]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
39a53e0c JK |
2 | * fs/f2fs/segment.h |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
ac5d156c JK |
11 | #include <linux/blkdev.h> |
12 | ||
39a53e0c JK |
13 | /* constant macro */ |
14 | #define NULL_SEGNO ((unsigned int)(~0)) | |
5ec4e49f | 15 | #define NULL_SECNO ((unsigned int)(~0)) |
39a53e0c | 16 | |
81eb8d6e JK |
17 | #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */ |
18 | ||
6224da87 | 19 | /* L: Logical segment # in volume, R: Relative segment # in main area */ |
39a53e0c JK |
20 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) |
21 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) | |
22 | ||
61ae45c8 CL |
23 | #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) |
24 | #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) | |
39a53e0c | 25 | |
5c773ba3 JK |
26 | #define IS_CURSEG(sbi, seg) \ |
27 | ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ | |
28 | (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ | |
29 | (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ | |
30 | (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ | |
31 | (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ | |
32 | (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | |
39a53e0c JK |
33 | |
34 | #define IS_CURSEC(sbi, secno) \ | |
35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ | |
36 | sbi->segs_per_sec) || \ | |
37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ | |
38 | sbi->segs_per_sec) || \ | |
39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ | |
40 | sbi->segs_per_sec) || \ | |
41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ | |
42 | sbi->segs_per_sec) || \ | |
43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ | |
44 | sbi->segs_per_sec) || \ | |
45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ | |
46 | sbi->segs_per_sec)) \ | |
47 | ||
48 | #define START_BLOCK(sbi, segno) \ | |
49 | (SM_I(sbi)->seg0_blkaddr + \ | |
50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) | |
51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ | |
52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) | |
53 | ||
54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) | |
55 | ||
56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ | |
57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) | |
58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ | |
59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) | |
60 | #define GET_SEGNO(sbi, blk_addr) \ | |
61 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ | |
62 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ | |
63 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | |
64 | #define GET_SECNO(sbi, segno) \ | |
65 | ((segno) / sbi->segs_per_sec) | |
66 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ | |
67 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) | |
68 | ||
69 | #define GET_SUM_BLOCK(sbi, segno) \ | |
70 | ((sbi->sm_info->ssa_blkaddr) + segno) | |
71 | ||
72 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | |
73 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) | |
74 | ||
75 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ | |
76 | (segno % sit_i->sents_per_block) | |
77 | #define SIT_BLOCK_OFFSET(sit_i, segno) \ | |
78 | (segno / SIT_ENTRY_PER_BLOCK) | |
79 | #define START_SEGNO(sit_i, segno) \ | |
80 | (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) | |
81 | #define f2fs_bitmap_size(nr) \ | |
82 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | |
83 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) | |
53cf9522 | 84 | #define TOTAL_SECS(sbi) (sbi->total_sections) |
39a53e0c | 85 | |
3cd8a239 JK |
86 | #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ |
87 | (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) | |
ac5d156c JK |
88 | #define SECTOR_TO_BLOCK(sbi, sectors) \ |
89 | (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) | |
cc7b1bb1 CY |
90 | #define MAX_BIO_BLOCKS(max_hw_blocks) \ |
91 | (min((int)max_hw_blocks, BIO_MAX_PAGES)) | |
3cd8a239 | 92 | |
39a53e0c JK |
93 | /* during checkpoint, bio_private is used to synchronize the last bio */ |
94 | struct bio_private { | |
95 | struct f2fs_sb_info *sbi; | |
96 | bool is_sync; | |
97 | void *wait; | |
98 | }; | |
99 | ||
100 | /* | |
101 | * indicate a block allocation direction: RIGHT and LEFT. | |
102 | * RIGHT means allocating new sections towards the end of volume. | |
103 | * LEFT means the opposite direction. | |
104 | */ | |
105 | enum { | |
106 | ALLOC_RIGHT = 0, | |
107 | ALLOC_LEFT | |
108 | }; | |
109 | ||
110 | /* | |
111 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | |
112 | * LFS writes data sequentially with cleaning operations. | |
113 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | |
114 | */ | |
115 | enum { | |
116 | LFS = 0, | |
117 | SSR | |
118 | }; | |
119 | ||
120 | /* | |
121 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | |
122 | * GC_CB is based on cost-benefit algorithm. | |
123 | * GC_GREEDY is based on greedy algorithm. | |
124 | */ | |
125 | enum { | |
126 | GC_CB = 0, | |
127 | GC_GREEDY | |
128 | }; | |
129 | ||
130 | /* | |
131 | * BG_GC means the background cleaning job. | |
132 | * FG_GC means the on-demand cleaning job. | |
133 | */ | |
134 | enum { | |
135 | BG_GC = 0, | |
136 | FG_GC | |
137 | }; | |
138 | ||
139 | /* for a function parameter to select a victim segment */ | |
140 | struct victim_sel_policy { | |
141 | int alloc_mode; /* LFS or SSR */ | |
142 | int gc_mode; /* GC_CB or GC_GREEDY */ | |
143 | unsigned long *dirty_segmap; /* dirty segment bitmap */ | |
a26b7c8a | 144 | unsigned int max_search; /* maximum # of segments to search */ |
39a53e0c JK |
145 | unsigned int offset; /* last scanned bitmap offset */ |
146 | unsigned int ofs_unit; /* bitmap search unit */ | |
147 | unsigned int min_cost; /* minimum cost */ | |
148 | unsigned int min_segno; /* segment # having min. cost */ | |
149 | }; | |
150 | ||
151 | struct seg_entry { | |
152 | unsigned short valid_blocks; /* # of valid blocks */ | |
153 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ | |
154 | /* | |
155 | * # of valid blocks and the validity bitmap stored in the the last | |
156 | * checkpoint pack. This information is used by the SSR mode. | |
157 | */ | |
158 | unsigned short ckpt_valid_blocks; | |
159 | unsigned char *ckpt_valid_map; | |
160 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ | |
161 | unsigned long long mtime; /* modification time of the segment */ | |
162 | }; | |
163 | ||
164 | struct sec_entry { | |
165 | unsigned int valid_blocks; /* # of valid blocks in a section */ | |
166 | }; | |
167 | ||
168 | struct segment_allocation { | |
169 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | |
170 | }; | |
171 | ||
172 | struct sit_info { | |
173 | const struct segment_allocation *s_ops; | |
174 | ||
175 | block_t sit_base_addr; /* start block address of SIT area */ | |
176 | block_t sit_blocks; /* # of blocks used by SIT area */ | |
177 | block_t written_valid_blocks; /* # of valid blocks in main area */ | |
178 | char *sit_bitmap; /* SIT bitmap pointer */ | |
179 | unsigned int bitmap_size; /* SIT bitmap size */ | |
180 | ||
181 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ | |
182 | unsigned int dirty_sentries; /* # of dirty sentries */ | |
183 | unsigned int sents_per_block; /* # of SIT entries per block */ | |
184 | struct mutex sentry_lock; /* to protect SIT cache */ | |
185 | struct seg_entry *sentries; /* SIT segment-level cache */ | |
186 | struct sec_entry *sec_entries; /* SIT section-level cache */ | |
187 | ||
188 | /* for cost-benefit algorithm in cleaning procedure */ | |
189 | unsigned long long elapsed_time; /* elapsed time after mount */ | |
190 | unsigned long long mounted_time; /* mount time */ | |
191 | unsigned long long min_mtime; /* min. modification time */ | |
192 | unsigned long long max_mtime; /* max. modification time */ | |
193 | }; | |
194 | ||
195 | struct free_segmap_info { | |
196 | unsigned int start_segno; /* start segment number logically */ | |
197 | unsigned int free_segments; /* # of free segments */ | |
198 | unsigned int free_sections; /* # of free sections */ | |
199 | rwlock_t segmap_lock; /* free segmap lock */ | |
200 | unsigned long *free_segmap; /* free segment bitmap */ | |
201 | unsigned long *free_secmap; /* free section bitmap */ | |
202 | }; | |
203 | ||
204 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | |
205 | enum dirty_type { | |
206 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ | |
207 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ | |
208 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ | |
209 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ | |
210 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ | |
211 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ | |
212 | DIRTY, /* to count # of dirty segments */ | |
213 | PRE, /* to count # of entirely obsolete segments */ | |
214 | NR_DIRTY_TYPE | |
215 | }; | |
216 | ||
217 | struct dirty_seglist_info { | |
218 | const struct victim_selection *v_ops; /* victim selction operation */ | |
219 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | |
220 | struct mutex seglist_lock; /* lock for segment bitmaps */ | |
221 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ | |
5ec4e49f | 222 | unsigned long *victim_secmap; /* background GC victims */ |
39a53e0c JK |
223 | }; |
224 | ||
225 | /* victim selection function for cleaning and SSR */ | |
226 | struct victim_selection { | |
227 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | |
228 | int, int, char); | |
229 | }; | |
230 | ||
231 | /* for active log information */ | |
232 | struct curseg_info { | |
233 | struct mutex curseg_mutex; /* lock for consistency */ | |
234 | struct f2fs_summary_block *sum_blk; /* cached summary block */ | |
235 | unsigned char alloc_type; /* current allocation type */ | |
236 | unsigned int segno; /* current segment number */ | |
237 | unsigned short next_blkoff; /* next block offset to write */ | |
238 | unsigned int zone; /* current zone number */ | |
239 | unsigned int next_segno; /* preallocated segment */ | |
240 | }; | |
241 | ||
242 | /* | |
243 | * inline functions | |
244 | */ | |
245 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | |
246 | { | |
247 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | |
248 | } | |
249 | ||
250 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | |
251 | unsigned int segno) | |
252 | { | |
253 | struct sit_info *sit_i = SIT_I(sbi); | |
254 | return &sit_i->sentries[segno]; | |
255 | } | |
256 | ||
257 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | |
258 | unsigned int segno) | |
259 | { | |
260 | struct sit_info *sit_i = SIT_I(sbi); | |
261 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; | |
262 | } | |
263 | ||
264 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | |
265 | unsigned int segno, int section) | |
266 | { | |
267 | /* | |
268 | * In order to get # of valid blocks in a section instantly from many | |
269 | * segments, f2fs manages two counting structures separately. | |
270 | */ | |
271 | if (section > 1) | |
272 | return get_sec_entry(sbi, segno)->valid_blocks; | |
273 | else | |
274 | return get_seg_entry(sbi, segno)->valid_blocks; | |
275 | } | |
276 | ||
277 | static inline void seg_info_from_raw_sit(struct seg_entry *se, | |
278 | struct f2fs_sit_entry *rs) | |
279 | { | |
280 | se->valid_blocks = GET_SIT_VBLOCKS(rs); | |
281 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | |
282 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
283 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
284 | se->type = GET_SIT_TYPE(rs); | |
285 | se->mtime = le64_to_cpu(rs->mtime); | |
286 | } | |
287 | ||
288 | static inline void seg_info_to_raw_sit(struct seg_entry *se, | |
289 | struct f2fs_sit_entry *rs) | |
290 | { | |
291 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | |
292 | se->valid_blocks; | |
293 | rs->vblocks = cpu_to_le16(raw_vblocks); | |
294 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | |
295 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
296 | se->ckpt_valid_blocks = se->valid_blocks; | |
297 | rs->mtime = cpu_to_le64(se->mtime); | |
298 | } | |
299 | ||
300 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | |
301 | unsigned int max, unsigned int segno) | |
302 | { | |
303 | unsigned int ret; | |
304 | read_lock(&free_i->segmap_lock); | |
305 | ret = find_next_bit(free_i->free_segmap, max, segno); | |
306 | read_unlock(&free_i->segmap_lock); | |
307 | return ret; | |
308 | } | |
309 | ||
310 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | |
311 | { | |
312 | struct free_segmap_info *free_i = FREE_I(sbi); | |
313 | unsigned int secno = segno / sbi->segs_per_sec; | |
314 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
315 | unsigned int next; | |
316 | ||
317 | write_lock(&free_i->segmap_lock); | |
318 | clear_bit(segno, free_i->free_segmap); | |
319 | free_i->free_segments++; | |
320 | ||
321 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); | |
322 | if (next >= start_segno + sbi->segs_per_sec) { | |
323 | clear_bit(secno, free_i->free_secmap); | |
324 | free_i->free_sections++; | |
325 | } | |
326 | write_unlock(&free_i->segmap_lock); | |
327 | } | |
328 | ||
329 | static inline void __set_inuse(struct f2fs_sb_info *sbi, | |
330 | unsigned int segno) | |
331 | { | |
332 | struct free_segmap_info *free_i = FREE_I(sbi); | |
333 | unsigned int secno = segno / sbi->segs_per_sec; | |
334 | set_bit(segno, free_i->free_segmap); | |
335 | free_i->free_segments--; | |
336 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
337 | free_i->free_sections--; | |
338 | } | |
339 | ||
340 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | |
341 | unsigned int segno) | |
342 | { | |
343 | struct free_segmap_info *free_i = FREE_I(sbi); | |
344 | unsigned int secno = segno / sbi->segs_per_sec; | |
345 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
346 | unsigned int next; | |
347 | ||
348 | write_lock(&free_i->segmap_lock); | |
349 | if (test_and_clear_bit(segno, free_i->free_segmap)) { | |
350 | free_i->free_segments++; | |
351 | ||
352 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), | |
353 | start_segno); | |
354 | if (next >= start_segno + sbi->segs_per_sec) { | |
355 | if (test_and_clear_bit(secno, free_i->free_secmap)) | |
356 | free_i->free_sections++; | |
357 | } | |
358 | } | |
359 | write_unlock(&free_i->segmap_lock); | |
360 | } | |
361 | ||
362 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | |
363 | unsigned int segno) | |
364 | { | |
365 | struct free_segmap_info *free_i = FREE_I(sbi); | |
366 | unsigned int secno = segno / sbi->segs_per_sec; | |
367 | write_lock(&free_i->segmap_lock); | |
368 | if (!test_and_set_bit(segno, free_i->free_segmap)) { | |
369 | free_i->free_segments--; | |
370 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
371 | free_i->free_sections--; | |
372 | } | |
373 | write_unlock(&free_i->segmap_lock); | |
374 | } | |
375 | ||
376 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | |
377 | void *dst_addr) | |
378 | { | |
379 | struct sit_info *sit_i = SIT_I(sbi); | |
380 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | |
381 | } | |
382 | ||
383 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | |
384 | { | |
385 | struct sit_info *sit_i = SIT_I(sbi); | |
386 | block_t vblocks; | |
387 | ||
388 | mutex_lock(&sit_i->sentry_lock); | |
389 | vblocks = sit_i->written_valid_blocks; | |
390 | mutex_unlock(&sit_i->sentry_lock); | |
391 | ||
392 | return vblocks; | |
393 | } | |
394 | ||
395 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | |
396 | { | |
397 | struct free_segmap_info *free_i = FREE_I(sbi); | |
398 | unsigned int free_segs; | |
399 | ||
400 | read_lock(&free_i->segmap_lock); | |
401 | free_segs = free_i->free_segments; | |
402 | read_unlock(&free_i->segmap_lock); | |
403 | ||
404 | return free_segs; | |
405 | } | |
406 | ||
407 | static inline int reserved_segments(struct f2fs_sb_info *sbi) | |
408 | { | |
409 | return SM_I(sbi)->reserved_segments; | |
410 | } | |
411 | ||
412 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | |
413 | { | |
414 | struct free_segmap_info *free_i = FREE_I(sbi); | |
415 | unsigned int free_secs; | |
416 | ||
417 | read_lock(&free_i->segmap_lock); | |
418 | free_secs = free_i->free_sections; | |
419 | read_unlock(&free_i->segmap_lock); | |
420 | ||
421 | return free_secs; | |
422 | } | |
423 | ||
424 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | |
425 | { | |
426 | return DIRTY_I(sbi)->nr_dirty[PRE]; | |
427 | } | |
428 | ||
429 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | |
430 | { | |
431 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | |
432 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | |
433 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | |
434 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | |
435 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | |
436 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | |
437 | } | |
438 | ||
439 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | |
440 | { | |
441 | return SM_I(sbi)->ovp_segments; | |
442 | } | |
443 | ||
444 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) | |
445 | { | |
446 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; | |
447 | } | |
448 | ||
449 | static inline int reserved_sections(struct f2fs_sb_info *sbi) | |
450 | { | |
451 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; | |
452 | } | |
453 | ||
454 | static inline bool need_SSR(struct f2fs_sb_info *sbi) | |
455 | { | |
c34e333f JK |
456 | return ((prefree_segments(sbi) / sbi->segs_per_sec) |
457 | + free_sections(sbi) < overprovision_sections(sbi)); | |
39a53e0c JK |
458 | } |
459 | ||
43727527 | 460 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) |
39a53e0c | 461 | { |
5ac206cf NJ |
462 | int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); |
463 | int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); | |
43727527 | 464 | |
029cd28c JK |
465 | if (sbi->por_doing) |
466 | return false; | |
467 | ||
43727527 | 468 | return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + |
b1f1daf8 | 469 | reserved_sections(sbi))); |
39a53e0c JK |
470 | } |
471 | ||
81eb8d6e JK |
472 | static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) |
473 | { | |
474 | return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments); | |
475 | } | |
476 | ||
39a53e0c JK |
477 | static inline int utilization(struct f2fs_sb_info *sbi) |
478 | { | |
222cbdc4 | 479 | return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count); |
39a53e0c JK |
480 | } |
481 | ||
482 | /* | |
483 | * Sometimes f2fs may be better to drop out-of-place update policy. | |
484 | * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write | |
485 | * data in the original place likewise other traditional file systems. | |
486 | * But, currently set 100 in percentage, which means it is disabled. | |
487 | * See below need_inplace_update(). | |
488 | */ | |
489 | #define MIN_IPU_UTIL 100 | |
490 | static inline bool need_inplace_update(struct inode *inode) | |
491 | { | |
492 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
493 | if (S_ISDIR(inode->i_mode)) | |
494 | return false; | |
495 | if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) | |
496 | return true; | |
497 | return false; | |
498 | } | |
499 | ||
500 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | |
501 | int type) | |
502 | { | |
503 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
504 | return curseg->segno; | |
505 | } | |
506 | ||
507 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | |
508 | int type) | |
509 | { | |
510 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
511 | return curseg->alloc_type; | |
512 | } | |
513 | ||
514 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | |
515 | { | |
516 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
517 | return curseg->next_blkoff; | |
518 | } | |
519 | ||
5d56b671 | 520 | #ifdef CONFIG_F2FS_CHECK_FS |
39a53e0c JK |
521 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) |
522 | { | |
523 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | |
524 | BUG_ON(segno > end_segno); | |
525 | } | |
526 | ||
39a53e0c JK |
527 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) |
528 | { | |
529 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
530 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | |
531 | block_t start_addr = sm_info->seg0_blkaddr; | |
532 | block_t end_addr = start_addr + total_blks - 1; | |
533 | BUG_ON(blk_addr < start_addr); | |
534 | BUG_ON(blk_addr > end_addr); | |
535 | } | |
536 | ||
537 | /* | |
538 | * Summary block is always treated as invalid block | |
539 | */ | |
540 | static inline void check_block_count(struct f2fs_sb_info *sbi, | |
541 | int segno, struct f2fs_sit_entry *raw_sit) | |
542 | { | |
543 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
544 | unsigned int end_segno = sm_info->segment_count - 1; | |
44c60bf2 | 545 | bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; |
39a53e0c | 546 | int valid_blocks = 0; |
44c60bf2 | 547 | int cur_pos = 0, next_pos; |
39a53e0c JK |
548 | |
549 | /* check segment usage */ | |
550 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); | |
551 | ||
552 | /* check boundary of a given segment number */ | |
553 | BUG_ON(segno > end_segno); | |
554 | ||
555 | /* check bitmap with valid block count */ | |
44c60bf2 CY |
556 | do { |
557 | if (is_valid) { | |
558 | next_pos = find_next_zero_bit_le(&raw_sit->valid_map, | |
559 | sbi->blocks_per_seg, | |
560 | cur_pos); | |
561 | valid_blocks += next_pos - cur_pos; | |
562 | } else | |
563 | next_pos = find_next_bit_le(&raw_sit->valid_map, | |
564 | sbi->blocks_per_seg, | |
565 | cur_pos); | |
566 | cur_pos = next_pos; | |
567 | is_valid = !is_valid; | |
568 | } while (cur_pos < sbi->blocks_per_seg); | |
39a53e0c JK |
569 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); |
570 | } | |
5d56b671 JK |
571 | #else |
572 | #define check_seg_range(sbi, segno) | |
573 | #define verify_block_addr(sbi, blk_addr) | |
574 | #define check_block_count(sbi, segno, raw_sit) | |
575 | #endif | |
39a53e0c JK |
576 | |
577 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | |
578 | unsigned int start) | |
579 | { | |
580 | struct sit_info *sit_i = SIT_I(sbi); | |
581 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); | |
582 | block_t blk_addr = sit_i->sit_base_addr + offset; | |
583 | ||
584 | check_seg_range(sbi, start); | |
585 | ||
586 | /* calculate sit block address */ | |
587 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | |
588 | blk_addr += sit_i->sit_blocks; | |
589 | ||
590 | return blk_addr; | |
591 | } | |
592 | ||
593 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | |
594 | pgoff_t block_addr) | |
595 | { | |
596 | struct sit_info *sit_i = SIT_I(sbi); | |
597 | block_addr -= sit_i->sit_base_addr; | |
598 | if (block_addr < sit_i->sit_blocks) | |
599 | block_addr += sit_i->sit_blocks; | |
600 | else | |
601 | block_addr -= sit_i->sit_blocks; | |
602 | ||
603 | return block_addr + sit_i->sit_base_addr; | |
604 | } | |
605 | ||
606 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | |
607 | { | |
608 | unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); | |
609 | ||
610 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) | |
611 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); | |
612 | else | |
613 | f2fs_set_bit(block_off, sit_i->sit_bitmap); | |
614 | } | |
615 | ||
616 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | |
617 | { | |
618 | struct sit_info *sit_i = SIT_I(sbi); | |
619 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - | |
620 | sit_i->mounted_time; | |
621 | } | |
622 | ||
623 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | |
624 | unsigned int ofs_in_node, unsigned char version) | |
625 | { | |
626 | sum->nid = cpu_to_le32(nid); | |
627 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | |
628 | sum->version = version; | |
629 | } | |
630 | ||
631 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | |
632 | { | |
633 | return __start_cp_addr(sbi) + | |
634 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | |
635 | } | |
636 | ||
637 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | |
638 | { | |
639 | return __start_cp_addr(sbi) + | |
640 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | |
641 | - (base + 1) + type; | |
642 | } | |
5ec4e49f JK |
643 | |
644 | static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) | |
645 | { | |
646 | if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) | |
647 | return true; | |
648 | return false; | |
649 | } | |
ac5d156c JK |
650 | |
651 | static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) | |
652 | { | |
653 | struct block_device *bdev = sbi->sb->s_bdev; | |
654 | struct request_queue *q = bdev_get_queue(bdev); | |
655 | return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q)); | |
656 | } |