]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
39a53e0c JK |
2 | * fs/f2fs/segment.h |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
ac5d156c JK |
11 | #include <linux/blkdev.h> |
12 | ||
39a53e0c JK |
13 | /* constant macro */ |
14 | #define NULL_SEGNO ((unsigned int)(~0)) | |
5ec4e49f | 15 | #define NULL_SECNO ((unsigned int)(~0)) |
39a53e0c | 16 | |
58c41035 | 17 | #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ |
81eb8d6e | 18 | |
6224da87 | 19 | /* L: Logical segment # in volume, R: Relative segment # in main area */ |
39a53e0c JK |
20 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) |
21 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) | |
22 | ||
61ae45c8 CL |
23 | #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) |
24 | #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) | |
39a53e0c | 25 | |
5c773ba3 JK |
26 | #define IS_CURSEG(sbi, seg) \ |
27 | ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ | |
28 | (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ | |
29 | (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ | |
30 | (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ | |
31 | (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ | |
32 | (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) | |
39a53e0c JK |
33 | |
34 | #define IS_CURSEC(sbi, secno) \ | |
35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ | |
36 | sbi->segs_per_sec) || \ | |
37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ | |
38 | sbi->segs_per_sec) || \ | |
39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ | |
40 | sbi->segs_per_sec) || \ | |
41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ | |
42 | sbi->segs_per_sec) || \ | |
43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ | |
44 | sbi->segs_per_sec) || \ | |
45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ | |
46 | sbi->segs_per_sec)) \ | |
47 | ||
48 | #define START_BLOCK(sbi, segno) \ | |
49 | (SM_I(sbi)->seg0_blkaddr + \ | |
50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) | |
51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ | |
52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) | |
53 | ||
54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) | |
55 | ||
56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ | |
57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) | |
58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ | |
59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) | |
491c0854 JK |
60 | #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ |
61 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) | |
62 | ||
39a53e0c JK |
63 | #define GET_SEGNO(sbi, blk_addr) \ |
64 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ | |
65 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ | |
66 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) | |
67 | #define GET_SECNO(sbi, segno) \ | |
68 | ((segno) / sbi->segs_per_sec) | |
69 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ | |
70 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) | |
71 | ||
72 | #define GET_SUM_BLOCK(sbi, segno) \ | |
73 | ((sbi->sm_info->ssa_blkaddr) + segno) | |
74 | ||
75 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) | |
76 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) | |
77 | ||
78 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ | |
79 | (segno % sit_i->sents_per_block) | |
d3a14afd | 80 | #define SIT_BLOCK_OFFSET(segno) \ |
39a53e0c | 81 | (segno / SIT_ENTRY_PER_BLOCK) |
d3a14afd CY |
82 | #define START_SEGNO(segno) \ |
83 | (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) | |
74de593a CY |
84 | #define SIT_BLK_CNT(sbi) \ |
85 | ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) | |
39a53e0c JK |
86 | #define f2fs_bitmap_size(nr) \ |
87 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) | |
88 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) | |
53cf9522 | 89 | #define TOTAL_SECS(sbi) (sbi->total_sections) |
39a53e0c | 90 | |
3cd8a239 | 91 | #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ |
f9a4e6df | 92 | (((sector_t)blk_addr) << (sbi)->log_sectors_per_block) |
ac5d156c | 93 | #define SECTOR_TO_BLOCK(sbi, sectors) \ |
f9a4e6df | 94 | (sectors >> (sbi)->log_sectors_per_block) |
cc7b1bb1 CY |
95 | #define MAX_BIO_BLOCKS(max_hw_blocks) \ |
96 | (min((int)max_hw_blocks, BIO_MAX_PAGES)) | |
3cd8a239 | 97 | |
39a53e0c JK |
98 | /* |
99 | * indicate a block allocation direction: RIGHT and LEFT. | |
100 | * RIGHT means allocating new sections towards the end of volume. | |
101 | * LEFT means the opposite direction. | |
102 | */ | |
103 | enum { | |
104 | ALLOC_RIGHT = 0, | |
105 | ALLOC_LEFT | |
106 | }; | |
107 | ||
108 | /* | |
109 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. | |
110 | * LFS writes data sequentially with cleaning operations. | |
111 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. | |
112 | */ | |
113 | enum { | |
114 | LFS = 0, | |
115 | SSR | |
116 | }; | |
117 | ||
118 | /* | |
119 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. | |
120 | * GC_CB is based on cost-benefit algorithm. | |
121 | * GC_GREEDY is based on greedy algorithm. | |
122 | */ | |
123 | enum { | |
124 | GC_CB = 0, | |
125 | GC_GREEDY | |
126 | }; | |
127 | ||
128 | /* | |
129 | * BG_GC means the background cleaning job. | |
130 | * FG_GC means the on-demand cleaning job. | |
131 | */ | |
132 | enum { | |
133 | BG_GC = 0, | |
134 | FG_GC | |
135 | }; | |
136 | ||
137 | /* for a function parameter to select a victim segment */ | |
138 | struct victim_sel_policy { | |
139 | int alloc_mode; /* LFS or SSR */ | |
140 | int gc_mode; /* GC_CB or GC_GREEDY */ | |
141 | unsigned long *dirty_segmap; /* dirty segment bitmap */ | |
a26b7c8a | 142 | unsigned int max_search; /* maximum # of segments to search */ |
39a53e0c JK |
143 | unsigned int offset; /* last scanned bitmap offset */ |
144 | unsigned int ofs_unit; /* bitmap search unit */ | |
145 | unsigned int min_cost; /* minimum cost */ | |
146 | unsigned int min_segno; /* segment # having min. cost */ | |
147 | }; | |
148 | ||
149 | struct seg_entry { | |
150 | unsigned short valid_blocks; /* # of valid blocks */ | |
151 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ | |
152 | /* | |
153 | * # of valid blocks and the validity bitmap stored in the the last | |
154 | * checkpoint pack. This information is used by the SSR mode. | |
155 | */ | |
156 | unsigned short ckpt_valid_blocks; | |
157 | unsigned char *ckpt_valid_map; | |
158 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ | |
159 | unsigned long long mtime; /* modification time of the segment */ | |
160 | }; | |
161 | ||
162 | struct sec_entry { | |
163 | unsigned int valid_blocks; /* # of valid blocks in a section */ | |
164 | }; | |
165 | ||
166 | struct segment_allocation { | |
167 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); | |
168 | }; | |
169 | ||
170 | struct sit_info { | |
171 | const struct segment_allocation *s_ops; | |
172 | ||
173 | block_t sit_base_addr; /* start block address of SIT area */ | |
174 | block_t sit_blocks; /* # of blocks used by SIT area */ | |
175 | block_t written_valid_blocks; /* # of valid blocks in main area */ | |
176 | char *sit_bitmap; /* SIT bitmap pointer */ | |
177 | unsigned int bitmap_size; /* SIT bitmap size */ | |
178 | ||
179 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ | |
180 | unsigned int dirty_sentries; /* # of dirty sentries */ | |
181 | unsigned int sents_per_block; /* # of SIT entries per block */ | |
182 | struct mutex sentry_lock; /* to protect SIT cache */ | |
183 | struct seg_entry *sentries; /* SIT segment-level cache */ | |
184 | struct sec_entry *sec_entries; /* SIT section-level cache */ | |
185 | ||
186 | /* for cost-benefit algorithm in cleaning procedure */ | |
187 | unsigned long long elapsed_time; /* elapsed time after mount */ | |
188 | unsigned long long mounted_time; /* mount time */ | |
189 | unsigned long long min_mtime; /* min. modification time */ | |
190 | unsigned long long max_mtime; /* max. modification time */ | |
191 | }; | |
192 | ||
193 | struct free_segmap_info { | |
194 | unsigned int start_segno; /* start segment number logically */ | |
195 | unsigned int free_segments; /* # of free segments */ | |
196 | unsigned int free_sections; /* # of free sections */ | |
197 | rwlock_t segmap_lock; /* free segmap lock */ | |
198 | unsigned long *free_segmap; /* free segment bitmap */ | |
199 | unsigned long *free_secmap; /* free section bitmap */ | |
200 | }; | |
201 | ||
202 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ | |
203 | enum dirty_type { | |
204 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ | |
205 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ | |
206 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ | |
207 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ | |
208 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ | |
209 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ | |
210 | DIRTY, /* to count # of dirty segments */ | |
211 | PRE, /* to count # of entirely obsolete segments */ | |
212 | NR_DIRTY_TYPE | |
213 | }; | |
214 | ||
215 | struct dirty_seglist_info { | |
216 | const struct victim_selection *v_ops; /* victim selction operation */ | |
217 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; | |
218 | struct mutex seglist_lock; /* lock for segment bitmaps */ | |
219 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ | |
5ec4e49f | 220 | unsigned long *victim_secmap; /* background GC victims */ |
39a53e0c JK |
221 | }; |
222 | ||
223 | /* victim selection function for cleaning and SSR */ | |
224 | struct victim_selection { | |
225 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, | |
226 | int, int, char); | |
227 | }; | |
228 | ||
229 | /* for active log information */ | |
230 | struct curseg_info { | |
231 | struct mutex curseg_mutex; /* lock for consistency */ | |
232 | struct f2fs_summary_block *sum_blk; /* cached summary block */ | |
233 | unsigned char alloc_type; /* current allocation type */ | |
234 | unsigned int segno; /* current segment number */ | |
235 | unsigned short next_blkoff; /* next block offset to write */ | |
236 | unsigned int zone; /* current zone number */ | |
237 | unsigned int next_segno; /* preallocated segment */ | |
238 | }; | |
239 | ||
240 | /* | |
241 | * inline functions | |
242 | */ | |
243 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) | |
244 | { | |
245 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); | |
246 | } | |
247 | ||
248 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, | |
249 | unsigned int segno) | |
250 | { | |
251 | struct sit_info *sit_i = SIT_I(sbi); | |
252 | return &sit_i->sentries[segno]; | |
253 | } | |
254 | ||
255 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, | |
256 | unsigned int segno) | |
257 | { | |
258 | struct sit_info *sit_i = SIT_I(sbi); | |
259 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; | |
260 | } | |
261 | ||
262 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, | |
263 | unsigned int segno, int section) | |
264 | { | |
265 | /* | |
266 | * In order to get # of valid blocks in a section instantly from many | |
267 | * segments, f2fs manages two counting structures separately. | |
268 | */ | |
269 | if (section > 1) | |
270 | return get_sec_entry(sbi, segno)->valid_blocks; | |
271 | else | |
272 | return get_seg_entry(sbi, segno)->valid_blocks; | |
273 | } | |
274 | ||
275 | static inline void seg_info_from_raw_sit(struct seg_entry *se, | |
276 | struct f2fs_sit_entry *rs) | |
277 | { | |
278 | se->valid_blocks = GET_SIT_VBLOCKS(rs); | |
279 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); | |
280 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
281 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
282 | se->type = GET_SIT_TYPE(rs); | |
283 | se->mtime = le64_to_cpu(rs->mtime); | |
284 | } | |
285 | ||
286 | static inline void seg_info_to_raw_sit(struct seg_entry *se, | |
287 | struct f2fs_sit_entry *rs) | |
288 | { | |
289 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | | |
290 | se->valid_blocks; | |
291 | rs->vblocks = cpu_to_le16(raw_vblocks); | |
292 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); | |
293 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); | |
294 | se->ckpt_valid_blocks = se->valid_blocks; | |
295 | rs->mtime = cpu_to_le64(se->mtime); | |
296 | } | |
297 | ||
298 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, | |
299 | unsigned int max, unsigned int segno) | |
300 | { | |
301 | unsigned int ret; | |
302 | read_lock(&free_i->segmap_lock); | |
303 | ret = find_next_bit(free_i->free_segmap, max, segno); | |
304 | read_unlock(&free_i->segmap_lock); | |
305 | return ret; | |
306 | } | |
307 | ||
308 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) | |
309 | { | |
310 | struct free_segmap_info *free_i = FREE_I(sbi); | |
311 | unsigned int secno = segno / sbi->segs_per_sec; | |
312 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
313 | unsigned int next; | |
314 | ||
315 | write_lock(&free_i->segmap_lock); | |
316 | clear_bit(segno, free_i->free_segmap); | |
317 | free_i->free_segments++; | |
318 | ||
319 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); | |
320 | if (next >= start_segno + sbi->segs_per_sec) { | |
321 | clear_bit(secno, free_i->free_secmap); | |
322 | free_i->free_sections++; | |
323 | } | |
324 | write_unlock(&free_i->segmap_lock); | |
325 | } | |
326 | ||
327 | static inline void __set_inuse(struct f2fs_sb_info *sbi, | |
328 | unsigned int segno) | |
329 | { | |
330 | struct free_segmap_info *free_i = FREE_I(sbi); | |
331 | unsigned int secno = segno / sbi->segs_per_sec; | |
332 | set_bit(segno, free_i->free_segmap); | |
333 | free_i->free_segments--; | |
334 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
335 | free_i->free_sections--; | |
336 | } | |
337 | ||
338 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, | |
339 | unsigned int segno) | |
340 | { | |
341 | struct free_segmap_info *free_i = FREE_I(sbi); | |
342 | unsigned int secno = segno / sbi->segs_per_sec; | |
343 | unsigned int start_segno = secno * sbi->segs_per_sec; | |
344 | unsigned int next; | |
345 | ||
346 | write_lock(&free_i->segmap_lock); | |
347 | if (test_and_clear_bit(segno, free_i->free_segmap)) { | |
348 | free_i->free_segments++; | |
349 | ||
f1121ab0 CY |
350 | next = find_next_bit(free_i->free_segmap, |
351 | start_segno + sbi->segs_per_sec, start_segno); | |
39a53e0c JK |
352 | if (next >= start_segno + sbi->segs_per_sec) { |
353 | if (test_and_clear_bit(secno, free_i->free_secmap)) | |
354 | free_i->free_sections++; | |
355 | } | |
356 | } | |
357 | write_unlock(&free_i->segmap_lock); | |
358 | } | |
359 | ||
360 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, | |
361 | unsigned int segno) | |
362 | { | |
363 | struct free_segmap_info *free_i = FREE_I(sbi); | |
364 | unsigned int secno = segno / sbi->segs_per_sec; | |
365 | write_lock(&free_i->segmap_lock); | |
366 | if (!test_and_set_bit(segno, free_i->free_segmap)) { | |
367 | free_i->free_segments--; | |
368 | if (!test_and_set_bit(secno, free_i->free_secmap)) | |
369 | free_i->free_sections--; | |
370 | } | |
371 | write_unlock(&free_i->segmap_lock); | |
372 | } | |
373 | ||
374 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, | |
375 | void *dst_addr) | |
376 | { | |
377 | struct sit_info *sit_i = SIT_I(sbi); | |
378 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); | |
379 | } | |
380 | ||
381 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) | |
382 | { | |
8b8343fa | 383 | return SIT_I(sbi)->written_valid_blocks; |
39a53e0c JK |
384 | } |
385 | ||
386 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) | |
387 | { | |
8b8343fa | 388 | return FREE_I(sbi)->free_segments; |
39a53e0c JK |
389 | } |
390 | ||
391 | static inline int reserved_segments(struct f2fs_sb_info *sbi) | |
392 | { | |
393 | return SM_I(sbi)->reserved_segments; | |
394 | } | |
395 | ||
396 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) | |
397 | { | |
8b8343fa | 398 | return FREE_I(sbi)->free_sections; |
39a53e0c JK |
399 | } |
400 | ||
401 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) | |
402 | { | |
403 | return DIRTY_I(sbi)->nr_dirty[PRE]; | |
404 | } | |
405 | ||
406 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) | |
407 | { | |
408 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + | |
409 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + | |
410 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + | |
411 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + | |
412 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + | |
413 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; | |
414 | } | |
415 | ||
416 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) | |
417 | { | |
418 | return SM_I(sbi)->ovp_segments; | |
419 | } | |
420 | ||
421 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) | |
422 | { | |
423 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; | |
424 | } | |
425 | ||
426 | static inline int reserved_sections(struct f2fs_sb_info *sbi) | |
427 | { | |
428 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; | |
429 | } | |
430 | ||
431 | static inline bool need_SSR(struct f2fs_sb_info *sbi) | |
432 | { | |
6c311ec6 CF |
433 | return (prefree_segments(sbi) / sbi->segs_per_sec) |
434 | + free_sections(sbi) < overprovision_sections(sbi); | |
39a53e0c JK |
435 | } |
436 | ||
43727527 | 437 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) |
39a53e0c | 438 | { |
5ac206cf NJ |
439 | int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); |
440 | int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); | |
43727527 | 441 | |
cfb271d4 | 442 | if (unlikely(sbi->por_doing)) |
029cd28c JK |
443 | return false; |
444 | ||
6c311ec6 CF |
445 | return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + |
446 | reserved_sections(sbi)); | |
39a53e0c JK |
447 | } |
448 | ||
81eb8d6e JK |
449 | static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) |
450 | { | |
6c311ec6 | 451 | return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; |
81eb8d6e JK |
452 | } |
453 | ||
39a53e0c JK |
454 | static inline int utilization(struct f2fs_sb_info *sbi) |
455 | { | |
6c311ec6 CF |
456 | return div_u64((u64)valid_user_blocks(sbi) * 100, |
457 | sbi->user_block_count); | |
39a53e0c JK |
458 | } |
459 | ||
460 | /* | |
461 | * Sometimes f2fs may be better to drop out-of-place update policy. | |
216fbd64 JK |
462 | * And, users can control the policy through sysfs entries. |
463 | * There are five policies with triggering conditions as follows. | |
464 | * F2FS_IPU_FORCE - all the time, | |
465 | * F2FS_IPU_SSR - if SSR mode is activated, | |
466 | * F2FS_IPU_UTIL - if FS utilization is over threashold, | |
467 | * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over | |
468 | * threashold, | |
469 | * F2FS_IPUT_DISABLE - disable IPU. (=default option) | |
39a53e0c | 470 | */ |
216fbd64 JK |
471 | #define DEF_MIN_IPU_UTIL 70 |
472 | ||
473 | enum { | |
474 | F2FS_IPU_FORCE, | |
475 | F2FS_IPU_SSR, | |
476 | F2FS_IPU_UTIL, | |
477 | F2FS_IPU_SSR_UTIL, | |
478 | F2FS_IPU_DISABLE, | |
479 | }; | |
480 | ||
39a53e0c JK |
481 | static inline bool need_inplace_update(struct inode *inode) |
482 | { | |
4081363f | 483 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
216fbd64 JK |
484 | |
485 | /* IPU can be done only for the user data */ | |
39a53e0c JK |
486 | if (S_ISDIR(inode->i_mode)) |
487 | return false; | |
216fbd64 | 488 | |
ea1aa12c JK |
489 | /* this is only set during fdatasync */ |
490 | if (is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) | |
491 | return true; | |
492 | ||
216fbd64 JK |
493 | switch (SM_I(sbi)->ipu_policy) { |
494 | case F2FS_IPU_FORCE: | |
39a53e0c | 495 | return true; |
216fbd64 JK |
496 | case F2FS_IPU_SSR: |
497 | if (need_SSR(sbi)) | |
498 | return true; | |
499 | break; | |
500 | case F2FS_IPU_UTIL: | |
501 | if (utilization(sbi) > SM_I(sbi)->min_ipu_util) | |
502 | return true; | |
503 | break; | |
504 | case F2FS_IPU_SSR_UTIL: | |
505 | if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) | |
506 | return true; | |
507 | break; | |
508 | case F2FS_IPU_DISABLE: | |
509 | break; | |
510 | } | |
39a53e0c JK |
511 | return false; |
512 | } | |
513 | ||
514 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, | |
515 | int type) | |
516 | { | |
517 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
518 | return curseg->segno; | |
519 | } | |
520 | ||
521 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, | |
522 | int type) | |
523 | { | |
524 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
525 | return curseg->alloc_type; | |
526 | } | |
527 | ||
528 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) | |
529 | { | |
530 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
531 | return curseg->next_blkoff; | |
532 | } | |
533 | ||
5d56b671 | 534 | #ifdef CONFIG_F2FS_CHECK_FS |
39a53e0c JK |
535 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) |
536 | { | |
537 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | |
538 | BUG_ON(segno > end_segno); | |
539 | } | |
540 | ||
39a53e0c JK |
541 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) |
542 | { | |
543 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
544 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | |
545 | block_t start_addr = sm_info->seg0_blkaddr; | |
546 | block_t end_addr = start_addr + total_blks - 1; | |
547 | BUG_ON(blk_addr < start_addr); | |
548 | BUG_ON(blk_addr > end_addr); | |
549 | } | |
550 | ||
551 | /* | |
e1c42045 | 552 | * Summary block is always treated as an invalid block |
39a53e0c JK |
553 | */ |
554 | static inline void check_block_count(struct f2fs_sb_info *sbi, | |
555 | int segno, struct f2fs_sit_entry *raw_sit) | |
556 | { | |
557 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
558 | unsigned int end_segno = sm_info->segment_count - 1; | |
44c60bf2 | 559 | bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; |
39a53e0c | 560 | int valid_blocks = 0; |
44c60bf2 | 561 | int cur_pos = 0, next_pos; |
39a53e0c JK |
562 | |
563 | /* check segment usage */ | |
564 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); | |
565 | ||
566 | /* check boundary of a given segment number */ | |
567 | BUG_ON(segno > end_segno); | |
568 | ||
569 | /* check bitmap with valid block count */ | |
44c60bf2 CY |
570 | do { |
571 | if (is_valid) { | |
572 | next_pos = find_next_zero_bit_le(&raw_sit->valid_map, | |
573 | sbi->blocks_per_seg, | |
574 | cur_pos); | |
575 | valid_blocks += next_pos - cur_pos; | |
576 | } else | |
577 | next_pos = find_next_bit_le(&raw_sit->valid_map, | |
578 | sbi->blocks_per_seg, | |
579 | cur_pos); | |
580 | cur_pos = next_pos; | |
581 | is_valid = !is_valid; | |
582 | } while (cur_pos < sbi->blocks_per_seg); | |
39a53e0c JK |
583 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); |
584 | } | |
5d56b671 | 585 | #else |
05796763 JK |
586 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) |
587 | { | |
588 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | |
589 | ||
590 | if (segno > end_segno) | |
591 | sbi->need_fsck = true; | |
592 | } | |
593 | ||
594 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) | |
595 | { | |
596 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
597 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; | |
598 | block_t start_addr = sm_info->seg0_blkaddr; | |
599 | block_t end_addr = start_addr + total_blks - 1; | |
600 | ||
601 | if (blk_addr < start_addr || blk_addr > end_addr) | |
602 | sbi->need_fsck = true; | |
603 | } | |
604 | ||
605 | /* | |
606 | * Summary block is always treated as an invalid block | |
607 | */ | |
608 | static inline void check_block_count(struct f2fs_sb_info *sbi, | |
609 | int segno, struct f2fs_sit_entry *raw_sit) | |
610 | { | |
611 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; | |
612 | ||
613 | /* check segment usage */ | |
614 | if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) | |
615 | sbi->need_fsck = true; | |
616 | ||
617 | /* check boundary of a given segment number */ | |
618 | if (segno > end_segno) | |
619 | sbi->need_fsck = true; | |
620 | } | |
5d56b671 | 621 | #endif |
39a53e0c JK |
622 | |
623 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, | |
624 | unsigned int start) | |
625 | { | |
626 | struct sit_info *sit_i = SIT_I(sbi); | |
d3a14afd | 627 | unsigned int offset = SIT_BLOCK_OFFSET(start); |
39a53e0c JK |
628 | block_t blk_addr = sit_i->sit_base_addr + offset; |
629 | ||
630 | check_seg_range(sbi, start); | |
631 | ||
632 | /* calculate sit block address */ | |
633 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | |
634 | blk_addr += sit_i->sit_blocks; | |
635 | ||
636 | return blk_addr; | |
637 | } | |
638 | ||
639 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, | |
640 | pgoff_t block_addr) | |
641 | { | |
642 | struct sit_info *sit_i = SIT_I(sbi); | |
643 | block_addr -= sit_i->sit_base_addr; | |
644 | if (block_addr < sit_i->sit_blocks) | |
645 | block_addr += sit_i->sit_blocks; | |
646 | else | |
647 | block_addr -= sit_i->sit_blocks; | |
648 | ||
649 | return block_addr + sit_i->sit_base_addr; | |
650 | } | |
651 | ||
652 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) | |
653 | { | |
d3a14afd | 654 | unsigned int block_off = SIT_BLOCK_OFFSET(start); |
39a53e0c JK |
655 | |
656 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) | |
657 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); | |
658 | else | |
659 | f2fs_set_bit(block_off, sit_i->sit_bitmap); | |
660 | } | |
661 | ||
662 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) | |
663 | { | |
664 | struct sit_info *sit_i = SIT_I(sbi); | |
665 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - | |
666 | sit_i->mounted_time; | |
667 | } | |
668 | ||
669 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, | |
670 | unsigned int ofs_in_node, unsigned char version) | |
671 | { | |
672 | sum->nid = cpu_to_le32(nid); | |
673 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); | |
674 | sum->version = version; | |
675 | } | |
676 | ||
677 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) | |
678 | { | |
679 | return __start_cp_addr(sbi) + | |
680 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); | |
681 | } | |
682 | ||
683 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) | |
684 | { | |
685 | return __start_cp_addr(sbi) + | |
686 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) | |
687 | - (base + 1) + type; | |
688 | } | |
5ec4e49f JK |
689 | |
690 | static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) | |
691 | { | |
692 | if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) | |
693 | return true; | |
694 | return false; | |
695 | } | |
ac5d156c JK |
696 | |
697 | static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) | |
698 | { | |
699 | struct block_device *bdev = sbi->sb->s_bdev; | |
700 | struct request_queue *q = bdev_get_queue(bdev); | |
701 | return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q)); | |
702 | } | |
87d6f890 JK |
703 | |
704 | /* | |
705 | * It is very important to gather dirty pages and write at once, so that we can | |
706 | * submit a big bio without interfering other data writes. | |
707 | * By default, 512 pages for directory data, | |
708 | * 512 pages (2MB) * 3 for three types of nodes, and | |
709 | * max_bio_blocks for meta are set. | |
710 | */ | |
711 | static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) | |
712 | { | |
713 | if (type == DATA) | |
714 | return sbi->blocks_per_seg; | |
715 | else if (type == NODE) | |
716 | return 3 * sbi->blocks_per_seg; | |
717 | else if (type == META) | |
718 | return MAX_BIO_BLOCKS(max_hw_blocks(sbi)); | |
719 | else | |
720 | return 0; | |
721 | } | |
50c8cdb3 JK |
722 | |
723 | /* | |
724 | * When writing pages, it'd better align nr_to_write for segment size. | |
725 | */ | |
726 | static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, | |
727 | struct writeback_control *wbc) | |
728 | { | |
729 | long nr_to_write, desired; | |
730 | ||
731 | if (wbc->sync_mode != WB_SYNC_NONE) | |
732 | return 0; | |
733 | ||
734 | nr_to_write = wbc->nr_to_write; | |
735 | ||
736 | if (type == DATA) | |
737 | desired = 4096; | |
738 | else if (type == NODE) | |
739 | desired = 3 * max_hw_blocks(sbi); | |
740 | else | |
741 | desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); | |
742 | ||
743 | wbc->nr_to_write = desired; | |
744 | return desired - nr_to_write; | |
745 | } |