]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
39a53e0c JK |
2 | * fs/f2fs/segment.h |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | /* constant macro */ | |
12 | #define NULL_SEGNO ((unsigned int)(~0)) | |
13 | ||
14 | /* V: Logical segment # in volume, R: Relative segment # in main area */ | |
15 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) | |
16 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) | |
17 | ||
18 | #define IS_DATASEG(t) \ | |
19 | ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ | |
20 | (t == CURSEG_WARM_DATA)) | |
21 | ||
22 | #define IS_NODESEG(t) \ | |
23 | ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ | |
24 | (t == CURSEG_WARM_NODE)) | |
25 | ||
26 | #define IS_CURSEG(sbi, segno) \ | |
27 | ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ | |
28 | (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ | |
29 | (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ | |
30 | (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ | |
31 | (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ | |
32 | (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | |
33 | ||
34 | #define IS_CURSEC(sbi, secno) \ | |
35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ | |
36 | sbi->segs_per_sec) || \ | |
37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ | |
38 | sbi->segs_per_sec) || \ | |
39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ | |
40 | sbi->segs_per_sec) || \ | |
41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ | |
42 | sbi->segs_per_sec) || \ | |
43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ | |
44 | sbi->segs_per_sec) || \ | |
45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ | |
46 | sbi->segs_per_sec)) \ | |
47 | ||
48 | #define START_BLOCK(sbi, segno) \ | |
49 | (SM_I(sbi)->seg0_blkaddr + \ | |
50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) | |
51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ | |
52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) | |
53 | ||
54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) | |
55 | ||
56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ | |
57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) | |
58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ | |
59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) | |
60 | #define GET_SEGNO(sbi, blk_addr) \ | |
61 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ | |
62 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ | |
63 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | |
64 | #define GET_SECNO(sbi, segno) \ | |
65 | ((segno) / sbi->segs_per_sec) | |
66 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ | |
67 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) | |
68 | ||
69 | #define GET_SUM_BLOCK(sbi, segno) \ | |
70 | ((sbi->sm_info->ssa_blkaddr) + segno) | |
71 | ||
72 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | |
73 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) | |
74 | ||
75 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ | |
76 | (segno % sit_i->sents_per_block) | |
77 | #define SIT_BLOCK_OFFSET(sit_i, segno) \ | |
78 | (segno / SIT_ENTRY_PER_BLOCK) | |
79 | #define START_SEGNO(sit_i, segno) \ | |
80 | (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) | |
81 | #define f2fs_bitmap_size(nr) \ | |
82 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | |
83 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) | |
84 | ||
3cd8a239 JK |
85 | #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ |
86 | (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) | |
87 | ||
39a53e0c JK |
88 | /* during checkpoint, bio_private is used to synchronize the last bio */ |
89 | struct bio_private { | |
90 | struct f2fs_sb_info *sbi; | |
91 | bool is_sync; | |
92 | void *wait; | |
93 | }; | |
94 | ||
95 | /* | |
96 | * indicate a block allocation direction: RIGHT and LEFT. | |
97 | * RIGHT means allocating new sections towards the end of volume. | |
98 | * LEFT means the opposite direction. | |
99 | */ | |
100 | enum { | |
101 | ALLOC_RIGHT = 0, | |
102 | ALLOC_LEFT | |
103 | }; | |
104 | ||
105 | /* | |
106 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | |
107 | * LFS writes data sequentially with cleaning operations. | |
108 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | |
109 | */ | |
110 | enum { | |
111 | LFS = 0, | |
112 | SSR | |
113 | }; | |
114 | ||
115 | /* | |
116 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | |
117 | * GC_CB is based on cost-benefit algorithm. | |
118 | * GC_GREEDY is based on greedy algorithm. | |
119 | */ | |
120 | enum { | |
121 | GC_CB = 0, | |
122 | GC_GREEDY | |
123 | }; | |
124 | ||
125 | /* | |
126 | * BG_GC means the background cleaning job. | |
127 | * FG_GC means the on-demand cleaning job. | |
128 | */ | |
129 | enum { | |
130 | BG_GC = 0, | |
131 | FG_GC | |
132 | }; | |
133 | ||
134 | /* for a function parameter to select a victim segment */ | |
135 | struct victim_sel_policy { | |
136 | int alloc_mode; /* LFS or SSR */ | |
137 | int gc_mode; /* GC_CB or GC_GREEDY */ | |
138 | unsigned long *dirty_segmap; /* dirty segment bitmap */ | |
139 | unsigned int offset; /* last scanned bitmap offset */ | |
140 | unsigned int ofs_unit; /* bitmap search unit */ | |
141 | unsigned int min_cost; /* minimum cost */ | |
142 | unsigned int min_segno; /* segment # having min. cost */ | |
143 | }; | |
144 | ||
145 | struct seg_entry { | |
146 | unsigned short valid_blocks; /* # of valid blocks */ | |
147 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ | |
148 | /* | |
149 | * # of valid blocks and the validity bitmap stored in the the last | |
150 | * checkpoint pack. This information is used by the SSR mode. | |
151 | */ | |
152 | unsigned short ckpt_valid_blocks; | |
153 | unsigned char *ckpt_valid_map; | |
154 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ | |
155 | unsigned long long mtime; /* modification time of the segment */ | |
156 | }; | |
157 | ||
158 | struct sec_entry { | |
159 | unsigned int valid_blocks; /* # of valid blocks in a section */ | |
160 | }; | |
161 | ||
162 | struct segment_allocation { | |
163 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | |
164 | }; | |
165 | ||
166 | struct sit_info { | |
167 | const struct segment_allocation *s_ops; | |
168 | ||
169 | block_t sit_base_addr; /* start block address of SIT area */ | |
170 | block_t sit_blocks; /* # of blocks used by SIT area */ | |
171 | block_t written_valid_blocks; /* # of valid blocks in main area */ | |
172 | char *sit_bitmap; /* SIT bitmap pointer */ | |
173 | unsigned int bitmap_size; /* SIT bitmap size */ | |
174 | ||
175 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ | |
176 | unsigned int dirty_sentries; /* # of dirty sentries */ | |
177 | unsigned int sents_per_block; /* # of SIT entries per block */ | |
178 | struct mutex sentry_lock; /* to protect SIT cache */ | |
179 | struct seg_entry *sentries; /* SIT segment-level cache */ | |
180 | struct sec_entry *sec_entries; /* SIT section-level cache */ | |
181 | ||
182 | /* for cost-benefit algorithm in cleaning procedure */ | |
183 | unsigned long long elapsed_time; /* elapsed time after mount */ | |
184 | unsigned long long mounted_time; /* mount time */ | |
185 | unsigned long long min_mtime; /* min. modification time */ | |
186 | unsigned long long max_mtime; /* max. modification time */ | |
187 | }; | |
188 | ||
189 | struct free_segmap_info { | |
190 | unsigned int start_segno; /* start segment number logically */ | |
191 | unsigned int free_segments; /* # of free segments */ | |
192 | unsigned int free_sections; /* # of free sections */ | |
193 | rwlock_t segmap_lock; /* free segmap lock */ | |
194 | unsigned long *free_segmap; /* free segment bitmap */ | |
195 | unsigned long *free_secmap; /* free section bitmap */ | |
196 | }; | |
197 | ||
198 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | |
199 | enum dirty_type { | |
200 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ | |
201 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ | |
202 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ | |
203 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ | |
204 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ | |
205 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ | |
206 | DIRTY, /* to count # of dirty segments */ | |
207 | PRE, /* to count # of entirely obsolete segments */ | |
208 | NR_DIRTY_TYPE | |
209 | }; | |
210 | ||
211 | struct dirty_seglist_info { | |
212 | const struct victim_selection *v_ops; /* victim selction operation */ | |
213 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | |
214 | struct mutex seglist_lock; /* lock for segment bitmaps */ | |
215 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ | |
216 | unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */ | |
217 | }; | |
218 | ||
219 | /* victim selection function for cleaning and SSR */ | |
220 | struct victim_selection { | |
221 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | |
222 | int, int, char); | |
223 | }; | |
224 | ||
225 | /* for active log information */ | |
226 | struct curseg_info { | |
227 | struct mutex curseg_mutex; /* lock for consistency */ | |
228 | struct f2fs_summary_block *sum_blk; /* cached summary block */ | |
229 | unsigned char alloc_type; /* current allocation type */ | |
230 | unsigned int segno; /* current segment number */ | |
231 | unsigned short next_blkoff; /* next block offset to write */ | |
232 | unsigned int zone; /* current zone number */ | |
233 | unsigned int next_segno; /* preallocated segment */ | |
234 | }; | |
235 | ||
236 | /* | |
237 | * inline functions | |
238 | */ | |
239 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | |
240 | { | |
241 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | |
242 | } | |
243 | ||
244 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | |
245 | unsigned int segno) | |
246 | { | |
247 | struct sit_info *sit_i = SIT_I(sbi); | |
248 | return &sit_i->sentries[segno]; | |
249 | } | |
250 | ||
251 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | |
252 | unsigned int segno) | |
253 | { | |
254 | struct sit_info *sit_i = SIT_I(sbi); | |
255 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; | |
256 | } | |
257 | ||
258 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | |
259 | unsigned int segno, int section) | |
260 | { | |
261 | /* | |
262 | * In order to get # of valid blocks in a section instantly from many | |
263 | * segments, f2fs manages two counting structures separately. | |
264 | */ | |
265 | if (section > 1) | |
266 | return get_sec_entry(sbi, segno)->valid_blocks; | |
267 | else | |
268 | return get_seg_entry(sbi, segno)->valid_blocks; | |
269 | } | |
270 | ||
271 | static inline void seg_info_from_raw_sit(struct seg_entry *se, | |
272 | struct f2fs_sit_entry *rs) | |
273 | { | |
274 | se->valid_blocks = GET_SIT_VBLOCKS(rs); | |
275 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | |
276 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
277 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
278 | se->type = GET_SIT_TYPE(rs); | |
279 | se->mtime = le64_to_cpu(rs->mtime); | |
280 | } | |
281 | ||
282 | static inline void seg_info_to_raw_sit(struct seg_entry *se, | |
283 | struct f2fs_sit_entry *rs) | |
284 | { | |
285 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | |
286 | se->valid_blocks; | |
287 | rs->vblocks = cpu_to_le16(raw_vblocks); | |
288 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | |
289 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
290 | se->ckpt_valid_blocks = se->valid_blocks; | |
291 | rs->mtime = cpu_to_le64(se->mtime); | |
292 | } | |
293 | ||
294 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | |
295 | unsigned int max, unsigned int segno) | |
296 | { | |
297 | unsigned int ret; | |
298 | read_lock(&free_i->segmap_lock); | |
299 | ret = find_next_bit(free_i->free_segmap, max, segno); | |
300 | read_unlock(&free_i->segmap_lock); | |
301 | return ret; | |
302 | } | |
303 | ||
304 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | |
305 | { | |
306 | struct free_segmap_info *free_i = FREE_I(sbi); | |
307 | unsigned int secno = segno / sbi->segs_per_sec; | |
308 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
309 | unsigned int next; | |
310 | ||
311 | write_lock(&free_i->segmap_lock); | |
312 | clear_bit(segno, free_i->free_segmap); | |
313 | free_i->free_segments++; | |
314 | ||
315 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); | |
316 | if (next >= start_segno + sbi->segs_per_sec) { | |
317 | clear_bit(secno, free_i->free_secmap); | |
318 | free_i->free_sections++; | |
319 | } | |
320 | write_unlock(&free_i->segmap_lock); | |
321 | } | |
322 | ||
323 | static inline void __set_inuse(struct f2fs_sb_info *sbi, | |
324 | unsigned int segno) | |
325 | { | |
326 | struct free_segmap_info *free_i = FREE_I(sbi); | |
327 | unsigned int secno = segno / sbi->segs_per_sec; | |
328 | set_bit(segno, free_i->free_segmap); | |
329 | free_i->free_segments--; | |
330 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
331 | free_i->free_sections--; | |
332 | } | |
333 | ||
334 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | |
335 | unsigned int segno) | |
336 | { | |
337 | struct free_segmap_info *free_i = FREE_I(sbi); | |
338 | unsigned int secno = segno / sbi->segs_per_sec; | |
339 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
340 | unsigned int next; | |
341 | ||
342 | write_lock(&free_i->segmap_lock); | |
343 | if (test_and_clear_bit(segno, free_i->free_segmap)) { | |
344 | free_i->free_segments++; | |
345 | ||
346 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), | |
347 | start_segno); | |
348 | if (next >= start_segno + sbi->segs_per_sec) { | |
349 | if (test_and_clear_bit(secno, free_i->free_secmap)) | |
350 | free_i->free_sections++; | |
351 | } | |
352 | } | |
353 | write_unlock(&free_i->segmap_lock); | |
354 | } | |
355 | ||
356 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | |
357 | unsigned int segno) | |
358 | { | |
359 | struct free_segmap_info *free_i = FREE_I(sbi); | |
360 | unsigned int secno = segno / sbi->segs_per_sec; | |
361 | write_lock(&free_i->segmap_lock); | |
362 | if (!test_and_set_bit(segno, free_i->free_segmap)) { | |
363 | free_i->free_segments--; | |
364 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
365 | free_i->free_sections--; | |
366 | } | |
367 | write_unlock(&free_i->segmap_lock); | |
368 | } | |
369 | ||
370 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | |
371 | void *dst_addr) | |
372 | { | |
373 | struct sit_info *sit_i = SIT_I(sbi); | |
374 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | |
375 | } | |
376 | ||
377 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | |
378 | { | |
379 | struct sit_info *sit_i = SIT_I(sbi); | |
380 | block_t vblocks; | |
381 | ||
382 | mutex_lock(&sit_i->sentry_lock); | |
383 | vblocks = sit_i->written_valid_blocks; | |
384 | mutex_unlock(&sit_i->sentry_lock); | |
385 | ||
386 | return vblocks; | |
387 | } | |
388 | ||
389 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | |
390 | { | |
391 | struct free_segmap_info *free_i = FREE_I(sbi); | |
392 | unsigned int free_segs; | |
393 | ||
394 | read_lock(&free_i->segmap_lock); | |
395 | free_segs = free_i->free_segments; | |
396 | read_unlock(&free_i->segmap_lock); | |
397 | ||
398 | return free_segs; | |
399 | } | |
400 | ||
401 | static inline int reserved_segments(struct f2fs_sb_info *sbi) | |
402 | { | |
403 | return SM_I(sbi)->reserved_segments; | |
404 | } | |
405 | ||
406 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | |
407 | { | |
408 | struct free_segmap_info *free_i = FREE_I(sbi); | |
409 | unsigned int free_secs; | |
410 | ||
411 | read_lock(&free_i->segmap_lock); | |
412 | free_secs = free_i->free_sections; | |
413 | read_unlock(&free_i->segmap_lock); | |
414 | ||
415 | return free_secs; | |
416 | } | |
417 | ||
418 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | |
419 | { | |
420 | return DIRTY_I(sbi)->nr_dirty[PRE]; | |
421 | } | |
422 | ||
423 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | |
424 | { | |
425 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | |
426 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | |
427 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | |
428 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | |
429 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | |
430 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | |
431 | } | |
432 | ||
433 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | |
434 | { | |
435 | return SM_I(sbi)->ovp_segments; | |
436 | } | |
437 | ||
438 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) | |
439 | { | |
440 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; | |
441 | } | |
442 | ||
443 | static inline int reserved_sections(struct f2fs_sb_info *sbi) | |
444 | { | |
445 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; | |
446 | } | |
447 | ||
448 | static inline bool need_SSR(struct f2fs_sb_info *sbi) | |
449 | { | |
450 | return (free_sections(sbi) < overprovision_sections(sbi)); | |
451 | } | |
452 | ||
453 | static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type) | |
454 | { | |
455 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
456 | return DIRTY_I(sbi)->v_ops->get_victim(sbi, | |
457 | &(curseg)->next_segno, BG_GC, type, SSR); | |
458 | } | |
459 | ||
460 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi) | |
461 | { | |
462 | return free_sections(sbi) <= reserved_sections(sbi); | |
463 | } | |
464 | ||
465 | static inline int utilization(struct f2fs_sb_info *sbi) | |
466 | { | |
467 | return (long int)valid_user_blocks(sbi) * 100 / | |
468 | (long int)sbi->user_block_count; | |
469 | } | |
470 | ||
471 | /* | |
472 | * Sometimes f2fs may be better to drop out-of-place update policy. | |
473 | * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write | |
474 | * data in the original place likewise other traditional file systems. | |
475 | * But, currently set 100 in percentage, which means it is disabled. | |
476 | * See below need_inplace_update(). | |
477 | */ | |
478 | #define MIN_IPU_UTIL 100 | |
479 | static inline bool need_inplace_update(struct inode *inode) | |
480 | { | |
481 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
482 | if (S_ISDIR(inode->i_mode)) | |
483 | return false; | |
484 | if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) | |
485 | return true; | |
486 | return false; | |
487 | } | |
488 | ||
489 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | |
490 | int type) | |
491 | { | |
492 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
493 | return curseg->segno; | |
494 | } | |
495 | ||
496 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | |
497 | int type) | |
498 | { | |
499 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
500 | return curseg->alloc_type; | |
501 | } | |
502 | ||
503 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | |
504 | { | |
505 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
506 | return curseg->next_blkoff; | |
507 | } | |
508 | ||
509 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) | |
510 | { | |
511 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | |
512 | BUG_ON(segno > end_segno); | |
513 | } | |
514 | ||
515 | /* | |
516 | * This function is used for only debugging. | |
517 | * NOTE: In future, we have to remove this function. | |
518 | */ | |
519 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) | |
520 | { | |
521 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
522 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | |
523 | block_t start_addr = sm_info->seg0_blkaddr; | |
524 | block_t end_addr = start_addr + total_blks - 1; | |
525 | BUG_ON(blk_addr < start_addr); | |
526 | BUG_ON(blk_addr > end_addr); | |
527 | } | |
528 | ||
529 | /* | |
530 | * Summary block is always treated as invalid block | |
531 | */ | |
532 | static inline void check_block_count(struct f2fs_sb_info *sbi, | |
533 | int segno, struct f2fs_sit_entry *raw_sit) | |
534 | { | |
535 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
536 | unsigned int end_segno = sm_info->segment_count - 1; | |
537 | int valid_blocks = 0; | |
538 | int i; | |
539 | ||
540 | /* check segment usage */ | |
541 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); | |
542 | ||
543 | /* check boundary of a given segment number */ | |
544 | BUG_ON(segno > end_segno); | |
545 | ||
546 | /* check bitmap with valid block count */ | |
547 | for (i = 0; i < sbi->blocks_per_seg; i++) | |
548 | if (f2fs_test_bit(i, raw_sit->valid_map)) | |
549 | valid_blocks++; | |
550 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); | |
551 | } | |
552 | ||
553 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | |
554 | unsigned int start) | |
555 | { | |
556 | struct sit_info *sit_i = SIT_I(sbi); | |
557 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); | |
558 | block_t blk_addr = sit_i->sit_base_addr + offset; | |
559 | ||
560 | check_seg_range(sbi, start); | |
561 | ||
562 | /* calculate sit block address */ | |
563 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | |
564 | blk_addr += sit_i->sit_blocks; | |
565 | ||
566 | return blk_addr; | |
567 | } | |
568 | ||
569 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | |
570 | pgoff_t block_addr) | |
571 | { | |
572 | struct sit_info *sit_i = SIT_I(sbi); | |
573 | block_addr -= sit_i->sit_base_addr; | |
574 | if (block_addr < sit_i->sit_blocks) | |
575 | block_addr += sit_i->sit_blocks; | |
576 | else | |
577 | block_addr -= sit_i->sit_blocks; | |
578 | ||
579 | return block_addr + sit_i->sit_base_addr; | |
580 | } | |
581 | ||
582 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | |
583 | { | |
584 | unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); | |
585 | ||
586 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) | |
587 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); | |
588 | else | |
589 | f2fs_set_bit(block_off, sit_i->sit_bitmap); | |
590 | } | |
591 | ||
592 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | |
593 | { | |
594 | struct sit_info *sit_i = SIT_I(sbi); | |
595 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - | |
596 | sit_i->mounted_time; | |
597 | } | |
598 | ||
599 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | |
600 | unsigned int ofs_in_node, unsigned char version) | |
601 | { | |
602 | sum->nid = cpu_to_le32(nid); | |
603 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | |
604 | sum->version = version; | |
605 | } | |
606 | ||
607 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | |
608 | { | |
609 | return __start_cp_addr(sbi) + | |
610 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | |
611 | } | |
612 | ||
613 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | |
614 | { | |
615 | return __start_cp_addr(sbi) + | |
616 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | |
617 | - (base + 1) + type; | |
618 | } |