]> Git Repo - linux.git/blame - mm/page_alloc.c
Multi-gen LRU: skip CMA pages when they are not eligible
[linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/interrupt.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
b8c73fc2 25#include <linux/kasan.h>
b073d7f8 26#include <linux/kmsan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
a238ab5b 29#include <linux/ratelimit.h>
5a3135c2 30#include <linux/oom.h>
1da177e4
LT
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4 36#include <linux/nodemask.h>
a6cccdc3 37#include <linux/vmstat.h>
933e312e 38#include <linux/fault-inject.h>
56de7263 39#include <linux/compaction.h>
0d3d062a 40#include <trace/events/kmem.h>
d379f01d 41#include <trace/events/oom.h>
268bb0ce 42#include <linux/prefetch.h>
6e543d57 43#include <linux/mm_inline.h>
f920e413 44#include <linux/mmu_notifier.h>
041d3a8c 45#include <linux/migrate.h>
5b3cc15a 46#include <linux/sched/mm.h>
48c96a36 47#include <linux/page_owner.h>
df4e817b 48#include <linux/page_table_check.h>
4949148a 49#include <linux/memcontrol.h>
42c269c8 50#include <linux/ftrace.h>
d92a8cfc 51#include <linux/lockdep.h>
eb414681 52#include <linux/psi.h>
4aab2be0 53#include <linux/khugepaged.h>
5bf18281 54#include <linux/delayacct.h>
ac924c60 55#include <asm/div64.h>
1da177e4 56#include "internal.h"
e900a918 57#include "shuffle.h"
36e66c55 58#include "page_reporting.h"
1da177e4 59
f04a5d5d
DH
60/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61typedef int __bitwise fpi_t;
62
63/* No special request */
64#define FPI_NONE ((__force fpi_t)0)
65
66/*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
47b6a24a
DH
76/*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
c8e251fa
CS
88/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 90#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 91
4b23a68f
MG
92#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93/*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97#define pcp_trylock_prepare(flags) do { } while (0)
98#define pcp_trylock_finish(flag) do { } while (0)
99#else
100
101/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102#define pcp_trylock_prepare(flags) local_irq_save(flags)
103#define pcp_trylock_finish(flags) local_irq_restore(flags)
104#endif
105
01b44456
MG
106/*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114#ifndef CONFIG_PREEMPT_RT
115#define pcpu_task_pin() preempt_disable()
116#define pcpu_task_unpin() preempt_enable()
117#else
118#define pcpu_task_pin() migrate_disable()
119#define pcpu_task_unpin() migrate_enable()
120#endif
c8e251fa 121
01b44456
MG
122/*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126#define pcpu_spin_lock(type, member, ptr) \
127({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133})
134
57490774 135#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
136({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
57490774 140 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145})
146
147#define pcpu_spin_unlock(member, ptr) \
148({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151})
152
01b44456
MG
153/* struct per_cpu_pages specific helpers. */
154#define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
57490774
MG
157#define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
159
160#define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
72812019
LS
163#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164DEFINE_PER_CPU(int, numa_node);
165EXPORT_PER_CPU_SYMBOL(numa_node);
166#endif
167
4518085e
KW
168DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
7aac7898
LS
170#ifdef CONFIG_HAVE_MEMORYLESS_NODES
171/*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179#endif
180
8b885f53 181static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 182
38addce8 183#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 184volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
185EXPORT_SYMBOL(latent_entropy);
186#endif
187
1da177e4 188/*
13808910 189 * Array of node states.
1da177e4 190 */
13808910
CL
191nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194#ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196#ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 198#endif
20b2f52b 199 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
200 [N_CPU] = { { [0] = 1UL } },
201#endif /* NUMA */
202};
203EXPORT_SYMBOL(node_states);
204
dcce284a 205gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 206
bb14c2c7
VB
207/*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
215static inline int get_pcppage_migratetype(struct page *page)
216{
217 return page->index;
218}
219
220static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221{
222 page->index = migratetype;
223}
224
d9c23400 225#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 226unsigned int pageblock_order __read_mostly;
d9c23400
MG
227#endif
228
7fef431b
DH
229static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
a226f6c8 231
1da177e4
LT
232/*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
1da177e4 242 */
62069aac 243static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 244#ifdef CONFIG_ZONE_DMA
d3cda233 245 [ZONE_DMA] = 256,
4b51d669 246#endif
fb0e7942 247#ifdef CONFIG_ZONE_DMA32
d3cda233 248 [ZONE_DMA32] = 256,
fb0e7942 249#endif
d3cda233 250 [ZONE_NORMAL] = 32,
e53ef38d 251#ifdef CONFIG_HIGHMEM
d3cda233 252 [ZONE_HIGHMEM] = 0,
e53ef38d 253#endif
d3cda233 254 [ZONE_MOVABLE] = 0,
2f1b6248 255};
1da177e4 256
9420f89d 257char * const zone_names[MAX_NR_ZONES] = {
4b51d669 258#ifdef CONFIG_ZONE_DMA
2f1b6248 259 "DMA",
4b51d669 260#endif
fb0e7942 261#ifdef CONFIG_ZONE_DMA32
2f1b6248 262 "DMA32",
fb0e7942 263#endif
2f1b6248 264 "Normal",
e53ef38d 265#ifdef CONFIG_HIGHMEM
2a1e274a 266 "HighMem",
e53ef38d 267#endif
2a1e274a 268 "Movable",
033fbae9
DW
269#ifdef CONFIG_ZONE_DEVICE
270 "Device",
271#endif
2f1b6248
CL
272};
273
c999fbd3 274const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 "HighAtomic",
279#ifdef CONFIG_CMA
280 "CMA",
281#endif
282#ifdef CONFIG_MEMORY_ISOLATION
283 "Isolate",
284#endif
285};
286
cf01724e 287static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
ae70eddd
AK
288 [NULL_COMPOUND_DTOR] = NULL,
289 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 290#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 291 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 292#endif
9a982250 293#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 294 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 295#endif
f1e61557
KS
296};
297
1da177e4 298int min_free_kbytes = 1024;
42aa83cb 299int user_min_free_kbytes = -1;
e95d372c
KW
300static int watermark_boost_factor __read_mostly = 15000;
301static int watermark_scale_factor = 10;
0ee332c1
TH
302
303/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304int movable_zone;
305EXPORT_SYMBOL(movable_zone);
c713216d 306
418508c1 307#if MAX_NUMNODES > 1
b9726c26 308unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 309unsigned int nr_online_nodes __read_mostly = 1;
418508c1 310EXPORT_SYMBOL(nr_node_ids);
62bc62a8 311EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
312#endif
313
dcdfdd40
KS
314static bool page_contains_unaccepted(struct page *page, unsigned int order);
315static void accept_page(struct page *page, unsigned int order);
316static bool try_to_accept_memory(struct zone *zone, unsigned int order);
317static inline bool has_unaccepted_memory(void);
318static bool __free_unaccepted(struct page *page);
319
9ef9acb0
MG
320int page_group_by_mobility_disabled __read_mostly;
321
3a80a7fa 322#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
323/*
324 * During boot we initialize deferred pages on-demand, as needed, but once
325 * page_alloc_init_late() has finished, the deferred pages are all initialized,
326 * and we can permanently disable that path.
327 */
9420f89d 328DEFINE_STATIC_KEY_TRUE(deferred_pages);
3c0c12cc 329
94ae8b83 330static inline bool deferred_pages_enabled(void)
3c0c12cc 331{
94ae8b83 332 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
333}
334
3a80a7fa 335/*
9420f89d
MRI
336 * deferred_grow_zone() is __init, but it is called from
337 * get_page_from_freelist() during early boot until deferred_pages permanently
338 * disables this call. This is why we have refdata wrapper to avoid warning,
339 * and to ensure that the function body gets unloaded.
3a80a7fa 340 */
9420f89d
MRI
341static bool __ref
342_deferred_grow_zone(struct zone *zone, unsigned int order)
3a80a7fa 343{
9420f89d 344 return deferred_grow_zone(zone, order);
3a80a7fa
MG
345}
346#else
94ae8b83 347static inline bool deferred_pages_enabled(void)
2c335680 348{
94ae8b83 349 return false;
2c335680 350}
9420f89d 351#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
3a80a7fa 352
0b423ca2 353/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 354static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
355 unsigned long pfn)
356{
357#ifdef CONFIG_SPARSEMEM
f1eca35a 358 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
359#else
360 return page_zone(page)->pageblock_flags;
361#endif /* CONFIG_SPARSEMEM */
362}
363
ca891f41 364static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
365{
366#ifdef CONFIG_SPARSEMEM
367 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 368#else
4f9bc69a 369 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 370#endif /* CONFIG_SPARSEMEM */
399b795b 371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
372}
373
535b81e2 374static __always_inline
ca891f41 375unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 376 unsigned long pfn,
0b423ca2
MG
377 unsigned long mask)
378{
379 unsigned long *bitmap;
380 unsigned long bitidx, word_bitidx;
381 unsigned long word;
382
383 bitmap = get_pageblock_bitmap(page, pfn);
384 bitidx = pfn_to_bitidx(page, pfn);
385 word_bitidx = bitidx / BITS_PER_LONG;
386 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
387 /*
388 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
389 * a consistent read of the memory array, so that results, even though
390 * racy, are not corrupted.
391 */
392 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 393 return (word >> bitidx) & mask;
0b423ca2
MG
394}
395
a00cda3f
MCC
396/**
397 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
398 * @page: The page within the block of interest
399 * @pfn: The target page frame number
400 * @mask: mask of bits that the caller is interested in
401 *
402 * Return: pageblock_bits flags
403 */
ca891f41
MWO
404unsigned long get_pfnblock_flags_mask(const struct page *page,
405 unsigned long pfn, unsigned long mask)
0b423ca2 406{
535b81e2 407 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
408}
409
ca891f41
MWO
410static __always_inline int get_pfnblock_migratetype(const struct page *page,
411 unsigned long pfn)
0b423ca2 412{
535b81e2 413 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
414}
415
416/**
417 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418 * @page: The page within the block of interest
419 * @flags: The flags to set
420 * @pfn: The target page frame number
0b423ca2
MG
421 * @mask: mask of bits that the caller is interested in
422 */
423void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
424 unsigned long pfn,
0b423ca2
MG
425 unsigned long mask)
426{
427 unsigned long *bitmap;
428 unsigned long bitidx, word_bitidx;
04ec0061 429 unsigned long word;
0b423ca2
MG
430
431 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 432 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
433
434 bitmap = get_pageblock_bitmap(page, pfn);
435 bitidx = pfn_to_bitidx(page, pfn);
436 word_bitidx = bitidx / BITS_PER_LONG;
437 bitidx &= (BITS_PER_LONG-1);
438
439 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
440
d93d5ab9
WY
441 mask <<= bitidx;
442 flags <<= bitidx;
0b423ca2
MG
443
444 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
445 do {
446 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 447}
3a80a7fa 448
ee6f509c 449void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 450{
5d0f3f72
KM
451 if (unlikely(page_group_by_mobility_disabled &&
452 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
453 migratetype = MIGRATE_UNMOVABLE;
454
d93d5ab9 455 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 456 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
457}
458
13e7444b 459#ifdef CONFIG_DEBUG_VM
c6a57e19 460static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 461{
82d9b8c8 462 int ret;
bdc8cb98
DH
463 unsigned seq;
464 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 465 unsigned long sp, start_pfn;
c6a57e19 466
bdc8cb98
DH
467 do {
468 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
469 start_pfn = zone->zone_start_pfn;
470 sp = zone->spanned_pages;
82d9b8c8 471 ret = !zone_spans_pfn(zone, pfn);
bdc8cb98
DH
472 } while (zone_span_seqretry(zone, seq));
473
b5e6a5a2 474 if (ret)
613813e8
DH
475 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
476 pfn, zone_to_nid(zone), zone->name,
477 start_pfn, start_pfn + sp);
b5e6a5a2 478
bdc8cb98 479 return ret;
c6a57e19
DH
480}
481
c6a57e19
DH
482/*
483 * Temporary debugging check for pages not lying within a given zone.
484 */
d73d3c9f 485static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
486{
487 if (page_outside_zone_boundaries(zone, page))
1da177e4 488 return 1;
5b855aa3 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 1;
491
1da177e4
LT
492 return 0;
493}
13e7444b 494#else
d73d3c9f 495static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
496{
497 return 0;
498}
499#endif
500
82a3241a 501static void bad_page(struct page *page, const char *reason)
1da177e4 502{
d936cf9b
HD
503 static unsigned long resume;
504 static unsigned long nr_shown;
505 static unsigned long nr_unshown;
506
507 /*
508 * Allow a burst of 60 reports, then keep quiet for that minute;
509 * or allow a steady drip of one report per second.
510 */
511 if (nr_shown == 60) {
512 if (time_before(jiffies, resume)) {
513 nr_unshown++;
514 goto out;
515 }
516 if (nr_unshown) {
ff8e8116 517 pr_alert(
1e9e6365 518 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
519 nr_unshown);
520 nr_unshown = 0;
521 }
522 nr_shown = 0;
523 }
524 if (nr_shown++ == 0)
525 resume = jiffies + 60 * HZ;
526
ff8e8116 527 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 528 current->comm, page_to_pfn(page));
d2f07ec0 529 dump_page(page, reason);
3dc14741 530
4f31888c 531 print_modules();
1da177e4 532 dump_stack();
d936cf9b 533out:
8cc3b392 534 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 535 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
537}
538
44042b44
MG
539static inline unsigned int order_to_pindex(int migratetype, int order)
540{
44042b44
MG
541#ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 if (order > PAGE_ALLOC_COSTLY_ORDER) {
543 VM_BUG_ON(order != pageblock_order);
5d0a661d 544 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
545 }
546#else
547 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548#endif
549
c1dc69e6 550 return (MIGRATE_PCPTYPES * order) + migratetype;
44042b44
MG
551}
552
553static inline int pindex_to_order(unsigned int pindex)
554{
555 int order = pindex / MIGRATE_PCPTYPES;
556
557#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 558 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 559 order = pageblock_order;
44042b44
MG
560#else
561 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
562#endif
563
564 return order;
565}
566
567static inline bool pcp_allowed_order(unsigned int order)
568{
569 if (order <= PAGE_ALLOC_COSTLY_ORDER)
570 return true;
571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 if (order == pageblock_order)
573 return true;
574#endif
575 return false;
576}
577
21d02f8f
MG
578static inline void free_the_page(struct page *page, unsigned int order)
579{
44042b44
MG
580 if (pcp_allowed_order(order)) /* Via pcp? */
581 free_unref_page(page, order);
21d02f8f
MG
582 else
583 __free_pages_ok(page, order, FPI_NONE);
584}
585
1da177e4
LT
586/*
587 * Higher-order pages are called "compound pages". They are structured thusly:
588 *
1d798ca3 589 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 590 *
1d798ca3
KS
591 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
592 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 593 *
1d798ca3
KS
594 * The first tail page's ->compound_dtor holds the offset in array of compound
595 * page destructors. See compound_page_dtors.
1da177e4 596 *
1d798ca3 597 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 598 * This usage means that zero-order pages may not be compound.
1da177e4 599 */
d98c7a09 600
9a982250 601void free_compound_page(struct page *page)
d98c7a09 602{
bbc6b703 603 mem_cgroup_uncharge(page_folio(page));
44042b44 604 free_the_page(page, compound_order(page));
d98c7a09
HD
605}
606
d00181b9 607void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
608{
609 int i;
610 int nr_pages = 1 << order;
611
18229df5 612 __SetPageHead(page);
5b24eeef
JM
613 for (i = 1; i < nr_pages; i++)
614 prep_compound_tail(page, i);
1378a5ee 615
5b24eeef 616 prep_compound_head(page, order);
18229df5
AW
617}
618
5375336c
MWO
619void destroy_large_folio(struct folio *folio)
620{
a60d5942 621 enum compound_dtor_id dtor = folio->_folio_dtor;
5375336c
MWO
622
623 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
624 compound_page_dtors[dtor](&folio->page);
625}
626
ab130f91 627static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 628{
4c21e2f2 629 set_page_private(page, order);
676165a8 630 __SetPageBuddy(page);
1da177e4
LT
631}
632
5e1f0f09
MG
633#ifdef CONFIG_COMPACTION
634static inline struct capture_control *task_capc(struct zone *zone)
635{
636 struct capture_control *capc = current->capture_control;
637
deba0487 638 return unlikely(capc) &&
5e1f0f09
MG
639 !(current->flags & PF_KTHREAD) &&
640 !capc->page &&
deba0487 641 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
642}
643
644static inline bool
645compaction_capture(struct capture_control *capc, struct page *page,
646 int order, int migratetype)
647{
648 if (!capc || order != capc->cc->order)
649 return false;
650
651 /* Do not accidentally pollute CMA or isolated regions*/
652 if (is_migrate_cma(migratetype) ||
653 is_migrate_isolate(migratetype))
654 return false;
655
656 /*
f0953a1b 657 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
658 * This might let an unmovable request use a reclaimable pageblock
659 * and vice-versa but no more than normal fallback logic which can
660 * have trouble finding a high-order free page.
661 */
662 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
663 return false;
664
665 capc->page = page;
666 return true;
667}
668
669#else
670static inline struct capture_control *task_capc(struct zone *zone)
671{
672 return NULL;
673}
674
675static inline bool
676compaction_capture(struct capture_control *capc, struct page *page,
677 int order, int migratetype)
678{
679 return false;
680}
681#endif /* CONFIG_COMPACTION */
682
6ab01363
AD
683/* Used for pages not on another list */
684static inline void add_to_free_list(struct page *page, struct zone *zone,
685 unsigned int order, int migratetype)
686{
687 struct free_area *area = &zone->free_area[order];
688
bf75f200 689 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
690 area->nr_free++;
691}
692
693/* Used for pages not on another list */
694static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
695 unsigned int order, int migratetype)
696{
697 struct free_area *area = &zone->free_area[order];
698
bf75f200 699 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
700 area->nr_free++;
701}
702
293ffa5e
DH
703/*
704 * Used for pages which are on another list. Move the pages to the tail
705 * of the list - so the moved pages won't immediately be considered for
706 * allocation again (e.g., optimization for memory onlining).
707 */
6ab01363
AD
708static inline void move_to_free_list(struct page *page, struct zone *zone,
709 unsigned int order, int migratetype)
710{
711 struct free_area *area = &zone->free_area[order];
712
bf75f200 713 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
714}
715
716static inline void del_page_from_free_list(struct page *page, struct zone *zone,
717 unsigned int order)
718{
36e66c55
AD
719 /* clear reported state and update reported page count */
720 if (page_reported(page))
721 __ClearPageReported(page);
722
bf75f200 723 list_del(&page->buddy_list);
6ab01363
AD
724 __ClearPageBuddy(page);
725 set_page_private(page, 0);
726 zone->free_area[order].nr_free--;
727}
728
5d671eb4
MRI
729static inline struct page *get_page_from_free_area(struct free_area *area,
730 int migratetype)
731{
732 return list_first_entry_or_null(&area->free_list[migratetype],
1bf61092 733 struct page, buddy_list);
5d671eb4
MRI
734}
735
a2129f24
AD
736/*
737 * If this is not the largest possible page, check if the buddy
738 * of the next-highest order is free. If it is, it's possible
739 * that pages are being freed that will coalesce soon. In case,
740 * that is happening, add the free page to the tail of the list
741 * so it's less likely to be used soon and more likely to be merged
742 * as a higher order page
743 */
744static inline bool
745buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
746 struct page *page, unsigned int order)
747{
8170ac47
ZY
748 unsigned long higher_page_pfn;
749 struct page *higher_page;
a2129f24 750
23baf831 751 if (order >= MAX_ORDER - 1)
a2129f24
AD
752 return false;
753
8170ac47
ZY
754 higher_page_pfn = buddy_pfn & pfn;
755 higher_page = page + (higher_page_pfn - pfn);
a2129f24 756
8170ac47
ZY
757 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
758 NULL) != NULL;
a2129f24
AD
759}
760
1da177e4
LT
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
774 * free pages of length of (1 << order) and marked with PageBuddy.
775 * Page's order is recorded in page_private(page) field.
1da177e4 776 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
1da177e4 779 * If a block is freed, and its buddy is also free, then this
5f63b720 780 * triggers coalescing into a block of larger size.
1da177e4 781 *
6d49e352 782 * -- nyc
1da177e4
LT
783 */
784
48db57f8 785static inline void __free_one_page(struct page *page,
dc4b0caf 786 unsigned long pfn,
ed0ae21d 787 struct zone *zone, unsigned int order,
f04a5d5d 788 int migratetype, fpi_t fpi_flags)
1da177e4 789{
a2129f24 790 struct capture_control *capc = task_capc(zone);
dae37a5d 791 unsigned long buddy_pfn = 0;
a2129f24 792 unsigned long combined_pfn;
a2129f24
AD
793 struct page *buddy;
794 bool to_tail;
d9dddbf5 795
d29bb978 796 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 797 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 798
ed0ae21d 799 VM_BUG_ON(migratetype == -1);
d9dddbf5 800 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 801 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 802
76741e77 803 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 805
23baf831 806 while (order < MAX_ORDER) {
5e1f0f09
MG
807 if (compaction_capture(capc, page, order, migratetype)) {
808 __mod_zone_freepage_state(zone, -(1 << order),
809 migratetype);
810 return;
811 }
13ad59df 812
8170ac47
ZY
813 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
814 if (!buddy)
d9dddbf5 815 goto done_merging;
bb0e28eb
ZY
816
817 if (unlikely(order >= pageblock_order)) {
818 /*
819 * We want to prevent merge between freepages on pageblock
820 * without fallbacks and normal pageblock. Without this,
821 * pageblock isolation could cause incorrect freepage or CMA
822 * accounting or HIGHATOMIC accounting.
823 */
824 int buddy_mt = get_pageblock_migratetype(buddy);
825
826 if (migratetype != buddy_mt
827 && (!migratetype_is_mergeable(migratetype) ||
828 !migratetype_is_mergeable(buddy_mt)))
829 goto done_merging;
830 }
831
c0a32fc5
SG
832 /*
833 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
834 * merge with it and move up one order.
835 */
b03641af 836 if (page_is_guard(buddy))
2847cf95 837 clear_page_guard(zone, buddy, order, migratetype);
b03641af 838 else
6ab01363 839 del_page_from_free_list(buddy, zone, order);
76741e77
VB
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
1da177e4
LT
843 order++;
844 }
d9dddbf5
VB
845
846done_merging:
ab130f91 847 set_buddy_order(page, order);
6dda9d55 848
47b6a24a
DH
849 if (fpi_flags & FPI_TO_TAIL)
850 to_tail = true;
851 else if (is_shuffle_order(order))
a2129f24 852 to_tail = shuffle_pick_tail();
97500a4a 853 else
a2129f24 854 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 855
a2129f24 856 if (to_tail)
6ab01363 857 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 858 else
6ab01363 859 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
860
861 /* Notify page reporting subsystem of freed page */
f04a5d5d 862 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 863 page_reporting_notify_free(order);
1da177e4
LT
864}
865
b2c9e2fb
ZY
866/**
867 * split_free_page() -- split a free page at split_pfn_offset
868 * @free_page: the original free page
869 * @order: the order of the page
870 * @split_pfn_offset: split offset within the page
871 *
86d28b07
ZY
872 * Return -ENOENT if the free page is changed, otherwise 0
873 *
b2c9e2fb
ZY
874 * It is used when the free page crosses two pageblocks with different migratetypes
875 * at split_pfn_offset within the page. The split free page will be put into
876 * separate migratetype lists afterwards. Otherwise, the function achieves
877 * nothing.
878 */
86d28b07
ZY
879int split_free_page(struct page *free_page,
880 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
881{
882 struct zone *zone = page_zone(free_page);
883 unsigned long free_page_pfn = page_to_pfn(free_page);
884 unsigned long pfn;
885 unsigned long flags;
886 int free_page_order;
86d28b07
ZY
887 int mt;
888 int ret = 0;
b2c9e2fb 889
88ee1343 890 if (split_pfn_offset == 0)
86d28b07 891 return ret;
88ee1343 892
b2c9e2fb 893 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
894
895 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
896 ret = -ENOENT;
897 goto out;
898 }
899
900 mt = get_pageblock_migratetype(free_page);
901 if (likely(!is_migrate_isolate(mt)))
902 __mod_zone_freepage_state(zone, -(1UL << order), mt);
903
b2c9e2fb
ZY
904 del_page_from_free_list(free_page, zone, order);
905 for (pfn = free_page_pfn;
906 pfn < free_page_pfn + (1UL << order);) {
907 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
908
86d28b07 909 free_page_order = min_t(unsigned int,
88ee1343
ZY
910 pfn ? __ffs(pfn) : order,
911 __fls(split_pfn_offset));
b2c9e2fb
ZY
912 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
913 mt, FPI_NONE);
914 pfn += 1UL << free_page_order;
915 split_pfn_offset -= (1UL << free_page_order);
916 /* we have done the first part, now switch to second part */
917 if (split_pfn_offset == 0)
918 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
919 }
86d28b07 920out:
b2c9e2fb 921 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 922 return ret;
b2c9e2fb 923}
7bfec6f4
MG
924/*
925 * A bad page could be due to a number of fields. Instead of multiple branches,
926 * try and check multiple fields with one check. The caller must do a detailed
927 * check if necessary.
928 */
929static inline bool page_expected_state(struct page *page,
930 unsigned long check_flags)
931{
932 if (unlikely(atomic_read(&page->_mapcount) != -1))
933 return false;
934
935 if (unlikely((unsigned long)page->mapping |
936 page_ref_count(page) |
937#ifdef CONFIG_MEMCG
48060834 938 page->memcg_data |
7bfec6f4
MG
939#endif
940 (page->flags & check_flags)))
941 return false;
942
943 return true;
944}
945
58b7f119 946static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 947{
82a3241a 948 const char *bad_reason = NULL;
f0b791a3 949
53f9263b 950 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
951 bad_reason = "nonzero mapcount";
952 if (unlikely(page->mapping != NULL))
953 bad_reason = "non-NULL mapping";
fe896d18 954 if (unlikely(page_ref_count(page) != 0))
0139aa7b 955 bad_reason = "nonzero _refcount";
58b7f119
WY
956 if (unlikely(page->flags & flags)) {
957 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
958 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
959 else
960 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 961 }
9edad6ea 962#ifdef CONFIG_MEMCG
48060834 963 if (unlikely(page->memcg_data))
9edad6ea
JW
964 bad_reason = "page still charged to cgroup";
965#endif
58b7f119
WY
966 return bad_reason;
967}
968
a8368cd8 969static void free_page_is_bad_report(struct page *page)
58b7f119
WY
970{
971 bad_page(page,
972 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
973}
974
a8368cd8 975static inline bool free_page_is_bad(struct page *page)
bb552ac6 976{
da838d4f 977 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 978 return false;
bb552ac6
MG
979
980 /* Something has gone sideways, find it */
a8368cd8
AM
981 free_page_is_bad_report(page);
982 return true;
1da177e4
LT
983}
984
ecbb490d
KW
985static inline bool is_check_pages_enabled(void)
986{
987 return static_branch_unlikely(&check_pages_enabled);
988}
989
8666925c 990static int free_tail_page_prepare(struct page *head_page, struct page *page)
4db7548c 991{
94688e8e 992 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
993 int ret = 1;
994
995 /*
996 * We rely page->lru.next never has bit 0 set, unless the page
997 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
998 */
999 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1000
ecbb490d 1001 if (!is_check_pages_enabled()) {
4db7548c
MG
1002 ret = 0;
1003 goto out;
1004 }
1005 switch (page - head_page) {
1006 case 1:
cb67f428 1007 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
1008 if (unlikely(folio_entire_mapcount(folio))) {
1009 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
1010 goto out;
1011 }
65a689f3
MWO
1012 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1013 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1014 goto out;
1015 }
94688e8e
MWO
1016 if (unlikely(atomic_read(&folio->_pincount))) {
1017 bad_page(page, "nonzero pincount");
cb67f428
HD
1018 goto out;
1019 }
4db7548c
MG
1020 break;
1021 case 2:
1022 /*
1023 * the second tail page: ->mapping is
fa3015b7 1024 * deferred_list.next -- ignore value.
4db7548c
MG
1025 */
1026 break;
1027 default:
1028 if (page->mapping != TAIL_MAPPING) {
82a3241a 1029 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1030 goto out;
1031 }
1032 break;
1033 }
1034 if (unlikely(!PageTail(page))) {
82a3241a 1035 bad_page(page, "PageTail not set");
4db7548c
MG
1036 goto out;
1037 }
1038 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1039 bad_page(page, "compound_head not consistent");
4db7548c
MG
1040 goto out;
1041 }
1042 ret = 0;
1043out:
1044 page->mapping = NULL;
1045 clear_compound_head(page);
1046 return ret;
1047}
1048
94ae8b83
AK
1049/*
1050 * Skip KASAN memory poisoning when either:
1051 *
0a54864f
PC
1052 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1053 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1054 * using page tags instead (see below).
1055 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1056 * that error detection is disabled for accesses via the page address.
1057 *
1058 * Pages will have match-all tags in the following circumstances:
1059 *
1060 * 1. Pages are being initialized for the first time, including during deferred
1061 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1062 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1063 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1064 * 3. The allocation was excluded from being checked due to sampling,
44383cef 1065 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1066 *
1067 * Poisoning pages during deferred memory init will greatly lengthen the
1068 * process and cause problem in large memory systems as the deferred pages
1069 * initialization is done with interrupt disabled.
1070 *
1071 * Assuming that there will be no reference to those newly initialized
1072 * pages before they are ever allocated, this should have no effect on
1073 * KASAN memory tracking as the poison will be properly inserted at page
1074 * allocation time. The only corner case is when pages are allocated by
1075 * on-demand allocation and then freed again before the deferred pages
1076 * initialization is done, but this is not likely to happen.
1077 */
1078static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1079{
0a54864f
PC
1080 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1081 return deferred_pages_enabled();
1082
1083 return page_kasan_tag(page) == 0xff;
94ae8b83
AK
1084}
1085
aeaec8e2 1086static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1087{
1088 int i;
1089
9e15afa5
QC
1090 /* s390's use of memset() could override KASAN redzones. */
1091 kasan_disable_current();
d9da8f6c
AK
1092 for (i = 0; i < numpages; i++)
1093 clear_highpage_kasan_tagged(page + i);
9e15afa5 1094 kasan_enable_current();
6471384a
AP
1095}
1096
e2769dbd 1097static __always_inline bool free_pages_prepare(struct page *page,
700d2e9a 1098 unsigned int order, fpi_t fpi_flags)
4db7548c 1099{
e2769dbd 1100 int bad = 0;
f446883d 1101 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
c3525330 1102 bool init = want_init_on_free();
4db7548c 1103
4db7548c
MG
1104 VM_BUG_ON_PAGE(PageTail(page), page);
1105
e2769dbd 1106 trace_mm_page_free(page, order);
b073d7f8 1107 kmsan_free_page(page, order);
e2769dbd 1108
79f5f8fa
OS
1109 if (unlikely(PageHWPoison(page)) && !order) {
1110 /*
1111 * Do not let hwpoison pages hit pcplists/buddy
1112 * Untie memcg state and reset page's owner
1113 */
f7a449f7 1114 if (memcg_kmem_online() && PageMemcgKmem(page))
79f5f8fa
OS
1115 __memcg_kmem_uncharge_page(page, order);
1116 reset_page_owner(page, order);
df4e817b 1117 page_table_check_free(page, order);
79f5f8fa
OS
1118 return false;
1119 }
1120
e2769dbd
MG
1121 /*
1122 * Check tail pages before head page information is cleared to
1123 * avoid checking PageCompound for order-0 pages.
1124 */
1125 if (unlikely(order)) {
1126 bool compound = PageCompound(page);
1127 int i;
1128
1129 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1130
cb67f428 1131 if (compound)
eac96c3e 1132 ClearPageHasHWPoisoned(page);
e2769dbd
MG
1133 for (i = 1; i < (1 << order); i++) {
1134 if (compound)
8666925c 1135 bad += free_tail_page_prepare(page, page + i);
fce0b421 1136 if (is_check_pages_enabled()) {
8666925c 1137 if (free_page_is_bad(page + i)) {
700d2e9a
VB
1138 bad++;
1139 continue;
1140 }
e2769dbd
MG
1141 }
1142 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1143 }
1144 }
bda807d4 1145 if (PageMappingFlags(page))
4db7548c 1146 page->mapping = NULL;
f7a449f7 1147 if (memcg_kmem_online() && PageMemcgKmem(page))
f4b00eab 1148 __memcg_kmem_uncharge_page(page, order);
fce0b421 1149 if (is_check_pages_enabled()) {
700d2e9a
VB
1150 if (free_page_is_bad(page))
1151 bad++;
1152 if (bad)
1153 return false;
1154 }
4db7548c 1155
e2769dbd
MG
1156 page_cpupid_reset_last(page);
1157 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1158 reset_page_owner(page, order);
df4e817b 1159 page_table_check_free(page, order);
4db7548c
MG
1160
1161 if (!PageHighMem(page)) {
1162 debug_check_no_locks_freed(page_address(page),
e2769dbd 1163 PAGE_SIZE << order);
4db7548c 1164 debug_check_no_obj_freed(page_address(page),
e2769dbd 1165 PAGE_SIZE << order);
4db7548c 1166 }
6471384a 1167
8db26a3d
VB
1168 kernel_poison_pages(page, 1 << order);
1169
f9d79e8d 1170 /*
1bb5eab3 1171 * As memory initialization might be integrated into KASAN,
7c13c163 1172 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1173 * kept together to avoid discrepancies in behavior.
1174 *
f9d79e8d
AK
1175 * With hardware tag-based KASAN, memory tags must be set before the
1176 * page becomes unavailable via debug_pagealloc or arch_free_page.
1177 */
f446883d 1178 if (!skip_kasan_poison) {
c3525330 1179 kasan_poison_pages(page, order, init);
f9d79e8d 1180
db8a0477
AK
1181 /* Memory is already initialized if KASAN did it internally. */
1182 if (kasan_has_integrated_init())
1183 init = false;
1184 }
1185 if (init)
aeaec8e2 1186 kernel_init_pages(page, 1 << order);
db8a0477 1187
234fdce8
QC
1188 /*
1189 * arch_free_page() can make the page's contents inaccessible. s390
1190 * does this. So nothing which can access the page's contents should
1191 * happen after this.
1192 */
1193 arch_free_page(page, order);
1194
77bc7fd6 1195 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1196
4db7548c
MG
1197 return true;
1198}
1199
1da177e4 1200/*
5f8dcc21 1201 * Frees a number of pages from the PCP lists
7cba630b 1202 * Assumes all pages on list are in same zone.
207f36ee 1203 * count is the number of pages to free.
1da177e4 1204 */
5f8dcc21 1205static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1206 struct per_cpu_pages *pcp,
1207 int pindex)
1da177e4 1208{
57490774 1209 unsigned long flags;
44042b44 1210 unsigned int order;
3777999d 1211 bool isolated_pageblocks;
8b10b465 1212 struct page *page;
f2260e6b 1213
88e8ac11
CTR
1214 /*
1215 * Ensure proper count is passed which otherwise would stuck in the
1216 * below while (list_empty(list)) loop.
1217 */
1218 count = min(pcp->count, count);
d61372bc
MG
1219
1220 /* Ensure requested pindex is drained first. */
1221 pindex = pindex - 1;
1222
57490774 1223 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1224 isolated_pageblocks = has_isolate_pageblock(zone);
1225
44042b44 1226 while (count > 0) {
5f8dcc21 1227 struct list_head *list;
fd56eef2 1228 int nr_pages;
5f8dcc21 1229
fd56eef2 1230 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1231 do {
f142b2c2
KS
1232 if (++pindex > NR_PCP_LISTS - 1)
1233 pindex = 0;
44042b44 1234 list = &pcp->lists[pindex];
f142b2c2 1235 } while (list_empty(list));
48db57f8 1236
44042b44 1237 order = pindex_to_order(pindex);
fd56eef2 1238 nr_pages = 1 << order;
a6f9edd6 1239 do {
8b10b465
MG
1240 int mt;
1241
bf75f200 1242 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1243 mt = get_pcppage_migratetype(page);
1244
0a5f4e5b 1245 /* must delete to avoid corrupting pcp list */
bf75f200 1246 list_del(&page->pcp_list);
fd56eef2
MG
1247 count -= nr_pages;
1248 pcp->count -= nr_pages;
aa016d14 1249
8b10b465
MG
1250 /* MIGRATE_ISOLATE page should not go to pcplists */
1251 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1252 /* Pageblock could have been isolated meanwhile */
1253 if (unlikely(isolated_pageblocks))
1254 mt = get_pageblock_migratetype(page);
0a5f4e5b 1255
8b10b465
MG
1256 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1257 trace_mm_page_pcpu_drain(page, order, mt);
1258 } while (count > 0 && !list_empty(list));
0a5f4e5b 1259 }
8b10b465 1260
57490774 1261 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1262}
1263
dc4b0caf
MG
1264static void free_one_page(struct zone *zone,
1265 struct page *page, unsigned long pfn,
7aeb09f9 1266 unsigned int order,
7fef431b 1267 int migratetype, fpi_t fpi_flags)
1da177e4 1268{
df1acc85
MG
1269 unsigned long flags;
1270
1271 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1272 if (unlikely(has_isolate_pageblock(zone) ||
1273 is_migrate_isolate(migratetype))) {
1274 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1275 }
7fef431b 1276 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1277 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1278}
1279
7fef431b
DH
1280static void __free_pages_ok(struct page *page, unsigned int order,
1281 fpi_t fpi_flags)
ec95f53a 1282{
d34b0733 1283 unsigned long flags;
95e34412 1284 int migratetype;
dc4b0caf 1285 unsigned long pfn = page_to_pfn(page);
56f0e661 1286 struct zone *zone = page_zone(page);
ec95f53a 1287
700d2e9a 1288 if (!free_pages_prepare(page, order, fpi_flags))
ec95f53a
KM
1289 return;
1290
ac4b2901
DW
1291 /*
1292 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1293 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1294 * This will reduce the lock holding time.
1295 */
cfc47a28 1296 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1297
56f0e661 1298 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1299 if (unlikely(has_isolate_pageblock(zone) ||
1300 is_migrate_isolate(migratetype))) {
1301 migratetype = get_pfnblock_migratetype(page, pfn);
1302 }
1303 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1304 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1305
d34b0733 1306 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1307}
1308
a9cd410a 1309void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1310{
c3993076 1311 unsigned int nr_pages = 1 << order;
e2d0bd2b 1312 struct page *p = page;
c3993076 1313 unsigned int loop;
a226f6c8 1314
7fef431b
DH
1315 /*
1316 * When initializing the memmap, __init_single_page() sets the refcount
1317 * of all pages to 1 ("allocated"/"not free"). We have to set the
1318 * refcount of all involved pages to 0.
1319 */
e2d0bd2b
YL
1320 prefetchw(p);
1321 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1322 prefetchw(p + 1);
c3993076
JW
1323 __ClearPageReserved(p);
1324 set_page_count(p, 0);
a226f6c8 1325 }
e2d0bd2b
YL
1326 __ClearPageReserved(p);
1327 set_page_count(p, 0);
c3993076 1328
9705bea5 1329 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b 1330
dcdfdd40
KS
1331 if (page_contains_unaccepted(page, order)) {
1332 if (order == MAX_ORDER && __free_unaccepted(page))
1333 return;
1334
1335 accept_page(page, order);
1336 }
1337
7fef431b
DH
1338 /*
1339 * Bypass PCP and place fresh pages right to the tail, primarily
1340 * relevant for memory onlining.
1341 */
0a54864f 1342 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1343}
1344
7cf91a98
JK
1345/*
1346 * Check that the whole (or subset of) a pageblock given by the interval of
1347 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1348 * with the migration of free compaction scanner.
7cf91a98
JK
1349 *
1350 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1351 *
1352 * It's possible on some configurations to have a setup like node0 node1 node0
1353 * i.e. it's possible that all pages within a zones range of pages do not
1354 * belong to a single zone. We assume that a border between node0 and node1
1355 * can occur within a single pageblock, but not a node0 node1 node0
1356 * interleaving within a single pageblock. It is therefore sufficient to check
1357 * the first and last page of a pageblock and avoid checking each individual
1358 * page in a pageblock.
65f67a3e
BW
1359 *
1360 * Note: the function may return non-NULL struct page even for a page block
1361 * which contains a memory hole (i.e. there is no physical memory for a subset
1362 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1363 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1364 * even though the start pfn is online and valid. This should be safe most of
1365 * the time because struct pages are still initialized via init_unavailable_range()
1366 * and pfn walkers shouldn't touch any physical memory range for which they do
1367 * not recognize any specific metadata in struct pages.
7cf91a98
JK
1368 */
1369struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1370 unsigned long end_pfn, struct zone *zone)
1371{
1372 struct page *start_page;
1373 struct page *end_page;
1374
1375 /* end_pfn is one past the range we are checking */
1376 end_pfn--;
1377
3c4322c9 1378 if (!pfn_valid(end_pfn))
7cf91a98
JK
1379 return NULL;
1380
2d070eab
MH
1381 start_page = pfn_to_online_page(start_pfn);
1382 if (!start_page)
1383 return NULL;
7cf91a98
JK
1384
1385 if (page_zone(start_page) != zone)
1386 return NULL;
1387
1388 end_page = pfn_to_page(end_pfn);
1389
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page) != page_zone_id(end_page))
1392 return NULL;
1393
1394 return start_page;
1395}
1396
2f47a91f 1397/*
9420f89d
MRI
1398 * The order of subdivision here is critical for the IO subsystem.
1399 * Please do not alter this order without good reasons and regression
1400 * testing. Specifically, as large blocks of memory are subdivided,
1401 * the order in which smaller blocks are delivered depends on the order
1402 * they're subdivided in this function. This is the primary factor
1403 * influencing the order in which pages are delivered to the IO
1404 * subsystem according to empirical testing, and this is also justified
1405 * by considering the behavior of a buddy system containing a single
1406 * large block of memory acted on by a series of small allocations.
1407 * This behavior is a critical factor in sglist merging's success.
80b1f41c 1408 *
9420f89d 1409 * -- nyc
2f47a91f 1410 */
9420f89d
MRI
1411static inline void expand(struct zone *zone, struct page *page,
1412 int low, int high, int migratetype)
2f47a91f 1413{
9420f89d 1414 unsigned long size = 1 << high;
2f47a91f 1415
9420f89d
MRI
1416 while (high > low) {
1417 high--;
1418 size >>= 1;
1419 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2f47a91f 1420
9420f89d
MRI
1421 /*
1422 * Mark as guard pages (or page), that will allow to
1423 * merge back to allocator when buddy will be freed.
1424 * Corresponding page table entries will not be touched,
1425 * pages will stay not present in virtual address space
1426 */
1427 if (set_page_guard(zone, &page[size], high, migratetype))
2f47a91f 1428 continue;
9420f89d
MRI
1429
1430 add_to_free_list(&page[size], zone, high, migratetype);
1431 set_buddy_order(&page[size], high);
2f47a91f 1432 }
2f47a91f
PT
1433}
1434
9420f89d 1435static void check_new_page_bad(struct page *page)
0e56acae 1436{
9420f89d
MRI
1437 if (unlikely(page->flags & __PG_HWPOISON)) {
1438 /* Don't complain about hwpoisoned pages */
1439 page_mapcount_reset(page); /* remove PageBuddy */
1440 return;
0e56acae
AD
1441 }
1442
9420f89d
MRI
1443 bad_page(page,
1444 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
0e56acae
AD
1445}
1446
1447/*
9420f89d 1448 * This page is about to be returned from the page allocator
0e56acae 1449 */
9420f89d 1450static int check_new_page(struct page *page)
0e56acae 1451{
9420f89d
MRI
1452 if (likely(page_expected_state(page,
1453 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1454 return 0;
0e56acae 1455
9420f89d
MRI
1456 check_new_page_bad(page);
1457 return 1;
1458}
0e56acae 1459
9420f89d
MRI
1460static inline bool check_new_pages(struct page *page, unsigned int order)
1461{
1462 if (is_check_pages_enabled()) {
1463 for (int i = 0; i < (1 << order); i++) {
1464 struct page *p = page + i;
0e56acae 1465
8666925c 1466 if (check_new_page(p))
9420f89d 1467 return true;
0e56acae
AD
1468 }
1469 }
1470
9420f89d 1471 return false;
0e56acae
AD
1472}
1473
9420f89d 1474static inline bool should_skip_kasan_unpoison(gfp_t flags)
e4443149 1475{
9420f89d
MRI
1476 /* Don't skip if a software KASAN mode is enabled. */
1477 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1478 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1479 return false;
e4443149 1480
9420f89d
MRI
1481 /* Skip, if hardware tag-based KASAN is not enabled. */
1482 if (!kasan_hw_tags_enabled())
1483 return true;
e4443149
DJ
1484
1485 /*
9420f89d
MRI
1486 * With hardware tag-based KASAN enabled, skip if this has been
1487 * requested via __GFP_SKIP_KASAN.
e4443149 1488 */
9420f89d 1489 return flags & __GFP_SKIP_KASAN;
e4443149
DJ
1490}
1491
9420f89d 1492static inline bool should_skip_init(gfp_t flags)
ecd09650 1493{
9420f89d
MRI
1494 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1495 if (!kasan_hw_tags_enabled())
1496 return false;
1497
1498 /* For hardware tag-based KASAN, skip if requested. */
1499 return (flags & __GFP_SKIP_ZERO);
ecd09650
DJ
1500}
1501
9420f89d
MRI
1502inline void post_alloc_hook(struct page *page, unsigned int order,
1503 gfp_t gfp_flags)
7e18adb4 1504{
9420f89d
MRI
1505 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1506 !should_skip_init(gfp_flags);
1507 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1508 int i;
1509
1510 set_page_private(page, 0);
1511 set_page_refcounted(page);
0e1cc95b 1512
9420f89d
MRI
1513 arch_alloc_page(page, order);
1514 debug_pagealloc_map_pages(page, 1 << order);
7e18adb4 1515
3d060856 1516 /*
9420f89d
MRI
1517 * Page unpoisoning must happen before memory initialization.
1518 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1519 * allocations and the page unpoisoning code will complain.
3d060856 1520 */
9420f89d 1521 kernel_unpoison_pages(page, 1 << order);
862b6dee 1522
1bb5eab3
AK
1523 /*
1524 * As memory initialization might be integrated into KASAN,
b42090ae 1525 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
1526 * kept together to avoid discrepancies in behavior.
1527 */
9294b128
AK
1528
1529 /*
44383cef
AK
1530 * If memory tags should be zeroed
1531 * (which happens only when memory should be initialized as well).
9294b128 1532 */
44383cef 1533 if (zero_tags) {
420ef683 1534 /* Initialize both memory and memory tags. */
9294b128
AK
1535 for (i = 0; i != 1 << order; ++i)
1536 tag_clear_highpage(page + i);
1537
44383cef 1538 /* Take note that memory was initialized by the loop above. */
9294b128
AK
1539 init = false;
1540 }
0a54864f
PC
1541 if (!should_skip_kasan_unpoison(gfp_flags) &&
1542 kasan_unpoison_pages(page, order, init)) {
1543 /* Take note that memory was initialized by KASAN. */
1544 if (kasan_has_integrated_init())
1545 init = false;
1546 } else {
1547 /*
1548 * If memory tags have not been set by KASAN, reset the page
1549 * tags to ensure page_address() dereferencing does not fault.
1550 */
70c248ac
CM
1551 for (i = 0; i != 1 << order; ++i)
1552 page_kasan_tag_reset(page + i);
7a3b8353 1553 }
44383cef 1554 /* If memory is still not initialized, initialize it now. */
7e3cbba6 1555 if (init)
aeaec8e2 1556 kernel_init_pages(page, 1 << order);
1bb5eab3
AK
1557
1558 set_page_owner(page, order, gfp_flags);
df4e817b 1559 page_table_check_alloc(page, order);
46f24fd8
JK
1560}
1561
479f854a 1562static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1563 unsigned int alloc_flags)
2a7684a2 1564{
46f24fd8 1565 post_alloc_hook(page, order, gfp_flags);
17cf4406 1566
17cf4406
NP
1567 if (order && (gfp_flags & __GFP_COMP))
1568 prep_compound_page(page, order);
1569
75379191 1570 /*
2f064f34 1571 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1572 * allocate the page. The expectation is that the caller is taking
1573 * steps that will free more memory. The caller should avoid the page
1574 * being used for !PFMEMALLOC purposes.
1575 */
2f064f34
MH
1576 if (alloc_flags & ALLOC_NO_WATERMARKS)
1577 set_page_pfmemalloc(page);
1578 else
1579 clear_page_pfmemalloc(page);
1da177e4
LT
1580}
1581
56fd56b8
MG
1582/*
1583 * Go through the free lists for the given migratetype and remove
1584 * the smallest available page from the freelists
1585 */
85ccc8fa 1586static __always_inline
728ec980 1587struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1588 int migratetype)
1589{
1590 unsigned int current_order;
b8af2941 1591 struct free_area *area;
56fd56b8
MG
1592 struct page *page;
1593
1594 /* Find a page of the appropriate size in the preferred list */
23baf831 1595 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
56fd56b8 1596 area = &(zone->free_area[current_order]);
b03641af 1597 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
1598 if (!page)
1599 continue;
6ab01363
AD
1600 del_page_from_free_list(page, zone, current_order);
1601 expand(zone, page, order, current_order, migratetype);
bb14c2c7 1602 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
1603 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1604 pcp_allowed_order(order) &&
1605 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
1606 return page;
1607 }
1608
1609 return NULL;
1610}
1611
1612
b2a0ac88
MG
1613/*
1614 * This array describes the order lists are fallen back to when
1615 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
1616 *
1617 * The other migratetypes do not have fallbacks.
b2a0ac88 1618 */
aa02d3c1
YD
1619static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1620 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1621 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1622 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
b2a0ac88
MG
1623};
1624
dc67647b 1625#ifdef CONFIG_CMA
85ccc8fa 1626static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1627 unsigned int order)
1628{
1629 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1630}
1631#else
1632static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1633 unsigned int order) { return NULL; }
1634#endif
1635
c361be55 1636/*
293ffa5e 1637 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 1638 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1639 * boundary. If alignment is required, use move_freepages_block()
1640 */
02aa0cdd 1641static int move_freepages(struct zone *zone,
39ddb991 1642 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 1643 int migratetype, int *num_movable)
c361be55
MG
1644{
1645 struct page *page;
39ddb991 1646 unsigned long pfn;
d00181b9 1647 unsigned int order;
d100313f 1648 int pages_moved = 0;
c361be55 1649
39ddb991 1650 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 1651 page = pfn_to_page(pfn);
c361be55 1652 if (!PageBuddy(page)) {
02aa0cdd
VB
1653 /*
1654 * We assume that pages that could be isolated for
1655 * migration are movable. But we don't actually try
1656 * isolating, as that would be expensive.
1657 */
1658 if (num_movable &&
1659 (PageLRU(page) || __PageMovable(page)))
1660 (*num_movable)++;
39ddb991 1661 pfn++;
c361be55
MG
1662 continue;
1663 }
1664
cd961038
DR
1665 /* Make sure we are not inadvertently changing nodes */
1666 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1667 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1668
ab130f91 1669 order = buddy_order(page);
6ab01363 1670 move_to_free_list(page, zone, order, migratetype);
39ddb991 1671 pfn += 1 << order;
d100313f 1672 pages_moved += 1 << order;
c361be55
MG
1673 }
1674
d100313f 1675 return pages_moved;
c361be55
MG
1676}
1677
ee6f509c 1678int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1679 int migratetype, int *num_movable)
c361be55 1680{
39ddb991 1681 unsigned long start_pfn, end_pfn, pfn;
c361be55 1682
4a222127
DR
1683 if (num_movable)
1684 *num_movable = 0;
1685
39ddb991 1686 pfn = page_to_pfn(page);
4f9bc69a
KW
1687 start_pfn = pageblock_start_pfn(pfn);
1688 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
1689
1690 /* Do not cross zone boundaries */
108bcc96 1691 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 1692 start_pfn = pfn;
108bcc96 1693 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1694 return 0;
1695
39ddb991 1696 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 1697 num_movable);
c361be55
MG
1698}
1699
2f66a68f
MG
1700static void change_pageblock_range(struct page *pageblock_page,
1701 int start_order, int migratetype)
1702{
1703 int nr_pageblocks = 1 << (start_order - pageblock_order);
1704
1705 while (nr_pageblocks--) {
1706 set_pageblock_migratetype(pageblock_page, migratetype);
1707 pageblock_page += pageblock_nr_pages;
1708 }
1709}
1710
fef903ef 1711/*
9c0415eb
VB
1712 * When we are falling back to another migratetype during allocation, try to
1713 * steal extra free pages from the same pageblocks to satisfy further
1714 * allocations, instead of polluting multiple pageblocks.
1715 *
1716 * If we are stealing a relatively large buddy page, it is likely there will
1717 * be more free pages in the pageblock, so try to steal them all. For
1718 * reclaimable and unmovable allocations, we steal regardless of page size,
1719 * as fragmentation caused by those allocations polluting movable pageblocks
1720 * is worse than movable allocations stealing from unmovable and reclaimable
1721 * pageblocks.
fef903ef 1722 */
4eb7dce6
JK
1723static bool can_steal_fallback(unsigned int order, int start_mt)
1724{
1725 /*
1726 * Leaving this order check is intended, although there is
1727 * relaxed order check in next check. The reason is that
1728 * we can actually steal whole pageblock if this condition met,
1729 * but, below check doesn't guarantee it and that is just heuristic
1730 * so could be changed anytime.
1731 */
1732 if (order >= pageblock_order)
1733 return true;
1734
1735 if (order >= pageblock_order / 2 ||
1736 start_mt == MIGRATE_RECLAIMABLE ||
1737 start_mt == MIGRATE_UNMOVABLE ||
1738 page_group_by_mobility_disabled)
1739 return true;
1740
1741 return false;
1742}
1743
597c8920 1744static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
1745{
1746 unsigned long max_boost;
1747
1748 if (!watermark_boost_factor)
597c8920 1749 return false;
14f69140
HW
1750 /*
1751 * Don't bother in zones that are unlikely to produce results.
1752 * On small machines, including kdump capture kernels running
1753 * in a small area, boosting the watermark can cause an out of
1754 * memory situation immediately.
1755 */
1756 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 1757 return false;
1c30844d
MG
1758
1759 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1760 watermark_boost_factor, 10000);
94b3334c
MG
1761
1762 /*
1763 * high watermark may be uninitialised if fragmentation occurs
1764 * very early in boot so do not boost. We do not fall
1765 * through and boost by pageblock_nr_pages as failing
1766 * allocations that early means that reclaim is not going
1767 * to help and it may even be impossible to reclaim the
1768 * boosted watermark resulting in a hang.
1769 */
1770 if (!max_boost)
597c8920 1771 return false;
94b3334c 1772
1c30844d
MG
1773 max_boost = max(pageblock_nr_pages, max_boost);
1774
1775 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1776 max_boost);
597c8920
JW
1777
1778 return true;
1c30844d
MG
1779}
1780
4eb7dce6
JK
1781/*
1782 * This function implements actual steal behaviour. If order is large enough,
1783 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1784 * pageblock to our migratetype and determine how many already-allocated pages
1785 * are there in the pageblock with a compatible migratetype. If at least half
1786 * of pages are free or compatible, we can change migratetype of the pageblock
1787 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1788 */
1789static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 1790 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 1791{
ab130f91 1792 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
1793 int free_pages, movable_pages, alike_pages;
1794 int old_block_type;
1795
1796 old_block_type = get_pageblock_migratetype(page);
fef903ef 1797
3bc48f96
VB
1798 /*
1799 * This can happen due to races and we want to prevent broken
1800 * highatomic accounting.
1801 */
02aa0cdd 1802 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1803 goto single_page;
1804
fef903ef
SB
1805 /* Take ownership for orders >= pageblock_order */
1806 if (current_order >= pageblock_order) {
1807 change_pageblock_range(page, current_order, start_type);
3bc48f96 1808 goto single_page;
fef903ef
SB
1809 }
1810
1c30844d
MG
1811 /*
1812 * Boost watermarks to increase reclaim pressure to reduce the
1813 * likelihood of future fallbacks. Wake kswapd now as the node
1814 * may be balanced overall and kswapd will not wake naturally.
1815 */
597c8920 1816 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 1817 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 1818
3bc48f96
VB
1819 /* We are not allowed to try stealing from the whole block */
1820 if (!whole_block)
1821 goto single_page;
1822
02aa0cdd
VB
1823 free_pages = move_freepages_block(zone, page, start_type,
1824 &movable_pages);
ebddd111
ML
1825 /* moving whole block can fail due to zone boundary conditions */
1826 if (!free_pages)
1827 goto single_page;
1828
02aa0cdd
VB
1829 /*
1830 * Determine how many pages are compatible with our allocation.
1831 * For movable allocation, it's the number of movable pages which
1832 * we just obtained. For other types it's a bit more tricky.
1833 */
1834 if (start_type == MIGRATE_MOVABLE) {
1835 alike_pages = movable_pages;
1836 } else {
1837 /*
1838 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1839 * to MOVABLE pageblock, consider all non-movable pages as
1840 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1841 * vice versa, be conservative since we can't distinguish the
1842 * exact migratetype of non-movable pages.
1843 */
1844 if (old_block_type == MIGRATE_MOVABLE)
1845 alike_pages = pageblock_nr_pages
1846 - (free_pages + movable_pages);
1847 else
1848 alike_pages = 0;
1849 }
02aa0cdd
VB
1850 /*
1851 * If a sufficient number of pages in the block are either free or of
ebddd111 1852 * compatible migratability as our allocation, claim the whole block.
02aa0cdd
VB
1853 */
1854 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
1855 page_group_by_mobility_disabled)
1856 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
1857
1858 return;
1859
1860single_page:
6ab01363 1861 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
1862}
1863
2149cdae
JK
1864/*
1865 * Check whether there is a suitable fallback freepage with requested order.
1866 * If only_stealable is true, this function returns fallback_mt only if
1867 * we can steal other freepages all together. This would help to reduce
1868 * fragmentation due to mixed migratetype pages in one pageblock.
1869 */
1870int find_suitable_fallback(struct free_area *area, unsigned int order,
1871 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1872{
1873 int i;
1874 int fallback_mt;
1875
1876 if (area->nr_free == 0)
1877 return -1;
1878
1879 *can_steal = false;
aa02d3c1 1880 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
4eb7dce6 1881 fallback_mt = fallbacks[migratetype][i];
b03641af 1882 if (free_area_empty(area, fallback_mt))
4eb7dce6 1883 continue;
fef903ef 1884
4eb7dce6
JK
1885 if (can_steal_fallback(order, migratetype))
1886 *can_steal = true;
1887
2149cdae
JK
1888 if (!only_stealable)
1889 return fallback_mt;
1890
1891 if (*can_steal)
1892 return fallback_mt;
fef903ef 1893 }
4eb7dce6
JK
1894
1895 return -1;
fef903ef
SB
1896}
1897
0aaa29a5
MG
1898/*
1899 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1900 * there are no empty page blocks that contain a page with a suitable order
1901 */
1902static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1903 unsigned int alloc_order)
1904{
1905 int mt;
1906 unsigned long max_managed, flags;
1907
1908 /*
1909 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1910 * Check is race-prone but harmless.
1911 */
9705bea5 1912 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
1913 if (zone->nr_reserved_highatomic >= max_managed)
1914 return;
1915
1916 spin_lock_irqsave(&zone->lock, flags);
1917
1918 /* Recheck the nr_reserved_highatomic limit under the lock */
1919 if (zone->nr_reserved_highatomic >= max_managed)
1920 goto out_unlock;
1921
1922 /* Yoink! */
1923 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
1924 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1925 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
1926 zone->nr_reserved_highatomic += pageblock_nr_pages;
1927 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 1928 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
1929 }
1930
1931out_unlock:
1932 spin_unlock_irqrestore(&zone->lock, flags);
1933}
1934
1935/*
1936 * Used when an allocation is about to fail under memory pressure. This
1937 * potentially hurts the reliability of high-order allocations when under
1938 * intense memory pressure but failed atomic allocations should be easier
1939 * to recover from than an OOM.
29fac03b
MK
1940 *
1941 * If @force is true, try to unreserve a pageblock even though highatomic
1942 * pageblock is exhausted.
0aaa29a5 1943 */
29fac03b
MK
1944static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1945 bool force)
0aaa29a5
MG
1946{
1947 struct zonelist *zonelist = ac->zonelist;
1948 unsigned long flags;
1949 struct zoneref *z;
1950 struct zone *zone;
1951 struct page *page;
1952 int order;
04c8716f 1953 bool ret;
0aaa29a5 1954
97a225e6 1955 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 1956 ac->nodemask) {
29fac03b
MK
1957 /*
1958 * Preserve at least one pageblock unless memory pressure
1959 * is really high.
1960 */
1961 if (!force && zone->nr_reserved_highatomic <=
1962 pageblock_nr_pages)
0aaa29a5
MG
1963 continue;
1964
1965 spin_lock_irqsave(&zone->lock, flags);
23baf831 1966 for (order = 0; order <= MAX_ORDER; order++) {
0aaa29a5
MG
1967 struct free_area *area = &(zone->free_area[order]);
1968
b03641af 1969 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 1970 if (!page)
0aaa29a5
MG
1971 continue;
1972
0aaa29a5 1973 /*
4855e4a7
MK
1974 * In page freeing path, migratetype change is racy so
1975 * we can counter several free pages in a pageblock
f0953a1b 1976 * in this loop although we changed the pageblock type
4855e4a7
MK
1977 * from highatomic to ac->migratetype. So we should
1978 * adjust the count once.
0aaa29a5 1979 */
a6ffdc07 1980 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
1981 /*
1982 * It should never happen but changes to
1983 * locking could inadvertently allow a per-cpu
1984 * drain to add pages to MIGRATE_HIGHATOMIC
1985 * while unreserving so be safe and watch for
1986 * underflows.
1987 */
1988 zone->nr_reserved_highatomic -= min(
1989 pageblock_nr_pages,
1990 zone->nr_reserved_highatomic);
1991 }
0aaa29a5
MG
1992
1993 /*
1994 * Convert to ac->migratetype and avoid the normal
1995 * pageblock stealing heuristics. Minimally, the caller
1996 * is doing the work and needs the pages. More
1997 * importantly, if the block was always converted to
1998 * MIGRATE_UNMOVABLE or another type then the number
1999 * of pageblocks that cannot be completely freed
2000 * may increase.
2001 */
2002 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2003 ret = move_freepages_block(zone, page, ac->migratetype,
2004 NULL);
29fac03b
MK
2005 if (ret) {
2006 spin_unlock_irqrestore(&zone->lock, flags);
2007 return ret;
2008 }
0aaa29a5
MG
2009 }
2010 spin_unlock_irqrestore(&zone->lock, flags);
2011 }
04c8716f
MK
2012
2013 return false;
0aaa29a5
MG
2014}
2015
3bc48f96
VB
2016/*
2017 * Try finding a free buddy page on the fallback list and put it on the free
2018 * list of requested migratetype, possibly along with other pages from the same
2019 * block, depending on fragmentation avoidance heuristics. Returns true if
2020 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2021 *
2022 * The use of signed ints for order and current_order is a deliberate
2023 * deviation from the rest of this file, to make the for loop
2024 * condition simpler.
3bc48f96 2025 */
85ccc8fa 2026static __always_inline bool
6bb15450
MG
2027__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2028 unsigned int alloc_flags)
b2a0ac88 2029{
b8af2941 2030 struct free_area *area;
b002529d 2031 int current_order;
6bb15450 2032 int min_order = order;
b2a0ac88 2033 struct page *page;
4eb7dce6
JK
2034 int fallback_mt;
2035 bool can_steal;
b2a0ac88 2036
6bb15450
MG
2037 /*
2038 * Do not steal pages from freelists belonging to other pageblocks
2039 * i.e. orders < pageblock_order. If there are no local zones free,
2040 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2041 */
e933dc4a 2042 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
2043 min_order = pageblock_order;
2044
7a8f58f3
VB
2045 /*
2046 * Find the largest available free page in the other list. This roughly
2047 * approximates finding the pageblock with the most free pages, which
2048 * would be too costly to do exactly.
2049 */
23baf831 2050 for (current_order = MAX_ORDER; current_order >= min_order;
7aeb09f9 2051 --current_order) {
4eb7dce6
JK
2052 area = &(zone->free_area[current_order]);
2053 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2054 start_migratetype, false, &can_steal);
4eb7dce6
JK
2055 if (fallback_mt == -1)
2056 continue;
b2a0ac88 2057
7a8f58f3
VB
2058 /*
2059 * We cannot steal all free pages from the pageblock and the
2060 * requested migratetype is movable. In that case it's better to
2061 * steal and split the smallest available page instead of the
2062 * largest available page, because even if the next movable
2063 * allocation falls back into a different pageblock than this
2064 * one, it won't cause permanent fragmentation.
2065 */
2066 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2067 && current_order > order)
2068 goto find_smallest;
b2a0ac88 2069
7a8f58f3
VB
2070 goto do_steal;
2071 }
e0fff1bd 2072
7a8f58f3 2073 return false;
e0fff1bd 2074
7a8f58f3 2075find_smallest:
23baf831 2076 for (current_order = order; current_order <= MAX_ORDER;
7a8f58f3
VB
2077 current_order++) {
2078 area = &(zone->free_area[current_order]);
2079 fallback_mt = find_suitable_fallback(area, current_order,
2080 start_migratetype, false, &can_steal);
2081 if (fallback_mt != -1)
2082 break;
b2a0ac88
MG
2083 }
2084
7a8f58f3
VB
2085 /*
2086 * This should not happen - we already found a suitable fallback
2087 * when looking for the largest page.
2088 */
23baf831 2089 VM_BUG_ON(current_order > MAX_ORDER);
7a8f58f3
VB
2090
2091do_steal:
b03641af 2092 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2093
1c30844d
MG
2094 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2095 can_steal);
7a8f58f3
VB
2096
2097 trace_mm_page_alloc_extfrag(page, order, current_order,
2098 start_migratetype, fallback_mt);
2099
2100 return true;
2101
b2a0ac88
MG
2102}
2103
56fd56b8 2104/*
1da177e4
LT
2105 * Do the hard work of removing an element from the buddy allocator.
2106 * Call me with the zone->lock already held.
2107 */
85ccc8fa 2108static __always_inline struct page *
6bb15450
MG
2109__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2110 unsigned int alloc_flags)
1da177e4 2111{
1da177e4
LT
2112 struct page *page;
2113
ce8f86ee
H
2114 if (IS_ENABLED(CONFIG_CMA)) {
2115 /*
2116 * Balance movable allocations between regular and CMA areas by
2117 * allocating from CMA when over half of the zone's free memory
2118 * is in the CMA area.
2119 */
2120 if (alloc_flags & ALLOC_CMA &&
2121 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2122 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2123 page = __rmqueue_cma_fallback(zone, order);
2124 if (page)
10e0f753 2125 return page;
ce8f86ee 2126 }
16867664 2127 }
3bc48f96 2128retry:
56fd56b8 2129 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2130 if (unlikely(!page)) {
8510e69c 2131 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2132 page = __rmqueue_cma_fallback(zone, order);
2133
6bb15450
MG
2134 if (!page && __rmqueue_fallback(zone, order, migratetype,
2135 alloc_flags))
3bc48f96 2136 goto retry;
728ec980 2137 }
b2a0ac88 2138 return page;
1da177e4
LT
2139}
2140
5f63b720 2141/*
1da177e4
LT
2142 * Obtain a specified number of elements from the buddy allocator, all under
2143 * a single hold of the lock, for efficiency. Add them to the supplied list.
2144 * Returns the number of new pages which were placed at *list.
2145 */
5f63b720 2146static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2147 unsigned long count, struct list_head *list,
6bb15450 2148 int migratetype, unsigned int alloc_flags)
1da177e4 2149{
57490774 2150 unsigned long flags;
700d2e9a 2151 int i;
5f63b720 2152
57490774 2153 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2154 for (i = 0; i < count; ++i) {
6bb15450
MG
2155 struct page *page = __rmqueue(zone, order, migratetype,
2156 alloc_flags);
085cc7d5 2157 if (unlikely(page == NULL))
1da177e4 2158 break;
81eabcbe
MG
2159
2160 /*
0fac3ba5
VB
2161 * Split buddy pages returned by expand() are received here in
2162 * physical page order. The page is added to the tail of
2163 * caller's list. From the callers perspective, the linked list
2164 * is ordered by page number under some conditions. This is
2165 * useful for IO devices that can forward direction from the
2166 * head, thus also in the physical page order. This is useful
2167 * for IO devices that can merge IO requests if the physical
2168 * pages are ordered properly.
81eabcbe 2169 */
bf75f200 2170 list_add_tail(&page->pcp_list, list);
bb14c2c7 2171 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2172 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2173 -(1 << order));
1da177e4 2174 }
a6de734b 2175
f2260e6b 2176 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 2177 spin_unlock_irqrestore(&zone->lock, flags);
2ede3c13 2178
700d2e9a 2179 return i;
1da177e4
LT
2180}
2181
4ae7c039 2182#ifdef CONFIG_NUMA
8fce4d8e 2183/*
4037d452
CL
2184 * Called from the vmstat counter updater to drain pagesets of this
2185 * currently executing processor on remote nodes after they have
2186 * expired.
8fce4d8e 2187 */
4037d452 2188void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2189{
7be12fc9 2190 int to_drain, batch;
4ae7c039 2191
4db0c3c2 2192 batch = READ_ONCE(pcp->batch);
7be12fc9 2193 to_drain = min(pcp->count, batch);
4b23a68f 2194 if (to_drain > 0) {
57490774 2195 spin_lock(&pcp->lock);
fd56eef2 2196 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 2197 spin_unlock(&pcp->lock);
4b23a68f 2198 }
4ae7c039
CL
2199}
2200#endif
2201
9f8f2172 2202/*
93481ff0 2203 * Drain pcplists of the indicated processor and zone.
9f8f2172 2204 */
93481ff0 2205static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2206{
93481ff0 2207 struct per_cpu_pages *pcp;
1da177e4 2208
28f836b6 2209 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 2210 if (pcp->count) {
57490774 2211 spin_lock(&pcp->lock);
4b23a68f 2212 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 2213 spin_unlock(&pcp->lock);
4b23a68f 2214 }
93481ff0 2215}
3dfa5721 2216
93481ff0
VB
2217/*
2218 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
2219 */
2220static void drain_pages(unsigned int cpu)
2221{
2222 struct zone *zone;
2223
2224 for_each_populated_zone(zone) {
2225 drain_pages_zone(cpu, zone);
1da177e4
LT
2226 }
2227}
1da177e4 2228
9f8f2172
CL
2229/*
2230 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2231 */
93481ff0 2232void drain_local_pages(struct zone *zone)
9f8f2172 2233{
93481ff0
VB
2234 int cpu = smp_processor_id();
2235
2236 if (zone)
2237 drain_pages_zone(cpu, zone);
2238 else
2239 drain_pages(cpu);
9f8f2172
CL
2240}
2241
2242/*
ec6e8c7e
VB
2243 * The implementation of drain_all_pages(), exposing an extra parameter to
2244 * drain on all cpus.
93481ff0 2245 *
ec6e8c7e
VB
2246 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2247 * not empty. The check for non-emptiness can however race with a free to
2248 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2249 * that need the guarantee that every CPU has drained can disable the
2250 * optimizing racy check.
9f8f2172 2251 */
3b1f3658 2252static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 2253{
74046494 2254 int cpu;
74046494
GBY
2255
2256 /*
041711ce 2257 * Allocate in the BSS so we won't require allocation in
74046494
GBY
2258 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2259 */
2260 static cpumask_t cpus_with_pcps;
2261
bd233f53
MG
2262 /*
2263 * Do not drain if one is already in progress unless it's specific to
2264 * a zone. Such callers are primarily CMA and memory hotplug and need
2265 * the drain to be complete when the call returns.
2266 */
2267 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2268 if (!zone)
2269 return;
2270 mutex_lock(&pcpu_drain_mutex);
2271 }
0ccce3b9 2272
74046494
GBY
2273 /*
2274 * We don't care about racing with CPU hotplug event
2275 * as offline notification will cause the notified
2276 * cpu to drain that CPU pcps and on_each_cpu_mask
2277 * disables preemption as part of its processing
2278 */
2279 for_each_online_cpu(cpu) {
28f836b6 2280 struct per_cpu_pages *pcp;
93481ff0 2281 struct zone *z;
74046494 2282 bool has_pcps = false;
93481ff0 2283
ec6e8c7e
VB
2284 if (force_all_cpus) {
2285 /*
2286 * The pcp.count check is racy, some callers need a
2287 * guarantee that no cpu is missed.
2288 */
2289 has_pcps = true;
2290 } else if (zone) {
28f836b6
MG
2291 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2292 if (pcp->count)
74046494 2293 has_pcps = true;
93481ff0
VB
2294 } else {
2295 for_each_populated_zone(z) {
28f836b6
MG
2296 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2297 if (pcp->count) {
93481ff0
VB
2298 has_pcps = true;
2299 break;
2300 }
74046494
GBY
2301 }
2302 }
93481ff0 2303
74046494
GBY
2304 if (has_pcps)
2305 cpumask_set_cpu(cpu, &cpus_with_pcps);
2306 else
2307 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2308 }
0ccce3b9 2309
bd233f53 2310 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
2311 if (zone)
2312 drain_pages_zone(cpu, zone);
2313 else
2314 drain_pages(cpu);
0ccce3b9 2315 }
bd233f53
MG
2316
2317 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2318}
2319
ec6e8c7e
VB
2320/*
2321 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2322 *
2323 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
2324 */
2325void drain_all_pages(struct zone *zone)
2326{
2327 __drain_all_pages(zone, false);
2328}
2329
44042b44
MG
2330static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2331 unsigned int order)
1da177e4 2332{
5f8dcc21 2333 int migratetype;
1da177e4 2334
700d2e9a 2335 if (!free_pages_prepare(page, order, FPI_NONE))
9cca35d4 2336 return false;
689bcebf 2337
dc4b0caf 2338 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2339 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2340 return true;
2341}
2342
13058705 2343static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
3b12e7e9
MG
2344{
2345 int min_nr_free, max_nr_free;
13058705 2346 int batch = READ_ONCE(pcp->batch);
3b12e7e9 2347
f26b3fa0
MG
2348 /* Free everything if batch freeing high-order pages. */
2349 if (unlikely(free_high))
2350 return pcp->count;
2351
3b12e7e9
MG
2352 /* Check for PCP disabled or boot pageset */
2353 if (unlikely(high < batch))
2354 return 1;
2355
2356 /* Leave at least pcp->batch pages on the list */
2357 min_nr_free = batch;
2358 max_nr_free = high - batch;
2359
2360 /*
2361 * Double the number of pages freed each time there is subsequent
2362 * freeing of pages without any allocation.
2363 */
2364 batch <<= pcp->free_factor;
2365 if (batch < max_nr_free)
2366 pcp->free_factor++;
2367 batch = clamp(batch, min_nr_free, max_nr_free);
2368
2369 return batch;
2370}
2371
f26b3fa0
MG
2372static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2373 bool free_high)
c49c2c47
MG
2374{
2375 int high = READ_ONCE(pcp->high);
2376
f26b3fa0 2377 if (unlikely(!high || free_high))
c49c2c47
MG
2378 return 0;
2379
2380 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2381 return high;
2382
2383 /*
2384 * If reclaim is active, limit the number of pages that can be
2385 * stored on pcp lists
2386 */
2387 return min(READ_ONCE(pcp->batch) << 2, high);
2388}
2389
4b23a68f
MG
2390static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2391 struct page *page, int migratetype,
56651377 2392 unsigned int order)
9cca35d4 2393{
3b12e7e9 2394 int high;
44042b44 2395 int pindex;
f26b3fa0 2396 bool free_high;
9cca35d4 2397
15cd9004 2398 __count_vm_events(PGFREE, 1 << order);
44042b44 2399 pindex = order_to_pindex(migratetype, order);
bf75f200 2400 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 2401 pcp->count += 1 << order;
f26b3fa0
MG
2402
2403 /*
2404 * As high-order pages other than THP's stored on PCP can contribute
2405 * to fragmentation, limit the number stored when PCP is heavily
2406 * freeing without allocation. The remainder after bulk freeing
2407 * stops will be drained from vmstat refresh context.
2408 */
2409 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2410
2411 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9 2412 if (pcp->count >= high) {
13058705 2413 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
3b12e7e9 2414 }
9cca35d4 2415}
5f8dcc21 2416
9cca35d4 2417/*
44042b44 2418 * Free a pcp page
9cca35d4 2419 */
44042b44 2420void free_unref_page(struct page *page, unsigned int order)
9cca35d4 2421{
4b23a68f
MG
2422 unsigned long __maybe_unused UP_flags;
2423 struct per_cpu_pages *pcp;
2424 struct zone *zone;
9cca35d4 2425 unsigned long pfn = page_to_pfn(page);
df1acc85 2426 int migratetype;
9cca35d4 2427
44042b44 2428 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 2429 return;
da456f14 2430
5f8dcc21
MG
2431 /*
2432 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 2433 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 2434 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2435 * areas back if necessary. Otherwise, we may have to free
2436 * excessively into the page allocator
2437 */
df1acc85
MG
2438 migratetype = get_pcppage_migratetype(page);
2439 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 2440 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 2441 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 2442 return;
5f8dcc21
MG
2443 }
2444 migratetype = MIGRATE_MOVABLE;
2445 }
2446
4b23a68f
MG
2447 zone = page_zone(page);
2448 pcp_trylock_prepare(UP_flags);
57490774 2449 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2450 if (pcp) {
4b23a68f 2451 free_unref_page_commit(zone, pcp, page, migratetype, order);
57490774 2452 pcp_spin_unlock(pcp);
4b23a68f
MG
2453 } else {
2454 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2455 }
2456 pcp_trylock_finish(UP_flags);
1da177e4
LT
2457}
2458
cc59850e
KK
2459/*
2460 * Free a list of 0-order pages
2461 */
2d4894b5 2462void free_unref_page_list(struct list_head *list)
cc59850e 2463{
57490774 2464 unsigned long __maybe_unused UP_flags;
cc59850e 2465 struct page *page, *next;
4b23a68f
MG
2466 struct per_cpu_pages *pcp = NULL;
2467 struct zone *locked_zone = NULL;
c24ad77d 2468 int batch_count = 0;
df1acc85 2469 int migratetype;
9cca35d4
MG
2470
2471 /* Prepare pages for freeing */
2472 list_for_each_entry_safe(page, next, list, lru) {
56651377 2473 unsigned long pfn = page_to_pfn(page);
053cfda1 2474 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 2475 list_del(&page->lru);
053cfda1
ML
2476 continue;
2477 }
df1acc85
MG
2478
2479 /*
2480 * Free isolated pages directly to the allocator, see
2481 * comment in free_unref_page.
2482 */
2483 migratetype = get_pcppage_migratetype(page);
47aef601
DB
2484 if (unlikely(is_migrate_isolate(migratetype))) {
2485 list_del(&page->lru);
2486 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2487 continue;
df1acc85 2488 }
9cca35d4 2489 }
cc59850e
KK
2490
2491 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
2492 struct zone *zone = page_zone(page);
2493
c3e58a70 2494 list_del(&page->lru);
57490774 2495 migratetype = get_pcppage_migratetype(page);
c3e58a70 2496
a4bafffb
MG
2497 /*
2498 * Either different zone requiring a different pcp lock or
2499 * excessive lock hold times when freeing a large list of
2500 * pages.
2501 */
2502 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
57490774
MG
2503 if (pcp) {
2504 pcp_spin_unlock(pcp);
2505 pcp_trylock_finish(UP_flags);
2506 }
01b44456 2507
a4bafffb
MG
2508 batch_count = 0;
2509
57490774
MG
2510 /*
2511 * trylock is necessary as pages may be getting freed
2512 * from IRQ or SoftIRQ context after an IO completion.
2513 */
2514 pcp_trylock_prepare(UP_flags);
2515 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2516 if (unlikely(!pcp)) {
2517 pcp_trylock_finish(UP_flags);
2518 free_one_page(zone, page, page_to_pfn(page),
2519 0, migratetype, FPI_NONE);
2520 locked_zone = NULL;
2521 continue;
2522 }
4b23a68f 2523 locked_zone = zone;
4b23a68f
MG
2524 }
2525
47aef601
DB
2526 /*
2527 * Non-isolated types over MIGRATE_PCPTYPES get added
2528 * to the MIGRATE_MOVABLE pcp list.
2529 */
47aef601
DB
2530 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2531 migratetype = MIGRATE_MOVABLE;
2532
2d4894b5 2533 trace_mm_page_free_batched(page);
4b23a68f 2534 free_unref_page_commit(zone, pcp, page, migratetype, 0);
a4bafffb 2535 batch_count++;
cc59850e 2536 }
4b23a68f 2537
57490774
MG
2538 if (pcp) {
2539 pcp_spin_unlock(pcp);
2540 pcp_trylock_finish(UP_flags);
2541 }
cc59850e
KK
2542}
2543
8dfcc9ba
NP
2544/*
2545 * split_page takes a non-compound higher-order page, and splits it into
2546 * n (1<<order) sub-pages: page[0..n]
2547 * Each sub-page must be freed individually.
2548 *
2549 * Note: this is probably too low level an operation for use in drivers.
2550 * Please consult with lkml before using this in your driver.
2551 */
2552void split_page(struct page *page, unsigned int order)
2553{
2554 int i;
2555
309381fe
SL
2556 VM_BUG_ON_PAGE(PageCompound(page), page);
2557 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2558
a9627bc5 2559 for (i = 1; i < (1 << order); i++)
7835e98b 2560 set_page_refcounted(page + i);
8fb156c9 2561 split_page_owner(page, 1 << order);
e1baddf8 2562 split_page_memcg(page, 1 << order);
8dfcc9ba 2563}
5853ff23 2564EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2565
3c605096 2566int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2567{
9a157dd8
KW
2568 struct zone *zone = page_zone(page);
2569 int mt = get_pageblock_migratetype(page);
748446bb 2570
194159fb 2571 if (!is_migrate_isolate(mt)) {
9a157dd8 2572 unsigned long watermark;
8348faf9
VB
2573 /*
2574 * Obey watermarks as if the page was being allocated. We can
2575 * emulate a high-order watermark check with a raised order-0
2576 * watermark, because we already know our high-order page
2577 * exists.
2578 */
fd1444b2 2579 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 2580 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2581 return 0;
2582
8fb74b9f 2583 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2584 }
748446bb 2585
6ab01363 2586 del_page_from_free_list(page, zone, order);
2139cbe6 2587
400bc7fd 2588 /*
2589 * Set the pageblock if the isolated page is at least half of a
2590 * pageblock
2591 */
748446bb
MG
2592 if (order >= pageblock_order - 1) {
2593 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2594 for (; page < endpage; page += pageblock_nr_pages) {
2595 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2596 /*
2597 * Only change normal pageblocks (i.e., they can merge
2598 * with others)
2599 */
2600 if (migratetype_is_mergeable(mt))
47118af0
MN
2601 set_pageblock_migratetype(page,
2602 MIGRATE_MOVABLE);
2603 }
748446bb
MG
2604 }
2605
8fb74b9f 2606 return 1UL << order;
1fb3f8ca
MG
2607}
2608
624f58d8
AD
2609/**
2610 * __putback_isolated_page - Return a now-isolated page back where we got it
2611 * @page: Page that was isolated
2612 * @order: Order of the isolated page
e6a0a7ad 2613 * @mt: The page's pageblock's migratetype
624f58d8
AD
2614 *
2615 * This function is meant to return a page pulled from the free lists via
2616 * __isolate_free_page back to the free lists they were pulled from.
2617 */
2618void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2619{
2620 struct zone *zone = page_zone(page);
2621
2622 /* zone lock should be held when this function is called */
2623 lockdep_assert_held(&zone->lock);
2624
2625 /* Return isolated page to tail of freelist. */
f04a5d5d 2626 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 2627 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
2628}
2629
060e7417
MG
2630/*
2631 * Update NUMA hit/miss statistics
060e7417 2632 */
3e23060b
MG
2633static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2634 long nr_account)
060e7417
MG
2635{
2636#ifdef CONFIG_NUMA
3a321d2a 2637 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2638
4518085e
KW
2639 /* skip numa counters update if numa stats is disabled */
2640 if (!static_branch_likely(&vm_numa_stat_key))
2641 return;
2642
c1093b74 2643 if (zone_to_nid(z) != numa_node_id())
060e7417 2644 local_stat = NUMA_OTHER;
060e7417 2645
c1093b74 2646 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 2647 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 2648 else {
3e23060b
MG
2649 __count_numa_events(z, NUMA_MISS, nr_account);
2650 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 2651 }
3e23060b 2652 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
2653#endif
2654}
2655
589d9973
MG
2656static __always_inline
2657struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2658 unsigned int order, unsigned int alloc_flags,
2659 int migratetype)
2660{
2661 struct page *page;
2662 unsigned long flags;
2663
2664 do {
2665 page = NULL;
2666 spin_lock_irqsave(&zone->lock, flags);
2667 /*
2668 * order-0 request can reach here when the pcplist is skipped
2669 * due to non-CMA allocation context. HIGHATOMIC area is
2670 * reserved for high-order atomic allocation, so order-0
2671 * request should skip it.
2672 */
eb2e2b42 2673 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
2674 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2675 if (!page) {
2676 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
2677
2678 /*
2679 * If the allocation fails, allow OOM handling access
2680 * to HIGHATOMIC reserves as failing now is worse than
2681 * failing a high-order atomic allocation in the
2682 * future.
2683 */
2684 if (!page && (alloc_flags & ALLOC_OOM))
2685 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2686
589d9973
MG
2687 if (!page) {
2688 spin_unlock_irqrestore(&zone->lock, flags);
2689 return NULL;
2690 }
2691 }
2692 __mod_zone_freepage_state(zone, -(1 << order),
2693 get_pcppage_migratetype(page));
2694 spin_unlock_irqrestore(&zone->lock, flags);
2695 } while (check_new_pages(page, order));
2696
2697 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2698 zone_statistics(preferred_zone, zone, 1);
2699
2700 return page;
2701}
2702
066b2393 2703/* Remove page from the per-cpu list, caller must protect the list */
3b822017 2704static inline
44042b44
MG
2705struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2706 int migratetype,
6bb15450 2707 unsigned int alloc_flags,
453f85d4 2708 struct per_cpu_pages *pcp,
066b2393
MG
2709 struct list_head *list)
2710{
2711 struct page *page;
2712
2713 do {
2714 if (list_empty(list)) {
44042b44
MG
2715 int batch = READ_ONCE(pcp->batch);
2716 int alloced;
2717
2718 /*
2719 * Scale batch relative to order if batch implies
2720 * free pages can be stored on the PCP. Batch can
2721 * be 1 for small zones or for boot pagesets which
2722 * should never store free pages as the pages may
2723 * belong to arbitrary zones.
2724 */
2725 if (batch > 1)
2726 batch = max(batch >> order, 2);
2727 alloced = rmqueue_bulk(zone, order,
2728 batch, list,
6bb15450 2729 migratetype, alloc_flags);
44042b44
MG
2730
2731 pcp->count += alloced << order;
066b2393
MG
2732 if (unlikely(list_empty(list)))
2733 return NULL;
2734 }
2735
bf75f200
MG
2736 page = list_first_entry(list, struct page, pcp_list);
2737 list_del(&page->pcp_list);
44042b44 2738 pcp->count -= 1 << order;
700d2e9a 2739 } while (check_new_pages(page, order));
066b2393
MG
2740
2741 return page;
2742}
2743
2744/* Lock and remove page from the per-cpu list */
2745static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 2746 struct zone *zone, unsigned int order,
663d0cfd 2747 int migratetype, unsigned int alloc_flags)
066b2393
MG
2748{
2749 struct per_cpu_pages *pcp;
2750 struct list_head *list;
066b2393 2751 struct page *page;
4b23a68f 2752 unsigned long __maybe_unused UP_flags;
066b2393 2753
57490774 2754 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 2755 pcp_trylock_prepare(UP_flags);
57490774 2756 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2757 if (!pcp) {
4b23a68f 2758 pcp_trylock_finish(UP_flags);
4b23a68f
MG
2759 return NULL;
2760 }
3b12e7e9
MG
2761
2762 /*
2763 * On allocation, reduce the number of pages that are batch freed.
2764 * See nr_pcp_free() where free_factor is increased for subsequent
2765 * frees.
2766 */
3b12e7e9 2767 pcp->free_factor >>= 1;
44042b44
MG
2768 list = &pcp->lists[order_to_pindex(migratetype, order)];
2769 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 2770 pcp_spin_unlock(pcp);
4b23a68f 2771 pcp_trylock_finish(UP_flags);
066b2393 2772 if (page) {
15cd9004 2773 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 2774 zone_statistics(preferred_zone, zone, 1);
066b2393 2775 }
066b2393
MG
2776 return page;
2777}
2778
1da177e4 2779/*
a57ae9ef
RX
2780 * Allocate a page from the given zone.
2781 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 2782 */
b073d7f8
AP
2783
2784/*
2785 * Do not instrument rmqueue() with KMSAN. This function may call
2786 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2787 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2788 * may call rmqueue() again, which will result in a deadlock.
1da177e4 2789 */
b073d7f8 2790__no_sanitize_memory
0a15c3e9 2791static inline
066b2393 2792struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2793 struct zone *zone, unsigned int order,
c603844b
MG
2794 gfp_t gfp_flags, unsigned int alloc_flags,
2795 int migratetype)
1da177e4 2796{
689bcebf 2797 struct page *page;
1da177e4 2798
589d9973
MG
2799 /*
2800 * We most definitely don't want callers attempting to
2801 * allocate greater than order-1 page units with __GFP_NOFAIL.
2802 */
2803 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2804
44042b44 2805 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
2806 /*
2807 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2808 * we need to skip it when CMA area isn't allowed.
2809 */
2810 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2811 migratetype != MIGRATE_MOVABLE) {
44042b44 2812 page = rmqueue_pcplist(preferred_zone, zone, order,
663d0cfd 2813 migratetype, alloc_flags);
4b23a68f
MG
2814 if (likely(page))
2815 goto out;
1d91df85 2816 }
066b2393 2817 }
83b9355b 2818
589d9973
MG
2819 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2820 migratetype);
1da177e4 2821
066b2393 2822out:
73444bc4 2823 /* Separate test+clear to avoid unnecessary atomics */
3b11edf1
TH
2824 if ((alloc_flags & ALLOC_KSWAPD) &&
2825 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
2826 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2827 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2828 }
2829
066b2393 2830 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
2831 return page;
2832}
2833
54aa3866 2834noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
2835{
2836 return __should_fail_alloc_page(gfp_mask, order);
2837}
2838ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2839
f27ce0e1
JK
2840static inline long __zone_watermark_unusable_free(struct zone *z,
2841 unsigned int order, unsigned int alloc_flags)
2842{
f27ce0e1
JK
2843 long unusable_free = (1 << order) - 1;
2844
2845 /*
ab350885
MG
2846 * If the caller does not have rights to reserves below the min
2847 * watermark then subtract the high-atomic reserves. This will
2848 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 2849 */
ab350885 2850 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
2851 unusable_free += z->nr_reserved_highatomic;
2852
2853#ifdef CONFIG_CMA
2854 /* If allocation can't use CMA areas don't use free CMA pages */
2855 if (!(alloc_flags & ALLOC_CMA))
2856 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2857#endif
dcdfdd40
KS
2858#ifdef CONFIG_UNACCEPTED_MEMORY
2859 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2860#endif
f27ce0e1
JK
2861
2862 return unusable_free;
2863}
2864
1da177e4 2865/*
97a16fc8
MG
2866 * Return true if free base pages are above 'mark'. For high-order checks it
2867 * will return true of the order-0 watermark is reached and there is at least
2868 * one free page of a suitable size. Checking now avoids taking the zone lock
2869 * to check in the allocation paths if no pages are free.
1da177e4 2870 */
86a294a8 2871bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2872 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 2873 long free_pages)
1da177e4 2874{
d23ad423 2875 long min = mark;
1da177e4
LT
2876 int o;
2877
0aaa29a5 2878 /* free_pages may go negative - that's OK */
f27ce0e1 2879 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 2880
ab350885
MG
2881 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2882 /*
2883 * __GFP_HIGH allows access to 50% of the min reserve as well
2884 * as OOM.
2885 */
1ebbb218 2886 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 2887 min -= min / 2;
0aaa29a5 2888
1ebbb218
MG
2889 /*
2890 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2891 * access more reserves than just __GFP_HIGH. Other
2892 * non-blocking allocations requests such as GFP_NOWAIT
2893 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2894 * access to the min reserve.
2895 */
2896 if (alloc_flags & ALLOC_NON_BLOCK)
2897 min -= min / 4;
2898 }
0aaa29a5 2899
cd04ae1e 2900 /*
ab350885 2901 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
2902 * users on the grounds that it's definitely going to be in
2903 * the exit path shortly and free memory. Any allocation it
2904 * makes during the free path will be small and short-lived.
2905 */
2906 if (alloc_flags & ALLOC_OOM)
2907 min -= min / 2;
cd04ae1e
MH
2908 }
2909
97a16fc8
MG
2910 /*
2911 * Check watermarks for an order-0 allocation request. If these
2912 * are not met, then a high-order request also cannot go ahead
2913 * even if a suitable page happened to be free.
2914 */
97a225e6 2915 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 2916 return false;
1da177e4 2917
97a16fc8
MG
2918 /* If this is an order-0 request then the watermark is fine */
2919 if (!order)
2920 return true;
2921
2922 /* For a high-order request, check at least one suitable page is free */
23baf831 2923 for (o = order; o <= MAX_ORDER; o++) {
97a16fc8
MG
2924 struct free_area *area = &z->free_area[o];
2925 int mt;
2926
2927 if (!area->nr_free)
2928 continue;
2929
97a16fc8 2930 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 2931 if (!free_area_empty(area, mt))
97a16fc8
MG
2932 return true;
2933 }
2934
2935#ifdef CONFIG_CMA
d883c6cf 2936 if ((alloc_flags & ALLOC_CMA) &&
b03641af 2937 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 2938 return true;
d883c6cf 2939 }
97a16fc8 2940#endif
eb2e2b42
MG
2941 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2942 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 2943 return true;
eb2e2b42 2944 }
1da177e4 2945 }
97a16fc8 2946 return false;
88f5acf8
MG
2947}
2948
7aeb09f9 2949bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2950 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 2951{
97a225e6 2952 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
2953 zone_page_state(z, NR_FREE_PAGES));
2954}
2955
48ee5f36 2956static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 2957 unsigned long mark, int highest_zoneidx,
f80b08fc 2958 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 2959{
f27ce0e1 2960 long free_pages;
d883c6cf 2961
f27ce0e1 2962 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
2963
2964 /*
2965 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 2966 * need to be calculated.
48ee5f36 2967 */
f27ce0e1 2968 if (!order) {
9282012f
JK
2969 long usable_free;
2970 long reserved;
f27ce0e1 2971
9282012f
JK
2972 usable_free = free_pages;
2973 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2974
2975 /* reserved may over estimate high-atomic reserves. */
2976 usable_free -= min(usable_free, reserved);
2977 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
2978 return true;
2979 }
48ee5f36 2980
f80b08fc
CTR
2981 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2982 free_pages))
2983 return true;
2973d822 2984
f80b08fc 2985 /*
2973d822 2986 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
f80b08fc
CTR
2987 * when checking the min watermark. The min watermark is the
2988 * point where boosting is ignored so that kswapd is woken up
2989 * when below the low watermark.
2990 */
2973d822 2991 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
f80b08fc
CTR
2992 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2993 mark = z->_watermark[WMARK_MIN];
2994 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2995 alloc_flags, free_pages);
2996 }
2997
2998 return false;
48ee5f36
MG
2999}
3000
7aeb09f9 3001bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3002 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3003{
3004 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3005
3006 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3007 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3008
97a225e6 3009 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3010 free_pages);
1da177e4
LT
3011}
3012
9276b1bc 3013#ifdef CONFIG_NUMA
61bb6cd2
GU
3014int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3015
957f822a
DR
3016static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3017{
e02dc017 3018 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3019 node_reclaim_distance;
957f822a 3020}
9276b1bc 3021#else /* CONFIG_NUMA */
957f822a
DR
3022static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3023{
3024 return true;
3025}
9276b1bc
PJ
3026#endif /* CONFIG_NUMA */
3027
6bb15450
MG
3028/*
3029 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3030 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3031 * premature use of a lower zone may cause lowmem pressure problems that
3032 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3033 * probably too small. It only makes sense to spread allocations to avoid
3034 * fragmentation between the Normal and DMA32 zones.
3035 */
3036static inline unsigned int
0a79cdad 3037alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3038{
736838e9 3039 unsigned int alloc_flags;
0a79cdad 3040
736838e9
MN
3041 /*
3042 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3043 * to save a branch.
3044 */
3045 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3046
3047#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3048 if (!zone)
3049 return alloc_flags;
3050
6bb15450 3051 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3052 return alloc_flags;
6bb15450
MG
3053
3054 /*
3055 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3056 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3057 * on UMA that if Normal is populated then so is DMA32.
3058 */
3059 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3060 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3061 return alloc_flags;
6bb15450 3062
8118b82e 3063 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3064#endif /* CONFIG_ZONE_DMA32 */
3065 return alloc_flags;
6bb15450 3066}
6bb15450 3067
8e3560d9
PT
3068/* Must be called after current_gfp_context() which can change gfp_mask */
3069static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3070 unsigned int alloc_flags)
8510e69c
JK
3071{
3072#ifdef CONFIG_CMA
8e3560d9 3073 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3074 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3075#endif
3076 return alloc_flags;
3077}
3078
7fb1d9fc 3079/*
0798e519 3080 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3081 * a page.
3082 */
3083static struct page *
a9263751
VB
3084get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3085 const struct alloc_context *ac)
753ee728 3086{
6bb15450 3087 struct zoneref *z;
5117f45d 3088 struct zone *zone;
8a87d695
WY
3089 struct pglist_data *last_pgdat = NULL;
3090 bool last_pgdat_dirty_ok = false;
6bb15450 3091 bool no_fallback;
3b8c0be4 3092
6bb15450 3093retry:
7fb1d9fc 3094 /*
9276b1bc 3095 * Scan zonelist, looking for a zone with enough free.
8e464522 3096 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 3097 */
6bb15450
MG
3098 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3099 z = ac->preferred_zoneref;
30d8ec73
MN
3100 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3101 ac->nodemask) {
be06af00 3102 struct page *page;
e085dbc5
JW
3103 unsigned long mark;
3104
664eedde
MG
3105 if (cpusets_enabled() &&
3106 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3107 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3108 continue;
a756cf59
JW
3109 /*
3110 * When allocating a page cache page for writing, we
281e3726
MG
3111 * want to get it from a node that is within its dirty
3112 * limit, such that no single node holds more than its
a756cf59 3113 * proportional share of globally allowed dirty pages.
281e3726 3114 * The dirty limits take into account the node's
a756cf59
JW
3115 * lowmem reserves and high watermark so that kswapd
3116 * should be able to balance it without having to
3117 * write pages from its LRU list.
3118 *
a756cf59 3119 * XXX: For now, allow allocations to potentially
281e3726 3120 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3121 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3122 * which is important when on a NUMA setup the allowed
281e3726 3123 * nodes are together not big enough to reach the
a756cf59 3124 * global limit. The proper fix for these situations
281e3726 3125 * will require awareness of nodes in the
a756cf59
JW
3126 * dirty-throttling and the flusher threads.
3127 */
3b8c0be4 3128 if (ac->spread_dirty_pages) {
8a87d695
WY
3129 if (last_pgdat != zone->zone_pgdat) {
3130 last_pgdat = zone->zone_pgdat;
3131 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3132 }
3b8c0be4 3133
8a87d695 3134 if (!last_pgdat_dirty_ok)
3b8c0be4 3135 continue;
3b8c0be4 3136 }
7fb1d9fc 3137
6bb15450
MG
3138 if (no_fallback && nr_online_nodes > 1 &&
3139 zone != ac->preferred_zoneref->zone) {
3140 int local_nid;
3141
3142 /*
3143 * If moving to a remote node, retry but allow
3144 * fragmenting fallbacks. Locality is more important
3145 * than fragmentation avoidance.
3146 */
3147 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3148 if (zone_to_nid(zone) != local_nid) {
3149 alloc_flags &= ~ALLOC_NOFRAGMENT;
3150 goto retry;
3151 }
3152 }
3153
a9214443 3154 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3155 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3156 ac->highest_zoneidx, alloc_flags,
3157 gfp_mask)) {
fa5e084e
MG
3158 int ret;
3159
dcdfdd40
KS
3160 if (has_unaccepted_memory()) {
3161 if (try_to_accept_memory(zone, order))
3162 goto try_this_zone;
3163 }
3164
c9e97a19
PT
3165#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3166 /*
3167 * Watermark failed for this zone, but see if we can
3168 * grow this zone if it contains deferred pages.
3169 */
076cf7ea 3170 if (deferred_pages_enabled()) {
c9e97a19
PT
3171 if (_deferred_grow_zone(zone, order))
3172 goto try_this_zone;
3173 }
3174#endif
5dab2911
MG
3175 /* Checked here to keep the fast path fast */
3176 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3177 if (alloc_flags & ALLOC_NO_WATERMARKS)
3178 goto try_this_zone;
3179
202e35db 3180 if (!node_reclaim_enabled() ||
c33d6c06 3181 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3182 continue;
3183
a5f5f91d 3184 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3185 switch (ret) {
a5f5f91d 3186 case NODE_RECLAIM_NOSCAN:
fa5e084e 3187 /* did not scan */
cd38b115 3188 continue;
a5f5f91d 3189 case NODE_RECLAIM_FULL:
fa5e084e 3190 /* scanned but unreclaimable */
cd38b115 3191 continue;
fa5e084e
MG
3192 default:
3193 /* did we reclaim enough */
fed2719e 3194 if (zone_watermark_ok(zone, order, mark,
97a225e6 3195 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3196 goto try_this_zone;
3197
fed2719e 3198 continue;
0798e519 3199 }
7fb1d9fc
RS
3200 }
3201
fa5e084e 3202try_this_zone:
066b2393 3203 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3204 gfp_mask, alloc_flags, ac->migratetype);
75379191 3205 if (page) {
479f854a 3206 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3207
3208 /*
3209 * If this is a high-order atomic allocation then check
3210 * if the pageblock should be reserved for the future
3211 */
eb2e2b42 3212 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
0aaa29a5
MG
3213 reserve_highatomic_pageblock(page, zone, order);
3214
75379191 3215 return page;
c9e97a19 3216 } else {
dcdfdd40
KS
3217 if (has_unaccepted_memory()) {
3218 if (try_to_accept_memory(zone, order))
3219 goto try_this_zone;
3220 }
3221
c9e97a19
PT
3222#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3223 /* Try again if zone has deferred pages */
076cf7ea 3224 if (deferred_pages_enabled()) {
c9e97a19
PT
3225 if (_deferred_grow_zone(zone, order))
3226 goto try_this_zone;
3227 }
3228#endif
75379191 3229 }
54a6eb5c 3230 }
9276b1bc 3231
6bb15450
MG
3232 /*
3233 * It's possible on a UMA machine to get through all zones that are
3234 * fragmented. If avoiding fragmentation, reset and try again.
3235 */
3236 if (no_fallback) {
3237 alloc_flags &= ~ALLOC_NOFRAGMENT;
3238 goto retry;
3239 }
3240
4ffeaf35 3241 return NULL;
753ee728
MH
3242}
3243
9af744d7 3244static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3245{
a238ab5b 3246 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3247
3248 /*
3249 * This documents exceptions given to allocations in certain
3250 * contexts that are allowed to allocate outside current's set
3251 * of allowed nodes.
3252 */
3253 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3254 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3255 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3256 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 3257 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3258 filter &= ~SHOW_MEM_FILTER_NODES;
3259
974f4367 3260 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
3261}
3262
a8e99259 3263void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3264{
3265 struct va_format vaf;
3266 va_list args;
1be334e5 3267 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3268
c4dc63f0
BH
3269 if ((gfp_mask & __GFP_NOWARN) ||
3270 !__ratelimit(&nopage_rs) ||
3271 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
3272 return;
3273
7877cdcc
MH
3274 va_start(args, fmt);
3275 vaf.fmt = fmt;
3276 vaf.va = &args;
ef8444ea 3277 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3278 current->comm, &vaf, gfp_mask, &gfp_mask,
3279 nodemask_pr_args(nodemask));
7877cdcc 3280 va_end(args);
3ee9a4f0 3281
a8e99259 3282 cpuset_print_current_mems_allowed();
ef8444ea 3283 pr_cont("\n");
a238ab5b 3284 dump_stack();
685dbf6f 3285 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3286}
3287
6c18ba7a
MH
3288static inline struct page *
3289__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3290 unsigned int alloc_flags,
3291 const struct alloc_context *ac)
3292{
3293 struct page *page;
3294
3295 page = get_page_from_freelist(gfp_mask, order,
3296 alloc_flags|ALLOC_CPUSET, ac);
3297 /*
3298 * fallback to ignore cpuset restriction if our nodes
3299 * are depleted
3300 */
3301 if (!page)
3302 page = get_page_from_freelist(gfp_mask, order,
3303 alloc_flags, ac);
3304
3305 return page;
3306}
3307
11e33f6a
MG
3308static inline struct page *
3309__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3310 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3311{
6e0fc46d
DR
3312 struct oom_control oc = {
3313 .zonelist = ac->zonelist,
3314 .nodemask = ac->nodemask,
2a966b77 3315 .memcg = NULL,
6e0fc46d
DR
3316 .gfp_mask = gfp_mask,
3317 .order = order,
6e0fc46d 3318 };
11e33f6a
MG
3319 struct page *page;
3320
9879de73
JW
3321 *did_some_progress = 0;
3322
9879de73 3323 /*
dc56401f
JW
3324 * Acquire the oom lock. If that fails, somebody else is
3325 * making progress for us.
9879de73 3326 */
dc56401f 3327 if (!mutex_trylock(&oom_lock)) {
9879de73 3328 *did_some_progress = 1;
11e33f6a 3329 schedule_timeout_uninterruptible(1);
1da177e4
LT
3330 return NULL;
3331 }
6b1de916 3332
11e33f6a
MG
3333 /*
3334 * Go through the zonelist yet one more time, keep very high watermark
3335 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3336 * we're still under heavy pressure. But make sure that this reclaim
3337 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3338 * allocation which will never fail due to oom_lock already held.
11e33f6a 3339 */
e746bf73
TH
3340 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3341 ~__GFP_DIRECT_RECLAIM, order,
3342 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3343 if (page)
11e33f6a
MG
3344 goto out;
3345
06ad276a
MH
3346 /* Coredumps can quickly deplete all memory reserves */
3347 if (current->flags & PF_DUMPCORE)
3348 goto out;
3349 /* The OOM killer will not help higher order allocs */
3350 if (order > PAGE_ALLOC_COSTLY_ORDER)
3351 goto out;
dcda9b04
MH
3352 /*
3353 * We have already exhausted all our reclaim opportunities without any
3354 * success so it is time to admit defeat. We will skip the OOM killer
3355 * because it is very likely that the caller has a more reasonable
3356 * fallback than shooting a random task.
cfb4a541
MN
3357 *
3358 * The OOM killer may not free memory on a specific node.
dcda9b04 3359 */
cfb4a541 3360 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 3361 goto out;
06ad276a 3362 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3363 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3364 goto out;
3365 if (pm_suspended_storage())
3366 goto out;
3367 /*
3368 * XXX: GFP_NOFS allocations should rather fail than rely on
3369 * other request to make a forward progress.
3370 * We are in an unfortunate situation where out_of_memory cannot
3371 * do much for this context but let's try it to at least get
3372 * access to memory reserved if the current task is killed (see
3373 * out_of_memory). Once filesystems are ready to handle allocation
3374 * failures more gracefully we should just bail out here.
3375 */
3376
3c2c6488 3377 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
3378 if (out_of_memory(&oc) ||
3379 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 3380 *did_some_progress = 1;
5020e285 3381
6c18ba7a
MH
3382 /*
3383 * Help non-failing allocations by giving them access to memory
3384 * reserves
3385 */
3386 if (gfp_mask & __GFP_NOFAIL)
3387 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3388 ALLOC_NO_WATERMARKS, ac);
5020e285 3389 }
11e33f6a 3390out:
dc56401f 3391 mutex_unlock(&oom_lock);
11e33f6a
MG
3392 return page;
3393}
3394
33c2d214 3395/*
baf2f90b 3396 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
3397 * killer is consider as the only way to move forward.
3398 */
3399#define MAX_COMPACT_RETRIES 16
3400
56de7263
MG
3401#ifdef CONFIG_COMPACTION
3402/* Try memory compaction for high-order allocations before reclaim */
3403static struct page *
3404__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3405 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3406 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3407{
5e1f0f09 3408 struct page *page = NULL;
eb414681 3409 unsigned long pflags;
499118e9 3410 unsigned int noreclaim_flag;
53853e2d
VB
3411
3412 if (!order)
66199712 3413 return NULL;
66199712 3414
eb414681 3415 psi_memstall_enter(&pflags);
5bf18281 3416 delayacct_compact_start();
499118e9 3417 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3418
c5d01d0d 3419 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3420 prio, &page);
eb414681 3421
499118e9 3422 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3423 psi_memstall_leave(&pflags);
5bf18281 3424 delayacct_compact_end();
56de7263 3425
06dac2f4
CTR
3426 if (*compact_result == COMPACT_SKIPPED)
3427 return NULL;
98dd3b48
VB
3428 /*
3429 * At least in one zone compaction wasn't deferred or skipped, so let's
3430 * count a compaction stall
3431 */
3432 count_vm_event(COMPACTSTALL);
8fb74b9f 3433
5e1f0f09
MG
3434 /* Prep a captured page if available */
3435 if (page)
3436 prep_new_page(page, order, gfp_mask, alloc_flags);
3437
3438 /* Try get a page from the freelist if available */
3439 if (!page)
3440 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3441
98dd3b48
VB
3442 if (page) {
3443 struct zone *zone = page_zone(page);
53853e2d 3444
98dd3b48
VB
3445 zone->compact_blockskip_flush = false;
3446 compaction_defer_reset(zone, order, true);
3447 count_vm_event(COMPACTSUCCESS);
3448 return page;
3449 }
56de7263 3450
98dd3b48
VB
3451 /*
3452 * It's bad if compaction run occurs and fails. The most likely reason
3453 * is that pages exist, but not enough to satisfy watermarks.
3454 */
3455 count_vm_event(COMPACTFAIL);
66199712 3456
98dd3b48 3457 cond_resched();
56de7263
MG
3458
3459 return NULL;
3460}
33c2d214 3461
3250845d
VB
3462static inline bool
3463should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3464 enum compact_result compact_result,
3465 enum compact_priority *compact_priority,
d9436498 3466 int *compaction_retries)
3250845d
VB
3467{
3468 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3469 int min_priority;
65190cff
MH
3470 bool ret = false;
3471 int retries = *compaction_retries;
3472 enum compact_priority priority = *compact_priority;
3250845d
VB
3473
3474 if (!order)
3475 return false;
3476
691d9497
AT
3477 if (fatal_signal_pending(current))
3478 return false;
3479
49433085 3480 /*
ecd8b292
JW
3481 * Compaction was skipped due to a lack of free order-0
3482 * migration targets. Continue if reclaim can help.
49433085 3483 */
ecd8b292 3484 if (compact_result == COMPACT_SKIPPED) {
49433085
VB
3485 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3486 goto out;
3487 }
3488
3250845d 3489 /*
511a69b2
JW
3490 * Compaction managed to coalesce some page blocks, but the
3491 * allocation failed presumably due to a race. Retry some.
3250845d 3492 */
511a69b2
JW
3493 if (compact_result == COMPACT_SUCCESS) {
3494 /*
3495 * !costly requests are much more important than
3496 * __GFP_RETRY_MAYFAIL costly ones because they are de
3497 * facto nofail and invoke OOM killer to move on while
3498 * costly can fail and users are ready to cope with
3499 * that. 1/4 retries is rather arbitrary but we would
3500 * need much more detailed feedback from compaction to
3501 * make a better decision.
3502 */
3503 if (order > PAGE_ALLOC_COSTLY_ORDER)
3504 max_retries /= 4;
3250845d 3505
511a69b2
JW
3506 if (++(*compaction_retries) <= max_retries) {
3507 ret = true;
3508 goto out;
3509 }
65190cff 3510 }
3250845d 3511
d9436498 3512 /*
511a69b2 3513 * Compaction failed. Retry with increasing priority.
d9436498 3514 */
c2033b00
VB
3515 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3516 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3517
c2033b00 3518 if (*compact_priority > min_priority) {
d9436498
VB
3519 (*compact_priority)--;
3520 *compaction_retries = 0;
65190cff 3521 ret = true;
d9436498 3522 }
65190cff
MH
3523out:
3524 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3525 return ret;
3250845d 3526}
56de7263
MG
3527#else
3528static inline struct page *
3529__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3530 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3531 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3532{
33c2d214 3533 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3534 return NULL;
3535}
33c2d214
MH
3536
3537static inline bool
86a294a8
MH
3538should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3539 enum compact_result compact_result,
a5508cd8 3540 enum compact_priority *compact_priority,
d9436498 3541 int *compaction_retries)
33c2d214 3542{
31e49bfd
MH
3543 struct zone *zone;
3544 struct zoneref *z;
3545
3546 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3547 return false;
3548
3549 /*
3550 * There are setups with compaction disabled which would prefer to loop
3551 * inside the allocator rather than hit the oom killer prematurely.
3552 * Let's give them a good hope and keep retrying while the order-0
3553 * watermarks are OK.
3554 */
97a225e6
JK
3555 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3556 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 3557 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 3558 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
3559 return true;
3560 }
33c2d214
MH
3561 return false;
3562}
3250845d 3563#endif /* CONFIG_COMPACTION */
56de7263 3564
d92a8cfc 3565#ifdef CONFIG_LOCKDEP
93781325 3566static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3567 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3568
f920e413 3569static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 3570{
d92a8cfc
PZ
3571 /* no reclaim without waiting on it */
3572 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3573 return false;
3574
3575 /* this guy won't enter reclaim */
2e517d68 3576 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3577 return false;
3578
d92a8cfc
PZ
3579 if (gfp_mask & __GFP_NOLOCKDEP)
3580 return false;
3581
3582 return true;
3583}
3584
4f3eaf45 3585void __fs_reclaim_acquire(unsigned long ip)
93781325 3586{
4f3eaf45 3587 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
3588}
3589
4f3eaf45 3590void __fs_reclaim_release(unsigned long ip)
93781325 3591{
4f3eaf45 3592 lock_release(&__fs_reclaim_map, ip);
93781325
OS
3593}
3594
d92a8cfc
PZ
3595void fs_reclaim_acquire(gfp_t gfp_mask)
3596{
f920e413
SV
3597 gfp_mask = current_gfp_context(gfp_mask);
3598
3599 if (__need_reclaim(gfp_mask)) {
3600 if (gfp_mask & __GFP_FS)
4f3eaf45 3601 __fs_reclaim_acquire(_RET_IP_);
f920e413
SV
3602
3603#ifdef CONFIG_MMU_NOTIFIER
3604 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3605 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3606#endif
3607
3608 }
d92a8cfc
PZ
3609}
3610EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3611
3612void fs_reclaim_release(gfp_t gfp_mask)
3613{
f920e413
SV
3614 gfp_mask = current_gfp_context(gfp_mask);
3615
3616 if (__need_reclaim(gfp_mask)) {
3617 if (gfp_mask & __GFP_FS)
4f3eaf45 3618 __fs_reclaim_release(_RET_IP_);
f920e413 3619 }
d92a8cfc
PZ
3620}
3621EXPORT_SYMBOL_GPL(fs_reclaim_release);
3622#endif
3623
3d36424b
MG
3624/*
3625 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3626 * have been rebuilt so allocation retries. Reader side does not lock and
3627 * retries the allocation if zonelist changes. Writer side is protected by the
3628 * embedded spin_lock.
3629 */
3630static DEFINE_SEQLOCK(zonelist_update_seq);
3631
3632static unsigned int zonelist_iter_begin(void)
3633{
3634 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3635 return read_seqbegin(&zonelist_update_seq);
3636
3637 return 0;
3638}
3639
3640static unsigned int check_retry_zonelist(unsigned int seq)
3641{
3642 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3643 return read_seqretry(&zonelist_update_seq, seq);
3644
3645 return seq;
3646}
3647
bba90710 3648/* Perform direct synchronous page reclaim */
2187e17b 3649static unsigned long
a9263751
VB
3650__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3651 const struct alloc_context *ac)
11e33f6a 3652{
499118e9 3653 unsigned int noreclaim_flag;
fa7fc75f 3654 unsigned long progress;
11e33f6a
MG
3655
3656 cond_resched();
3657
3658 /* We now go into synchronous reclaim */
3659 cpuset_memory_pressure_bump();
d92a8cfc 3660 fs_reclaim_acquire(gfp_mask);
93781325 3661 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3662
a9263751
VB
3663 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3664 ac->nodemask);
11e33f6a 3665
499118e9 3666 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3667 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3668
3669 cond_resched();
3670
bba90710
MS
3671 return progress;
3672}
3673
3674/* The really slow allocator path where we enter direct reclaim */
3675static inline struct page *
3676__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3677 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3678 unsigned long *did_some_progress)
bba90710
MS
3679{
3680 struct page *page = NULL;
fa7fc75f 3681 unsigned long pflags;
bba90710
MS
3682 bool drained = false;
3683
fa7fc75f 3684 psi_memstall_enter(&pflags);
a9263751 3685 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 3686 if (unlikely(!(*did_some_progress)))
fa7fc75f 3687 goto out;
11e33f6a 3688
9ee493ce 3689retry:
31a6c190 3690 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3691
3692 /*
3693 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 3694 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 3695 * Shrink them and try again
9ee493ce
MG
3696 */
3697 if (!page && !drained) {
29fac03b 3698 unreserve_highatomic_pageblock(ac, false);
93481ff0 3699 drain_all_pages(NULL);
9ee493ce
MG
3700 drained = true;
3701 goto retry;
3702 }
fa7fc75f
SB
3703out:
3704 psi_memstall_leave(&pflags);
9ee493ce 3705
11e33f6a
MG
3706 return page;
3707}
3708
5ecd9d40
DR
3709static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3710 const struct alloc_context *ac)
3a025760
JW
3711{
3712 struct zoneref *z;
3713 struct zone *zone;
e1a55637 3714 pg_data_t *last_pgdat = NULL;
97a225e6 3715 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 3716
97a225e6 3717 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 3718 ac->nodemask) {
bc53008e
WY
3719 if (!managed_zone(zone))
3720 continue;
d137a7cb 3721 if (last_pgdat != zone->zone_pgdat) {
97a225e6 3722 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
3723 last_pgdat = zone->zone_pgdat;
3724 }
e1a55637 3725 }
3a025760
JW
3726}
3727
c603844b 3728static inline unsigned int
eb2e2b42 3729gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 3730{
c603844b 3731 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3732
736838e9 3733 /*
524c4807 3734 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
3735 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3736 * to save two branches.
3737 */
524c4807 3738 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 3739 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 3740
341ce06f
PZ
3741 /*
3742 * The caller may dip into page reserves a bit more if the caller
3743 * cannot run direct reclaim, or if the caller has realtime scheduling
3744 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 3745 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 3746 */
736838e9
MN
3747 alloc_flags |= (__force int)
3748 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 3749
1ebbb218 3750 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 3751 /*
b104a35d
DR
3752 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3753 * if it can't schedule.
5c3240d9 3754 */
eb2e2b42 3755 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 3756 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
3757
3758 if (order > 0)
3759 alloc_flags |= ALLOC_HIGHATOMIC;
3760 }
3761
523b9458 3762 /*
1ebbb218
MG
3763 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3764 * GFP_ATOMIC) rather than fail, see the comment for
8e464522 3765 * cpuset_node_allowed().
523b9458 3766 */
1ebbb218
MG
3767 if (alloc_flags & ALLOC_MIN_RESERVE)
3768 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 3769 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 3770 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 3771
8e3560d9 3772 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 3773
341ce06f
PZ
3774 return alloc_flags;
3775}
3776
cd04ae1e 3777static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3778{
cd04ae1e
MH
3779 if (!tsk_is_oom_victim(tsk))
3780 return false;
3781
3782 /*
3783 * !MMU doesn't have oom reaper so give access to memory reserves
3784 * only to the thread with TIF_MEMDIE set
3785 */
3786 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3787 return false;
3788
cd04ae1e
MH
3789 return true;
3790}
3791
3792/*
3793 * Distinguish requests which really need access to full memory
3794 * reserves from oom victims which can live with a portion of it
3795 */
3796static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3797{
3798 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3799 return 0;
31a6c190 3800 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3801 return ALLOC_NO_WATERMARKS;
31a6c190 3802 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3803 return ALLOC_NO_WATERMARKS;
3804 if (!in_interrupt()) {
3805 if (current->flags & PF_MEMALLOC)
3806 return ALLOC_NO_WATERMARKS;
3807 else if (oom_reserves_allowed(current))
3808 return ALLOC_OOM;
3809 }
31a6c190 3810
cd04ae1e
MH
3811 return 0;
3812}
3813
3814bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3815{
3816 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3817}
3818
0a0337e0
MH
3819/*
3820 * Checks whether it makes sense to retry the reclaim to make a forward progress
3821 * for the given allocation request.
491d79ae
JW
3822 *
3823 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3824 * without success, or when we couldn't even meet the watermark if we
3825 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3826 *
3827 * Returns true if a retry is viable or false to enter the oom path.
3828 */
3829static inline bool
3830should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3831 struct alloc_context *ac, int alloc_flags,
423b452e 3832 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3833{
3834 struct zone *zone;
3835 struct zoneref *z;
15f570bf 3836 bool ret = false;
0a0337e0 3837
423b452e
VB
3838 /*
3839 * Costly allocations might have made a progress but this doesn't mean
3840 * their order will become available due to high fragmentation so
3841 * always increment the no progress counter for them
3842 */
3843 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3844 *no_progress_loops = 0;
3845 else
3846 (*no_progress_loops)++;
3847
0a0337e0
MH
3848 /*
3849 * Make sure we converge to OOM if we cannot make any progress
3850 * several times in the row.
3851 */
04c8716f
MK
3852 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3853 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3854 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3855 }
0a0337e0 3856
bca67592
MG
3857 /*
3858 * Keep reclaiming pages while there is a chance this will lead
3859 * somewhere. If none of the target zones can satisfy our allocation
3860 * request even if all reclaimable pages are considered then we are
3861 * screwed and have to go OOM.
0a0337e0 3862 */
97a225e6
JK
3863 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3864 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 3865 unsigned long available;
ede37713 3866 unsigned long reclaimable;
d379f01d
MH
3867 unsigned long min_wmark = min_wmark_pages(zone);
3868 bool wmark;
0a0337e0 3869
5a1c84b4 3870 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3871 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3872
3873 /*
491d79ae
JW
3874 * Would the allocation succeed if we reclaimed all
3875 * reclaimable pages?
0a0337e0 3876 */
d379f01d 3877 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 3878 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
3879 trace_reclaim_retry_zone(z, order, reclaimable,
3880 available, min_wmark, *no_progress_loops, wmark);
3881 if (wmark) {
15f570bf 3882 ret = true;
132b0d21 3883 break;
0a0337e0
MH
3884 }
3885 }
3886
15f570bf
MH
3887 /*
3888 * Memory allocation/reclaim might be called from a WQ context and the
3889 * current implementation of the WQ concurrency control doesn't
3890 * recognize that a particular WQ is congested if the worker thread is
3891 * looping without ever sleeping. Therefore we have to do a short sleep
3892 * here rather than calling cond_resched().
3893 */
3894 if (current->flags & PF_WQ_WORKER)
3895 schedule_timeout_uninterruptible(1);
3896 else
3897 cond_resched();
3898 return ret;
0a0337e0
MH
3899}
3900
902b6281
VB
3901static inline bool
3902check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3903{
3904 /*
3905 * It's possible that cpuset's mems_allowed and the nodemask from
3906 * mempolicy don't intersect. This should be normally dealt with by
3907 * policy_nodemask(), but it's possible to race with cpuset update in
3908 * such a way the check therein was true, and then it became false
3909 * before we got our cpuset_mems_cookie here.
3910 * This assumes that for all allocations, ac->nodemask can come only
3911 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3912 * when it does not intersect with the cpuset restrictions) or the
3913 * caller can deal with a violated nodemask.
3914 */
3915 if (cpusets_enabled() && ac->nodemask &&
3916 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3917 ac->nodemask = NULL;
3918 return true;
3919 }
3920
3921 /*
3922 * When updating a task's mems_allowed or mempolicy nodemask, it is
3923 * possible to race with parallel threads in such a way that our
3924 * allocation can fail while the mask is being updated. If we are about
3925 * to fail, check if the cpuset changed during allocation and if so,
3926 * retry.
3927 */
3928 if (read_mems_allowed_retry(cpuset_mems_cookie))
3929 return true;
3930
3931 return false;
3932}
3933
11e33f6a
MG
3934static inline struct page *
3935__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3936 struct alloc_context *ac)
11e33f6a 3937{
d0164adc 3938 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3939 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3940 struct page *page = NULL;
c603844b 3941 unsigned int alloc_flags;
11e33f6a 3942 unsigned long did_some_progress;
5ce9bfef 3943 enum compact_priority compact_priority;
c5d01d0d 3944 enum compact_result compact_result;
5ce9bfef
VB
3945 int compaction_retries;
3946 int no_progress_loops;
5ce9bfef 3947 unsigned int cpuset_mems_cookie;
3d36424b 3948 unsigned int zonelist_iter_cookie;
cd04ae1e 3949 int reserve_flags;
1da177e4 3950
3d36424b 3951restart:
5ce9bfef
VB
3952 compaction_retries = 0;
3953 no_progress_loops = 0;
3954 compact_priority = DEF_COMPACT_PRIORITY;
3955 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 3956 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
3957
3958 /*
3959 * The fast path uses conservative alloc_flags to succeed only until
3960 * kswapd needs to be woken up, and to avoid the cost of setting up
3961 * alloc_flags precisely. So we do that now.
3962 */
eb2e2b42 3963 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 3964
e47483bc
VB
3965 /*
3966 * We need to recalculate the starting point for the zonelist iterator
3967 * because we might have used different nodemask in the fast path, or
3968 * there was a cpuset modification and we are retrying - otherwise we
3969 * could end up iterating over non-eligible zones endlessly.
3970 */
3971 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 3972 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
3973 if (!ac->preferred_zoneref->zone)
3974 goto nopage;
3975
8ca1b5a4
FT
3976 /*
3977 * Check for insane configurations where the cpuset doesn't contain
3978 * any suitable zone to satisfy the request - e.g. non-movable
3979 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3980 */
3981 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3982 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3983 ac->highest_zoneidx,
3984 &cpuset_current_mems_allowed);
3985 if (!z->zone)
3986 goto nopage;
3987 }
3988
0a79cdad 3989 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 3990 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
3991
3992 /*
3993 * The adjusted alloc_flags might result in immediate success, so try
3994 * that first
3995 */
3996 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3997 if (page)
3998 goto got_pg;
3999
a8161d1e
VB
4000 /*
4001 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4002 * that we have enough base pages and don't need to reclaim. For non-
4003 * movable high-order allocations, do that as well, as compaction will
4004 * try prevent permanent fragmentation by migrating from blocks of the
4005 * same migratetype.
4006 * Don't try this for allocations that are allowed to ignore
4007 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4008 */
282722b0
VB
4009 if (can_direct_reclaim &&
4010 (costly_order ||
4011 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4012 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4013 page = __alloc_pages_direct_compact(gfp_mask, order,
4014 alloc_flags, ac,
a5508cd8 4015 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4016 &compact_result);
4017 if (page)
4018 goto got_pg;
4019
cc638f32
VB
4020 /*
4021 * Checks for costly allocations with __GFP_NORETRY, which
4022 * includes some THP page fault allocations
4023 */
4024 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4025 /*
4026 * If allocating entire pageblock(s) and compaction
4027 * failed because all zones are below low watermarks
4028 * or is prohibited because it recently failed at this
3f36d866
DR
4029 * order, fail immediately unless the allocator has
4030 * requested compaction and reclaim retry.
b39d0ee2
DR
4031 *
4032 * Reclaim is
4033 * - potentially very expensive because zones are far
4034 * below their low watermarks or this is part of very
4035 * bursty high order allocations,
4036 * - not guaranteed to help because isolate_freepages()
4037 * may not iterate over freed pages as part of its
4038 * linear scan, and
4039 * - unlikely to make entire pageblocks free on its
4040 * own.
4041 */
4042 if (compact_result == COMPACT_SKIPPED ||
4043 compact_result == COMPACT_DEFERRED)
4044 goto nopage;
a8161d1e 4045
a8161d1e 4046 /*
3eb2771b
VB
4047 * Looks like reclaim/compaction is worth trying, but
4048 * sync compaction could be very expensive, so keep
25160354 4049 * using async compaction.
a8161d1e 4050 */
a5508cd8 4051 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4052 }
4053 }
23771235 4054
31a6c190 4055retry:
23771235 4056 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4057 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4058 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4059
cd04ae1e
MH
4060 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4061 if (reserve_flags)
ce96fa62
ML
4062 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4063 (alloc_flags & ALLOC_KSWAPD);
23771235 4064
e46e7b77 4065 /*
d6a24df0
VB
4066 * Reset the nodemask and zonelist iterators if memory policies can be
4067 * ignored. These allocations are high priority and system rather than
4068 * user oriented.
e46e7b77 4069 */
cd04ae1e 4070 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4071 ac->nodemask = NULL;
e46e7b77 4072 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4073 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4074 }
4075
23771235 4076 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4077 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4078 if (page)
4079 goto got_pg;
1da177e4 4080
d0164adc 4081 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4082 if (!can_direct_reclaim)
1da177e4
LT
4083 goto nopage;
4084
9a67f648
MH
4085 /* Avoid recursion of direct reclaim */
4086 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4087 goto nopage;
4088
a8161d1e
VB
4089 /* Try direct reclaim and then allocating */
4090 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4091 &did_some_progress);
4092 if (page)
4093 goto got_pg;
4094
4095 /* Try direct compaction and then allocating */
a9263751 4096 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4097 compact_priority, &compact_result);
56de7263
MG
4098 if (page)
4099 goto got_pg;
75f30861 4100
9083905a
JW
4101 /* Do not loop if specifically requested */
4102 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4103 goto nopage;
9083905a 4104
0a0337e0
MH
4105 /*
4106 * Do not retry costly high order allocations unless they are
dcda9b04 4107 * __GFP_RETRY_MAYFAIL
0a0337e0 4108 */
dcda9b04 4109 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4110 goto nopage;
0a0337e0 4111
0a0337e0 4112 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4113 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4114 goto retry;
4115
33c2d214
MH
4116 /*
4117 * It doesn't make any sense to retry for the compaction if the order-0
4118 * reclaim is not able to make any progress because the current
4119 * implementation of the compaction depends on the sufficient amount
4120 * of free memory (see __compaction_suitable)
4121 */
4122 if (did_some_progress > 0 &&
86a294a8 4123 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4124 compact_result, &compact_priority,
d9436498 4125 &compaction_retries))
33c2d214
MH
4126 goto retry;
4127
902b6281 4128
3d36424b
MG
4129 /*
4130 * Deal with possible cpuset update races or zonelist updates to avoid
4131 * a unnecessary OOM kill.
4132 */
4133 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4134 check_retry_zonelist(zonelist_iter_cookie))
4135 goto restart;
e47483bc 4136
9083905a
JW
4137 /* Reclaim has failed us, start killing things */
4138 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4139 if (page)
4140 goto got_pg;
4141
9a67f648 4142 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4143 if (tsk_is_oom_victim(current) &&
8510e69c 4144 (alloc_flags & ALLOC_OOM ||
c288983d 4145 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4146 goto nopage;
4147
9083905a 4148 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4149 if (did_some_progress) {
4150 no_progress_loops = 0;
9083905a 4151 goto retry;
0a0337e0 4152 }
9083905a 4153
1da177e4 4154nopage:
3d36424b
MG
4155 /*
4156 * Deal with possible cpuset update races or zonelist updates to avoid
4157 * a unnecessary OOM kill.
4158 */
4159 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4160 check_retry_zonelist(zonelist_iter_cookie))
4161 goto restart;
5ce9bfef 4162
9a67f648
MH
4163 /*
4164 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4165 * we always retry
4166 */
4167 if (gfp_mask & __GFP_NOFAIL) {
4168 /*
4169 * All existing users of the __GFP_NOFAIL are blockable, so warn
4170 * of any new users that actually require GFP_NOWAIT
4171 */
3f913fc5 4172 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
4173 goto fail;
4174
4175 /*
4176 * PF_MEMALLOC request from this context is rather bizarre
4177 * because we cannot reclaim anything and only can loop waiting
4178 * for somebody to do a work for us
4179 */
3f913fc5 4180 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
4181
4182 /*
4183 * non failing costly orders are a hard requirement which we
4184 * are not prepared for much so let's warn about these users
4185 * so that we can identify them and convert them to something
4186 * else.
4187 */
896c4d52 4188 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 4189
6c18ba7a 4190 /*
1ebbb218
MG
4191 * Help non-failing allocations by giving some access to memory
4192 * reserves normally used for high priority non-blocking
4193 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 4194 * could deplete whole memory reserves which would just make
1ebbb218 4195 * the situation worse.
6c18ba7a 4196 */
1ebbb218 4197 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
4198 if (page)
4199 goto got_pg;
4200
9a67f648
MH
4201 cond_resched();
4202 goto retry;
4203 }
4204fail:
a8e99259 4205 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4206 "page allocation failure: order:%u", order);
1da177e4 4207got_pg:
072bb0aa 4208 return page;
1da177e4 4209}
11e33f6a 4210
9cd75558 4211static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4212 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4213 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4214 unsigned int *alloc_flags)
11e33f6a 4215{
97a225e6 4216 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4217 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4218 ac->nodemask = nodemask;
01c0bfe0 4219 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4220
682a3385 4221 if (cpusets_enabled()) {
8e6a930b 4222 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4223 /*
4224 * When we are in the interrupt context, it is irrelevant
4225 * to the current task context. It means that any node ok.
4226 */
88dc6f20 4227 if (in_task() && !ac->nodemask)
9cd75558 4228 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4229 else
4230 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4231 }
4232
446ec838 4233 might_alloc(gfp_mask);
11e33f6a
MG
4234
4235 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4236 return false;
11e33f6a 4237
8e3560d9 4238 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 4239
c9ab0c4f 4240 /* Dirty zone balancing only done in the fast path */
9cd75558 4241 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4242
e46e7b77
MG
4243 /*
4244 * The preferred zone is used for statistics but crucially it is
4245 * also used as the starting point for the zonelist iterator. It
4246 * may get reset for allocations that ignore memory policies.
4247 */
9cd75558 4248 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4249 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4250
4251 return true;
9cd75558
MG
4252}
4253
387ba26f 4254/*
0f87d9d3 4255 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
4256 * @gfp: GFP flags for the allocation
4257 * @preferred_nid: The preferred NUMA node ID to allocate from
4258 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
4259 * @nr_pages: The number of pages desired on the list or array
4260 * @page_list: Optional list to store the allocated pages
4261 * @page_array: Optional array to store the pages
387ba26f
MG
4262 *
4263 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
4264 * allocate nr_pages quickly. Pages are added to page_list if page_list
4265 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 4266 *
0f87d9d3
MG
4267 * For lists, nr_pages is the number of pages that should be allocated.
4268 *
4269 * For arrays, only NULL elements are populated with pages and nr_pages
4270 * is the maximum number of pages that will be stored in the array.
4271 *
4272 * Returns the number of pages on the list or array.
387ba26f
MG
4273 */
4274unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4275 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
4276 struct list_head *page_list,
4277 struct page **page_array)
387ba26f
MG
4278{
4279 struct page *page;
4b23a68f 4280 unsigned long __maybe_unused UP_flags;
387ba26f
MG
4281 struct zone *zone;
4282 struct zoneref *z;
4283 struct per_cpu_pages *pcp;
4284 struct list_head *pcp_list;
4285 struct alloc_context ac;
4286 gfp_t alloc_gfp;
4287 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 4288 int nr_populated = 0, nr_account = 0;
387ba26f 4289
0f87d9d3
MG
4290 /*
4291 * Skip populated array elements to determine if any pages need
4292 * to be allocated before disabling IRQs.
4293 */
b08e50dd 4294 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
4295 nr_populated++;
4296
06147843
CL
4297 /* No pages requested? */
4298 if (unlikely(nr_pages <= 0))
4299 goto out;
4300
b3b64ebd
MG
4301 /* Already populated array? */
4302 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 4303 goto out;
b3b64ebd 4304
8dcb3060 4305 /* Bulk allocator does not support memcg accounting. */
f7a449f7 4306 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
8dcb3060
SB
4307 goto failed;
4308
387ba26f 4309 /* Use the single page allocator for one page. */
0f87d9d3 4310 if (nr_pages - nr_populated == 1)
387ba26f
MG
4311 goto failed;
4312
187ad460
MG
4313#ifdef CONFIG_PAGE_OWNER
4314 /*
4315 * PAGE_OWNER may recurse into the allocator to allocate space to
4316 * save the stack with pagesets.lock held. Releasing/reacquiring
4317 * removes much of the performance benefit of bulk allocation so
4318 * force the caller to allocate one page at a time as it'll have
4319 * similar performance to added complexity to the bulk allocator.
4320 */
4321 if (static_branch_unlikely(&page_owner_inited))
4322 goto failed;
4323#endif
4324
387ba26f
MG
4325 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4326 gfp &= gfp_allowed_mask;
4327 alloc_gfp = gfp;
4328 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 4329 goto out;
387ba26f
MG
4330 gfp = alloc_gfp;
4331
4332 /* Find an allowed local zone that meets the low watermark. */
4333 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4334 unsigned long mark;
4335
4336 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4337 !__cpuset_zone_allowed(zone, gfp)) {
4338 continue;
4339 }
4340
4341 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4342 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4343 goto failed;
4344 }
4345
4346 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4347 if (zone_watermark_fast(zone, 0, mark,
4348 zonelist_zone_idx(ac.preferred_zoneref),
4349 alloc_flags, gfp)) {
4350 break;
4351 }
4352 }
4353
4354 /*
4355 * If there are no allowed local zones that meets the watermarks then
4356 * try to allocate a single page and reclaim if necessary.
4357 */
ce76f9a1 4358 if (unlikely(!zone))
387ba26f
MG
4359 goto failed;
4360
57490774 4361 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 4362 pcp_trylock_prepare(UP_flags);
57490774 4363 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 4364 if (!pcp)
4b23a68f 4365 goto failed_irq;
387ba26f 4366
387ba26f 4367 /* Attempt the batch allocation */
44042b44 4368 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
4369 while (nr_populated < nr_pages) {
4370
4371 /* Skip existing pages */
4372 if (page_array && page_array[nr_populated]) {
4373 nr_populated++;
4374 continue;
4375 }
4376
44042b44 4377 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 4378 pcp, pcp_list);
ce76f9a1 4379 if (unlikely(!page)) {
c572e488 4380 /* Try and allocate at least one page */
4b23a68f 4381 if (!nr_account) {
57490774 4382 pcp_spin_unlock(pcp);
387ba26f 4383 goto failed_irq;
4b23a68f 4384 }
387ba26f
MG
4385 break;
4386 }
3e23060b 4387 nr_account++;
387ba26f
MG
4388
4389 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
4390 if (page_list)
4391 list_add(&page->lru, page_list);
4392 else
4393 page_array[nr_populated] = page;
4394 nr_populated++;
387ba26f
MG
4395 }
4396
57490774 4397 pcp_spin_unlock(pcp);
4b23a68f 4398 pcp_trylock_finish(UP_flags);
43c95bcc 4399
3e23060b
MG
4400 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4401 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 4402
06147843 4403out:
0f87d9d3 4404 return nr_populated;
387ba26f
MG
4405
4406failed_irq:
4b23a68f 4407 pcp_trylock_finish(UP_flags);
387ba26f
MG
4408
4409failed:
4410 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4411 if (page) {
0f87d9d3
MG
4412 if (page_list)
4413 list_add(&page->lru, page_list);
4414 else
4415 page_array[nr_populated] = page;
4416 nr_populated++;
387ba26f
MG
4417 }
4418
06147843 4419 goto out;
387ba26f
MG
4420}
4421EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4422
9cd75558
MG
4423/*
4424 * This is the 'heart' of the zoned buddy allocator.
4425 */
84172f4b 4426struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 4427 nodemask_t *nodemask)
9cd75558
MG
4428{
4429 struct page *page;
4430 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 4431 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4432 struct alloc_context ac = { };
4433
c63ae43b
MH
4434 /*
4435 * There are several places where we assume that the order value is sane
4436 * so bail out early if the request is out of bound.
4437 */
23baf831 4438 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
c63ae43b 4439 return NULL;
c63ae43b 4440
6e5e0f28 4441 gfp &= gfp_allowed_mask;
da6df1b0
PT
4442 /*
4443 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4444 * resp. GFP_NOIO which has to be inherited for all allocation requests
4445 * from a particular context which has been marked by
8e3560d9
PT
4446 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4447 * movable zones are not used during allocation.
da6df1b0
PT
4448 */
4449 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
4450 alloc_gfp = gfp;
4451 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 4452 &alloc_gfp, &alloc_flags))
9cd75558
MG
4453 return NULL;
4454
6bb15450
MG
4455 /*
4456 * Forbid the first pass from falling back to types that fragment
4457 * memory until all local zones are considered.
4458 */
6e5e0f28 4459 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 4460
5117f45d 4461 /* First allocation attempt */
8e6a930b 4462 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
4463 if (likely(page))
4464 goto out;
11e33f6a 4465
da6df1b0 4466 alloc_gfp = gfp;
4fcb0971 4467 ac.spread_dirty_pages = false;
23f086f9 4468
4741526b
MG
4469 /*
4470 * Restore the original nodemask if it was potentially replaced with
4471 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4472 */
97ce86f9 4473 ac.nodemask = nodemask;
16096c25 4474
8e6a930b 4475 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 4476
4fcb0971 4477out:
f7a449f7 4478 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
6e5e0f28 4479 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
4480 __free_pages(page, order);
4481 page = NULL;
4949148a
VD
4482 }
4483
8e6a930b 4484 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 4485 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 4486
11e33f6a 4487 return page;
1da177e4 4488}
84172f4b 4489EXPORT_SYMBOL(__alloc_pages);
1da177e4 4490
cc09cb13
MWO
4491struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4492 nodemask_t *nodemask)
4493{
4494 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4495 preferred_nid, nodemask);
4496
4497 if (page && order > 1)
4498 prep_transhuge_page(page);
4499 return (struct folio *)page;
4500}
4501EXPORT_SYMBOL(__folio_alloc);
4502
1da177e4 4503/*
9ea9a680
MH
4504 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4505 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4506 * you need to access high mem.
1da177e4 4507 */
920c7a5d 4508unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4509{
945a1113
AM
4510 struct page *page;
4511
9ea9a680 4512 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4513 if (!page)
4514 return 0;
4515 return (unsigned long) page_address(page);
4516}
1da177e4
LT
4517EXPORT_SYMBOL(__get_free_pages);
4518
920c7a5d 4519unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4520{
dcc1be11 4521 return __get_free_page(gfp_mask | __GFP_ZERO);
1da177e4 4522}
1da177e4
LT
4523EXPORT_SYMBOL(get_zeroed_page);
4524
7f194fbb
MWO
4525/**
4526 * __free_pages - Free pages allocated with alloc_pages().
4527 * @page: The page pointer returned from alloc_pages().
4528 * @order: The order of the allocation.
4529 *
4530 * This function can free multi-page allocations that are not compound
4531 * pages. It does not check that the @order passed in matches that of
4532 * the allocation, so it is easy to leak memory. Freeing more memory
4533 * than was allocated will probably emit a warning.
4534 *
4535 * If the last reference to this page is speculative, it will be released
4536 * by put_page() which only frees the first page of a non-compound
4537 * allocation. To prevent the remaining pages from being leaked, we free
4538 * the subsequent pages here. If you want to use the page's reference
4539 * count to decide when to free the allocation, you should allocate a
4540 * compound page, and use put_page() instead of __free_pages().
4541 *
4542 * Context: May be called in interrupt context or while holding a normal
4543 * spinlock, but not in NMI context or while holding a raw spinlock.
4544 */
742aa7fb
AL
4545void __free_pages(struct page *page, unsigned int order)
4546{
462a8e08
DC
4547 /* get PageHead before we drop reference */
4548 int head = PageHead(page);
4549
742aa7fb
AL
4550 if (put_page_testzero(page))
4551 free_the_page(page, order);
462a8e08 4552 else if (!head)
e320d301
MWO
4553 while (order-- > 0)
4554 free_the_page(page + (1 << order), order);
742aa7fb 4555}
1da177e4
LT
4556EXPORT_SYMBOL(__free_pages);
4557
920c7a5d 4558void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4559{
4560 if (addr != 0) {
725d704e 4561 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4562 __free_pages(virt_to_page((void *)addr), order);
4563 }
4564}
4565
4566EXPORT_SYMBOL(free_pages);
4567
b63ae8ca
AD
4568/*
4569 * Page Fragment:
4570 * An arbitrary-length arbitrary-offset area of memory which resides
4571 * within a 0 or higher order page. Multiple fragments within that page
4572 * are individually refcounted, in the page's reference counter.
4573 *
4574 * The page_frag functions below provide a simple allocation framework for
4575 * page fragments. This is used by the network stack and network device
4576 * drivers to provide a backing region of memory for use as either an
4577 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4578 */
2976db80
AD
4579static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4580 gfp_t gfp_mask)
b63ae8ca
AD
4581{
4582 struct page *page = NULL;
4583 gfp_t gfp = gfp_mask;
4584
4585#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4586 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4587 __GFP_NOMEMALLOC;
4588 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4589 PAGE_FRAG_CACHE_MAX_ORDER);
4590 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4591#endif
4592 if (unlikely(!page))
4593 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4594
4595 nc->va = page ? page_address(page) : NULL;
4596
4597 return page;
4598}
4599
2976db80 4600void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4601{
4602 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4603
742aa7fb
AL
4604 if (page_ref_sub_and_test(page, count))
4605 free_the_page(page, compound_order(page));
44fdffd7 4606}
2976db80 4607EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4608
b358e212
KH
4609void *page_frag_alloc_align(struct page_frag_cache *nc,
4610 unsigned int fragsz, gfp_t gfp_mask,
4611 unsigned int align_mask)
b63ae8ca
AD
4612{
4613 unsigned int size = PAGE_SIZE;
4614 struct page *page;
4615 int offset;
4616
4617 if (unlikely(!nc->va)) {
4618refill:
2976db80 4619 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4620 if (!page)
4621 return NULL;
4622
4623#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4624 /* if size can vary use size else just use PAGE_SIZE */
4625 size = nc->size;
4626#endif
4627 /* Even if we own the page, we do not use atomic_set().
4628 * This would break get_page_unless_zero() users.
4629 */
86447726 4630 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4631
4632 /* reset page count bias and offset to start of new frag */
2f064f34 4633 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4634 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4635 nc->offset = size;
4636 }
4637
4638 offset = nc->offset - fragsz;
4639 if (unlikely(offset < 0)) {
4640 page = virt_to_page(nc->va);
4641
fe896d18 4642 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4643 goto refill;
4644
d8c19014
DZ
4645 if (unlikely(nc->pfmemalloc)) {
4646 free_the_page(page, compound_order(page));
4647 goto refill;
4648 }
4649
b63ae8ca
AD
4650#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4651 /* if size can vary use size else just use PAGE_SIZE */
4652 size = nc->size;
4653#endif
4654 /* OK, page count is 0, we can safely set it */
86447726 4655 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4656
4657 /* reset page count bias and offset to start of new frag */
86447726 4658 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 4659 offset = size - fragsz;
dac22531
ML
4660 if (unlikely(offset < 0)) {
4661 /*
4662 * The caller is trying to allocate a fragment
4663 * with fragsz > PAGE_SIZE but the cache isn't big
4664 * enough to satisfy the request, this may
4665 * happen in low memory conditions.
4666 * We don't release the cache page because
4667 * it could make memory pressure worse
4668 * so we simply return NULL here.
4669 */
4670 return NULL;
4671 }
b63ae8ca
AD
4672 }
4673
4674 nc->pagecnt_bias--;
b358e212 4675 offset &= align_mask;
b63ae8ca
AD
4676 nc->offset = offset;
4677
4678 return nc->va + offset;
4679}
b358e212 4680EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
4681
4682/*
4683 * Frees a page fragment allocated out of either a compound or order 0 page.
4684 */
8c2dd3e4 4685void page_frag_free(void *addr)
b63ae8ca
AD
4686{
4687 struct page *page = virt_to_head_page(addr);
4688
742aa7fb
AL
4689 if (unlikely(put_page_testzero(page)))
4690 free_the_page(page, compound_order(page));
b63ae8ca 4691}
8c2dd3e4 4692EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4693
d00181b9
KS
4694static void *make_alloc_exact(unsigned long addr, unsigned int order,
4695 size_t size)
ee85c2e1
AK
4696{
4697 if (addr) {
df48a5f7
LH
4698 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4699 struct page *page = virt_to_page((void *)addr);
4700 struct page *last = page + nr;
4701
4702 split_page_owner(page, 1 << order);
4703 split_page_memcg(page, 1 << order);
4704 while (page < --last)
4705 set_page_refcounted(last);
4706
4707 last = page + (1UL << order);
4708 for (page += nr; page < last; page++)
4709 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
4710 }
4711 return (void *)addr;
4712}
4713
2be0ffe2
TT
4714/**
4715 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4716 * @size: the number of bytes to allocate
63931eb9 4717 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4718 *
4719 * This function is similar to alloc_pages(), except that it allocates the
4720 * minimum number of pages to satisfy the request. alloc_pages() can only
4721 * allocate memory in power-of-two pages.
4722 *
4723 * This function is also limited by MAX_ORDER.
4724 *
4725 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4726 *
4727 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4728 */
4729void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4730{
4731 unsigned int order = get_order(size);
4732 unsigned long addr;
4733
ba7f1b9e
ML
4734 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4735 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 4736
2be0ffe2 4737 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4738 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4739}
4740EXPORT_SYMBOL(alloc_pages_exact);
4741
ee85c2e1
AK
4742/**
4743 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4744 * pages on a node.
b5e6ab58 4745 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4746 * @size: the number of bytes to allocate
63931eb9 4747 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4748 *
4749 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4750 * back.
a862f68a
MR
4751 *
4752 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4753 */
e1931811 4754void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4755{
d00181b9 4756 unsigned int order = get_order(size);
63931eb9
VB
4757 struct page *p;
4758
ba7f1b9e
ML
4759 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4760 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
4761
4762 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4763 if (!p)
4764 return NULL;
4765 return make_alloc_exact((unsigned long)page_address(p), order, size);
4766}
ee85c2e1 4767
2be0ffe2
TT
4768/**
4769 * free_pages_exact - release memory allocated via alloc_pages_exact()
4770 * @virt: the value returned by alloc_pages_exact.
4771 * @size: size of allocation, same value as passed to alloc_pages_exact().
4772 *
4773 * Release the memory allocated by a previous call to alloc_pages_exact.
4774 */
4775void free_pages_exact(void *virt, size_t size)
4776{
4777 unsigned long addr = (unsigned long)virt;
4778 unsigned long end = addr + PAGE_ALIGN(size);
4779
4780 while (addr < end) {
4781 free_page(addr);
4782 addr += PAGE_SIZE;
4783 }
4784}
4785EXPORT_SYMBOL(free_pages_exact);
4786
e0fb5815
ZY
4787/**
4788 * nr_free_zone_pages - count number of pages beyond high watermark
4789 * @offset: The zone index of the highest zone
4790 *
a862f68a 4791 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4792 * high watermark within all zones at or below a given zone index. For each
4793 * zone, the number of pages is calculated as:
0e056eb5
MCC
4794 *
4795 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4796 *
4797 * Return: number of pages beyond high watermark.
e0fb5815 4798 */
ebec3862 4799static unsigned long nr_free_zone_pages(int offset)
1da177e4 4800{
dd1a239f 4801 struct zoneref *z;
54a6eb5c
MG
4802 struct zone *zone;
4803
e310fd43 4804 /* Just pick one node, since fallback list is circular */
ebec3862 4805 unsigned long sum = 0;
1da177e4 4806
0e88460d 4807 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4808
54a6eb5c 4809 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4810 unsigned long size = zone_managed_pages(zone);
41858966 4811 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4812 if (size > high)
4813 sum += size - high;
1da177e4
LT
4814 }
4815
4816 return sum;
4817}
4818
e0fb5815
ZY
4819/**
4820 * nr_free_buffer_pages - count number of pages beyond high watermark
4821 *
4822 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4823 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4824 *
4825 * Return: number of pages beyond high watermark within ZONE_DMA and
4826 * ZONE_NORMAL.
1da177e4 4827 */
ebec3862 4828unsigned long nr_free_buffer_pages(void)
1da177e4 4829{
af4ca457 4830 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4831}
c2f1a551 4832EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4833
19770b32
MG
4834static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4835{
4836 zoneref->zone = zone;
4837 zoneref->zone_idx = zone_idx(zone);
4838}
4839
1da177e4
LT
4840/*
4841 * Builds allocation fallback zone lists.
1a93205b
CL
4842 *
4843 * Add all populated zones of a node to the zonelist.
1da177e4 4844 */
9d3be21b 4845static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4846{
1a93205b 4847 struct zone *zone;
bc732f1d 4848 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4849 int nr_zones = 0;
02a68a5e
CL
4850
4851 do {
2f6726e5 4852 zone_type--;
070f8032 4853 zone = pgdat->node_zones + zone_type;
e553f62f 4854 if (populated_zone(zone)) {
9d3be21b 4855 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4856 check_highest_zone(zone_type);
1da177e4 4857 }
2f6726e5 4858 } while (zone_type);
bc732f1d 4859
070f8032 4860 return nr_zones;
1da177e4
LT
4861}
4862
4863#ifdef CONFIG_NUMA
f0c0b2b8
KH
4864
4865static int __parse_numa_zonelist_order(char *s)
4866{
c9bff3ee 4867 /*
f0953a1b 4868 * We used to support different zonelists modes but they turned
c9bff3ee
MH
4869 * out to be just not useful. Let's keep the warning in place
4870 * if somebody still use the cmd line parameter so that we do
4871 * not fail it silently
4872 */
4873 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4874 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4875 return -EINVAL;
4876 }
4877 return 0;
4878}
4879
e95d372c
KW
4880static char numa_zonelist_order[] = "Node";
4881#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8
KH
4882/*
4883 * sysctl handler for numa_zonelist_order
4884 */
e95d372c 4885static int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 4886 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 4887{
32927393
CH
4888 if (write)
4889 return __parse_numa_zonelist_order(buffer);
4890 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
4891}
4892
f0c0b2b8
KH
4893static int node_load[MAX_NUMNODES];
4894
1da177e4 4895/**
4dc3b16b 4896 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4897 * @node: node whose fallback list we're appending
4898 * @used_node_mask: nodemask_t of already used nodes
4899 *
4900 * We use a number of factors to determine which is the next node that should
4901 * appear on a given node's fallback list. The node should not have appeared
4902 * already in @node's fallback list, and it should be the next closest node
4903 * according to the distance array (which contains arbitrary distance values
4904 * from each node to each node in the system), and should also prefer nodes
4905 * with no CPUs, since presumably they'll have very little allocation pressure
4906 * on them otherwise.
a862f68a
MR
4907 *
4908 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 4909 */
79c28a41 4910int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4911{
4cf808eb 4912 int n, val;
1da177e4 4913 int min_val = INT_MAX;
00ef2d2f 4914 int best_node = NUMA_NO_NODE;
1da177e4 4915
4cf808eb
LT
4916 /* Use the local node if we haven't already */
4917 if (!node_isset(node, *used_node_mask)) {
4918 node_set(node, *used_node_mask);
4919 return node;
4920 }
1da177e4 4921
4b0ef1fe 4922 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4923
4924 /* Don't want a node to appear more than once */
4925 if (node_isset(n, *used_node_mask))
4926 continue;
4927
1da177e4
LT
4928 /* Use the distance array to find the distance */
4929 val = node_distance(node, n);
4930
4cf808eb
LT
4931 /* Penalize nodes under us ("prefer the next node") */
4932 val += (n < node);
4933
1da177e4 4934 /* Give preference to headless and unused nodes */
b630749f 4935 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
4936 val += PENALTY_FOR_NODE_WITH_CPUS;
4937
4938 /* Slight preference for less loaded node */
37931324 4939 val *= MAX_NUMNODES;
1da177e4
LT
4940 val += node_load[n];
4941
4942 if (val < min_val) {
4943 min_val = val;
4944 best_node = n;
4945 }
4946 }
4947
4948 if (best_node >= 0)
4949 node_set(best_node, *used_node_mask);
4950
4951 return best_node;
4952}
4953
f0c0b2b8
KH
4954
4955/*
4956 * Build zonelists ordered by node and zones within node.
4957 * This results in maximum locality--normal zone overflows into local
4958 * DMA zone, if any--but risks exhausting DMA zone.
4959 */
9d3be21b
MH
4960static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4961 unsigned nr_nodes)
1da177e4 4962{
9d3be21b
MH
4963 struct zoneref *zonerefs;
4964 int i;
4965
4966 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4967
4968 for (i = 0; i < nr_nodes; i++) {
4969 int nr_zones;
4970
4971 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 4972
9d3be21b
MH
4973 nr_zones = build_zonerefs_node(node, zonerefs);
4974 zonerefs += nr_zones;
4975 }
4976 zonerefs->zone = NULL;
4977 zonerefs->zone_idx = 0;
f0c0b2b8
KH
4978}
4979
523b9458
CL
4980/*
4981 * Build gfp_thisnode zonelists
4982 */
4983static void build_thisnode_zonelists(pg_data_t *pgdat)
4984{
9d3be21b
MH
4985 struct zoneref *zonerefs;
4986 int nr_zones;
523b9458 4987
9d3be21b
MH
4988 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4989 nr_zones = build_zonerefs_node(pgdat, zonerefs);
4990 zonerefs += nr_zones;
4991 zonerefs->zone = NULL;
4992 zonerefs->zone_idx = 0;
523b9458
CL
4993}
4994
f0c0b2b8
KH
4995/*
4996 * Build zonelists ordered by zone and nodes within zones.
4997 * This results in conserving DMA zone[s] until all Normal memory is
4998 * exhausted, but results in overflowing to remote node while memory
4999 * may still exist in local DMA zone.
5000 */
f0c0b2b8 5001
f0c0b2b8
KH
5002static void build_zonelists(pg_data_t *pgdat)
5003{
9d3be21b 5004 static int node_order[MAX_NUMNODES];
37931324 5005 int node, nr_nodes = 0;
d0ddf49b 5006 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5007 int local_node, prev_node;
1da177e4
LT
5008
5009 /* NUMA-aware ordering of nodes */
5010 local_node = pgdat->node_id;
1da177e4 5011 prev_node = local_node;
f0c0b2b8 5012
f0c0b2b8 5013 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5014 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5015 /*
5016 * We don't want to pressure a particular node.
5017 * So adding penalty to the first node in same
5018 * distance group to make it round-robin.
5019 */
957f822a
DR
5020 if (node_distance(local_node, node) !=
5021 node_distance(local_node, prev_node))
37931324 5022 node_load[node] += 1;
f0c0b2b8 5023
9d3be21b 5024 node_order[nr_nodes++] = node;
1da177e4 5025 prev_node = node;
1da177e4 5026 }
523b9458 5027
9d3be21b 5028 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5029 build_thisnode_zonelists(pgdat);
6cf25392
BR
5030 pr_info("Fallback order for Node %d: ", local_node);
5031 for (node = 0; node < nr_nodes; node++)
5032 pr_cont("%d ", node_order[node]);
5033 pr_cont("\n");
1da177e4
LT
5034}
5035
7aac7898
LS
5036#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5037/*
5038 * Return node id of node used for "local" allocations.
5039 * I.e., first node id of first zone in arg node's generic zonelist.
5040 * Used for initializing percpu 'numa_mem', which is used primarily
5041 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5042 */
5043int local_memory_node(int node)
5044{
c33d6c06 5045 struct zoneref *z;
7aac7898 5046
c33d6c06 5047 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5048 gfp_zone(GFP_KERNEL),
c33d6c06 5049 NULL);
c1093b74 5050 return zone_to_nid(z->zone);
7aac7898
LS
5051}
5052#endif
f0c0b2b8 5053
6423aa81
JK
5054static void setup_min_unmapped_ratio(void);
5055static void setup_min_slab_ratio(void);
1da177e4
LT
5056#else /* CONFIG_NUMA */
5057
f0c0b2b8 5058static void build_zonelists(pg_data_t *pgdat)
1da177e4 5059{
19655d34 5060 int node, local_node;
9d3be21b
MH
5061 struct zoneref *zonerefs;
5062 int nr_zones;
1da177e4
LT
5063
5064 local_node = pgdat->node_id;
1da177e4 5065
9d3be21b
MH
5066 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5067 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5068 zonerefs += nr_zones;
1da177e4 5069
54a6eb5c
MG
5070 /*
5071 * Now we build the zonelist so that it contains the zones
5072 * of all the other nodes.
5073 * We don't want to pressure a particular node, so when
5074 * building the zones for node N, we make sure that the
5075 * zones coming right after the local ones are those from
5076 * node N+1 (modulo N)
5077 */
5078 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5079 if (!node_online(node))
5080 continue;
9d3be21b
MH
5081 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5082 zonerefs += nr_zones;
1da177e4 5083 }
54a6eb5c
MG
5084 for (node = 0; node < local_node; node++) {
5085 if (!node_online(node))
5086 continue;
9d3be21b
MH
5087 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5088 zonerefs += nr_zones;
54a6eb5c
MG
5089 }
5090
9d3be21b
MH
5091 zonerefs->zone = NULL;
5092 zonerefs->zone_idx = 0;
1da177e4
LT
5093}
5094
5095#endif /* CONFIG_NUMA */
5096
99dcc3e5
CL
5097/*
5098 * Boot pageset table. One per cpu which is going to be used for all
5099 * zones and all nodes. The parameters will be set in such a way
5100 * that an item put on a list will immediately be handed over to
5101 * the buddy list. This is safe since pageset manipulation is done
5102 * with interrupts disabled.
5103 *
5104 * The boot_pagesets must be kept even after bootup is complete for
5105 * unused processors and/or zones. They do play a role for bootstrapping
5106 * hotplugged processors.
5107 *
5108 * zoneinfo_show() and maybe other functions do
5109 * not check if the processor is online before following the pageset pointer.
5110 * Other parts of the kernel may not check if the zone is available.
5111 */
28f836b6 5112static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
5113/* These effectively disable the pcplists in the boot pageset completely */
5114#define BOOT_PAGESET_HIGH 0
5115#define BOOT_PAGESET_BATCH 1
28f836b6
MG
5116static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5117static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
99dcc3e5 5118
11cd8638 5119static void __build_all_zonelists(void *data)
1da177e4 5120{
6811378e 5121 int nid;
afb6ebb3 5122 int __maybe_unused cpu;
9adb62a5 5123 pg_data_t *self = data;
1007843a 5124 unsigned long flags;
b93e0f32 5125
1007843a 5126 /*
a2ebb515
SAS
5127 * The zonelist_update_seq must be acquired with irqsave because the
5128 * reader can be invoked from IRQ with GFP_ATOMIC.
1007843a 5129 */
a2ebb515 5130 write_seqlock_irqsave(&zonelist_update_seq, flags);
1007843a 5131 /*
a2ebb515
SAS
5132 * Also disable synchronous printk() to prevent any printk() from
5133 * trying to hold port->lock, for
1007843a
TH
5134 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5135 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5136 */
5137 printk_deferred_enter();
9276b1bc 5138
7f9cfb31
BL
5139#ifdef CONFIG_NUMA
5140 memset(node_load, 0, sizeof(node_load));
5141#endif
9adb62a5 5142
c1152583
WY
5143 /*
5144 * This node is hotadded and no memory is yet present. So just
5145 * building zonelists is fine - no need to touch other nodes.
5146 */
9adb62a5
JL
5147 if (self && !node_online(self->node_id)) {
5148 build_zonelists(self);
c1152583 5149 } else {
09f49dca
MH
5150 /*
5151 * All possible nodes have pgdat preallocated
5152 * in free_area_init
5153 */
5154 for_each_node(nid) {
c1152583 5155 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5156
c1152583
WY
5157 build_zonelists(pgdat);
5158 }
99dcc3e5 5159
7aac7898
LS
5160#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5161 /*
5162 * We now know the "local memory node" for each node--
5163 * i.e., the node of the first zone in the generic zonelist.
5164 * Set up numa_mem percpu variable for on-line cpus. During
5165 * boot, only the boot cpu should be on-line; we'll init the
5166 * secondary cpus' numa_mem as they come on-line. During
5167 * node/memory hotplug, we'll fixup all on-line cpus.
5168 */
d9c9a0b9 5169 for_each_online_cpu(cpu)
7aac7898 5170 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5171#endif
d9c9a0b9 5172 }
b93e0f32 5173
1007843a 5174 printk_deferred_exit();
a2ebb515 5175 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
6811378e
YG
5176}
5177
061f67bc
RV
5178static noinline void __init
5179build_all_zonelists_init(void)
5180{
afb6ebb3
MH
5181 int cpu;
5182
061f67bc 5183 __build_all_zonelists(NULL);
afb6ebb3
MH
5184
5185 /*
5186 * Initialize the boot_pagesets that are going to be used
5187 * for bootstrapping processors. The real pagesets for
5188 * each zone will be allocated later when the per cpu
5189 * allocator is available.
5190 *
5191 * boot_pagesets are used also for bootstrapping offline
5192 * cpus if the system is already booted because the pagesets
5193 * are needed to initialize allocators on a specific cpu too.
5194 * F.e. the percpu allocator needs the page allocator which
5195 * needs the percpu allocator in order to allocate its pagesets
5196 * (a chicken-egg dilemma).
5197 */
5198 for_each_possible_cpu(cpu)
28f836b6 5199 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 5200
061f67bc
RV
5201 mminit_verify_zonelist();
5202 cpuset_init_current_mems_allowed();
5203}
5204
4eaf3f64 5205/*
4eaf3f64 5206 * unless system_state == SYSTEM_BOOTING.
061f67bc 5207 *
72675e13 5208 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5209 * [protected by SYSTEM_BOOTING].
4eaf3f64 5210 */
72675e13 5211void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5212{
0a18e607
DH
5213 unsigned long vm_total_pages;
5214
6811378e 5215 if (system_state == SYSTEM_BOOTING) {
061f67bc 5216 build_all_zonelists_init();
6811378e 5217 } else {
11cd8638 5218 __build_all_zonelists(pgdat);
6811378e
YG
5219 /* cpuset refresh routine should be here */
5220 }
56b9413b
DH
5221 /* Get the number of free pages beyond high watermark in all zones. */
5222 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5223 /*
5224 * Disable grouping by mobility if the number of pages in the
5225 * system is too low to allow the mechanism to work. It would be
5226 * more accurate, but expensive to check per-zone. This check is
5227 * made on memory-hotadd so a system can start with mobility
5228 * disabled and enable it later
5229 */
d9c23400 5230 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5231 page_group_by_mobility_disabled = 1;
5232 else
5233 page_group_by_mobility_disabled = 0;
5234
ce0725f7 5235 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5236 nr_online_nodes,
756a025f
JP
5237 page_group_by_mobility_disabled ? "off" : "on",
5238 vm_total_pages);
f0c0b2b8 5239#ifdef CONFIG_NUMA
f88dfff5 5240 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5241#endif
1da177e4
LT
5242}
5243
9420f89d 5244static int zone_batchsize(struct zone *zone)
1da177e4 5245{
9420f89d
MRI
5246#ifdef CONFIG_MMU
5247 int batch;
1da177e4 5248
9420f89d
MRI
5249 /*
5250 * The number of pages to batch allocate is either ~0.1%
5251 * of the zone or 1MB, whichever is smaller. The batch
5252 * size is striking a balance between allocation latency
5253 * and zone lock contention.
5254 */
5255 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5256 batch /= 4; /* We effectively *= 4 below */
5257 if (batch < 1)
5258 batch = 1;
22b31eec 5259
4b94ffdc 5260 /*
9420f89d
MRI
5261 * Clamp the batch to a 2^n - 1 value. Having a power
5262 * of 2 value was found to be more likely to have
5263 * suboptimal cache aliasing properties in some cases.
5264 *
5265 * For example if 2 tasks are alternately allocating
5266 * batches of pages, one task can end up with a lot
5267 * of pages of one half of the possible page colors
5268 * and the other with pages of the other colors.
4b94ffdc 5269 */
9420f89d 5270 batch = rounddown_pow_of_two(batch + batch/2) - 1;
966cf44f 5271
9420f89d 5272 return batch;
3a6be87f
DH
5273
5274#else
5275 /* The deferral and batching of frees should be suppressed under NOMMU
5276 * conditions.
5277 *
5278 * The problem is that NOMMU needs to be able to allocate large chunks
5279 * of contiguous memory as there's no hardware page translation to
5280 * assemble apparent contiguous memory from discontiguous pages.
5281 *
5282 * Queueing large contiguous runs of pages for batching, however,
5283 * causes the pages to actually be freed in smaller chunks. As there
5284 * can be a significant delay between the individual batches being
5285 * recycled, this leads to the once large chunks of space being
5286 * fragmented and becoming unavailable for high-order allocations.
5287 */
5288 return 0;
5289#endif
e7c8d5c9
CL
5290}
5291
e95d372c 5292static int percpu_pagelist_high_fraction;
04f8cfea 5293static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e 5294{
9420f89d
MRI
5295#ifdef CONFIG_MMU
5296 int high;
5297 int nr_split_cpus;
5298 unsigned long total_pages;
c13291a5 5299
9420f89d 5300 if (!percpu_pagelist_high_fraction) {
2a1e274a 5301 /*
9420f89d
MRI
5302 * By default, the high value of the pcp is based on the zone
5303 * low watermark so that if they are full then background
5304 * reclaim will not be started prematurely.
2a1e274a 5305 */
9420f89d
MRI
5306 total_pages = low_wmark_pages(zone);
5307 } else {
2a1e274a 5308 /*
9420f89d
MRI
5309 * If percpu_pagelist_high_fraction is configured, the high
5310 * value is based on a fraction of the managed pages in the
5311 * zone.
2a1e274a 5312 */
9420f89d 5313 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
2a1e274a
MG
5314 }
5315
5316 /*
9420f89d
MRI
5317 * Split the high value across all online CPUs local to the zone. Note
5318 * that early in boot that CPUs may not be online yet and that during
5319 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5320 * onlined. For memory nodes that have no CPUs, split pcp->high across
5321 * all online CPUs to mitigate the risk that reclaim is triggered
5322 * prematurely due to pages stored on pcp lists.
2a1e274a 5323 */
9420f89d
MRI
5324 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5325 if (!nr_split_cpus)
5326 nr_split_cpus = num_online_cpus();
5327 high = total_pages / nr_split_cpus;
2a1e274a 5328
9420f89d
MRI
5329 /*
5330 * Ensure high is at least batch*4. The multiple is based on the
5331 * historical relationship between high and batch.
5332 */
5333 high = max(high, batch << 2);
37b07e41 5334
9420f89d
MRI
5335 return high;
5336#else
5337 return 0;
5338#endif
37b07e41
LS
5339}
5340
51930df5 5341/*
9420f89d
MRI
5342 * pcp->high and pcp->batch values are related and generally batch is lower
5343 * than high. They are also related to pcp->count such that count is lower
5344 * than high, and as soon as it reaches high, the pcplist is flushed.
5345 *
5346 * However, guaranteeing these relations at all times would require e.g. write
5347 * barriers here but also careful usage of read barriers at the read side, and
5348 * thus be prone to error and bad for performance. Thus the update only prevents
5349 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5350 * can cope with those fields changing asynchronously, and fully trust only the
5351 * pcp->count field on the local CPU with interrupts disabled.
5352 *
5353 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5354 * outside of boot time (or some other assurance that no concurrent updaters
5355 * exist).
51930df5 5356 */
9420f89d
MRI
5357static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5358 unsigned long batch)
51930df5 5359{
9420f89d
MRI
5360 WRITE_ONCE(pcp->batch, batch);
5361 WRITE_ONCE(pcp->high, high);
51930df5
MR
5362}
5363
9420f89d 5364static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
c713216d 5365{
9420f89d 5366 int pindex;
90cae1fe 5367
9420f89d
MRI
5368 memset(pcp, 0, sizeof(*pcp));
5369 memset(pzstats, 0, sizeof(*pzstats));
90cae1fe 5370
9420f89d
MRI
5371 spin_lock_init(&pcp->lock);
5372 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5373 INIT_LIST_HEAD(&pcp->lists[pindex]);
2a1e274a 5374
9420f89d
MRI
5375 /*
5376 * Set batch and high values safe for a boot pageset. A true percpu
5377 * pageset's initialization will update them subsequently. Here we don't
5378 * need to be as careful as pageset_update() as nobody can access the
5379 * pageset yet.
5380 */
5381 pcp->high = BOOT_PAGESET_HIGH;
5382 pcp->batch = BOOT_PAGESET_BATCH;
5383 pcp->free_factor = 0;
5384}
c713216d 5385
9420f89d
MRI
5386static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5387 unsigned long batch)
5388{
5389 struct per_cpu_pages *pcp;
5390 int cpu;
2a1e274a 5391
9420f89d
MRI
5392 for_each_possible_cpu(cpu) {
5393 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5394 pageset_update(pcp, high, batch);
2a1e274a 5395 }
9420f89d 5396}
c713216d 5397
9420f89d
MRI
5398/*
5399 * Calculate and set new high and batch values for all per-cpu pagesets of a
5400 * zone based on the zone's size.
5401 */
5402static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5403{
5404 int new_high, new_batch;
09f49dca 5405
9420f89d
MRI
5406 new_batch = max(1, zone_batchsize(zone));
5407 new_high = zone_highsize(zone, new_batch, cpu_online);
09f49dca 5408
9420f89d
MRI
5409 if (zone->pageset_high == new_high &&
5410 zone->pageset_batch == new_batch)
5411 return;
37b07e41 5412
9420f89d
MRI
5413 zone->pageset_high = new_high;
5414 zone->pageset_batch = new_batch;
122e093c 5415
9420f89d 5416 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
c713216d 5417}
2a1e274a 5418
9420f89d 5419void __meminit setup_zone_pageset(struct zone *zone)
2a1e274a 5420{
9420f89d 5421 int cpu;
2a1e274a 5422
9420f89d
MRI
5423 /* Size may be 0 on !SMP && !NUMA */
5424 if (sizeof(struct per_cpu_zonestat) > 0)
5425 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
2a1e274a 5426
9420f89d
MRI
5427 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5428 for_each_possible_cpu(cpu) {
5429 struct per_cpu_pages *pcp;
5430 struct per_cpu_zonestat *pzstats;
2a1e274a 5431
9420f89d
MRI
5432 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5433 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5434 per_cpu_pages_init(pcp, pzstats);
a5c6d650 5435 }
9420f89d
MRI
5436
5437 zone_set_pageset_high_and_batch(zone, 0);
2a1e274a 5438}
ed7ed365 5439
7e63efef 5440/*
9420f89d
MRI
5441 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5442 * page high values need to be recalculated.
7e63efef 5443 */
9420f89d 5444static void zone_pcp_update(struct zone *zone, int cpu_online)
7e63efef 5445{
9420f89d
MRI
5446 mutex_lock(&pcp_batch_high_lock);
5447 zone_set_pageset_high_and_batch(zone, cpu_online);
5448 mutex_unlock(&pcp_batch_high_lock);
7e63efef
MG
5449}
5450
5451/*
9420f89d
MRI
5452 * Allocate per cpu pagesets and initialize them.
5453 * Before this call only boot pagesets were available.
7e63efef 5454 */
9420f89d 5455void __init setup_per_cpu_pageset(void)
7e63efef 5456{
9420f89d
MRI
5457 struct pglist_data *pgdat;
5458 struct zone *zone;
5459 int __maybe_unused cpu;
5460
5461 for_each_populated_zone(zone)
5462 setup_zone_pageset(zone);
5463
5464#ifdef CONFIG_NUMA
5465 /*
5466 * Unpopulated zones continue using the boot pagesets.
5467 * The numa stats for these pagesets need to be reset.
5468 * Otherwise, they will end up skewing the stats of
5469 * the nodes these zones are associated with.
5470 */
5471 for_each_possible_cpu(cpu) {
5472 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5473 memset(pzstats->vm_numa_event, 0,
5474 sizeof(pzstats->vm_numa_event));
5475 }
5476#endif
5477
5478 for_each_online_pgdat(pgdat)
5479 pgdat->per_cpu_nodestats =
5480 alloc_percpu(struct per_cpu_nodestat);
7e63efef
MG
5481}
5482
9420f89d
MRI
5483__meminit void zone_pcp_init(struct zone *zone)
5484{
5485 /*
5486 * per cpu subsystem is not up at this point. The following code
5487 * relies on the ability of the linker to provide the
5488 * offset of a (static) per cpu variable into the per cpu area.
5489 */
5490 zone->per_cpu_pageset = &boot_pageset;
5491 zone->per_cpu_zonestats = &boot_zonestats;
5492 zone->pageset_high = BOOT_PAGESET_HIGH;
5493 zone->pageset_batch = BOOT_PAGESET_BATCH;
5494
5495 if (populated_zone(zone))
5496 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5497 zone->present_pages, zone_batchsize(zone));
5498}
ed7ed365 5499
c3d5f5f0
JL
5500void adjust_managed_page_count(struct page *page, long count)
5501{
9705bea5 5502 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 5503 totalram_pages_add(count);
3dcc0571
JL
5504#ifdef CONFIG_HIGHMEM
5505 if (PageHighMem(page))
ca79b0c2 5506 totalhigh_pages_add(count);
3dcc0571 5507#endif
c3d5f5f0 5508}
3dcc0571 5509EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5510
e5cb113f 5511unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 5512{
11199692
JL
5513 void *pos;
5514 unsigned long pages = 0;
69afade7 5515
11199692
JL
5516 start = (void *)PAGE_ALIGN((unsigned long)start);
5517 end = (void *)((unsigned long)end & PAGE_MASK);
5518 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
5519 struct page *page = virt_to_page(pos);
5520 void *direct_map_addr;
5521
5522 /*
5523 * 'direct_map_addr' might be different from 'pos'
5524 * because some architectures' virt_to_page()
5525 * work with aliases. Getting the direct map
5526 * address ensures that we get a _writeable_
5527 * alias for the memset().
5528 */
5529 direct_map_addr = page_address(page);
c746170d
VF
5530 /*
5531 * Perform a kasan-unchecked memset() since this memory
5532 * has not been initialized.
5533 */
5534 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 5535 if ((unsigned int)poison <= 0xFF)
0d834328
DH
5536 memset(direct_map_addr, poison, PAGE_SIZE);
5537
5538 free_reserved_page(page);
69afade7
JL
5539 }
5540
5541 if (pages && s)
ff7ed9e4 5542 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
5543
5544 return pages;
5545}
5546
005fd4bb 5547static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 5548{
04f8cfea 5549 struct zone *zone;
1da177e4 5550
005fd4bb 5551 lru_add_drain_cpu(cpu);
96f97c43 5552 mlock_drain_remote(cpu);
005fd4bb 5553 drain_pages(cpu);
9f8f2172 5554
005fd4bb
SAS
5555 /*
5556 * Spill the event counters of the dead processor
5557 * into the current processors event counters.
5558 * This artificially elevates the count of the current
5559 * processor.
5560 */
5561 vm_events_fold_cpu(cpu);
9f8f2172 5562
005fd4bb
SAS
5563 /*
5564 * Zero the differential counters of the dead processor
5565 * so that the vm statistics are consistent.
5566 *
5567 * This is only okay since the processor is dead and cannot
5568 * race with what we are doing.
5569 */
5570 cpu_vm_stats_fold(cpu);
04f8cfea
MG
5571
5572 for_each_populated_zone(zone)
5573 zone_pcp_update(zone, 0);
5574
5575 return 0;
5576}
5577
5578static int page_alloc_cpu_online(unsigned int cpu)
5579{
5580 struct zone *zone;
5581
5582 for_each_populated_zone(zone)
5583 zone_pcp_update(zone, 1);
005fd4bb 5584 return 0;
1da177e4 5585}
1da177e4 5586
c4fbed4b 5587void __init page_alloc_init_cpuhp(void)
1da177e4 5588{
005fd4bb
SAS
5589 int ret;
5590
04f8cfea
MG
5591 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5592 "mm/page_alloc:pcp",
5593 page_alloc_cpu_online,
005fd4bb
SAS
5594 page_alloc_cpu_dead);
5595 WARN_ON(ret < 0);
1da177e4
LT
5596}
5597
cb45b0e9 5598/*
34b10060 5599 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5600 * or min_free_kbytes changes.
5601 */
5602static void calculate_totalreserve_pages(void)
5603{
5604 struct pglist_data *pgdat;
5605 unsigned long reserve_pages = 0;
2f6726e5 5606 enum zone_type i, j;
cb45b0e9
HA
5607
5608 for_each_online_pgdat(pgdat) {
281e3726
MG
5609
5610 pgdat->totalreserve_pages = 0;
5611
cb45b0e9
HA
5612 for (i = 0; i < MAX_NR_ZONES; i++) {
5613 struct zone *zone = pgdat->node_zones + i;
3484b2de 5614 long max = 0;
9705bea5 5615 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
5616
5617 /* Find valid and maximum lowmem_reserve in the zone */
5618 for (j = i; j < MAX_NR_ZONES; j++) {
5619 if (zone->lowmem_reserve[j] > max)
5620 max = zone->lowmem_reserve[j];
5621 }
5622
41858966
MG
5623 /* we treat the high watermark as reserved pages. */
5624 max += high_wmark_pages(zone);
cb45b0e9 5625
3d6357de
AK
5626 if (max > managed_pages)
5627 max = managed_pages;
a8d01437 5628
281e3726 5629 pgdat->totalreserve_pages += max;
a8d01437 5630
cb45b0e9
HA
5631 reserve_pages += max;
5632 }
5633 }
5634 totalreserve_pages = reserve_pages;
5635}
5636
1da177e4
LT
5637/*
5638 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5639 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5640 * has a correct pages reserved value, so an adequate number of
5641 * pages are left in the zone after a successful __alloc_pages().
5642 */
5643static void setup_per_zone_lowmem_reserve(void)
5644{
5645 struct pglist_data *pgdat;
470c61d7 5646 enum zone_type i, j;
1da177e4 5647
ec936fc5 5648 for_each_online_pgdat(pgdat) {
470c61d7
LS
5649 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5650 struct zone *zone = &pgdat->node_zones[i];
5651 int ratio = sysctl_lowmem_reserve_ratio[i];
5652 bool clear = !ratio || !zone_managed_pages(zone);
5653 unsigned long managed_pages = 0;
5654
5655 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
5656 struct zone *upper_zone = &pgdat->node_zones[j];
5657
5658 managed_pages += zone_managed_pages(upper_zone);
470c61d7 5659
f7ec1044
LS
5660 if (clear)
5661 zone->lowmem_reserve[j] = 0;
5662 else
470c61d7 5663 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
5664 }
5665 }
5666 }
cb45b0e9
HA
5667
5668 /* update totalreserve_pages */
5669 calculate_totalreserve_pages();
1da177e4
LT
5670}
5671
cfd3da1e 5672static void __setup_per_zone_wmarks(void)
1da177e4
LT
5673{
5674 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5675 unsigned long lowmem_pages = 0;
5676 struct zone *zone;
5677 unsigned long flags;
5678
416ef04f 5679 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
1da177e4 5680 for_each_zone(zone) {
416ef04f 5681 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
9705bea5 5682 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
5683 }
5684
5685 for_each_zone(zone) {
ac924c60
AM
5686 u64 tmp;
5687
1125b4e3 5688 spin_lock_irqsave(&zone->lock, flags);
9705bea5 5689 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 5690 do_div(tmp, lowmem_pages);
416ef04f 5691 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
1da177e4 5692 /*
669ed175 5693 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
416ef04f 5694 * need highmem and movable zones pages, so cap pages_min
5695 * to a small value here.
669ed175 5696 *
41858966 5697 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 5698 * deltas control async page reclaim, and so should
416ef04f 5699 * not be capped for highmem and movable zones.
1da177e4 5700 */
90ae8d67 5701 unsigned long min_pages;
1da177e4 5702
9705bea5 5703 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 5704 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 5705 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 5706 } else {
669ed175
NP
5707 /*
5708 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5709 * proportionate to the zone's size.
5710 */
a9214443 5711 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
5712 }
5713
795ae7a0
JW
5714 /*
5715 * Set the kswapd watermarks distance according to the
5716 * scale factor in proportion to available memory, but
5717 * ensure a minimum size on small systems.
5718 */
5719 tmp = max_t(u64, tmp >> 2,
9705bea5 5720 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
5721 watermark_scale_factor, 10000));
5722
aa092591 5723 zone->watermark_boost = 0;
a9214443 5724 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
YH
5725 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5726 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 5727
1125b4e3 5728 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5729 }
cb45b0e9
HA
5730
5731 /* update totalreserve_pages */
5732 calculate_totalreserve_pages();
1da177e4
LT
5733}
5734
cfd3da1e
MG
5735/**
5736 * setup_per_zone_wmarks - called when min_free_kbytes changes
5737 * or when memory is hot-{added|removed}
5738 *
5739 * Ensures that the watermark[min,low,high] values for each zone are set
5740 * correctly with respect to min_free_kbytes.
5741 */
5742void setup_per_zone_wmarks(void)
5743{
b92ca18e 5744 struct zone *zone;
b93e0f32
MH
5745 static DEFINE_SPINLOCK(lock);
5746
5747 spin_lock(&lock);
cfd3da1e 5748 __setup_per_zone_wmarks();
b93e0f32 5749 spin_unlock(&lock);
b92ca18e
MG
5750
5751 /*
5752 * The watermark size have changed so update the pcpu batch
5753 * and high limits or the limits may be inappropriate.
5754 */
5755 for_each_zone(zone)
04f8cfea 5756 zone_pcp_update(zone, 0);
cfd3da1e
MG
5757}
5758
1da177e4
LT
5759/*
5760 * Initialise min_free_kbytes.
5761 *
5762 * For small machines we want it small (128k min). For large machines
8beeae86 5763 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
5764 * bandwidth does not increase linearly with machine size. We use
5765 *
b8af2941 5766 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5767 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5768 *
5769 * which yields
5770 *
5771 * 16MB: 512k
5772 * 32MB: 724k
5773 * 64MB: 1024k
5774 * 128MB: 1448k
5775 * 256MB: 2048k
5776 * 512MB: 2896k
5777 * 1024MB: 4096k
5778 * 2048MB: 5792k
5779 * 4096MB: 8192k
5780 * 8192MB: 11584k
5781 * 16384MB: 16384k
5782 */
bd3400ea 5783void calculate_min_free_kbytes(void)
1da177e4
LT
5784{
5785 unsigned long lowmem_kbytes;
5f12733e 5786 int new_min_free_kbytes;
1da177e4
LT
5787
5788 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5789 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5790
59d336bd
WS
5791 if (new_min_free_kbytes > user_min_free_kbytes)
5792 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5793 else
5f12733e
MH
5794 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5795 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 5796
bd3400ea
LF
5797}
5798
5799int __meminit init_per_zone_wmark_min(void)
5800{
5801 calculate_min_free_kbytes();
bc75d33f 5802 setup_per_zone_wmarks();
a6cccdc3 5803 refresh_zone_stat_thresholds();
1da177e4 5804 setup_per_zone_lowmem_reserve();
6423aa81
JK
5805
5806#ifdef CONFIG_NUMA
5807 setup_min_unmapped_ratio();
5808 setup_min_slab_ratio();
5809#endif
5810
4aab2be0
VB
5811 khugepaged_min_free_kbytes_update();
5812
1da177e4
LT
5813 return 0;
5814}
e08d3fdf 5815postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
5816
5817/*
b8af2941 5818 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5819 * that we can call two helper functions whenever min_free_kbytes
5820 * changes.
5821 */
e95d372c 5822static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 5823 void *buffer, size_t *length, loff_t *ppos)
1da177e4 5824{
da8c757b
HP
5825 int rc;
5826
5827 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5828 if (rc)
5829 return rc;
5830
5f12733e
MH
5831 if (write) {
5832 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5833 setup_per_zone_wmarks();
5f12733e 5834 }
1da177e4
LT
5835 return 0;
5836}
5837
e95d372c 5838static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 5839 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
5840{
5841 int rc;
5842
5843 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5844 if (rc)
5845 return rc;
5846
5847 if (write)
5848 setup_per_zone_wmarks();
5849
5850 return 0;
5851}
5852
9614634f 5853#ifdef CONFIG_NUMA
6423aa81 5854static void setup_min_unmapped_ratio(void)
9614634f 5855{
6423aa81 5856 pg_data_t *pgdat;
9614634f 5857 struct zone *zone;
9614634f 5858
a5f5f91d 5859 for_each_online_pgdat(pgdat)
81cbcbc2 5860 pgdat->min_unmapped_pages = 0;
a5f5f91d 5861
9614634f 5862 for_each_zone(zone)
9705bea5
AK
5863 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5864 sysctl_min_unmapped_ratio) / 100;
9614634f 5865}
0ff38490 5866
6423aa81 5867
e95d372c 5868static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 5869 void *buffer, size_t *length, loff_t *ppos)
0ff38490 5870{
0ff38490
CL
5871 int rc;
5872
8d65af78 5873 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5874 if (rc)
5875 return rc;
5876
6423aa81
JK
5877 setup_min_unmapped_ratio();
5878
5879 return 0;
5880}
5881
5882static void setup_min_slab_ratio(void)
5883{
5884 pg_data_t *pgdat;
5885 struct zone *zone;
5886
a5f5f91d
MG
5887 for_each_online_pgdat(pgdat)
5888 pgdat->min_slab_pages = 0;
5889
0ff38490 5890 for_each_zone(zone)
9705bea5
AK
5891 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5892 sysctl_min_slab_ratio) / 100;
6423aa81
JK
5893}
5894
e95d372c 5895static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 5896 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
5897{
5898 int rc;
5899
5900 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5901 if (rc)
5902 return rc;
5903
5904 setup_min_slab_ratio();
5905
0ff38490
CL
5906 return 0;
5907}
9614634f
CL
5908#endif
5909
1da177e4
LT
5910/*
5911 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5912 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5913 * whenever sysctl_lowmem_reserve_ratio changes.
5914 *
5915 * The reserve ratio obviously has absolutely no relation with the
41858966 5916 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5917 * if in function of the boot time zone sizes.
5918 */
e95d372c
KW
5919static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5920 int write, void *buffer, size_t *length, loff_t *ppos)
1da177e4 5921{
86aaf255
BH
5922 int i;
5923
8d65af78 5924 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
5925
5926 for (i = 0; i < MAX_NR_ZONES; i++) {
5927 if (sysctl_lowmem_reserve_ratio[i] < 1)
5928 sysctl_lowmem_reserve_ratio[i] = 0;
5929 }
5930
1da177e4
LT
5931 setup_per_zone_lowmem_reserve();
5932 return 0;
5933}
5934
8ad4b1fb 5935/*
74f44822
MG
5936 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5937 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 5938 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5939 */
e95d372c 5940static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
74f44822 5941 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5942{
5943 struct zone *zone;
74f44822 5944 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
5945 int ret;
5946
7cd2b0a3 5947 mutex_lock(&pcp_batch_high_lock);
74f44822 5948 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 5949
8d65af78 5950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5951 if (!write || ret < 0)
5952 goto out;
5953
5954 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
5955 if (percpu_pagelist_high_fraction &&
5956 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5957 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
5958 ret = -EINVAL;
5959 goto out;
5960 }
5961
5962 /* No change? */
74f44822 5963 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 5964 goto out;
c8e251fa 5965
cb1ef534 5966 for_each_populated_zone(zone)
74f44822 5967 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 5968out:
c8e251fa 5969 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5970 return ret;
8ad4b1fb
RS
5971}
5972
e95d372c
KW
5973static struct ctl_table page_alloc_sysctl_table[] = {
5974 {
5975 .procname = "min_free_kbytes",
5976 .data = &min_free_kbytes,
5977 .maxlen = sizeof(min_free_kbytes),
5978 .mode = 0644,
5979 .proc_handler = min_free_kbytes_sysctl_handler,
5980 .extra1 = SYSCTL_ZERO,
5981 },
5982 {
5983 .procname = "watermark_boost_factor",
5984 .data = &watermark_boost_factor,
5985 .maxlen = sizeof(watermark_boost_factor),
5986 .mode = 0644,
5987 .proc_handler = proc_dointvec_minmax,
5988 .extra1 = SYSCTL_ZERO,
5989 },
5990 {
5991 .procname = "watermark_scale_factor",
5992 .data = &watermark_scale_factor,
5993 .maxlen = sizeof(watermark_scale_factor),
5994 .mode = 0644,
5995 .proc_handler = watermark_scale_factor_sysctl_handler,
5996 .extra1 = SYSCTL_ONE,
5997 .extra2 = SYSCTL_THREE_THOUSAND,
5998 },
5999 {
6000 .procname = "percpu_pagelist_high_fraction",
6001 .data = &percpu_pagelist_high_fraction,
6002 .maxlen = sizeof(percpu_pagelist_high_fraction),
6003 .mode = 0644,
6004 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6005 .extra1 = SYSCTL_ZERO,
6006 },
6007 {
6008 .procname = "lowmem_reserve_ratio",
6009 .data = &sysctl_lowmem_reserve_ratio,
6010 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6011 .mode = 0644,
6012 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6013 },
6014#ifdef CONFIG_NUMA
6015 {
6016 .procname = "numa_zonelist_order",
6017 .data = &numa_zonelist_order,
6018 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6019 .mode = 0644,
6020 .proc_handler = numa_zonelist_order_handler,
6021 },
6022 {
6023 .procname = "min_unmapped_ratio",
6024 .data = &sysctl_min_unmapped_ratio,
6025 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6026 .mode = 0644,
6027 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6028 .extra1 = SYSCTL_ZERO,
6029 .extra2 = SYSCTL_ONE_HUNDRED,
6030 },
6031 {
6032 .procname = "min_slab_ratio",
6033 .data = &sysctl_min_slab_ratio,
6034 .maxlen = sizeof(sysctl_min_slab_ratio),
6035 .mode = 0644,
6036 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6037 .extra1 = SYSCTL_ZERO,
6038 .extra2 = SYSCTL_ONE_HUNDRED,
6039 },
6040#endif
6041 {}
6042};
6043
6044void __init page_alloc_sysctl_init(void)
6045{
6046 register_sysctl_init("vm", page_alloc_sysctl_table);
6047}
6048
8df995f6 6049#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
6050/* Usage: See admin-guide/dynamic-debug-howto.rst */
6051static void alloc_contig_dump_pages(struct list_head *page_list)
6052{
6053 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6054
6055 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6056 struct page *page;
6057
6058 dump_stack();
6059 list_for_each_entry(page, page_list, lru)
6060 dump_page(page, "migration failure");
6061 }
6062}
a1394bdd 6063
041d3a8c 6064/* [start, end) must belong to a single zone. */
b2c9e2fb 6065int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 6066 unsigned long start, unsigned long end)
041d3a8c
MN
6067{
6068 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 6069 unsigned int nr_reclaimed;
041d3a8c
MN
6070 unsigned long pfn = start;
6071 unsigned int tries = 0;
6072 int ret = 0;
8b94e0b8
JK
6073 struct migration_target_control mtc = {
6074 .nid = zone_to_nid(cc->zone),
6075 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6076 };
041d3a8c 6077
361a2a22 6078 lru_cache_disable();
041d3a8c 6079
bb13ffeb 6080 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6081 if (fatal_signal_pending(current)) {
6082 ret = -EINTR;
6083 break;
6084 }
6085
bb13ffeb
MG
6086 if (list_empty(&cc->migratepages)) {
6087 cc->nr_migratepages = 0;
c2ad7a1f
OS
6088 ret = isolate_migratepages_range(cc, pfn, end);
6089 if (ret && ret != -EAGAIN)
041d3a8c 6090 break;
c2ad7a1f 6091 pfn = cc->migrate_pfn;
041d3a8c
MN
6092 tries = 0;
6093 } else if (++tries == 5) {
c8e28b47 6094 ret = -EBUSY;
041d3a8c
MN
6095 break;
6096 }
6097
beb51eaa
MK
6098 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6099 &cc->migratepages);
6100 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6101
8b94e0b8 6102 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 6103 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
6104
6105 /*
6106 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6107 * to retry again over this error, so do the same here.
6108 */
6109 if (ret == -ENOMEM)
6110 break;
041d3a8c 6111 }
d479960e 6112
361a2a22 6113 lru_cache_enable();
2a6f5124 6114 if (ret < 0) {
3f913fc5 6115 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 6116 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
6117 putback_movable_pages(&cc->migratepages);
6118 return ret;
6119 }
6120 return 0;
041d3a8c
MN
6121}
6122
6123/**
6124 * alloc_contig_range() -- tries to allocate given range of pages
6125 * @start: start PFN to allocate
6126 * @end: one-past-the-last PFN to allocate
f0953a1b 6127 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
6128 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6129 * in range must have the same migratetype and it must
6130 * be either of the two.
ca96b625 6131 * @gfp_mask: GFP mask to use during compaction
041d3a8c 6132 *
11ac3e87
ZY
6133 * The PFN range does not have to be pageblock aligned. The PFN range must
6134 * belong to a single zone.
041d3a8c 6135 *
2c7452a0
MK
6136 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6137 * pageblocks in the range. Once isolated, the pageblocks should not
6138 * be modified by others.
041d3a8c 6139 *
a862f68a 6140 * Return: zero on success or negative error code. On success all
041d3a8c
MN
6141 * pages which PFN is in [start, end) are allocated for the caller and
6142 * need to be freed with free_contig_range().
6143 */
0815f3d8 6144int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 6145 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 6146{
041d3a8c 6147 unsigned long outer_start, outer_end;
b2c9e2fb 6148 int order;
d00181b9 6149 int ret = 0;
041d3a8c 6150
bb13ffeb
MG
6151 struct compact_control cc = {
6152 .nr_migratepages = 0,
6153 .order = -1,
6154 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6155 .mode = MIGRATE_SYNC,
bb13ffeb 6156 .ignore_skip_hint = true,
2583d671 6157 .no_set_skip_hint = true,
7dea19f9 6158 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 6159 .alloc_contig = true,
bb13ffeb
MG
6160 };
6161 INIT_LIST_HEAD(&cc.migratepages);
6162
041d3a8c
MN
6163 /*
6164 * What we do here is we mark all pageblocks in range as
6165 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6166 * have different sizes, and due to the way page allocator
b2c9e2fb 6167 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
6168 *
6169 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6170 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 6171 * we are interested in). This will put all the pages in
041d3a8c
MN
6172 * range back to page allocator as MIGRATE_ISOLATE.
6173 *
6174 * When this is done, we take the pages in range from page
6175 * allocator removing them from the buddy system. This way
6176 * page allocator will never consider using them.
6177 *
6178 * This lets us mark the pageblocks back as
6179 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6180 * aligned range but not in the unaligned, original range are
6181 * put back to page allocator so that buddy can use them.
6182 */
6183
6e263fff 6184 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 6185 if (ret)
b2c9e2fb 6186 goto done;
041d3a8c 6187
7612921f
VB
6188 drain_all_pages(cc.zone);
6189
8ef5849f
JK
6190 /*
6191 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
6192 * So, just fall through. test_pages_isolated() has a tracepoint
6193 * which will report the busy page.
6194 *
6195 * It is possible that busy pages could become available before
6196 * the call to test_pages_isolated, and the range will actually be
6197 * allocated. So, if we fall through be sure to clear ret so that
6198 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 6199 */
bb13ffeb 6200 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6201 if (ret && ret != -EBUSY)
041d3a8c 6202 goto done;
68d68ff6 6203 ret = 0;
041d3a8c
MN
6204
6205 /*
b2c9e2fb 6206 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
6207 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6208 * more, all pages in [start, end) are free in page allocator.
6209 * What we are going to do is to allocate all pages from
6210 * [start, end) (that is remove them from page allocator).
6211 *
6212 * The only problem is that pages at the beginning and at the
6213 * end of interesting range may be not aligned with pages that
6214 * page allocator holds, ie. they can be part of higher order
6215 * pages. Because of this, we reserve the bigger range and
6216 * once this is done free the pages we are not interested in.
6217 *
6218 * We don't have to hold zone->lock here because the pages are
6219 * isolated thus they won't get removed from buddy.
6220 */
6221
041d3a8c
MN
6222 order = 0;
6223 outer_start = start;
6224 while (!PageBuddy(pfn_to_page(outer_start))) {
23baf831 6225 if (++order > MAX_ORDER) {
8ef5849f
JK
6226 outer_start = start;
6227 break;
041d3a8c
MN
6228 }
6229 outer_start &= ~0UL << order;
6230 }
6231
8ef5849f 6232 if (outer_start != start) {
ab130f91 6233 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
6234
6235 /*
6236 * outer_start page could be small order buddy page and
6237 * it doesn't include start page. Adjust outer_start
6238 * in this case to report failed page properly
6239 * on tracepoint in test_pages_isolated()
6240 */
6241 if (outer_start + (1UL << order) <= start)
6242 outer_start = start;
6243 }
6244
041d3a8c 6245 /* Make sure the range is really isolated. */
756d25be 6246 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
6247 ret = -EBUSY;
6248 goto done;
6249 }
6250
49f223a9 6251 /* Grab isolated pages from freelists. */
bb13ffeb 6252 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6253 if (!outer_end) {
6254 ret = -EBUSY;
6255 goto done;
6256 }
6257
6258 /* Free head and tail (if any) */
6259 if (start != outer_start)
6260 free_contig_range(outer_start, start - outer_start);
6261 if (end != outer_end)
6262 free_contig_range(end, outer_end - end);
6263
6264done:
6e263fff 6265 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
6266 return ret;
6267}
255f5985 6268EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
6269
6270static int __alloc_contig_pages(unsigned long start_pfn,
6271 unsigned long nr_pages, gfp_t gfp_mask)
6272{
6273 unsigned long end_pfn = start_pfn + nr_pages;
6274
6275 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6276 gfp_mask);
6277}
6278
6279static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6280 unsigned long nr_pages)
6281{
6282 unsigned long i, end_pfn = start_pfn + nr_pages;
6283 struct page *page;
6284
6285 for (i = start_pfn; i < end_pfn; i++) {
6286 page = pfn_to_online_page(i);
6287 if (!page)
6288 return false;
6289
6290 if (page_zone(page) != z)
6291 return false;
6292
6293 if (PageReserved(page))
4d73ba5f
MG
6294 return false;
6295
6296 if (PageHuge(page))
5e27a2df 6297 return false;
5e27a2df
AK
6298 }
6299 return true;
6300}
6301
6302static bool zone_spans_last_pfn(const struct zone *zone,
6303 unsigned long start_pfn, unsigned long nr_pages)
6304{
6305 unsigned long last_pfn = start_pfn + nr_pages - 1;
6306
6307 return zone_spans_pfn(zone, last_pfn);
6308}
6309
6310/**
6311 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6312 * @nr_pages: Number of contiguous pages to allocate
6313 * @gfp_mask: GFP mask to limit search and used during compaction
6314 * @nid: Target node
6315 * @nodemask: Mask for other possible nodes
6316 *
6317 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6318 * on an applicable zonelist to find a contiguous pfn range which can then be
6319 * tried for allocation with alloc_contig_range(). This routine is intended
6320 * for allocation requests which can not be fulfilled with the buddy allocator.
6321 *
6322 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
6323 * power of two, then allocated range is also guaranteed to be aligned to same
6324 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
6325 *
6326 * Allocated pages can be freed with free_contig_range() or by manually calling
6327 * __free_page() on each allocated page.
6328 *
6329 * Return: pointer to contiguous pages on success, or NULL if not successful.
6330 */
6331struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6332 int nid, nodemask_t *nodemask)
6333{
6334 unsigned long ret, pfn, flags;
6335 struct zonelist *zonelist;
6336 struct zone *zone;
6337 struct zoneref *z;
6338
6339 zonelist = node_zonelist(nid, gfp_mask);
6340 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6341 gfp_zone(gfp_mask), nodemask) {
6342 spin_lock_irqsave(&zone->lock, flags);
6343
6344 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6345 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6346 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6347 /*
6348 * We release the zone lock here because
6349 * alloc_contig_range() will also lock the zone
6350 * at some point. If there's an allocation
6351 * spinning on this lock, it may win the race
6352 * and cause alloc_contig_range() to fail...
6353 */
6354 spin_unlock_irqrestore(&zone->lock, flags);
6355 ret = __alloc_contig_pages(pfn, nr_pages,
6356 gfp_mask);
6357 if (!ret)
6358 return pfn_to_page(pfn);
6359 spin_lock_irqsave(&zone->lock, flags);
6360 }
6361 pfn += nr_pages;
6362 }
6363 spin_unlock_irqrestore(&zone->lock, flags);
6364 }
6365 return NULL;
6366}
4eb0716e 6367#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 6368
78fa5150 6369void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 6370{
78fa5150 6371 unsigned long count = 0;
bcc2b02f
MS
6372
6373 for (; nr_pages--; pfn++) {
6374 struct page *page = pfn_to_page(pfn);
6375
6376 count += page_count(page) != 1;
6377 __free_page(page);
6378 }
78fa5150 6379 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 6380}
255f5985 6381EXPORT_SYMBOL(free_contig_range);
041d3a8c 6382
ec6e8c7e
VB
6383/*
6384 * Effectively disable pcplists for the zone by setting the high limit to 0
6385 * and draining all cpus. A concurrent page freeing on another CPU that's about
6386 * to put the page on pcplist will either finish before the drain and the page
6387 * will be drained, or observe the new high limit and skip the pcplist.
6388 *
6389 * Must be paired with a call to zone_pcp_enable().
6390 */
6391void zone_pcp_disable(struct zone *zone)
6392{
6393 mutex_lock(&pcp_batch_high_lock);
6394 __zone_set_pageset_high_and_batch(zone, 0, 1);
6395 __drain_all_pages(zone, true);
6396}
6397
6398void zone_pcp_enable(struct zone *zone)
6399{
6400 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6401 mutex_unlock(&pcp_batch_high_lock);
6402}
6403
340175b7
JL
6404void zone_pcp_reset(struct zone *zone)
6405{
5a883813 6406 int cpu;
28f836b6 6407 struct per_cpu_zonestat *pzstats;
340175b7 6408
28f836b6 6409 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 6410 for_each_online_cpu(cpu) {
28f836b6
MG
6411 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6412 drain_zonestat(zone, pzstats);
5a883813 6413 }
28f836b6 6414 free_percpu(zone->per_cpu_pageset);
28f836b6 6415 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
6416 if (zone->per_cpu_zonestats != &boot_zonestats) {
6417 free_percpu(zone->per_cpu_zonestats);
6418 zone->per_cpu_zonestats = &boot_zonestats;
6419 }
340175b7 6420 }
340175b7
JL
6421}
6422
6dcd73d7 6423#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 6424/*
257bea71
DH
6425 * All pages in the range must be in a single zone, must not contain holes,
6426 * must span full sections, and must be isolated before calling this function.
0c0e6195 6427 */
257bea71 6428void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 6429{
257bea71 6430 unsigned long pfn = start_pfn;
0c0e6195
KH
6431 struct page *page;
6432 struct zone *zone;
0ee5f4f3 6433 unsigned int order;
0c0e6195 6434 unsigned long flags;
5557c766 6435
2d070eab 6436 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
6437 zone = page_zone(pfn_to_page(pfn));
6438 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 6439 while (pfn < end_pfn) {
0c0e6195 6440 page = pfn_to_page(pfn);
b023f468
WC
6441 /*
6442 * The HWPoisoned page may be not in buddy system, and
6443 * page_count() is not 0.
6444 */
6445 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6446 pfn++;
b023f468
WC
6447 continue;
6448 }
aa218795
DH
6449 /*
6450 * At this point all remaining PageOffline() pages have a
6451 * reference count of 0 and can simply be skipped.
6452 */
6453 if (PageOffline(page)) {
6454 BUG_ON(page_count(page));
6455 BUG_ON(PageBuddy(page));
6456 pfn++;
aa218795
DH
6457 continue;
6458 }
b023f468 6459
0c0e6195
KH
6460 BUG_ON(page_count(page));
6461 BUG_ON(!PageBuddy(page));
ab130f91 6462 order = buddy_order(page);
6ab01363 6463 del_page_from_free_list(page, zone, order);
0c0e6195
KH
6464 pfn += (1 << order);
6465 }
6466 spin_unlock_irqrestore(&zone->lock, flags);
6467}
6468#endif
8d22ba1b 6469
8446b59b
ED
6470/*
6471 * This function returns a stable result only if called under zone lock.
6472 */
8d22ba1b
WF
6473bool is_free_buddy_page(struct page *page)
6474{
8d22ba1b 6475 unsigned long pfn = page_to_pfn(page);
7aeb09f9 6476 unsigned int order;
8d22ba1b 6477
23baf831 6478 for (order = 0; order <= MAX_ORDER; order++) {
8d22ba1b
WF
6479 struct page *page_head = page - (pfn & ((1 << order) - 1));
6480
8446b59b
ED
6481 if (PageBuddy(page_head) &&
6482 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
6483 break;
6484 }
8d22ba1b 6485
23baf831 6486 return order <= MAX_ORDER;
8d22ba1b 6487}
a581865e 6488EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
6489
6490#ifdef CONFIG_MEMORY_FAILURE
6491/*
06be6ff3
OS
6492 * Break down a higher-order page in sub-pages, and keep our target out of
6493 * buddy allocator.
d4ae9916 6494 */
06be6ff3
OS
6495static void break_down_buddy_pages(struct zone *zone, struct page *page,
6496 struct page *target, int low, int high,
6497 int migratetype)
6498{
6499 unsigned long size = 1 << high;
6500 struct page *current_buddy, *next_page;
6501
6502 while (high > low) {
6503 high--;
6504 size >>= 1;
6505
6506 if (target >= &page[size]) {
6507 next_page = page + size;
6508 current_buddy = page;
6509 } else {
6510 next_page = page;
6511 current_buddy = page + size;
6512 }
6513
6514 if (set_page_guard(zone, current_buddy, high, migratetype))
6515 continue;
6516
6517 if (current_buddy != target) {
6518 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 6519 set_buddy_order(current_buddy, high);
06be6ff3
OS
6520 page = next_page;
6521 }
6522 }
6523}
6524
6525/*
6526 * Take a page that will be marked as poisoned off the buddy allocator.
6527 */
6528bool take_page_off_buddy(struct page *page)
d4ae9916
NH
6529{
6530 struct zone *zone = page_zone(page);
6531 unsigned long pfn = page_to_pfn(page);
6532 unsigned long flags;
6533 unsigned int order;
06be6ff3 6534 bool ret = false;
d4ae9916
NH
6535
6536 spin_lock_irqsave(&zone->lock, flags);
23baf831 6537 for (order = 0; order <= MAX_ORDER; order++) {
d4ae9916 6538 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 6539 int page_order = buddy_order(page_head);
d4ae9916 6540
ab130f91 6541 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
6542 unsigned long pfn_head = page_to_pfn(page_head);
6543 int migratetype = get_pfnblock_migratetype(page_head,
6544 pfn_head);
6545
ab130f91 6546 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 6547 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 6548 page_order, migratetype);
bf181c58 6549 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
6550 if (!is_migrate_isolate(migratetype))
6551 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 6552 ret = true;
d4ae9916
NH
6553 break;
6554 }
06be6ff3
OS
6555 if (page_count(page_head) > 0)
6556 break;
d4ae9916
NH
6557 }
6558 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 6559 return ret;
d4ae9916 6560}
bf181c58
NH
6561
6562/*
6563 * Cancel takeoff done by take_page_off_buddy().
6564 */
6565bool put_page_back_buddy(struct page *page)
6566{
6567 struct zone *zone = page_zone(page);
6568 unsigned long pfn = page_to_pfn(page);
6569 unsigned long flags;
6570 int migratetype = get_pfnblock_migratetype(page, pfn);
6571 bool ret = false;
6572
6573 spin_lock_irqsave(&zone->lock, flags);
6574 if (put_page_testzero(page)) {
6575 ClearPageHWPoisonTakenOff(page);
6576 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6577 if (TestClearPageHWPoison(page)) {
bf181c58
NH
6578 ret = true;
6579 }
6580 }
6581 spin_unlock_irqrestore(&zone->lock, flags);
6582
6583 return ret;
6584}
d4ae9916 6585#endif
62b31070
BH
6586
6587#ifdef CONFIG_ZONE_DMA
6588bool has_managed_dma(void)
6589{
6590 struct pglist_data *pgdat;
6591
6592 for_each_online_pgdat(pgdat) {
6593 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6594
6595 if (managed_zone(zone))
6596 return true;
6597 }
6598 return false;
6599}
6600#endif /* CONFIG_ZONE_DMA */
dcdfdd40
KS
6601
6602#ifdef CONFIG_UNACCEPTED_MEMORY
6603
6604/* Counts number of zones with unaccepted pages. */
6605static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6606
6607static bool lazy_accept = true;
6608
6609static int __init accept_memory_parse(char *p)
6610{
6611 if (!strcmp(p, "lazy")) {
6612 lazy_accept = true;
6613 return 0;
6614 } else if (!strcmp(p, "eager")) {
6615 lazy_accept = false;
6616 return 0;
6617 } else {
6618 return -EINVAL;
6619 }
6620}
6621early_param("accept_memory", accept_memory_parse);
6622
6623static bool page_contains_unaccepted(struct page *page, unsigned int order)
6624{
6625 phys_addr_t start = page_to_phys(page);
6626 phys_addr_t end = start + (PAGE_SIZE << order);
6627
6628 return range_contains_unaccepted_memory(start, end);
6629}
6630
6631static void accept_page(struct page *page, unsigned int order)
6632{
6633 phys_addr_t start = page_to_phys(page);
6634
6635 accept_memory(start, start + (PAGE_SIZE << order));
6636}
6637
6638static bool try_to_accept_memory_one(struct zone *zone)
6639{
6640 unsigned long flags;
6641 struct page *page;
6642 bool last;
6643
6644 if (list_empty(&zone->unaccepted_pages))
6645 return false;
6646
6647 spin_lock_irqsave(&zone->lock, flags);
6648 page = list_first_entry_or_null(&zone->unaccepted_pages,
6649 struct page, lru);
6650 if (!page) {
6651 spin_unlock_irqrestore(&zone->lock, flags);
6652 return false;
6653 }
6654
6655 list_del(&page->lru);
6656 last = list_empty(&zone->unaccepted_pages);
6657
6658 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6659 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6660 spin_unlock_irqrestore(&zone->lock, flags);
6661
6662 accept_page(page, MAX_ORDER);
6663
6664 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6665
6666 if (last)
6667 static_branch_dec(&zones_with_unaccepted_pages);
6668
6669 return true;
6670}
6671
6672static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6673{
6674 long to_accept;
6675 int ret = false;
6676
6677 /* How much to accept to get to high watermark? */
6678 to_accept = high_wmark_pages(zone) -
6679 (zone_page_state(zone, NR_FREE_PAGES) -
6680 __zone_watermark_unusable_free(zone, order, 0));
6681
6682 /* Accept at least one page */
6683 do {
6684 if (!try_to_accept_memory_one(zone))
6685 break;
6686 ret = true;
6687 to_accept -= MAX_ORDER_NR_PAGES;
6688 } while (to_accept > 0);
6689
6690 return ret;
6691}
6692
6693static inline bool has_unaccepted_memory(void)
6694{
6695 return static_branch_unlikely(&zones_with_unaccepted_pages);
6696}
6697
6698static bool __free_unaccepted(struct page *page)
6699{
6700 struct zone *zone = page_zone(page);
6701 unsigned long flags;
6702 bool first = false;
6703
6704 if (!lazy_accept)
6705 return false;
6706
6707 spin_lock_irqsave(&zone->lock, flags);
6708 first = list_empty(&zone->unaccepted_pages);
6709 list_add_tail(&page->lru, &zone->unaccepted_pages);
6710 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6711 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6712 spin_unlock_irqrestore(&zone->lock, flags);
6713
6714 if (first)
6715 static_branch_inc(&zones_with_unaccepted_pages);
6716
6717 return true;
6718}
6719
6720#else
6721
6722static bool page_contains_unaccepted(struct page *page, unsigned int order)
6723{
6724 return false;
6725}
6726
6727static void accept_page(struct page *page, unsigned int order)
6728{
6729}
6730
6731static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6732{
6733 return false;
6734}
6735
6736static inline bool has_unaccepted_memory(void)
6737{
6738 return false;
6739}
6740
6741static bool __free_unaccepted(struct page *page)
6742{
6743 BUILD_BUG();
6744 return false;
6745}
6746
6747#endif /* CONFIG_UNACCEPTED_MEMORY */
This page took 3.967627 seconds and 4 git commands to generate.