]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
39a53e0c JK |
2 | * fs/f2fs/segment.h |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | /* constant macro */ | |
12 | #define NULL_SEGNO ((unsigned int)(~0)) | |
13 | ||
14 | /* V: Logical segment # in volume, R: Relative segment # in main area */ | |
15 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) | |
16 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) | |
17 | ||
18 | #define IS_DATASEG(t) \ | |
19 | ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ | |
20 | (t == CURSEG_WARM_DATA)) | |
21 | ||
22 | #define IS_NODESEG(t) \ | |
23 | ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ | |
24 | (t == CURSEG_WARM_NODE)) | |
25 | ||
26 | #define IS_CURSEG(sbi, segno) \ | |
27 | ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ | |
28 | (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ | |
29 | (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ | |
30 | (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ | |
31 | (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ | |
32 | (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | |
33 | ||
34 | #define IS_CURSEC(sbi, secno) \ | |
35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ | |
36 | sbi->segs_per_sec) || \ | |
37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ | |
38 | sbi->segs_per_sec) || \ | |
39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ | |
40 | sbi->segs_per_sec) || \ | |
41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ | |
42 | sbi->segs_per_sec) || \ | |
43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ | |
44 | sbi->segs_per_sec) || \ | |
45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ | |
46 | sbi->segs_per_sec)) \ | |
47 | ||
48 | #define START_BLOCK(sbi, segno) \ | |
49 | (SM_I(sbi)->seg0_blkaddr + \ | |
50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) | |
51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ | |
52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) | |
53 | ||
54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) | |
55 | ||
56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ | |
57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) | |
58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ | |
59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) | |
60 | #define GET_SEGNO(sbi, blk_addr) \ | |
61 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ | |
62 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ | |
63 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | |
64 | #define GET_SECNO(sbi, segno) \ | |
65 | ((segno) / sbi->segs_per_sec) | |
66 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ | |
67 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) | |
68 | ||
69 | #define GET_SUM_BLOCK(sbi, segno) \ | |
70 | ((sbi->sm_info->ssa_blkaddr) + segno) | |
71 | ||
72 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | |
73 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) | |
74 | ||
75 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ | |
76 | (segno % sit_i->sents_per_block) | |
77 | #define SIT_BLOCK_OFFSET(sit_i, segno) \ | |
78 | (segno / SIT_ENTRY_PER_BLOCK) | |
79 | #define START_SEGNO(sit_i, segno) \ | |
80 | (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) | |
81 | #define f2fs_bitmap_size(nr) \ | |
82 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | |
83 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) | |
84 | ||
85 | /* during checkpoint, bio_private is used to synchronize the last bio */ | |
86 | struct bio_private { | |
87 | struct f2fs_sb_info *sbi; | |
88 | bool is_sync; | |
89 | void *wait; | |
90 | }; | |
91 | ||
92 | /* | |
93 | * indicate a block allocation direction: RIGHT and LEFT. | |
94 | * RIGHT means allocating new sections towards the end of volume. | |
95 | * LEFT means the opposite direction. | |
96 | */ | |
97 | enum { | |
98 | ALLOC_RIGHT = 0, | |
99 | ALLOC_LEFT | |
100 | }; | |
101 | ||
102 | /* | |
103 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | |
104 | * LFS writes data sequentially with cleaning operations. | |
105 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | |
106 | */ | |
107 | enum { | |
108 | LFS = 0, | |
109 | SSR | |
110 | }; | |
111 | ||
112 | /* | |
113 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | |
114 | * GC_CB is based on cost-benefit algorithm. | |
115 | * GC_GREEDY is based on greedy algorithm. | |
116 | */ | |
117 | enum { | |
118 | GC_CB = 0, | |
119 | GC_GREEDY | |
120 | }; | |
121 | ||
122 | /* | |
123 | * BG_GC means the background cleaning job. | |
124 | * FG_GC means the on-demand cleaning job. | |
125 | */ | |
126 | enum { | |
127 | BG_GC = 0, | |
128 | FG_GC | |
129 | }; | |
130 | ||
131 | /* for a function parameter to select a victim segment */ | |
132 | struct victim_sel_policy { | |
133 | int alloc_mode; /* LFS or SSR */ | |
134 | int gc_mode; /* GC_CB or GC_GREEDY */ | |
135 | unsigned long *dirty_segmap; /* dirty segment bitmap */ | |
136 | unsigned int offset; /* last scanned bitmap offset */ | |
137 | unsigned int ofs_unit; /* bitmap search unit */ | |
138 | unsigned int min_cost; /* minimum cost */ | |
139 | unsigned int min_segno; /* segment # having min. cost */ | |
140 | }; | |
141 | ||
142 | struct seg_entry { | |
143 | unsigned short valid_blocks; /* # of valid blocks */ | |
144 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ | |
145 | /* | |
146 | * # of valid blocks and the validity bitmap stored in the the last | |
147 | * checkpoint pack. This information is used by the SSR mode. | |
148 | */ | |
149 | unsigned short ckpt_valid_blocks; | |
150 | unsigned char *ckpt_valid_map; | |
151 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ | |
152 | unsigned long long mtime; /* modification time of the segment */ | |
153 | }; | |
154 | ||
155 | struct sec_entry { | |
156 | unsigned int valid_blocks; /* # of valid blocks in a section */ | |
157 | }; | |
158 | ||
159 | struct segment_allocation { | |
160 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | |
161 | }; | |
162 | ||
163 | struct sit_info { | |
164 | const struct segment_allocation *s_ops; | |
165 | ||
166 | block_t sit_base_addr; /* start block address of SIT area */ | |
167 | block_t sit_blocks; /* # of blocks used by SIT area */ | |
168 | block_t written_valid_blocks; /* # of valid blocks in main area */ | |
169 | char *sit_bitmap; /* SIT bitmap pointer */ | |
170 | unsigned int bitmap_size; /* SIT bitmap size */ | |
171 | ||
172 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ | |
173 | unsigned int dirty_sentries; /* # of dirty sentries */ | |
174 | unsigned int sents_per_block; /* # of SIT entries per block */ | |
175 | struct mutex sentry_lock; /* to protect SIT cache */ | |
176 | struct seg_entry *sentries; /* SIT segment-level cache */ | |
177 | struct sec_entry *sec_entries; /* SIT section-level cache */ | |
178 | ||
179 | /* for cost-benefit algorithm in cleaning procedure */ | |
180 | unsigned long long elapsed_time; /* elapsed time after mount */ | |
181 | unsigned long long mounted_time; /* mount time */ | |
182 | unsigned long long min_mtime; /* min. modification time */ | |
183 | unsigned long long max_mtime; /* max. modification time */ | |
184 | }; | |
185 | ||
186 | struct free_segmap_info { | |
187 | unsigned int start_segno; /* start segment number logically */ | |
188 | unsigned int free_segments; /* # of free segments */ | |
189 | unsigned int free_sections; /* # of free sections */ | |
190 | rwlock_t segmap_lock; /* free segmap lock */ | |
191 | unsigned long *free_segmap; /* free segment bitmap */ | |
192 | unsigned long *free_secmap; /* free section bitmap */ | |
193 | }; | |
194 | ||
195 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | |
196 | enum dirty_type { | |
197 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ | |
198 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ | |
199 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ | |
200 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ | |
201 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ | |
202 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ | |
203 | DIRTY, /* to count # of dirty segments */ | |
204 | PRE, /* to count # of entirely obsolete segments */ | |
205 | NR_DIRTY_TYPE | |
206 | }; | |
207 | ||
208 | struct dirty_seglist_info { | |
209 | const struct victim_selection *v_ops; /* victim selction operation */ | |
210 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | |
211 | struct mutex seglist_lock; /* lock for segment bitmaps */ | |
212 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ | |
213 | unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */ | |
214 | }; | |
215 | ||
216 | /* victim selection function for cleaning and SSR */ | |
217 | struct victim_selection { | |
218 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | |
219 | int, int, char); | |
220 | }; | |
221 | ||
222 | /* for active log information */ | |
223 | struct curseg_info { | |
224 | struct mutex curseg_mutex; /* lock for consistency */ | |
225 | struct f2fs_summary_block *sum_blk; /* cached summary block */ | |
226 | unsigned char alloc_type; /* current allocation type */ | |
227 | unsigned int segno; /* current segment number */ | |
228 | unsigned short next_blkoff; /* next block offset to write */ | |
229 | unsigned int zone; /* current zone number */ | |
230 | unsigned int next_segno; /* preallocated segment */ | |
231 | }; | |
232 | ||
233 | /* | |
234 | * inline functions | |
235 | */ | |
236 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | |
237 | { | |
238 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | |
239 | } | |
240 | ||
241 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | |
242 | unsigned int segno) | |
243 | { | |
244 | struct sit_info *sit_i = SIT_I(sbi); | |
245 | return &sit_i->sentries[segno]; | |
246 | } | |
247 | ||
248 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | |
249 | unsigned int segno) | |
250 | { | |
251 | struct sit_info *sit_i = SIT_I(sbi); | |
252 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; | |
253 | } | |
254 | ||
255 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | |
256 | unsigned int segno, int section) | |
257 | { | |
258 | /* | |
259 | * In order to get # of valid blocks in a section instantly from many | |
260 | * segments, f2fs manages two counting structures separately. | |
261 | */ | |
262 | if (section > 1) | |
263 | return get_sec_entry(sbi, segno)->valid_blocks; | |
264 | else | |
265 | return get_seg_entry(sbi, segno)->valid_blocks; | |
266 | } | |
267 | ||
268 | static inline void seg_info_from_raw_sit(struct seg_entry *se, | |
269 | struct f2fs_sit_entry *rs) | |
270 | { | |
271 | se->valid_blocks = GET_SIT_VBLOCKS(rs); | |
272 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | |
273 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
274 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
275 | se->type = GET_SIT_TYPE(rs); | |
276 | se->mtime = le64_to_cpu(rs->mtime); | |
277 | } | |
278 | ||
279 | static inline void seg_info_to_raw_sit(struct seg_entry *se, | |
280 | struct f2fs_sit_entry *rs) | |
281 | { | |
282 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | |
283 | se->valid_blocks; | |
284 | rs->vblocks = cpu_to_le16(raw_vblocks); | |
285 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | |
286 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
287 | se->ckpt_valid_blocks = se->valid_blocks; | |
288 | rs->mtime = cpu_to_le64(se->mtime); | |
289 | } | |
290 | ||
291 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | |
292 | unsigned int max, unsigned int segno) | |
293 | { | |
294 | unsigned int ret; | |
295 | read_lock(&free_i->segmap_lock); | |
296 | ret = find_next_bit(free_i->free_segmap, max, segno); | |
297 | read_unlock(&free_i->segmap_lock); | |
298 | return ret; | |
299 | } | |
300 | ||
301 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | |
302 | { | |
303 | struct free_segmap_info *free_i = FREE_I(sbi); | |
304 | unsigned int secno = segno / sbi->segs_per_sec; | |
305 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
306 | unsigned int next; | |
307 | ||
308 | write_lock(&free_i->segmap_lock); | |
309 | clear_bit(segno, free_i->free_segmap); | |
310 | free_i->free_segments++; | |
311 | ||
312 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); | |
313 | if (next >= start_segno + sbi->segs_per_sec) { | |
314 | clear_bit(secno, free_i->free_secmap); | |
315 | free_i->free_sections++; | |
316 | } | |
317 | write_unlock(&free_i->segmap_lock); | |
318 | } | |
319 | ||
320 | static inline void __set_inuse(struct f2fs_sb_info *sbi, | |
321 | unsigned int segno) | |
322 | { | |
323 | struct free_segmap_info *free_i = FREE_I(sbi); | |
324 | unsigned int secno = segno / sbi->segs_per_sec; | |
325 | set_bit(segno, free_i->free_segmap); | |
326 | free_i->free_segments--; | |
327 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
328 | free_i->free_sections--; | |
329 | } | |
330 | ||
331 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | |
332 | unsigned int segno) | |
333 | { | |
334 | struct free_segmap_info *free_i = FREE_I(sbi); | |
335 | unsigned int secno = segno / sbi->segs_per_sec; | |
336 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
337 | unsigned int next; | |
338 | ||
339 | write_lock(&free_i->segmap_lock); | |
340 | if (test_and_clear_bit(segno, free_i->free_segmap)) { | |
341 | free_i->free_segments++; | |
342 | ||
343 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), | |
344 | start_segno); | |
345 | if (next >= start_segno + sbi->segs_per_sec) { | |
346 | if (test_and_clear_bit(secno, free_i->free_secmap)) | |
347 | free_i->free_sections++; | |
348 | } | |
349 | } | |
350 | write_unlock(&free_i->segmap_lock); | |
351 | } | |
352 | ||
353 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | |
354 | unsigned int segno) | |
355 | { | |
356 | struct free_segmap_info *free_i = FREE_I(sbi); | |
357 | unsigned int secno = segno / sbi->segs_per_sec; | |
358 | write_lock(&free_i->segmap_lock); | |
359 | if (!test_and_set_bit(segno, free_i->free_segmap)) { | |
360 | free_i->free_segments--; | |
361 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
362 | free_i->free_sections--; | |
363 | } | |
364 | write_unlock(&free_i->segmap_lock); | |
365 | } | |
366 | ||
367 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | |
368 | void *dst_addr) | |
369 | { | |
370 | struct sit_info *sit_i = SIT_I(sbi); | |
371 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | |
372 | } | |
373 | ||
374 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | |
375 | { | |
376 | struct sit_info *sit_i = SIT_I(sbi); | |
377 | block_t vblocks; | |
378 | ||
379 | mutex_lock(&sit_i->sentry_lock); | |
380 | vblocks = sit_i->written_valid_blocks; | |
381 | mutex_unlock(&sit_i->sentry_lock); | |
382 | ||
383 | return vblocks; | |
384 | } | |
385 | ||
386 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | |
387 | { | |
388 | struct free_segmap_info *free_i = FREE_I(sbi); | |
389 | unsigned int free_segs; | |
390 | ||
391 | read_lock(&free_i->segmap_lock); | |
392 | free_segs = free_i->free_segments; | |
393 | read_unlock(&free_i->segmap_lock); | |
394 | ||
395 | return free_segs; | |
396 | } | |
397 | ||
398 | static inline int reserved_segments(struct f2fs_sb_info *sbi) | |
399 | { | |
400 | return SM_I(sbi)->reserved_segments; | |
401 | } | |
402 | ||
403 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | |
404 | { | |
405 | struct free_segmap_info *free_i = FREE_I(sbi); | |
406 | unsigned int free_secs; | |
407 | ||
408 | read_lock(&free_i->segmap_lock); | |
409 | free_secs = free_i->free_sections; | |
410 | read_unlock(&free_i->segmap_lock); | |
411 | ||
412 | return free_secs; | |
413 | } | |
414 | ||
415 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | |
416 | { | |
417 | return DIRTY_I(sbi)->nr_dirty[PRE]; | |
418 | } | |
419 | ||
420 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | |
421 | { | |
422 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | |
423 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | |
424 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | |
425 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | |
426 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | |
427 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | |
428 | } | |
429 | ||
430 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | |
431 | { | |
432 | return SM_I(sbi)->ovp_segments; | |
433 | } | |
434 | ||
435 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) | |
436 | { | |
437 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; | |
438 | } | |
439 | ||
440 | static inline int reserved_sections(struct f2fs_sb_info *sbi) | |
441 | { | |
442 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; | |
443 | } | |
444 | ||
445 | static inline bool need_SSR(struct f2fs_sb_info *sbi) | |
446 | { | |
447 | return (free_sections(sbi) < overprovision_sections(sbi)); | |
448 | } | |
449 | ||
450 | static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type) | |
451 | { | |
452 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
453 | return DIRTY_I(sbi)->v_ops->get_victim(sbi, | |
454 | &(curseg)->next_segno, BG_GC, type, SSR); | |
455 | } | |
456 | ||
457 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi) | |
458 | { | |
459 | return free_sections(sbi) <= reserved_sections(sbi); | |
460 | } | |
461 | ||
462 | static inline int utilization(struct f2fs_sb_info *sbi) | |
463 | { | |
464 | return (long int)valid_user_blocks(sbi) * 100 / | |
465 | (long int)sbi->user_block_count; | |
466 | } | |
467 | ||
468 | /* | |
469 | * Sometimes f2fs may be better to drop out-of-place update policy. | |
470 | * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write | |
471 | * data in the original place likewise other traditional file systems. | |
472 | * But, currently set 100 in percentage, which means it is disabled. | |
473 | * See below need_inplace_update(). | |
474 | */ | |
475 | #define MIN_IPU_UTIL 100 | |
476 | static inline bool need_inplace_update(struct inode *inode) | |
477 | { | |
478 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
479 | if (S_ISDIR(inode->i_mode)) | |
480 | return false; | |
481 | if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) | |
482 | return true; | |
483 | return false; | |
484 | } | |
485 | ||
486 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | |
487 | int type) | |
488 | { | |
489 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
490 | return curseg->segno; | |
491 | } | |
492 | ||
493 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | |
494 | int type) | |
495 | { | |
496 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
497 | return curseg->alloc_type; | |
498 | } | |
499 | ||
500 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | |
501 | { | |
502 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
503 | return curseg->next_blkoff; | |
504 | } | |
505 | ||
506 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) | |
507 | { | |
508 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | |
509 | BUG_ON(segno > end_segno); | |
510 | } | |
511 | ||
512 | /* | |
513 | * This function is used for only debugging. | |
514 | * NOTE: In future, we have to remove this function. | |
515 | */ | |
516 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) | |
517 | { | |
518 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
519 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | |
520 | block_t start_addr = sm_info->seg0_blkaddr; | |
521 | block_t end_addr = start_addr + total_blks - 1; | |
522 | BUG_ON(blk_addr < start_addr); | |
523 | BUG_ON(blk_addr > end_addr); | |
524 | } | |
525 | ||
526 | /* | |
527 | * Summary block is always treated as invalid block | |
528 | */ | |
529 | static inline void check_block_count(struct f2fs_sb_info *sbi, | |
530 | int segno, struct f2fs_sit_entry *raw_sit) | |
531 | { | |
532 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
533 | unsigned int end_segno = sm_info->segment_count - 1; | |
534 | int valid_blocks = 0; | |
535 | int i; | |
536 | ||
537 | /* check segment usage */ | |
538 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); | |
539 | ||
540 | /* check boundary of a given segment number */ | |
541 | BUG_ON(segno > end_segno); | |
542 | ||
543 | /* check bitmap with valid block count */ | |
544 | for (i = 0; i < sbi->blocks_per_seg; i++) | |
545 | if (f2fs_test_bit(i, raw_sit->valid_map)) | |
546 | valid_blocks++; | |
547 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); | |
548 | } | |
549 | ||
550 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | |
551 | unsigned int start) | |
552 | { | |
553 | struct sit_info *sit_i = SIT_I(sbi); | |
554 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); | |
555 | block_t blk_addr = sit_i->sit_base_addr + offset; | |
556 | ||
557 | check_seg_range(sbi, start); | |
558 | ||
559 | /* calculate sit block address */ | |
560 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | |
561 | blk_addr += sit_i->sit_blocks; | |
562 | ||
563 | return blk_addr; | |
564 | } | |
565 | ||
566 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | |
567 | pgoff_t block_addr) | |
568 | { | |
569 | struct sit_info *sit_i = SIT_I(sbi); | |
570 | block_addr -= sit_i->sit_base_addr; | |
571 | if (block_addr < sit_i->sit_blocks) | |
572 | block_addr += sit_i->sit_blocks; | |
573 | else | |
574 | block_addr -= sit_i->sit_blocks; | |
575 | ||
576 | return block_addr + sit_i->sit_base_addr; | |
577 | } | |
578 | ||
579 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | |
580 | { | |
581 | unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); | |
582 | ||
583 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) | |
584 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); | |
585 | else | |
586 | f2fs_set_bit(block_off, sit_i->sit_bitmap); | |
587 | } | |
588 | ||
589 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | |
590 | { | |
591 | struct sit_info *sit_i = SIT_I(sbi); | |
592 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - | |
593 | sit_i->mounted_time; | |
594 | } | |
595 | ||
596 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | |
597 | unsigned int ofs_in_node, unsigned char version) | |
598 | { | |
599 | sum->nid = cpu_to_le32(nid); | |
600 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | |
601 | sum->version = version; | |
602 | } | |
603 | ||
604 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | |
605 | { | |
606 | return __start_cp_addr(sbi) + | |
607 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | |
608 | } | |
609 | ||
610 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | |
611 | { | |
612 | return __start_cp_addr(sbi) + | |
613 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | |
614 | - (base + 1) + type; | |
615 | } |