]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
9608703e | 23 | * inode->i_rwsem (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
730633f0 JK |
25 | * mapping->invalidate_lock (in filemap_fault) |
26 | * page->flags PG_locked (lock_page) * (see hugetlbfs below) | |
27 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) | |
28 | * mapping->i_mmap_rwsem | |
29 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
30 | * anon_vma->rwsem | |
31 | * mm->page_table_lock or pte_lock | |
32 | * swap_lock (in swap_duplicate, swap_info_get) | |
33 | * mmlist_lock (in mmput, drain_mmlist and others) | |
e621900a MWO |
34 | * mapping->private_lock (in block_dirty_folio) |
35 | * folio_lock_memcg move_lock (in block_dirty_folio) | |
730633f0 | 36 | * i_pages lock (widely used) |
e809c3fe | 37 | * lruvec->lru_lock (in folio_lruvec_lock_irq) |
730633f0 JK |
38 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
39 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
40 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
41 | * i_pages lock (widely used, in set_page_dirty, | |
42 | * in arch-dependent flush_dcache_mmap_lock, | |
43 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 44 | * |
9608703e | 45 | * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) |
9b679320 | 46 | * ->tasklist_lock |
6a46079c | 47 | * pte map lock |
c0d0381a MK |
48 | * |
49 | * * hugetlbfs PageHuge() pages take locks in this order: | |
50 | * mapping->i_mmap_rwsem | |
51 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
52 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
53 | */ |
54 | ||
55 | #include <linux/mm.h> | |
6e84f315 | 56 | #include <linux/sched/mm.h> |
29930025 | 57 | #include <linux/sched/task.h> |
1da177e4 LT |
58 | #include <linux/pagemap.h> |
59 | #include <linux/swap.h> | |
60 | #include <linux/swapops.h> | |
61 | #include <linux/slab.h> | |
62 | #include <linux/init.h> | |
5ad64688 | 63 | #include <linux/ksm.h> |
1da177e4 LT |
64 | #include <linux/rmap.h> |
65 | #include <linux/rcupdate.h> | |
b95f1b31 | 66 | #include <linux/export.h> |
8a9f3ccd | 67 | #include <linux/memcontrol.h> |
cddb8a5c | 68 | #include <linux/mmu_notifier.h> |
64cdd548 | 69 | #include <linux/migrate.h> |
0fe6e20b | 70 | #include <linux/hugetlb.h> |
444f84fd | 71 | #include <linux/huge_mm.h> |
ef5d437f | 72 | #include <linux/backing-dev.h> |
33c3fc71 | 73 | #include <linux/page_idle.h> |
a5430dda | 74 | #include <linux/memremap.h> |
bce73e48 | 75 | #include <linux/userfaultfd_k.h> |
999dad82 | 76 | #include <linux/mm_inline.h> |
1da177e4 LT |
77 | |
78 | #include <asm/tlbflush.h> | |
79 | ||
4cc79b33 | 80 | #define CREATE_TRACE_POINTS |
72b252ae | 81 | #include <trace/events/tlb.h> |
4cc79b33 | 82 | #include <trace/events/migrate.h> |
72b252ae | 83 | |
b291f000 NP |
84 | #include "internal.h" |
85 | ||
fdd2e5f8 | 86 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 87 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
88 | |
89 | static inline struct anon_vma *anon_vma_alloc(void) | |
90 | { | |
01d8b20d PZ |
91 | struct anon_vma *anon_vma; |
92 | ||
93 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
94 | if (anon_vma) { | |
95 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
96 | anon_vma->degree = 1; /* Reference for first vma */ |
97 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
98 | /* |
99 | * Initialise the anon_vma root to point to itself. If called | |
100 | * from fork, the root will be reset to the parents anon_vma. | |
101 | */ | |
102 | anon_vma->root = anon_vma; | |
103 | } | |
104 | ||
105 | return anon_vma; | |
fdd2e5f8 AB |
106 | } |
107 | ||
01d8b20d | 108 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 109 | { |
01d8b20d | 110 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
111 | |
112 | /* | |
2f031c6f | 113 | * Synchronize against folio_lock_anon_vma_read() such that |
88c22088 PZ |
114 | * we can safely hold the lock without the anon_vma getting |
115 | * freed. | |
116 | * | |
117 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
118 | * put_anon_vma() against the acquire barrier implied by | |
2f031c6f | 119 | * down_read_trylock() from folio_lock_anon_vma_read(). This orders: |
88c22088 | 120 | * |
2f031c6f | 121 | * folio_lock_anon_vma_read() VS put_anon_vma() |
4fc3f1d6 | 122 | * down_read_trylock() atomic_dec_and_test() |
88c22088 | 123 | * LOCK MB |
4fc3f1d6 | 124 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
125 | * |
126 | * LOCK should suffice since the actual taking of the lock must | |
127 | * happen _before_ what follows. | |
128 | */ | |
7f39dda9 | 129 | might_sleep(); |
5a505085 | 130 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 131 | anon_vma_lock_write(anon_vma); |
08b52706 | 132 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
133 | } |
134 | ||
fdd2e5f8 AB |
135 | kmem_cache_free(anon_vma_cachep, anon_vma); |
136 | } | |
1da177e4 | 137 | |
dd34739c | 138 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 139 | { |
dd34739c | 140 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
141 | } |
142 | ||
e574b5fd | 143 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
144 | { |
145 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
146 | } | |
147 | ||
6583a843 KC |
148 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
149 | struct anon_vma_chain *avc, | |
150 | struct anon_vma *anon_vma) | |
151 | { | |
152 | avc->vma = vma; | |
153 | avc->anon_vma = anon_vma; | |
154 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 155 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
156 | } |
157 | ||
d9d332e0 | 158 | /** |
d5a187da | 159 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
160 | * @vma: the memory region in question |
161 | * | |
162 | * This makes sure the memory mapping described by 'vma' has | |
163 | * an 'anon_vma' attached to it, so that we can associate the | |
164 | * anonymous pages mapped into it with that anon_vma. | |
165 | * | |
d5a187da VB |
166 | * The common case will be that we already have one, which |
167 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 168 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
169 | * can re-use the anon_vma from (very common when the only |
170 | * reason for splitting a vma has been mprotect()), or we | |
171 | * allocate a new one. | |
172 | * | |
173 | * Anon-vma allocations are very subtle, because we may have | |
2f031c6f | 174 | * optimistically looked up an anon_vma in folio_lock_anon_vma_read() |
aaf1f990 | 175 | * and that may actually touch the rwsem even in the newly |
d9d332e0 LT |
176 | * allocated vma (it depends on RCU to make sure that the |
177 | * anon_vma isn't actually destroyed). | |
178 | * | |
179 | * As a result, we need to do proper anon_vma locking even | |
180 | * for the new allocation. At the same time, we do not want | |
181 | * to do any locking for the common case of already having | |
182 | * an anon_vma. | |
183 | * | |
c1e8d7c6 | 184 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 185 | */ |
d5a187da | 186 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 187 | { |
d5a187da VB |
188 | struct mm_struct *mm = vma->vm_mm; |
189 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 190 | struct anon_vma_chain *avc; |
1da177e4 LT |
191 | |
192 | might_sleep(); | |
1da177e4 | 193 | |
d5a187da VB |
194 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
195 | if (!avc) | |
196 | goto out_enomem; | |
197 | ||
198 | anon_vma = find_mergeable_anon_vma(vma); | |
199 | allocated = NULL; | |
200 | if (!anon_vma) { | |
201 | anon_vma = anon_vma_alloc(); | |
202 | if (unlikely(!anon_vma)) | |
203 | goto out_enomem_free_avc; | |
204 | allocated = anon_vma; | |
205 | } | |
5beb4930 | 206 | |
d5a187da VB |
207 | anon_vma_lock_write(anon_vma); |
208 | /* page_table_lock to protect against threads */ | |
209 | spin_lock(&mm->page_table_lock); | |
210 | if (likely(!vma->anon_vma)) { | |
211 | vma->anon_vma = anon_vma; | |
212 | anon_vma_chain_link(vma, avc, anon_vma); | |
213 | /* vma reference or self-parent link for new root */ | |
214 | anon_vma->degree++; | |
d9d332e0 | 215 | allocated = NULL; |
d5a187da VB |
216 | avc = NULL; |
217 | } | |
218 | spin_unlock(&mm->page_table_lock); | |
219 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 220 | |
d5a187da VB |
221 | if (unlikely(allocated)) |
222 | put_anon_vma(allocated); | |
223 | if (unlikely(avc)) | |
224 | anon_vma_chain_free(avc); | |
31f2b0eb | 225 | |
1da177e4 | 226 | return 0; |
5beb4930 RR |
227 | |
228 | out_enomem_free_avc: | |
229 | anon_vma_chain_free(avc); | |
230 | out_enomem: | |
231 | return -ENOMEM; | |
1da177e4 LT |
232 | } |
233 | ||
bb4aa396 LT |
234 | /* |
235 | * This is a useful helper function for locking the anon_vma root as | |
236 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
237 | * have the same vma. | |
238 | * | |
239 | * Such anon_vma's should have the same root, so you'd expect to see | |
240 | * just a single mutex_lock for the whole traversal. | |
241 | */ | |
242 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
243 | { | |
244 | struct anon_vma *new_root = anon_vma->root; | |
245 | if (new_root != root) { | |
246 | if (WARN_ON_ONCE(root)) | |
5a505085 | 247 | up_write(&root->rwsem); |
bb4aa396 | 248 | root = new_root; |
5a505085 | 249 | down_write(&root->rwsem); |
bb4aa396 LT |
250 | } |
251 | return root; | |
252 | } | |
253 | ||
254 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
255 | { | |
256 | if (root) | |
5a505085 | 257 | up_write(&root->rwsem); |
bb4aa396 LT |
258 | } |
259 | ||
5beb4930 RR |
260 | /* |
261 | * Attach the anon_vmas from src to dst. | |
262 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 263 | * |
cb152a1a | 264 | * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and |
47b390d2 WY |
265 | * anon_vma_fork(). The first three want an exact copy of src, while the last |
266 | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | |
267 | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | |
268 | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | |
269 | * | |
270 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
271 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
272 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
273 | * case of constantly forking task. On the other hand, an anon_vma with more | |
274 | * than one child isn't reused even if there was no alive vma, thus rmap | |
275 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
276 | * searches where page is mapped. | |
5beb4930 RR |
277 | */ |
278 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 279 | { |
5beb4930 | 280 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 281 | struct anon_vma *root = NULL; |
5beb4930 | 282 | |
646d87b4 | 283 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
284 | struct anon_vma *anon_vma; |
285 | ||
dd34739c LT |
286 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
287 | if (unlikely(!avc)) { | |
288 | unlock_anon_vma_root(root); | |
289 | root = NULL; | |
290 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
291 | if (!avc) | |
292 | goto enomem_failure; | |
293 | } | |
bb4aa396 LT |
294 | anon_vma = pavc->anon_vma; |
295 | root = lock_anon_vma_root(root, anon_vma); | |
296 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
297 | |
298 | /* | |
299 | * Reuse existing anon_vma if its degree lower than two, | |
300 | * that means it has no vma and only one anon_vma child. | |
301 | * | |
dd062302 | 302 | * Do not choose parent anon_vma, otherwise first child |
7a3ef208 KK |
303 | * will always reuse it. Root anon_vma is never reused: |
304 | * it has self-parent reference and at least one child. | |
305 | */ | |
47b390d2 WY |
306 | if (!dst->anon_vma && src->anon_vma && |
307 | anon_vma != src->anon_vma && anon_vma->degree < 2) | |
7a3ef208 | 308 | dst->anon_vma = anon_vma; |
5beb4930 | 309 | } |
7a3ef208 KK |
310 | if (dst->anon_vma) |
311 | dst->anon_vma->degree++; | |
bb4aa396 | 312 | unlock_anon_vma_root(root); |
5beb4930 | 313 | return 0; |
1da177e4 | 314 | |
5beb4930 | 315 | enomem_failure: |
3fe89b3e LY |
316 | /* |
317 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
318 | * decremented in unlink_anon_vmas(). | |
319 | * We can safely do this because callers of anon_vma_clone() don't care | |
320 | * about dst->anon_vma if anon_vma_clone() failed. | |
321 | */ | |
322 | dst->anon_vma = NULL; | |
5beb4930 RR |
323 | unlink_anon_vmas(dst); |
324 | return -ENOMEM; | |
1da177e4 LT |
325 | } |
326 | ||
5beb4930 RR |
327 | /* |
328 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
329 | * the corresponding VMA in the parent process is attached to. | |
330 | * Returns 0 on success, non-zero on failure. | |
331 | */ | |
332 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 333 | { |
5beb4930 RR |
334 | struct anon_vma_chain *avc; |
335 | struct anon_vma *anon_vma; | |
c4ea95d7 | 336 | int error; |
1da177e4 | 337 | |
5beb4930 RR |
338 | /* Don't bother if the parent process has no anon_vma here. */ |
339 | if (!pvma->anon_vma) | |
340 | return 0; | |
341 | ||
7a3ef208 KK |
342 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
343 | vma->anon_vma = NULL; | |
344 | ||
5beb4930 RR |
345 | /* |
346 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
347 | * so rmap can find non-COWed pages in child processes. | |
348 | */ | |
c4ea95d7 DF |
349 | error = anon_vma_clone(vma, pvma); |
350 | if (error) | |
351 | return error; | |
5beb4930 | 352 | |
7a3ef208 KK |
353 | /* An existing anon_vma has been reused, all done then. */ |
354 | if (vma->anon_vma) | |
355 | return 0; | |
356 | ||
5beb4930 RR |
357 | /* Then add our own anon_vma. */ |
358 | anon_vma = anon_vma_alloc(); | |
359 | if (!anon_vma) | |
360 | goto out_error; | |
dd34739c | 361 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
362 | if (!avc) |
363 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
364 | |
365 | /* | |
aaf1f990 | 366 | * The root anon_vma's rwsem is the lock actually used when we |
5c341ee1 RR |
367 | * lock any of the anon_vmas in this anon_vma tree. |
368 | */ | |
369 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 370 | anon_vma->parent = pvma->anon_vma; |
76545066 | 371 | /* |
01d8b20d PZ |
372 | * With refcounts, an anon_vma can stay around longer than the |
373 | * process it belongs to. The root anon_vma needs to be pinned until | |
374 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
375 | */ |
376 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
377 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
378 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 379 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 380 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 381 | anon_vma->parent->degree++; |
08b52706 | 382 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
383 | |
384 | return 0; | |
385 | ||
386 | out_error_free_anon_vma: | |
01d8b20d | 387 | put_anon_vma(anon_vma); |
5beb4930 | 388 | out_error: |
4946d54c | 389 | unlink_anon_vmas(vma); |
5beb4930 | 390 | return -ENOMEM; |
1da177e4 LT |
391 | } |
392 | ||
5beb4930 RR |
393 | void unlink_anon_vmas(struct vm_area_struct *vma) |
394 | { | |
395 | struct anon_vma_chain *avc, *next; | |
eee2acba | 396 | struct anon_vma *root = NULL; |
5beb4930 | 397 | |
5c341ee1 RR |
398 | /* |
399 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
400 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
401 | */ | |
5beb4930 | 402 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
403 | struct anon_vma *anon_vma = avc->anon_vma; |
404 | ||
405 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 406 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
407 | |
408 | /* | |
409 | * Leave empty anon_vmas on the list - we'll need | |
410 | * to free them outside the lock. | |
411 | */ | |
f808c13f | 412 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 413 | anon_vma->parent->degree--; |
eee2acba | 414 | continue; |
7a3ef208 | 415 | } |
eee2acba PZ |
416 | |
417 | list_del(&avc->same_vma); | |
418 | anon_vma_chain_free(avc); | |
419 | } | |
ee8ab190 | 420 | if (vma->anon_vma) { |
7a3ef208 | 421 | vma->anon_vma->degree--; |
ee8ab190 LX |
422 | |
423 | /* | |
424 | * vma would still be needed after unlink, and anon_vma will be prepared | |
425 | * when handle fault. | |
426 | */ | |
427 | vma->anon_vma = NULL; | |
428 | } | |
eee2acba PZ |
429 | unlock_anon_vma_root(root); |
430 | ||
431 | /* | |
432 | * Iterate the list once more, it now only contains empty and unlinked | |
433 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 434 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
435 | */ |
436 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
437 | struct anon_vma *anon_vma = avc->anon_vma; | |
438 | ||
e4c5800a | 439 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
440 | put_anon_vma(anon_vma); |
441 | ||
5beb4930 RR |
442 | list_del(&avc->same_vma); |
443 | anon_vma_chain_free(avc); | |
444 | } | |
445 | } | |
446 | ||
51cc5068 | 447 | static void anon_vma_ctor(void *data) |
1da177e4 | 448 | { |
a35afb83 | 449 | struct anon_vma *anon_vma = data; |
1da177e4 | 450 | |
5a505085 | 451 | init_rwsem(&anon_vma->rwsem); |
83813267 | 452 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 453 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
454 | } |
455 | ||
456 | void __init anon_vma_init(void) | |
457 | { | |
458 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 459 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
460 | anon_vma_ctor); |
461 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
462 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
463 | } |
464 | ||
465 | /* | |
6111e4ca PZ |
466 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
467 | * | |
468 | * Since there is no serialization what so ever against page_remove_rmap() | |
ad8a20cf ML |
469 | * the best this function can do is return a refcount increased anon_vma |
470 | * that might have been relevant to this page. | |
6111e4ca PZ |
471 | * |
472 | * The page might have been remapped to a different anon_vma or the anon_vma | |
473 | * returned may already be freed (and even reused). | |
474 | * | |
bc658c96 PZ |
475 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
476 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
477 | * ensure that any anon_vma obtained from the page will still be valid for as | |
478 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
479 | * | |
6111e4ca PZ |
480 | * All users of this function must be very careful when walking the anon_vma |
481 | * chain and verify that the page in question is indeed mapped in it | |
482 | * [ something equivalent to page_mapped_in_vma() ]. | |
483 | * | |
091e4299 MC |
484 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
485 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
486 | * if there is a mapcount, we can dereference the anon_vma after observing | |
487 | * those. | |
1da177e4 | 488 | */ |
746b18d4 | 489 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 490 | { |
746b18d4 | 491 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
492 | unsigned long anon_mapping; |
493 | ||
494 | rcu_read_lock(); | |
4db0c3c2 | 495 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 496 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
497 | goto out; |
498 | if (!page_mapped(page)) | |
499 | goto out; | |
500 | ||
501 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
502 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
503 | anon_vma = NULL; | |
504 | goto out; | |
505 | } | |
f1819427 HD |
506 | |
507 | /* | |
508 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
509 | * freed. But if it has been unmapped, we have no security against the |
510 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 511 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 512 | * above cannot corrupt). |
f1819427 | 513 | */ |
746b18d4 | 514 | if (!page_mapped(page)) { |
7f39dda9 | 515 | rcu_read_unlock(); |
746b18d4 | 516 | put_anon_vma(anon_vma); |
7f39dda9 | 517 | return NULL; |
746b18d4 | 518 | } |
1da177e4 LT |
519 | out: |
520 | rcu_read_unlock(); | |
746b18d4 PZ |
521 | |
522 | return anon_vma; | |
523 | } | |
524 | ||
88c22088 PZ |
525 | /* |
526 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
527 | * | |
528 | * Its a little more complex as it tries to keep the fast path to a single | |
529 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
530 | * reference like with page_get_anon_vma() and then block on the mutex. | |
531 | */ | |
9595d769 | 532 | struct anon_vma *folio_lock_anon_vma_read(struct folio *folio) |
746b18d4 | 533 | { |
88c22088 | 534 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 535 | struct anon_vma *root_anon_vma; |
88c22088 | 536 | unsigned long anon_mapping; |
746b18d4 | 537 | |
88c22088 | 538 | rcu_read_lock(); |
9595d769 | 539 | anon_mapping = (unsigned long)READ_ONCE(folio->mapping); |
88c22088 PZ |
540 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
541 | goto out; | |
9595d769 | 542 | if (!folio_mapped(folio)) |
88c22088 PZ |
543 | goto out; |
544 | ||
545 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 546 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 547 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 548 | /* |
9595d769 | 549 | * If the folio is still mapped, then this anon_vma is still |
eee0f252 | 550 | * its anon_vma, and holding the mutex ensures that it will |
bc658c96 | 551 | * not go away, see anon_vma_free(). |
88c22088 | 552 | */ |
9595d769 | 553 | if (!folio_mapped(folio)) { |
4fc3f1d6 | 554 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
555 | anon_vma = NULL; |
556 | } | |
557 | goto out; | |
558 | } | |
746b18d4 | 559 | |
88c22088 PZ |
560 | /* trylock failed, we got to sleep */ |
561 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
562 | anon_vma = NULL; | |
563 | goto out; | |
564 | } | |
565 | ||
9595d769 | 566 | if (!folio_mapped(folio)) { |
7f39dda9 | 567 | rcu_read_unlock(); |
88c22088 | 568 | put_anon_vma(anon_vma); |
7f39dda9 | 569 | return NULL; |
88c22088 PZ |
570 | } |
571 | ||
572 | /* we pinned the anon_vma, its safe to sleep */ | |
573 | rcu_read_unlock(); | |
4fc3f1d6 | 574 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
575 | |
576 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
577 | /* | |
578 | * Oops, we held the last refcount, release the lock | |
579 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 580 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 581 | */ |
4fc3f1d6 | 582 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
583 | __put_anon_vma(anon_vma); |
584 | anon_vma = NULL; | |
585 | } | |
586 | ||
587 | return anon_vma; | |
588 | ||
589 | out: | |
590 | rcu_read_unlock(); | |
746b18d4 | 591 | return anon_vma; |
34bbd704 ON |
592 | } |
593 | ||
4fc3f1d6 | 594 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 595 | { |
4fc3f1d6 | 596 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
597 | } |
598 | ||
72b252ae | 599 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
600 | /* |
601 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
602 | * important if a PTE was dirty when it was unmapped that it's flushed | |
603 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
604 | * it must be flushed before freeing to prevent data leakage. | |
605 | */ | |
606 | void try_to_unmap_flush(void) | |
607 | { | |
608 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
609 | |
610 | if (!tlb_ubc->flush_required) | |
611 | return; | |
612 | ||
e73ad5ff | 613 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 614 | tlb_ubc->flush_required = false; |
d950c947 | 615 | tlb_ubc->writable = false; |
72b252ae MG |
616 | } |
617 | ||
d950c947 MG |
618 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
619 | void try_to_unmap_flush_dirty(void) | |
620 | { | |
621 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
622 | ||
623 | if (tlb_ubc->writable) | |
624 | try_to_unmap_flush(); | |
625 | } | |
626 | ||
5ee2fa2f YH |
627 | /* |
628 | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | |
629 | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | |
630 | */ | |
631 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 | |
632 | #define TLB_FLUSH_BATCH_PENDING_MASK \ | |
633 | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | |
634 | #define TLB_FLUSH_BATCH_PENDING_LARGE \ | |
635 | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | |
636 | ||
c7ab0d2f | 637 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
638 | { |
639 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
5ee2fa2f | 640 | int batch, nbatch; |
72b252ae | 641 | |
e73ad5ff | 642 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 643 | tlb_ubc->flush_required = true; |
d950c947 | 644 | |
3ea27719 MG |
645 | /* |
646 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
647 | * before the PTE is cleared. | |
648 | */ | |
649 | barrier(); | |
5ee2fa2f YH |
650 | batch = atomic_read(&mm->tlb_flush_batched); |
651 | retry: | |
652 | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | |
653 | /* | |
654 | * Prevent `pending' from catching up with `flushed' because of | |
655 | * overflow. Reset `pending' and `flushed' to be 1 and 0 if | |
656 | * `pending' becomes large. | |
657 | */ | |
658 | nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); | |
659 | if (nbatch != batch) { | |
660 | batch = nbatch; | |
661 | goto retry; | |
662 | } | |
663 | } else { | |
664 | atomic_inc(&mm->tlb_flush_batched); | |
665 | } | |
3ea27719 | 666 | |
d950c947 MG |
667 | /* |
668 | * If the PTE was dirty then it's best to assume it's writable. The | |
669 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
670 | * before the page is queued for IO. | |
671 | */ | |
672 | if (writable) | |
673 | tlb_ubc->writable = true; | |
72b252ae MG |
674 | } |
675 | ||
676 | /* | |
677 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
678 | * unmap operations to reduce IPIs. | |
679 | */ | |
680 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
681 | { | |
682 | bool should_defer = false; | |
683 | ||
684 | if (!(flags & TTU_BATCH_FLUSH)) | |
685 | return false; | |
686 | ||
687 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
688 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
689 | should_defer = true; | |
690 | put_cpu(); | |
691 | ||
692 | return should_defer; | |
693 | } | |
3ea27719 MG |
694 | |
695 | /* | |
696 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
697 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
698 | * operation such as mprotect or munmap to race between reclaim unmapping | |
699 | * the page and flushing the page. If this race occurs, it potentially allows | |
700 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
701 | * batching in flight would be expensive during reclaim so instead track | |
702 | * whether TLB batching occurred in the past and if so then do a flush here | |
703 | * if required. This will cost one additional flush per reclaim cycle paid | |
704 | * by the first operation at risk such as mprotect and mumap. | |
705 | * | |
706 | * This must be called under the PTL so that an access to tlb_flush_batched | |
707 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
708 | * via the PTL. | |
709 | */ | |
710 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
711 | { | |
5ee2fa2f YH |
712 | int batch = atomic_read(&mm->tlb_flush_batched); |
713 | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | |
714 | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | |
3ea27719 | 715 | |
5ee2fa2f YH |
716 | if (pending != flushed) { |
717 | flush_tlb_mm(mm); | |
3ea27719 | 718 | /* |
5ee2fa2f YH |
719 | * If the new TLB flushing is pending during flushing, leave |
720 | * mm->tlb_flush_batched as is, to avoid losing flushing. | |
3ea27719 | 721 | */ |
5ee2fa2f YH |
722 | atomic_cmpxchg(&mm->tlb_flush_batched, batch, |
723 | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | |
3ea27719 MG |
724 | } |
725 | } | |
72b252ae | 726 | #else |
c7ab0d2f | 727 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
728 | { |
729 | } | |
730 | ||
731 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
732 | { | |
733 | return false; | |
734 | } | |
735 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
736 | ||
1da177e4 | 737 | /* |
bf89c8c8 | 738 | * At what user virtual address is page expected in vma? |
ab941e0f | 739 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
740 | */ |
741 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
742 | { | |
e05b3453 MWO |
743 | struct folio *folio = page_folio(page); |
744 | if (folio_test_anon(folio)) { | |
745 | struct anon_vma *page__anon_vma = folio_anon_vma(folio); | |
4829b906 HD |
746 | /* |
747 | * Note: swapoff's unuse_vma() is more efficient with this | |
748 | * check, and needs it to match anon_vma when KSM is active. | |
749 | */ | |
750 | if (!vma->anon_vma || !page__anon_vma || | |
751 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 752 | return -EFAULT; |
31657170 JW |
753 | } else if (!vma->vm_file) { |
754 | return -EFAULT; | |
e05b3453 | 755 | } else if (vma->vm_file->f_mapping != folio->mapping) { |
1da177e4 | 756 | return -EFAULT; |
31657170 | 757 | } |
494334e4 HD |
758 | |
759 | return vma_address(page, vma); | |
1da177e4 LT |
760 | } |
761 | ||
6219049a BL |
762 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
763 | { | |
764 | pgd_t *pgd; | |
c2febafc | 765 | p4d_t *p4d; |
6219049a BL |
766 | pud_t *pud; |
767 | pmd_t *pmd = NULL; | |
f72e7dcd | 768 | pmd_t pmde; |
6219049a BL |
769 | |
770 | pgd = pgd_offset(mm, address); | |
771 | if (!pgd_present(*pgd)) | |
772 | goto out; | |
773 | ||
c2febafc KS |
774 | p4d = p4d_offset(pgd, address); |
775 | if (!p4d_present(*p4d)) | |
776 | goto out; | |
777 | ||
778 | pud = pud_offset(p4d, address); | |
6219049a BL |
779 | if (!pud_present(*pud)) |
780 | goto out; | |
781 | ||
782 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 783 | /* |
8809aa2d | 784 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
785 | * without holding anon_vma lock for write. So when looking for a |
786 | * genuine pmde (in which to find pte), test present and !THP together. | |
787 | */ | |
e37c6982 CB |
788 | pmde = *pmd; |
789 | barrier(); | |
f72e7dcd | 790 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
791 | pmd = NULL; |
792 | out: | |
793 | return pmd; | |
794 | } | |
795 | ||
b3ac0413 | 796 | struct folio_referenced_arg { |
8749cfea VD |
797 | int mapcount; |
798 | int referenced; | |
799 | unsigned long vm_flags; | |
800 | struct mem_cgroup *memcg; | |
801 | }; | |
802 | /* | |
b3ac0413 | 803 | * arg: folio_referenced_arg will be passed |
8749cfea | 804 | */ |
2f031c6f MWO |
805 | static bool folio_referenced_one(struct folio *folio, |
806 | struct vm_area_struct *vma, unsigned long address, void *arg) | |
8749cfea | 807 | { |
b3ac0413 MWO |
808 | struct folio_referenced_arg *pra = arg; |
809 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); | |
8749cfea VD |
810 | int referenced = 0; |
811 | ||
8eaedede KS |
812 | while (page_vma_mapped_walk(&pvmw)) { |
813 | address = pvmw.address; | |
b20ce5e0 | 814 | |
47d4f3ee | 815 | if ((vma->vm_flags & VM_LOCKED) && |
b3ac0413 | 816 | (!folio_test_large(folio) || !pvmw.pte)) { |
47d4f3ee | 817 | /* Restore the mlock which got missed */ |
b3ac0413 | 818 | mlock_vma_folio(folio, vma, !pvmw.pte); |
8eaedede KS |
819 | page_vma_mapped_walk_done(&pvmw); |
820 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 821 | return false; /* To break the loop */ |
8eaedede | 822 | } |
71e3aac0 | 823 | |
8eaedede KS |
824 | if (pvmw.pte) { |
825 | if (ptep_clear_flush_young_notify(vma, address, | |
826 | pvmw.pte)) { | |
827 | /* | |
828 | * Don't treat a reference through | |
829 | * a sequentially read mapping as such. | |
b3ac0413 | 830 | * If the folio has been used in another mapping, |
8eaedede KS |
831 | * we will catch it; if this other mapping is |
832 | * already gone, the unmap path will have set | |
b3ac0413 | 833 | * the referenced flag or activated the folio. |
8eaedede KS |
834 | */ |
835 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
836 | referenced++; | |
837 | } | |
838 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
839 | if (pmdp_clear_flush_young_notify(vma, address, | |
840 | pvmw.pmd)) | |
8749cfea | 841 | referenced++; |
8eaedede | 842 | } else { |
b3ac0413 | 843 | /* unexpected pmd-mapped folio? */ |
8eaedede | 844 | WARN_ON_ONCE(1); |
8749cfea | 845 | } |
8eaedede KS |
846 | |
847 | pra->mapcount--; | |
b20ce5e0 | 848 | } |
b20ce5e0 | 849 | |
33c3fc71 | 850 | if (referenced) |
b3ac0413 MWO |
851 | folio_clear_idle(folio); |
852 | if (folio_test_clear_young(folio)) | |
33c3fc71 VD |
853 | referenced++; |
854 | ||
9f32624b JK |
855 | if (referenced) { |
856 | pra->referenced++; | |
47d4f3ee | 857 | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; |
1da177e4 | 858 | } |
34bbd704 | 859 | |
9f32624b | 860 | if (!pra->mapcount) |
e4b82222 | 861 | return false; /* To break the loop */ |
9f32624b | 862 | |
e4b82222 | 863 | return true; |
1da177e4 LT |
864 | } |
865 | ||
b3ac0413 | 866 | static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 867 | { |
b3ac0413 | 868 | struct folio_referenced_arg *pra = arg; |
9f32624b | 869 | struct mem_cgroup *memcg = pra->memcg; |
1da177e4 | 870 | |
9f32624b JK |
871 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
872 | return true; | |
1da177e4 | 873 | |
9f32624b | 874 | return false; |
1da177e4 LT |
875 | } |
876 | ||
877 | /** | |
b3ac0413 MWO |
878 | * folio_referenced() - Test if the folio was referenced. |
879 | * @folio: The folio to test. | |
880 | * @is_locked: Caller holds lock on the folio. | |
72835c86 | 881 | * @memcg: target memory cgroup |
b3ac0413 | 882 | * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. |
1da177e4 | 883 | * |
b3ac0413 MWO |
884 | * Quick test_and_clear_referenced for all mappings of a folio, |
885 | * | |
886 | * Return: The number of mappings which referenced the folio. | |
1da177e4 | 887 | */ |
b3ac0413 MWO |
888 | int folio_referenced(struct folio *folio, int is_locked, |
889 | struct mem_cgroup *memcg, unsigned long *vm_flags) | |
1da177e4 | 890 | { |
5ad64688 | 891 | int we_locked = 0; |
b3ac0413 MWO |
892 | struct folio_referenced_arg pra = { |
893 | .mapcount = folio_mapcount(folio), | |
9f32624b JK |
894 | .memcg = memcg, |
895 | }; | |
896 | struct rmap_walk_control rwc = { | |
b3ac0413 | 897 | .rmap_one = folio_referenced_one, |
9f32624b | 898 | .arg = (void *)&pra, |
2f031c6f | 899 | .anon_lock = folio_lock_anon_vma_read, |
9f32624b | 900 | }; |
1da177e4 | 901 | |
6fe6b7e3 | 902 | *vm_flags = 0; |
059d8442 | 903 | if (!pra.mapcount) |
9f32624b JK |
904 | return 0; |
905 | ||
b3ac0413 | 906 | if (!folio_raw_mapping(folio)) |
9f32624b JK |
907 | return 0; |
908 | ||
b3ac0413 MWO |
909 | if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { |
910 | we_locked = folio_trylock(folio); | |
9f32624b JK |
911 | if (!we_locked) |
912 | return 1; | |
1da177e4 | 913 | } |
9f32624b JK |
914 | |
915 | /* | |
916 | * If we are reclaiming on behalf of a cgroup, skip | |
917 | * counting on behalf of references from different | |
918 | * cgroups | |
919 | */ | |
920 | if (memcg) { | |
b3ac0413 | 921 | rwc.invalid_vma = invalid_folio_referenced_vma; |
9f32624b JK |
922 | } |
923 | ||
2f031c6f | 924 | rmap_walk(folio, &rwc); |
9f32624b JK |
925 | *vm_flags = pra.vm_flags; |
926 | ||
927 | if (we_locked) | |
b3ac0413 | 928 | folio_unlock(folio); |
9f32624b JK |
929 | |
930 | return pra.referenced; | |
1da177e4 LT |
931 | } |
932 | ||
6a8e0596 | 933 | static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) |
d08b3851 | 934 | { |
6a8e0596 MS |
935 | int cleaned = 0; |
936 | struct vm_area_struct *vma = pvmw->vma; | |
ac46d4f3 | 937 | struct mmu_notifier_range range; |
6a8e0596 | 938 | unsigned long address = pvmw->address; |
d08b3851 | 939 | |
369ea824 JG |
940 | /* |
941 | * We have to assume the worse case ie pmd for invalidation. Note that | |
e83c09a2 | 942 | * the folio can not be freed from this function. |
369ea824 | 943 | */ |
7269f999 JG |
944 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
945 | 0, vma, vma->vm_mm, address, | |
6a8e0596 | 946 | vma_address_end(pvmw)); |
ac46d4f3 | 947 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 948 | |
6a8e0596 | 949 | while (page_vma_mapped_walk(pvmw)) { |
f27176cf | 950 | int ret = 0; |
369ea824 | 951 | |
6a8e0596 MS |
952 | address = pvmw->address; |
953 | if (pvmw->pte) { | |
f27176cf | 954 | pte_t entry; |
6a8e0596 | 955 | pte_t *pte = pvmw->pte; |
f27176cf KS |
956 | |
957 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
958 | continue; | |
959 | ||
785373b4 LT |
960 | flush_cache_page(vma, address, pte_pfn(*pte)); |
961 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
962 | entry = pte_wrprotect(entry); |
963 | entry = pte_mkclean(entry); | |
785373b4 | 964 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
965 | ret = 1; |
966 | } else { | |
396bcc52 | 967 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6a8e0596 | 968 | pmd_t *pmd = pvmw->pmd; |
f27176cf KS |
969 | pmd_t entry; |
970 | ||
971 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
972 | continue; | |
973 | ||
7f9c9b60 MS |
974 | flush_cache_range(vma, address, |
975 | address + HPAGE_PMD_SIZE); | |
024eee0e | 976 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
977 | entry = pmd_wrprotect(entry); |
978 | entry = pmd_mkclean(entry); | |
785373b4 | 979 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
980 | ret = 1; |
981 | #else | |
e83c09a2 | 982 | /* unexpected pmd-mapped folio? */ |
f27176cf KS |
983 | WARN_ON_ONCE(1); |
984 | #endif | |
985 | } | |
d08b3851 | 986 | |
0f10851e JG |
987 | /* |
988 | * No need to call mmu_notifier_invalidate_range() as we are | |
989 | * downgrading page table protection not changing it to point | |
990 | * to a new page. | |
991 | * | |
ad56b738 | 992 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
993 | */ |
994 | if (ret) | |
6a8e0596 | 995 | cleaned++; |
c2fda5fe | 996 | } |
d08b3851 | 997 | |
ac46d4f3 | 998 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 999 | |
6a8e0596 MS |
1000 | return cleaned; |
1001 | } | |
1002 | ||
1003 | static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, | |
1004 | unsigned long address, void *arg) | |
1005 | { | |
1006 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); | |
1007 | int *cleaned = arg; | |
1008 | ||
1009 | *cleaned += page_vma_mkclean_one(&pvmw); | |
1010 | ||
e4b82222 | 1011 | return true; |
d08b3851 PZ |
1012 | } |
1013 | ||
9853a407 | 1014 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1015 | { |
9853a407 | 1016 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1017 | return false; |
d08b3851 | 1018 | |
871beb8c | 1019 | return true; |
d08b3851 PZ |
1020 | } |
1021 | ||
d9c08e22 | 1022 | int folio_mkclean(struct folio *folio) |
d08b3851 | 1023 | { |
9853a407 JK |
1024 | int cleaned = 0; |
1025 | struct address_space *mapping; | |
1026 | struct rmap_walk_control rwc = { | |
1027 | .arg = (void *)&cleaned, | |
1028 | .rmap_one = page_mkclean_one, | |
1029 | .invalid_vma = invalid_mkclean_vma, | |
1030 | }; | |
d08b3851 | 1031 | |
d9c08e22 | 1032 | BUG_ON(!folio_test_locked(folio)); |
d08b3851 | 1033 | |
d9c08e22 | 1034 | if (!folio_mapped(folio)) |
9853a407 JK |
1035 | return 0; |
1036 | ||
d9c08e22 | 1037 | mapping = folio_mapping(folio); |
9853a407 JK |
1038 | if (!mapping) |
1039 | return 0; | |
1040 | ||
2f031c6f | 1041 | rmap_walk(folio, &rwc); |
d08b3851 | 1042 | |
9853a407 | 1043 | return cleaned; |
d08b3851 | 1044 | } |
d9c08e22 | 1045 | EXPORT_SYMBOL_GPL(folio_mkclean); |
d08b3851 | 1046 | |
6a8e0596 MS |
1047 | /** |
1048 | * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of | |
1049 | * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) | |
1050 | * within the @vma of shared mappings. And since clean PTEs | |
1051 | * should also be readonly, write protects them too. | |
1052 | * @pfn: start pfn. | |
1053 | * @nr_pages: number of physically contiguous pages srarting with @pfn. | |
1054 | * @pgoff: page offset that the @pfn mapped with. | |
1055 | * @vma: vma that @pfn mapped within. | |
1056 | * | |
1057 | * Returns the number of cleaned PTEs (including PMDs). | |
1058 | */ | |
1059 | int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, | |
1060 | struct vm_area_struct *vma) | |
1061 | { | |
1062 | struct page_vma_mapped_walk pvmw = { | |
1063 | .pfn = pfn, | |
1064 | .nr_pages = nr_pages, | |
1065 | .pgoff = pgoff, | |
1066 | .vma = vma, | |
1067 | .flags = PVMW_SYNC, | |
1068 | }; | |
1069 | ||
1070 | if (invalid_mkclean_vma(vma, NULL)) | |
1071 | return 0; | |
1072 | ||
1073 | pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); | |
1074 | VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); | |
1075 | ||
1076 | return page_vma_mkclean_one(&pvmw); | |
1077 | } | |
1078 | ||
c44b6743 RR |
1079 | /** |
1080 | * page_move_anon_rmap - move a page to our anon_vma | |
1081 | * @page: the page to move to our anon_vma | |
1082 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1083 | * |
1084 | * When a page belongs exclusively to one process after a COW event, | |
1085 | * that page can be moved into the anon_vma that belongs to just that | |
1086 | * process, so the rmap code will not search the parent or sibling | |
1087 | * processes. | |
1088 | */ | |
5a49973d | 1089 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1090 | { |
1091 | struct anon_vma *anon_vma = vma->anon_vma; | |
6c287605 | 1092 | struct page *subpage = page; |
c44b6743 | 1093 | |
5a49973d HD |
1094 | page = compound_head(page); |
1095 | ||
309381fe | 1096 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1097 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1098 | |
1099 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1100 | /* |
1101 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
b3ac0413 MWO |
1102 | * simultaneously, so a concurrent reader (eg folio_referenced()'s |
1103 | * folio_test_anon()) will not see one without the other. | |
414e2fb8 VD |
1104 | */ |
1105 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
6c287605 | 1106 | SetPageAnonExclusive(subpage); |
c44b6743 RR |
1107 | } |
1108 | ||
9617d95e | 1109 | /** |
4e1c1975 | 1110 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1111 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1112 | * @vma: VM area to add page to. |
1113 | * @address: User virtual address of the mapping | |
e8a03feb | 1114 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1115 | */ |
1116 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1117 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1118 | { |
e8a03feb | 1119 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1120 | |
e8a03feb | 1121 | BUG_ON(!anon_vma); |
ea90002b | 1122 | |
4e1c1975 | 1123 | if (PageAnon(page)) |
6c287605 | 1124 | goto out; |
4e1c1975 | 1125 | |
ea90002b | 1126 | /* |
e8a03feb RR |
1127 | * If the page isn't exclusively mapped into this vma, |
1128 | * we must use the _oldest_ possible anon_vma for the | |
1129 | * page mapping! | |
ea90002b | 1130 | */ |
4e1c1975 | 1131 | if (!exclusive) |
288468c3 | 1132 | anon_vma = anon_vma->root; |
9617d95e | 1133 | |
16f5e707 AS |
1134 | /* |
1135 | * page_idle does a lockless/optimistic rmap scan on page->mapping. | |
1136 | * Make sure the compiler doesn't split the stores of anon_vma and | |
1137 | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | |
1138 | * could mistake the mapping for a struct address_space and crash. | |
1139 | */ | |
9617d95e | 1140 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
16f5e707 | 1141 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); |
9617d95e | 1142 | page->index = linear_page_index(vma, address); |
6c287605 DH |
1143 | out: |
1144 | if (exclusive) | |
1145 | SetPageAnonExclusive(page); | |
9617d95e NP |
1146 | } |
1147 | ||
c97a9e10 | 1148 | /** |
43d8eac4 | 1149 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1150 | * @page: the page to add the mapping to |
1151 | * @vma: the vm area in which the mapping is added | |
1152 | * @address: the user virtual address mapped | |
1153 | */ | |
1154 | static void __page_check_anon_rmap(struct page *page, | |
1155 | struct vm_area_struct *vma, unsigned long address) | |
1156 | { | |
e05b3453 | 1157 | struct folio *folio = page_folio(page); |
c97a9e10 NP |
1158 | /* |
1159 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1160 | * be set up correctly at this point. | |
1161 | * | |
1162 | * We have exclusion against page_add_anon_rmap because the caller | |
90aaca85 | 1163 | * always holds the page locked. |
c97a9e10 NP |
1164 | * |
1165 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1166 | * are initially only visible via the pagetables, and the pte is locked | |
1167 | * over the call to page_add_new_anon_rmap. | |
1168 | */ | |
e05b3453 MWO |
1169 | VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, |
1170 | folio); | |
30c46382 YS |
1171 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), |
1172 | page); | |
c97a9e10 NP |
1173 | } |
1174 | ||
1da177e4 LT |
1175 | /** |
1176 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1177 | * @page: the page to add the mapping to | |
1178 | * @vma: the vm area in which the mapping is added | |
1179 | * @address: the user virtual address mapped | |
f1e2db12 | 1180 | * @flags: the rmap flags |
1da177e4 | 1181 | * |
5ad64688 | 1182 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1183 | * the anon_vma case: to serialize mapping,index checking after setting, |
1184 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1185 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1186 | */ |
1187 | void page_add_anon_rmap(struct page *page, | |
14f9135d | 1188 | struct vm_area_struct *vma, unsigned long address, rmap_t flags) |
1da177e4 | 1189 | { |
53f9263b KS |
1190 | bool compound = flags & RMAP_COMPOUND; |
1191 | bool first; | |
1192 | ||
be5d0a74 JW |
1193 | if (unlikely(PageKsm(page))) |
1194 | lock_page_memcg(page); | |
1195 | else | |
1196 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
1197 | ||
e9b61f19 KS |
1198 | if (compound) { |
1199 | atomic_t *mapcount; | |
53f9263b | 1200 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1201 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1202 | mapcount = compound_mapcount_ptr(page); | |
1203 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1204 | } else { |
1205 | first = atomic_inc_and_test(&page->_mapcount); | |
1206 | } | |
6c287605 DH |
1207 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
1208 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
53f9263b | 1209 | |
79134171 | 1210 | if (first) { |
6c357848 | 1211 | int nr = compound ? thp_nr_pages(page) : 1; |
bea04b07 JZ |
1212 | /* |
1213 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1214 | * these counters are not modified in interrupt context, and | |
1215 | * pte lock(a spinlock) is held, which implies preemption | |
1216 | * disabled. | |
1217 | */ | |
65c45377 | 1218 | if (compound) |
69473e5d | 1219 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
be5d0a74 | 1220 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
79134171 | 1221 | } |
5ad64688 | 1222 | |
cea86fe2 | 1223 | if (unlikely(PageKsm(page))) |
be5d0a74 | 1224 | unlock_page_memcg(page); |
53f9263b | 1225 | |
5dbe0af4 | 1226 | /* address might be in next vma when migration races vma_adjust */ |
cea86fe2 | 1227 | else if (first) |
d281ee61 | 1228 | __page_set_anon_rmap(page, vma, address, |
14f9135d | 1229 | !!(flags & RMAP_EXCLUSIVE)); |
69029cd5 | 1230 | else |
c97a9e10 | 1231 | __page_check_anon_rmap(page, vma, address); |
cea86fe2 HD |
1232 | |
1233 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1234 | } |
1235 | ||
43d8eac4 | 1236 | /** |
40f2bbf7 | 1237 | * page_add_new_anon_rmap - add mapping to a new anonymous page |
9617d95e NP |
1238 | * @page: the page to add the mapping to |
1239 | * @vma: the vm area in which the mapping is added | |
1240 | * @address: the user virtual address mapped | |
40f2bbf7 DH |
1241 | * |
1242 | * If it's a compound page, it is accounted as a compound page. As the page | |
1243 | * is new, it's assume to get mapped exclusively by a single process. | |
9617d95e NP |
1244 | * |
1245 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1246 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1247 | * Page does not have to be locked. |
9617d95e NP |
1248 | */ |
1249 | void page_add_new_anon_rmap(struct page *page, | |
40f2bbf7 | 1250 | struct vm_area_struct *vma, unsigned long address) |
9617d95e | 1251 | { |
40f2bbf7 | 1252 | const bool compound = PageCompound(page); |
6c357848 | 1253 | int nr = compound ? thp_nr_pages(page) : 1; |
d281ee61 | 1254 | |
81d1b09c | 1255 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1256 | __SetPageSwapBacked(page); |
d281ee61 KS |
1257 | if (compound) { |
1258 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1259 | /* increment count (starts at -1) */ |
1260 | atomic_set(compound_mapcount_ptr(page), 0); | |
5232c63f | 1261 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 1262 | |
69473e5d | 1263 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
53f9263b | 1264 | } else { |
53f9263b KS |
1265 | /* increment count (starts at -1) */ |
1266 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1267 | } |
be5d0a74 | 1268 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
e8a03feb | 1269 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1270 | } |
1271 | ||
1da177e4 LT |
1272 | /** |
1273 | * page_add_file_rmap - add pte mapping to a file page | |
cea86fe2 HD |
1274 | * @page: the page to add the mapping to |
1275 | * @vma: the vm area in which the mapping is added | |
1276 | * @compound: charge the page as compound or small page | |
1da177e4 | 1277 | * |
b8072f09 | 1278 | * The caller needs to hold the pte lock. |
1da177e4 | 1279 | */ |
cea86fe2 HD |
1280 | void page_add_file_rmap(struct page *page, |
1281 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1282 | { |
5d543f13 | 1283 | int i, nr = 0; |
dd78fedd KS |
1284 | |
1285 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1286 | lock_page_memcg(page); |
dd78fedd | 1287 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1288 | int nr_pages = thp_nr_pages(page); |
1289 | ||
5d543f13 | 1290 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1291 | if (atomic_inc_and_test(&page[i]._mapcount)) |
1292 | nr++; | |
1293 | } | |
1294 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1295 | goto out; | |
bd55b0c2 HD |
1296 | |
1297 | /* | |
1298 | * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); | |
1299 | * but page lock is held by all page_add_file_rmap() compound | |
1300 | * callers, and SetPageDoubleMap below warns if !PageLocked: | |
1301 | * so here is a place that DoubleMap can be safely cleared. | |
1302 | */ | |
1303 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1304 | if (nr == nr_pages && PageDoubleMap(page)) | |
1305 | ClearPageDoubleMap(page); | |
1306 | ||
99cb0dbd | 1307 | if (PageSwapBacked(page)) |
a1528e21 MS |
1308 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1309 | nr_pages); | |
99cb0dbd | 1310 | else |
380780e7 MS |
1311 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1312 | nr_pages); | |
dd78fedd | 1313 | } else { |
c8efc390 KS |
1314 | if (PageTransCompound(page) && page_mapping(page)) { |
1315 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
cea86fe2 | 1316 | SetPageDoubleMap(compound_head(page)); |
9a73f61b | 1317 | } |
5d543f13 HD |
1318 | if (atomic_inc_and_test(&page->_mapcount)) |
1319 | nr++; | |
d69b042f | 1320 | } |
dd78fedd | 1321 | out: |
5d543f13 HD |
1322 | if (nr) |
1323 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | |
62cccb8c | 1324 | unlock_page_memcg(page); |
cea86fe2 HD |
1325 | |
1326 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1327 | } |
1328 | ||
dd78fedd | 1329 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1330 | { |
5d543f13 | 1331 | int i, nr = 0; |
dd78fedd | 1332 | |
57dea93a | 1333 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1334 | |
53f9263b KS |
1335 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1336 | if (unlikely(PageHuge(page))) { | |
1337 | /* hugetlb pages are always mapped with pmds */ | |
1338 | atomic_dec(compound_mapcount_ptr(page)); | |
be5d0a74 | 1339 | return; |
53f9263b | 1340 | } |
8186eb6a | 1341 | |
53f9263b | 1342 | /* page still mapped by someone else? */ |
dd78fedd | 1343 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1344 | int nr_pages = thp_nr_pages(page); |
1345 | ||
5d543f13 | 1346 | for (i = 0; i < nr_pages; i++) { |
dd78fedd KS |
1347 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1348 | nr++; | |
1349 | } | |
1350 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
5d543f13 | 1351 | goto out; |
99cb0dbd | 1352 | if (PageSwapBacked(page)) |
a1528e21 MS |
1353 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1354 | -nr_pages); | |
99cb0dbd | 1355 | else |
380780e7 MS |
1356 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1357 | -nr_pages); | |
dd78fedd | 1358 | } else { |
5d543f13 HD |
1359 | if (atomic_add_negative(-1, &page->_mapcount)) |
1360 | nr++; | |
dd78fedd | 1361 | } |
5d543f13 HD |
1362 | out: |
1363 | if (nr) | |
1364 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | |
8186eb6a JW |
1365 | } |
1366 | ||
53f9263b KS |
1367 | static void page_remove_anon_compound_rmap(struct page *page) |
1368 | { | |
1369 | int i, nr; | |
1370 | ||
1371 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1372 | return; | |
1373 | ||
1374 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1375 | if (unlikely(PageHuge(page))) | |
1376 | return; | |
1377 | ||
1378 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1379 | return; | |
1380 | ||
69473e5d | 1381 | __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); |
53f9263b KS |
1382 | |
1383 | if (TestClearPageDoubleMap(page)) { | |
1384 | /* | |
1385 | * Subpages can be mapped with PTEs too. Check how many of | |
f1fe80d4 | 1386 | * them are still mapped. |
53f9263b | 1387 | */ |
5eaf35ab | 1388 | for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { |
53f9263b KS |
1389 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1390 | nr++; | |
1391 | } | |
f1fe80d4 KS |
1392 | |
1393 | /* | |
1394 | * Queue the page for deferred split if at least one small | |
1395 | * page of the compound page is unmapped, but at least one | |
1396 | * small page is still mapped. | |
1397 | */ | |
5eaf35ab | 1398 | if (nr && nr < thp_nr_pages(page)) |
f1fe80d4 | 1399 | deferred_split_huge_page(page); |
53f9263b | 1400 | } else { |
5eaf35ab | 1401 | nr = thp_nr_pages(page); |
53f9263b KS |
1402 | } |
1403 | ||
f1fe80d4 | 1404 | if (nr) |
be5d0a74 | 1405 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); |
53f9263b KS |
1406 | } |
1407 | ||
1da177e4 LT |
1408 | /** |
1409 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 | 1410 | * @page: page to remove mapping from |
cea86fe2 | 1411 | * @vma: the vm area from which the mapping is removed |
d281ee61 | 1412 | * @compound: uncharge the page as compound or small page |
1da177e4 | 1413 | * |
b8072f09 | 1414 | * The caller needs to hold the pte lock. |
1da177e4 | 1415 | */ |
cea86fe2 HD |
1416 | void page_remove_rmap(struct page *page, |
1417 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1418 | { |
be5d0a74 | 1419 | lock_page_memcg(page); |
89c06bd5 | 1420 | |
be5d0a74 JW |
1421 | if (!PageAnon(page)) { |
1422 | page_remove_file_rmap(page, compound); | |
1423 | goto out; | |
1424 | } | |
1425 | ||
1426 | if (compound) { | |
1427 | page_remove_anon_compound_rmap(page); | |
1428 | goto out; | |
1429 | } | |
53f9263b | 1430 | |
b904dcfe KM |
1431 | /* page still mapped by someone else? */ |
1432 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1433 | goto out; |
8186eb6a | 1434 | |
0fe6e20b | 1435 | /* |
bea04b07 JZ |
1436 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1437 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1438 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1439 | */ |
be5d0a74 | 1440 | __dec_lruvec_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1441 | |
9a982250 KS |
1442 | if (PageTransCompound(page)) |
1443 | deferred_split_huge_page(compound_head(page)); | |
1444 | ||
b904dcfe KM |
1445 | /* |
1446 | * It would be tidy to reset the PageAnon mapping here, | |
1447 | * but that might overwrite a racing page_add_anon_rmap | |
1448 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1449 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1450 | * and remember that it's only reliable while mapped. |
1451 | * Leaving it set also helps swapoff to reinstate ptes | |
1452 | * faster for those pages still in swapcache. | |
1453 | */ | |
be5d0a74 JW |
1454 | out: |
1455 | unlock_page_memcg(page); | |
cea86fe2 HD |
1456 | |
1457 | munlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1458 | } |
1459 | ||
1460 | /* | |
52629506 | 1461 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1462 | */ |
2f031c6f | 1463 | static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, |
52629506 | 1464 | unsigned long address, void *arg) |
1da177e4 LT |
1465 | { |
1466 | struct mm_struct *mm = vma->vm_mm; | |
869f7ee6 | 1467 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
1da177e4 | 1468 | pte_t pteval; |
c7ab0d2f | 1469 | struct page *subpage; |
6c287605 | 1470 | bool anon_exclusive, ret = true; |
ac46d4f3 | 1471 | struct mmu_notifier_range range; |
4708f318 | 1472 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
1da177e4 | 1473 | |
732ed558 HD |
1474 | /* |
1475 | * When racing against e.g. zap_pte_range() on another cpu, | |
1476 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1fb08ac6 | 1477 | * try_to_unmap() may return before page_mapped() has become false, |
732ed558 HD |
1478 | * if page table locking is skipped: use TTU_SYNC to wait for that. |
1479 | */ | |
1480 | if (flags & TTU_SYNC) | |
1481 | pvmw.flags = PVMW_SYNC; | |
1482 | ||
a98a2f0c | 1483 | if (flags & TTU_SPLIT_HUGE_PMD) |
af28a988 | 1484 | split_huge_pmd_address(vma, address, false, folio); |
fec89c10 | 1485 | |
369ea824 | 1486 | /* |
017b1660 MK |
1487 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1488 | * For hugetlb, it could be much worse if we need to do pud | |
1489 | * invalidation in the case of pmd sharing. | |
1490 | * | |
869f7ee6 MWO |
1491 | * Note that the folio can not be freed in this function as call of |
1492 | * try_to_unmap() must hold a reference on the folio. | |
369ea824 | 1493 | */ |
2aff7a47 | 1494 | range.end = vma_address_end(&pvmw); |
7269f999 | 1495 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
494334e4 | 1496 | address, range.end); |
869f7ee6 | 1497 | if (folio_test_hugetlb(folio)) { |
017b1660 MK |
1498 | /* |
1499 | * If sharing is possible, start and end will be adjusted | |
1500 | * accordingly. | |
1501 | */ | |
ac46d4f3 JG |
1502 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1503 | &range.end); | |
017b1660 | 1504 | } |
ac46d4f3 | 1505 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1506 | |
c7ab0d2f | 1507 | while (page_vma_mapped_walk(&pvmw)) { |
cea86fe2 | 1508 | /* Unexpected PMD-mapped THP? */ |
869f7ee6 | 1509 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
cea86fe2 | 1510 | |
c7ab0d2f | 1511 | /* |
869f7ee6 | 1512 | * If the folio is in an mlock()d vma, we must not swap it out. |
c7ab0d2f | 1513 | */ |
efdb6720 HD |
1514 | if (!(flags & TTU_IGNORE_MLOCK) && |
1515 | (vma->vm_flags & VM_LOCKED)) { | |
cea86fe2 | 1516 | /* Restore the mlock which got missed */ |
869f7ee6 | 1517 | mlock_vma_folio(folio, vma, false); |
efdb6720 HD |
1518 | page_vma_mapped_walk_done(&pvmw); |
1519 | ret = false; | |
1520 | break; | |
b87537d9 | 1521 | } |
c7ab0d2f | 1522 | |
869f7ee6 MWO |
1523 | subpage = folio_page(folio, |
1524 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
785373b4 | 1525 | address = pvmw.address; |
6c287605 DH |
1526 | anon_exclusive = folio_test_anon(folio) && |
1527 | PageAnonExclusive(subpage); | |
785373b4 | 1528 | |
dfc7ab57 | 1529 | if (folio_test_hugetlb(folio)) { |
54205e9c BW |
1530 | /* |
1531 | * huge_pmd_unshare may unmap an entire PMD page. | |
1532 | * There is no way of knowing exactly which PMDs may | |
1533 | * be cached for this mm, so we must flush them all. | |
1534 | * start/end were already adjusted above to cover this | |
1535 | * range. | |
1536 | */ | |
1537 | flush_cache_range(vma, range.start, range.end); | |
1538 | ||
dfc7ab57 | 1539 | if (!folio_test_anon(folio)) { |
017b1660 | 1540 | /* |
dfc7ab57 BW |
1541 | * To call huge_pmd_unshare, i_mmap_rwsem must be |
1542 | * held in write mode. Caller needs to explicitly | |
1543 | * do this outside rmap routines. | |
017b1660 | 1544 | */ |
dfc7ab57 BW |
1545 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); |
1546 | ||
1547 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { | |
1548 | flush_tlb_range(vma, range.start, range.end); | |
1549 | mmu_notifier_invalidate_range(mm, range.start, | |
1550 | range.end); | |
1551 | ||
1552 | /* | |
1553 | * The ref count of the PMD page was dropped | |
1554 | * which is part of the way map counting | |
1555 | * is done for shared PMDs. Return 'true' | |
1556 | * here. When there is no other sharing, | |
1557 | * huge_pmd_unshare returns false and we will | |
1558 | * unmap the actual page and drop map count | |
1559 | * to zero. | |
1560 | */ | |
1561 | page_vma_mapped_walk_done(&pvmw); | |
1562 | break; | |
1563 | } | |
017b1660 | 1564 | } |
54205e9c BW |
1565 | } else { |
1566 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
017b1660 | 1567 | } |
8346242a | 1568 | |
6c287605 DH |
1569 | /* |
1570 | * Nuke the page table entry. When having to clear | |
1571 | * PageAnonExclusive(), we always have to flush. | |
1572 | */ | |
6c287605 | 1573 | if (should_defer_flush(mm, flags) && !anon_exclusive) { |
c7ab0d2f KS |
1574 | /* |
1575 | * We clear the PTE but do not flush so potentially | |
869f7ee6 | 1576 | * a remote CPU could still be writing to the folio. |
c7ab0d2f KS |
1577 | * If the entry was previously clean then the |
1578 | * architecture must guarantee that a clear->dirty | |
1579 | * transition on a cached TLB entry is written through | |
1580 | * and traps if the PTE is unmapped. | |
1581 | */ | |
785373b4 | 1582 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); |
c7ab0d2f KS |
1583 | |
1584 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1585 | } else { | |
785373b4 | 1586 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
c7ab0d2f | 1587 | } |
72b252ae | 1588 | |
999dad82 PX |
1589 | /* |
1590 | * Now the pte is cleared. If this pte was uffd-wp armed, | |
1591 | * we may want to replace a none pte with a marker pte if | |
1592 | * it's file-backed, so we don't lose the tracking info. | |
1593 | */ | |
1594 | pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); | |
1595 | ||
869f7ee6 | 1596 | /* Set the dirty flag on the folio now the pte is gone. */ |
c7ab0d2f | 1597 | if (pte_dirty(pteval)) |
869f7ee6 | 1598 | folio_mark_dirty(folio); |
1da177e4 | 1599 | |
c7ab0d2f KS |
1600 | /* Update high watermark before we lower rss */ |
1601 | update_hiwater_rss(mm); | |
1da177e4 | 1602 | |
da358d5c | 1603 | if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1604 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
869f7ee6 MWO |
1605 | if (folio_test_hugetlb(folio)) { |
1606 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
785373b4 | 1607 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1608 | pvmw.pte, pteval, |
1609 | vma_mmu_pagesize(vma)); | |
c7ab0d2f | 1610 | } else { |
869f7ee6 | 1611 | dec_mm_counter(mm, mm_counter(&folio->page)); |
785373b4 | 1612 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1613 | } |
365e9c87 | 1614 | |
bce73e48 | 1615 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1616 | /* |
1617 | * The guest indicated that the page content is of no | |
1618 | * interest anymore. Simply discard the pte, vmscan | |
1619 | * will take care of the rest. | |
bce73e48 CB |
1620 | * A future reference will then fault in a new zero |
1621 | * page. When userfaultfd is active, we must not drop | |
1622 | * this page though, as its main user (postcopy | |
1623 | * migration) will not expect userfaults on already | |
1624 | * copied pages. | |
c7ab0d2f | 1625 | */ |
869f7ee6 | 1626 | dec_mm_counter(mm, mm_counter(&folio->page)); |
0f10851e JG |
1627 | /* We have to invalidate as we cleared the pte */ |
1628 | mmu_notifier_invalidate_range(mm, address, | |
1629 | address + PAGE_SIZE); | |
869f7ee6 | 1630 | } else if (folio_test_anon(folio)) { |
c7ab0d2f KS |
1631 | swp_entry_t entry = { .val = page_private(subpage) }; |
1632 | pte_t swp_pte; | |
1633 | /* | |
1634 | * Store the swap location in the pte. | |
1635 | * See handle_pte_fault() ... | |
1636 | */ | |
869f7ee6 MWO |
1637 | if (unlikely(folio_test_swapbacked(folio) != |
1638 | folio_test_swapcache(folio))) { | |
eb94a878 | 1639 | WARN_ON_ONCE(1); |
83612a94 | 1640 | ret = false; |
369ea824 | 1641 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1642 | mmu_notifier_invalidate_range(mm, address, |
1643 | address + PAGE_SIZE); | |
eb94a878 MK |
1644 | page_vma_mapped_walk_done(&pvmw); |
1645 | break; | |
1646 | } | |
c7ab0d2f | 1647 | |
802a3a92 | 1648 | /* MADV_FREE page check */ |
869f7ee6 | 1649 | if (!folio_test_swapbacked(folio)) { |
6c8e2a25 MFO |
1650 | int ref_count, map_count; |
1651 | ||
1652 | /* | |
1653 | * Synchronize with gup_pte_range(): | |
1654 | * - clear PTE; barrier; read refcount | |
1655 | * - inc refcount; barrier; read PTE | |
1656 | */ | |
1657 | smp_mb(); | |
1658 | ||
1659 | ref_count = folio_ref_count(folio); | |
1660 | map_count = folio_mapcount(folio); | |
1661 | ||
1662 | /* | |
1663 | * Order reads for page refcount and dirty flag | |
1664 | * (see comments in __remove_mapping()). | |
1665 | */ | |
1666 | smp_rmb(); | |
1667 | ||
1668 | /* | |
1669 | * The only page refs must be one from isolation | |
1670 | * plus the rmap(s) (dropped by discard:). | |
1671 | */ | |
1672 | if (ref_count == 1 + map_count && | |
1673 | !folio_test_dirty(folio)) { | |
0f10851e JG |
1674 | /* Invalidate as we cleared the pte */ |
1675 | mmu_notifier_invalidate_range(mm, | |
1676 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1677 | dec_mm_counter(mm, MM_ANONPAGES); |
1678 | goto discard; | |
1679 | } | |
1680 | ||
1681 | /* | |
869f7ee6 | 1682 | * If the folio was redirtied, it cannot be |
802a3a92 SL |
1683 | * discarded. Remap the page to page table. |
1684 | */ | |
785373b4 | 1685 | set_pte_at(mm, address, pvmw.pte, pteval); |
869f7ee6 | 1686 | folio_set_swapbacked(folio); |
e4b82222 | 1687 | ret = false; |
802a3a92 SL |
1688 | page_vma_mapped_walk_done(&pvmw); |
1689 | break; | |
c7ab0d2f | 1690 | } |
854e9ed0 | 1691 | |
c7ab0d2f | 1692 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1693 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1694 | ret = false; |
c7ab0d2f KS |
1695 | page_vma_mapped_walk_done(&pvmw); |
1696 | break; | |
1697 | } | |
ca827d55 | 1698 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
322842ea | 1699 | swap_free(entry); |
ca827d55 KA |
1700 | set_pte_at(mm, address, pvmw.pte, pteval); |
1701 | ret = false; | |
1702 | page_vma_mapped_walk_done(&pvmw); | |
1703 | break; | |
1704 | } | |
6c287605 DH |
1705 | if (anon_exclusive && |
1706 | page_try_share_anon_rmap(subpage)) { | |
1707 | swap_free(entry); | |
1708 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1709 | ret = false; | |
1710 | page_vma_mapped_walk_done(&pvmw); | |
1711 | break; | |
1712 | } | |
1713 | /* | |
1493a191 DH |
1714 | * Note: We *don't* remember if the page was mapped |
1715 | * exclusively in the swap pte if the architecture | |
1716 | * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In | |
1717 | * that case, swapin code has to re-determine that | |
1718 | * manually and might detect the page as possibly | |
1719 | * shared, for example, if there are other references on | |
1720 | * the page or if the page is under writeback. We made | |
1721 | * sure that there are no GUP pins on the page that | |
1722 | * would rely on it, so for GUP pins this is fine. | |
6c287605 | 1723 | */ |
c7ab0d2f KS |
1724 | if (list_empty(&mm->mmlist)) { |
1725 | spin_lock(&mmlist_lock); | |
1726 | if (list_empty(&mm->mmlist)) | |
1727 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1728 | spin_unlock(&mmlist_lock); | |
1729 | } | |
854e9ed0 | 1730 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1731 | inc_mm_counter(mm, MM_SWAPENTS); |
1732 | swp_pte = swp_entry_to_pte(entry); | |
1493a191 DH |
1733 | if (anon_exclusive) |
1734 | swp_pte = pte_swp_mkexclusive(swp_pte); | |
c7ab0d2f KS |
1735 | if (pte_soft_dirty(pteval)) |
1736 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1737 | if (pte_uffd_wp(pteval)) |
1738 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1739 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1740 | /* Invalidate as we cleared the pte */ |
1741 | mmu_notifier_invalidate_range(mm, address, | |
1742 | address + PAGE_SIZE); | |
1743 | } else { | |
1744 | /* | |
869f7ee6 MWO |
1745 | * This is a locked file-backed folio, |
1746 | * so it cannot be removed from the page | |
1747 | * cache and replaced by a new folio before | |
1748 | * mmu_notifier_invalidate_range_end, so no | |
1749 | * concurrent thread might update its page table | |
1750 | * to point at a new folio while a device is | |
1751 | * still using this folio. | |
0f10851e | 1752 | * |
ad56b738 | 1753 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1754 | */ |
869f7ee6 | 1755 | dec_mm_counter(mm, mm_counter_file(&folio->page)); |
0f10851e | 1756 | } |
854e9ed0 | 1757 | discard: |
0f10851e JG |
1758 | /* |
1759 | * No need to call mmu_notifier_invalidate_range() it has be | |
1760 | * done above for all cases requiring it to happen under page | |
1761 | * table lock before mmu_notifier_invalidate_range_end() | |
1762 | * | |
ad56b738 | 1763 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1764 | */ |
869f7ee6 | 1765 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 1766 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 1767 | mlock_page_drain_local(); |
869f7ee6 | 1768 | folio_put(folio); |
c7ab0d2f | 1769 | } |
369ea824 | 1770 | |
ac46d4f3 | 1771 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1772 | |
caed0f48 | 1773 | return ret; |
1da177e4 LT |
1774 | } |
1775 | ||
52629506 JK |
1776 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1777 | { | |
222100ee | 1778 | return vma_is_temporary_stack(vma); |
52629506 JK |
1779 | } |
1780 | ||
2f031c6f | 1781 | static int page_not_mapped(struct folio *folio) |
52629506 | 1782 | { |
2f031c6f | 1783 | return !folio_mapped(folio); |
2a52bcbc | 1784 | } |
52629506 | 1785 | |
1da177e4 | 1786 | /** |
869f7ee6 MWO |
1787 | * try_to_unmap - Try to remove all page table mappings to a folio. |
1788 | * @folio: The folio to unmap. | |
14fa31b8 | 1789 | * @flags: action and flags |
1da177e4 LT |
1790 | * |
1791 | * Tries to remove all the page table entries which are mapping this | |
869f7ee6 MWO |
1792 | * folio. It is the caller's responsibility to check if the folio is |
1793 | * still mapped if needed (use TTU_SYNC to prevent accounting races). | |
1da177e4 | 1794 | * |
869f7ee6 | 1795 | * Context: Caller must hold the folio lock. |
1da177e4 | 1796 | */ |
869f7ee6 | 1797 | void try_to_unmap(struct folio *folio, enum ttu_flags flags) |
1da177e4 | 1798 | { |
52629506 JK |
1799 | struct rmap_walk_control rwc = { |
1800 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1801 | .arg = (void *)flags, |
b7e188ec | 1802 | .done = page_not_mapped, |
2f031c6f | 1803 | .anon_lock = folio_lock_anon_vma_read, |
52629506 | 1804 | }; |
1da177e4 | 1805 | |
a98a2f0c | 1806 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 1807 | rmap_walk_locked(folio, &rwc); |
a98a2f0c | 1808 | else |
2f031c6f | 1809 | rmap_walk(folio, &rwc); |
a98a2f0c AP |
1810 | } |
1811 | ||
1812 | /* | |
1813 | * @arg: enum ttu_flags will be passed to this argument. | |
1814 | * | |
1815 | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | |
64b586d1 | 1816 | * containing migration entries. |
a98a2f0c | 1817 | */ |
2f031c6f | 1818 | static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, |
a98a2f0c AP |
1819 | unsigned long address, void *arg) |
1820 | { | |
1821 | struct mm_struct *mm = vma->vm_mm; | |
4b8554c5 | 1822 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
a98a2f0c AP |
1823 | pte_t pteval; |
1824 | struct page *subpage; | |
6c287605 | 1825 | bool anon_exclusive, ret = true; |
a98a2f0c AP |
1826 | struct mmu_notifier_range range; |
1827 | enum ttu_flags flags = (enum ttu_flags)(long)arg; | |
1828 | ||
a98a2f0c AP |
1829 | /* |
1830 | * When racing against e.g. zap_pte_range() on another cpu, | |
1831 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1832 | * try_to_migrate() may return before page_mapped() has become false, | |
1833 | * if page table locking is skipped: use TTU_SYNC to wait for that. | |
1834 | */ | |
1835 | if (flags & TTU_SYNC) | |
1836 | pvmw.flags = PVMW_SYNC; | |
1837 | ||
1838 | /* | |
1839 | * unmap_page() in mm/huge_memory.c is the only user of migration with | |
1840 | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | |
1841 | */ | |
1842 | if (flags & TTU_SPLIT_HUGE_PMD) | |
af28a988 | 1843 | split_huge_pmd_address(vma, address, true, folio); |
a98a2f0c AP |
1844 | |
1845 | /* | |
1846 | * For THP, we have to assume the worse case ie pmd for invalidation. | |
1847 | * For hugetlb, it could be much worse if we need to do pud | |
1848 | * invalidation in the case of pmd sharing. | |
1849 | * | |
1850 | * Note that the page can not be free in this function as call of | |
1851 | * try_to_unmap() must hold a reference on the page. | |
1852 | */ | |
2aff7a47 | 1853 | range.end = vma_address_end(&pvmw); |
a98a2f0c AP |
1854 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
1855 | address, range.end); | |
4b8554c5 | 1856 | if (folio_test_hugetlb(folio)) { |
a98a2f0c AP |
1857 | /* |
1858 | * If sharing is possible, start and end will be adjusted | |
1859 | * accordingly. | |
1860 | */ | |
1861 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1862 | &range.end); | |
1863 | } | |
1864 | mmu_notifier_invalidate_range_start(&range); | |
1865 | ||
1866 | while (page_vma_mapped_walk(&pvmw)) { | |
1867 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1868 | /* PMD-mapped THP migration entry */ | |
1869 | if (!pvmw.pte) { | |
4b8554c5 MWO |
1870 | subpage = folio_page(folio, |
1871 | pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); | |
1872 | VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || | |
1873 | !folio_test_pmd_mappable(folio), folio); | |
a98a2f0c | 1874 | |
7f5abe60 DH |
1875 | if (set_pmd_migration_entry(&pvmw, subpage)) { |
1876 | ret = false; | |
1877 | page_vma_mapped_walk_done(&pvmw); | |
1878 | break; | |
1879 | } | |
a98a2f0c AP |
1880 | continue; |
1881 | } | |
1882 | #endif | |
1883 | ||
1884 | /* Unexpected PMD-mapped THP? */ | |
4b8554c5 | 1885 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
a98a2f0c | 1886 | |
4b8554c5 MWO |
1887 | subpage = folio_page(folio, |
1888 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
a98a2f0c | 1889 | address = pvmw.address; |
6c287605 DH |
1890 | anon_exclusive = folio_test_anon(folio) && |
1891 | PageAnonExclusive(subpage); | |
a98a2f0c | 1892 | |
dfc7ab57 | 1893 | if (folio_test_hugetlb(folio)) { |
54205e9c BW |
1894 | /* |
1895 | * huge_pmd_unshare may unmap an entire PMD page. | |
1896 | * There is no way of knowing exactly which PMDs may | |
1897 | * be cached for this mm, so we must flush them all. | |
1898 | * start/end were already adjusted above to cover this | |
1899 | * range. | |
1900 | */ | |
1901 | flush_cache_range(vma, range.start, range.end); | |
1902 | ||
dfc7ab57 | 1903 | if (!folio_test_anon(folio)) { |
a98a2f0c | 1904 | /* |
dfc7ab57 BW |
1905 | * To call huge_pmd_unshare, i_mmap_rwsem must be |
1906 | * held in write mode. Caller needs to explicitly | |
1907 | * do this outside rmap routines. | |
a98a2f0c | 1908 | */ |
dfc7ab57 BW |
1909 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); |
1910 | ||
1911 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { | |
1912 | flush_tlb_range(vma, range.start, range.end); | |
1913 | mmu_notifier_invalidate_range(mm, range.start, | |
1914 | range.end); | |
1915 | ||
1916 | /* | |
1917 | * The ref count of the PMD page was dropped | |
1918 | * which is part of the way map counting | |
1919 | * is done for shared PMDs. Return 'true' | |
1920 | * here. When there is no other sharing, | |
1921 | * huge_pmd_unshare returns false and we will | |
1922 | * unmap the actual page and drop map count | |
1923 | * to zero. | |
1924 | */ | |
1925 | page_vma_mapped_walk_done(&pvmw); | |
1926 | break; | |
1927 | } | |
a98a2f0c | 1928 | } |
54205e9c BW |
1929 | } else { |
1930 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
a98a2f0c AP |
1931 | } |
1932 | ||
1933 | /* Nuke the page table entry. */ | |
a98a2f0c AP |
1934 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
1935 | ||
4b8554c5 | 1936 | /* Set the dirty flag on the folio now the pte is gone. */ |
a98a2f0c | 1937 | if (pte_dirty(pteval)) |
4b8554c5 | 1938 | folio_mark_dirty(folio); |
a98a2f0c AP |
1939 | |
1940 | /* Update high watermark before we lower rss */ | |
1941 | update_hiwater_rss(mm); | |
1942 | ||
4b8554c5 MWO |
1943 | if (folio_is_zone_device(folio)) { |
1944 | unsigned long pfn = folio_pfn(folio); | |
a98a2f0c AP |
1945 | swp_entry_t entry; |
1946 | pte_t swp_pte; | |
1947 | ||
6c287605 DH |
1948 | if (anon_exclusive) |
1949 | BUG_ON(page_try_share_anon_rmap(subpage)); | |
1950 | ||
a98a2f0c AP |
1951 | /* |
1952 | * Store the pfn of the page in a special migration | |
1953 | * pte. do_swap_page() will wait until the migration | |
1954 | * pte is removed and then restart fault handling. | |
1955 | */ | |
3d88705c AP |
1956 | entry = pte_to_swp_entry(pteval); |
1957 | if (is_writable_device_private_entry(entry)) | |
1958 | entry = make_writable_migration_entry(pfn); | |
6c287605 DH |
1959 | else if (anon_exclusive) |
1960 | entry = make_readable_exclusive_migration_entry(pfn); | |
3d88705c AP |
1961 | else |
1962 | entry = make_readable_migration_entry(pfn); | |
a98a2f0c AP |
1963 | swp_pte = swp_entry_to_pte(entry); |
1964 | ||
1965 | /* | |
1966 | * pteval maps a zone device page and is therefore | |
1967 | * a swap pte. | |
1968 | */ | |
1969 | if (pte_swp_soft_dirty(pteval)) | |
1970 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1971 | if (pte_swp_uffd_wp(pteval)) | |
1972 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
1973 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
1974 | trace_set_migration_pte(pvmw.address, pte_val(swp_pte), |
1975 | compound_order(&folio->page)); | |
a98a2f0c AP |
1976 | /* |
1977 | * No need to invalidate here it will synchronize on | |
1978 | * against the special swap migration pte. | |
1979 | * | |
1980 | * The assignment to subpage above was computed from a | |
1981 | * swap PTE which results in an invalid pointer. | |
1982 | * Since only PAGE_SIZE pages can currently be | |
1983 | * migrated, just set it to page. This will need to be | |
1984 | * changed when hugepage migrations to device private | |
1985 | * memory are supported. | |
1986 | */ | |
4b8554c5 | 1987 | subpage = &folio->page; |
da358d5c | 1988 | } else if (PageHWPoison(subpage)) { |
a98a2f0c | 1989 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
4b8554c5 MWO |
1990 | if (folio_test_hugetlb(folio)) { |
1991 | hugetlb_count_sub(folio_nr_pages(folio), mm); | |
a98a2f0c AP |
1992 | set_huge_swap_pte_at(mm, address, |
1993 | pvmw.pte, pteval, | |
1994 | vma_mmu_pagesize(vma)); | |
1995 | } else { | |
4b8554c5 | 1996 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
1997 | set_pte_at(mm, address, pvmw.pte, pteval); |
1998 | } | |
1999 | ||
2000 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | |
2001 | /* | |
2002 | * The guest indicated that the page content is of no | |
2003 | * interest anymore. Simply discard the pte, vmscan | |
2004 | * will take care of the rest. | |
2005 | * A future reference will then fault in a new zero | |
2006 | * page. When userfaultfd is active, we must not drop | |
2007 | * this page though, as its main user (postcopy | |
2008 | * migration) will not expect userfaults on already | |
2009 | * copied pages. | |
2010 | */ | |
4b8554c5 | 2011 | dec_mm_counter(mm, mm_counter(&folio->page)); |
a98a2f0c AP |
2012 | /* We have to invalidate as we cleared the pte */ |
2013 | mmu_notifier_invalidate_range(mm, address, | |
2014 | address + PAGE_SIZE); | |
2015 | } else { | |
2016 | swp_entry_t entry; | |
2017 | pte_t swp_pte; | |
2018 | ||
2019 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
2020 | set_pte_at(mm, address, pvmw.pte, pteval); | |
2021 | ret = false; | |
2022 | page_vma_mapped_walk_done(&pvmw); | |
2023 | break; | |
2024 | } | |
6c287605 DH |
2025 | VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && |
2026 | !anon_exclusive, subpage); | |
2027 | if (anon_exclusive && | |
2028 | page_try_share_anon_rmap(subpage)) { | |
2029 | set_pte_at(mm, address, pvmw.pte, pteval); | |
2030 | ret = false; | |
2031 | page_vma_mapped_walk_done(&pvmw); | |
2032 | break; | |
2033 | } | |
a98a2f0c AP |
2034 | |
2035 | /* | |
2036 | * Store the pfn of the page in a special migration | |
2037 | * pte. do_swap_page() will wait until the migration | |
2038 | * pte is removed and then restart fault handling. | |
2039 | */ | |
2040 | if (pte_write(pteval)) | |
2041 | entry = make_writable_migration_entry( | |
2042 | page_to_pfn(subpage)); | |
6c287605 DH |
2043 | else if (anon_exclusive) |
2044 | entry = make_readable_exclusive_migration_entry( | |
2045 | page_to_pfn(subpage)); | |
a98a2f0c AP |
2046 | else |
2047 | entry = make_readable_migration_entry( | |
2048 | page_to_pfn(subpage)); | |
2049 | ||
2050 | swp_pte = swp_entry_to_pte(entry); | |
2051 | if (pte_soft_dirty(pteval)) | |
2052 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2053 | if (pte_uffd_wp(pteval)) | |
2054 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2055 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
4cc79b33 AK |
2056 | trace_set_migration_pte(address, pte_val(swp_pte), |
2057 | compound_order(&folio->page)); | |
a98a2f0c AP |
2058 | /* |
2059 | * No need to invalidate here it will synchronize on | |
2060 | * against the special swap migration pte. | |
2061 | */ | |
2062 | } | |
2063 | ||
2064 | /* | |
2065 | * No need to call mmu_notifier_invalidate_range() it has be | |
2066 | * done above for all cases requiring it to happen under page | |
2067 | * table lock before mmu_notifier_invalidate_range_end() | |
2068 | * | |
2069 | * See Documentation/vm/mmu_notifier.rst | |
2070 | */ | |
4b8554c5 | 2071 | page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); |
b7435507 | 2072 | if (vma->vm_flags & VM_LOCKED) |
adb11e78 | 2073 | mlock_page_drain_local(); |
4b8554c5 | 2074 | folio_put(folio); |
a98a2f0c AP |
2075 | } |
2076 | ||
2077 | mmu_notifier_invalidate_range_end(&range); | |
2078 | ||
2079 | return ret; | |
2080 | } | |
2081 | ||
2082 | /** | |
2083 | * try_to_migrate - try to replace all page table mappings with swap entries | |
4b8554c5 | 2084 | * @folio: the folio to replace page table entries for |
a98a2f0c AP |
2085 | * @flags: action and flags |
2086 | * | |
4b8554c5 MWO |
2087 | * Tries to remove all the page table entries which are mapping this folio and |
2088 | * replace them with special swap entries. Caller must hold the folio lock. | |
a98a2f0c | 2089 | */ |
4b8554c5 | 2090 | void try_to_migrate(struct folio *folio, enum ttu_flags flags) |
a98a2f0c AP |
2091 | { |
2092 | struct rmap_walk_control rwc = { | |
2093 | .rmap_one = try_to_migrate_one, | |
2094 | .arg = (void *)flags, | |
2095 | .done = page_not_mapped, | |
2f031c6f | 2096 | .anon_lock = folio_lock_anon_vma_read, |
a98a2f0c AP |
2097 | }; |
2098 | ||
2099 | /* | |
2100 | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | |
2101 | * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. | |
2102 | */ | |
2103 | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | |
2104 | TTU_SYNC))) | |
2105 | return; | |
2106 | ||
4b8554c5 | 2107 | if (folio_is_zone_device(folio) && !folio_is_device_private(folio)) |
6c855fce HD |
2108 | return; |
2109 | ||
52629506 JK |
2110 | /* |
2111 | * During exec, a temporary VMA is setup and later moved. | |
2112 | * The VMA is moved under the anon_vma lock but not the | |
2113 | * page tables leading to a race where migration cannot | |
2114 | * find the migration ptes. Rather than increasing the | |
2115 | * locking requirements of exec(), migration skips | |
2116 | * temporary VMAs until after exec() completes. | |
2117 | */ | |
4b8554c5 | 2118 | if (!folio_test_ksm(folio) && folio_test_anon(folio)) |
52629506 JK |
2119 | rwc.invalid_vma = invalid_migration_vma; |
2120 | ||
2a52bcbc | 2121 | if (flags & TTU_RMAP_LOCKED) |
2f031c6f | 2122 | rmap_walk_locked(folio, &rwc); |
2a52bcbc | 2123 | else |
2f031c6f | 2124 | rmap_walk(folio, &rwc); |
b291f000 | 2125 | } |
e9995ef9 | 2126 | |
b756a3b5 AP |
2127 | #ifdef CONFIG_DEVICE_PRIVATE |
2128 | struct make_exclusive_args { | |
2129 | struct mm_struct *mm; | |
2130 | unsigned long address; | |
2131 | void *owner; | |
2132 | bool valid; | |
2133 | }; | |
2134 | ||
2f031c6f | 2135 | static bool page_make_device_exclusive_one(struct folio *folio, |
b756a3b5 AP |
2136 | struct vm_area_struct *vma, unsigned long address, void *priv) |
2137 | { | |
2138 | struct mm_struct *mm = vma->vm_mm; | |
0d251485 | 2139 | DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); |
b756a3b5 AP |
2140 | struct make_exclusive_args *args = priv; |
2141 | pte_t pteval; | |
2142 | struct page *subpage; | |
2143 | bool ret = true; | |
2144 | struct mmu_notifier_range range; | |
2145 | swp_entry_t entry; | |
2146 | pte_t swp_pte; | |
2147 | ||
2148 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | |
2149 | vma->vm_mm, address, min(vma->vm_end, | |
0d251485 MWO |
2150 | address + folio_size(folio)), |
2151 | args->owner); | |
b756a3b5 AP |
2152 | mmu_notifier_invalidate_range_start(&range); |
2153 | ||
2154 | while (page_vma_mapped_walk(&pvmw)) { | |
2155 | /* Unexpected PMD-mapped THP? */ | |
0d251485 | 2156 | VM_BUG_ON_FOLIO(!pvmw.pte, folio); |
b756a3b5 AP |
2157 | |
2158 | if (!pte_present(*pvmw.pte)) { | |
2159 | ret = false; | |
2160 | page_vma_mapped_walk_done(&pvmw); | |
2161 | break; | |
2162 | } | |
2163 | ||
0d251485 MWO |
2164 | subpage = folio_page(folio, |
2165 | pte_pfn(*pvmw.pte) - folio_pfn(folio)); | |
b756a3b5 AP |
2166 | address = pvmw.address; |
2167 | ||
2168 | /* Nuke the page table entry. */ | |
2169 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
2170 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
2171 | ||
0d251485 | 2172 | /* Set the dirty flag on the folio now the pte is gone. */ |
b756a3b5 | 2173 | if (pte_dirty(pteval)) |
0d251485 | 2174 | folio_mark_dirty(folio); |
b756a3b5 AP |
2175 | |
2176 | /* | |
2177 | * Check that our target page is still mapped at the expected | |
2178 | * address. | |
2179 | */ | |
2180 | if (args->mm == mm && args->address == address && | |
2181 | pte_write(pteval)) | |
2182 | args->valid = true; | |
2183 | ||
2184 | /* | |
2185 | * Store the pfn of the page in a special migration | |
2186 | * pte. do_swap_page() will wait until the migration | |
2187 | * pte is removed and then restart fault handling. | |
2188 | */ | |
2189 | if (pte_write(pteval)) | |
2190 | entry = make_writable_device_exclusive_entry( | |
2191 | page_to_pfn(subpage)); | |
2192 | else | |
2193 | entry = make_readable_device_exclusive_entry( | |
2194 | page_to_pfn(subpage)); | |
2195 | swp_pte = swp_entry_to_pte(entry); | |
2196 | if (pte_soft_dirty(pteval)) | |
2197 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2198 | if (pte_uffd_wp(pteval)) | |
2199 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2200 | ||
2201 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
2202 | ||
2203 | /* | |
2204 | * There is a reference on the page for the swap entry which has | |
2205 | * been removed, so shouldn't take another. | |
2206 | */ | |
cea86fe2 | 2207 | page_remove_rmap(subpage, vma, false); |
b756a3b5 AP |
2208 | } |
2209 | ||
2210 | mmu_notifier_invalidate_range_end(&range); | |
2211 | ||
2212 | return ret; | |
2213 | } | |
2214 | ||
2215 | /** | |
0d251485 MWO |
2216 | * folio_make_device_exclusive - Mark the folio exclusively owned by a device. |
2217 | * @folio: The folio to replace page table entries for. | |
2218 | * @mm: The mm_struct where the folio is expected to be mapped. | |
2219 | * @address: Address where the folio is expected to be mapped. | |
b756a3b5 AP |
2220 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks |
2221 | * | |
0d251485 MWO |
2222 | * Tries to remove all the page table entries which are mapping this |
2223 | * folio and replace them with special device exclusive swap entries to | |
2224 | * grant a device exclusive access to the folio. | |
b756a3b5 | 2225 | * |
0d251485 MWO |
2226 | * Context: Caller must hold the folio lock. |
2227 | * Return: false if the page is still mapped, or if it could not be unmapped | |
b756a3b5 AP |
2228 | * from the expected address. Otherwise returns true (success). |
2229 | */ | |
0d251485 MWO |
2230 | static bool folio_make_device_exclusive(struct folio *folio, |
2231 | struct mm_struct *mm, unsigned long address, void *owner) | |
b756a3b5 AP |
2232 | { |
2233 | struct make_exclusive_args args = { | |
2234 | .mm = mm, | |
2235 | .address = address, | |
2236 | .owner = owner, | |
2237 | .valid = false, | |
2238 | }; | |
2239 | struct rmap_walk_control rwc = { | |
2240 | .rmap_one = page_make_device_exclusive_one, | |
2241 | .done = page_not_mapped, | |
2f031c6f | 2242 | .anon_lock = folio_lock_anon_vma_read, |
b756a3b5 AP |
2243 | .arg = &args, |
2244 | }; | |
2245 | ||
2246 | /* | |
0d251485 MWO |
2247 | * Restrict to anonymous folios for now to avoid potential writeback |
2248 | * issues. | |
b756a3b5 | 2249 | */ |
0d251485 | 2250 | if (!folio_test_anon(folio)) |
b756a3b5 AP |
2251 | return false; |
2252 | ||
2f031c6f | 2253 | rmap_walk(folio, &rwc); |
b756a3b5 | 2254 | |
0d251485 | 2255 | return args.valid && !folio_mapcount(folio); |
b756a3b5 AP |
2256 | } |
2257 | ||
2258 | /** | |
2259 | * make_device_exclusive_range() - Mark a range for exclusive use by a device | |
dd062302 | 2260 | * @mm: mm_struct of associated target process |
b756a3b5 AP |
2261 | * @start: start of the region to mark for exclusive device access |
2262 | * @end: end address of region | |
2263 | * @pages: returns the pages which were successfully marked for exclusive access | |
2264 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | |
2265 | * | |
2266 | * Returns: number of pages found in the range by GUP. A page is marked for | |
2267 | * exclusive access only if the page pointer is non-NULL. | |
2268 | * | |
2269 | * This function finds ptes mapping page(s) to the given address range, locks | |
2270 | * them and replaces mappings with special swap entries preventing userspace CPU | |
2271 | * access. On fault these entries are replaced with the original mapping after | |
2272 | * calling MMU notifiers. | |
2273 | * | |
2274 | * A driver using this to program access from a device must use a mmu notifier | |
2275 | * critical section to hold a device specific lock during programming. Once | |
2276 | * programming is complete it should drop the page lock and reference after | |
2277 | * which point CPU access to the page will revoke the exclusive access. | |
2278 | */ | |
2279 | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | |
2280 | unsigned long end, struct page **pages, | |
2281 | void *owner) | |
2282 | { | |
2283 | long npages = (end - start) >> PAGE_SHIFT; | |
2284 | long i; | |
2285 | ||
2286 | npages = get_user_pages_remote(mm, start, npages, | |
2287 | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | |
2288 | pages, NULL, NULL); | |
2289 | if (npages < 0) | |
2290 | return npages; | |
2291 | ||
2292 | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | |
0d251485 MWO |
2293 | struct folio *folio = page_folio(pages[i]); |
2294 | if (PageTail(pages[i]) || !folio_trylock(folio)) { | |
2295 | folio_put(folio); | |
b756a3b5 AP |
2296 | pages[i] = NULL; |
2297 | continue; | |
2298 | } | |
2299 | ||
0d251485 MWO |
2300 | if (!folio_make_device_exclusive(folio, mm, start, owner)) { |
2301 | folio_unlock(folio); | |
2302 | folio_put(folio); | |
b756a3b5 AP |
2303 | pages[i] = NULL; |
2304 | } | |
2305 | } | |
2306 | ||
2307 | return npages; | |
2308 | } | |
2309 | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | |
2310 | #endif | |
2311 | ||
01d8b20d | 2312 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 2313 | { |
01d8b20d | 2314 | struct anon_vma *root = anon_vma->root; |
76545066 | 2315 | |
624483f3 | 2316 | anon_vma_free(anon_vma); |
01d8b20d PZ |
2317 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
2318 | anon_vma_free(root); | |
76545066 | 2319 | } |
76545066 | 2320 | |
2f031c6f | 2321 | static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, |
84fbbe21 | 2322 | const struct rmap_walk_control *rwc) |
faecd8dd JK |
2323 | { |
2324 | struct anon_vma *anon_vma; | |
2325 | ||
0dd1c7bb | 2326 | if (rwc->anon_lock) |
2f031c6f | 2327 | return rwc->anon_lock(folio); |
0dd1c7bb | 2328 | |
faecd8dd | 2329 | /* |
2f031c6f | 2330 | * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() |
faecd8dd | 2331 | * because that depends on page_mapped(); but not all its usages |
c1e8d7c6 | 2332 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
2333 | * take a reference count to prevent the anon_vma disappearing |
2334 | */ | |
e05b3453 | 2335 | anon_vma = folio_anon_vma(folio); |
faecd8dd JK |
2336 | if (!anon_vma) |
2337 | return NULL; | |
2338 | ||
2339 | anon_vma_lock_read(anon_vma); | |
2340 | return anon_vma; | |
2341 | } | |
2342 | ||
e9995ef9 | 2343 | /* |
e8351ac9 JK |
2344 | * rmap_walk_anon - do something to anonymous page using the object-based |
2345 | * rmap method | |
2346 | * @page: the page to be handled | |
2347 | * @rwc: control variable according to each walk type | |
2348 | * | |
2349 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2350 | * contained in the anon_vma struct it points to. | |
e9995ef9 | 2351 | */ |
84fbbe21 MWO |
2352 | static void rmap_walk_anon(struct folio *folio, |
2353 | const struct rmap_walk_control *rwc, bool locked) | |
e9995ef9 HD |
2354 | { |
2355 | struct anon_vma *anon_vma; | |
a8fa41ad | 2356 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 2357 | struct anon_vma_chain *avc; |
e9995ef9 | 2358 | |
b9773199 | 2359 | if (locked) { |
e05b3453 | 2360 | anon_vma = folio_anon_vma(folio); |
b9773199 | 2361 | /* anon_vma disappear under us? */ |
e05b3453 | 2362 | VM_BUG_ON_FOLIO(!anon_vma, folio); |
b9773199 | 2363 | } else { |
2f031c6f | 2364 | anon_vma = rmap_walk_anon_lock(folio, rwc); |
b9773199 | 2365 | } |
e9995ef9 | 2366 | if (!anon_vma) |
1df631ae | 2367 | return; |
faecd8dd | 2368 | |
2f031c6f MWO |
2369 | pgoff_start = folio_pgoff(folio); |
2370 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
a8fa41ad KS |
2371 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, |
2372 | pgoff_start, pgoff_end) { | |
5beb4930 | 2373 | struct vm_area_struct *vma = avc->vma; |
2f031c6f | 2374 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2375 | |
494334e4 | 2376 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2377 | cond_resched(); |
2378 | ||
0dd1c7bb JK |
2379 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2380 | continue; | |
2381 | ||
2f031c6f | 2382 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
e9995ef9 | 2383 | break; |
2f031c6f | 2384 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2385 | break; |
e9995ef9 | 2386 | } |
b9773199 KS |
2387 | |
2388 | if (!locked) | |
2389 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
2390 | } |
2391 | ||
e8351ac9 JK |
2392 | /* |
2393 | * rmap_walk_file - do something to file page using the object-based rmap method | |
2394 | * @page: the page to be handled | |
2395 | * @rwc: control variable according to each walk type | |
2396 | * | |
2397 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2398 | * contained in the address_space struct it points to. | |
e8351ac9 | 2399 | */ |
84fbbe21 MWO |
2400 | static void rmap_walk_file(struct folio *folio, |
2401 | const struct rmap_walk_control *rwc, bool locked) | |
e9995ef9 | 2402 | { |
2f031c6f | 2403 | struct address_space *mapping = folio_mapping(folio); |
a8fa41ad | 2404 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 2405 | struct vm_area_struct *vma; |
e9995ef9 | 2406 | |
9f32624b JK |
2407 | /* |
2408 | * The page lock not only makes sure that page->mapping cannot | |
2409 | * suddenly be NULLified by truncation, it makes sure that the | |
2410 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 2411 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 2412 | */ |
2f031c6f | 2413 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
9f32624b | 2414 | |
e9995ef9 | 2415 | if (!mapping) |
1df631ae | 2416 | return; |
3dec0ba0 | 2417 | |
2f031c6f MWO |
2418 | pgoff_start = folio_pgoff(folio); |
2419 | pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; | |
b9773199 KS |
2420 | if (!locked) |
2421 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
2422 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
2423 | pgoff_start, pgoff_end) { | |
2f031c6f | 2424 | unsigned long address = vma_address(&folio->page, vma); |
0dd1c7bb | 2425 | |
494334e4 | 2426 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2427 | cond_resched(); |
2428 | ||
0dd1c7bb JK |
2429 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2430 | continue; | |
2431 | ||
2f031c6f | 2432 | if (!rwc->rmap_one(folio, vma, address, rwc->arg)) |
0dd1c7bb | 2433 | goto done; |
2f031c6f | 2434 | if (rwc->done && rwc->done(folio)) |
0dd1c7bb | 2435 | goto done; |
e9995ef9 | 2436 | } |
0dd1c7bb | 2437 | |
0dd1c7bb | 2438 | done: |
b9773199 KS |
2439 | if (!locked) |
2440 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
2441 | } |
2442 | ||
84fbbe21 | 2443 | void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc) |
e9995ef9 | 2444 | { |
2f031c6f MWO |
2445 | if (unlikely(folio_test_ksm(folio))) |
2446 | rmap_walk_ksm(folio, rwc); | |
2447 | else if (folio_test_anon(folio)) | |
2448 | rmap_walk_anon(folio, rwc, false); | |
b9773199 | 2449 | else |
2f031c6f | 2450 | rmap_walk_file(folio, rwc, false); |
b9773199 KS |
2451 | } |
2452 | ||
2453 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
84fbbe21 | 2454 | void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc) |
b9773199 KS |
2455 | { |
2456 | /* no ksm support for now */ | |
2f031c6f MWO |
2457 | VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); |
2458 | if (folio_test_anon(folio)) | |
2459 | rmap_walk_anon(folio, rwc, true); | |
e9995ef9 | 2460 | else |
2f031c6f | 2461 | rmap_walk_file(folio, rwc, true); |
e9995ef9 | 2462 | } |
0fe6e20b | 2463 | |
e3390f67 | 2464 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 2465 | /* |
451b9514 | 2466 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
2467 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
2468 | * and no lru code, because we handle hugepages differently from common pages. | |
28c5209d DH |
2469 | * |
2470 | * RMAP_COMPOUND is ignored. | |
0fe6e20b | 2471 | */ |
28c5209d DH |
2472 | void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, |
2473 | unsigned long address, rmap_t flags) | |
0fe6e20b NH |
2474 | { |
2475 | struct anon_vma *anon_vma = vma->anon_vma; | |
2476 | int first; | |
a850ea30 NH |
2477 | |
2478 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 2479 | BUG_ON(!anon_vma); |
5dbe0af4 | 2480 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 2481 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
6c287605 DH |
2482 | VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); |
2483 | VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); | |
0fe6e20b | 2484 | if (first) |
28c5209d DH |
2485 | __page_set_anon_rmap(page, vma, address, |
2486 | !!(flags & RMAP_EXCLUSIVE)); | |
0fe6e20b NH |
2487 | } |
2488 | ||
2489 | void hugepage_add_new_anon_rmap(struct page *page, | |
2490 | struct vm_area_struct *vma, unsigned long address) | |
2491 | { | |
2492 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 2493 | atomic_set(compound_mapcount_ptr(page), 0); |
5232c63f | 2494 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 2495 | |
451b9514 | 2496 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 2497 | } |
e3390f67 | 2498 | #endif /* CONFIG_HUGETLB_PAGE */ |