]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
0ff92245 | 50 | #include <linux/delayacct.h> |
1da177e4 | 51 | #include <linux/init.h> |
edc79b2a | 52 | #include <linux/writeback.h> |
8a9f3ccd | 53 | #include <linux/memcontrol.h> |
cddb8a5c | 54 | #include <linux/mmu_notifier.h> |
1da177e4 LT |
55 | |
56 | #include <asm/pgalloc.h> | |
57 | #include <asm/uaccess.h> | |
58 | #include <asm/tlb.h> | |
59 | #include <asm/tlbflush.h> | |
60 | #include <asm/pgtable.h> | |
61 | ||
62 | #include <linux/swapops.h> | |
63 | #include <linux/elf.h> | |
64 | ||
42b77728 JB |
65 | #include "internal.h" |
66 | ||
d41dee36 | 67 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
68 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
69 | unsigned long max_mapnr; | |
70 | struct page *mem_map; | |
71 | ||
72 | EXPORT_SYMBOL(max_mapnr); | |
73 | EXPORT_SYMBOL(mem_map); | |
74 | #endif | |
75 | ||
76 | unsigned long num_physpages; | |
77 | /* | |
78 | * A number of key systems in x86 including ioremap() rely on the assumption | |
79 | * that high_memory defines the upper bound on direct map memory, then end | |
80 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
81 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
82 | * and ZONE_HIGHMEM. | |
83 | */ | |
84 | void * high_memory; | |
1da177e4 LT |
85 | |
86 | EXPORT_SYMBOL(num_physpages); | |
87 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 88 | |
32a93233 IM |
89 | /* |
90 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
91 | * | |
92 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
93 | * as ancient (libc5 based) binaries can segfault. ) | |
94 | */ | |
95 | int randomize_va_space __read_mostly = | |
96 | #ifdef CONFIG_COMPAT_BRK | |
97 | 1; | |
98 | #else | |
99 | 2; | |
100 | #endif | |
a62eaf15 | 101 | |
2ab64037 | 102 | #ifndef track_pfn_vma_new |
103 | /* | |
104 | * Interface that can be used by architecture code to keep track of | |
105 | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | |
106 | * | |
107 | * track_pfn_vma_new is called when a _new_ pfn mapping is being established | |
108 | * for physical range indicated by pfn and size. | |
109 | */ | |
110 | int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t prot, | |
111 | unsigned long pfn, unsigned long size) | |
112 | { | |
113 | return 0; | |
114 | } | |
115 | #endif | |
116 | ||
117 | #ifndef track_pfn_vma_copy | |
118 | /* | |
119 | * Interface that can be used by architecture code to keep track of | |
120 | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | |
121 | * | |
122 | * track_pfn_vma_copy is called when vma that is covering the pfnmap gets | |
123 | * copied through copy_page_range(). | |
124 | */ | |
125 | int track_pfn_vma_copy(struct vm_area_struct *vma) | |
126 | { | |
127 | return 0; | |
128 | } | |
129 | #endif | |
130 | ||
131 | #ifndef untrack_pfn_vma | |
132 | /* | |
133 | * Interface that can be used by architecture code to keep track of | |
134 | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | |
135 | * | |
136 | * untrack_pfn_vma is called while unmapping a pfnmap for a region. | |
137 | * untrack can be called for a specific region indicated by pfn and size or | |
138 | * can be for the entire vma (in which case size can be zero). | |
139 | */ | |
140 | void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn, | |
141 | unsigned long size) | |
142 | { | |
143 | } | |
144 | #endif | |
145 | ||
a62eaf15 AK |
146 | static int __init disable_randmaps(char *s) |
147 | { | |
148 | randomize_va_space = 0; | |
9b41046c | 149 | return 1; |
a62eaf15 AK |
150 | } |
151 | __setup("norandmaps", disable_randmaps); | |
152 | ||
153 | ||
1da177e4 LT |
154 | /* |
155 | * If a p?d_bad entry is found while walking page tables, report | |
156 | * the error, before resetting entry to p?d_none. Usually (but | |
157 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
158 | */ | |
159 | ||
160 | void pgd_clear_bad(pgd_t *pgd) | |
161 | { | |
162 | pgd_ERROR(*pgd); | |
163 | pgd_clear(pgd); | |
164 | } | |
165 | ||
166 | void pud_clear_bad(pud_t *pud) | |
167 | { | |
168 | pud_ERROR(*pud); | |
169 | pud_clear(pud); | |
170 | } | |
171 | ||
172 | void pmd_clear_bad(pmd_t *pmd) | |
173 | { | |
174 | pmd_ERROR(*pmd); | |
175 | pmd_clear(pmd); | |
176 | } | |
177 | ||
178 | /* | |
179 | * Note: this doesn't free the actual pages themselves. That | |
180 | * has been handled earlier when unmapping all the memory regions. | |
181 | */ | |
e0da382c | 182 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 183 | { |
2f569afd | 184 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 185 | pmd_clear(pmd); |
2f569afd | 186 | pte_free_tlb(tlb, token); |
e0da382c | 187 | tlb->mm->nr_ptes--; |
1da177e4 LT |
188 | } |
189 | ||
e0da382c HD |
190 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
191 | unsigned long addr, unsigned long end, | |
192 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
193 | { |
194 | pmd_t *pmd; | |
195 | unsigned long next; | |
e0da382c | 196 | unsigned long start; |
1da177e4 | 197 | |
e0da382c | 198 | start = addr; |
1da177e4 | 199 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
200 | do { |
201 | next = pmd_addr_end(addr, end); | |
202 | if (pmd_none_or_clear_bad(pmd)) | |
203 | continue; | |
e0da382c | 204 | free_pte_range(tlb, pmd); |
1da177e4 LT |
205 | } while (pmd++, addr = next, addr != end); |
206 | ||
e0da382c HD |
207 | start &= PUD_MASK; |
208 | if (start < floor) | |
209 | return; | |
210 | if (ceiling) { | |
211 | ceiling &= PUD_MASK; | |
212 | if (!ceiling) | |
213 | return; | |
1da177e4 | 214 | } |
e0da382c HD |
215 | if (end - 1 > ceiling - 1) |
216 | return; | |
217 | ||
218 | pmd = pmd_offset(pud, start); | |
219 | pud_clear(pud); | |
220 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
221 | } |
222 | ||
e0da382c HD |
223 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
224 | unsigned long addr, unsigned long end, | |
225 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
226 | { |
227 | pud_t *pud; | |
228 | unsigned long next; | |
e0da382c | 229 | unsigned long start; |
1da177e4 | 230 | |
e0da382c | 231 | start = addr; |
1da177e4 | 232 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
233 | do { |
234 | next = pud_addr_end(addr, end); | |
235 | if (pud_none_or_clear_bad(pud)) | |
236 | continue; | |
e0da382c | 237 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
238 | } while (pud++, addr = next, addr != end); |
239 | ||
e0da382c HD |
240 | start &= PGDIR_MASK; |
241 | if (start < floor) | |
242 | return; | |
243 | if (ceiling) { | |
244 | ceiling &= PGDIR_MASK; | |
245 | if (!ceiling) | |
246 | return; | |
1da177e4 | 247 | } |
e0da382c HD |
248 | if (end - 1 > ceiling - 1) |
249 | return; | |
250 | ||
251 | pud = pud_offset(pgd, start); | |
252 | pgd_clear(pgd); | |
253 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
254 | } |
255 | ||
256 | /* | |
e0da382c HD |
257 | * This function frees user-level page tables of a process. |
258 | * | |
1da177e4 LT |
259 | * Must be called with pagetable lock held. |
260 | */ | |
42b77728 | 261 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
262 | unsigned long addr, unsigned long end, |
263 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
264 | { |
265 | pgd_t *pgd; | |
266 | unsigned long next; | |
e0da382c HD |
267 | unsigned long start; |
268 | ||
269 | /* | |
270 | * The next few lines have given us lots of grief... | |
271 | * | |
272 | * Why are we testing PMD* at this top level? Because often | |
273 | * there will be no work to do at all, and we'd prefer not to | |
274 | * go all the way down to the bottom just to discover that. | |
275 | * | |
276 | * Why all these "- 1"s? Because 0 represents both the bottom | |
277 | * of the address space and the top of it (using -1 for the | |
278 | * top wouldn't help much: the masks would do the wrong thing). | |
279 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
280 | * the address space, but end 0 and ceiling 0 refer to the top | |
281 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
282 | * that end 0 case should be mythical). | |
283 | * | |
284 | * Wherever addr is brought up or ceiling brought down, we must | |
285 | * be careful to reject "the opposite 0" before it confuses the | |
286 | * subsequent tests. But what about where end is brought down | |
287 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
288 | * | |
289 | * Whereas we round start (addr) and ceiling down, by different | |
290 | * masks at different levels, in order to test whether a table | |
291 | * now has no other vmas using it, so can be freed, we don't | |
292 | * bother to round floor or end up - the tests don't need that. | |
293 | */ | |
1da177e4 | 294 | |
e0da382c HD |
295 | addr &= PMD_MASK; |
296 | if (addr < floor) { | |
297 | addr += PMD_SIZE; | |
298 | if (!addr) | |
299 | return; | |
300 | } | |
301 | if (ceiling) { | |
302 | ceiling &= PMD_MASK; | |
303 | if (!ceiling) | |
304 | return; | |
305 | } | |
306 | if (end - 1 > ceiling - 1) | |
307 | end -= PMD_SIZE; | |
308 | if (addr > end - 1) | |
309 | return; | |
310 | ||
311 | start = addr; | |
42b77728 | 312 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
313 | do { |
314 | next = pgd_addr_end(addr, end); | |
315 | if (pgd_none_or_clear_bad(pgd)) | |
316 | continue; | |
42b77728 | 317 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 318 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
319 | } |
320 | ||
42b77728 | 321 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 322 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
323 | { |
324 | while (vma) { | |
325 | struct vm_area_struct *next = vma->vm_next; | |
326 | unsigned long addr = vma->vm_start; | |
327 | ||
8f4f8c16 HD |
328 | /* |
329 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
330 | */ | |
331 | anon_vma_unlink(vma); | |
332 | unlink_file_vma(vma); | |
333 | ||
9da61aef | 334 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 335 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 336 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
337 | } else { |
338 | /* | |
339 | * Optimization: gather nearby vmas into one call down | |
340 | */ | |
341 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 342 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
343 | vma = next; |
344 | next = vma->vm_next; | |
8f4f8c16 HD |
345 | anon_vma_unlink(vma); |
346 | unlink_file_vma(vma); | |
3bf5ee95 HD |
347 | } |
348 | free_pgd_range(tlb, addr, vma->vm_end, | |
349 | floor, next? next->vm_start: ceiling); | |
350 | } | |
e0da382c HD |
351 | vma = next; |
352 | } | |
1da177e4 LT |
353 | } |
354 | ||
1bb3630e | 355 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 356 | { |
2f569afd | 357 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
358 | if (!new) |
359 | return -ENOMEM; | |
360 | ||
362a61ad NP |
361 | /* |
362 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
363 | * visible before the pte is made visible to other CPUs by being | |
364 | * put into page tables. | |
365 | * | |
366 | * The other side of the story is the pointer chasing in the page | |
367 | * table walking code (when walking the page table without locking; | |
368 | * ie. most of the time). Fortunately, these data accesses consist | |
369 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
370 | * being the notable exception) will already guarantee loads are | |
371 | * seen in-order. See the alpha page table accessors for the | |
372 | * smp_read_barrier_depends() barriers in page table walking code. | |
373 | */ | |
374 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
375 | ||
c74df32c | 376 | spin_lock(&mm->page_table_lock); |
2f569afd | 377 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1da177e4 | 378 | mm->nr_ptes++; |
1da177e4 | 379 | pmd_populate(mm, pmd, new); |
2f569afd | 380 | new = NULL; |
1da177e4 | 381 | } |
c74df32c | 382 | spin_unlock(&mm->page_table_lock); |
2f569afd MS |
383 | if (new) |
384 | pte_free(mm, new); | |
1bb3630e | 385 | return 0; |
1da177e4 LT |
386 | } |
387 | ||
1bb3630e | 388 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 389 | { |
1bb3630e HD |
390 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
391 | if (!new) | |
392 | return -ENOMEM; | |
393 | ||
362a61ad NP |
394 | smp_wmb(); /* See comment in __pte_alloc */ |
395 | ||
1bb3630e | 396 | spin_lock(&init_mm.page_table_lock); |
2f569afd | 397 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1bb3630e | 398 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd MS |
399 | new = NULL; |
400 | } | |
1bb3630e | 401 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
402 | if (new) |
403 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 404 | return 0; |
1da177e4 LT |
405 | } |
406 | ||
ae859762 HD |
407 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
408 | { | |
409 | if (file_rss) | |
410 | add_mm_counter(mm, file_rss, file_rss); | |
411 | if (anon_rss) | |
412 | add_mm_counter(mm, anon_rss, anon_rss); | |
413 | } | |
414 | ||
b5810039 | 415 | /* |
6aab341e LT |
416 | * This function is called to print an error when a bad pte |
417 | * is found. For example, we might have a PFN-mapped pte in | |
418 | * a region that doesn't allow it. | |
b5810039 NP |
419 | * |
420 | * The calling function must still handle the error. | |
421 | */ | |
15f59ada AB |
422 | static void print_bad_pte(struct vm_area_struct *vma, pte_t pte, |
423 | unsigned long vaddr) | |
b5810039 NP |
424 | { |
425 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | |
426 | "vm_flags = %lx, vaddr = %lx\n", | |
427 | (long long)pte_val(pte), | |
428 | (vma->vm_mm == current->mm ? current->comm : "???"), | |
429 | vma->vm_flags, vaddr); | |
430 | dump_stack(); | |
431 | } | |
432 | ||
67121172 LT |
433 | static inline int is_cow_mapping(unsigned int flags) |
434 | { | |
435 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
436 | } | |
437 | ||
ee498ed7 | 438 | /* |
7e675137 | 439 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 440 | * |
7e675137 NP |
441 | * "Special" mappings do not wish to be associated with a "struct page" (either |
442 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
443 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 444 | * |
7e675137 NP |
445 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
446 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
447 | * may not have a spare pte bit, which requires a more complicated scheme, | |
448 | * described below. | |
449 | * | |
450 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
451 | * special mapping (even if there are underlying and valid "struct pages"). | |
452 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 453 | * |
b379d790 JH |
454 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
455 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
456 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
457 | * mapping will always honor the rule | |
6aab341e LT |
458 | * |
459 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
460 | * | |
7e675137 NP |
461 | * And for normal mappings this is false. |
462 | * | |
463 | * This restricts such mappings to be a linear translation from virtual address | |
464 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
465 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
466 | * special (because none can have been COWed). | |
b379d790 | 467 | * |
b379d790 | 468 | * |
7e675137 | 469 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
470 | * |
471 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
472 | * page" backing, however the difference is that _all_ pages with a struct | |
473 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
474 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
475 | * (which can be slower and simply not an option for some PFNMAP users). The | |
476 | * advantage is that we don't have to follow the strict linearity rule of | |
477 | * PFNMAP mappings in order to support COWable mappings. | |
478 | * | |
ee498ed7 | 479 | */ |
7e675137 NP |
480 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
481 | # define HAVE_PTE_SPECIAL 1 | |
482 | #else | |
483 | # define HAVE_PTE_SPECIAL 0 | |
484 | #endif | |
485 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
486 | pte_t pte) | |
ee498ed7 | 487 | { |
7e675137 NP |
488 | unsigned long pfn; |
489 | ||
490 | if (HAVE_PTE_SPECIAL) { | |
491 | if (likely(!pte_special(pte))) { | |
492 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
493 | return pte_page(pte); | |
494 | } | |
495 | VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); | |
496 | return NULL; | |
497 | } | |
498 | ||
499 | /* !HAVE_PTE_SPECIAL case follows: */ | |
500 | ||
501 | pfn = pte_pfn(pte); | |
6aab341e | 502 | |
b379d790 JH |
503 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
504 | if (vma->vm_flags & VM_MIXEDMAP) { | |
505 | if (!pfn_valid(pfn)) | |
506 | return NULL; | |
507 | goto out; | |
508 | } else { | |
7e675137 NP |
509 | unsigned long off; |
510 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
511 | if (pfn == vma->vm_pgoff + off) |
512 | return NULL; | |
513 | if (!is_cow_mapping(vma->vm_flags)) | |
514 | return NULL; | |
515 | } | |
6aab341e LT |
516 | } |
517 | ||
7e675137 | 518 | VM_BUG_ON(!pfn_valid(pfn)); |
6aab341e LT |
519 | |
520 | /* | |
7e675137 | 521 | * NOTE! We still have PageReserved() pages in the page tables. |
6aab341e | 522 | * |
7e675137 | 523 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 524 | */ |
b379d790 | 525 | out: |
6aab341e | 526 | return pfn_to_page(pfn); |
ee498ed7 HD |
527 | } |
528 | ||
1da177e4 LT |
529 | /* |
530 | * copy one vm_area from one task to the other. Assumes the page tables | |
531 | * already present in the new task to be cleared in the whole range | |
532 | * covered by this vma. | |
1da177e4 LT |
533 | */ |
534 | ||
8c103762 | 535 | static inline void |
1da177e4 | 536 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 537 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 538 | unsigned long addr, int *rss) |
1da177e4 | 539 | { |
b5810039 | 540 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
541 | pte_t pte = *src_pte; |
542 | struct page *page; | |
1da177e4 LT |
543 | |
544 | /* pte contains position in swap or file, so copy. */ | |
545 | if (unlikely(!pte_present(pte))) { | |
546 | if (!pte_file(pte)) { | |
0697212a CL |
547 | swp_entry_t entry = pte_to_swp_entry(pte); |
548 | ||
549 | swap_duplicate(entry); | |
1da177e4 LT |
550 | /* make sure dst_mm is on swapoff's mmlist. */ |
551 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
552 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
553 | if (list_empty(&dst_mm->mmlist)) |
554 | list_add(&dst_mm->mmlist, | |
555 | &src_mm->mmlist); | |
1da177e4 LT |
556 | spin_unlock(&mmlist_lock); |
557 | } | |
0697212a CL |
558 | if (is_write_migration_entry(entry) && |
559 | is_cow_mapping(vm_flags)) { | |
560 | /* | |
561 | * COW mappings require pages in both parent | |
562 | * and child to be set to read. | |
563 | */ | |
564 | make_migration_entry_read(&entry); | |
565 | pte = swp_entry_to_pte(entry); | |
566 | set_pte_at(src_mm, addr, src_pte, pte); | |
567 | } | |
1da177e4 | 568 | } |
ae859762 | 569 | goto out_set_pte; |
1da177e4 LT |
570 | } |
571 | ||
1da177e4 LT |
572 | /* |
573 | * If it's a COW mapping, write protect it both | |
574 | * in the parent and the child | |
575 | */ | |
67121172 | 576 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 577 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 578 | pte = pte_wrprotect(pte); |
1da177e4 LT |
579 | } |
580 | ||
581 | /* | |
582 | * If it's a shared mapping, mark it clean in | |
583 | * the child | |
584 | */ | |
585 | if (vm_flags & VM_SHARED) | |
586 | pte = pte_mkclean(pte); | |
587 | pte = pte_mkold(pte); | |
6aab341e LT |
588 | |
589 | page = vm_normal_page(vma, addr, pte); | |
590 | if (page) { | |
591 | get_page(page); | |
c97a9e10 | 592 | page_dup_rmap(page, vma, addr); |
6aab341e LT |
593 | rss[!!PageAnon(page)]++; |
594 | } | |
ae859762 HD |
595 | |
596 | out_set_pte: | |
597 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
598 | } |
599 | ||
600 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
601 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
602 | unsigned long addr, unsigned long end) | |
603 | { | |
604 | pte_t *src_pte, *dst_pte; | |
c74df32c | 605 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 606 | int progress = 0; |
8c103762 | 607 | int rss[2]; |
1da177e4 LT |
608 | |
609 | again: | |
ae859762 | 610 | rss[1] = rss[0] = 0; |
c74df32c | 611 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
612 | if (!dst_pte) |
613 | return -ENOMEM; | |
614 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 615 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 616 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
6606c3e0 | 617 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 618 | |
1da177e4 LT |
619 | do { |
620 | /* | |
621 | * We are holding two locks at this point - either of them | |
622 | * could generate latencies in another task on another CPU. | |
623 | */ | |
e040f218 HD |
624 | if (progress >= 32) { |
625 | progress = 0; | |
626 | if (need_resched() || | |
95c354fe | 627 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
628 | break; |
629 | } | |
1da177e4 LT |
630 | if (pte_none(*src_pte)) { |
631 | progress++; | |
632 | continue; | |
633 | } | |
8c103762 | 634 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
635 | progress += 8; |
636 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 637 | |
6606c3e0 | 638 | arch_leave_lazy_mmu_mode(); |
c74df32c | 639 | spin_unlock(src_ptl); |
1da177e4 | 640 | pte_unmap_nested(src_pte - 1); |
ae859762 | 641 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
642 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
643 | cond_resched(); | |
1da177e4 LT |
644 | if (addr != end) |
645 | goto again; | |
646 | return 0; | |
647 | } | |
648 | ||
649 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
650 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
651 | unsigned long addr, unsigned long end) | |
652 | { | |
653 | pmd_t *src_pmd, *dst_pmd; | |
654 | unsigned long next; | |
655 | ||
656 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
657 | if (!dst_pmd) | |
658 | return -ENOMEM; | |
659 | src_pmd = pmd_offset(src_pud, addr); | |
660 | do { | |
661 | next = pmd_addr_end(addr, end); | |
662 | if (pmd_none_or_clear_bad(src_pmd)) | |
663 | continue; | |
664 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
665 | vma, addr, next)) | |
666 | return -ENOMEM; | |
667 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
668 | return 0; | |
669 | } | |
670 | ||
671 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
672 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
673 | unsigned long addr, unsigned long end) | |
674 | { | |
675 | pud_t *src_pud, *dst_pud; | |
676 | unsigned long next; | |
677 | ||
678 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
679 | if (!dst_pud) | |
680 | return -ENOMEM; | |
681 | src_pud = pud_offset(src_pgd, addr); | |
682 | do { | |
683 | next = pud_addr_end(addr, end); | |
684 | if (pud_none_or_clear_bad(src_pud)) | |
685 | continue; | |
686 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
687 | vma, addr, next)) | |
688 | return -ENOMEM; | |
689 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
690 | return 0; | |
691 | } | |
692 | ||
693 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
694 | struct vm_area_struct *vma) | |
695 | { | |
696 | pgd_t *src_pgd, *dst_pgd; | |
697 | unsigned long next; | |
698 | unsigned long addr = vma->vm_start; | |
699 | unsigned long end = vma->vm_end; | |
cddb8a5c | 700 | int ret; |
1da177e4 | 701 | |
d992895b NP |
702 | /* |
703 | * Don't copy ptes where a page fault will fill them correctly. | |
704 | * Fork becomes much lighter when there are big shared or private | |
705 | * readonly mappings. The tradeoff is that copy_page_range is more | |
706 | * efficient than faulting. | |
707 | */ | |
4d7672b4 | 708 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
709 | if (!vma->anon_vma) |
710 | return 0; | |
711 | } | |
712 | ||
1da177e4 LT |
713 | if (is_vm_hugetlb_page(vma)) |
714 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
715 | ||
2ab64037 | 716 | if (is_pfn_mapping(vma)) { |
717 | /* | |
718 | * We do not free on error cases below as remove_vma | |
719 | * gets called on error from higher level routine | |
720 | */ | |
721 | ret = track_pfn_vma_copy(vma); | |
722 | if (ret) | |
723 | return ret; | |
724 | } | |
725 | ||
cddb8a5c AA |
726 | /* |
727 | * We need to invalidate the secondary MMU mappings only when | |
728 | * there could be a permission downgrade on the ptes of the | |
729 | * parent mm. And a permission downgrade will only happen if | |
730 | * is_cow_mapping() returns true. | |
731 | */ | |
732 | if (is_cow_mapping(vma->vm_flags)) | |
733 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | |
734 | ||
735 | ret = 0; | |
1da177e4 LT |
736 | dst_pgd = pgd_offset(dst_mm, addr); |
737 | src_pgd = pgd_offset(src_mm, addr); | |
738 | do { | |
739 | next = pgd_addr_end(addr, end); | |
740 | if (pgd_none_or_clear_bad(src_pgd)) | |
741 | continue; | |
cddb8a5c AA |
742 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
743 | vma, addr, next))) { | |
744 | ret = -ENOMEM; | |
745 | break; | |
746 | } | |
1da177e4 | 747 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c AA |
748 | |
749 | if (is_cow_mapping(vma->vm_flags)) | |
750 | mmu_notifier_invalidate_range_end(src_mm, | |
751 | vma->vm_start, end); | |
752 | return ret; | |
1da177e4 LT |
753 | } |
754 | ||
51c6f666 | 755 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 756 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 757 | unsigned long addr, unsigned long end, |
51c6f666 | 758 | long *zap_work, struct zap_details *details) |
1da177e4 | 759 | { |
b5810039 | 760 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 761 | pte_t *pte; |
508034a3 | 762 | spinlock_t *ptl; |
ae859762 HD |
763 | int file_rss = 0; |
764 | int anon_rss = 0; | |
1da177e4 | 765 | |
508034a3 | 766 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 767 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
768 | do { |
769 | pte_t ptent = *pte; | |
51c6f666 RH |
770 | if (pte_none(ptent)) { |
771 | (*zap_work)--; | |
1da177e4 | 772 | continue; |
51c6f666 | 773 | } |
6f5e6b9e HD |
774 | |
775 | (*zap_work) -= PAGE_SIZE; | |
776 | ||
1da177e4 | 777 | if (pte_present(ptent)) { |
ee498ed7 | 778 | struct page *page; |
51c6f666 | 779 | |
6aab341e | 780 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
781 | if (unlikely(details) && page) { |
782 | /* | |
783 | * unmap_shared_mapping_pages() wants to | |
784 | * invalidate cache without truncating: | |
785 | * unmap shared but keep private pages. | |
786 | */ | |
787 | if (details->check_mapping && | |
788 | details->check_mapping != page->mapping) | |
789 | continue; | |
790 | /* | |
791 | * Each page->index must be checked when | |
792 | * invalidating or truncating nonlinear. | |
793 | */ | |
794 | if (details->nonlinear_vma && | |
795 | (page->index < details->first_index || | |
796 | page->index > details->last_index)) | |
797 | continue; | |
798 | } | |
b5810039 | 799 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 800 | tlb->fullmm); |
1da177e4 LT |
801 | tlb_remove_tlb_entry(tlb, pte, addr); |
802 | if (unlikely(!page)) | |
803 | continue; | |
804 | if (unlikely(details) && details->nonlinear_vma | |
805 | && linear_page_index(details->nonlinear_vma, | |
806 | addr) != page->index) | |
b5810039 | 807 | set_pte_at(mm, addr, pte, |
1da177e4 | 808 | pgoff_to_pte(page->index)); |
1da177e4 | 809 | if (PageAnon(page)) |
86d912f4 | 810 | anon_rss--; |
6237bcd9 HD |
811 | else { |
812 | if (pte_dirty(ptent)) | |
813 | set_page_dirty(page); | |
814 | if (pte_young(ptent)) | |
daa88c8d | 815 | SetPageReferenced(page); |
86d912f4 | 816 | file_rss--; |
6237bcd9 | 817 | } |
7de6b805 | 818 | page_remove_rmap(page, vma); |
1da177e4 LT |
819 | tlb_remove_page(tlb, page); |
820 | continue; | |
821 | } | |
822 | /* | |
823 | * If details->check_mapping, we leave swap entries; | |
824 | * if details->nonlinear_vma, we leave file entries. | |
825 | */ | |
826 | if (unlikely(details)) | |
827 | continue; | |
828 | if (!pte_file(ptent)) | |
829 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
9888a1ca | 830 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 831 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 832 | |
86d912f4 | 833 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 834 | arch_leave_lazy_mmu_mode(); |
508034a3 | 835 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
836 | |
837 | return addr; | |
1da177e4 LT |
838 | } |
839 | ||
51c6f666 | 840 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 841 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 842 | unsigned long addr, unsigned long end, |
51c6f666 | 843 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
844 | { |
845 | pmd_t *pmd; | |
846 | unsigned long next; | |
847 | ||
848 | pmd = pmd_offset(pud, addr); | |
849 | do { | |
850 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
851 | if (pmd_none_or_clear_bad(pmd)) { |
852 | (*zap_work)--; | |
1da177e4 | 853 | continue; |
51c6f666 RH |
854 | } |
855 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
856 | zap_work, details); | |
857 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
858 | ||
859 | return addr; | |
1da177e4 LT |
860 | } |
861 | ||
51c6f666 | 862 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 863 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 864 | unsigned long addr, unsigned long end, |
51c6f666 | 865 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
866 | { |
867 | pud_t *pud; | |
868 | unsigned long next; | |
869 | ||
870 | pud = pud_offset(pgd, addr); | |
871 | do { | |
872 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
873 | if (pud_none_or_clear_bad(pud)) { |
874 | (*zap_work)--; | |
1da177e4 | 875 | continue; |
51c6f666 RH |
876 | } |
877 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
878 | zap_work, details); | |
879 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
880 | ||
881 | return addr; | |
1da177e4 LT |
882 | } |
883 | ||
51c6f666 RH |
884 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
885 | struct vm_area_struct *vma, | |
1da177e4 | 886 | unsigned long addr, unsigned long end, |
51c6f666 | 887 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
888 | { |
889 | pgd_t *pgd; | |
890 | unsigned long next; | |
891 | ||
892 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
893 | details = NULL; | |
894 | ||
895 | BUG_ON(addr >= end); | |
896 | tlb_start_vma(tlb, vma); | |
897 | pgd = pgd_offset(vma->vm_mm, addr); | |
898 | do { | |
899 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
900 | if (pgd_none_or_clear_bad(pgd)) { |
901 | (*zap_work)--; | |
1da177e4 | 902 | continue; |
51c6f666 RH |
903 | } |
904 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
905 | zap_work, details); | |
906 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 907 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
908 | |
909 | return addr; | |
1da177e4 LT |
910 | } |
911 | ||
912 | #ifdef CONFIG_PREEMPT | |
913 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
914 | #else | |
915 | /* No preempt: go for improved straight-line efficiency */ | |
916 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
917 | #endif | |
918 | ||
919 | /** | |
920 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
921 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
922 | * @vma: the starting vma |
923 | * @start_addr: virtual address at which to start unmapping | |
924 | * @end_addr: virtual address at which to end unmapping | |
925 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
926 | * @details: details of nonlinear truncation or shared cache invalidation | |
927 | * | |
ee39b37b | 928 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 929 | * |
508034a3 | 930 | * Unmap all pages in the vma list. |
1da177e4 | 931 | * |
508034a3 HD |
932 | * We aim to not hold locks for too long (for scheduling latency reasons). |
933 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
934 | * return the ending mmu_gather to the caller. |
935 | * | |
936 | * Only addresses between `start' and `end' will be unmapped. | |
937 | * | |
938 | * The VMA list must be sorted in ascending virtual address order. | |
939 | * | |
940 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
941 | * range after unmap_vmas() returns. So the only responsibility here is to | |
942 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
943 | * drops the lock and schedules. | |
944 | */ | |
508034a3 | 945 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
946 | struct vm_area_struct *vma, unsigned long start_addr, |
947 | unsigned long end_addr, unsigned long *nr_accounted, | |
948 | struct zap_details *details) | |
949 | { | |
51c6f666 | 950 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
951 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
952 | int tlb_start_valid = 0; | |
ee39b37b | 953 | unsigned long start = start_addr; |
1da177e4 | 954 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 955 | int fullmm = (*tlbp)->fullmm; |
cddb8a5c | 956 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 957 | |
cddb8a5c | 958 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
1da177e4 | 959 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
1da177e4 LT |
960 | unsigned long end; |
961 | ||
962 | start = max(vma->vm_start, start_addr); | |
963 | if (start >= vma->vm_end) | |
964 | continue; | |
965 | end = min(vma->vm_end, end_addr); | |
966 | if (end <= vma->vm_start) | |
967 | continue; | |
968 | ||
969 | if (vma->vm_flags & VM_ACCOUNT) | |
970 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
971 | ||
2ab64037 | 972 | if (is_pfn_mapping(vma)) |
973 | untrack_pfn_vma(vma, 0, 0); | |
974 | ||
1da177e4 | 975 | while (start != end) { |
1da177e4 LT |
976 | if (!tlb_start_valid) { |
977 | tlb_start = start; | |
978 | tlb_start_valid = 1; | |
979 | } | |
980 | ||
51c6f666 | 981 | if (unlikely(is_vm_hugetlb_page(vma))) { |
a137e1cc AK |
982 | /* |
983 | * It is undesirable to test vma->vm_file as it | |
984 | * should be non-null for valid hugetlb area. | |
985 | * However, vm_file will be NULL in the error | |
986 | * cleanup path of do_mmap_pgoff. When | |
987 | * hugetlbfs ->mmap method fails, | |
988 | * do_mmap_pgoff() nullifies vma->vm_file | |
989 | * before calling this function to clean up. | |
990 | * Since no pte has actually been setup, it is | |
991 | * safe to do nothing in this case. | |
992 | */ | |
993 | if (vma->vm_file) { | |
994 | unmap_hugepage_range(vma, start, end, NULL); | |
995 | zap_work -= (end - start) / | |
a5516438 | 996 | pages_per_huge_page(hstate_vma(vma)); |
a137e1cc AK |
997 | } |
998 | ||
51c6f666 RH |
999 | start = end; |
1000 | } else | |
1001 | start = unmap_page_range(*tlbp, vma, | |
1002 | start, end, &zap_work, details); | |
1003 | ||
1004 | if (zap_work > 0) { | |
1005 | BUG_ON(start != end); | |
1006 | break; | |
1da177e4 LT |
1007 | } |
1008 | ||
1da177e4 LT |
1009 | tlb_finish_mmu(*tlbp, tlb_start, start); |
1010 | ||
1011 | if (need_resched() || | |
95c354fe | 1012 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1da177e4 | 1013 | if (i_mmap_lock) { |
508034a3 | 1014 | *tlbp = NULL; |
1da177e4 LT |
1015 | goto out; |
1016 | } | |
1da177e4 | 1017 | cond_resched(); |
1da177e4 LT |
1018 | } |
1019 | ||
508034a3 | 1020 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 1021 | tlb_start_valid = 0; |
51c6f666 | 1022 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
1023 | } |
1024 | } | |
1025 | out: | |
cddb8a5c | 1026 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
ee39b37b | 1027 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
1028 | } |
1029 | ||
1030 | /** | |
1031 | * zap_page_range - remove user pages in a given range | |
1032 | * @vma: vm_area_struct holding the applicable pages | |
1033 | * @address: starting address of pages to zap | |
1034 | * @size: number of bytes to zap | |
1035 | * @details: details of nonlinear truncation or shared cache invalidation | |
1036 | */ | |
ee39b37b | 1037 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1038 | unsigned long size, struct zap_details *details) |
1039 | { | |
1040 | struct mm_struct *mm = vma->vm_mm; | |
1041 | struct mmu_gather *tlb; | |
1042 | unsigned long end = address + size; | |
1043 | unsigned long nr_accounted = 0; | |
1044 | ||
1da177e4 | 1045 | lru_add_drain(); |
1da177e4 | 1046 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 1047 | update_hiwater_rss(mm); |
508034a3 HD |
1048 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
1049 | if (tlb) | |
1050 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 1051 | return end; |
1da177e4 LT |
1052 | } |
1053 | ||
c627f9cc JS |
1054 | /** |
1055 | * zap_vma_ptes - remove ptes mapping the vma | |
1056 | * @vma: vm_area_struct holding ptes to be zapped | |
1057 | * @address: starting address of pages to zap | |
1058 | * @size: number of bytes to zap | |
1059 | * | |
1060 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1061 | * | |
1062 | * The entire address range must be fully contained within the vma. | |
1063 | * | |
1064 | * Returns 0 if successful. | |
1065 | */ | |
1066 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1067 | unsigned long size) | |
1068 | { | |
1069 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1070 | !(vma->vm_flags & VM_PFNMAP)) | |
1071 | return -1; | |
1072 | zap_page_range(vma, address, size, NULL); | |
1073 | return 0; | |
1074 | } | |
1075 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1076 | ||
1da177e4 LT |
1077 | /* |
1078 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 1079 | */ |
6aab341e | 1080 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 1081 | unsigned int flags) |
1da177e4 LT |
1082 | { |
1083 | pgd_t *pgd; | |
1084 | pud_t *pud; | |
1085 | pmd_t *pmd; | |
1086 | pte_t *ptep, pte; | |
deceb6cd | 1087 | spinlock_t *ptl; |
1da177e4 | 1088 | struct page *page; |
6aab341e | 1089 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1090 | |
deceb6cd HD |
1091 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
1092 | if (!IS_ERR(page)) { | |
1093 | BUG_ON(flags & FOLL_GET); | |
1094 | goto out; | |
1095 | } | |
1da177e4 | 1096 | |
deceb6cd | 1097 | page = NULL; |
1da177e4 LT |
1098 | pgd = pgd_offset(mm, address); |
1099 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 1100 | goto no_page_table; |
1da177e4 LT |
1101 | |
1102 | pud = pud_offset(pgd, address); | |
ceb86879 | 1103 | if (pud_none(*pud)) |
deceb6cd | 1104 | goto no_page_table; |
ceb86879 AK |
1105 | if (pud_huge(*pud)) { |
1106 | BUG_ON(flags & FOLL_GET); | |
1107 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | |
1108 | goto out; | |
1109 | } | |
1110 | if (unlikely(pud_bad(*pud))) | |
1111 | goto no_page_table; | |
1112 | ||
1da177e4 | 1113 | pmd = pmd_offset(pud, address); |
aeed5fce | 1114 | if (pmd_none(*pmd)) |
deceb6cd | 1115 | goto no_page_table; |
deceb6cd HD |
1116 | if (pmd_huge(*pmd)) { |
1117 | BUG_ON(flags & FOLL_GET); | |
1118 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 1119 | goto out; |
deceb6cd | 1120 | } |
aeed5fce HD |
1121 | if (unlikely(pmd_bad(*pmd))) |
1122 | goto no_page_table; | |
1123 | ||
deceb6cd | 1124 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1125 | |
1126 | pte = *ptep; | |
deceb6cd | 1127 | if (!pte_present(pte)) |
89f5b7da | 1128 | goto no_page; |
deceb6cd HD |
1129 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1130 | goto unlock; | |
6aab341e LT |
1131 | page = vm_normal_page(vma, address, pte); |
1132 | if (unlikely(!page)) | |
89f5b7da | 1133 | goto bad_page; |
1da177e4 | 1134 | |
deceb6cd HD |
1135 | if (flags & FOLL_GET) |
1136 | get_page(page); | |
1137 | if (flags & FOLL_TOUCH) { | |
1138 | if ((flags & FOLL_WRITE) && | |
1139 | !pte_dirty(pte) && !PageDirty(page)) | |
1140 | set_page_dirty(page); | |
1141 | mark_page_accessed(page); | |
1142 | } | |
1143 | unlock: | |
1144 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 1145 | out: |
deceb6cd | 1146 | return page; |
1da177e4 | 1147 | |
89f5b7da LT |
1148 | bad_page: |
1149 | pte_unmap_unlock(ptep, ptl); | |
1150 | return ERR_PTR(-EFAULT); | |
1151 | ||
1152 | no_page: | |
1153 | pte_unmap_unlock(ptep, ptl); | |
1154 | if (!pte_none(pte)) | |
1155 | return page; | |
1156 | /* Fall through to ZERO_PAGE handling */ | |
deceb6cd HD |
1157 | no_page_table: |
1158 | /* | |
1159 | * When core dumping an enormous anonymous area that nobody | |
1160 | * has touched so far, we don't want to allocate page tables. | |
1161 | */ | |
1162 | if (flags & FOLL_ANON) { | |
557ed1fa | 1163 | page = ZERO_PAGE(0); |
deceb6cd HD |
1164 | if (flags & FOLL_GET) |
1165 | get_page(page); | |
1166 | BUG_ON(flags & FOLL_WRITE); | |
1167 | } | |
1168 | return page; | |
1da177e4 LT |
1169 | } |
1170 | ||
672ca28e LT |
1171 | /* Can we do the FOLL_ANON optimization? */ |
1172 | static inline int use_zero_page(struct vm_area_struct *vma) | |
1173 | { | |
1174 | /* | |
1175 | * We don't want to optimize FOLL_ANON for make_pages_present() | |
1176 | * when it tries to page in a VM_LOCKED region. As to VM_SHARED, | |
1177 | * we want to get the page from the page tables to make sure | |
1178 | * that we serialize and update with any other user of that | |
1179 | * mapping. | |
1180 | */ | |
1181 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) | |
1182 | return 0; | |
1183 | /* | |
0d71d10a | 1184 | * And if we have a fault routine, it's not an anonymous region. |
672ca28e | 1185 | */ |
0d71d10a | 1186 | return !vma->vm_ops || !vma->vm_ops->fault; |
672ca28e LT |
1187 | } |
1188 | ||
b291f000 NP |
1189 | |
1190 | ||
1191 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |
1192 | unsigned long start, int len, int flags, | |
1da177e4 LT |
1193 | struct page **pages, struct vm_area_struct **vmas) |
1194 | { | |
1195 | int i; | |
b291f000 NP |
1196 | unsigned int vm_flags = 0; |
1197 | int write = !!(flags & GUP_FLAGS_WRITE); | |
1198 | int force = !!(flags & GUP_FLAGS_FORCE); | |
1199 | int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); | |
1da177e4 | 1200 | |
900cf086 JC |
1201 | if (len <= 0) |
1202 | return 0; | |
1da177e4 LT |
1203 | /* |
1204 | * Require read or write permissions. | |
1205 | * If 'force' is set, we only require the "MAY" flags. | |
1206 | */ | |
deceb6cd HD |
1207 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
1208 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
1209 | i = 0; |
1210 | ||
1211 | do { | |
deceb6cd HD |
1212 | struct vm_area_struct *vma; |
1213 | unsigned int foll_flags; | |
1da177e4 LT |
1214 | |
1215 | vma = find_extend_vma(mm, start); | |
1216 | if (!vma && in_gate_area(tsk, start)) { | |
1217 | unsigned long pg = start & PAGE_MASK; | |
1218 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1219 | pgd_t *pgd; | |
1220 | pud_t *pud; | |
1221 | pmd_t *pmd; | |
1222 | pte_t *pte; | |
b291f000 NP |
1223 | |
1224 | /* user gate pages are read-only */ | |
1225 | if (!ignore && write) | |
1da177e4 LT |
1226 | return i ? : -EFAULT; |
1227 | if (pg > TASK_SIZE) | |
1228 | pgd = pgd_offset_k(pg); | |
1229 | else | |
1230 | pgd = pgd_offset_gate(mm, pg); | |
1231 | BUG_ON(pgd_none(*pgd)); | |
1232 | pud = pud_offset(pgd, pg); | |
1233 | BUG_ON(pud_none(*pud)); | |
1234 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1235 | if (pmd_none(*pmd)) |
1236 | return i ? : -EFAULT; | |
1da177e4 | 1237 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1238 | if (pte_none(*pte)) { |
1239 | pte_unmap(pte); | |
1240 | return i ? : -EFAULT; | |
1241 | } | |
1da177e4 | 1242 | if (pages) { |
fa2a455b | 1243 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1244 | pages[i] = page; |
1245 | if (page) | |
1246 | get_page(page); | |
1da177e4 LT |
1247 | } |
1248 | pte_unmap(pte); | |
1249 | if (vmas) | |
1250 | vmas[i] = gate_vma; | |
1251 | i++; | |
1252 | start += PAGE_SIZE; | |
1253 | len--; | |
1254 | continue; | |
1255 | } | |
1256 | ||
b291f000 NP |
1257 | if (!vma || |
1258 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1259 | (!ignore && !(vm_flags & vma->vm_flags))) | |
1da177e4 LT |
1260 | return i ? : -EFAULT; |
1261 | ||
1262 | if (is_vm_hugetlb_page(vma)) { | |
1263 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
5b23dbe8 | 1264 | &start, &len, i, write); |
1da177e4 LT |
1265 | continue; |
1266 | } | |
deceb6cd HD |
1267 | |
1268 | foll_flags = FOLL_TOUCH; | |
1269 | if (pages) | |
1270 | foll_flags |= FOLL_GET; | |
672ca28e | 1271 | if (!write && use_zero_page(vma)) |
deceb6cd HD |
1272 | foll_flags |= FOLL_ANON; |
1273 | ||
1da177e4 | 1274 | do { |
08ef4729 | 1275 | struct page *page; |
1da177e4 | 1276 | |
462e00cc ES |
1277 | /* |
1278 | * If tsk is ooming, cut off its access to large memory | |
1279 | * allocations. It has a pending SIGKILL, but it can't | |
1280 | * be processed until returning to user space. | |
1281 | */ | |
1282 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) | |
7a36a752 | 1283 | return i ? i : -ENOMEM; |
462e00cc | 1284 | |
deceb6cd HD |
1285 | if (write) |
1286 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1287 | |
deceb6cd | 1288 | cond_resched(); |
6aab341e | 1289 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1290 | int ret; |
83c54070 | 1291 | ret = handle_mm_fault(mm, vma, start, |
deceb6cd | 1292 | foll_flags & FOLL_WRITE); |
83c54070 NP |
1293 | if (ret & VM_FAULT_ERROR) { |
1294 | if (ret & VM_FAULT_OOM) | |
1295 | return i ? i : -ENOMEM; | |
1296 | else if (ret & VM_FAULT_SIGBUS) | |
1297 | return i ? i : -EFAULT; | |
1298 | BUG(); | |
1299 | } | |
1300 | if (ret & VM_FAULT_MAJOR) | |
1301 | tsk->maj_flt++; | |
1302 | else | |
1303 | tsk->min_flt++; | |
1304 | ||
a68d2ebc | 1305 | /* |
83c54070 NP |
1306 | * The VM_FAULT_WRITE bit tells us that |
1307 | * do_wp_page has broken COW when necessary, | |
1308 | * even if maybe_mkwrite decided not to set | |
1309 | * pte_write. We can thus safely do subsequent | |
1310 | * page lookups as if they were reads. | |
a68d2ebc LT |
1311 | */ |
1312 | if (ret & VM_FAULT_WRITE) | |
deceb6cd | 1313 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1314 | |
7f7bbbe5 | 1315 | cond_resched(); |
1da177e4 | 1316 | } |
89f5b7da LT |
1317 | if (IS_ERR(page)) |
1318 | return i ? i : PTR_ERR(page); | |
1da177e4 | 1319 | if (pages) { |
08ef4729 | 1320 | pages[i] = page; |
03beb076 | 1321 | |
a6f36be3 | 1322 | flush_anon_page(vma, page, start); |
08ef4729 | 1323 | flush_dcache_page(page); |
1da177e4 LT |
1324 | } |
1325 | if (vmas) | |
1326 | vmas[i] = vma; | |
1327 | i++; | |
1328 | start += PAGE_SIZE; | |
1329 | len--; | |
08ef4729 | 1330 | } while (len && start < vma->vm_end); |
08ef4729 | 1331 | } while (len); |
1da177e4 LT |
1332 | return i; |
1333 | } | |
b291f000 NP |
1334 | |
1335 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |
1336 | unsigned long start, int len, int write, int force, | |
1337 | struct page **pages, struct vm_area_struct **vmas) | |
1338 | { | |
1339 | int flags = 0; | |
1340 | ||
1341 | if (write) | |
1342 | flags |= GUP_FLAGS_WRITE; | |
1343 | if (force) | |
1344 | flags |= GUP_FLAGS_FORCE; | |
1345 | ||
1346 | return __get_user_pages(tsk, mm, | |
1347 | start, len, flags, | |
1348 | pages, vmas); | |
1349 | } | |
1350 | ||
1da177e4 LT |
1351 | EXPORT_SYMBOL(get_user_pages); |
1352 | ||
920c7a5d HH |
1353 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1354 | spinlock_t **ptl) | |
c9cfcddf LT |
1355 | { |
1356 | pgd_t * pgd = pgd_offset(mm, addr); | |
1357 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1358 | if (pud) { | |
49c91fb0 | 1359 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1360 | if (pmd) |
1361 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1362 | } | |
1363 | return NULL; | |
1364 | } | |
1365 | ||
238f58d8 LT |
1366 | /* |
1367 | * This is the old fallback for page remapping. | |
1368 | * | |
1369 | * For historical reasons, it only allows reserved pages. Only | |
1370 | * old drivers should use this, and they needed to mark their | |
1371 | * pages reserved for the old functions anyway. | |
1372 | */ | |
423bad60 NP |
1373 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1374 | struct page *page, pgprot_t prot) | |
238f58d8 | 1375 | { |
423bad60 | 1376 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1377 | int retval; |
c9cfcddf | 1378 | pte_t *pte; |
8a9f3ccd BS |
1379 | spinlock_t *ptl; |
1380 | ||
238f58d8 | 1381 | retval = -EINVAL; |
a145dd41 | 1382 | if (PageAnon(page)) |
5b4e655e | 1383 | goto out; |
238f58d8 LT |
1384 | retval = -ENOMEM; |
1385 | flush_dcache_page(page); | |
c9cfcddf | 1386 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1387 | if (!pte) |
5b4e655e | 1388 | goto out; |
238f58d8 LT |
1389 | retval = -EBUSY; |
1390 | if (!pte_none(*pte)) | |
1391 | goto out_unlock; | |
1392 | ||
1393 | /* Ok, finally just insert the thing.. */ | |
1394 | get_page(page); | |
1395 | inc_mm_counter(mm, file_rss); | |
1396 | page_add_file_rmap(page); | |
1397 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1398 | ||
1399 | retval = 0; | |
8a9f3ccd BS |
1400 | pte_unmap_unlock(pte, ptl); |
1401 | return retval; | |
238f58d8 LT |
1402 | out_unlock: |
1403 | pte_unmap_unlock(pte, ptl); | |
1404 | out: | |
1405 | return retval; | |
1406 | } | |
1407 | ||
bfa5bf6d REB |
1408 | /** |
1409 | * vm_insert_page - insert single page into user vma | |
1410 | * @vma: user vma to map to | |
1411 | * @addr: target user address of this page | |
1412 | * @page: source kernel page | |
1413 | * | |
a145dd41 LT |
1414 | * This allows drivers to insert individual pages they've allocated |
1415 | * into a user vma. | |
1416 | * | |
1417 | * The page has to be a nice clean _individual_ kernel allocation. | |
1418 | * If you allocate a compound page, you need to have marked it as | |
1419 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1420 | * (see split_page()). |
a145dd41 LT |
1421 | * |
1422 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1423 | * took an arbitrary page protection parameter. This doesn't allow | |
1424 | * that. Your vma protection will have to be set up correctly, which | |
1425 | * means that if you want a shared writable mapping, you'd better | |
1426 | * ask for a shared writable mapping! | |
1427 | * | |
1428 | * The page does not need to be reserved. | |
1429 | */ | |
423bad60 NP |
1430 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1431 | struct page *page) | |
a145dd41 LT |
1432 | { |
1433 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1434 | return -EFAULT; | |
1435 | if (!page_count(page)) | |
1436 | return -EINVAL; | |
4d7672b4 | 1437 | vma->vm_flags |= VM_INSERTPAGE; |
423bad60 | 1438 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1439 | } |
e3c3374f | 1440 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1441 | |
423bad60 NP |
1442 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1443 | unsigned long pfn, pgprot_t prot) | |
1444 | { | |
1445 | struct mm_struct *mm = vma->vm_mm; | |
1446 | int retval; | |
1447 | pte_t *pte, entry; | |
1448 | spinlock_t *ptl; | |
1449 | ||
1450 | retval = -ENOMEM; | |
1451 | pte = get_locked_pte(mm, addr, &ptl); | |
1452 | if (!pte) | |
1453 | goto out; | |
1454 | retval = -EBUSY; | |
1455 | if (!pte_none(*pte)) | |
1456 | goto out_unlock; | |
1457 | ||
1458 | /* Ok, finally just insert the thing.. */ | |
1459 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | |
1460 | set_pte_at(mm, addr, pte, entry); | |
1461 | update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ | |
1462 | ||
1463 | retval = 0; | |
1464 | out_unlock: | |
1465 | pte_unmap_unlock(pte, ptl); | |
1466 | out: | |
1467 | return retval; | |
1468 | } | |
1469 | ||
e0dc0d8f NP |
1470 | /** |
1471 | * vm_insert_pfn - insert single pfn into user vma | |
1472 | * @vma: user vma to map to | |
1473 | * @addr: target user address of this page | |
1474 | * @pfn: source kernel pfn | |
1475 | * | |
1476 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1477 | * they've allocated into a user vma. Same comments apply. | |
1478 | * | |
1479 | * This function should only be called from a vm_ops->fault handler, and | |
1480 | * in that case the handler should return NULL. | |
0d71d10a NP |
1481 | * |
1482 | * vma cannot be a COW mapping. | |
1483 | * | |
1484 | * As this is called only for pages that do not currently exist, we | |
1485 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1486 | */ |
1487 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1488 | unsigned long pfn) |
e0dc0d8f | 1489 | { |
2ab64037 | 1490 | int ret; |
7e675137 NP |
1491 | /* |
1492 | * Technically, architectures with pte_special can avoid all these | |
1493 | * restrictions (same for remap_pfn_range). However we would like | |
1494 | * consistency in testing and feature parity among all, so we should | |
1495 | * try to keep these invariants in place for everybody. | |
1496 | */ | |
b379d790 JH |
1497 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1498 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1499 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1500 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1501 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1502 | |
423bad60 NP |
1503 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1504 | return -EFAULT; | |
2ab64037 | 1505 | if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE)) |
1506 | return -EINVAL; | |
1507 | ||
1508 | ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
1509 | ||
1510 | if (ret) | |
1511 | untrack_pfn_vma(vma, pfn, PAGE_SIZE); | |
1512 | ||
1513 | return ret; | |
423bad60 NP |
1514 | } |
1515 | EXPORT_SYMBOL(vm_insert_pfn); | |
e0dc0d8f | 1516 | |
423bad60 NP |
1517 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1518 | unsigned long pfn) | |
1519 | { | |
1520 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1521 | |
423bad60 NP |
1522 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1523 | return -EFAULT; | |
e0dc0d8f | 1524 | |
423bad60 NP |
1525 | /* |
1526 | * If we don't have pte special, then we have to use the pfn_valid() | |
1527 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1528 | * refcount the page if pfn_valid is true (hence insert_page rather | |
1529 | * than insert_pfn). | |
1530 | */ | |
1531 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | |
1532 | struct page *page; | |
1533 | ||
1534 | page = pfn_to_page(pfn); | |
1535 | return insert_page(vma, addr, page, vma->vm_page_prot); | |
1536 | } | |
1537 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1538 | } |
423bad60 | 1539 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1540 | |
1da177e4 LT |
1541 | /* |
1542 | * maps a range of physical memory into the requested pages. the old | |
1543 | * mappings are removed. any references to nonexistent pages results | |
1544 | * in null mappings (currently treated as "copy-on-access") | |
1545 | */ | |
1546 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1547 | unsigned long addr, unsigned long end, | |
1548 | unsigned long pfn, pgprot_t prot) | |
1549 | { | |
1550 | pte_t *pte; | |
c74df32c | 1551 | spinlock_t *ptl; |
1da177e4 | 1552 | |
c74df32c | 1553 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1554 | if (!pte) |
1555 | return -ENOMEM; | |
6606c3e0 | 1556 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1557 | do { |
1558 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1559 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1560 | pfn++; |
1561 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1562 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1563 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1564 | return 0; |
1565 | } | |
1566 | ||
1567 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1568 | unsigned long addr, unsigned long end, | |
1569 | unsigned long pfn, pgprot_t prot) | |
1570 | { | |
1571 | pmd_t *pmd; | |
1572 | unsigned long next; | |
1573 | ||
1574 | pfn -= addr >> PAGE_SHIFT; | |
1575 | pmd = pmd_alloc(mm, pud, addr); | |
1576 | if (!pmd) | |
1577 | return -ENOMEM; | |
1578 | do { | |
1579 | next = pmd_addr_end(addr, end); | |
1580 | if (remap_pte_range(mm, pmd, addr, next, | |
1581 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1582 | return -ENOMEM; | |
1583 | } while (pmd++, addr = next, addr != end); | |
1584 | return 0; | |
1585 | } | |
1586 | ||
1587 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1588 | unsigned long addr, unsigned long end, | |
1589 | unsigned long pfn, pgprot_t prot) | |
1590 | { | |
1591 | pud_t *pud; | |
1592 | unsigned long next; | |
1593 | ||
1594 | pfn -= addr >> PAGE_SHIFT; | |
1595 | pud = pud_alloc(mm, pgd, addr); | |
1596 | if (!pud) | |
1597 | return -ENOMEM; | |
1598 | do { | |
1599 | next = pud_addr_end(addr, end); | |
1600 | if (remap_pmd_range(mm, pud, addr, next, | |
1601 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1602 | return -ENOMEM; | |
1603 | } while (pud++, addr = next, addr != end); | |
1604 | return 0; | |
1605 | } | |
1606 | ||
bfa5bf6d REB |
1607 | /** |
1608 | * remap_pfn_range - remap kernel memory to userspace | |
1609 | * @vma: user vma to map to | |
1610 | * @addr: target user address to start at | |
1611 | * @pfn: physical address of kernel memory | |
1612 | * @size: size of map area | |
1613 | * @prot: page protection flags for this mapping | |
1614 | * | |
1615 | * Note: this is only safe if the mm semaphore is held when called. | |
1616 | */ | |
1da177e4 LT |
1617 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1618 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1619 | { | |
1620 | pgd_t *pgd; | |
1621 | unsigned long next; | |
2d15cab8 | 1622 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1623 | struct mm_struct *mm = vma->vm_mm; |
1624 | int err; | |
1625 | ||
1626 | /* | |
1627 | * Physically remapped pages are special. Tell the | |
1628 | * rest of the world about it: | |
1629 | * VM_IO tells people not to look at these pages | |
1630 | * (accesses can have side effects). | |
0b14c179 HD |
1631 | * VM_RESERVED is specified all over the place, because |
1632 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1633 | * in 2.6 the LRU scan won't even find its pages, so this | |
1634 | * flag means no more than count its pages in reserved_vm, | |
1635 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1636 | * VM_PFNMAP tells the core MM that the base pages are just |
1637 | * raw PFN mappings, and do not have a "struct page" associated | |
1638 | * with them. | |
fb155c16 LT |
1639 | * |
1640 | * There's a horrible special case to handle copy-on-write | |
1641 | * behaviour that some programs depend on. We mark the "original" | |
1642 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1643 | */ |
3c8bb73a | 1644 | if (addr == vma->vm_start && end == vma->vm_end) |
fb155c16 | 1645 | vma->vm_pgoff = pfn; |
3c8bb73a | 1646 | else if (is_cow_mapping(vma->vm_flags)) |
1647 | return -EINVAL; | |
fb155c16 | 1648 | |
6aab341e | 1649 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 | 1650 | |
2ab64037 | 1651 | err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size)); |
1652 | if (err) | |
1653 | return -EINVAL; | |
1654 | ||
1da177e4 LT |
1655 | BUG_ON(addr >= end); |
1656 | pfn -= addr >> PAGE_SHIFT; | |
1657 | pgd = pgd_offset(mm, addr); | |
1658 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1659 | do { |
1660 | next = pgd_addr_end(addr, end); | |
1661 | err = remap_pud_range(mm, pgd, addr, next, | |
1662 | pfn + (addr >> PAGE_SHIFT), prot); | |
1663 | if (err) | |
1664 | break; | |
1665 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1666 | |
1667 | if (err) | |
1668 | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | |
1669 | ||
1da177e4 LT |
1670 | return err; |
1671 | } | |
1672 | EXPORT_SYMBOL(remap_pfn_range); | |
1673 | ||
aee16b3c JF |
1674 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1675 | unsigned long addr, unsigned long end, | |
1676 | pte_fn_t fn, void *data) | |
1677 | { | |
1678 | pte_t *pte; | |
1679 | int err; | |
2f569afd | 1680 | pgtable_t token; |
94909914 | 1681 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1682 | |
1683 | pte = (mm == &init_mm) ? | |
1684 | pte_alloc_kernel(pmd, addr) : | |
1685 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1686 | if (!pte) | |
1687 | return -ENOMEM; | |
1688 | ||
1689 | BUG_ON(pmd_huge(*pmd)); | |
1690 | ||
2f569afd | 1691 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1692 | |
1693 | do { | |
2f569afd | 1694 | err = fn(pte, token, addr, data); |
aee16b3c JF |
1695 | if (err) |
1696 | break; | |
1697 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1698 | ||
1699 | if (mm != &init_mm) | |
1700 | pte_unmap_unlock(pte-1, ptl); | |
1701 | return err; | |
1702 | } | |
1703 | ||
1704 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1705 | unsigned long addr, unsigned long end, | |
1706 | pte_fn_t fn, void *data) | |
1707 | { | |
1708 | pmd_t *pmd; | |
1709 | unsigned long next; | |
1710 | int err; | |
1711 | ||
ceb86879 AK |
1712 | BUG_ON(pud_huge(*pud)); |
1713 | ||
aee16b3c JF |
1714 | pmd = pmd_alloc(mm, pud, addr); |
1715 | if (!pmd) | |
1716 | return -ENOMEM; | |
1717 | do { | |
1718 | next = pmd_addr_end(addr, end); | |
1719 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1720 | if (err) | |
1721 | break; | |
1722 | } while (pmd++, addr = next, addr != end); | |
1723 | return err; | |
1724 | } | |
1725 | ||
1726 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1727 | unsigned long addr, unsigned long end, | |
1728 | pte_fn_t fn, void *data) | |
1729 | { | |
1730 | pud_t *pud; | |
1731 | unsigned long next; | |
1732 | int err; | |
1733 | ||
1734 | pud = pud_alloc(mm, pgd, addr); | |
1735 | if (!pud) | |
1736 | return -ENOMEM; | |
1737 | do { | |
1738 | next = pud_addr_end(addr, end); | |
1739 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1740 | if (err) | |
1741 | break; | |
1742 | } while (pud++, addr = next, addr != end); | |
1743 | return err; | |
1744 | } | |
1745 | ||
1746 | /* | |
1747 | * Scan a region of virtual memory, filling in page tables as necessary | |
1748 | * and calling a provided function on each leaf page table. | |
1749 | */ | |
1750 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1751 | unsigned long size, pte_fn_t fn, void *data) | |
1752 | { | |
1753 | pgd_t *pgd; | |
1754 | unsigned long next; | |
cddb8a5c | 1755 | unsigned long start = addr, end = addr + size; |
aee16b3c JF |
1756 | int err; |
1757 | ||
1758 | BUG_ON(addr >= end); | |
cddb8a5c | 1759 | mmu_notifier_invalidate_range_start(mm, start, end); |
aee16b3c JF |
1760 | pgd = pgd_offset(mm, addr); |
1761 | do { | |
1762 | next = pgd_addr_end(addr, end); | |
1763 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1764 | if (err) | |
1765 | break; | |
1766 | } while (pgd++, addr = next, addr != end); | |
cddb8a5c | 1767 | mmu_notifier_invalidate_range_end(mm, start, end); |
aee16b3c JF |
1768 | return err; |
1769 | } | |
1770 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1771 | ||
8f4e2101 HD |
1772 | /* |
1773 | * handle_pte_fault chooses page fault handler according to an entry | |
1774 | * which was read non-atomically. Before making any commitment, on | |
1775 | * those architectures or configurations (e.g. i386 with PAE) which | |
1776 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1777 | * must check under lock before unmapping the pte and proceeding | |
1778 | * (but do_wp_page is only called after already making such a check; | |
1779 | * and do_anonymous_page and do_no_page can safely check later on). | |
1780 | */ | |
4c21e2f2 | 1781 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1782 | pte_t *page_table, pte_t orig_pte) |
1783 | { | |
1784 | int same = 1; | |
1785 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1786 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1787 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1788 | spin_lock(ptl); | |
8f4e2101 | 1789 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1790 | spin_unlock(ptl); |
8f4e2101 HD |
1791 | } |
1792 | #endif | |
1793 | pte_unmap(page_table); | |
1794 | return same; | |
1795 | } | |
1796 | ||
1da177e4 LT |
1797 | /* |
1798 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1799 | * servicing faults for write access. In the normal case, do always want | |
1800 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1801 | * that do not have writing enabled, when used by access_process_vm. | |
1802 | */ | |
1803 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1804 | { | |
1805 | if (likely(vma->vm_flags & VM_WRITE)) | |
1806 | pte = pte_mkwrite(pte); | |
1807 | return pte; | |
1808 | } | |
1809 | ||
9de455b2 | 1810 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1811 | { |
1812 | /* | |
1813 | * If the source page was a PFN mapping, we don't have | |
1814 | * a "struct page" for it. We do a best-effort copy by | |
1815 | * just copying from the original user address. If that | |
1816 | * fails, we just zero-fill it. Live with it. | |
1817 | */ | |
1818 | if (unlikely(!src)) { | |
1819 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1820 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1821 | ||
1822 | /* | |
1823 | * This really shouldn't fail, because the page is there | |
1824 | * in the page tables. But it might just be unreadable, | |
1825 | * in which case we just give up and fill the result with | |
1826 | * zeroes. | |
1827 | */ | |
1828 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1829 | memset(kaddr, 0, PAGE_SIZE); |
1830 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1831 | flush_dcache_page(dst); |
0ed361de NP |
1832 | } else |
1833 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
1834 | } |
1835 | ||
1da177e4 LT |
1836 | /* |
1837 | * This routine handles present pages, when users try to write | |
1838 | * to a shared page. It is done by copying the page to a new address | |
1839 | * and decrementing the shared-page counter for the old page. | |
1840 | * | |
1da177e4 LT |
1841 | * Note that this routine assumes that the protection checks have been |
1842 | * done by the caller (the low-level page fault routine in most cases). | |
1843 | * Thus we can safely just mark it writable once we've done any necessary | |
1844 | * COW. | |
1845 | * | |
1846 | * We also mark the page dirty at this point even though the page will | |
1847 | * change only once the write actually happens. This avoids a few races, | |
1848 | * and potentially makes it more efficient. | |
1849 | * | |
8f4e2101 HD |
1850 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1851 | * but allow concurrent faults), with pte both mapped and locked. | |
1852 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1853 | */ |
65500d23 HD |
1854 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1855 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1856 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1857 | { |
e5bbe4df | 1858 | struct page *old_page, *new_page; |
1da177e4 | 1859 | pte_t entry; |
83c54070 | 1860 | int reuse = 0, ret = 0; |
a200ee18 | 1861 | int page_mkwrite = 0; |
d08b3851 | 1862 | struct page *dirty_page = NULL; |
1da177e4 | 1863 | |
6aab341e | 1864 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
1865 | if (!old_page) { |
1866 | /* | |
1867 | * VM_MIXEDMAP !pfn_valid() case | |
1868 | * | |
1869 | * We should not cow pages in a shared writeable mapping. | |
1870 | * Just mark the pages writable as we can't do any dirty | |
1871 | * accounting on raw pfn maps. | |
1872 | */ | |
1873 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
1874 | (VM_WRITE|VM_SHARED)) | |
1875 | goto reuse; | |
6aab341e | 1876 | goto gotten; |
251b97f5 | 1877 | } |
1da177e4 | 1878 | |
d08b3851 | 1879 | /* |
ee6a6457 PZ |
1880 | * Take out anonymous pages first, anonymous shared vmas are |
1881 | * not dirty accountable. | |
d08b3851 | 1882 | */ |
ee6a6457 | 1883 | if (PageAnon(old_page)) { |
529ae9aa | 1884 | if (trylock_page(old_page)) { |
ee6a6457 PZ |
1885 | reuse = can_share_swap_page(old_page); |
1886 | unlock_page(old_page); | |
1887 | } | |
1888 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
d08b3851 | 1889 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
1890 | /* |
1891 | * Only catch write-faults on shared writable pages, | |
1892 | * read-only shared pages can get COWed by | |
1893 | * get_user_pages(.write=1, .force=1). | |
1894 | */ | |
9637a5ef DH |
1895 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1896 | /* | |
1897 | * Notify the address space that the page is about to | |
1898 | * become writable so that it can prohibit this or wait | |
1899 | * for the page to get into an appropriate state. | |
1900 | * | |
1901 | * We do this without the lock held, so that it can | |
1902 | * sleep if it needs to. | |
1903 | */ | |
1904 | page_cache_get(old_page); | |
1905 | pte_unmap_unlock(page_table, ptl); | |
1906 | ||
1907 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | |
1908 | goto unwritable_page; | |
1909 | ||
9637a5ef DH |
1910 | /* |
1911 | * Since we dropped the lock we need to revalidate | |
1912 | * the PTE as someone else may have changed it. If | |
1913 | * they did, we just return, as we can count on the | |
1914 | * MMU to tell us if they didn't also make it writable. | |
1915 | */ | |
1916 | page_table = pte_offset_map_lock(mm, pmd, address, | |
1917 | &ptl); | |
c3704ceb | 1918 | page_cache_release(old_page); |
9637a5ef DH |
1919 | if (!pte_same(*page_table, orig_pte)) |
1920 | goto unlock; | |
a200ee18 PZ |
1921 | |
1922 | page_mkwrite = 1; | |
1da177e4 | 1923 | } |
d08b3851 PZ |
1924 | dirty_page = old_page; |
1925 | get_page(dirty_page); | |
9637a5ef | 1926 | reuse = 1; |
9637a5ef DH |
1927 | } |
1928 | ||
1929 | if (reuse) { | |
251b97f5 | 1930 | reuse: |
9637a5ef DH |
1931 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
1932 | entry = pte_mkyoung(orig_pte); | |
1933 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 1934 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
8dab5241 | 1935 | update_mmu_cache(vma, address, entry); |
9637a5ef DH |
1936 | ret |= VM_FAULT_WRITE; |
1937 | goto unlock; | |
1da177e4 | 1938 | } |
1da177e4 LT |
1939 | |
1940 | /* | |
1941 | * Ok, we need to copy. Oh, well.. | |
1942 | */ | |
b5810039 | 1943 | page_cache_get(old_page); |
920fc356 | 1944 | gotten: |
8f4e2101 | 1945 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1946 | |
1947 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 1948 | goto oom; |
557ed1fa NP |
1949 | VM_BUG_ON(old_page == ZERO_PAGE(0)); |
1950 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
1951 | if (!new_page) | |
1952 | goto oom; | |
b291f000 NP |
1953 | /* |
1954 | * Don't let another task, with possibly unlocked vma, | |
1955 | * keep the mlocked page. | |
1956 | */ | |
1957 | if (vma->vm_flags & VM_LOCKED) { | |
1958 | lock_page(old_page); /* for LRU manipulation */ | |
1959 | clear_page_mlock(old_page); | |
1960 | unlock_page(old_page); | |
1961 | } | |
557ed1fa | 1962 | cow_user_page(new_page, old_page, address, vma); |
0ed361de | 1963 | __SetPageUptodate(new_page); |
65500d23 | 1964 | |
e1a1cd59 | 1965 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
1966 | goto oom_free_new; |
1967 | ||
1da177e4 LT |
1968 | /* |
1969 | * Re-check the pte - we dropped the lock | |
1970 | */ | |
8f4e2101 | 1971 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 1972 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 1973 | if (old_page) { |
920fc356 HD |
1974 | if (!PageAnon(old_page)) { |
1975 | dec_mm_counter(mm, file_rss); | |
1976 | inc_mm_counter(mm, anon_rss); | |
1977 | } | |
1978 | } else | |
4294621f | 1979 | inc_mm_counter(mm, anon_rss); |
eca35133 | 1980 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
1981 | entry = mk_pte(new_page, vma->vm_page_prot); |
1982 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
1983 | /* |
1984 | * Clear the pte entry and flush it first, before updating the | |
1985 | * pte with the new entry. This will avoid a race condition | |
1986 | * seen in the presence of one thread doing SMC and another | |
1987 | * thread doing COW. | |
1988 | */ | |
cddb8a5c | 1989 | ptep_clear_flush_notify(vma, address, page_table); |
b2e18538 | 1990 | SetPageSwapBacked(new_page); |
64d6519d | 1991 | lru_cache_add_active_or_unevictable(new_page, vma); |
9617d95e | 1992 | page_add_new_anon_rmap(new_page, vma, address); |
1da177e4 | 1993 | |
64d6519d LS |
1994 | //TODO: is this safe? do_anonymous_page() does it this way. |
1995 | set_pte_at(mm, address, page_table, entry); | |
1996 | update_mmu_cache(vma, address, entry); | |
945754a1 NP |
1997 | if (old_page) { |
1998 | /* | |
1999 | * Only after switching the pte to the new page may | |
2000 | * we remove the mapcount here. Otherwise another | |
2001 | * process may come and find the rmap count decremented | |
2002 | * before the pte is switched to the new page, and | |
2003 | * "reuse" the old page writing into it while our pte | |
2004 | * here still points into it and can be read by other | |
2005 | * threads. | |
2006 | * | |
2007 | * The critical issue is to order this | |
2008 | * page_remove_rmap with the ptp_clear_flush above. | |
2009 | * Those stores are ordered by (if nothing else,) | |
2010 | * the barrier present in the atomic_add_negative | |
2011 | * in page_remove_rmap. | |
2012 | * | |
2013 | * Then the TLB flush in ptep_clear_flush ensures that | |
2014 | * no process can access the old page before the | |
2015 | * decremented mapcount is visible. And the old page | |
2016 | * cannot be reused until after the decremented | |
2017 | * mapcount is visible. So transitively, TLBs to | |
2018 | * old page will be flushed before it can be reused. | |
2019 | */ | |
2020 | page_remove_rmap(old_page, vma); | |
2021 | } | |
2022 | ||
1da177e4 LT |
2023 | /* Free the old page.. */ |
2024 | new_page = old_page; | |
f33ea7f4 | 2025 | ret |= VM_FAULT_WRITE; |
8a9f3ccd BS |
2026 | } else |
2027 | mem_cgroup_uncharge_page(new_page); | |
2028 | ||
920fc356 HD |
2029 | if (new_page) |
2030 | page_cache_release(new_page); | |
2031 | if (old_page) | |
2032 | page_cache_release(old_page); | |
65500d23 | 2033 | unlock: |
8f4e2101 | 2034 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 2035 | if (dirty_page) { |
8f7b3d15 AS |
2036 | if (vma->vm_file) |
2037 | file_update_time(vma->vm_file); | |
2038 | ||
79352894 NP |
2039 | /* |
2040 | * Yes, Virginia, this is actually required to prevent a race | |
2041 | * with clear_page_dirty_for_io() from clearing the page dirty | |
2042 | * bit after it clear all dirty ptes, but before a racing | |
2043 | * do_wp_page installs a dirty pte. | |
2044 | * | |
2045 | * do_no_page is protected similarly. | |
2046 | */ | |
2047 | wait_on_page_locked(dirty_page); | |
a200ee18 | 2048 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
2049 | put_page(dirty_page); |
2050 | } | |
f33ea7f4 | 2051 | return ret; |
8a9f3ccd | 2052 | oom_free_new: |
6dbf6d3b | 2053 | page_cache_release(new_page); |
65500d23 | 2054 | oom: |
920fc356 HD |
2055 | if (old_page) |
2056 | page_cache_release(old_page); | |
1da177e4 | 2057 | return VM_FAULT_OOM; |
9637a5ef DH |
2058 | |
2059 | unwritable_page: | |
2060 | page_cache_release(old_page); | |
2061 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
2062 | } |
2063 | ||
2064 | /* | |
2065 | * Helper functions for unmap_mapping_range(). | |
2066 | * | |
2067 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
2068 | * | |
2069 | * We have to restart searching the prio_tree whenever we drop the lock, | |
2070 | * since the iterator is only valid while the lock is held, and anyway | |
2071 | * a later vma might be split and reinserted earlier while lock dropped. | |
2072 | * | |
2073 | * The list of nonlinear vmas could be handled more efficiently, using | |
2074 | * a placeholder, but handle it in the same way until a need is shown. | |
2075 | * It is important to search the prio_tree before nonlinear list: a vma | |
2076 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
2077 | * while the lock is dropped; but never shifted from list to prio_tree. | |
2078 | * | |
2079 | * In order to make forward progress despite restarting the search, | |
2080 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
2081 | * quickly skip it next time around. Since the prio_tree search only | |
2082 | * shows us those vmas affected by unmapping the range in question, we | |
2083 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
2084 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
2085 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
2086 | * i_mmap_lock. | |
2087 | * | |
2088 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 2089 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
2090 | * and restart from that address when we reach that vma again. It might |
2091 | * have been split or merged, shrunk or extended, but never shifted: so | |
2092 | * restart_addr remains valid so long as it remains in the vma's range. | |
2093 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
2094 | * values so we can save vma's restart_addr in its truncate_count field. | |
2095 | */ | |
2096 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
2097 | ||
2098 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
2099 | { | |
2100 | struct vm_area_struct *vma; | |
2101 | struct prio_tree_iter iter; | |
2102 | ||
2103 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
2104 | vma->vm_truncate_count = 0; | |
2105 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
2106 | vma->vm_truncate_count = 0; | |
2107 | } | |
2108 | ||
2109 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
2110 | unsigned long start_addr, unsigned long end_addr, | |
2111 | struct zap_details *details) | |
2112 | { | |
2113 | unsigned long restart_addr; | |
2114 | int need_break; | |
2115 | ||
d00806b1 NP |
2116 | /* |
2117 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 2118 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
2119 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
2120 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 2121 | */ |
d00806b1 | 2122 | |
1da177e4 LT |
2123 | again: |
2124 | restart_addr = vma->vm_truncate_count; | |
2125 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
2126 | start_addr = restart_addr; | |
2127 | if (start_addr >= end_addr) { | |
2128 | /* Top of vma has been split off since last time */ | |
2129 | vma->vm_truncate_count = details->truncate_count; | |
2130 | return 0; | |
2131 | } | |
2132 | } | |
2133 | ||
ee39b37b HD |
2134 | restart_addr = zap_page_range(vma, start_addr, |
2135 | end_addr - start_addr, details); | |
95c354fe | 2136 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1da177e4 | 2137 | |
ee39b37b | 2138 | if (restart_addr >= end_addr) { |
1da177e4 LT |
2139 | /* We have now completed this vma: mark it so */ |
2140 | vma->vm_truncate_count = details->truncate_count; | |
2141 | if (!need_break) | |
2142 | return 0; | |
2143 | } else { | |
2144 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 2145 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
2146 | if (!need_break) |
2147 | goto again; | |
2148 | } | |
2149 | ||
2150 | spin_unlock(details->i_mmap_lock); | |
2151 | cond_resched(); | |
2152 | spin_lock(details->i_mmap_lock); | |
2153 | return -EINTR; | |
2154 | } | |
2155 | ||
2156 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
2157 | struct zap_details *details) | |
2158 | { | |
2159 | struct vm_area_struct *vma; | |
2160 | struct prio_tree_iter iter; | |
2161 | pgoff_t vba, vea, zba, zea; | |
2162 | ||
2163 | restart: | |
2164 | vma_prio_tree_foreach(vma, &iter, root, | |
2165 | details->first_index, details->last_index) { | |
2166 | /* Skip quickly over those we have already dealt with */ | |
2167 | if (vma->vm_truncate_count == details->truncate_count) | |
2168 | continue; | |
2169 | ||
2170 | vba = vma->vm_pgoff; | |
2171 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
2172 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
2173 | zba = details->first_index; | |
2174 | if (zba < vba) | |
2175 | zba = vba; | |
2176 | zea = details->last_index; | |
2177 | if (zea > vea) | |
2178 | zea = vea; | |
2179 | ||
2180 | if (unmap_mapping_range_vma(vma, | |
2181 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
2182 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
2183 | details) < 0) | |
2184 | goto restart; | |
2185 | } | |
2186 | } | |
2187 | ||
2188 | static inline void unmap_mapping_range_list(struct list_head *head, | |
2189 | struct zap_details *details) | |
2190 | { | |
2191 | struct vm_area_struct *vma; | |
2192 | ||
2193 | /* | |
2194 | * In nonlinear VMAs there is no correspondence between virtual address | |
2195 | * offset and file offset. So we must perform an exhaustive search | |
2196 | * across *all* the pages in each nonlinear VMA, not just the pages | |
2197 | * whose virtual address lies outside the file truncation point. | |
2198 | */ | |
2199 | restart: | |
2200 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
2201 | /* Skip quickly over those we have already dealt with */ | |
2202 | if (vma->vm_truncate_count == details->truncate_count) | |
2203 | continue; | |
2204 | details->nonlinear_vma = vma; | |
2205 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
2206 | vma->vm_end, details) < 0) | |
2207 | goto restart; | |
2208 | } | |
2209 | } | |
2210 | ||
2211 | /** | |
72fd4a35 | 2212 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 2213 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2214 | * @holebegin: byte in first page to unmap, relative to the start of |
2215 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
2216 | * boundary. Note that this is different from vmtruncate(), which | |
2217 | * must keep the partial page. In contrast, we must get rid of | |
2218 | * partial pages. | |
2219 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2220 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2221 | * end of the file. | |
2222 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2223 | * but 0 when invalidating pagecache, don't throw away private data. | |
2224 | */ | |
2225 | void unmap_mapping_range(struct address_space *mapping, | |
2226 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2227 | { | |
2228 | struct zap_details details; | |
2229 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
2230 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2231 | ||
2232 | /* Check for overflow. */ | |
2233 | if (sizeof(holelen) > sizeof(hlen)) { | |
2234 | long long holeend = | |
2235 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2236 | if (holeend & ~(long long)ULONG_MAX) | |
2237 | hlen = ULONG_MAX - hba + 1; | |
2238 | } | |
2239 | ||
2240 | details.check_mapping = even_cows? NULL: mapping; | |
2241 | details.nonlinear_vma = NULL; | |
2242 | details.first_index = hba; | |
2243 | details.last_index = hba + hlen - 1; | |
2244 | if (details.last_index < details.first_index) | |
2245 | details.last_index = ULONG_MAX; | |
2246 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
2247 | ||
2248 | spin_lock(&mapping->i_mmap_lock); | |
2249 | ||
d00806b1 | 2250 | /* Protect against endless unmapping loops */ |
1da177e4 | 2251 | mapping->truncate_count++; |
1da177e4 LT |
2252 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2253 | if (mapping->truncate_count == 0) | |
2254 | reset_vma_truncate_counts(mapping); | |
2255 | mapping->truncate_count++; | |
2256 | } | |
2257 | details.truncate_count = mapping->truncate_count; | |
2258 | ||
2259 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
2260 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2261 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
2262 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
2263 | spin_unlock(&mapping->i_mmap_lock); | |
2264 | } | |
2265 | EXPORT_SYMBOL(unmap_mapping_range); | |
2266 | ||
bfa5bf6d REB |
2267 | /** |
2268 | * vmtruncate - unmap mappings "freed" by truncate() syscall | |
2269 | * @inode: inode of the file used | |
2270 | * @offset: file offset to start truncating | |
1da177e4 LT |
2271 | * |
2272 | * NOTE! We have to be ready to update the memory sharing | |
2273 | * between the file and the memory map for a potential last | |
2274 | * incomplete page. Ugly, but necessary. | |
2275 | */ | |
2276 | int vmtruncate(struct inode * inode, loff_t offset) | |
2277 | { | |
61d5048f CH |
2278 | if (inode->i_size < offset) { |
2279 | unsigned long limit; | |
2280 | ||
2281 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2282 | if (limit != RLIM_INFINITY && offset > limit) | |
2283 | goto out_sig; | |
2284 | if (offset > inode->i_sb->s_maxbytes) | |
2285 | goto out_big; | |
2286 | i_size_write(inode, offset); | |
2287 | } else { | |
2288 | struct address_space *mapping = inode->i_mapping; | |
1da177e4 | 2289 | |
61d5048f CH |
2290 | /* |
2291 | * truncation of in-use swapfiles is disallowed - it would | |
2292 | * cause subsequent swapout to scribble on the now-freed | |
2293 | * blocks. | |
2294 | */ | |
2295 | if (IS_SWAPFILE(inode)) | |
2296 | return -ETXTBSY; | |
2297 | i_size_write(inode, offset); | |
2298 | ||
2299 | /* | |
2300 | * unmap_mapping_range is called twice, first simply for | |
2301 | * efficiency so that truncate_inode_pages does fewer | |
2302 | * single-page unmaps. However after this first call, and | |
2303 | * before truncate_inode_pages finishes, it is possible for | |
2304 | * private pages to be COWed, which remain after | |
2305 | * truncate_inode_pages finishes, hence the second | |
2306 | * unmap_mapping_range call must be made for correctness. | |
2307 | */ | |
2308 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2309 | truncate_inode_pages(mapping, offset); | |
2310 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2311 | } | |
d00806b1 | 2312 | |
1da177e4 LT |
2313 | if (inode->i_op && inode->i_op->truncate) |
2314 | inode->i_op->truncate(inode); | |
2315 | return 0; | |
61d5048f | 2316 | |
1da177e4 LT |
2317 | out_sig: |
2318 | send_sig(SIGXFSZ, current, 0); | |
2319 | out_big: | |
2320 | return -EFBIG; | |
1da177e4 | 2321 | } |
1da177e4 LT |
2322 | EXPORT_SYMBOL(vmtruncate); |
2323 | ||
f6b3ec23 BP |
2324 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2325 | { | |
2326 | struct address_space *mapping = inode->i_mapping; | |
2327 | ||
2328 | /* | |
2329 | * If the underlying filesystem is not going to provide | |
2330 | * a way to truncate a range of blocks (punch a hole) - | |
2331 | * we should return failure right now. | |
2332 | */ | |
2333 | if (!inode->i_op || !inode->i_op->truncate_range) | |
2334 | return -ENOSYS; | |
2335 | ||
1b1dcc1b | 2336 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
2337 | down_write(&inode->i_alloc_sem); |
2338 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
2339 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 2340 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
2341 | inode->i_op->truncate_range(inode, offset, end); |
2342 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 2343 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
2344 | |
2345 | return 0; | |
2346 | } | |
f6b3ec23 | 2347 | |
1da177e4 | 2348 | /* |
8f4e2101 HD |
2349 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2350 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2351 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2352 | */ |
65500d23 HD |
2353 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2354 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2355 | int write_access, pte_t orig_pte) | |
1da177e4 | 2356 | { |
8f4e2101 | 2357 | spinlock_t *ptl; |
1da177e4 | 2358 | struct page *page; |
65500d23 | 2359 | swp_entry_t entry; |
1da177e4 | 2360 | pte_t pte; |
83c54070 | 2361 | int ret = 0; |
1da177e4 | 2362 | |
4c21e2f2 | 2363 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2364 | goto out; |
65500d23 HD |
2365 | |
2366 | entry = pte_to_swp_entry(orig_pte); | |
0697212a CL |
2367 | if (is_migration_entry(entry)) { |
2368 | migration_entry_wait(mm, pmd, address); | |
2369 | goto out; | |
2370 | } | |
0ff92245 | 2371 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2372 | page = lookup_swap_cache(entry); |
2373 | if (!page) { | |
098fe651 | 2374 | grab_swap_token(); /* Contend for token _before_ read-in */ |
02098fea HD |
2375 | page = swapin_readahead(entry, |
2376 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2377 | if (!page) { |
2378 | /* | |
8f4e2101 HD |
2379 | * Back out if somebody else faulted in this pte |
2380 | * while we released the pte lock. | |
1da177e4 | 2381 | */ |
8f4e2101 | 2382 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2383 | if (likely(pte_same(*page_table, orig_pte))) |
2384 | ret = VM_FAULT_OOM; | |
0ff92245 | 2385 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2386 | goto unlock; |
1da177e4 LT |
2387 | } |
2388 | ||
2389 | /* Had to read the page from swap area: Major fault */ | |
2390 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2391 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
2392 | } |
2393 | ||
073e587e KH |
2394 | mark_page_accessed(page); |
2395 | ||
2396 | lock_page(page); | |
2397 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
2398 | ||
e1a1cd59 | 2399 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
8a9f3ccd | 2400 | ret = VM_FAULT_OOM; |
073e587e | 2401 | unlock_page(page); |
8a9f3ccd BS |
2402 | goto out; |
2403 | } | |
2404 | ||
1da177e4 | 2405 | /* |
8f4e2101 | 2406 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2407 | */ |
8f4e2101 | 2408 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2409 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2410 | goto out_nomap; |
b8107480 KK |
2411 | |
2412 | if (unlikely(!PageUptodate(page))) { | |
2413 | ret = VM_FAULT_SIGBUS; | |
2414 | goto out_nomap; | |
1da177e4 LT |
2415 | } |
2416 | ||
2417 | /* The page isn't present yet, go ahead with the fault. */ | |
1da177e4 | 2418 | |
4294621f | 2419 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
2420 | pte = mk_pte(page, vma->vm_page_prot); |
2421 | if (write_access && can_share_swap_page(page)) { | |
2422 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
2423 | write_access = 0; | |
2424 | } | |
1da177e4 LT |
2425 | |
2426 | flush_icache_page(vma, page); | |
2427 | set_pte_at(mm, address, page_table, pte); | |
2428 | page_add_anon_rmap(page, vma, address); | |
2429 | ||
c475a8ab | 2430 | swap_free(entry); |
b291f000 | 2431 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) |
c475a8ab HD |
2432 | remove_exclusive_swap_page(page); |
2433 | unlock_page(page); | |
2434 | ||
1da177e4 | 2435 | if (write_access) { |
61469f1d HD |
2436 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2437 | if (ret & VM_FAULT_ERROR) | |
2438 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2439 | goto out; |
2440 | } | |
2441 | ||
2442 | /* No need to invalidate - it was non-present before */ | |
2443 | update_mmu_cache(vma, address, pte); | |
65500d23 | 2444 | unlock: |
8f4e2101 | 2445 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2446 | out: |
2447 | return ret; | |
b8107480 | 2448 | out_nomap: |
8a9f3ccd | 2449 | mem_cgroup_uncharge_page(page); |
8f4e2101 | 2450 | pte_unmap_unlock(page_table, ptl); |
b8107480 KK |
2451 | unlock_page(page); |
2452 | page_cache_release(page); | |
65500d23 | 2453 | return ret; |
1da177e4 LT |
2454 | } |
2455 | ||
2456 | /* | |
8f4e2101 HD |
2457 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2458 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2459 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2460 | */ |
65500d23 HD |
2461 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2462 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2463 | int write_access) | |
1da177e4 | 2464 | { |
8f4e2101 HD |
2465 | struct page *page; |
2466 | spinlock_t *ptl; | |
1da177e4 | 2467 | pte_t entry; |
1da177e4 | 2468 | |
557ed1fa NP |
2469 | /* Allocate our own private page. */ |
2470 | pte_unmap(page_table); | |
8f4e2101 | 2471 | |
557ed1fa NP |
2472 | if (unlikely(anon_vma_prepare(vma))) |
2473 | goto oom; | |
2474 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2475 | if (!page) | |
2476 | goto oom; | |
0ed361de | 2477 | __SetPageUptodate(page); |
8f4e2101 | 2478 | |
e1a1cd59 | 2479 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2480 | goto oom_free_page; |
2481 | ||
557ed1fa NP |
2482 | entry = mk_pte(page, vma->vm_page_prot); |
2483 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1da177e4 | 2484 | |
557ed1fa NP |
2485 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2486 | if (!pte_none(*page_table)) | |
2487 | goto release; | |
2488 | inc_mm_counter(mm, anon_rss); | |
b2e18538 | 2489 | SetPageSwapBacked(page); |
64d6519d | 2490 | lru_cache_add_active_or_unevictable(page, vma); |
557ed1fa | 2491 | page_add_new_anon_rmap(page, vma, address); |
65500d23 | 2492 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2493 | |
2494 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2495 | update_mmu_cache(vma, address, entry); |
65500d23 | 2496 | unlock: |
8f4e2101 | 2497 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2498 | return 0; |
8f4e2101 | 2499 | release: |
8a9f3ccd | 2500 | mem_cgroup_uncharge_page(page); |
8f4e2101 HD |
2501 | page_cache_release(page); |
2502 | goto unlock; | |
8a9f3ccd | 2503 | oom_free_page: |
6dbf6d3b | 2504 | page_cache_release(page); |
65500d23 | 2505 | oom: |
1da177e4 LT |
2506 | return VM_FAULT_OOM; |
2507 | } | |
2508 | ||
2509 | /* | |
54cb8821 | 2510 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2511 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2512 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2513 | * the next page fault. | |
1da177e4 LT |
2514 | * |
2515 | * As this is called only for pages that do not currently exist, we | |
2516 | * do not need to flush old virtual caches or the TLB. | |
2517 | * | |
8f4e2101 | 2518 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2519 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2520 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2521 | */ |
54cb8821 | 2522 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2523 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2524 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2525 | { |
16abfa08 | 2526 | pte_t *page_table; |
8f4e2101 | 2527 | spinlock_t *ptl; |
d0217ac0 | 2528 | struct page *page; |
1da177e4 | 2529 | pte_t entry; |
1da177e4 | 2530 | int anon = 0; |
5b4e655e | 2531 | int charged = 0; |
d08b3851 | 2532 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2533 | struct vm_fault vmf; |
2534 | int ret; | |
a200ee18 | 2535 | int page_mkwrite = 0; |
54cb8821 | 2536 | |
d0217ac0 NP |
2537 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2538 | vmf.pgoff = pgoff; | |
2539 | vmf.flags = flags; | |
2540 | vmf.page = NULL; | |
1da177e4 | 2541 | |
3c18ddd1 NP |
2542 | ret = vma->vm_ops->fault(vma, &vmf); |
2543 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2544 | return ret; | |
1da177e4 | 2545 | |
d00806b1 | 2546 | /* |
d0217ac0 | 2547 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2548 | * locked. |
2549 | */ | |
83c54070 | 2550 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2551 | lock_page(vmf.page); |
54cb8821 | 2552 | else |
d0217ac0 | 2553 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2554 | |
1da177e4 LT |
2555 | /* |
2556 | * Should we do an early C-O-W break? | |
2557 | */ | |
d0217ac0 | 2558 | page = vmf.page; |
54cb8821 | 2559 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2560 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2561 | anon = 1; |
d00806b1 | 2562 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2563 | ret = VM_FAULT_OOM; |
54cb8821 | 2564 | goto out; |
d00806b1 | 2565 | } |
83c54070 NP |
2566 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2567 | vma, address); | |
d00806b1 | 2568 | if (!page) { |
d0217ac0 | 2569 | ret = VM_FAULT_OOM; |
54cb8821 | 2570 | goto out; |
d00806b1 | 2571 | } |
5b4e655e KH |
2572 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
2573 | ret = VM_FAULT_OOM; | |
2574 | page_cache_release(page); | |
2575 | goto out; | |
2576 | } | |
2577 | charged = 1; | |
b291f000 NP |
2578 | /* |
2579 | * Don't let another task, with possibly unlocked vma, | |
2580 | * keep the mlocked page. | |
2581 | */ | |
2582 | if (vma->vm_flags & VM_LOCKED) | |
2583 | clear_page_mlock(vmf.page); | |
d0217ac0 | 2584 | copy_user_highpage(page, vmf.page, address, vma); |
0ed361de | 2585 | __SetPageUptodate(page); |
9637a5ef | 2586 | } else { |
54cb8821 NP |
2587 | /* |
2588 | * If the page will be shareable, see if the backing | |
9637a5ef | 2589 | * address space wants to know that the page is about |
54cb8821 NP |
2590 | * to become writable |
2591 | */ | |
69676147 MF |
2592 | if (vma->vm_ops->page_mkwrite) { |
2593 | unlock_page(page); | |
2594 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { | |
d0217ac0 NP |
2595 | ret = VM_FAULT_SIGBUS; |
2596 | anon = 1; /* no anon but release vmf.page */ | |
69676147 MF |
2597 | goto out_unlocked; |
2598 | } | |
2599 | lock_page(page); | |
d0217ac0 NP |
2600 | /* |
2601 | * XXX: this is not quite right (racy vs | |
2602 | * invalidate) to unlock and relock the page | |
2603 | * like this, however a better fix requires | |
2604 | * reworking page_mkwrite locking API, which | |
2605 | * is better done later. | |
2606 | */ | |
2607 | if (!page->mapping) { | |
83c54070 | 2608 | ret = 0; |
d0217ac0 NP |
2609 | anon = 1; /* no anon but release vmf.page */ |
2610 | goto out; | |
2611 | } | |
a200ee18 | 2612 | page_mkwrite = 1; |
9637a5ef DH |
2613 | } |
2614 | } | |
54cb8821 | 2615 | |
1da177e4 LT |
2616 | } |
2617 | ||
8f4e2101 | 2618 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2619 | |
2620 | /* | |
2621 | * This silly early PAGE_DIRTY setting removes a race | |
2622 | * due to the bad i386 page protection. But it's valid | |
2623 | * for other architectures too. | |
2624 | * | |
2625 | * Note that if write_access is true, we either now have | |
2626 | * an exclusive copy of the page, or this is a shared mapping, | |
2627 | * so we can make it writable and dirty to avoid having to | |
2628 | * handle that later. | |
2629 | */ | |
2630 | /* Only go through if we didn't race with anybody else... */ | |
54cb8821 | 2631 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2632 | flush_icache_page(vma, page); |
2633 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2634 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 | 2635 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1da177e4 | 2636 | if (anon) { |
64d6519d | 2637 | inc_mm_counter(mm, anon_rss); |
b2e18538 | 2638 | SetPageSwapBacked(page); |
64d6519d LS |
2639 | lru_cache_add_active_or_unevictable(page, vma); |
2640 | page_add_new_anon_rmap(page, vma, address); | |
f57e88a8 | 2641 | } else { |
4294621f | 2642 | inc_mm_counter(mm, file_rss); |
d00806b1 | 2643 | page_add_file_rmap(page); |
54cb8821 | 2644 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 2645 | dirty_page = page; |
d08b3851 PZ |
2646 | get_page(dirty_page); |
2647 | } | |
4294621f | 2648 | } |
64d6519d LS |
2649 | //TODO: is this safe? do_anonymous_page() does it this way. |
2650 | set_pte_at(mm, address, page_table, entry); | |
d00806b1 NP |
2651 | |
2652 | /* no need to invalidate: a not-present page won't be cached */ | |
2653 | update_mmu_cache(vma, address, entry); | |
1da177e4 | 2654 | } else { |
5b4e655e KH |
2655 | if (charged) |
2656 | mem_cgroup_uncharge_page(page); | |
d00806b1 NP |
2657 | if (anon) |
2658 | page_cache_release(page); | |
2659 | else | |
54cb8821 | 2660 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
2661 | } |
2662 | ||
8f4e2101 | 2663 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
2664 | |
2665 | out: | |
d0217ac0 | 2666 | unlock_page(vmf.page); |
69676147 | 2667 | out_unlocked: |
d00806b1 | 2668 | if (anon) |
d0217ac0 | 2669 | page_cache_release(vmf.page); |
d00806b1 | 2670 | else if (dirty_page) { |
8f7b3d15 AS |
2671 | if (vma->vm_file) |
2672 | file_update_time(vma->vm_file); | |
2673 | ||
a200ee18 | 2674 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
2675 | put_page(dirty_page); |
2676 | } | |
d00806b1 | 2677 | |
83c54070 | 2678 | return ret; |
54cb8821 | 2679 | } |
d00806b1 | 2680 | |
54cb8821 NP |
2681 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2682 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2683 | int write_access, pte_t orig_pte) | |
2684 | { | |
2685 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 2686 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 NP |
2687 | unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); |
2688 | ||
16abfa08 HD |
2689 | pte_unmap(page_table); |
2690 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
2691 | } |
2692 | ||
1da177e4 LT |
2693 | /* |
2694 | * Fault of a previously existing named mapping. Repopulate the pte | |
2695 | * from the encoded file_pte if possible. This enables swappable | |
2696 | * nonlinear vmas. | |
8f4e2101 HD |
2697 | * |
2698 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2699 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2700 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2701 | */ |
d0217ac0 | 2702 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 HD |
2703 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2704 | int write_access, pte_t orig_pte) | |
1da177e4 | 2705 | { |
d0217ac0 NP |
2706 | unsigned int flags = FAULT_FLAG_NONLINEAR | |
2707 | (write_access ? FAULT_FLAG_WRITE : 0); | |
65500d23 | 2708 | pgoff_t pgoff; |
1da177e4 | 2709 | |
4c21e2f2 | 2710 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 2711 | return 0; |
1da177e4 | 2712 | |
d0217ac0 NP |
2713 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || |
2714 | !(vma->vm_flags & VM_CAN_NONLINEAR))) { | |
65500d23 HD |
2715 | /* |
2716 | * Page table corrupted: show pte and kill process. | |
2717 | */ | |
b5810039 | 2718 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
2719 | return VM_FAULT_OOM; |
2720 | } | |
65500d23 HD |
2721 | |
2722 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 2723 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
2724 | } |
2725 | ||
2726 | /* | |
2727 | * These routines also need to handle stuff like marking pages dirty | |
2728 | * and/or accessed for architectures that don't do it in hardware (most | |
2729 | * RISC architectures). The early dirtying is also good on the i386. | |
2730 | * | |
2731 | * There is also a hook called "update_mmu_cache()" that architectures | |
2732 | * with external mmu caches can use to update those (ie the Sparc or | |
2733 | * PowerPC hashed page tables that act as extended TLBs). | |
2734 | * | |
c74df32c HD |
2735 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2736 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2737 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2738 | */ |
2739 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 HD |
2740 | struct vm_area_struct *vma, unsigned long address, |
2741 | pte_t *pte, pmd_t *pmd, int write_access) | |
1da177e4 LT |
2742 | { |
2743 | pte_t entry; | |
8f4e2101 | 2744 | spinlock_t *ptl; |
1da177e4 | 2745 | |
8dab5241 | 2746 | entry = *pte; |
1da177e4 | 2747 | if (!pte_present(entry)) { |
65500d23 | 2748 | if (pte_none(entry)) { |
f4b81804 | 2749 | if (vma->vm_ops) { |
3c18ddd1 | 2750 | if (likely(vma->vm_ops->fault)) |
54cb8821 NP |
2751 | return do_linear_fault(mm, vma, address, |
2752 | pte, pmd, write_access, entry); | |
f4b81804 JS |
2753 | } |
2754 | return do_anonymous_page(mm, vma, address, | |
2755 | pte, pmd, write_access); | |
65500d23 | 2756 | } |
1da177e4 | 2757 | if (pte_file(entry)) |
d0217ac0 | 2758 | return do_nonlinear_fault(mm, vma, address, |
65500d23 HD |
2759 | pte, pmd, write_access, entry); |
2760 | return do_swap_page(mm, vma, address, | |
2761 | pte, pmd, write_access, entry); | |
1da177e4 LT |
2762 | } |
2763 | ||
4c21e2f2 | 2764 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2765 | spin_lock(ptl); |
2766 | if (unlikely(!pte_same(*pte, entry))) | |
2767 | goto unlock; | |
1da177e4 LT |
2768 | if (write_access) { |
2769 | if (!pte_write(entry)) | |
8f4e2101 HD |
2770 | return do_wp_page(mm, vma, address, |
2771 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2772 | entry = pte_mkdirty(entry); |
2773 | } | |
2774 | entry = pte_mkyoung(entry); | |
8dab5241 | 2775 | if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { |
1a44e149 | 2776 | update_mmu_cache(vma, address, entry); |
1a44e149 AA |
2777 | } else { |
2778 | /* | |
2779 | * This is needed only for protection faults but the arch code | |
2780 | * is not yet telling us if this is a protection fault or not. | |
2781 | * This still avoids useless tlb flushes for .text page faults | |
2782 | * with threads. | |
2783 | */ | |
2784 | if (write_access) | |
2785 | flush_tlb_page(vma, address); | |
2786 | } | |
8f4e2101 HD |
2787 | unlock: |
2788 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 2789 | return 0; |
1da177e4 LT |
2790 | } |
2791 | ||
2792 | /* | |
2793 | * By the time we get here, we already hold the mm semaphore | |
2794 | */ | |
83c54070 | 2795 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2796 | unsigned long address, int write_access) |
2797 | { | |
2798 | pgd_t *pgd; | |
2799 | pud_t *pud; | |
2800 | pmd_t *pmd; | |
2801 | pte_t *pte; | |
2802 | ||
2803 | __set_current_state(TASK_RUNNING); | |
2804 | ||
f8891e5e | 2805 | count_vm_event(PGFAULT); |
1da177e4 | 2806 | |
ac9b9c66 HD |
2807 | if (unlikely(is_vm_hugetlb_page(vma))) |
2808 | return hugetlb_fault(mm, vma, address, write_access); | |
1da177e4 | 2809 | |
1da177e4 | 2810 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2811 | pud = pud_alloc(mm, pgd, address); |
2812 | if (!pud) | |
c74df32c | 2813 | return VM_FAULT_OOM; |
1da177e4 LT |
2814 | pmd = pmd_alloc(mm, pud, address); |
2815 | if (!pmd) | |
c74df32c | 2816 | return VM_FAULT_OOM; |
1da177e4 LT |
2817 | pte = pte_alloc_map(mm, pmd, address); |
2818 | if (!pte) | |
c74df32c | 2819 | return VM_FAULT_OOM; |
1da177e4 | 2820 | |
c74df32c | 2821 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
1da177e4 LT |
2822 | } |
2823 | ||
2824 | #ifndef __PAGETABLE_PUD_FOLDED | |
2825 | /* | |
2826 | * Allocate page upper directory. | |
872fec16 | 2827 | * We've already handled the fast-path in-line. |
1da177e4 | 2828 | */ |
1bb3630e | 2829 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2830 | { |
c74df32c HD |
2831 | pud_t *new = pud_alloc_one(mm, address); |
2832 | if (!new) | |
1bb3630e | 2833 | return -ENOMEM; |
1da177e4 | 2834 | |
362a61ad NP |
2835 | smp_wmb(); /* See comment in __pte_alloc */ |
2836 | ||
872fec16 | 2837 | spin_lock(&mm->page_table_lock); |
1bb3630e | 2838 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 2839 | pud_free(mm, new); |
1bb3630e HD |
2840 | else |
2841 | pgd_populate(mm, pgd, new); | |
c74df32c | 2842 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2843 | return 0; |
1da177e4 LT |
2844 | } |
2845 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
2846 | ||
2847 | #ifndef __PAGETABLE_PMD_FOLDED | |
2848 | /* | |
2849 | * Allocate page middle directory. | |
872fec16 | 2850 | * We've already handled the fast-path in-line. |
1da177e4 | 2851 | */ |
1bb3630e | 2852 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 2853 | { |
c74df32c HD |
2854 | pmd_t *new = pmd_alloc_one(mm, address); |
2855 | if (!new) | |
1bb3630e | 2856 | return -ENOMEM; |
1da177e4 | 2857 | |
362a61ad NP |
2858 | smp_wmb(); /* See comment in __pte_alloc */ |
2859 | ||
872fec16 | 2860 | spin_lock(&mm->page_table_lock); |
1da177e4 | 2861 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 2862 | if (pud_present(*pud)) /* Another has populated it */ |
5e541973 | 2863 | pmd_free(mm, new); |
1bb3630e HD |
2864 | else |
2865 | pud_populate(mm, pud, new); | |
1da177e4 | 2866 | #else |
1bb3630e | 2867 | if (pgd_present(*pud)) /* Another has populated it */ |
5e541973 | 2868 | pmd_free(mm, new); |
1bb3630e HD |
2869 | else |
2870 | pgd_populate(mm, pud, new); | |
1da177e4 | 2871 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 2872 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2873 | return 0; |
e0f39591 | 2874 | } |
1da177e4 LT |
2875 | #endif /* __PAGETABLE_PMD_FOLDED */ |
2876 | ||
2877 | int make_pages_present(unsigned long addr, unsigned long end) | |
2878 | { | |
2879 | int ret, len, write; | |
2880 | struct vm_area_struct * vma; | |
2881 | ||
2882 | vma = find_vma(current->mm, addr); | |
2883 | if (!vma) | |
a477097d | 2884 | return -ENOMEM; |
1da177e4 | 2885 | write = (vma->vm_flags & VM_WRITE) != 0; |
5bcb28b1 ES |
2886 | BUG_ON(addr >= end); |
2887 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 2888 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
2889 | ret = get_user_pages(current, current->mm, addr, |
2890 | len, write, 0, NULL, NULL); | |
c11d69d8 | 2891 | if (ret < 0) |
1da177e4 | 2892 | return ret; |
9978ad58 | 2893 | return ret == len ? 0 : -EFAULT; |
1da177e4 LT |
2894 | } |
2895 | ||
1da177e4 LT |
2896 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2897 | ||
2898 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 2899 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
2900 | |
2901 | static int __init gate_vma_init(void) | |
2902 | { | |
2903 | gate_vma.vm_mm = NULL; | |
2904 | gate_vma.vm_start = FIXADDR_USER_START; | |
2905 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
2906 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
2907 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
2908 | /* |
2909 | * Make sure the vDSO gets into every core dump. | |
2910 | * Dumping its contents makes post-mortem fully interpretable later | |
2911 | * without matching up the same kernel and hardware config to see | |
2912 | * what PC values meant. | |
2913 | */ | |
2914 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
2915 | return 0; |
2916 | } | |
2917 | __initcall(gate_vma_init); | |
2918 | #endif | |
2919 | ||
2920 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2921 | { | |
2922 | #ifdef AT_SYSINFO_EHDR | |
2923 | return &gate_vma; | |
2924 | #else | |
2925 | return NULL; | |
2926 | #endif | |
2927 | } | |
2928 | ||
2929 | int in_gate_area_no_task(unsigned long addr) | |
2930 | { | |
2931 | #ifdef AT_SYSINFO_EHDR | |
2932 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2933 | return 1; | |
2934 | #endif | |
2935 | return 0; | |
2936 | } | |
2937 | ||
2938 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 | 2939 | |
28b2ee20 | 2940 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 2941 | int follow_phys(struct vm_area_struct *vma, |
2942 | unsigned long address, unsigned int flags, | |
2943 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 RR |
2944 | { |
2945 | pgd_t *pgd; | |
2946 | pud_t *pud; | |
2947 | pmd_t *pmd; | |
2948 | pte_t *ptep, pte; | |
2949 | spinlock_t *ptl; | |
2950 | resource_size_t phys_addr = 0; | |
2951 | struct mm_struct *mm = vma->vm_mm; | |
d87fe660 | 2952 | int ret = -EINVAL; |
28b2ee20 | 2953 | |
d87fe660 | 2954 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
2955 | goto out; | |
28b2ee20 RR |
2956 | |
2957 | pgd = pgd_offset(mm, address); | |
2958 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
d87fe660 | 2959 | goto out; |
28b2ee20 RR |
2960 | |
2961 | pud = pud_offset(pgd, address); | |
2962 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
d87fe660 | 2963 | goto out; |
28b2ee20 RR |
2964 | |
2965 | pmd = pmd_offset(pud, address); | |
2966 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
d87fe660 | 2967 | goto out; |
28b2ee20 RR |
2968 | |
2969 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
2970 | if (pmd_huge(*pmd)) | |
d87fe660 | 2971 | goto out; |
28b2ee20 RR |
2972 | |
2973 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2974 | if (!ptep) | |
2975 | goto out; | |
2976 | ||
2977 | pte = *ptep; | |
2978 | if (!pte_present(pte)) | |
2979 | goto unlock; | |
2980 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | |
2981 | goto unlock; | |
2982 | phys_addr = pte_pfn(pte); | |
2983 | phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ | |
2984 | ||
2985 | *prot = pgprot_val(pte_pgprot(pte)); | |
d87fe660 | 2986 | *phys = phys_addr; |
2987 | ret = 0; | |
28b2ee20 RR |
2988 | |
2989 | unlock: | |
2990 | pte_unmap_unlock(ptep, ptl); | |
2991 | out: | |
d87fe660 | 2992 | return ret; |
28b2ee20 RR |
2993 | } |
2994 | ||
2995 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
2996 | void *buf, int len, int write) | |
2997 | { | |
2998 | resource_size_t phys_addr; | |
2999 | unsigned long prot = 0; | |
3000 | void *maddr; | |
3001 | int offset = addr & (PAGE_SIZE-1); | |
3002 | ||
d87fe660 | 3003 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
3004 | return -EINVAL; |
3005 | ||
3006 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | |
3007 | if (write) | |
3008 | memcpy_toio(maddr + offset, buf, len); | |
3009 | else | |
3010 | memcpy_fromio(buf, maddr + offset, len); | |
3011 | iounmap(maddr); | |
3012 | ||
3013 | return len; | |
3014 | } | |
3015 | #endif | |
3016 | ||
0ec76a11 DH |
3017 | /* |
3018 | * Access another process' address space. | |
3019 | * Source/target buffer must be kernel space, | |
3020 | * Do not walk the page table directly, use get_user_pages | |
3021 | */ | |
3022 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
3023 | { | |
3024 | struct mm_struct *mm; | |
3025 | struct vm_area_struct *vma; | |
0ec76a11 DH |
3026 | void *old_buf = buf; |
3027 | ||
3028 | mm = get_task_mm(tsk); | |
3029 | if (!mm) | |
3030 | return 0; | |
3031 | ||
3032 | down_read(&mm->mmap_sem); | |
183ff22b | 3033 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
3034 | while (len) { |
3035 | int bytes, ret, offset; | |
3036 | void *maddr; | |
28b2ee20 | 3037 | struct page *page = NULL; |
0ec76a11 DH |
3038 | |
3039 | ret = get_user_pages(tsk, mm, addr, 1, | |
3040 | write, 1, &page, &vma); | |
28b2ee20 RR |
3041 | if (ret <= 0) { |
3042 | /* | |
3043 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
3044 | * we can access using slightly different code. | |
3045 | */ | |
3046 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
3047 | vma = find_vma(mm, addr); | |
3048 | if (!vma) | |
3049 | break; | |
3050 | if (vma->vm_ops && vma->vm_ops->access) | |
3051 | ret = vma->vm_ops->access(vma, addr, buf, | |
3052 | len, write); | |
3053 | if (ret <= 0) | |
3054 | #endif | |
3055 | break; | |
3056 | bytes = ret; | |
0ec76a11 | 3057 | } else { |
28b2ee20 RR |
3058 | bytes = len; |
3059 | offset = addr & (PAGE_SIZE-1); | |
3060 | if (bytes > PAGE_SIZE-offset) | |
3061 | bytes = PAGE_SIZE-offset; | |
3062 | ||
3063 | maddr = kmap(page); | |
3064 | if (write) { | |
3065 | copy_to_user_page(vma, page, addr, | |
3066 | maddr + offset, buf, bytes); | |
3067 | set_page_dirty_lock(page); | |
3068 | } else { | |
3069 | copy_from_user_page(vma, page, addr, | |
3070 | buf, maddr + offset, bytes); | |
3071 | } | |
3072 | kunmap(page); | |
3073 | page_cache_release(page); | |
0ec76a11 | 3074 | } |
0ec76a11 DH |
3075 | len -= bytes; |
3076 | buf += bytes; | |
3077 | addr += bytes; | |
3078 | } | |
3079 | up_read(&mm->mmap_sem); | |
3080 | mmput(mm); | |
3081 | ||
3082 | return buf - old_buf; | |
3083 | } | |
03252919 AK |
3084 | |
3085 | /* | |
3086 | * Print the name of a VMA. | |
3087 | */ | |
3088 | void print_vma_addr(char *prefix, unsigned long ip) | |
3089 | { | |
3090 | struct mm_struct *mm = current->mm; | |
3091 | struct vm_area_struct *vma; | |
3092 | ||
e8bff74a IM |
3093 | /* |
3094 | * Do not print if we are in atomic | |
3095 | * contexts (in exception stacks, etc.): | |
3096 | */ | |
3097 | if (preempt_count()) | |
3098 | return; | |
3099 | ||
03252919 AK |
3100 | down_read(&mm->mmap_sem); |
3101 | vma = find_vma(mm, ip); | |
3102 | if (vma && vma->vm_file) { | |
3103 | struct file *f = vma->vm_file; | |
3104 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
3105 | if (buf) { | |
3106 | char *p, *s; | |
3107 | ||
cf28b486 | 3108 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
03252919 AK |
3109 | if (IS_ERR(p)) |
3110 | p = "?"; | |
3111 | s = strrchr(p, '/'); | |
3112 | if (s) | |
3113 | p = s+1; | |
3114 | printk("%s%s[%lx+%lx]", prefix, p, | |
3115 | vma->vm_start, | |
3116 | vma->vm_end - vma->vm_start); | |
3117 | free_page((unsigned long)buf); | |
3118 | } | |
3119 | } | |
3120 | up_read(¤t->mm->mmap_sem); | |
3121 | } |