]> Git Repo - linux.git/blob - fs/f2fs/segment.h
f2fs: adds a tracepoint for f2fs_submit_read_bio
[linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    100     /* 200MB of prefree segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg)                                             \
27         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
28          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
29          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr)                                        \
61         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
62         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
63                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno)                                   \
65         ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
67         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69 #define GET_SUM_BLOCK(sbi, segno)                               \
70         ((sbi->sm_info->ssa_blkaddr) + segno)
71
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
76         (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
78         (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno)               \
80         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define f2fs_bitmap_size(nr)                    \
82         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
83 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
84 #define TOTAL_SECS(sbi) (sbi->total_sections)
85
86 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
87         (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
88 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
89         (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
90 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
91         (min((int)max_hw_blocks, BIO_MAX_PAGES))
92
93 /* during checkpoint, bio_private is used to synchronize the last bio */
94 struct bio_private {
95         struct f2fs_sb_info *sbi;
96         bool is_sync;
97         void *wait;
98 };
99
100 /*
101  * indicate a block allocation direction: RIGHT and LEFT.
102  * RIGHT means allocating new sections towards the end of volume.
103  * LEFT means the opposite direction.
104  */
105 enum {
106         ALLOC_RIGHT = 0,
107         ALLOC_LEFT
108 };
109
110 /*
111  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
112  * LFS writes data sequentially with cleaning operations.
113  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
114  */
115 enum {
116         LFS = 0,
117         SSR
118 };
119
120 /*
121  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
122  * GC_CB is based on cost-benefit algorithm.
123  * GC_GREEDY is based on greedy algorithm.
124  */
125 enum {
126         GC_CB = 0,
127         GC_GREEDY
128 };
129
130 /*
131  * BG_GC means the background cleaning job.
132  * FG_GC means the on-demand cleaning job.
133  */
134 enum {
135         BG_GC = 0,
136         FG_GC
137 };
138
139 /* for a function parameter to select a victim segment */
140 struct victim_sel_policy {
141         int alloc_mode;                 /* LFS or SSR */
142         int gc_mode;                    /* GC_CB or GC_GREEDY */
143         unsigned long *dirty_segmap;    /* dirty segment bitmap */
144         unsigned int max_search;        /* maximum # of segments to search */
145         unsigned int offset;            /* last scanned bitmap offset */
146         unsigned int ofs_unit;          /* bitmap search unit */
147         unsigned int min_cost;          /* minimum cost */
148         unsigned int min_segno;         /* segment # having min. cost */
149 };
150
151 struct seg_entry {
152         unsigned short valid_blocks;    /* # of valid blocks */
153         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
154         /*
155          * # of valid blocks and the validity bitmap stored in the the last
156          * checkpoint pack. This information is used by the SSR mode.
157          */
158         unsigned short ckpt_valid_blocks;
159         unsigned char *ckpt_valid_map;
160         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
161         unsigned long long mtime;       /* modification time of the segment */
162 };
163
164 struct sec_entry {
165         unsigned int valid_blocks;      /* # of valid blocks in a section */
166 };
167
168 struct segment_allocation {
169         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
170 };
171
172 struct sit_info {
173         const struct segment_allocation *s_ops;
174
175         block_t sit_base_addr;          /* start block address of SIT area */
176         block_t sit_blocks;             /* # of blocks used by SIT area */
177         block_t written_valid_blocks;   /* # of valid blocks in main area */
178         char *sit_bitmap;               /* SIT bitmap pointer */
179         unsigned int bitmap_size;       /* SIT bitmap size */
180
181         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
182         unsigned int dirty_sentries;            /* # of dirty sentries */
183         unsigned int sents_per_block;           /* # of SIT entries per block */
184         struct mutex sentry_lock;               /* to protect SIT cache */
185         struct seg_entry *sentries;             /* SIT segment-level cache */
186         struct sec_entry *sec_entries;          /* SIT section-level cache */
187
188         /* for cost-benefit algorithm in cleaning procedure */
189         unsigned long long elapsed_time;        /* elapsed time after mount */
190         unsigned long long mounted_time;        /* mount time */
191         unsigned long long min_mtime;           /* min. modification time */
192         unsigned long long max_mtime;           /* max. modification time */
193 };
194
195 struct free_segmap_info {
196         unsigned int start_segno;       /* start segment number logically */
197         unsigned int free_segments;     /* # of free segments */
198         unsigned int free_sections;     /* # of free sections */
199         rwlock_t segmap_lock;           /* free segmap lock */
200         unsigned long *free_segmap;     /* free segment bitmap */
201         unsigned long *free_secmap;     /* free section bitmap */
202 };
203
204 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
205 enum dirty_type {
206         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
207         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
208         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
209         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
210         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
211         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
212         DIRTY,                  /* to count # of dirty segments */
213         PRE,                    /* to count # of entirely obsolete segments */
214         NR_DIRTY_TYPE
215 };
216
217 struct dirty_seglist_info {
218         const struct victim_selection *v_ops;   /* victim selction operation */
219         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
220         struct mutex seglist_lock;              /* lock for segment bitmaps */
221         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
222         unsigned long *victim_secmap;           /* background GC victims */
223 };
224
225 /* victim selection function for cleaning and SSR */
226 struct victim_selection {
227         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
228                                                         int, int, char);
229 };
230
231 /* for active log information */
232 struct curseg_info {
233         struct mutex curseg_mutex;              /* lock for consistency */
234         struct f2fs_summary_block *sum_blk;     /* cached summary block */
235         unsigned char alloc_type;               /* current allocation type */
236         unsigned int segno;                     /* current segment number */
237         unsigned short next_blkoff;             /* next block offset to write */
238         unsigned int zone;                      /* current zone number */
239         unsigned int next_segno;                /* preallocated segment */
240 };
241
242 /*
243  * inline functions
244  */
245 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
246 {
247         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
248 }
249
250 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
251                                                 unsigned int segno)
252 {
253         struct sit_info *sit_i = SIT_I(sbi);
254         return &sit_i->sentries[segno];
255 }
256
257 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
258                                                 unsigned int segno)
259 {
260         struct sit_info *sit_i = SIT_I(sbi);
261         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
262 }
263
264 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
265                                 unsigned int segno, int section)
266 {
267         /*
268          * In order to get # of valid blocks in a section instantly from many
269          * segments, f2fs manages two counting structures separately.
270          */
271         if (section > 1)
272                 return get_sec_entry(sbi, segno)->valid_blocks;
273         else
274                 return get_seg_entry(sbi, segno)->valid_blocks;
275 }
276
277 static inline void seg_info_from_raw_sit(struct seg_entry *se,
278                                         struct f2fs_sit_entry *rs)
279 {
280         se->valid_blocks = GET_SIT_VBLOCKS(rs);
281         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
282         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
283         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
284         se->type = GET_SIT_TYPE(rs);
285         se->mtime = le64_to_cpu(rs->mtime);
286 }
287
288 static inline void seg_info_to_raw_sit(struct seg_entry *se,
289                                         struct f2fs_sit_entry *rs)
290 {
291         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
292                                         se->valid_blocks;
293         rs->vblocks = cpu_to_le16(raw_vblocks);
294         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
295         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
296         se->ckpt_valid_blocks = se->valid_blocks;
297         rs->mtime = cpu_to_le64(se->mtime);
298 }
299
300 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
301                 unsigned int max, unsigned int segno)
302 {
303         unsigned int ret;
304         read_lock(&free_i->segmap_lock);
305         ret = find_next_bit(free_i->free_segmap, max, segno);
306         read_unlock(&free_i->segmap_lock);
307         return ret;
308 }
309
310 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
311 {
312         struct free_segmap_info *free_i = FREE_I(sbi);
313         unsigned int secno = segno / sbi->segs_per_sec;
314         unsigned int start_segno = secno * sbi->segs_per_sec;
315         unsigned int next;
316
317         write_lock(&free_i->segmap_lock);
318         clear_bit(segno, free_i->free_segmap);
319         free_i->free_segments++;
320
321         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
322         if (next >= start_segno + sbi->segs_per_sec) {
323                 clear_bit(secno, free_i->free_secmap);
324                 free_i->free_sections++;
325         }
326         write_unlock(&free_i->segmap_lock);
327 }
328
329 static inline void __set_inuse(struct f2fs_sb_info *sbi,
330                 unsigned int segno)
331 {
332         struct free_segmap_info *free_i = FREE_I(sbi);
333         unsigned int secno = segno / sbi->segs_per_sec;
334         set_bit(segno, free_i->free_segmap);
335         free_i->free_segments--;
336         if (!test_and_set_bit(secno, free_i->free_secmap))
337                 free_i->free_sections--;
338 }
339
340 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
341                 unsigned int segno)
342 {
343         struct free_segmap_info *free_i = FREE_I(sbi);
344         unsigned int secno = segno / sbi->segs_per_sec;
345         unsigned int start_segno = secno * sbi->segs_per_sec;
346         unsigned int next;
347
348         write_lock(&free_i->segmap_lock);
349         if (test_and_clear_bit(segno, free_i->free_segmap)) {
350                 free_i->free_segments++;
351
352                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
353                                                                 start_segno);
354                 if (next >= start_segno + sbi->segs_per_sec) {
355                         if (test_and_clear_bit(secno, free_i->free_secmap))
356                                 free_i->free_sections++;
357                 }
358         }
359         write_unlock(&free_i->segmap_lock);
360 }
361
362 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
363                 unsigned int segno)
364 {
365         struct free_segmap_info *free_i = FREE_I(sbi);
366         unsigned int secno = segno / sbi->segs_per_sec;
367         write_lock(&free_i->segmap_lock);
368         if (!test_and_set_bit(segno, free_i->free_segmap)) {
369                 free_i->free_segments--;
370                 if (!test_and_set_bit(secno, free_i->free_secmap))
371                         free_i->free_sections--;
372         }
373         write_unlock(&free_i->segmap_lock);
374 }
375
376 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
377                 void *dst_addr)
378 {
379         struct sit_info *sit_i = SIT_I(sbi);
380         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
381 }
382
383 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
384 {
385         struct sit_info *sit_i = SIT_I(sbi);
386         block_t vblocks;
387
388         mutex_lock(&sit_i->sentry_lock);
389         vblocks = sit_i->written_valid_blocks;
390         mutex_unlock(&sit_i->sentry_lock);
391
392         return vblocks;
393 }
394
395 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
396 {
397         struct free_segmap_info *free_i = FREE_I(sbi);
398         unsigned int free_segs;
399
400         read_lock(&free_i->segmap_lock);
401         free_segs = free_i->free_segments;
402         read_unlock(&free_i->segmap_lock);
403
404         return free_segs;
405 }
406
407 static inline int reserved_segments(struct f2fs_sb_info *sbi)
408 {
409         return SM_I(sbi)->reserved_segments;
410 }
411
412 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
413 {
414         struct free_segmap_info *free_i = FREE_I(sbi);
415         unsigned int free_secs;
416
417         read_lock(&free_i->segmap_lock);
418         free_secs = free_i->free_sections;
419         read_unlock(&free_i->segmap_lock);
420
421         return free_secs;
422 }
423
424 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
425 {
426         return DIRTY_I(sbi)->nr_dirty[PRE];
427 }
428
429 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
430 {
431         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
432                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
433                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
434                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
435                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
436                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
437 }
438
439 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
440 {
441         return SM_I(sbi)->ovp_segments;
442 }
443
444 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
445 {
446         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
447 }
448
449 static inline int reserved_sections(struct f2fs_sb_info *sbi)
450 {
451         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
452 }
453
454 static inline bool need_SSR(struct f2fs_sb_info *sbi)
455 {
456         return ((prefree_segments(sbi) / sbi->segs_per_sec)
457                         + free_sections(sbi) < overprovision_sections(sbi));
458 }
459
460 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
461 {
462         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
463         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
464
465         if (sbi->por_doing)
466                 return false;
467
468         return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
469                                                 reserved_sections(sbi)));
470 }
471
472 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
473 {
474         return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
475 }
476
477 static inline int utilization(struct f2fs_sb_info *sbi)
478 {
479         return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
480 }
481
482 /*
483  * Sometimes f2fs may be better to drop out-of-place update policy.
484  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
485  * data in the original place likewise other traditional file systems.
486  * But, currently set 100 in percentage, which means it is disabled.
487  * See below need_inplace_update().
488  */
489 #define MIN_IPU_UTIL            100
490 static inline bool need_inplace_update(struct inode *inode)
491 {
492         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
493         if (S_ISDIR(inode->i_mode))
494                 return false;
495         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
496                 return true;
497         return false;
498 }
499
500 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
501                 int type)
502 {
503         struct curseg_info *curseg = CURSEG_I(sbi, type);
504         return curseg->segno;
505 }
506
507 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
508                 int type)
509 {
510         struct curseg_info *curseg = CURSEG_I(sbi, type);
511         return curseg->alloc_type;
512 }
513
514 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
515 {
516         struct curseg_info *curseg = CURSEG_I(sbi, type);
517         return curseg->next_blkoff;
518 }
519
520 #ifdef CONFIG_F2FS_CHECK_FS
521 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
522 {
523         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
524         BUG_ON(segno > end_segno);
525 }
526
527 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
528 {
529         struct f2fs_sm_info *sm_info = SM_I(sbi);
530         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
531         block_t start_addr = sm_info->seg0_blkaddr;
532         block_t end_addr = start_addr + total_blks - 1;
533         BUG_ON(blk_addr < start_addr);
534         BUG_ON(blk_addr > end_addr);
535 }
536
537 /*
538  * Summary block is always treated as invalid block
539  */
540 static inline void check_block_count(struct f2fs_sb_info *sbi,
541                 int segno, struct f2fs_sit_entry *raw_sit)
542 {
543         struct f2fs_sm_info *sm_info = SM_I(sbi);
544         unsigned int end_segno = sm_info->segment_count - 1;
545         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
546         int valid_blocks = 0;
547         int cur_pos = 0, next_pos;
548
549         /* check segment usage */
550         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
551
552         /* check boundary of a given segment number */
553         BUG_ON(segno > end_segno);
554
555         /* check bitmap with valid block count */
556         do {
557                 if (is_valid) {
558                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
559                                         sbi->blocks_per_seg,
560                                         cur_pos);
561                         valid_blocks += next_pos - cur_pos;
562                 } else
563                         next_pos = find_next_bit_le(&raw_sit->valid_map,
564                                         sbi->blocks_per_seg,
565                                         cur_pos);
566                 cur_pos = next_pos;
567                 is_valid = !is_valid;
568         } while (cur_pos < sbi->blocks_per_seg);
569         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
570 }
571 #else
572 #define check_seg_range(sbi, segno)
573 #define verify_block_addr(sbi, blk_addr)
574 #define check_block_count(sbi, segno, raw_sit)
575 #endif
576
577 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
578                                                 unsigned int start)
579 {
580         struct sit_info *sit_i = SIT_I(sbi);
581         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
582         block_t blk_addr = sit_i->sit_base_addr + offset;
583
584         check_seg_range(sbi, start);
585
586         /* calculate sit block address */
587         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
588                 blk_addr += sit_i->sit_blocks;
589
590         return blk_addr;
591 }
592
593 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
594                                                 pgoff_t block_addr)
595 {
596         struct sit_info *sit_i = SIT_I(sbi);
597         block_addr -= sit_i->sit_base_addr;
598         if (block_addr < sit_i->sit_blocks)
599                 block_addr += sit_i->sit_blocks;
600         else
601                 block_addr -= sit_i->sit_blocks;
602
603         return block_addr + sit_i->sit_base_addr;
604 }
605
606 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
607 {
608         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
609
610         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
611                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
612         else
613                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
614 }
615
616 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
617 {
618         struct sit_info *sit_i = SIT_I(sbi);
619         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
620                                                 sit_i->mounted_time;
621 }
622
623 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
624                         unsigned int ofs_in_node, unsigned char version)
625 {
626         sum->nid = cpu_to_le32(nid);
627         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
628         sum->version = version;
629 }
630
631 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
632 {
633         return __start_cp_addr(sbi) +
634                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
635 }
636
637 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
638 {
639         return __start_cp_addr(sbi) +
640                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
641                                 - (base + 1) + type;
642 }
643
644 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
645 {
646         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
647                 return true;
648         return false;
649 }
650
651 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
652 {
653         struct block_device *bdev = sbi->sb->s_bdev;
654         struct request_queue *q = bdev_get_queue(bdev);
655         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
656 }
This page took 0.070056 seconds and 4 git commands to generate.