != end); | |
1721 | return 0; | |
1722 | } | |
1723 | ||
1724 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1725 | unsigned long addr, unsigned long end, | |
1726 | unsigned long pfn, pgprot_t prot) | |
1727 | { | |
1728 | pud_t *pud; | |
1729 | unsigned long next; | |
1730 | ||
1731 | pfn -= addr >> PAGE_SHIFT; | |
1732 | pud = pud_alloc(mm, pgd, addr); | |
1733 | if (!pud) | |
1734 | return -ENOMEM; | |
1735 | do { | |
1736 | next = pud_addr_end(addr, end); | |
1737 | if (remap_pmd_range(mm, pud, addr, next, | |
1738 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1739 | return -ENOMEM; | |
1740 | } while (pud++, addr = next, addr != end); | |
1741 | return 0; | |
1742 | } | |
1743 | ||
bfa5bf6d REB |
1744 | /** |
1745 | * remap_pfn_range - remap kernel memory to userspace | |
1746 | * @vma: user vma to map to | |
1747 | * @addr: target user address to start at | |
1748 | * @pfn: physical address of kernel memory | |
1749 | * @size: size of map area | |
1750 | * @prot: page protection flags for this mapping | |
1751 | * | |
1752 | * Note: this is only safe if the mm semaphore is held when called. | |
1753 | */ | |
1da177e4 LT |
1754 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1755 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1756 | { | |
1757 | pgd_t *pgd; | |
1758 | unsigned long next; | |
2d15cab8 | 1759 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1760 | struct mm_struct *mm = vma->vm_mm; |
1761 | int err; | |
1762 | ||
1763 | /* | |
1764 | * Physically remapped pages are special. Tell the | |
1765 | * rest of the world about it: | |
1766 | * VM_IO tells people not to look at these pages | |
1767 | * (accesses can have side effects). | |
0b14c179 HD |
1768 | * VM_RESERVED is specified all over the place, because |
1769 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1770 | * in 2.6 the LRU scan won't even find its pages, so this | |
1771 | * flag means no more than count its pages in reserved_vm, | |
1772 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1773 | * VM_PFNMAP tells the core MM that the base pages are just |
1774 | * raw PFN mappings, and do not have a "struct page" associated | |
1775 | * with them. | |
fb155c16 LT |
1776 | * |
1777 | * There's a horrible special case to handle copy-on-write | |
1778 | * behaviour that some programs depend on. We mark the "original" | |
1779 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1780 | */ |
4bb9c5c0 | 1781 | if (addr == vma->vm_start && end == vma->vm_end) { |
fb155c16 | 1782 | vma->vm_pgoff = pfn; |
895791da | 1783 | vma->vm_flags |= VM_PFN_AT_MMAP; |
4bb9c5c0 | 1784 | } else if (is_cow_mapping(vma->vm_flags)) |
3c8bb73a | 1785 | return -EINVAL; |
fb155c16 | 1786 | |
6aab341e | 1787 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 | 1788 | |
e4b866ed | 1789 | err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); |
a3670613 | 1790 | if (err) { |
1791 | /* | |
1792 | * To indicate that track_pfn related cleanup is not | |
1793 | * needed from higher level routine calling unmap_vmas | |
1794 | */ | |
1795 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | |
895791da | 1796 | vma->vm_flags &= ~VM_PFN_AT_MMAP; |
2ab64037 | 1797 | return -EINVAL; |
a3670613 | 1798 | } |
2ab64037 | 1799 | |
1da177e4 LT |
1800 | BUG_ON(addr >= end); |
1801 | pfn -= addr >> PAGE_SHIFT; | |
1802 | pgd = pgd_offset(mm, addr); | |
1803 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1804 | do { |
1805 | next = pgd_addr_end(addr, end); | |
1806 | err = remap_pud_range(mm, pgd, addr, next, | |
1807 | pfn + (addr >> PAGE_SHIFT), prot); | |
1808 | if (err) | |
1809 | break; | |
1810 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1811 | |
1812 | if (err) | |
1813 | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | |
1814 | ||
1da177e4 LT |
1815 | return err; |
1816 | } | |
1817 | EXPORT_SYMBOL(remap_pfn_range); | |
1818 | ||
aee16b3c JF |
1819 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1820 | unsigned long addr, unsigned long end, | |
1821 | pte_fn_t fn, void *data) | |
1822 | { | |
1823 | pte_t *pte; | |
1824 | int err; | |
2f569afd | 1825 | pgtable_t token; |
94909914 | 1826 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1827 | |
1828 | pte = (mm == &init_mm) ? | |
1829 | pte_alloc_kernel(pmd, addr) : | |
1830 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1831 | if (!pte) | |
1832 | return -ENOMEM; | |
1833 | ||
1834 | BUG_ON(pmd_huge(*pmd)); | |
1835 | ||
38e0edb1 JF |
1836 | arch_enter_lazy_mmu_mode(); |
1837 | ||
2f569afd | 1838 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1839 | |
1840 | do { | |
c36987e2 | 1841 | err = fn(pte++, token, addr, data); |
aee16b3c JF |
1842 | if (err) |
1843 | break; | |
c36987e2 | 1844 | } while (addr += PAGE_SIZE, addr != end); |
aee16b3c | 1845 | |
38e0edb1 JF |
1846 | arch_leave_lazy_mmu_mode(); |
1847 | ||
aee16b3c JF |
1848 | if (mm != &init_mm) |
1849 | pte_unmap_unlock(pte-1, ptl); | |
1850 | return err; | |
1851 | } | |
1852 | ||
1853 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1854 | unsigned long addr, unsigned long end, | |
1855 | pte_fn_t fn, void *data) | |
1856 | { | |
1857 | pmd_t *pmd; | |
1858 | unsigned long next; | |
1859 | int err; | |
1860 | ||
ceb86879 AK |
1861 | BUG_ON(pud_huge(*pud)); |
1862 | ||
aee16b3c JF |
1863 | pmd = pmd_alloc(mm, pud, addr); |
1864 | if (!pmd) | |
1865 | return -ENOMEM; | |
1866 | do { | |
1867 | next = pmd_addr_end(addr, end); | |
1868 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1869 | if (err) | |
1870 | break; | |
1871 | } while (pmd++, addr = next, addr != end); | |
1872 | return err; | |
1873 | } | |
1874 | ||
1875 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1876 | unsigned long addr, unsigned long end, | |
1877 | pte_fn_t fn, void *data) | |
1878 | { | |
1879 | pud_t *pud; | |
1880 | unsigned long next; | |
1881 | int err; | |
1882 | ||
1883 | pud = pud_alloc(mm, pgd, addr); | |
1884 | if (!pud) | |
1885 | return -ENOMEM; | |
1886 | do { | |
1887 | next = pud_addr_end(addr, end); | |
1888 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1889 | if (err) | |
1890 | break; | |
1891 | } while (pud++, addr = next, addr != end); | |
1892 | return err; | |
1893 | } | |
1894 | ||
1895 | /* | |
1896 | * Scan a region of virtual memory, filling in page tables as necessary | |
1897 | * and calling a provided function on each leaf page table. | |
1898 | */ | |
1899 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1900 | unsigned long size, pte_fn_t fn, void *data) | |
1901 | { | |
1902 | pgd_t *pgd; | |
1903 | unsigned long next; | |
cddb8a5c | 1904 | unsigned long start = addr, end = addr + size; |
aee16b3c JF |
1905 | int err; |
1906 | ||
1907 | BUG_ON(addr >= end); | |
cddb8a5c | 1908 | mmu_notifier_invalidate_range_start(mm, start, end); |
aee16b3c JF |
1909 | pgd = pgd_offset(mm, addr); |
1910 | do { | |
1911 | next = pgd_addr_end(addr, end); | |
1912 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1913 | if (err) | |
1914 | break; | |
1915 | } while (pgd++, addr = next, addr != end); | |
cddb8a5c | 1916 | mmu_notifier_invalidate_range_end(mm, start, end); |
aee16b3c JF |
1917 | return err; |
1918 | } | |
1919 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1920 | ||
8f4e2101 HD |
1921 | /* |
1922 | * handle_pte_fault chooses page fault handler according to an entry | |
1923 | * which was read non-atomically. Before making any commitment, on | |
1924 | * those architectures or configurations (e.g. i386 with PAE) which | |
1925 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1926 | * must check under lock before unmapping the pte and proceeding | |
1927 | * (but do_wp_page is only called after already making such a check; | |
1928 | * and do_anonymous_page and do_no_page can safely check later on). | |
1929 | */ | |
4c21e2f2 | 1930 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1931 | pte_t *page_table, pte_t orig_pte) |
1932 | { | |
1933 | int same = 1; | |
1934 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1935 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1936 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1937 | spin_lock(ptl); | |
8f4e2101 | 1938 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1939 | spin_unlock(ptl); |
8f4e2101 HD |
1940 | } |
1941 | #endif | |
1942 | pte_unmap(page_table); | |
1943 | return same; | |
1944 | } | |
1945 | ||
1da177e4 LT |
1946 | /* |
1947 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1948 | * servicing faults for write access. In the normal case, do always want | |
1949 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1950 | * that do not have writing enabled, when used by access_process_vm. | |
1951 | */ | |
1952 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1953 | { | |
1954 | if (likely(vma->vm_flags & VM_WRITE)) | |
1955 | pte = pte_mkwrite(pte); | |
1956 | return pte; | |
1957 | } | |
1958 | ||
9de455b2 | 1959 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1960 | { |
1961 | /* | |
1962 | * If the source page was a PFN mapping, we don't have | |
1963 | * a "struct page" for it. We do a best-effort copy by | |
1964 | * just copying from the original user address. If that | |
1965 | * fails, we just zero-fill it. Live with it. | |
1966 | */ | |
1967 | if (unlikely(!src)) { | |
1968 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1969 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1970 | ||
1971 | /* | |
1972 | * This really shouldn't fail, because the page is there | |
1973 | * in the page tables. But it might just be unreadable, | |
1974 | * in which case we just give up and fill the result with | |
1975 | * zeroes. | |
1976 | */ | |
1977 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1978 | memset(kaddr, 0, PAGE_SIZE); |
1979 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1980 | flush_dcache_page(dst); |
0ed361de NP |
1981 | } else |
1982 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
1983 | } |
1984 | ||
1da177e4 LT |
1985 | /* |
1986 | * This routine handles present pages, when users try to write | |
1987 | * to a shared page. It is done by copying the page to a new address | |
1988 | * and decrementing the shared-page counter for the old page. | |
1989 | * | |
1da177e4 LT |
1990 | * Note that this routine assumes that the protection checks have been |
1991 | * done by the caller (the low-level page fault routine in most cases). | |
1992 | * Thus we can safely just mark it writable once we've done any necessary | |
1993 | * COW. | |
1994 | * | |
1995 | * We also mark the page dirty at this point even though the page will | |
1996 | * change only once the write actually happens. This avoids a few races, | |
1997 | * and potentially makes it more efficient. | |
1998 | * | |
8f4e2101 HD |
1999 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2000 | * but allow concurrent faults), with pte both mapped and locked. | |
2001 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2002 | */ |
65500d23 HD |
2003 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2004 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 2005 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 2006 | { |
e5bbe4df | 2007 | struct page *old_page, *new_page; |
1da177e4 | 2008 | pte_t entry; |
83c54070 | 2009 | int reuse = 0, ret = 0; |
a200ee18 | 2010 | int page_mkwrite = 0; |
d08b3851 | 2011 | struct page *dirty_page = NULL; |
1da177e4 | 2012 | |
6aab341e | 2013 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
2014 | if (!old_page) { |
2015 | /* | |
2016 | * VM_MIXEDMAP !pfn_valid() case | |
2017 | * | |
2018 | * We should not cow pages in a shared writeable mapping. | |
2019 | * Just mark the pages writable as we can't do any dirty | |
2020 | * accounting on raw pfn maps. | |
2021 | */ | |
2022 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
2023 | (VM_WRITE|VM_SHARED)) | |
2024 | goto reuse; | |
6aab341e | 2025 | goto gotten; |
251b97f5 | 2026 | } |
1da177e4 | 2027 | |
d08b3851 | 2028 | /* |
ee6a6457 PZ |
2029 | * Take out anonymous pages first, anonymous shared vmas are |
2030 | * not dirty accountable. | |
d08b3851 | 2031 | */ |
9a840895 | 2032 | if (PageAnon(old_page) && !PageKsm(old_page)) { |
ab967d86 HD |
2033 | if (!trylock_page(old_page)) { |
2034 | page_cache_get(old_page); | |
2035 | pte_unmap_unlock(page_table, ptl); | |
2036 | lock_page(old_page); | |
2037 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2038 | &ptl); | |
2039 | if (!pte_same(*page_table, orig_pte)) { | |
2040 | unlock_page(old_page); | |
2041 | page_cache_release(old_page); | |
2042 | goto unlock; | |
2043 | } | |
2044 | page_cache_release(old_page); | |
ee6a6457 | 2045 | } |
7b1fe597 | 2046 | reuse = reuse_swap_page(old_page); |
ab967d86 | 2047 | unlock_page(old_page); |
ee6a6457 | 2048 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 2049 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
2050 | /* |
2051 | * Only catch write-faults on shared writable pages, | |
2052 | * read-only shared pages can get COWed by | |
2053 | * get_user_pages(.write=1, .force=1). | |
2054 | */ | |
9637a5ef | 2055 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
c2ec175c NP |
2056 | struct vm_fault vmf; |
2057 | int tmp; | |
2058 | ||
2059 | vmf.virtual_address = (void __user *)(address & | |
2060 | PAGE_MASK); | |
2061 | vmf.pgoff = old_page->index; | |
2062 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | |
2063 | vmf.page = old_page; | |
2064 | ||
9637a5ef DH |
2065 | /* |
2066 | * Notify the address space that the page is about to | |
2067 | * become writable so that it can prohibit this or wait | |
2068 | * for the page to get into an appropriate state. | |
2069 | * | |
2070 | * We do this without the lock held, so that it can | |
2071 | * sleep if it needs to. | |
2072 | */ | |
2073 | page_cache_get(old_page); | |
2074 | pte_unmap_unlock(page_table, ptl); | |
2075 | ||
c2ec175c NP |
2076 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2077 | if (unlikely(tmp & | |
2078 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
2079 | ret = tmp; | |
9637a5ef | 2080 | goto unwritable_page; |
c2ec175c | 2081 | } |
b827e496 NP |
2082 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2083 | lock_page(old_page); | |
2084 | if (!old_page->mapping) { | |
2085 | ret = 0; /* retry the fault */ | |
2086 | unlock_page(old_page); | |
2087 | goto unwritable_page; | |
2088 | } | |
2089 | } else | |
2090 | VM_BUG_ON(!PageLocked(old_page)); | |
9637a5ef | 2091 | |
9637a5ef DH |
2092 | /* |
2093 | * Since we dropped the lock we need to revalidate | |
2094 | * the PTE as someone else may have changed it. If | |
2095 | * they did, we just return, as we can count on the | |
2096 | * MMU to tell us if they didn't also make it writable. | |
2097 | */ | |
2098 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2099 | &ptl); | |
b827e496 NP |
2100 | if (!pte_same(*page_table, orig_pte)) { |
2101 | unlock_page(old_page); | |
2102 | page_cache_release(old_page); | |
9637a5ef | 2103 | goto unlock; |
b827e496 | 2104 | } |
a200ee18 PZ |
2105 | |
2106 | page_mkwrite = 1; | |
1da177e4 | 2107 | } |
d08b3851 PZ |
2108 | dirty_page = old_page; |
2109 | get_page(dirty_page); | |
9637a5ef | 2110 | reuse = 1; |
9637a5ef DH |
2111 | } |
2112 | ||
2113 | if (reuse) { | |
251b97f5 | 2114 | reuse: |
9637a5ef DH |
2115 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
2116 | entry = pte_mkyoung(orig_pte); | |
2117 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 2118 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
8dab5241 | 2119 | update_mmu_cache(vma, address, entry); |
9637a5ef DH |
2120 | ret |= VM_FAULT_WRITE; |
2121 | goto unlock; | |
1da177e4 | 2122 | } |
1da177e4 LT |
2123 | |
2124 | /* | |
2125 | * Ok, we need to copy. Oh, well.. | |
2126 | */ | |
b5810039 | 2127 | page_cache_get(old_page); |
920fc356 | 2128 | gotten: |
8f4e2101 | 2129 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2130 | |
2131 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 2132 | goto oom; |
a13ea5b7 | 2133 | |
62eede62 | 2134 | if (is_zero_pfn(pte_pfn(orig_pte))) { |
a13ea5b7 HD |
2135 | new_page = alloc_zeroed_user_highpage_movable(vma, address); |
2136 | if (!new_page) | |
2137 | goto oom; | |
2138 | } else { | |
2139 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
2140 | if (!new_page) | |
2141 | goto oom; | |
2142 | cow_user_page(new_page, old_page, address, vma); | |
2143 | } | |
2144 | __SetPageUptodate(new_page); | |
2145 | ||
b291f000 NP |
2146 | /* |
2147 | * Don't let another task, with possibly unlocked vma, | |
2148 | * keep the mlocked page. | |
2149 | */ | |
ab92661d | 2150 | if ((vma->vm_flags & VM_LOCKED) && old_page) { |
b291f000 NP |
2151 | lock_page(old_page); /* for LRU manipulation */ |
2152 | clear_page_mlock(old_page); | |
2153 | unlock_page(old_page); | |
2154 | } | |
65500d23 | 2155 | |
2c26fdd7 | 2156 | if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2157 | goto oom_free_new; |
2158 | ||
1da177e4 LT |
2159 | /* |
2160 | * Re-check the pte - we dropped the lock | |
2161 | */ | |
8f4e2101 | 2162 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 2163 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 2164 | if (old_page) { |
920fc356 HD |
2165 | if (!PageAnon(old_page)) { |
2166 | dec_mm_counter(mm, file_rss); | |
2167 | inc_mm_counter(mm, anon_rss); | |
2168 | } | |
2169 | } else | |
4294621f | 2170 | inc_mm_counter(mm, anon_rss); |
eca35133 | 2171 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
2172 | entry = mk_pte(new_page, vma->vm_page_prot); |
2173 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
2174 | /* |
2175 | * Clear the pte entry and flush it first, before updating the | |
2176 | * pte with the new entry. This will avoid a race condition | |
2177 | * seen in the presence of one thread doing SMC and another | |
2178 | * thread doing COW. | |
2179 | */ | |
828502d3 | 2180 | ptep_clear_flush(vma, address, page_table); |
9617d95e | 2181 | page_add_new_anon_rmap(new_page, vma, address); |
828502d3 IE |
2182 | /* |
2183 | * We call the notify macro here because, when using secondary | |
2184 | * mmu page tables (such as kvm shadow page tables), we want the | |
2185 | * new page to be mapped directly into the secondary page table. | |
2186 | */ | |
2187 | set_pte_at_notify(mm, address, page_table, entry); | |
64d6519d | 2188 | update_mmu_cache(vma, address, entry); |
945754a1 NP |
2189 | if (old_page) { |
2190 | /* | |
2191 | * Only after switching the pte to the new page may | |
2192 | * we remove the mapcount here. Otherwise another | |
2193 | * process may come and find the rmap count decremented | |
2194 | * before the pte is switched to the new page, and | |
2195 | * "reuse" the old page writing into it while our pte | |
2196 | * here still points into it and can be read by other | |
2197 | * threads. | |
2198 | * | |
2199 | * The critical issue is to order this | |
2200 | * page_remove_rmap with the ptp_clear_flush above. | |
2201 | * Those stores are ordered by (if nothing else,) | |
2202 | * the barrier present in the atomic_add_negative | |
2203 | * in page_remove_rmap. | |
2204 | * | |
2205 | * Then the TLB flush in ptep_clear_flush ensures that | |
2206 | * no process can access the old page before the | |
2207 | * decremented mapcount is visible. And the old page | |
2208 | * cannot be reused until after the decremented | |
2209 | * mapcount is visible. So transitively, TLBs to | |
2210 | * old page will be flushed before it can be reused. | |
2211 | */ | |
edc315fd | 2212 | page_remove_rmap(old_page); |
945754a1 NP |
2213 | } |
2214 | ||
1da177e4 LT |
2215 | /* Free the old page.. */ |
2216 | new_page = old_page; | |
f33ea7f4 | 2217 | ret |= VM_FAULT_WRITE; |
8a9f3ccd BS |
2218 | } else |
2219 | mem_cgroup_uncharge_page(new_page); | |
2220 | ||
920fc356 HD |
2221 | if (new_page) |
2222 | page_cache_release(new_page); | |
2223 | if (old_page) | |
2224 | page_cache_release(old_page); | |
65500d23 | 2225 | unlock: |
8f4e2101 | 2226 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 2227 | if (dirty_page) { |
79352894 NP |
2228 | /* |
2229 | * Yes, Virginia, this is actually required to prevent a race | |
2230 | * with clear_page_dirty_for_io() from clearing the page dirty | |
2231 | * bit after it clear all dirty ptes, but before a racing | |
2232 | * do_wp_page installs a dirty pte. | |
2233 | * | |
2234 | * do_no_page is protected similarly. | |
2235 | */ | |
b827e496 NP |
2236 | if (!page_mkwrite) { |
2237 | wait_on_page_locked(dirty_page); | |
2238 | set_page_dirty_balance(dirty_page, page_mkwrite); | |
2239 | } | |
d08b3851 | 2240 | put_page(dirty_page); |
b827e496 NP |
2241 | if (page_mkwrite) { |
2242 | struct address_space *mapping = dirty_page->mapping; | |
2243 | ||
2244 | set_page_dirty(dirty_page); | |
2245 | unlock_page(dirty_page); | |
2246 | page_cache_release(dirty_page); | |
2247 | if (mapping) { | |
2248 | /* | |
2249 | * Some device drivers do not set page.mapping | |
2250 | * but still dirty their pages | |
2251 | */ | |
2252 | balance_dirty_pages_ratelimited(mapping); | |
2253 | } | |
2254 | } | |
2255 | ||
2256 | /* file_update_time outside page_lock */ | |
2257 | if (vma->vm_file) | |
2258 | file_update_time(vma->vm_file); | |
d08b3851 | 2259 | } |
f33ea7f4 | 2260 | return ret; |
8a9f3ccd | 2261 | oom_free_new: |
6dbf6d3b | 2262 | page_cache_release(new_page); |
65500d23 | 2263 | oom: |
b827e496 NP |
2264 | if (old_page) { |
2265 | if (page_mkwrite) { | |
2266 | unlock_page(old_page); | |
2267 | page_cache_release(old_page); | |
2268 | } | |
920fc356 | 2269 | page_cache_release(old_page); |
b827e496 | 2270 | } |
1da177e4 | 2271 | return VM_FAULT_OOM; |
9637a5ef DH |
2272 | |
2273 | unwritable_page: | |
2274 | page_cache_release(old_page); | |
c2ec175c | 2275 | return ret; |
1da177e4 LT |
2276 | } |
2277 | ||
2278 | /* | |
2279 | * Helper functions for unmap_mapping_range(). | |
2280 | * | |
2281 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
2282 | * | |
2283 | * We have to restart searching the prio_tree whenever we drop the lock, | |
2284 | * since the iterator is only valid while the lock is held, and anyway | |
2285 | * a later vma might be split and reinserted earlier while lock dropped. | |
2286 | * | |
2287 | * The list of nonlinear vmas could be handled more efficiently, using | |
2288 | * a placeholder, but handle it in the same way until a need is shown. | |
2289 | * It is important to search the prio_tree before nonlinear list: a vma | |
2290 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
2291 | * while the lock is dropped; but never shifted from list to prio_tree. | |
2292 | * | |
2293 | * In order to make forward progress despite restarting the search, | |
2294 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
2295 | * quickly skip it next time around. Since the prio_tree search only | |
2296 | * shows us those vmas affected by unmapping the range in question, we | |
2297 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
2298 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
2299 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
2300 | * i_mmap_lock. | |
2301 | * | |
2302 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 2303 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
2304 | * and restart from that address when we reach that vma again. It might |
2305 | * have been split or merged, shrunk or extended, but never shifted: so | |
2306 | * restart_addr remains valid so long as it remains in the vma's range. | |
2307 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
2308 | * values so we can save vma's restart_addr in its truncate_count field. | |
2309 | */ | |
2310 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
2311 | ||
2312 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
2313 | { | |
2314 | struct vm_area_struct *vma; | |
2315 | struct prio_tree_iter iter; | |
2316 | ||
2317 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
2318 | vma->vm_truncate_count = 0; | |
2319 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
2320 | vma->vm_truncate_count = 0; | |
2321 | } | |
2322 | ||
2323 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
2324 | unsigned long start_addr, unsigned long end_addr, | |
2325 | struct zap_details *details) | |
2326 | { | |
2327 | unsigned long restart_addr; | |
2328 | int need_break; | |
2329 | ||
d00806b1 NP |
2330 | /* |
2331 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 2332 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
2333 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
2334 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 2335 | */ |
d00806b1 | 2336 | |
1da177e4 LT |
2337 | again: |
2338 | restart_addr = vma->vm_truncate_count; | |
2339 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
2340 | start_addr = restart_addr; | |
2341 | if (start_addr >= end_addr) { | |
2342 | /* Top of vma has been split off since last time */ | |
2343 | vma->vm_truncate_count = details->truncate_count; | |
2344 | return 0; | |
2345 | } | |
2346 | } | |
2347 | ||
ee39b37b HD |
2348 | restart_addr = zap_page_range(vma, start_addr, |
2349 | end_addr - start_addr, details); | |
95c354fe | 2350 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1da177e4 | 2351 | |
ee39b37b | 2352 | if (restart_addr >= end_addr) { |
1da177e4 LT |
2353 | /* We have now completed this vma: mark it so */ |
2354 | vma->vm_truncate_count = details->truncate_count; | |
2355 | if (!need_break) | |
2356 | return 0; | |
2357 | } else { | |
2358 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 2359 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
2360 | if (!need_break) |
2361 | goto again; | |
2362 | } | |
2363 | ||
2364 | spin_unlock(details->i_mmap_lock); | |
2365 | cond_resched(); | |
2366 | spin_lock(details->i_mmap_lock); | |
2367 | return -EINTR; | |
2368 | } | |
2369 | ||
2370 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
2371 | struct zap_details *details) | |
2372 | { | |
2373 | struct vm_area_struct *vma; | |
2374 | struct prio_tree_iter iter; | |
2375 | pgoff_t vba, vea, zba, zea; | |
2376 | ||
2377 | restart: | |
2378 | vma_prio_tree_foreach(vma, &iter, root, | |
2379 | details->first_index, details->last_index) { | |
2380 | /* Skip quickly over those we have already dealt with */ | |
2381 | if (vma->vm_truncate_count == details->truncate_count) | |
2382 | continue; | |
2383 | ||
2384 | vba = vma->vm_pgoff; | |
2385 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
2386 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
2387 | zba = details->first_index; | |
2388 | if (zba < vba) | |
2389 | zba = vba; | |
2390 | zea = details->last_index; | |
2391 | if (zea > vea) | |
2392 | zea = vea; | |
2393 | ||
2394 | if (unmap_mapping_range_vma(vma, | |
2395 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
2396 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
2397 | details) < 0) | |
2398 | goto restart; | |
2399 | } | |
2400 | } | |
2401 | ||
2402 | static inline void unmap_mapping_range_list(struct list_head *head, | |
2403 | struct zap_details *details) | |
2404 | { | |
2405 | struct vm_area_struct *vma; | |
2406 | ||
2407 | /* | |
2408 | * In nonlinear VMAs there is no correspondence between virtual address | |
2409 | * offset and file offset. So we must perform an exhaustive search | |
2410 | * across *all* the pages in each nonlinear VMA, not just the pages | |
2411 | * whose virtual address lies outside the file truncation point. | |
2412 | */ | |
2413 | restart: | |
2414 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
2415 | /* Skip quickly over those we have already dealt with */ | |
2416 | if (vma->vm_truncate_count == details->truncate_count) | |
2417 | continue; | |
2418 | details->nonlinear_vma = vma; | |
2419 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
2420 | vma->vm_end, details) < 0) | |
2421 | goto restart; | |
2422 | } | |
2423 | } | |
2424 | ||
2425 | /** | |
72fd4a35 | 2426 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 2427 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2428 | * @holebegin: byte in first page to unmap, relative to the start of |
2429 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 2430 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
2431 | * must keep the partial page. In contrast, we must get rid of |
2432 | * partial pages. | |
2433 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2434 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2435 | * end of the file. | |
2436 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2437 | * but 0 when invalidating pagecache, don't throw away private data. | |
2438 | */ | |
2439 | void unmap_mapping_range(struct address_space *mapping, | |
2440 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2441 | { | |
2442 | struct zap_details details; | |
2443 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
2444 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2445 | ||
2446 | /* Check for overflow. */ | |
2447 | if (sizeof(holelen) > sizeof(hlen)) { | |
2448 | long long holeend = | |
2449 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2450 | if (holeend & ~(long long)ULONG_MAX) | |
2451 | hlen = ULONG_MAX - hba + 1; | |
2452 | } | |
2453 | ||
2454 | details.check_mapping = even_cows? NULL: mapping; | |
2455 | details.nonlinear_vma = NULL; | |
2456 | details.first_index = hba; | |
2457 | details.last_index = hba + hlen - 1; | |
2458 | if (details.last_index < details.first_index) | |
2459 | details.last_index = ULONG_MAX; | |
2460 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
2461 | ||
2462 | spin_lock(&mapping->i_mmap_lock); | |
2463 | ||
d00806b1 | 2464 | /* Protect against endless unmapping loops */ |
1da177e4 | 2465 | mapping->truncate_count++; |
1da177e4 LT |
2466 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2467 | if (mapping->truncate_count == 0) | |
2468 | reset_vma_truncate_counts(mapping); | |
2469 | mapping->truncate_count++; | |
2470 | } | |
2471 | details.truncate_count = mapping->truncate_count; | |
2472 | ||
2473 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
2474 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2475 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
2476 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
2477 | spin_unlock(&mapping->i_mmap_lock); | |
2478 | } | |
2479 | EXPORT_SYMBOL(unmap_mapping_range); | |
2480 | ||
f6b3ec23 BP |
2481 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2482 | { | |
2483 | struct address_space *mapping = inode->i_mapping; | |
2484 | ||
2485 | /* | |
2486 | * If the underlying filesystem is not going to provide | |
2487 | * a way to truncate a range of blocks (punch a hole) - | |
2488 | * we should return failure right now. | |
2489 | */ | |
acfa4380 | 2490 | if (!inode->i_op->truncate_range) |
f6b3ec23 BP |
2491 | return -ENOSYS; |
2492 | ||
1b1dcc1b | 2493 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
2494 | down_write(&inode->i_alloc_sem); |
2495 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
2496 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 2497 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
2498 | inode->i_op->truncate_range(inode, offset, end); |
2499 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 2500 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
2501 | |
2502 | return 0; | |
2503 | } | |
f6b3ec23 | 2504 | |
1da177e4 | 2505 | /* |
8f4e2101 HD |
2506 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2507 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2508 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2509 | */ |
65500d23 HD |
2510 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2511 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2512 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 2513 | { |
8f4e2101 | 2514 | spinlock_t *ptl; |
1da177e4 | 2515 | struct page *page; |
65500d23 | 2516 | swp_entry_t entry; |
1da177e4 | 2517 | pte_t pte; |
7a81b88c | 2518 | struct mem_cgroup *ptr = NULL; |
83c54070 | 2519 | int ret = 0; |
1da177e4 | 2520 | |
4c21e2f2 | 2521 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2522 | goto out; |
65500d23 HD |
2523 | |
2524 | entry = pte_to_swp_entry(orig_pte); | |
d1737fdb AK |
2525 | if (unlikely(non_swap_entry(entry))) { |
2526 | if (is_migration_entry(entry)) { | |
2527 | migration_entry_wait(mm, pmd, address); | |
2528 | } else if (is_hwpoison_entry(entry)) { | |
2529 | ret = VM_FAULT_HWPOISON; | |
2530 | } else { | |
2531 | print_bad_pte(vma, address, orig_pte, NULL); | |
d99be1a8 | 2532 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 2533 | } |
0697212a CL |
2534 | goto out; |
2535 | } | |
0ff92245 | 2536 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2537 | page = lookup_swap_cache(entry); |
2538 | if (!page) { | |
a5c9b696 | 2539 | grab_swap_token(mm); /* Contend for token _before_ read-in */ |
02098fea HD |
2540 | page = swapin_readahead(entry, |
2541 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2542 | if (!page) { |
2543 | /* | |
8f4e2101 HD |
2544 | * Back out if somebody else faulted in this pte |
2545 | * while we released the pte lock. | |
1da177e4 | 2546 | */ |
8f4e2101 | 2547 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2548 | if (likely(pte_same(*page_table, orig_pte))) |
2549 | ret = VM_FAULT_OOM; | |
0ff92245 | 2550 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2551 | goto unlock; |
1da177e4 LT |
2552 | } |
2553 | ||
2554 | /* Had to read the page from swap area: Major fault */ | |
2555 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2556 | count_vm_event(PGMAJFAULT); |
d1737fdb | 2557 | } else if (PageHWPoison(page)) { |
71f72525 WF |
2558 | /* |
2559 | * hwpoisoned dirty swapcache pages are kept for killing | |
2560 | * owner processes (which may be unknown at hwpoison time) | |
2561 | */ | |
d1737fdb AK |
2562 | ret = VM_FAULT_HWPOISON; |
2563 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
4779cb31 | 2564 | goto out_release; |
1da177e4 LT |
2565 | } |
2566 | ||
073e587e KH |
2567 | lock_page(page); |
2568 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
2569 | ||
5ad64688 HD |
2570 | page = ksm_might_need_to_copy(page, vma, address); |
2571 | if (!page) { | |
2572 | ret = VM_FAULT_OOM; | |
2573 | goto out; | |
2574 | } | |
2575 | ||
2c26fdd7 | 2576 | if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { |
8a9f3ccd | 2577 | ret = VM_FAULT_OOM; |
bc43f75c | 2578 | goto out_page; |
8a9f3ccd BS |
2579 | } |
2580 | ||
1da177e4 | 2581 | /* |
8f4e2101 | 2582 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2583 | */ |
8f4e2101 | 2584 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2585 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2586 | goto out_nomap; |
b8107480 KK |
2587 | |
2588 | if (unlikely(!PageUptodate(page))) { | |
2589 | ret = VM_FAULT_SIGBUS; | |
2590 | goto out_nomap; | |
1da177e4 LT |
2591 | } |
2592 | ||
8c7c6e34 KH |
2593 | /* |
2594 | * The page isn't present yet, go ahead with the fault. | |
2595 | * | |
2596 | * Be careful about the sequence of operations here. | |
2597 | * To get its accounting right, reuse_swap_page() must be called | |
2598 | * while the page is counted on swap but not yet in mapcount i.e. | |
2599 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
2600 | * must be called after the swap_free(), or it will never succeed. | |
03f3c433 KH |
2601 | * Because delete_from_swap_page() may be called by reuse_swap_page(), |
2602 | * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry | |
2603 | * in page->private. In this case, a record in swap_cgroup is silently | |
2604 | * discarded at swap_free(). | |
8c7c6e34 | 2605 | */ |
1da177e4 | 2606 | |
4294621f | 2607 | inc_mm_counter(mm, anon_rss); |
1da177e4 | 2608 | pte = mk_pte(page, vma->vm_page_prot); |
30c9f3a9 | 2609 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { |
1da177e4 | 2610 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
30c9f3a9 | 2611 | flags &= ~FAULT_FLAG_WRITE; |
1da177e4 | 2612 | } |
1da177e4 LT |
2613 | flush_icache_page(vma, page); |
2614 | set_pte_at(mm, address, page_table, pte); | |
2615 | page_add_anon_rmap(page, vma, address); | |
03f3c433 KH |
2616 | /* It's better to call commit-charge after rmap is established */ |
2617 | mem_cgroup_commit_charge_swapin(page, ptr); | |
1da177e4 | 2618 | |
c475a8ab | 2619 | swap_free(entry); |
b291f000 | 2620 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) |
a2c43eed | 2621 | try_to_free_swap(page); |
c475a8ab HD |
2622 | unlock_page(page); |
2623 | ||
30c9f3a9 | 2624 | if (flags & FAULT_FLAG_WRITE) { |
61469f1d HD |
2625 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2626 | if (ret & VM_FAULT_ERROR) | |
2627 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2628 | goto out; |
2629 | } | |
2630 | ||
2631 | /* No need to invalidate - it was non-present before */ | |
2632 | update_mmu_cache(vma, address, pte); | |
65500d23 | 2633 | unlock: |
8f4e2101 | 2634 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2635 | out: |
2636 | return ret; | |
b8107480 | 2637 | out_nomap: |
7a81b88c | 2638 | mem_cgroup_cancel_charge_swapin(ptr); |
8f4e2101 | 2639 | pte_unmap_unlock(page_table, ptl); |
bc43f75c | 2640 | out_page: |
b8107480 | 2641 | unlock_page(page); |
4779cb31 | 2642 | out_release: |
b8107480 | 2643 | page_cache_release(page); |
65500d23 | 2644 | return ret; |
1da177e4 LT |
2645 | } |
2646 | ||
2647 | /* | |
8f4e2101 HD |
2648 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2649 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2650 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2651 | */ |
65500d23 HD |
2652 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2653 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2654 | unsigned int flags) |
1da177e4 | 2655 | { |
8f4e2101 HD |
2656 | struct page *page; |
2657 | spinlock_t *ptl; | |
1da177e4 | 2658 | pte_t entry; |
1da177e4 | 2659 | |
62eede62 HD |
2660 | if (!(flags & FAULT_FLAG_WRITE)) { |
2661 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | |
2662 | vma->vm_page_prot)); | |
a13ea5b7 HD |
2663 | ptl = pte_lockptr(mm, pmd); |
2664 | spin_lock(ptl); | |
2665 | if (!pte_none(*page_table)) | |
2666 | goto unlock; | |
2667 | goto setpte; | |
2668 | } | |
2669 | ||
557ed1fa NP |
2670 | /* Allocate our own private page. */ |
2671 | pte_unmap(page_table); | |
8f4e2101 | 2672 | |
557ed1fa NP |
2673 | if (unlikely(anon_vma_prepare(vma))) |
2674 | goto oom; | |
2675 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2676 | if (!page) | |
2677 | goto oom; | |
0ed361de | 2678 | __SetPageUptodate(page); |
8f4e2101 | 2679 | |
2c26fdd7 | 2680 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2681 | goto oom_free_page; |
2682 | ||
557ed1fa | 2683 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
2684 | if (vma->vm_flags & VM_WRITE) |
2685 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 2686 | |
557ed1fa | 2687 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1c2fb7a4 | 2688 | if (!pte_none(*page_table)) |
557ed1fa | 2689 | goto release; |
9ba69294 | 2690 | |
557ed1fa | 2691 | inc_mm_counter(mm, anon_rss); |
557ed1fa | 2692 | page_add_new_anon_rmap(page, vma, address); |
a13ea5b7 | 2693 | setpte: |
65500d23 | 2694 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2695 | |
2696 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2697 | update_mmu_cache(vma, address, entry); |
65500d23 | 2698 | unlock: |
8f4e2101 | 2699 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2700 | return 0; |
8f4e2101 | 2701 | release: |
8a9f3ccd | 2702 | mem_cgroup_uncharge_page(page); |
8f4e2101 HD |
2703 | page_cache_release(page); |
2704 | goto unlock; | |
8a9f3ccd | 2705 | oom_free_page: |
6dbf6d3b | 2706 | page_cache_release(page); |
65500d23 | 2707 | oom: |
1da177e4 LT |
2708 | return VM_FAULT_OOM; |
2709 | } | |
2710 | ||
2711 | /* | |
54cb8821 | 2712 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2713 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2714 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2715 | * the next page fault. | |
1da177e4 LT |
2716 | * |
2717 | * As this is called only for pages that do not currently exist, we | |
2718 | * do not need to flush old virtual caches or the TLB. | |
2719 | * | |
8f4e2101 | 2720 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2721 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2722 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2723 | */ |
54cb8821 | 2724 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2725 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2726 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2727 | { |
16abfa08 | 2728 | pte_t *page_table; |
8f4e2101 | 2729 | spinlock_t *ptl; |
d0217ac0 | 2730 | struct page *page; |
1da177e4 | 2731 | pte_t entry; |
1da177e4 | 2732 | int anon = 0; |
5b4e655e | 2733 | int charged = 0; |
d08b3851 | 2734 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2735 | struct vm_fault vmf; |
2736 | int ret; | |
a200ee18 | 2737 | int page_mkwrite = 0; |
54cb8821 | 2738 | |
d0217ac0 NP |
2739 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2740 | vmf.pgoff = pgoff; | |
2741 | vmf.flags = flags; | |
2742 | vmf.page = NULL; | |
1da177e4 | 2743 | |
3c18ddd1 NP |
2744 | ret = vma->vm_ops->fault(vma, &vmf); |
2745 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2746 | return ret; | |
1da177e4 | 2747 | |
a3b947ea AK |
2748 | if (unlikely(PageHWPoison(vmf.page))) { |
2749 | if (ret & VM_FAULT_LOCKED) | |
2750 | unlock_page(vmf.page); | |
2751 | return VM_FAULT_HWPOISON; | |
2752 | } | |
2753 | ||
d00806b1 | 2754 | /* |
d0217ac0 | 2755 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2756 | * locked. |
2757 | */ | |
83c54070 | 2758 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2759 | lock_page(vmf.page); |
54cb8821 | 2760 | else |
d0217ac0 | 2761 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2762 | |
1da177e4 LT |
2763 | /* |
2764 | * Should we do an early C-O-W break? | |
2765 | */ | |
d0217ac0 | 2766 | page = vmf.page; |
54cb8821 | 2767 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2768 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2769 | anon = 1; |
d00806b1 | 2770 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2771 | ret = VM_FAULT_OOM; |
54cb8821 | 2772 | goto out; |
d00806b1 | 2773 | } |
83c54070 NP |
2774 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2775 | vma, address); | |
d00806b1 | 2776 | if (!page) { |
d0217ac0 | 2777 | ret = VM_FAULT_OOM; |
54cb8821 | 2778 | goto out; |
d00806b1 | 2779 | } |
2c26fdd7 | 2780 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { |
5b4e655e KH |
2781 | ret = VM_FAULT_OOM; |
2782 | page_cache_release(page); | |
2783 | goto out; | |
2784 | } | |
2785 | charged = 1; | |
b291f000 NP |
2786 | /* |
2787 | * Don't let another task, with possibly unlocked vma, | |
2788 | * keep the mlocked page. | |
2789 | */ | |
2790 | if (vma->vm_flags & VM_LOCKED) | |
2791 | clear_page_mlock(vmf.page); | |
d0217ac0 | 2792 | copy_user_highpage(page, vmf.page, address, vma); |
0ed361de | 2793 | __SetPageUptodate(page); |
9637a5ef | 2794 | } else { |
54cb8821 NP |
2795 | /* |
2796 | * If the page will be shareable, see if the backing | |
9637a5ef | 2797 | * address space wants to know that the page is about |
54cb8821 NP |
2798 | * to become writable |
2799 | */ | |
69676147 | 2800 | if (vma->vm_ops->page_mkwrite) { |
c2ec175c NP |
2801 | int tmp; |
2802 | ||
69676147 | 2803 | unlock_page(page); |
b827e496 | 2804 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
c2ec175c NP |
2805 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2806 | if (unlikely(tmp & | |
2807 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
2808 | ret = tmp; | |
b827e496 | 2809 | goto unwritable_page; |
d0217ac0 | 2810 | } |
b827e496 NP |
2811 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2812 | lock_page(page); | |
2813 | if (!page->mapping) { | |
2814 | ret = 0; /* retry the fault */ | |
2815 | unlock_page(page); | |
2816 | goto unwritable_page; | |
2817 | } | |
2818 | } else | |
2819 | VM_BUG_ON(!PageLocked(page)); | |
a200ee18 | 2820 | page_mkwrite = 1; |
9637a5ef DH |
2821 | } |
2822 | } | |
54cb8821 | 2823 | |
1da177e4 LT |
2824 | } |
2825 | ||
8f4e2101 | 2826 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2827 | |
2828 | /* | |
2829 | * This silly early PAGE_DIRTY setting removes a race | |
2830 | * due to the bad i386 page protection. But it's valid | |
2831 | * for other architectures too. | |
2832 | * | |
30c9f3a9 | 2833 | * Note that if FAULT_FLAG_WRITE is set, we either now have |
1da177e4 LT |
2834 | * an exclusive copy of the page, or this is a shared mapping, |
2835 | * so we can make it writable and dirty to avoid having to | |
2836 | * handle that later. | |
2837 | */ | |
2838 | /* Only go through if we didn't race with anybody else... */ | |
1c2fb7a4 | 2839 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2840 | flush_icache_page(vma, page); |
2841 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2842 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 | 2843 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1da177e4 | 2844 | if (anon) { |
64d6519d | 2845 | inc_mm_counter(mm, anon_rss); |
64d6519d | 2846 | page_add_new_anon_rmap(page, vma, address); |
f57e88a8 | 2847 | } else { |
4294621f | 2848 | inc_mm_counter(mm, file_rss); |
d00806b1 | 2849 | page_add_file_rmap(page); |
54cb8821 | 2850 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 2851 | dirty_page = page; |
d08b3851 PZ |
2852 | get_page(dirty_page); |
2853 | } | |
4294621f | 2854 | } |
64d6519d | 2855 | set_pte_at(mm, address, page_table, entry); |
d00806b1 NP |
2856 | |
2857 | /* no need to invalidate: a not-present page won't be cached */ | |
2858 | update_mmu_cache(vma, address, entry); | |
1da177e4 | 2859 | } else { |
5b4e655e KH |
2860 | if (charged) |
2861 | mem_cgroup_uncharge_page(page); | |
d00806b1 NP |
2862 | if (anon) |
2863 | page_cache_release(page); | |
2864 | else | |
54cb8821 | 2865 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
2866 | } |
2867 | ||
8f4e2101 | 2868 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
2869 | |
2870 | out: | |
b827e496 NP |
2871 | if (dirty_page) { |
2872 | struct address_space *mapping = page->mapping; | |
8f7b3d15 | 2873 | |
b827e496 NP |
2874 | if (set_page_dirty(dirty_page)) |
2875 | page_mkwrite = 1; | |
2876 | unlock_page(dirty_page); | |
d08b3851 | 2877 | put_page(dirty_page); |
b827e496 NP |
2878 | if (page_mkwrite && mapping) { |
2879 | /* | |
2880 | * Some device drivers do not set page.mapping but still | |
2881 | * dirty their pages | |
2882 | */ | |
2883 | balance_dirty_pages_ratelimited(mapping); | |
2884 | } | |
2885 | ||
2886 | /* file_update_time outside page_lock */ | |
2887 | if (vma->vm_file) | |
2888 | file_update_time(vma->vm_file); | |
2889 | } else { | |
2890 | unlock_page(vmf.page); | |
2891 | if (anon) | |
2892 | page_cache_release(vmf.page); | |
d08b3851 | 2893 | } |
d00806b1 | 2894 | |
83c54070 | 2895 | return ret; |
b827e496 NP |
2896 | |
2897 | unwritable_page: | |
2898 | page_cache_release(page); | |
2899 | return ret; | |
54cb8821 | 2900 | } |
d00806b1 | 2901 | |
54cb8821 NP |
2902 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2903 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2904 | unsigned int flags, pte_t orig_pte) |
54cb8821 NP |
2905 | { |
2906 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 2907 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 | 2908 | |
16abfa08 HD |
2909 | pte_unmap(page_table); |
2910 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
2911 | } |
2912 | ||
1da177e4 LT |
2913 | /* |
2914 | * Fault of a previously existing named mapping. Repopulate the pte | |
2915 | * from the encoded file_pte if possible. This enables swappable | |
2916 | * nonlinear vmas. | |
8f4e2101 HD |
2917 | * |
2918 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2919 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2920 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2921 | */ |
d0217ac0 | 2922 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 | 2923 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
30c9f3a9 | 2924 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 2925 | { |
65500d23 | 2926 | pgoff_t pgoff; |
1da177e4 | 2927 | |
30c9f3a9 LT |
2928 | flags |= FAULT_FLAG_NONLINEAR; |
2929 | ||
4c21e2f2 | 2930 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 2931 | return 0; |
1da177e4 | 2932 | |
2509ef26 | 2933 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { |
65500d23 HD |
2934 | /* |
2935 | * Page table corrupted: show pte and kill process. | |
2936 | */ | |
3dc14741 | 2937 | print_bad_pte(vma, address, orig_pte, NULL); |
d99be1a8 | 2938 | return VM_FAULT_SIGBUS; |
65500d23 | 2939 | } |
65500d23 HD |
2940 | |
2941 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 2942 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
2943 | } |
2944 | ||
2945 | /* | |
2946 | * These routines also need to handle stuff like marking pages dirty | |
2947 | * and/or accessed for architectures that don't do it in hardware (most | |
2948 | * RISC architectures). The early dirtying is also good on the i386. | |
2949 | * | |
2950 | * There is also a hook called "update_mmu_cache()" that architectures | |
2951 | * with external mmu caches can use to update those (ie the Sparc or | |
2952 | * PowerPC hashed page tables that act as extended TLBs). | |
2953 | * | |
c74df32c HD |
2954 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2955 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2956 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2957 | */ |
2958 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 | 2959 | struct vm_area_struct *vma, unsigned long address, |
30c9f3a9 | 2960 | pte_t *pte, pmd_t *pmd, unsigned int flags) |
1da177e4 LT |
2961 | { |
2962 | pte_t entry; | |
8f4e2101 | 2963 | spinlock_t *ptl; |
1da177e4 | 2964 | |
8dab5241 | 2965 | entry = *pte; |
1da177e4 | 2966 | if (!pte_present(entry)) { |
65500d23 | 2967 | if (pte_none(entry)) { |
f4b81804 | 2968 | if (vma->vm_ops) { |
3c18ddd1 | 2969 | if (likely(vma->vm_ops->fault)) |
54cb8821 | 2970 | return do_linear_fault(mm, vma, address, |
30c9f3a9 | 2971 | pte, pmd, flags, entry); |
f4b81804 JS |
2972 | } |
2973 | return do_anonymous_page(mm, vma, address, | |
30c9f3a9 | 2974 | pte, pmd, flags); |
65500d23 | 2975 | } |
1da177e4 | 2976 | if (pte_file(entry)) |
d0217ac0 | 2977 | return do_nonlinear_fault(mm, vma, address, |
30c9f3a9 | 2978 | pte, pmd, flags, entry); |
65500d23 | 2979 | return do_swap_page(mm, vma, address, |
30c9f3a9 | 2980 | pte, pmd, flags, entry); |
1da177e4 LT |
2981 | } |
2982 | ||
4c21e2f2 | 2983 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2984 | spin_lock(ptl); |
2985 | if (unlikely(!pte_same(*pte, entry))) | |
2986 | goto unlock; | |
30c9f3a9 | 2987 | if (flags & FAULT_FLAG_WRITE) { |
1da177e4 | 2988 | if (!pte_write(entry)) |
8f4e2101 HD |
2989 | return do_wp_page(mm, vma, address, |
2990 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2991 | entry = pte_mkdirty(entry); |
2992 | } | |
2993 | entry = pte_mkyoung(entry); | |
30c9f3a9 | 2994 | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { |
1a44e149 | 2995 | update_mmu_cache(vma, address, entry); |
1a44e149 AA |
2996 | } else { |
2997 | /* | |
2998 | * This is needed only for protection faults but the arch code | |
2999 | * is not yet telling us if this is a protection fault or not. | |
3000 | * This still avoids useless tlb flushes for .text page faults | |
3001 | * with threads. | |
3002 | */ | |
30c9f3a9 | 3003 | if (flags & FAULT_FLAG_WRITE) |
1a44e149 AA |
3004 | flush_tlb_page(vma, address); |
3005 | } | |
8f4e2101 HD |
3006 | unlock: |
3007 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 3008 | return 0; |
1da177e4 LT |
3009 | } |
3010 | ||
3011 | /* | |
3012 | * By the time we get here, we already hold the mm semaphore | |
3013 | */ | |
83c54070 | 3014 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
d06063cc | 3015 | unsigned long address, unsigned int flags) |
1da177e4 LT |
3016 | { |
3017 | pgd_t *pgd; | |
3018 | pud_t *pud; | |
3019 | pmd_t *pmd; | |
3020 | pte_t *pte; | |
3021 | ||
3022 | __set_current_state(TASK_RUNNING); | |
3023 | ||
f8891e5e | 3024 | count_vm_event(PGFAULT); |
1da177e4 | 3025 | |
ac9b9c66 | 3026 | if (unlikely(is_vm_hugetlb_page(vma))) |
30c9f3a9 | 3027 | return hugetlb_fault(mm, vma, address, flags); |
1da177e4 | 3028 | |
1da177e4 | 3029 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
3030 | pud = pud_alloc(mm, pgd, address); |
3031 | if (!pud) | |
c74df32c | 3032 | return VM_FAULT_OOM; |
1da177e4 LT |
3033 | pmd = pmd_alloc(mm, pud, address); |
3034 | if (!pmd) | |
c74df32c | 3035 | return VM_FAULT_OOM; |
1da177e4 LT |
3036 | pte = pte_alloc_map(mm, pmd, address); |
3037 | if (!pte) | |
c74df32c | 3038 | return VM_FAULT_OOM; |
1da177e4 | 3039 | |
30c9f3a9 | 3040 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
1da177e4 LT |
3041 | } |
3042 | ||
3043 | #ifndef __PAGETABLE_PUD_FOLDED | |
3044 | /* | |
3045 | * Allocate page upper directory. | |
872fec16 | 3046 | * We've already handled the fast-path in-line. |
1da177e4 | 3047 | */ |
1bb3630e | 3048 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 3049 | { |
c74df32c HD |
3050 | pud_t *new = pud_alloc_one(mm, address); |
3051 | if (!new) | |
1bb3630e | 3052 | return -ENOMEM; |
1da177e4 | 3053 | |
362a61ad NP |
3054 | smp_wmb(); /* See comment in __pte_alloc */ |
3055 | ||
872fec16 | 3056 | spin_lock(&mm->page_table_lock); |
1bb3630e | 3057 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 3058 | pud_free(mm, new); |
1bb3630e HD |
3059 | else |
3060 | pgd_populate(mm, pgd, new); | |
c74df32c | 3061 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3062 | return 0; |
1da177e4 LT |
3063 | } |
3064 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
3065 | ||
3066 | #ifndef __PAGETABLE_PMD_FOLDED | |
3067 | /* | |
3068 | * Allocate page middle directory. | |
872fec16 | 3069 | * We've already handled the fast-path in-line. |
1da177e4 | 3070 | */ |
1bb3630e | 3071 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 3072 | { |
c74df32c HD |
3073 | pmd_t *new = pmd_alloc_one(mm, address); |
3074 | if (!new) | |
1bb3630e | 3075 | return -ENOMEM; |
1da177e4 | 3076 | |
362a61ad NP |
3077 | smp_wmb(); /* See comment in __pte_alloc */ |
3078 | ||
872fec16 | 3079 | spin_lock(&mm->page_table_lock); |
1da177e4 | 3080 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 3081 | if (pud_present(*pud)) /* Another has populated it */ |
5e541973 | 3082 | pmd_free(mm, new); |
1bb3630e HD |
3083 | else |
3084 | pud_populate(mm, pud, new); | |
1da177e4 | 3085 | #else |
1bb3630e | 3086 | if (pgd_present(*pud)) /* Another has populated it */ |
5e541973 | 3087 | pmd_free(mm, new); |
1bb3630e HD |
3088 | else |
3089 | pgd_populate(mm, pud, new); | |
1da177e4 | 3090 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 3091 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3092 | return 0; |
e0f39591 | 3093 | } |
1da177e4 LT |
3094 | #endif /* __PAGETABLE_PMD_FOLDED */ |
3095 | ||
3096 | int make_pages_present(unsigned long addr, unsigned long end) | |
3097 | { | |
3098 | int ret, len, write; | |
3099 | struct vm_area_struct * vma; | |
3100 | ||
3101 | vma = find_vma(current->mm, addr); | |
3102 | if (!vma) | |
a477097d | 3103 | return -ENOMEM; |
1da177e4 | 3104 | write = (vma->vm_flags & VM_WRITE) != 0; |
5bcb28b1 ES |
3105 | BUG_ON(addr >= end); |
3106 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 3107 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
3108 | ret = get_user_pages(current, current->mm, addr, |
3109 | len, write, 0, NULL, NULL); | |
c11d69d8 | 3110 | if (ret < 0) |
1da177e4 | 3111 | return ret; |
9978ad58 | 3112 | return ret == len ? 0 : -EFAULT; |
1da177e4 LT |
3113 | } |
3114 | ||
1da177e4 LT |
3115 | #if !defined(__HAVE_ARCH_GATE_AREA) |
3116 | ||
3117 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 3118 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
3119 | |
3120 | static int __init gate_vma_init(void) | |
3121 | { | |
3122 | gate_vma.vm_mm = NULL; | |
3123 | gate_vma.vm_start = FIXADDR_USER_START; | |
3124 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
3125 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
3126 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
3127 | /* |
3128 | * Make sure the vDSO gets into every core dump. | |
3129 | * Dumping its contents makes post-mortem fully interpretable later | |
3130 | * without matching up the same kernel and hardware config to see | |
3131 | * what PC values meant. | |
3132 | */ | |
3133 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
3134 | return 0; |
3135 | } | |
3136 | __initcall(gate_vma_init); | |
3137 | #endif | |
3138 | ||
3139 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
3140 | { | |
3141 | #ifdef AT_SYSINFO_EHDR | |
3142 | return &gate_vma; | |
3143 | #else | |
3144 | return NULL; | |
3145 | #endif | |
3146 | } | |
3147 | ||
3148 | int in_gate_area_no_task(unsigned long addr) | |
3149 | { | |
3150 | #ifdef AT_SYSINFO_EHDR | |
3151 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
3152 | return 1; | |
3153 | #endif | |
3154 | return 0; | |
3155 | } | |
3156 | ||
3157 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 | 3158 | |
f8ad0f49 JW |
3159 | static int follow_pte(struct mm_struct *mm, unsigned long address, |
3160 | pte_t **ptepp, spinlock_t **ptlp) | |
3161 | { | |
3162 | pgd_t *pgd; | |
3163 | pud_t *pud; | |
3164 | pmd_t *pmd; | |
3165 | pte_t *ptep; | |
3166 | ||
3167 | pgd = pgd_offset(mm, address); | |
3168 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
3169 | goto out; | |
3170 | ||
3171 | pud = pud_offset(pgd, address); | |
3172 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
3173 | goto out; | |
3174 | ||
3175 | pmd = pmd_offset(pud, address); | |
3176 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
3177 | goto out; | |
3178 | ||
3179 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
3180 | if (pmd_huge(*pmd)) | |
3181 | goto out; | |
3182 | ||
3183 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
3184 | if (!ptep) | |
3185 | goto out; | |
3186 | if (!pte_present(*ptep)) | |
3187 | goto unlock; | |
3188 | *ptepp = ptep; | |
3189 | return 0; | |
3190 | unlock: | |
3191 | pte_unmap_unlock(ptep, *ptlp); | |
3192 | out: | |
3193 | return -EINVAL; | |
3194 | } | |
3195 | ||
3b6748e2 JW |
3196 | /** |
3197 | * follow_pfn - look up PFN at a user virtual address | |
3198 | * @vma: memory mapping | |
3199 | * @address: user virtual address | |
3200 | * @pfn: location to store found PFN | |
3201 | * | |
3202 | * Only IO mappings and raw PFN mappings are allowed. | |
3203 | * | |
3204 | * Returns zero and the pfn at @pfn on success, -ve otherwise. | |
3205 | */ | |
3206 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
3207 | unsigned long *pfn) | |
3208 | { | |
3209 | int ret = -EINVAL; | |
3210 | spinlock_t *ptl; | |
3211 | pte_t *ptep; | |
3212 | ||
3213 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
3214 | return ret; | |
3215 | ||
3216 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
3217 | if (ret) | |
3218 | return ret; | |
3219 | *pfn = pte_pfn(*ptep); | |
3220 | pte_unmap_unlock(ptep, ptl); | |
3221 | return 0; | |
3222 | } | |
3223 | EXPORT_SYMBOL(follow_pfn); | |
3224 | ||
28b2ee20 | 3225 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 3226 | int follow_phys(struct vm_area_struct *vma, |
3227 | unsigned long address, unsigned int flags, | |
3228 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 3229 | { |
03668a4d | 3230 | int ret = -EINVAL; |
28b2ee20 RR |
3231 | pte_t *ptep, pte; |
3232 | spinlock_t *ptl; | |
28b2ee20 | 3233 | |
d87fe660 | 3234 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
3235 | goto out; | |
28b2ee20 | 3236 | |
03668a4d | 3237 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 3238 | goto out; |
28b2ee20 | 3239 | pte = *ptep; |
03668a4d | 3240 | |
28b2ee20 RR |
3241 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
3242 | goto unlock; | |
28b2ee20 RR |
3243 | |
3244 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 3245 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 3246 | |
03668a4d | 3247 | ret = 0; |
28b2ee20 RR |
3248 | unlock: |
3249 | pte_unmap_unlock(ptep, ptl); | |
3250 | out: | |
d87fe660 | 3251 | return ret; |
28b2ee20 RR |
3252 | } |
3253 | ||
3254 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
3255 | void *buf, int len, int write) | |
3256 | { | |
3257 | resource_size_t phys_addr; | |
3258 | unsigned long prot = 0; | |
2bc7273b | 3259 | void __iomem *maddr; |
28b2ee20 RR |
3260 | int offset = addr & (PAGE_SIZE-1); |
3261 | ||
d87fe660 | 3262 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
3263 | return -EINVAL; |
3264 | ||
3265 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | |
3266 | if (write) | |
3267 | memcpy_toio(maddr + offset, buf, len); | |
3268 | else | |
3269 | memcpy_fromio(buf, maddr + offset, len); | |
3270 | iounmap(maddr); | |
3271 | ||
3272 | return len; | |
3273 | } | |
3274 | #endif | |
3275 | ||
0ec76a11 DH |
3276 | /* |
3277 | * Access another process' address space. | |
3278 | * Source/target buffer must be kernel space, | |
3279 | * Do not walk the page table directly, use get_user_pages | |
3280 | */ | |
3281 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
3282 | { | |
3283 | struct mm_struct *mm; | |
3284 | struct vm_area_struct *vma; | |
0ec76a11 DH |
3285 | void *old_buf = buf; |
3286 | ||
3287 | mm = get_task_mm(tsk); | |
3288 | if (!mm) | |
3289 | return 0; | |
3290 | ||
3291 | down_read(&mm->mmap_sem); | |
183ff22b | 3292 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
3293 | while (len) { |
3294 | int bytes, ret, offset; | |
3295 | void *maddr; | |
28b2ee20 | 3296 | struct page *page = NULL; |
0ec76a11 DH |
3297 | |
3298 | ret = get_user_pages(tsk, mm, addr, 1, | |
3299 | write, 1, &page, &vma); | |
28b2ee20 RR |
3300 | if (ret <= 0) { |
3301 | /* | |
3302 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
3303 | * we can access using slightly different code. | |
3304 | */ | |
3305 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
3306 | vma = find_vma(mm, addr); | |
3307 | if (!vma) | |
3308 | break; | |
3309 | if (vma->vm_ops && vma->vm_ops->access) | |
3310 | ret = vma->vm_ops->access(vma, addr, buf, | |
3311 | len, write); | |
3312 | if (ret <= 0) | |
3313 | #endif | |
3314 | break; | |
3315 | bytes = ret; | |
0ec76a11 | 3316 | } else { |
28b2ee20 RR |
3317 | bytes = len; |
3318 | offset = addr & (PAGE_SIZE-1); | |
3319 | if (bytes > PAGE_SIZE-offset) | |
3320 | bytes = PAGE_SIZE-offset; | |
3321 | ||
3322 | maddr = kmap(page); | |
3323 | if (write) { | |
3324 | copy_to_user_page(vma, page, addr, | |
3325 | maddr + offset, buf, bytes); | |
3326 | set_page_dirty_lock(page); | |
3327 | } else { | |
3328 | copy_from_user_page(vma, page, addr, | |
3329 | buf, maddr + offset, bytes); | |
3330 | } | |
3331 | kunmap(page); | |
3332 | page_cache_release(page); | |
0ec76a11 | 3333 | } |
0ec76a11 DH |
3334 | len -= bytes; |
3335 | buf += bytes; | |
3336 | addr += bytes; | |
3337 | } | |
3338 | up_read(&mm->mmap_sem); | |
3339 | mmput(mm); | |
3340 | ||
3341 | return buf - old_buf; | |
3342 | } | |
03252919 AK |
3343 | |
3344 | /* | |
3345 | * Print the name of a VMA. | |
3346 | */ | |
3347 | void print_vma_addr(char *prefix, unsigned long ip) | |
3348 | { | |
3349 | struct mm_struct *mm = current->mm; | |
3350 | struct vm_area_struct *vma; | |
3351 | ||
e8bff74a IM |
3352 | /* |
3353 | * Do not print if we are in atomic | |
3354 | * contexts (in exception stacks, etc.): | |
3355 | */ | |
3356 | if (preempt_count()) | |
3357 | return; | |
3358 | ||
03252919 AK |
3359 | down_read(&mm->mmap_sem); |
3360 | vma = find_vma(mm, ip); | |
3361 | if (vma && vma->vm_file) { | |
3362 | struct file *f = vma->vm_file; | |
3363 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
3364 | if (buf) { | |
3365 | char *p, *s; | |
3366 | ||
cf28b486 | 3367 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
03252919 AK |
3368 | if (IS_ERR(p)) |
3369 | p = "?"; | |
3370 | s = strrchr(p, '/'); | |
3371 | if (s) | |
3372 | p = s+1; | |
3373 | printk("%s%s[%lx+%lx]", prefix, p, | |
3374 | vma->vm_start, | |
3375 | vma->vm_end - vma->vm_start); | |
3376 | free_page((unsigned long)buf); | |
3377 | } | |
3378 | } | |
3379 | up_read(¤t->mm->mmap_sem); | |
3380 | } | |
3ee1afa3 NP |
3381 | |
3382 | #ifdef CONFIG_PROVE_LOCKING | |
3383 | void might_fault(void) | |
3384 | { | |
95156f00 PZ |
3385 | /* |
3386 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
3387 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
3388 | * get paged out, therefore we'll never actually fault, and the | |
3389 | * below annotations will generate false positives. | |
3390 | */ | |
3391 | if (segment_eq(get_fs(), KERNEL_DS)) | |
3392 | return; | |
3393 | ||
3ee1afa3 NP |
3394 | might_sleep(); |
3395 | /* | |
3396 | * it would be nicer only to annotate paths which are not under | |
3397 | * pagefault_disable, however that requires a larger audit and | |
3398 | * providing helpers like get_user_atomic. | |
3399 | */ | |
3400 | if (!in_atomic() && current->mm) | |
3401 | might_lock_read(¤t->mm->mmap_sem); | |
3402 | } | |
3403 | EXPORT_SYMBOL(might_fault); | |
3404 | #endif |