]>
Commit | Line | Data |
---|---|---|
043405e1 CO |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * derived from drivers/kvm/kvm_main.c | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
4d5c5d0f BAY |
7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | |
9611c187 | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
043405e1 CO |
10 | * |
11 | * Authors: | |
12 | * Avi Kivity <[email protected]> | |
13 | * Yaniv Kamay <[email protected]> | |
4d5c5d0f BAY |
14 | * Amit Shah <[email protected]> |
15 | * Ben-Ami Yassour <[email protected]> | |
043405e1 CO |
16 | * |
17 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
18 | * the COPYING file in the top-level directory. | |
19 | * | |
20 | */ | |
21 | ||
edf88417 | 22 | #include <linux/kvm_host.h> |
313a3dc7 | 23 | #include "irq.h" |
1d737c8a | 24 | #include "mmu.h" |
7837699f | 25 | #include "i8254.h" |
37817f29 | 26 | #include "tss.h" |
5fdbf976 | 27 | #include "kvm_cache_regs.h" |
26eef70c | 28 | #include "x86.h" |
00b27a3e | 29 | #include "cpuid.h" |
474a5bb9 | 30 | #include "pmu.h" |
e83d5887 | 31 | #include "hyperv.h" |
313a3dc7 | 32 | |
18068523 | 33 | #include <linux/clocksource.h> |
4d5c5d0f | 34 | #include <linux/interrupt.h> |
313a3dc7 CO |
35 | #include <linux/kvm.h> |
36 | #include <linux/fs.h> | |
37 | #include <linux/vmalloc.h> | |
1767e931 PG |
38 | #include <linux/export.h> |
39 | #include <linux/moduleparam.h> | |
0de10343 | 40 | #include <linux/mman.h> |
2bacc55c | 41 | #include <linux/highmem.h> |
19de40a8 | 42 | #include <linux/iommu.h> |
62c476c7 | 43 | #include <linux/intel-iommu.h> |
c8076604 | 44 | #include <linux/cpufreq.h> |
18863bdd | 45 | #include <linux/user-return-notifier.h> |
a983fb23 | 46 | #include <linux/srcu.h> |
5a0e3ad6 | 47 | #include <linux/slab.h> |
ff9d07a0 | 48 | #include <linux/perf_event.h> |
7bee342a | 49 | #include <linux/uaccess.h> |
af585b92 | 50 | #include <linux/hash.h> |
a1b60c1c | 51 | #include <linux/pci.h> |
16e8d74d MT |
52 | #include <linux/timekeeper_internal.h> |
53 | #include <linux/pvclock_gtod.h> | |
87276880 FW |
54 | #include <linux/kvm_irqfd.h> |
55 | #include <linux/irqbypass.h> | |
3905f9ad | 56 | #include <linux/sched/stat.h> |
d0ec49d4 | 57 | #include <linux/mem_encrypt.h> |
3905f9ad | 58 | |
aec51dc4 | 59 | #include <trace/events/kvm.h> |
2ed152af | 60 | |
24f1e32c | 61 | #include <asm/debugreg.h> |
d825ed0a | 62 | #include <asm/msr.h> |
a5f61300 | 63 | #include <asm/desc.h> |
890ca9ae | 64 | #include <asm/mce.h> |
f89e32e0 | 65 | #include <linux/kernel_stat.h> |
78f7f1e5 | 66 | #include <asm/fpu/internal.h> /* Ugh! */ |
1d5f066e | 67 | #include <asm/pvclock.h> |
217fc9cf | 68 | #include <asm/div64.h> |
efc64404 | 69 | #include <asm/irq_remapping.h> |
043405e1 | 70 | |
d1898b73 DH |
71 | #define CREATE_TRACE_POINTS |
72 | #include "trace.h" | |
73 | ||
313a3dc7 | 74 | #define MAX_IO_MSRS 256 |
890ca9ae | 75 | #define KVM_MAX_MCE_BANKS 32 |
c45dcc71 AR |
76 | u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; |
77 | EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); | |
890ca9ae | 78 | |
0f65dd70 AK |
79 | #define emul_to_vcpu(ctxt) \ |
80 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | |
81 | ||
50a37eb4 JR |
82 | /* EFER defaults: |
83 | * - enable syscall per default because its emulated by KVM | |
84 | * - enable LME and LMA per default on 64 bit KVM | |
85 | */ | |
86 | #ifdef CONFIG_X86_64 | |
1260edbe LJ |
87 | static |
88 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | |
50a37eb4 | 89 | #else |
1260edbe | 90 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
50a37eb4 | 91 | #endif |
313a3dc7 | 92 | |
ba1389b7 AK |
93 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
94 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | |
417bc304 | 95 | |
c519265f RK |
96 | #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ |
97 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) | |
37131313 | 98 | |
cb142eb7 | 99 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
7460fb4a | 100 | static void process_nmi(struct kvm_vcpu *vcpu); |
ee2cd4b7 | 101 | static void enter_smm(struct kvm_vcpu *vcpu); |
6addfc42 | 102 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
674eea0f | 103 | |
893590c7 | 104 | struct kvm_x86_ops *kvm_x86_ops __read_mostly; |
5fdbf976 | 105 | EXPORT_SYMBOL_GPL(kvm_x86_ops); |
97896d04 | 106 | |
893590c7 | 107 | static bool __read_mostly ignore_msrs = 0; |
476bc001 | 108 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); |
ed85c068 | 109 | |
fab0aa3b EM |
110 | static bool __read_mostly report_ignored_msrs = true; |
111 | module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); | |
112 | ||
9ed96e87 MT |
113 | unsigned int min_timer_period_us = 500; |
114 | module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); | |
115 | ||
630994b3 MT |
116 | static bool __read_mostly kvmclock_periodic_sync = true; |
117 | module_param(kvmclock_periodic_sync, bool, S_IRUGO); | |
118 | ||
893590c7 | 119 | bool __read_mostly kvm_has_tsc_control; |
92a1f12d | 120 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); |
893590c7 | 121 | u32 __read_mostly kvm_max_guest_tsc_khz; |
92a1f12d | 122 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); |
bc9b961b HZ |
123 | u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; |
124 | EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); | |
125 | u64 __read_mostly kvm_max_tsc_scaling_ratio; | |
126 | EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); | |
64672c95 YJ |
127 | u64 __read_mostly kvm_default_tsc_scaling_ratio; |
128 | EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); | |
92a1f12d | 129 | |
cc578287 | 130 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
893590c7 | 131 | static u32 __read_mostly tsc_tolerance_ppm = 250; |
cc578287 ZA |
132 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); |
133 | ||
d0659d94 | 134 | /* lapic timer advance (tscdeadline mode only) in nanoseconds */ |
893590c7 | 135 | unsigned int __read_mostly lapic_timer_advance_ns = 0; |
d0659d94 MT |
136 | module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); |
137 | ||
52004014 FW |
138 | static bool __read_mostly vector_hashing = true; |
139 | module_param(vector_hashing, bool, S_IRUGO); | |
140 | ||
18863bdd AK |
141 | #define KVM_NR_SHARED_MSRS 16 |
142 | ||
143 | struct kvm_shared_msrs_global { | |
144 | int nr; | |
2bf78fa7 | 145 | u32 msrs[KVM_NR_SHARED_MSRS]; |
18863bdd AK |
146 | }; |
147 | ||
148 | struct kvm_shared_msrs { | |
149 | struct user_return_notifier urn; | |
150 | bool registered; | |
2bf78fa7 SY |
151 | struct kvm_shared_msr_values { |
152 | u64 host; | |
153 | u64 curr; | |
154 | } values[KVM_NR_SHARED_MSRS]; | |
18863bdd AK |
155 | }; |
156 | ||
157 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | |
013f6a5d | 158 | static struct kvm_shared_msrs __percpu *shared_msrs; |
18863bdd | 159 | |
417bc304 | 160 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
ba1389b7 AK |
161 | { "pf_fixed", VCPU_STAT(pf_fixed) }, |
162 | { "pf_guest", VCPU_STAT(pf_guest) }, | |
163 | { "tlb_flush", VCPU_STAT(tlb_flush) }, | |
164 | { "invlpg", VCPU_STAT(invlpg) }, | |
165 | { "exits", VCPU_STAT(exits) }, | |
166 | { "io_exits", VCPU_STAT(io_exits) }, | |
167 | { "mmio_exits", VCPU_STAT(mmio_exits) }, | |
168 | { "signal_exits", VCPU_STAT(signal_exits) }, | |
169 | { "irq_window", VCPU_STAT(irq_window_exits) }, | |
f08864b4 | 170 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
ba1389b7 | 171 | { "halt_exits", VCPU_STAT(halt_exits) }, |
f7819512 | 172 | { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, |
62bea5bf | 173 | { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, |
3491caf2 | 174 | { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, |
ba1389b7 | 175 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
f11c3a8d | 176 | { "hypercalls", VCPU_STAT(hypercalls) }, |
ba1389b7 AK |
177 | { "request_irq", VCPU_STAT(request_irq_exits) }, |
178 | { "irq_exits", VCPU_STAT(irq_exits) }, | |
179 | { "host_state_reload", VCPU_STAT(host_state_reload) }, | |
180 | { "efer_reload", VCPU_STAT(efer_reload) }, | |
181 | { "fpu_reload", VCPU_STAT(fpu_reload) }, | |
182 | { "insn_emulation", VCPU_STAT(insn_emulation) }, | |
183 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | |
fa89a817 | 184 | { "irq_injections", VCPU_STAT(irq_injections) }, |
c4abb7c9 | 185 | { "nmi_injections", VCPU_STAT(nmi_injections) }, |
0f1e261e | 186 | { "req_event", VCPU_STAT(req_event) }, |
4cee5764 AK |
187 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
188 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | |
189 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | |
190 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | |
191 | { "mmu_flooded", VM_STAT(mmu_flooded) }, | |
192 | { "mmu_recycled", VM_STAT(mmu_recycled) }, | |
dfc5aa00 | 193 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
4731d4c7 | 194 | { "mmu_unsync", VM_STAT(mmu_unsync) }, |
0f74a24c | 195 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
05da4558 | 196 | { "largepages", VM_STAT(lpages) }, |
f3414bc7 DM |
197 | { "max_mmu_page_hash_collisions", |
198 | VM_STAT(max_mmu_page_hash_collisions) }, | |
417bc304 HB |
199 | { NULL } |
200 | }; | |
201 | ||
2acf923e DC |
202 | u64 __read_mostly host_xcr0; |
203 | ||
b6785def | 204 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
d6aa1000 | 205 | |
af585b92 GN |
206 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
207 | { | |
208 | int i; | |
209 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | |
210 | vcpu->arch.apf.gfns[i] = ~0; | |
211 | } | |
212 | ||
18863bdd AK |
213 | static void kvm_on_user_return(struct user_return_notifier *urn) |
214 | { | |
215 | unsigned slot; | |
18863bdd AK |
216 | struct kvm_shared_msrs *locals |
217 | = container_of(urn, struct kvm_shared_msrs, urn); | |
2bf78fa7 | 218 | struct kvm_shared_msr_values *values; |
1650b4eb IA |
219 | unsigned long flags; |
220 | ||
221 | /* | |
222 | * Disabling irqs at this point since the following code could be | |
223 | * interrupted and executed through kvm_arch_hardware_disable() | |
224 | */ | |
225 | local_irq_save(flags); | |
226 | if (locals->registered) { | |
227 | locals->registered = false; | |
228 | user_return_notifier_unregister(urn); | |
229 | } | |
230 | local_irq_restore(flags); | |
18863bdd | 231 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
2bf78fa7 SY |
232 | values = &locals->values[slot]; |
233 | if (values->host != values->curr) { | |
234 | wrmsrl(shared_msrs_global.msrs[slot], values->host); | |
235 | values->curr = values->host; | |
18863bdd AK |
236 | } |
237 | } | |
18863bdd AK |
238 | } |
239 | ||
2bf78fa7 | 240 | static void shared_msr_update(unsigned slot, u32 msr) |
18863bdd | 241 | { |
18863bdd | 242 | u64 value; |
013f6a5d MT |
243 | unsigned int cpu = smp_processor_id(); |
244 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
18863bdd | 245 | |
2bf78fa7 SY |
246 | /* only read, and nobody should modify it at this time, |
247 | * so don't need lock */ | |
248 | if (slot >= shared_msrs_global.nr) { | |
249 | printk(KERN_ERR "kvm: invalid MSR slot!"); | |
250 | return; | |
251 | } | |
252 | rdmsrl_safe(msr, &value); | |
253 | smsr->values[slot].host = value; | |
254 | smsr->values[slot].curr = value; | |
255 | } | |
256 | ||
257 | void kvm_define_shared_msr(unsigned slot, u32 msr) | |
258 | { | |
0123be42 | 259 | BUG_ON(slot >= KVM_NR_SHARED_MSRS); |
c847fe88 | 260 | shared_msrs_global.msrs[slot] = msr; |
18863bdd AK |
261 | if (slot >= shared_msrs_global.nr) |
262 | shared_msrs_global.nr = slot + 1; | |
18863bdd AK |
263 | } |
264 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | |
265 | ||
266 | static void kvm_shared_msr_cpu_online(void) | |
267 | { | |
268 | unsigned i; | |
18863bdd AK |
269 | |
270 | for (i = 0; i < shared_msrs_global.nr; ++i) | |
2bf78fa7 | 271 | shared_msr_update(i, shared_msrs_global.msrs[i]); |
18863bdd AK |
272 | } |
273 | ||
8b3c3104 | 274 | int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
18863bdd | 275 | { |
013f6a5d MT |
276 | unsigned int cpu = smp_processor_id(); |
277 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
8b3c3104 | 278 | int err; |
18863bdd | 279 | |
2bf78fa7 | 280 | if (((value ^ smsr->values[slot].curr) & mask) == 0) |
8b3c3104 | 281 | return 0; |
2bf78fa7 | 282 | smsr->values[slot].curr = value; |
8b3c3104 AH |
283 | err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); |
284 | if (err) | |
285 | return 1; | |
286 | ||
18863bdd AK |
287 | if (!smsr->registered) { |
288 | smsr->urn.on_user_return = kvm_on_user_return; | |
289 | user_return_notifier_register(&smsr->urn); | |
290 | smsr->registered = true; | |
291 | } | |
8b3c3104 | 292 | return 0; |
18863bdd AK |
293 | } |
294 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | |
295 | ||
13a34e06 | 296 | static void drop_user_return_notifiers(void) |
3548bab5 | 297 | { |
013f6a5d MT |
298 | unsigned int cpu = smp_processor_id(); |
299 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
3548bab5 AK |
300 | |
301 | if (smsr->registered) | |
302 | kvm_on_user_return(&smsr->urn); | |
303 | } | |
304 | ||
6866b83e CO |
305 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
306 | { | |
8a5a87d9 | 307 | return vcpu->arch.apic_base; |
6866b83e CO |
308 | } |
309 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | |
310 | ||
58cb628d JK |
311 | int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
312 | { | |
313 | u64 old_state = vcpu->arch.apic_base & | |
314 | (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); | |
315 | u64 new_state = msr_info->data & | |
316 | (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); | |
d6321d49 RK |
317 | u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | |
318 | (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); | |
58cb628d | 319 | |
d3802286 JM |
320 | if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE) |
321 | return 1; | |
58cb628d | 322 | if (!msr_info->host_initiated && |
d3802286 | 323 | ((new_state == MSR_IA32_APICBASE_ENABLE && |
58cb628d JK |
324 | old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || |
325 | (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && | |
326 | old_state == 0))) | |
327 | return 1; | |
328 | ||
329 | kvm_lapic_set_base(vcpu, msr_info->data); | |
330 | return 0; | |
6866b83e CO |
331 | } |
332 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | |
333 | ||
2605fc21 | 334 | asmlinkage __visible void kvm_spurious_fault(void) |
e3ba45b8 GL |
335 | { |
336 | /* Fault while not rebooting. We want the trace. */ | |
337 | BUG(); | |
338 | } | |
339 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | |
340 | ||
3fd28fce ED |
341 | #define EXCPT_BENIGN 0 |
342 | #define EXCPT_CONTRIBUTORY 1 | |
343 | #define EXCPT_PF 2 | |
344 | ||
345 | static int exception_class(int vector) | |
346 | { | |
347 | switch (vector) { | |
348 | case PF_VECTOR: | |
349 | return EXCPT_PF; | |
350 | case DE_VECTOR: | |
351 | case TS_VECTOR: | |
352 | case NP_VECTOR: | |
353 | case SS_VECTOR: | |
354 | case GP_VECTOR: | |
355 | return EXCPT_CONTRIBUTORY; | |
356 | default: | |
357 | break; | |
358 | } | |
359 | return EXCPT_BENIGN; | |
360 | } | |
361 | ||
d6e8c854 NA |
362 | #define EXCPT_FAULT 0 |
363 | #define EXCPT_TRAP 1 | |
364 | #define EXCPT_ABORT 2 | |
365 | #define EXCPT_INTERRUPT 3 | |
366 | ||
367 | static int exception_type(int vector) | |
368 | { | |
369 | unsigned int mask; | |
370 | ||
371 | if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) | |
372 | return EXCPT_INTERRUPT; | |
373 | ||
374 | mask = 1 << vector; | |
375 | ||
376 | /* #DB is trap, as instruction watchpoints are handled elsewhere */ | |
377 | if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) | |
378 | return EXCPT_TRAP; | |
379 | ||
380 | if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) | |
381 | return EXCPT_ABORT; | |
382 | ||
383 | /* Reserved exceptions will result in fault */ | |
384 | return EXCPT_FAULT; | |
385 | } | |
386 | ||
3fd28fce | 387 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
ce7ddec4 JR |
388 | unsigned nr, bool has_error, u32 error_code, |
389 | bool reinject) | |
3fd28fce ED |
390 | { |
391 | u32 prev_nr; | |
392 | int class1, class2; | |
393 | ||
3842d135 AK |
394 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
395 | ||
664f8e26 | 396 | if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { |
3fd28fce | 397 | queue: |
3ffb2468 NA |
398 | if (has_error && !is_protmode(vcpu)) |
399 | has_error = false; | |
664f8e26 WL |
400 | if (reinject) { |
401 | /* | |
402 | * On vmentry, vcpu->arch.exception.pending is only | |
403 | * true if an event injection was blocked by | |
404 | * nested_run_pending. In that case, however, | |
405 | * vcpu_enter_guest requests an immediate exit, | |
406 | * and the guest shouldn't proceed far enough to | |
407 | * need reinjection. | |
408 | */ | |
409 | WARN_ON_ONCE(vcpu->arch.exception.pending); | |
410 | vcpu->arch.exception.injected = true; | |
411 | } else { | |
412 | vcpu->arch.exception.pending = true; | |
413 | vcpu->arch.exception.injected = false; | |
414 | } | |
3fd28fce ED |
415 | vcpu->arch.exception.has_error_code = has_error; |
416 | vcpu->arch.exception.nr = nr; | |
417 | vcpu->arch.exception.error_code = error_code; | |
418 | return; | |
419 | } | |
420 | ||
421 | /* to check exception */ | |
422 | prev_nr = vcpu->arch.exception.nr; | |
423 | if (prev_nr == DF_VECTOR) { | |
424 | /* triple fault -> shutdown */ | |
a8eeb04a | 425 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
3fd28fce ED |
426 | return; |
427 | } | |
428 | class1 = exception_class(prev_nr); | |
429 | class2 = exception_class(nr); | |
430 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | |
431 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | |
664f8e26 WL |
432 | /* |
433 | * Generate double fault per SDM Table 5-5. Set | |
434 | * exception.pending = true so that the double fault | |
435 | * can trigger a nested vmexit. | |
436 | */ | |
3fd28fce | 437 | vcpu->arch.exception.pending = true; |
664f8e26 | 438 | vcpu->arch.exception.injected = false; |
3fd28fce ED |
439 | vcpu->arch.exception.has_error_code = true; |
440 | vcpu->arch.exception.nr = DF_VECTOR; | |
441 | vcpu->arch.exception.error_code = 0; | |
442 | } else | |
443 | /* replace previous exception with a new one in a hope | |
444 | that instruction re-execution will regenerate lost | |
445 | exception */ | |
446 | goto queue; | |
447 | } | |
448 | ||
298101da AK |
449 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
450 | { | |
ce7ddec4 | 451 | kvm_multiple_exception(vcpu, nr, false, 0, false); |
298101da AK |
452 | } |
453 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | |
454 | ||
ce7ddec4 JR |
455 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
456 | { | |
457 | kvm_multiple_exception(vcpu, nr, false, 0, true); | |
458 | } | |
459 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | |
460 | ||
6affcbed | 461 | int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
c3c91fee | 462 | { |
db8fcefa AP |
463 | if (err) |
464 | kvm_inject_gp(vcpu, 0); | |
465 | else | |
6affcbed KH |
466 | return kvm_skip_emulated_instruction(vcpu); |
467 | ||
468 | return 1; | |
db8fcefa AP |
469 | } |
470 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | |
8df25a32 | 471 | |
6389ee94 | 472 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
c3c91fee AK |
473 | { |
474 | ++vcpu->stat.pf_guest; | |
adfe20fb WL |
475 | vcpu->arch.exception.nested_apf = |
476 | is_guest_mode(vcpu) && fault->async_page_fault; | |
477 | if (vcpu->arch.exception.nested_apf) | |
478 | vcpu->arch.apf.nested_apf_token = fault->address; | |
479 | else | |
480 | vcpu->arch.cr2 = fault->address; | |
6389ee94 | 481 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); |
c3c91fee | 482 | } |
27d6c865 | 483 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
c3c91fee | 484 | |
ef54bcfe | 485 | static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
d4f8cf66 | 486 | { |
6389ee94 AK |
487 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
488 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | |
d4f8cf66 | 489 | else |
6389ee94 | 490 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
ef54bcfe PB |
491 | |
492 | return fault->nested_page_fault; | |
d4f8cf66 JR |
493 | } |
494 | ||
3419ffc8 SY |
495 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
496 | { | |
7460fb4a AK |
497 | atomic_inc(&vcpu->arch.nmi_queued); |
498 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
3419ffc8 SY |
499 | } |
500 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | |
501 | ||
298101da AK |
502 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
503 | { | |
ce7ddec4 | 504 | kvm_multiple_exception(vcpu, nr, true, error_code, false); |
298101da AK |
505 | } |
506 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | |
507 | ||
ce7ddec4 JR |
508 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
509 | { | |
510 | kvm_multiple_exception(vcpu, nr, true, error_code, true); | |
511 | } | |
512 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | |
513 | ||
0a79b009 AK |
514 | /* |
515 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | |
516 | * a #GP and return false. | |
517 | */ | |
518 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |
298101da | 519 | { |
0a79b009 AK |
520 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
521 | return true; | |
522 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
523 | return false; | |
298101da | 524 | } |
0a79b009 | 525 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
298101da | 526 | |
16f8a6f9 NA |
527 | bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) |
528 | { | |
529 | if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | |
530 | return true; | |
531 | ||
532 | kvm_queue_exception(vcpu, UD_VECTOR); | |
533 | return false; | |
534 | } | |
535 | EXPORT_SYMBOL_GPL(kvm_require_dr); | |
536 | ||
ec92fe44 JR |
537 | /* |
538 | * This function will be used to read from the physical memory of the currently | |
54bf36aa | 539 | * running guest. The difference to kvm_vcpu_read_guest_page is that this function |
ec92fe44 JR |
540 | * can read from guest physical or from the guest's guest physical memory. |
541 | */ | |
542 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
543 | gfn_t ngfn, void *data, int offset, int len, | |
544 | u32 access) | |
545 | { | |
54987b7a | 546 | struct x86_exception exception; |
ec92fe44 JR |
547 | gfn_t real_gfn; |
548 | gpa_t ngpa; | |
549 | ||
550 | ngpa = gfn_to_gpa(ngfn); | |
54987b7a | 551 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); |
ec92fe44 JR |
552 | if (real_gfn == UNMAPPED_GVA) |
553 | return -EFAULT; | |
554 | ||
555 | real_gfn = gpa_to_gfn(real_gfn); | |
556 | ||
54bf36aa | 557 | return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); |
ec92fe44 JR |
558 | } |
559 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | |
560 | ||
69b0049a | 561 | static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
3d06b8bf JR |
562 | void *data, int offset, int len, u32 access) |
563 | { | |
564 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | |
565 | data, offset, len, access); | |
566 | } | |
567 | ||
a03490ed CO |
568 | /* |
569 | * Load the pae pdptrs. Return true is they are all valid. | |
570 | */ | |
ff03a073 | 571 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
a03490ed CO |
572 | { |
573 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | |
574 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | |
575 | int i; | |
576 | int ret; | |
ff03a073 | 577 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
a03490ed | 578 | |
ff03a073 JR |
579 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
580 | offset * sizeof(u64), sizeof(pdpte), | |
581 | PFERR_USER_MASK|PFERR_WRITE_MASK); | |
a03490ed CO |
582 | if (ret < 0) { |
583 | ret = 0; | |
584 | goto out; | |
585 | } | |
586 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | |
812f30b2 | 587 | if ((pdpte[i] & PT_PRESENT_MASK) && |
a0a64f50 XG |
588 | (pdpte[i] & |
589 | vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { | |
a03490ed CO |
590 | ret = 0; |
591 | goto out; | |
592 | } | |
593 | } | |
594 | ret = 1; | |
595 | ||
ff03a073 | 596 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
6de4f3ad AK |
597 | __set_bit(VCPU_EXREG_PDPTR, |
598 | (unsigned long *)&vcpu->arch.regs_avail); | |
599 | __set_bit(VCPU_EXREG_PDPTR, | |
600 | (unsigned long *)&vcpu->arch.regs_dirty); | |
a03490ed | 601 | out: |
a03490ed CO |
602 | |
603 | return ret; | |
604 | } | |
cc4b6871 | 605 | EXPORT_SYMBOL_GPL(load_pdptrs); |
a03490ed | 606 | |
9ed38ffa | 607 | bool pdptrs_changed(struct kvm_vcpu *vcpu) |
d835dfec | 608 | { |
ff03a073 | 609 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
d835dfec | 610 | bool changed = true; |
3d06b8bf JR |
611 | int offset; |
612 | gfn_t gfn; | |
d835dfec AK |
613 | int r; |
614 | ||
615 | if (is_long_mode(vcpu) || !is_pae(vcpu)) | |
616 | return false; | |
617 | ||
6de4f3ad AK |
618 | if (!test_bit(VCPU_EXREG_PDPTR, |
619 | (unsigned long *)&vcpu->arch.regs_avail)) | |
620 | return true; | |
621 | ||
a512177e PB |
622 | gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; |
623 | offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); | |
3d06b8bf JR |
624 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
625 | PFERR_USER_MASK | PFERR_WRITE_MASK); | |
d835dfec AK |
626 | if (r < 0) |
627 | goto out; | |
ff03a073 | 628 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
d835dfec | 629 | out: |
d835dfec AK |
630 | |
631 | return changed; | |
632 | } | |
9ed38ffa | 633 | EXPORT_SYMBOL_GPL(pdptrs_changed); |
d835dfec | 634 | |
49a9b07e | 635 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
a03490ed | 636 | { |
aad82703 | 637 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
d81135a5 | 638 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; |
aad82703 | 639 | |
f9a48e6a AK |
640 | cr0 |= X86_CR0_ET; |
641 | ||
ab344828 | 642 | #ifdef CONFIG_X86_64 |
0f12244f GN |
643 | if (cr0 & 0xffffffff00000000UL) |
644 | return 1; | |
ab344828 GN |
645 | #endif |
646 | ||
647 | cr0 &= ~CR0_RESERVED_BITS; | |
a03490ed | 648 | |
0f12244f GN |
649 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
650 | return 1; | |
a03490ed | 651 | |
0f12244f GN |
652 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
653 | return 1; | |
a03490ed CO |
654 | |
655 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | |
656 | #ifdef CONFIG_X86_64 | |
f6801dff | 657 | if ((vcpu->arch.efer & EFER_LME)) { |
a03490ed CO |
658 | int cs_db, cs_l; |
659 | ||
0f12244f GN |
660 | if (!is_pae(vcpu)) |
661 | return 1; | |
a03490ed | 662 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
0f12244f GN |
663 | if (cs_l) |
664 | return 1; | |
a03490ed CO |
665 | } else |
666 | #endif | |
ff03a073 | 667 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
9f8fe504 | 668 | kvm_read_cr3(vcpu))) |
0f12244f | 669 | return 1; |
a03490ed CO |
670 | } |
671 | ||
ad756a16 MJ |
672 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
673 | return 1; | |
674 | ||
a03490ed | 675 | kvm_x86_ops->set_cr0(vcpu, cr0); |
a03490ed | 676 | |
d170c419 | 677 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
e5f3f027 | 678 | kvm_clear_async_pf_completion_queue(vcpu); |
d170c419 LJ |
679 | kvm_async_pf_hash_reset(vcpu); |
680 | } | |
e5f3f027 | 681 | |
aad82703 SY |
682 | if ((cr0 ^ old_cr0) & update_bits) |
683 | kvm_mmu_reset_context(vcpu); | |
b18d5431 | 684 | |
879ae188 LE |
685 | if (((cr0 ^ old_cr0) & X86_CR0_CD) && |
686 | kvm_arch_has_noncoherent_dma(vcpu->kvm) && | |
687 | !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) | |
b18d5431 XG |
688 | kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); |
689 | ||
0f12244f GN |
690 | return 0; |
691 | } | |
2d3ad1f4 | 692 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
a03490ed | 693 | |
2d3ad1f4 | 694 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
a03490ed | 695 | { |
49a9b07e | 696 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
a03490ed | 697 | } |
2d3ad1f4 | 698 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
a03490ed | 699 | |
42bdf991 MT |
700 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
701 | { | |
702 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | |
703 | !vcpu->guest_xcr0_loaded) { | |
704 | /* kvm_set_xcr() also depends on this */ | |
705 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | |
706 | vcpu->guest_xcr0_loaded = 1; | |
707 | } | |
708 | } | |
709 | ||
710 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | |
711 | { | |
712 | if (vcpu->guest_xcr0_loaded) { | |
713 | if (vcpu->arch.xcr0 != host_xcr0) | |
714 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | |
715 | vcpu->guest_xcr0_loaded = 0; | |
716 | } | |
717 | } | |
718 | ||
69b0049a | 719 | static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
2acf923e | 720 | { |
56c103ec LJ |
721 | u64 xcr0 = xcr; |
722 | u64 old_xcr0 = vcpu->arch.xcr0; | |
46c34cb0 | 723 | u64 valid_bits; |
2acf923e DC |
724 | |
725 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | |
726 | if (index != XCR_XFEATURE_ENABLED_MASK) | |
727 | return 1; | |
d91cab78 | 728 | if (!(xcr0 & XFEATURE_MASK_FP)) |
2acf923e | 729 | return 1; |
d91cab78 | 730 | if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) |
2acf923e | 731 | return 1; |
46c34cb0 PB |
732 | |
733 | /* | |
734 | * Do not allow the guest to set bits that we do not support | |
735 | * saving. However, xcr0 bit 0 is always set, even if the | |
736 | * emulated CPU does not support XSAVE (see fx_init). | |
737 | */ | |
d91cab78 | 738 | valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; |
46c34cb0 | 739 | if (xcr0 & ~valid_bits) |
2acf923e | 740 | return 1; |
46c34cb0 | 741 | |
d91cab78 DH |
742 | if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != |
743 | (!(xcr0 & XFEATURE_MASK_BNDCSR))) | |
390bd528 LJ |
744 | return 1; |
745 | ||
d91cab78 DH |
746 | if (xcr0 & XFEATURE_MASK_AVX512) { |
747 | if (!(xcr0 & XFEATURE_MASK_YMM)) | |
612263b3 | 748 | return 1; |
d91cab78 | 749 | if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) |
612263b3 CP |
750 | return 1; |
751 | } | |
2acf923e | 752 | vcpu->arch.xcr0 = xcr0; |
56c103ec | 753 | |
d91cab78 | 754 | if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) |
56c103ec | 755 | kvm_update_cpuid(vcpu); |
2acf923e DC |
756 | return 0; |
757 | } | |
758 | ||
759 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | |
760 | { | |
764bcbc5 Z |
761 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || |
762 | __kvm_set_xcr(vcpu, index, xcr)) { | |
2acf923e DC |
763 | kvm_inject_gp(vcpu, 0); |
764 | return 1; | |
765 | } | |
766 | return 0; | |
767 | } | |
768 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | |
769 | ||
a83b29c6 | 770 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
a03490ed | 771 | { |
fc78f519 | 772 | unsigned long old_cr4 = kvm_read_cr4(vcpu); |
0be0226f | 773 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | |
b9baba86 | 774 | X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; |
0be0226f | 775 | |
0f12244f GN |
776 | if (cr4 & CR4_RESERVED_BITS) |
777 | return 1; | |
a03490ed | 778 | |
d6321d49 | 779 | if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) |
2acf923e DC |
780 | return 1; |
781 | ||
d6321d49 | 782 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) |
2acf923e DC |
783 | return 1; |
784 | ||
d6321d49 | 785 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) |
c68b734f YW |
786 | return 1; |
787 | ||
d6321d49 | 788 | if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) |
97ec8c06 FW |
789 | return 1; |
790 | ||
d6321d49 | 791 | if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) |
74dc2b4f YW |
792 | return 1; |
793 | ||
fd8cb433 | 794 | if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) |
b9baba86 HH |
795 | return 1; |
796 | ||
a03490ed | 797 | if (is_long_mode(vcpu)) { |
0f12244f GN |
798 | if (!(cr4 & X86_CR4_PAE)) |
799 | return 1; | |
a2edf57f AK |
800 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
801 | && ((cr4 ^ old_cr4) & pdptr_bits) | |
9f8fe504 AK |
802 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
803 | kvm_read_cr3(vcpu))) | |
0f12244f GN |
804 | return 1; |
805 | ||
ad756a16 | 806 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
d6321d49 | 807 | if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) |
ad756a16 MJ |
808 | return 1; |
809 | ||
810 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | |
811 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | |
812 | return 1; | |
813 | } | |
814 | ||
5e1746d6 | 815 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
0f12244f | 816 | return 1; |
a03490ed | 817 | |
ad756a16 MJ |
818 | if (((cr4 ^ old_cr4) & pdptr_bits) || |
819 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | |
aad82703 | 820 | kvm_mmu_reset_context(vcpu); |
0f12244f | 821 | |
b9baba86 | 822 | if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
00b27a3e | 823 | kvm_update_cpuid(vcpu); |
2acf923e | 824 | |
0f12244f GN |
825 | return 0; |
826 | } | |
2d3ad1f4 | 827 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
a03490ed | 828 | |
2390218b | 829 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 830 | { |
ac146235 | 831 | #ifdef CONFIG_X86_64 |
9d88fca7 | 832 | cr3 &= ~CR3_PCID_INVD; |
ac146235 | 833 | #endif |
9d88fca7 | 834 | |
9f8fe504 | 835 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
0ba73cda | 836 | kvm_mmu_sync_roots(vcpu); |
77c3913b | 837 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
0f12244f | 838 | return 0; |
d835dfec AK |
839 | } |
840 | ||
d1cd3ce9 YZ |
841 | if (is_long_mode(vcpu) && |
842 | (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62))) | |
843 | return 1; | |
844 | else if (is_pae(vcpu) && is_paging(vcpu) && | |
d9f89b88 | 845 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) |
346874c9 | 846 | return 1; |
a03490ed | 847 | |
0f12244f | 848 | vcpu->arch.cr3 = cr3; |
aff48baa | 849 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
d8d173da | 850 | kvm_mmu_new_cr3(vcpu); |
0f12244f GN |
851 | return 0; |
852 | } | |
2d3ad1f4 | 853 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
a03490ed | 854 | |
eea1cff9 | 855 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
a03490ed | 856 | { |
0f12244f GN |
857 | if (cr8 & CR8_RESERVED_BITS) |
858 | return 1; | |
35754c98 | 859 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
860 | kvm_lapic_set_tpr(vcpu, cr8); |
861 | else | |
ad312c7c | 862 | vcpu->arch.cr8 = cr8; |
0f12244f GN |
863 | return 0; |
864 | } | |
2d3ad1f4 | 865 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
a03490ed | 866 | |
2d3ad1f4 | 867 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
a03490ed | 868 | { |
35754c98 | 869 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
870 | return kvm_lapic_get_cr8(vcpu); |
871 | else | |
ad312c7c | 872 | return vcpu->arch.cr8; |
a03490ed | 873 | } |
2d3ad1f4 | 874 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
a03490ed | 875 | |
ae561ede NA |
876 | static void kvm_update_dr0123(struct kvm_vcpu *vcpu) |
877 | { | |
878 | int i; | |
879 | ||
880 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { | |
881 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
882 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
883 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; | |
884 | } | |
885 | } | |
886 | ||
73aaf249 JK |
887 | static void kvm_update_dr6(struct kvm_vcpu *vcpu) |
888 | { | |
889 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
890 | kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); | |
891 | } | |
892 | ||
c8639010 JK |
893 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
894 | { | |
895 | unsigned long dr7; | |
896 | ||
897 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | |
898 | dr7 = vcpu->arch.guest_debug_dr7; | |
899 | else | |
900 | dr7 = vcpu->arch.dr7; | |
901 | kvm_x86_ops->set_dr7(vcpu, dr7); | |
360b948d PB |
902 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; |
903 | if (dr7 & DR7_BP_EN_MASK) | |
904 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; | |
c8639010 JK |
905 | } |
906 | ||
6f43ed01 NA |
907 | static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) |
908 | { | |
909 | u64 fixed = DR6_FIXED_1; | |
910 | ||
d6321d49 | 911 | if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) |
6f43ed01 NA |
912 | fixed |= DR6_RTM; |
913 | return fixed; | |
914 | } | |
915 | ||
338dbc97 | 916 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
020df079 GN |
917 | { |
918 | switch (dr) { | |
919 | case 0 ... 3: | |
920 | vcpu->arch.db[dr] = val; | |
921 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
922 | vcpu->arch.eff_db[dr] = val; | |
923 | break; | |
924 | case 4: | |
020df079 GN |
925 | /* fall through */ |
926 | case 6: | |
338dbc97 GN |
927 | if (val & 0xffffffff00000000ULL) |
928 | return -1; /* #GP */ | |
6f43ed01 | 929 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); |
73aaf249 | 930 | kvm_update_dr6(vcpu); |
020df079 GN |
931 | break; |
932 | case 5: | |
020df079 GN |
933 | /* fall through */ |
934 | default: /* 7 */ | |
338dbc97 GN |
935 | if (val & 0xffffffff00000000ULL) |
936 | return -1; /* #GP */ | |
020df079 | 937 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
c8639010 | 938 | kvm_update_dr7(vcpu); |
020df079 GN |
939 | break; |
940 | } | |
941 | ||
942 | return 0; | |
943 | } | |
338dbc97 GN |
944 | |
945 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | |
946 | { | |
16f8a6f9 | 947 | if (__kvm_set_dr(vcpu, dr, val)) { |
338dbc97 | 948 | kvm_inject_gp(vcpu, 0); |
16f8a6f9 NA |
949 | return 1; |
950 | } | |
951 | return 0; | |
338dbc97 | 952 | } |
020df079 GN |
953 | EXPORT_SYMBOL_GPL(kvm_set_dr); |
954 | ||
16f8a6f9 | 955 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
020df079 GN |
956 | { |
957 | switch (dr) { | |
958 | case 0 ... 3: | |
959 | *val = vcpu->arch.db[dr]; | |
960 | break; | |
961 | case 4: | |
020df079 GN |
962 | /* fall through */ |
963 | case 6: | |
73aaf249 JK |
964 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
965 | *val = vcpu->arch.dr6; | |
966 | else | |
967 | *val = kvm_x86_ops->get_dr6(vcpu); | |
020df079 GN |
968 | break; |
969 | case 5: | |
020df079 GN |
970 | /* fall through */ |
971 | default: /* 7 */ | |
972 | *val = vcpu->arch.dr7; | |
973 | break; | |
974 | } | |
338dbc97 GN |
975 | return 0; |
976 | } | |
020df079 GN |
977 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
978 | ||
022cd0e8 AK |
979 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
980 | { | |
981 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
982 | u64 data; | |
983 | int err; | |
984 | ||
c6702c9d | 985 | err = kvm_pmu_rdpmc(vcpu, ecx, &data); |
022cd0e8 AK |
986 | if (err) |
987 | return err; | |
988 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | |
989 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | |
990 | return err; | |
991 | } | |
992 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | |
993 | ||
043405e1 CO |
994 | /* |
995 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | |
996 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | |
997 | * | |
998 | * This list is modified at module load time to reflect the | |
e3267cbb | 999 | * capabilities of the host cpu. This capabilities test skips MSRs that are |
62ef68bb PB |
1000 | * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs |
1001 | * may depend on host virtualization features rather than host cpu features. | |
043405e1 | 1002 | */ |
e3267cbb | 1003 | |
043405e1 CO |
1004 | static u32 msrs_to_save[] = { |
1005 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | |
8c06585d | 1006 | MSR_STAR, |
043405e1 CO |
1007 | #ifdef CONFIG_X86_64 |
1008 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | |
1009 | #endif | |
b3897a49 | 1010 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, |
9dbe6cf9 | 1011 | MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, |
043405e1 CO |
1012 | }; |
1013 | ||
1014 | static unsigned num_msrs_to_save; | |
1015 | ||
62ef68bb PB |
1016 | static u32 emulated_msrs[] = { |
1017 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | |
1018 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | |
1019 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | |
1020 | HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, | |
72c139ba | 1021 | HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, |
e7d9513b AS |
1022 | HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, |
1023 | HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, | |
e516cebb | 1024 | HV_X64_MSR_RESET, |
11c4b1ca | 1025 | HV_X64_MSR_VP_INDEX, |
9eec50b8 | 1026 | HV_X64_MSR_VP_RUNTIME, |
5c919412 | 1027 | HV_X64_MSR_SCONTROL, |
1f4b34f8 | 1028 | HV_X64_MSR_STIMER0_CONFIG, |
62ef68bb PB |
1029 | HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
1030 | MSR_KVM_PV_EOI_EN, | |
1031 | ||
ba904635 | 1032 | MSR_IA32_TSC_ADJUST, |
a3e06bbe | 1033 | MSR_IA32_TSCDEADLINE, |
043405e1 | 1034 | MSR_IA32_MISC_ENABLE, |
908e75f3 AK |
1035 | MSR_IA32_MCG_STATUS, |
1036 | MSR_IA32_MCG_CTL, | |
c45dcc71 | 1037 | MSR_IA32_MCG_EXT_CTL, |
64d60670 | 1038 | MSR_IA32_SMBASE, |
db2336a8 KH |
1039 | MSR_PLATFORM_INFO, |
1040 | MSR_MISC_FEATURES_ENABLES, | |
043405e1 CO |
1041 | }; |
1042 | ||
62ef68bb PB |
1043 | static unsigned num_emulated_msrs; |
1044 | ||
384bb783 | 1045 | bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
15c4a640 | 1046 | { |
b69e8cae | 1047 | if (efer & efer_reserved_bits) |
384bb783 | 1048 | return false; |
15c4a640 | 1049 | |
1b4d56b8 | 1050 | if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) |
384bb783 | 1051 | return false; |
1b2fd70c | 1052 | |
1b4d56b8 | 1053 | if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
384bb783 | 1054 | return false; |
d8017474 | 1055 | |
384bb783 JK |
1056 | return true; |
1057 | } | |
1058 | EXPORT_SYMBOL_GPL(kvm_valid_efer); | |
1059 | ||
1060 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) | |
1061 | { | |
1062 | u64 old_efer = vcpu->arch.efer; | |
1063 | ||
1064 | if (!kvm_valid_efer(vcpu, efer)) | |
1065 | return 1; | |
1066 | ||
1067 | if (is_paging(vcpu) | |
1068 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | |
1069 | return 1; | |
1070 | ||
15c4a640 | 1071 | efer &= ~EFER_LMA; |
f6801dff | 1072 | efer |= vcpu->arch.efer & EFER_LMA; |
15c4a640 | 1073 | |
a3d204e2 SY |
1074 | kvm_x86_ops->set_efer(vcpu, efer); |
1075 | ||
aad82703 SY |
1076 | /* Update reserved bits */ |
1077 | if ((efer ^ old_efer) & EFER_NX) | |
1078 | kvm_mmu_reset_context(vcpu); | |
1079 | ||
b69e8cae | 1080 | return 0; |
15c4a640 CO |
1081 | } |
1082 | ||
f2b4b7dd JR |
1083 | void kvm_enable_efer_bits(u64 mask) |
1084 | { | |
1085 | efer_reserved_bits &= ~mask; | |
1086 | } | |
1087 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | |
1088 | ||
15c4a640 CO |
1089 | /* |
1090 | * Writes msr value into into the appropriate "register". | |
1091 | * Returns 0 on success, non-0 otherwise. | |
1092 | * Assumes vcpu_load() was already called. | |
1093 | */ | |
8fe8ab46 | 1094 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 1095 | { |
854e8bb1 NA |
1096 | switch (msr->index) { |
1097 | case MSR_FS_BASE: | |
1098 | case MSR_GS_BASE: | |
1099 | case MSR_KERNEL_GS_BASE: | |
1100 | case MSR_CSTAR: | |
1101 | case MSR_LSTAR: | |
fd8cb433 | 1102 | if (is_noncanonical_address(msr->data, vcpu)) |
854e8bb1 NA |
1103 | return 1; |
1104 | break; | |
1105 | case MSR_IA32_SYSENTER_EIP: | |
1106 | case MSR_IA32_SYSENTER_ESP: | |
1107 | /* | |
1108 | * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if | |
1109 | * non-canonical address is written on Intel but not on | |
1110 | * AMD (which ignores the top 32-bits, because it does | |
1111 | * not implement 64-bit SYSENTER). | |
1112 | * | |
1113 | * 64-bit code should hence be able to write a non-canonical | |
1114 | * value on AMD. Making the address canonical ensures that | |
1115 | * vmentry does not fail on Intel after writing a non-canonical | |
1116 | * value, and that something deterministic happens if the guest | |
1117 | * invokes 64-bit SYSENTER. | |
1118 | */ | |
fd8cb433 | 1119 | msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); |
854e8bb1 | 1120 | } |
8fe8ab46 | 1121 | return kvm_x86_ops->set_msr(vcpu, msr); |
15c4a640 | 1122 | } |
854e8bb1 | 1123 | EXPORT_SYMBOL_GPL(kvm_set_msr); |
15c4a640 | 1124 | |
313a3dc7 CO |
1125 | /* |
1126 | * Adapt set_msr() to msr_io()'s calling convention | |
1127 | */ | |
609e36d3 PB |
1128 | static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1129 | { | |
1130 | struct msr_data msr; | |
1131 | int r; | |
1132 | ||
1133 | msr.index = index; | |
1134 | msr.host_initiated = true; | |
1135 | r = kvm_get_msr(vcpu, &msr); | |
1136 | if (r) | |
1137 | return r; | |
1138 | ||
1139 | *data = msr.data; | |
1140 | return 0; | |
1141 | } | |
1142 | ||
313a3dc7 CO |
1143 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1144 | { | |
8fe8ab46 WA |
1145 | struct msr_data msr; |
1146 | ||
1147 | msr.data = *data; | |
1148 | msr.index = index; | |
1149 | msr.host_initiated = true; | |
1150 | return kvm_set_msr(vcpu, &msr); | |
313a3dc7 CO |
1151 | } |
1152 | ||
16e8d74d MT |
1153 | #ifdef CONFIG_X86_64 |
1154 | struct pvclock_gtod_data { | |
1155 | seqcount_t seq; | |
1156 | ||
1157 | struct { /* extract of a clocksource struct */ | |
1158 | int vclock_mode; | |
a5a1d1c2 TG |
1159 | u64 cycle_last; |
1160 | u64 mask; | |
16e8d74d MT |
1161 | u32 mult; |
1162 | u32 shift; | |
1163 | } clock; | |
1164 | ||
cbcf2dd3 TG |
1165 | u64 boot_ns; |
1166 | u64 nsec_base; | |
55dd00a7 | 1167 | u64 wall_time_sec; |
16e8d74d MT |
1168 | }; |
1169 | ||
1170 | static struct pvclock_gtod_data pvclock_gtod_data; | |
1171 | ||
1172 | static void update_pvclock_gtod(struct timekeeper *tk) | |
1173 | { | |
1174 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | |
cbcf2dd3 TG |
1175 | u64 boot_ns; |
1176 | ||
876e7881 | 1177 | boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); |
16e8d74d MT |
1178 | |
1179 | write_seqcount_begin(&vdata->seq); | |
1180 | ||
1181 | /* copy pvclock gtod data */ | |
876e7881 PZ |
1182 | vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; |
1183 | vdata->clock.cycle_last = tk->tkr_mono.cycle_last; | |
1184 | vdata->clock.mask = tk->tkr_mono.mask; | |
1185 | vdata->clock.mult = tk->tkr_mono.mult; | |
1186 | vdata->clock.shift = tk->tkr_mono.shift; | |
16e8d74d | 1187 | |
cbcf2dd3 | 1188 | vdata->boot_ns = boot_ns; |
876e7881 | 1189 | vdata->nsec_base = tk->tkr_mono.xtime_nsec; |
16e8d74d | 1190 | |
55dd00a7 MT |
1191 | vdata->wall_time_sec = tk->xtime_sec; |
1192 | ||
16e8d74d MT |
1193 | write_seqcount_end(&vdata->seq); |
1194 | } | |
1195 | #endif | |
1196 | ||
bab5bb39 NK |
1197 | void kvm_set_pending_timer(struct kvm_vcpu *vcpu) |
1198 | { | |
1199 | /* | |
1200 | * Note: KVM_REQ_PENDING_TIMER is implicitly checked in | |
1201 | * vcpu_enter_guest. This function is only called from | |
1202 | * the physical CPU that is running vcpu. | |
1203 | */ | |
1204 | kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); | |
1205 | } | |
16e8d74d | 1206 | |
18068523 GOC |
1207 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
1208 | { | |
9ed3c444 AK |
1209 | int version; |
1210 | int r; | |
50d0a0f9 | 1211 | struct pvclock_wall_clock wc; |
87aeb54f | 1212 | struct timespec64 boot; |
18068523 GOC |
1213 | |
1214 | if (!wall_clock) | |
1215 | return; | |
1216 | ||
9ed3c444 AK |
1217 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
1218 | if (r) | |
1219 | return; | |
1220 | ||
1221 | if (version & 1) | |
1222 | ++version; /* first time write, random junk */ | |
1223 | ||
1224 | ++version; | |
18068523 | 1225 | |
1dab1345 NK |
1226 | if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) |
1227 | return; | |
18068523 | 1228 | |
50d0a0f9 GH |
1229 | /* |
1230 | * The guest calculates current wall clock time by adding | |
34c238a1 | 1231 | * system time (updated by kvm_guest_time_update below) to the |
50d0a0f9 GH |
1232 | * wall clock specified here. guest system time equals host |
1233 | * system time for us, thus we must fill in host boot time here. | |
1234 | */ | |
87aeb54f | 1235 | getboottime64(&boot); |
50d0a0f9 | 1236 | |
4b648665 | 1237 | if (kvm->arch.kvmclock_offset) { |
87aeb54f AB |
1238 | struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); |
1239 | boot = timespec64_sub(boot, ts); | |
4b648665 | 1240 | } |
87aeb54f | 1241 | wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ |
50d0a0f9 GH |
1242 | wc.nsec = boot.tv_nsec; |
1243 | wc.version = version; | |
18068523 GOC |
1244 | |
1245 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | |
1246 | ||
1247 | version++; | |
1248 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | |
18068523 GOC |
1249 | } |
1250 | ||
50d0a0f9 GH |
1251 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
1252 | { | |
b51012de PB |
1253 | do_shl32_div32(dividend, divisor); |
1254 | return dividend; | |
50d0a0f9 GH |
1255 | } |
1256 | ||
3ae13faa | 1257 | static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, |
5f4e3f88 | 1258 | s8 *pshift, u32 *pmultiplier) |
50d0a0f9 | 1259 | { |
5f4e3f88 | 1260 | uint64_t scaled64; |
50d0a0f9 GH |
1261 | int32_t shift = 0; |
1262 | uint64_t tps64; | |
1263 | uint32_t tps32; | |
1264 | ||
3ae13faa PB |
1265 | tps64 = base_hz; |
1266 | scaled64 = scaled_hz; | |
50933623 | 1267 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
50d0a0f9 GH |
1268 | tps64 >>= 1; |
1269 | shift--; | |
1270 | } | |
1271 | ||
1272 | tps32 = (uint32_t)tps64; | |
50933623 JK |
1273 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
1274 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | |
5f4e3f88 ZA |
1275 | scaled64 >>= 1; |
1276 | else | |
1277 | tps32 <<= 1; | |
50d0a0f9 GH |
1278 | shift++; |
1279 | } | |
1280 | ||
5f4e3f88 ZA |
1281 | *pshift = shift; |
1282 | *pmultiplier = div_frac(scaled64, tps32); | |
50d0a0f9 | 1283 | |
3ae13faa PB |
1284 | pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", |
1285 | __func__, base_hz, scaled_hz, shift, *pmultiplier); | |
50d0a0f9 GH |
1286 | } |
1287 | ||
d828199e | 1288 | #ifdef CONFIG_X86_64 |
16e8d74d | 1289 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
d828199e | 1290 | #endif |
16e8d74d | 1291 | |
c8076604 | 1292 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
69b0049a | 1293 | static unsigned long max_tsc_khz; |
c8076604 | 1294 | |
cc578287 | 1295 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1e993611 | 1296 | { |
cc578287 ZA |
1297 | u64 v = (u64)khz * (1000000 + ppm); |
1298 | do_div(v, 1000000); | |
1299 | return v; | |
1e993611 JR |
1300 | } |
1301 | ||
381d585c HZ |
1302 | static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) |
1303 | { | |
1304 | u64 ratio; | |
1305 | ||
1306 | /* Guest TSC same frequency as host TSC? */ | |
1307 | if (!scale) { | |
1308 | vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; | |
1309 | return 0; | |
1310 | } | |
1311 | ||
1312 | /* TSC scaling supported? */ | |
1313 | if (!kvm_has_tsc_control) { | |
1314 | if (user_tsc_khz > tsc_khz) { | |
1315 | vcpu->arch.tsc_catchup = 1; | |
1316 | vcpu->arch.tsc_always_catchup = 1; | |
1317 | return 0; | |
1318 | } else { | |
1319 | WARN(1, "user requested TSC rate below hardware speed\n"); | |
1320 | return -1; | |
1321 | } | |
1322 | } | |
1323 | ||
1324 | /* TSC scaling required - calculate ratio */ | |
1325 | ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, | |
1326 | user_tsc_khz, tsc_khz); | |
1327 | ||
1328 | if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { | |
1329 | WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", | |
1330 | user_tsc_khz); | |
1331 | return -1; | |
1332 | } | |
1333 | ||
1334 | vcpu->arch.tsc_scaling_ratio = ratio; | |
1335 | return 0; | |
1336 | } | |
1337 | ||
4941b8cb | 1338 | static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
759379dd | 1339 | { |
cc578287 ZA |
1340 | u32 thresh_lo, thresh_hi; |
1341 | int use_scaling = 0; | |
217fc9cf | 1342 | |
03ba32ca | 1343 | /* tsc_khz can be zero if TSC calibration fails */ |
4941b8cb | 1344 | if (user_tsc_khz == 0) { |
ad721883 HZ |
1345 | /* set tsc_scaling_ratio to a safe value */ |
1346 | vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; | |
381d585c | 1347 | return -1; |
ad721883 | 1348 | } |
03ba32ca | 1349 | |
c285545f | 1350 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
3ae13faa | 1351 | kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, |
cc578287 ZA |
1352 | &vcpu->arch.virtual_tsc_shift, |
1353 | &vcpu->arch.virtual_tsc_mult); | |
4941b8cb | 1354 | vcpu->arch.virtual_tsc_khz = user_tsc_khz; |
cc578287 ZA |
1355 | |
1356 | /* | |
1357 | * Compute the variation in TSC rate which is acceptable | |
1358 | * within the range of tolerance and decide if the | |
1359 | * rate being applied is within that bounds of the hardware | |
1360 | * rate. If so, no scaling or compensation need be done. | |
1361 | */ | |
1362 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | |
1363 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | |
4941b8cb PB |
1364 | if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { |
1365 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); | |
cc578287 ZA |
1366 | use_scaling = 1; |
1367 | } | |
4941b8cb | 1368 | return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); |
c285545f ZA |
1369 | } |
1370 | ||
1371 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | |
1372 | { | |
e26101b1 | 1373 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
cc578287 ZA |
1374 | vcpu->arch.virtual_tsc_mult, |
1375 | vcpu->arch.virtual_tsc_shift); | |
e26101b1 | 1376 | tsc += vcpu->arch.this_tsc_write; |
c285545f ZA |
1377 | return tsc; |
1378 | } | |
1379 | ||
69b0049a | 1380 | static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
b48aa97e MT |
1381 | { |
1382 | #ifdef CONFIG_X86_64 | |
1383 | bool vcpus_matched; | |
b48aa97e MT |
1384 | struct kvm_arch *ka = &vcpu->kvm->arch; |
1385 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1386 | ||
1387 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1388 | atomic_read(&vcpu->kvm->online_vcpus)); | |
1389 | ||
7f187922 MT |
1390 | /* |
1391 | * Once the masterclock is enabled, always perform request in | |
1392 | * order to update it. | |
1393 | * | |
1394 | * In order to enable masterclock, the host clocksource must be TSC | |
1395 | * and the vcpus need to have matched TSCs. When that happens, | |
1396 | * perform request to enable masterclock. | |
1397 | */ | |
1398 | if (ka->use_master_clock || | |
1399 | (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) | |
b48aa97e MT |
1400 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
1401 | ||
1402 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | |
1403 | atomic_read(&vcpu->kvm->online_vcpus), | |
1404 | ka->use_master_clock, gtod->clock.vclock_mode); | |
1405 | #endif | |
1406 | } | |
1407 | ||
ba904635 WA |
1408 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
1409 | { | |
3e3f5026 | 1410 | u64 curr_offset = vcpu->arch.tsc_offset; |
ba904635 WA |
1411 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; |
1412 | } | |
1413 | ||
35181e86 HZ |
1414 | /* |
1415 | * Multiply tsc by a fixed point number represented by ratio. | |
1416 | * | |
1417 | * The most significant 64-N bits (mult) of ratio represent the | |
1418 | * integral part of the fixed point number; the remaining N bits | |
1419 | * (frac) represent the fractional part, ie. ratio represents a fixed | |
1420 | * point number (mult + frac * 2^(-N)). | |
1421 | * | |
1422 | * N equals to kvm_tsc_scaling_ratio_frac_bits. | |
1423 | */ | |
1424 | static inline u64 __scale_tsc(u64 ratio, u64 tsc) | |
1425 | { | |
1426 | return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); | |
1427 | } | |
1428 | ||
1429 | u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) | |
1430 | { | |
1431 | u64 _tsc = tsc; | |
1432 | u64 ratio = vcpu->arch.tsc_scaling_ratio; | |
1433 | ||
1434 | if (ratio != kvm_default_tsc_scaling_ratio) | |
1435 | _tsc = __scale_tsc(ratio, tsc); | |
1436 | ||
1437 | return _tsc; | |
1438 | } | |
1439 | EXPORT_SYMBOL_GPL(kvm_scale_tsc); | |
1440 | ||
07c1419a HZ |
1441 | static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
1442 | { | |
1443 | u64 tsc; | |
1444 | ||
1445 | tsc = kvm_scale_tsc(vcpu, rdtsc()); | |
1446 | ||
1447 | return target_tsc - tsc; | |
1448 | } | |
1449 | ||
4ba76538 HZ |
1450 | u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) |
1451 | { | |
ea26e4ec | 1452 | return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); |
4ba76538 HZ |
1453 | } |
1454 | EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); | |
1455 | ||
a545ab6a LC |
1456 | static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
1457 | { | |
1458 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | |
1459 | vcpu->arch.tsc_offset = offset; | |
1460 | } | |
1461 | ||
8fe8ab46 | 1462 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
99e3e30a ZA |
1463 | { |
1464 | struct kvm *kvm = vcpu->kvm; | |
f38e098f | 1465 | u64 offset, ns, elapsed; |
99e3e30a | 1466 | unsigned long flags; |
b48aa97e | 1467 | bool matched; |
0d3da0d2 | 1468 | bool already_matched; |
8fe8ab46 | 1469 | u64 data = msr->data; |
c5e8ec8e | 1470 | bool synchronizing = false; |
99e3e30a | 1471 | |
038f8c11 | 1472 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
07c1419a | 1473 | offset = kvm_compute_tsc_offset(vcpu, data); |
108b249c | 1474 | ns = ktime_get_boot_ns(); |
f38e098f | 1475 | elapsed = ns - kvm->arch.last_tsc_nsec; |
5d3cb0f6 | 1476 | |
03ba32ca | 1477 | if (vcpu->arch.virtual_tsc_khz) { |
bd8fab39 DP |
1478 | if (data == 0 && msr->host_initiated) { |
1479 | /* | |
1480 | * detection of vcpu initialization -- need to sync | |
1481 | * with other vCPUs. This particularly helps to keep | |
1482 | * kvm_clock stable after CPU hotplug | |
1483 | */ | |
1484 | synchronizing = true; | |
1485 | } else { | |
1486 | u64 tsc_exp = kvm->arch.last_tsc_write + | |
1487 | nsec_to_cycles(vcpu, elapsed); | |
1488 | u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; | |
1489 | /* | |
1490 | * Special case: TSC write with a small delta (1 second) | |
1491 | * of virtual cycle time against real time is | |
1492 | * interpreted as an attempt to synchronize the CPU. | |
1493 | */ | |
1494 | synchronizing = data < tsc_exp + tsc_hz && | |
1495 | data + tsc_hz > tsc_exp; | |
1496 | } | |
c5e8ec8e | 1497 | } |
f38e098f ZA |
1498 | |
1499 | /* | |
5d3cb0f6 ZA |
1500 | * For a reliable TSC, we can match TSC offsets, and for an unstable |
1501 | * TSC, we add elapsed time in this computation. We could let the | |
1502 | * compensation code attempt to catch up if we fall behind, but | |
1503 | * it's better to try to match offsets from the beginning. | |
1504 | */ | |
c5e8ec8e | 1505 | if (synchronizing && |
5d3cb0f6 | 1506 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
f38e098f | 1507 | if (!check_tsc_unstable()) { |
e26101b1 | 1508 | offset = kvm->arch.cur_tsc_offset; |
f38e098f ZA |
1509 | pr_debug("kvm: matched tsc offset for %llu\n", data); |
1510 | } else { | |
857e4099 | 1511 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
5d3cb0f6 | 1512 | data += delta; |
07c1419a | 1513 | offset = kvm_compute_tsc_offset(vcpu, data); |
759379dd | 1514 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
f38e098f | 1515 | } |
b48aa97e | 1516 | matched = true; |
0d3da0d2 | 1517 | already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); |
e26101b1 ZA |
1518 | } else { |
1519 | /* | |
1520 | * We split periods of matched TSC writes into generations. | |
1521 | * For each generation, we track the original measured | |
1522 | * nanosecond time, offset, and write, so if TSCs are in | |
1523 | * sync, we can match exact offset, and if not, we can match | |
4a969980 | 1524 | * exact software computation in compute_guest_tsc() |
e26101b1 ZA |
1525 | * |
1526 | * These values are tracked in kvm->arch.cur_xxx variables. | |
1527 | */ | |
1528 | kvm->arch.cur_tsc_generation++; | |
1529 | kvm->arch.cur_tsc_nsec = ns; | |
1530 | kvm->arch.cur_tsc_write = data; | |
1531 | kvm->arch.cur_tsc_offset = offset; | |
b48aa97e | 1532 | matched = false; |
0d3da0d2 | 1533 | pr_debug("kvm: new tsc generation %llu, clock %llu\n", |
e26101b1 | 1534 | kvm->arch.cur_tsc_generation, data); |
f38e098f | 1535 | } |
e26101b1 ZA |
1536 | |
1537 | /* | |
1538 | * We also track th most recent recorded KHZ, write and time to | |
1539 | * allow the matching interval to be extended at each write. | |
1540 | */ | |
f38e098f ZA |
1541 | kvm->arch.last_tsc_nsec = ns; |
1542 | kvm->arch.last_tsc_write = data; | |
5d3cb0f6 | 1543 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
99e3e30a | 1544 | |
b183aa58 | 1545 | vcpu->arch.last_guest_tsc = data; |
e26101b1 ZA |
1546 | |
1547 | /* Keep track of which generation this VCPU has synchronized to */ | |
1548 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | |
1549 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | |
1550 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | |
1551 | ||
d6321d49 | 1552 | if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) |
ba904635 | 1553 | update_ia32_tsc_adjust_msr(vcpu, offset); |
d6321d49 | 1554 | |
a545ab6a | 1555 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
e26101b1 | 1556 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
b48aa97e MT |
1557 | |
1558 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | |
0d3da0d2 | 1559 | if (!matched) { |
b48aa97e | 1560 | kvm->arch.nr_vcpus_matched_tsc = 0; |
0d3da0d2 TG |
1561 | } else if (!already_matched) { |
1562 | kvm->arch.nr_vcpus_matched_tsc++; | |
1563 | } | |
b48aa97e MT |
1564 | |
1565 | kvm_track_tsc_matching(vcpu); | |
1566 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | |
99e3e30a | 1567 | } |
e26101b1 | 1568 | |
99e3e30a ZA |
1569 | EXPORT_SYMBOL_GPL(kvm_write_tsc); |
1570 | ||
58ea6767 HZ |
1571 | static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, |
1572 | s64 adjustment) | |
1573 | { | |
ea26e4ec | 1574 | kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); |
58ea6767 HZ |
1575 | } |
1576 | ||
1577 | static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) | |
1578 | { | |
1579 | if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) | |
1580 | WARN_ON(adjustment < 0); | |
1581 | adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); | |
ea26e4ec | 1582 | adjust_tsc_offset_guest(vcpu, adjustment); |
58ea6767 HZ |
1583 | } |
1584 | ||
d828199e MT |
1585 | #ifdef CONFIG_X86_64 |
1586 | ||
a5a1d1c2 | 1587 | static u64 read_tsc(void) |
d828199e | 1588 | { |
a5a1d1c2 | 1589 | u64 ret = (u64)rdtsc_ordered(); |
03b9730b | 1590 | u64 last = pvclock_gtod_data.clock.cycle_last; |
d828199e MT |
1591 | |
1592 | if (likely(ret >= last)) | |
1593 | return ret; | |
1594 | ||
1595 | /* | |
1596 | * GCC likes to generate cmov here, but this branch is extremely | |
6a6256f9 | 1597 | * predictable (it's just a function of time and the likely is |
d828199e MT |
1598 | * very likely) and there's a data dependence, so force GCC |
1599 | * to generate a branch instead. I don't barrier() because | |
1600 | * we don't actually need a barrier, and if this function | |
1601 | * ever gets inlined it will generate worse code. | |
1602 | */ | |
1603 | asm volatile (""); | |
1604 | return last; | |
1605 | } | |
1606 | ||
a5a1d1c2 | 1607 | static inline u64 vgettsc(u64 *cycle_now) |
d828199e MT |
1608 | { |
1609 | long v; | |
1610 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1611 | ||
1612 | *cycle_now = read_tsc(); | |
1613 | ||
1614 | v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; | |
1615 | return v * gtod->clock.mult; | |
1616 | } | |
1617 | ||
a5a1d1c2 | 1618 | static int do_monotonic_boot(s64 *t, u64 *cycle_now) |
d828199e | 1619 | { |
cbcf2dd3 | 1620 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
d828199e | 1621 | unsigned long seq; |
d828199e | 1622 | int mode; |
cbcf2dd3 | 1623 | u64 ns; |
d828199e | 1624 | |
d828199e MT |
1625 | do { |
1626 | seq = read_seqcount_begin(>od->seq); | |
1627 | mode = gtod->clock.vclock_mode; | |
cbcf2dd3 | 1628 | ns = gtod->nsec_base; |
d828199e MT |
1629 | ns += vgettsc(cycle_now); |
1630 | ns >>= gtod->clock.shift; | |
cbcf2dd3 | 1631 | ns += gtod->boot_ns; |
d828199e | 1632 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
cbcf2dd3 | 1633 | *t = ns; |
d828199e MT |
1634 | |
1635 | return mode; | |
1636 | } | |
1637 | ||
55dd00a7 MT |
1638 | static int do_realtime(struct timespec *ts, u64 *cycle_now) |
1639 | { | |
1640 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1641 | unsigned long seq; | |
1642 | int mode; | |
1643 | u64 ns; | |
1644 | ||
1645 | do { | |
1646 | seq = read_seqcount_begin(>od->seq); | |
1647 | mode = gtod->clock.vclock_mode; | |
1648 | ts->tv_sec = gtod->wall_time_sec; | |
1649 | ns = gtod->nsec_base; | |
1650 | ns += vgettsc(cycle_now); | |
1651 | ns >>= gtod->clock.shift; | |
1652 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
1653 | ||
1654 | ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); | |
1655 | ts->tv_nsec = ns; | |
1656 | ||
1657 | return mode; | |
1658 | } | |
1659 | ||
d828199e | 1660 | /* returns true if host is using tsc clocksource */ |
a5a1d1c2 | 1661 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) |
d828199e | 1662 | { |
d828199e MT |
1663 | /* checked again under seqlock below */ |
1664 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | |
1665 | return false; | |
1666 | ||
cbcf2dd3 | 1667 | return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; |
d828199e | 1668 | } |
55dd00a7 MT |
1669 | |
1670 | /* returns true if host is using tsc clocksource */ | |
1671 | static bool kvm_get_walltime_and_clockread(struct timespec *ts, | |
1672 | u64 *cycle_now) | |
1673 | { | |
1674 | /* checked again under seqlock below */ | |
1675 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | |
1676 | return false; | |
1677 | ||
1678 | return do_realtime(ts, cycle_now) == VCLOCK_TSC; | |
1679 | } | |
d828199e MT |
1680 | #endif |
1681 | ||
1682 | /* | |
1683 | * | |
b48aa97e MT |
1684 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
1685 | * across virtual CPUs, the following condition is possible. | |
1686 | * Each numbered line represents an event visible to both | |
d828199e MT |
1687 | * CPUs at the next numbered event. |
1688 | * | |
1689 | * "timespecX" represents host monotonic time. "tscX" represents | |
1690 | * RDTSC value. | |
1691 | * | |
1692 | * VCPU0 on CPU0 | VCPU1 on CPU1 | |
1693 | * | |
1694 | * 1. read timespec0,tsc0 | |
1695 | * 2. | timespec1 = timespec0 + N | |
1696 | * | tsc1 = tsc0 + M | |
1697 | * 3. transition to guest | transition to guest | |
1698 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | |
1699 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | |
1700 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | |
1701 | * | |
1702 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | |
1703 | * | |
1704 | * - ret0 < ret1 | |
1705 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | |
1706 | * ... | |
1707 | * - 0 < N - M => M < N | |
1708 | * | |
1709 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | |
1710 | * always the case (the difference between two distinct xtime instances | |
1711 | * might be smaller then the difference between corresponding TSC reads, | |
1712 | * when updating guest vcpus pvclock areas). | |
1713 | * | |
1714 | * To avoid that problem, do not allow visibility of distinct | |
1715 | * system_timestamp/tsc_timestamp values simultaneously: use a master | |
1716 | * copy of host monotonic time values. Update that master copy | |
1717 | * in lockstep. | |
1718 | * | |
b48aa97e | 1719 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
d828199e MT |
1720 | * |
1721 | */ | |
1722 | ||
1723 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | |
1724 | { | |
1725 | #ifdef CONFIG_X86_64 | |
1726 | struct kvm_arch *ka = &kvm->arch; | |
1727 | int vclock_mode; | |
b48aa97e MT |
1728 | bool host_tsc_clocksource, vcpus_matched; |
1729 | ||
1730 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1731 | atomic_read(&kvm->online_vcpus)); | |
d828199e MT |
1732 | |
1733 | /* | |
1734 | * If the host uses TSC clock, then passthrough TSC as stable | |
1735 | * to the guest. | |
1736 | */ | |
b48aa97e | 1737 | host_tsc_clocksource = kvm_get_time_and_clockread( |
d828199e MT |
1738 | &ka->master_kernel_ns, |
1739 | &ka->master_cycle_now); | |
1740 | ||
16a96021 | 1741 | ka->use_master_clock = host_tsc_clocksource && vcpus_matched |
a826faf1 | 1742 | && !ka->backwards_tsc_observed |
54750f2c | 1743 | && !ka->boot_vcpu_runs_old_kvmclock; |
b48aa97e | 1744 | |
d828199e MT |
1745 | if (ka->use_master_clock) |
1746 | atomic_set(&kvm_guest_has_master_clock, 1); | |
1747 | ||
1748 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | |
b48aa97e MT |
1749 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
1750 | vcpus_matched); | |
d828199e MT |
1751 | #endif |
1752 | } | |
1753 | ||
2860c4b1 PB |
1754 | void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
1755 | { | |
1756 | kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | |
1757 | } | |
1758 | ||
2e762ff7 MT |
1759 | static void kvm_gen_update_masterclock(struct kvm *kvm) |
1760 | { | |
1761 | #ifdef CONFIG_X86_64 | |
1762 | int i; | |
1763 | struct kvm_vcpu *vcpu; | |
1764 | struct kvm_arch *ka = &kvm->arch; | |
1765 | ||
1766 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1767 | kvm_make_mclock_inprogress_request(kvm); | |
1768 | /* no guest entries from this point */ | |
1769 | pvclock_update_vm_gtod_copy(kvm); | |
1770 | ||
1771 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 1772 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2e762ff7 MT |
1773 | |
1774 | /* guest entries allowed */ | |
1775 | kvm_for_each_vcpu(i, vcpu, kvm) | |
72875d8a | 1776 | kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
2e762ff7 MT |
1777 | |
1778 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1779 | #endif | |
1780 | } | |
1781 | ||
e891a32e | 1782 | u64 get_kvmclock_ns(struct kvm *kvm) |
108b249c | 1783 | { |
108b249c | 1784 | struct kvm_arch *ka = &kvm->arch; |
8b953440 | 1785 | struct pvclock_vcpu_time_info hv_clock; |
e2c2206a | 1786 | u64 ret; |
108b249c | 1787 | |
8b953440 PB |
1788 | spin_lock(&ka->pvclock_gtod_sync_lock); |
1789 | if (!ka->use_master_clock) { | |
1790 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1791 | return ktime_get_boot_ns() + ka->kvmclock_offset; | |
108b249c PB |
1792 | } |
1793 | ||
8b953440 PB |
1794 | hv_clock.tsc_timestamp = ka->master_cycle_now; |
1795 | hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | |
1796 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1797 | ||
e2c2206a WL |
1798 | /* both __this_cpu_read() and rdtsc() should be on the same cpu */ |
1799 | get_cpu(); | |
1800 | ||
e70b57a6 WL |
1801 | if (__this_cpu_read(cpu_tsc_khz)) { |
1802 | kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, | |
1803 | &hv_clock.tsc_shift, | |
1804 | &hv_clock.tsc_to_system_mul); | |
1805 | ret = __pvclock_read_cycles(&hv_clock, rdtsc()); | |
1806 | } else | |
1807 | ret = ktime_get_boot_ns() + ka->kvmclock_offset; | |
e2c2206a WL |
1808 | |
1809 | put_cpu(); | |
1810 | ||
1811 | return ret; | |
108b249c PB |
1812 | } |
1813 | ||
0d6dd2ff PB |
1814 | static void kvm_setup_pvclock_page(struct kvm_vcpu *v) |
1815 | { | |
1816 | struct kvm_vcpu_arch *vcpu = &v->arch; | |
1817 | struct pvclock_vcpu_time_info guest_hv_clock; | |
1818 | ||
4e335d9e | 1819 | if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, |
0d6dd2ff PB |
1820 | &guest_hv_clock, sizeof(guest_hv_clock)))) |
1821 | return; | |
1822 | ||
1823 | /* This VCPU is paused, but it's legal for a guest to read another | |
1824 | * VCPU's kvmclock, so we really have to follow the specification where | |
1825 | * it says that version is odd if data is being modified, and even after | |
1826 | * it is consistent. | |
1827 | * | |
1828 | * Version field updates must be kept separate. This is because | |
1829 | * kvm_write_guest_cached might use a "rep movs" instruction, and | |
1830 | * writes within a string instruction are weakly ordered. So there | |
1831 | * are three writes overall. | |
1832 | * | |
1833 | * As a small optimization, only write the version field in the first | |
1834 | * and third write. The vcpu->pv_time cache is still valid, because the | |
1835 | * version field is the first in the struct. | |
1836 | */ | |
1837 | BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); | |
1838 | ||
51c4b8bb LA |
1839 | if (guest_hv_clock.version & 1) |
1840 | ++guest_hv_clock.version; /* first time write, random junk */ | |
1841 | ||
0d6dd2ff | 1842 | vcpu->hv_clock.version = guest_hv_clock.version + 1; |
4e335d9e PB |
1843 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1844 | &vcpu->hv_clock, | |
1845 | sizeof(vcpu->hv_clock.version)); | |
0d6dd2ff PB |
1846 | |
1847 | smp_wmb(); | |
1848 | ||
1849 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | |
1850 | vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); | |
1851 | ||
1852 | if (vcpu->pvclock_set_guest_stopped_request) { | |
1853 | vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; | |
1854 | vcpu->pvclock_set_guest_stopped_request = false; | |
1855 | } | |
1856 | ||
1857 | trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); | |
1858 | ||
4e335d9e PB |
1859 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1860 | &vcpu->hv_clock, | |
1861 | sizeof(vcpu->hv_clock)); | |
0d6dd2ff PB |
1862 | |
1863 | smp_wmb(); | |
1864 | ||
1865 | vcpu->hv_clock.version++; | |
4e335d9e PB |
1866 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1867 | &vcpu->hv_clock, | |
1868 | sizeof(vcpu->hv_clock.version)); | |
0d6dd2ff PB |
1869 | } |
1870 | ||
34c238a1 | 1871 | static int kvm_guest_time_update(struct kvm_vcpu *v) |
18068523 | 1872 | { |
78db6a50 | 1873 | unsigned long flags, tgt_tsc_khz; |
18068523 | 1874 | struct kvm_vcpu_arch *vcpu = &v->arch; |
d828199e | 1875 | struct kvm_arch *ka = &v->kvm->arch; |
f25e656d | 1876 | s64 kernel_ns; |
d828199e | 1877 | u64 tsc_timestamp, host_tsc; |
51d59c6b | 1878 | u8 pvclock_flags; |
d828199e MT |
1879 | bool use_master_clock; |
1880 | ||
1881 | kernel_ns = 0; | |
1882 | host_tsc = 0; | |
18068523 | 1883 | |
d828199e MT |
1884 | /* |
1885 | * If the host uses TSC clock, then passthrough TSC as stable | |
1886 | * to the guest. | |
1887 | */ | |
1888 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1889 | use_master_clock = ka->use_master_clock; | |
1890 | if (use_master_clock) { | |
1891 | host_tsc = ka->master_cycle_now; | |
1892 | kernel_ns = ka->master_kernel_ns; | |
1893 | } | |
1894 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
c09664bb MT |
1895 | |
1896 | /* Keep irq disabled to prevent changes to the clock */ | |
1897 | local_irq_save(flags); | |
78db6a50 PB |
1898 | tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); |
1899 | if (unlikely(tgt_tsc_khz == 0)) { | |
c09664bb MT |
1900 | local_irq_restore(flags); |
1901 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | |
1902 | return 1; | |
1903 | } | |
d828199e | 1904 | if (!use_master_clock) { |
4ea1636b | 1905 | host_tsc = rdtsc(); |
108b249c | 1906 | kernel_ns = ktime_get_boot_ns(); |
d828199e MT |
1907 | } |
1908 | ||
4ba76538 | 1909 | tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); |
d828199e | 1910 | |
c285545f ZA |
1911 | /* |
1912 | * We may have to catch up the TSC to match elapsed wall clock | |
1913 | * time for two reasons, even if kvmclock is used. | |
1914 | * 1) CPU could have been running below the maximum TSC rate | |
1915 | * 2) Broken TSC compensation resets the base at each VCPU | |
1916 | * entry to avoid unknown leaps of TSC even when running | |
1917 | * again on the same CPU. This may cause apparent elapsed | |
1918 | * time to disappear, and the guest to stand still or run | |
1919 | * very slowly. | |
1920 | */ | |
1921 | if (vcpu->tsc_catchup) { | |
1922 | u64 tsc = compute_guest_tsc(v, kernel_ns); | |
1923 | if (tsc > tsc_timestamp) { | |
f1e2b260 | 1924 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
c285545f ZA |
1925 | tsc_timestamp = tsc; |
1926 | } | |
50d0a0f9 GH |
1927 | } |
1928 | ||
18068523 GOC |
1929 | local_irq_restore(flags); |
1930 | ||
0d6dd2ff | 1931 | /* With all the info we got, fill in the values */ |
18068523 | 1932 | |
78db6a50 PB |
1933 | if (kvm_has_tsc_control) |
1934 | tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); | |
1935 | ||
1936 | if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { | |
3ae13faa | 1937 | kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, |
5f4e3f88 ZA |
1938 | &vcpu->hv_clock.tsc_shift, |
1939 | &vcpu->hv_clock.tsc_to_system_mul); | |
78db6a50 | 1940 | vcpu->hw_tsc_khz = tgt_tsc_khz; |
8cfdc000 ZA |
1941 | } |
1942 | ||
1d5f066e | 1943 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
759379dd | 1944 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
28e4639a | 1945 | vcpu->last_guest_tsc = tsc_timestamp; |
51d59c6b | 1946 | |
d828199e | 1947 | /* If the host uses TSC clocksource, then it is stable */ |
0d6dd2ff | 1948 | pvclock_flags = 0; |
d828199e MT |
1949 | if (use_master_clock) |
1950 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | |
1951 | ||
78c0337a MT |
1952 | vcpu->hv_clock.flags = pvclock_flags; |
1953 | ||
095cf55d PB |
1954 | if (vcpu->pv_time_enabled) |
1955 | kvm_setup_pvclock_page(v); | |
1956 | if (v == kvm_get_vcpu(v->kvm, 0)) | |
1957 | kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); | |
8cfdc000 | 1958 | return 0; |
c8076604 GH |
1959 | } |
1960 | ||
0061d53d MT |
1961 | /* |
1962 | * kvmclock updates which are isolated to a given vcpu, such as | |
1963 | * vcpu->cpu migration, should not allow system_timestamp from | |
1964 | * the rest of the vcpus to remain static. Otherwise ntp frequency | |
1965 | * correction applies to one vcpu's system_timestamp but not | |
1966 | * the others. | |
1967 | * | |
1968 | * So in those cases, request a kvmclock update for all vcpus. | |
7e44e449 AJ |
1969 | * We need to rate-limit these requests though, as they can |
1970 | * considerably slow guests that have a large number of vcpus. | |
1971 | * The time for a remote vcpu to update its kvmclock is bound | |
1972 | * by the delay we use to rate-limit the updates. | |
0061d53d MT |
1973 | */ |
1974 | ||
7e44e449 AJ |
1975 | #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) |
1976 | ||
1977 | static void kvmclock_update_fn(struct work_struct *work) | |
0061d53d MT |
1978 | { |
1979 | int i; | |
7e44e449 AJ |
1980 | struct delayed_work *dwork = to_delayed_work(work); |
1981 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
1982 | kvmclock_update_work); | |
1983 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
0061d53d MT |
1984 | struct kvm_vcpu *vcpu; |
1985 | ||
1986 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
105b21bb | 1987 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0061d53d MT |
1988 | kvm_vcpu_kick(vcpu); |
1989 | } | |
1990 | } | |
1991 | ||
7e44e449 AJ |
1992 | static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) |
1993 | { | |
1994 | struct kvm *kvm = v->kvm; | |
1995 | ||
105b21bb | 1996 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
7e44e449 AJ |
1997 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, |
1998 | KVMCLOCK_UPDATE_DELAY); | |
1999 | } | |
2000 | ||
332967a3 AJ |
2001 | #define KVMCLOCK_SYNC_PERIOD (300 * HZ) |
2002 | ||
2003 | static void kvmclock_sync_fn(struct work_struct *work) | |
2004 | { | |
2005 | struct delayed_work *dwork = to_delayed_work(work); | |
2006 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
2007 | kvmclock_sync_work); | |
2008 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
2009 | ||
630994b3 MT |
2010 | if (!kvmclock_periodic_sync) |
2011 | return; | |
2012 | ||
332967a3 AJ |
2013 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); |
2014 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | |
2015 | KVMCLOCK_SYNC_PERIOD); | |
2016 | } | |
2017 | ||
9ffd986c | 2018 | static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 2019 | { |
890ca9ae YH |
2020 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2021 | unsigned bank_num = mcg_cap & 0xff; | |
9ffd986c WL |
2022 | u32 msr = msr_info->index; |
2023 | u64 data = msr_info->data; | |
890ca9ae | 2024 | |
15c4a640 | 2025 | switch (msr) { |
15c4a640 | 2026 | case MSR_IA32_MCG_STATUS: |
890ca9ae | 2027 | vcpu->arch.mcg_status = data; |
15c4a640 | 2028 | break; |
c7ac679c | 2029 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
2030 | if (!(mcg_cap & MCG_CTL_P)) |
2031 | return 1; | |
2032 | if (data != 0 && data != ~(u64)0) | |
2033 | return -1; | |
2034 | vcpu->arch.mcg_ctl = data; | |
2035 | break; | |
2036 | default: | |
2037 | if (msr >= MSR_IA32_MC0_CTL && | |
81760dcc | 2038 | msr < MSR_IA32_MCx_CTL(bank_num)) { |
890ca9ae | 2039 | u32 offset = msr - MSR_IA32_MC0_CTL; |
114be429 AP |
2040 | /* only 0 or all 1s can be written to IA32_MCi_CTL |
2041 | * some Linux kernels though clear bit 10 in bank 4 to | |
2042 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore | |
2043 | * this to avoid an uncatched #GP in the guest | |
2044 | */ | |
890ca9ae | 2045 | if ((offset & 0x3) == 0 && |
114be429 | 2046 | data != 0 && (data | (1 << 10)) != ~(u64)0) |
890ca9ae | 2047 | return -1; |
9ffd986c WL |
2048 | if (!msr_info->host_initiated && |
2049 | (offset & 0x3) == 1 && data != 0) | |
2050 | return -1; | |
890ca9ae YH |
2051 | vcpu->arch.mce_banks[offset] = data; |
2052 | break; | |
2053 | } | |
2054 | return 1; | |
2055 | } | |
2056 | return 0; | |
2057 | } | |
2058 | ||
ffde22ac ES |
2059 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
2060 | { | |
2061 | struct kvm *kvm = vcpu->kvm; | |
2062 | int lm = is_long_mode(vcpu); | |
2063 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | |
2064 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | |
2065 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | |
2066 | : kvm->arch.xen_hvm_config.blob_size_32; | |
2067 | u32 page_num = data & ~PAGE_MASK; | |
2068 | u64 page_addr = data & PAGE_MASK; | |
2069 | u8 *page; | |
2070 | int r; | |
2071 | ||
2072 | r = -E2BIG; | |
2073 | if (page_num >= blob_size) | |
2074 | goto out; | |
2075 | r = -ENOMEM; | |
ff5c2c03 SL |
2076 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
2077 | if (IS_ERR(page)) { | |
2078 | r = PTR_ERR(page); | |
ffde22ac | 2079 | goto out; |
ff5c2c03 | 2080 | } |
54bf36aa | 2081 | if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) |
ffde22ac ES |
2082 | goto out_free; |
2083 | r = 0; | |
2084 | out_free: | |
2085 | kfree(page); | |
2086 | out: | |
2087 | return r; | |
2088 | } | |
2089 | ||
344d9588 GN |
2090 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
2091 | { | |
2092 | gpa_t gpa = data & ~0x3f; | |
2093 | ||
52a5c155 WL |
2094 | /* Bits 3:5 are reserved, Should be zero */ |
2095 | if (data & 0x38) | |
344d9588 GN |
2096 | return 1; |
2097 | ||
2098 | vcpu->arch.apf.msr_val = data; | |
2099 | ||
2100 | if (!(data & KVM_ASYNC_PF_ENABLED)) { | |
2101 | kvm_clear_async_pf_completion_queue(vcpu); | |
2102 | kvm_async_pf_hash_reset(vcpu); | |
2103 | return 0; | |
2104 | } | |
2105 | ||
4e335d9e | 2106 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, |
8f964525 | 2107 | sizeof(u32))) |
344d9588 GN |
2108 | return 1; |
2109 | ||
6adba527 | 2110 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
52a5c155 | 2111 | vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
344d9588 GN |
2112 | kvm_async_pf_wakeup_all(vcpu); |
2113 | return 0; | |
2114 | } | |
2115 | ||
12f9a48f GC |
2116 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
2117 | { | |
0b79459b | 2118 | vcpu->arch.pv_time_enabled = false; |
12f9a48f GC |
2119 | } |
2120 | ||
c9aaa895 GC |
2121 | static void record_steal_time(struct kvm_vcpu *vcpu) |
2122 | { | |
2123 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
2124 | return; | |
2125 | ||
4e335d9e | 2126 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
c9aaa895 GC |
2127 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) |
2128 | return; | |
2129 | ||
0b9f6c46 PX |
2130 | vcpu->arch.st.steal.preempted = 0; |
2131 | ||
35f3fae1 WL |
2132 | if (vcpu->arch.st.steal.version & 1) |
2133 | vcpu->arch.st.steal.version += 1; /* first time write, random junk */ | |
2134 | ||
2135 | vcpu->arch.st.steal.version += 1; | |
2136 | ||
4e335d9e | 2137 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
35f3fae1 WL |
2138 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2139 | ||
2140 | smp_wmb(); | |
2141 | ||
c54cdf14 LC |
2142 | vcpu->arch.st.steal.steal += current->sched_info.run_delay - |
2143 | vcpu->arch.st.last_steal; | |
2144 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
35f3fae1 | 2145 | |
4e335d9e | 2146 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
35f3fae1 WL |
2147 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2148 | ||
2149 | smp_wmb(); | |
2150 | ||
2151 | vcpu->arch.st.steal.version += 1; | |
c9aaa895 | 2152 | |
4e335d9e | 2153 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
c9aaa895 GC |
2154 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2155 | } | |
2156 | ||
8fe8ab46 | 2157 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 2158 | { |
5753785f | 2159 | bool pr = false; |
8fe8ab46 WA |
2160 | u32 msr = msr_info->index; |
2161 | u64 data = msr_info->data; | |
5753785f | 2162 | |
15c4a640 | 2163 | switch (msr) { |
2e32b719 BP |
2164 | case MSR_AMD64_NB_CFG: |
2165 | case MSR_IA32_UCODE_REV: | |
2166 | case MSR_IA32_UCODE_WRITE: | |
2167 | case MSR_VM_HSAVE_PA: | |
2168 | case MSR_AMD64_PATCH_LOADER: | |
2169 | case MSR_AMD64_BU_CFG2: | |
405a353a | 2170 | case MSR_AMD64_DC_CFG: |
2e32b719 BP |
2171 | break; |
2172 | ||
15c4a640 | 2173 | case MSR_EFER: |
b69e8cae | 2174 | return set_efer(vcpu, data); |
8f1589d9 AP |
2175 | case MSR_K7_HWCR: |
2176 | data &= ~(u64)0x40; /* ignore flush filter disable */ | |
82494028 | 2177 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
a223c313 | 2178 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
22d48b2d | 2179 | data &= ~(u64)0x40000; /* ignore Mc status write enable */ |
8f1589d9 | 2180 | if (data != 0) { |
a737f256 CD |
2181 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
2182 | data); | |
8f1589d9 AP |
2183 | return 1; |
2184 | } | |
15c4a640 | 2185 | break; |
f7c6d140 AP |
2186 | case MSR_FAM10H_MMIO_CONF_BASE: |
2187 | if (data != 0) { | |
a737f256 CD |
2188 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
2189 | "0x%llx\n", data); | |
f7c6d140 AP |
2190 | return 1; |
2191 | } | |
15c4a640 | 2192 | break; |
b5e2fec0 AG |
2193 | case MSR_IA32_DEBUGCTLMSR: |
2194 | if (!data) { | |
2195 | /* We support the non-activated case already */ | |
2196 | break; | |
2197 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | |
2198 | /* Values other than LBR and BTF are vendor-specific, | |
2199 | thus reserved and should throw a #GP */ | |
2200 | return 1; | |
2201 | } | |
a737f256 CD |
2202 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
2203 | __func__, data); | |
b5e2fec0 | 2204 | break; |
9ba075a6 | 2205 | case 0x200 ... 0x2ff: |
ff53604b | 2206 | return kvm_mtrr_set_msr(vcpu, msr, data); |
15c4a640 | 2207 | case MSR_IA32_APICBASE: |
58cb628d | 2208 | return kvm_set_apic_base(vcpu, msr_info); |
0105d1a5 GN |
2209 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
2210 | return kvm_x2apic_msr_write(vcpu, msr, data); | |
a3e06bbe LJ |
2211 | case MSR_IA32_TSCDEADLINE: |
2212 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | |
2213 | break; | |
ba904635 | 2214 | case MSR_IA32_TSC_ADJUST: |
d6321d49 | 2215 | if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { |
ba904635 | 2216 | if (!msr_info->host_initiated) { |
d913b904 | 2217 | s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
d7add054 | 2218 | adjust_tsc_offset_guest(vcpu, adj); |
ba904635 WA |
2219 | } |
2220 | vcpu->arch.ia32_tsc_adjust_msr = data; | |
2221 | } | |
2222 | break; | |
15c4a640 | 2223 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 2224 | vcpu->arch.ia32_misc_enable_msr = data; |
15c4a640 | 2225 | break; |
64d60670 PB |
2226 | case MSR_IA32_SMBASE: |
2227 | if (!msr_info->host_initiated) | |
2228 | return 1; | |
2229 | vcpu->arch.smbase = data; | |
2230 | break; | |
11c6bffa | 2231 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
2232 | case MSR_KVM_WALL_CLOCK: |
2233 | vcpu->kvm->arch.wall_clock = data; | |
2234 | kvm_write_wall_clock(vcpu->kvm, data); | |
2235 | break; | |
11c6bffa | 2236 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 | 2237 | case MSR_KVM_SYSTEM_TIME: { |
54750f2c MT |
2238 | struct kvm_arch *ka = &vcpu->kvm->arch; |
2239 | ||
12f9a48f | 2240 | kvmclock_reset(vcpu); |
18068523 | 2241 | |
54750f2c MT |
2242 | if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { |
2243 | bool tmp = (msr == MSR_KVM_SYSTEM_TIME); | |
2244 | ||
2245 | if (ka->boot_vcpu_runs_old_kvmclock != tmp) | |
1bd2009e | 2246 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
54750f2c MT |
2247 | |
2248 | ka->boot_vcpu_runs_old_kvmclock = tmp; | |
2249 | } | |
2250 | ||
18068523 | 2251 | vcpu->arch.time = data; |
0061d53d | 2252 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
18068523 GOC |
2253 | |
2254 | /* we verify if the enable bit is set... */ | |
2255 | if (!(data & 1)) | |
2256 | break; | |
2257 | ||
4e335d9e | 2258 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, |
8f964525 AH |
2259 | &vcpu->arch.pv_time, data & ~1ULL, |
2260 | sizeof(struct pvclock_vcpu_time_info))) | |
0b79459b AH |
2261 | vcpu->arch.pv_time_enabled = false; |
2262 | else | |
2263 | vcpu->arch.pv_time_enabled = true; | |
32cad84f | 2264 | |
18068523 GOC |
2265 | break; |
2266 | } | |
344d9588 GN |
2267 | case MSR_KVM_ASYNC_PF_EN: |
2268 | if (kvm_pv_enable_async_pf(vcpu, data)) | |
2269 | return 1; | |
2270 | break; | |
c9aaa895 GC |
2271 | case MSR_KVM_STEAL_TIME: |
2272 | ||
2273 | if (unlikely(!sched_info_on())) | |
2274 | return 1; | |
2275 | ||
2276 | if (data & KVM_STEAL_RESERVED_MASK) | |
2277 | return 1; | |
2278 | ||
4e335d9e | 2279 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, |
8f964525 AH |
2280 | data & KVM_STEAL_VALID_BITS, |
2281 | sizeof(struct kvm_steal_time))) | |
c9aaa895 GC |
2282 | return 1; |
2283 | ||
2284 | vcpu->arch.st.msr_val = data; | |
2285 | ||
2286 | if (!(data & KVM_MSR_ENABLED)) | |
2287 | break; | |
2288 | ||
c9aaa895 GC |
2289 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
2290 | ||
2291 | break; | |
ae7a2a3f MT |
2292 | case MSR_KVM_PV_EOI_EN: |
2293 | if (kvm_lapic_enable_pv_eoi(vcpu, data)) | |
2294 | return 1; | |
2295 | break; | |
c9aaa895 | 2296 | |
890ca9ae YH |
2297 | case MSR_IA32_MCG_CTL: |
2298 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 2299 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
9ffd986c | 2300 | return set_msr_mce(vcpu, msr_info); |
71db6023 | 2301 | |
6912ac32 WH |
2302 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
2303 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
2304 | pr = true; /* fall through */ | |
2305 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: | |
2306 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 2307 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 2308 | return kvm_pmu_set_msr(vcpu, msr_info); |
5753785f GN |
2309 | |
2310 | if (pr || data != 0) | |
a737f256 CD |
2311 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
2312 | "0x%x data 0x%llx\n", msr, data); | |
5753785f | 2313 | break; |
84e0cefa JS |
2314 | case MSR_K7_CLK_CTL: |
2315 | /* | |
2316 | * Ignore all writes to this no longer documented MSR. | |
2317 | * Writes are only relevant for old K7 processors, | |
2318 | * all pre-dating SVM, but a recommended workaround from | |
4a969980 | 2319 | * AMD for these chips. It is possible to specify the |
84e0cefa JS |
2320 | * affected processor models on the command line, hence |
2321 | * the need to ignore the workaround. | |
2322 | */ | |
2323 | break; | |
55cd8e5a | 2324 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
e7d9513b AS |
2325 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2326 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 2327 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
e7d9513b AS |
2328 | return kvm_hv_set_msr_common(vcpu, msr, data, |
2329 | msr_info->host_initiated); | |
91c9c3ed | 2330 | case MSR_IA32_BBL_CR_CTL3: |
2331 | /* Drop writes to this legacy MSR -- see rdmsr | |
2332 | * counterpart for further detail. | |
2333 | */ | |
fab0aa3b EM |
2334 | if (report_ignored_msrs) |
2335 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", | |
2336 | msr, data); | |
91c9c3ed | 2337 | break; |
2b036c6b | 2338 | case MSR_AMD64_OSVW_ID_LENGTH: |
d6321d49 | 2339 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
2340 | return 1; |
2341 | vcpu->arch.osvw.length = data; | |
2342 | break; | |
2343 | case MSR_AMD64_OSVW_STATUS: | |
d6321d49 | 2344 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
2345 | return 1; |
2346 | vcpu->arch.osvw.status = data; | |
2347 | break; | |
db2336a8 KH |
2348 | case MSR_PLATFORM_INFO: |
2349 | if (!msr_info->host_initiated || | |
2350 | data & ~MSR_PLATFORM_INFO_CPUID_FAULT || | |
2351 | (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && | |
2352 | cpuid_fault_enabled(vcpu))) | |
2353 | return 1; | |
2354 | vcpu->arch.msr_platform_info = data; | |
2355 | break; | |
2356 | case MSR_MISC_FEATURES_ENABLES: | |
2357 | if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || | |
2358 | (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && | |
2359 | !supports_cpuid_fault(vcpu))) | |
2360 | return 1; | |
2361 | vcpu->arch.msr_misc_features_enables = data; | |
2362 | break; | |
15c4a640 | 2363 | default: |
ffde22ac ES |
2364 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
2365 | return xen_hvm_config(vcpu, data); | |
c6702c9d | 2366 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 2367 | return kvm_pmu_set_msr(vcpu, msr_info); |
ed85c068 | 2368 | if (!ignore_msrs) { |
ae0f5499 | 2369 | vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", |
a737f256 | 2370 | msr, data); |
ed85c068 AP |
2371 | return 1; |
2372 | } else { | |
fab0aa3b EM |
2373 | if (report_ignored_msrs) |
2374 | vcpu_unimpl(vcpu, | |
2375 | "ignored wrmsr: 0x%x data 0x%llx\n", | |
2376 | msr, data); | |
ed85c068 AP |
2377 | break; |
2378 | } | |
15c4a640 CO |
2379 | } |
2380 | return 0; | |
2381 | } | |
2382 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | |
2383 | ||
2384 | ||
2385 | /* | |
2386 | * Reads an msr value (of 'msr_index') into 'pdata'. | |
2387 | * Returns 0 on success, non-0 otherwise. | |
2388 | * Assumes vcpu_load() was already called. | |
2389 | */ | |
609e36d3 | 2390 | int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 2391 | { |
609e36d3 | 2392 | return kvm_x86_ops->get_msr(vcpu, msr); |
15c4a640 | 2393 | } |
ff651cb6 | 2394 | EXPORT_SYMBOL_GPL(kvm_get_msr); |
15c4a640 | 2395 | |
890ca9ae | 2396 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
15c4a640 CO |
2397 | { |
2398 | u64 data; | |
890ca9ae YH |
2399 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2400 | unsigned bank_num = mcg_cap & 0xff; | |
15c4a640 CO |
2401 | |
2402 | switch (msr) { | |
15c4a640 CO |
2403 | case MSR_IA32_P5_MC_ADDR: |
2404 | case MSR_IA32_P5_MC_TYPE: | |
890ca9ae YH |
2405 | data = 0; |
2406 | break; | |
15c4a640 | 2407 | case MSR_IA32_MCG_CAP: |
890ca9ae YH |
2408 | data = vcpu->arch.mcg_cap; |
2409 | break; | |
c7ac679c | 2410 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
2411 | if (!(mcg_cap & MCG_CTL_P)) |
2412 | return 1; | |
2413 | data = vcpu->arch.mcg_ctl; | |
2414 | break; | |
2415 | case MSR_IA32_MCG_STATUS: | |
2416 | data = vcpu->arch.mcg_status; | |
2417 | break; | |
2418 | default: | |
2419 | if (msr >= MSR_IA32_MC0_CTL && | |
81760dcc | 2420 | msr < MSR_IA32_MCx_CTL(bank_num)) { |
890ca9ae YH |
2421 | u32 offset = msr - MSR_IA32_MC0_CTL; |
2422 | data = vcpu->arch.mce_banks[offset]; | |
2423 | break; | |
2424 | } | |
2425 | return 1; | |
2426 | } | |
2427 | *pdata = data; | |
2428 | return 0; | |
2429 | } | |
2430 | ||
609e36d3 | 2431 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
890ca9ae | 2432 | { |
609e36d3 | 2433 | switch (msr_info->index) { |
890ca9ae | 2434 | case MSR_IA32_PLATFORM_ID: |
15c4a640 | 2435 | case MSR_IA32_EBL_CR_POWERON: |
b5e2fec0 AG |
2436 | case MSR_IA32_DEBUGCTLMSR: |
2437 | case MSR_IA32_LASTBRANCHFROMIP: | |
2438 | case MSR_IA32_LASTBRANCHTOIP: | |
2439 | case MSR_IA32_LASTINTFROMIP: | |
2440 | case MSR_IA32_LASTINTTOIP: | |
60af2ecd | 2441 | case MSR_K8_SYSCFG: |
3afb1121 PB |
2442 | case MSR_K8_TSEG_ADDR: |
2443 | case MSR_K8_TSEG_MASK: | |
60af2ecd | 2444 | case MSR_K7_HWCR: |
61a6bd67 | 2445 | case MSR_VM_HSAVE_PA: |
1fdbd48c | 2446 | case MSR_K8_INT_PENDING_MSG: |
c323c0e5 | 2447 | case MSR_AMD64_NB_CFG: |
f7c6d140 | 2448 | case MSR_FAM10H_MMIO_CONF_BASE: |
2e32b719 | 2449 | case MSR_AMD64_BU_CFG2: |
0c2df2a1 | 2450 | case MSR_IA32_PERF_CTL: |
405a353a | 2451 | case MSR_AMD64_DC_CFG: |
609e36d3 | 2452 | msr_info->data = 0; |
15c4a640 | 2453 | break; |
6912ac32 WH |
2454 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
2455 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: | |
2456 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
2457 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 2458 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
609e36d3 PB |
2459 | return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
2460 | msr_info->data = 0; | |
5753785f | 2461 | break; |
742bc670 | 2462 | case MSR_IA32_UCODE_REV: |
609e36d3 | 2463 | msr_info->data = 0x100000000ULL; |
742bc670 | 2464 | break; |
9ba075a6 | 2465 | case MSR_MTRRcap: |
9ba075a6 | 2466 | case 0x200 ... 0x2ff: |
ff53604b | 2467 | return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); |
15c4a640 | 2468 | case 0xcd: /* fsb frequency */ |
609e36d3 | 2469 | msr_info->data = 3; |
15c4a640 | 2470 | break; |
7b914098 JS |
2471 | /* |
2472 | * MSR_EBC_FREQUENCY_ID | |
2473 | * Conservative value valid for even the basic CPU models. | |
2474 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | |
2475 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | |
2476 | * and 266MHz for model 3, or 4. Set Core Clock | |
2477 | * Frequency to System Bus Frequency Ratio to 1 (bits | |
2478 | * 31:24) even though these are only valid for CPU | |
2479 | * models > 2, however guests may end up dividing or | |
2480 | * multiplying by zero otherwise. | |
2481 | */ | |
2482 | case MSR_EBC_FREQUENCY_ID: | |
609e36d3 | 2483 | msr_info->data = 1 << 24; |
7b914098 | 2484 | break; |
15c4a640 | 2485 | case MSR_IA32_APICBASE: |
609e36d3 | 2486 | msr_info->data = kvm_get_apic_base(vcpu); |
15c4a640 | 2487 | break; |
0105d1a5 | 2488 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
609e36d3 | 2489 | return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); |
0105d1a5 | 2490 | break; |
a3e06bbe | 2491 | case MSR_IA32_TSCDEADLINE: |
609e36d3 | 2492 | msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); |
a3e06bbe | 2493 | break; |
ba904635 | 2494 | case MSR_IA32_TSC_ADJUST: |
609e36d3 | 2495 | msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
ba904635 | 2496 | break; |
15c4a640 | 2497 | case MSR_IA32_MISC_ENABLE: |
609e36d3 | 2498 | msr_info->data = vcpu->arch.ia32_misc_enable_msr; |
15c4a640 | 2499 | break; |
64d60670 PB |
2500 | case MSR_IA32_SMBASE: |
2501 | if (!msr_info->host_initiated) | |
2502 | return 1; | |
2503 | msr_info->data = vcpu->arch.smbase; | |
15c4a640 | 2504 | break; |
847f0ad8 AG |
2505 | case MSR_IA32_PERF_STATUS: |
2506 | /* TSC increment by tick */ | |
609e36d3 | 2507 | msr_info->data = 1000ULL; |
847f0ad8 | 2508 | /* CPU multiplier */ |
b0996ae4 | 2509 | msr_info->data |= (((uint64_t)4ULL) << 40); |
847f0ad8 | 2510 | break; |
15c4a640 | 2511 | case MSR_EFER: |
609e36d3 | 2512 | msr_info->data = vcpu->arch.efer; |
15c4a640 | 2513 | break; |
18068523 | 2514 | case MSR_KVM_WALL_CLOCK: |
11c6bffa | 2515 | case MSR_KVM_WALL_CLOCK_NEW: |
609e36d3 | 2516 | msr_info->data = vcpu->kvm->arch.wall_clock; |
18068523 GOC |
2517 | break; |
2518 | case MSR_KVM_SYSTEM_TIME: | |
11c6bffa | 2519 | case MSR_KVM_SYSTEM_TIME_NEW: |
609e36d3 | 2520 | msr_info->data = vcpu->arch.time; |
18068523 | 2521 | break; |
344d9588 | 2522 | case MSR_KVM_ASYNC_PF_EN: |
609e36d3 | 2523 | msr_info->data = vcpu->arch.apf.msr_val; |
344d9588 | 2524 | break; |
c9aaa895 | 2525 | case MSR_KVM_STEAL_TIME: |
609e36d3 | 2526 | msr_info->data = vcpu->arch.st.msr_val; |
c9aaa895 | 2527 | break; |
1d92128f | 2528 | case MSR_KVM_PV_EOI_EN: |
609e36d3 | 2529 | msr_info->data = vcpu->arch.pv_eoi.msr_val; |
1d92128f | 2530 | break; |
890ca9ae YH |
2531 | case MSR_IA32_P5_MC_ADDR: |
2532 | case MSR_IA32_P5_MC_TYPE: | |
2533 | case MSR_IA32_MCG_CAP: | |
2534 | case MSR_IA32_MCG_CTL: | |
2535 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 2536 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
609e36d3 | 2537 | return get_msr_mce(vcpu, msr_info->index, &msr_info->data); |
84e0cefa JS |
2538 | case MSR_K7_CLK_CTL: |
2539 | /* | |
2540 | * Provide expected ramp-up count for K7. All other | |
2541 | * are set to zero, indicating minimum divisors for | |
2542 | * every field. | |
2543 | * | |
2544 | * This prevents guest kernels on AMD host with CPU | |
2545 | * type 6, model 8 and higher from exploding due to | |
2546 | * the rdmsr failing. | |
2547 | */ | |
609e36d3 | 2548 | msr_info->data = 0x20000000; |
84e0cefa | 2549 | break; |
55cd8e5a | 2550 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
e7d9513b AS |
2551 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2552 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 2553 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
e83d5887 AS |
2554 | return kvm_hv_get_msr_common(vcpu, |
2555 | msr_info->index, &msr_info->data); | |
55cd8e5a | 2556 | break; |
91c9c3ed | 2557 | case MSR_IA32_BBL_CR_CTL3: |
2558 | /* This legacy MSR exists but isn't fully documented in current | |
2559 | * silicon. It is however accessed by winxp in very narrow | |
2560 | * scenarios where it sets bit #19, itself documented as | |
2561 | * a "reserved" bit. Best effort attempt to source coherent | |
2562 | * read data here should the balance of the register be | |
2563 | * interpreted by the guest: | |
2564 | * | |
2565 | * L2 cache control register 3: 64GB range, 256KB size, | |
2566 | * enabled, latency 0x1, configured | |
2567 | */ | |
609e36d3 | 2568 | msr_info->data = 0xbe702111; |
91c9c3ed | 2569 | break; |
2b036c6b | 2570 | case MSR_AMD64_OSVW_ID_LENGTH: |
d6321d49 | 2571 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 2572 | return 1; |
609e36d3 | 2573 | msr_info->data = vcpu->arch.osvw.length; |
2b036c6b BO |
2574 | break; |
2575 | case MSR_AMD64_OSVW_STATUS: | |
d6321d49 | 2576 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 2577 | return 1; |
609e36d3 | 2578 | msr_info->data = vcpu->arch.osvw.status; |
2b036c6b | 2579 | break; |
db2336a8 KH |
2580 | case MSR_PLATFORM_INFO: |
2581 | msr_info->data = vcpu->arch.msr_platform_info; | |
2582 | break; | |
2583 | case MSR_MISC_FEATURES_ENABLES: | |
2584 | msr_info->data = vcpu->arch.msr_misc_features_enables; | |
2585 | break; | |
15c4a640 | 2586 | default: |
c6702c9d | 2587 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
609e36d3 | 2588 | return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
ed85c068 | 2589 | if (!ignore_msrs) { |
ae0f5499 BD |
2590 | vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", |
2591 | msr_info->index); | |
ed85c068 AP |
2592 | return 1; |
2593 | } else { | |
fab0aa3b EM |
2594 | if (report_ignored_msrs) |
2595 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", | |
2596 | msr_info->index); | |
609e36d3 | 2597 | msr_info->data = 0; |
ed85c068 AP |
2598 | } |
2599 | break; | |
15c4a640 | 2600 | } |
15c4a640 CO |
2601 | return 0; |
2602 | } | |
2603 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | |
2604 | ||
313a3dc7 CO |
2605 | /* |
2606 | * Read or write a bunch of msrs. All parameters are kernel addresses. | |
2607 | * | |
2608 | * @return number of msrs set successfully. | |
2609 | */ | |
2610 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | |
2611 | struct kvm_msr_entry *entries, | |
2612 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2613 | unsigned index, u64 *data)) | |
2614 | { | |
f656ce01 | 2615 | int i, idx; |
313a3dc7 | 2616 | |
f656ce01 | 2617 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
313a3dc7 CO |
2618 | for (i = 0; i < msrs->nmsrs; ++i) |
2619 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | |
2620 | break; | |
f656ce01 | 2621 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 2622 | |
313a3dc7 CO |
2623 | return i; |
2624 | } | |
2625 | ||
2626 | /* | |
2627 | * Read or write a bunch of msrs. Parameters are user addresses. | |
2628 | * | |
2629 | * @return number of msrs set successfully. | |
2630 | */ | |
2631 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | |
2632 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2633 | unsigned index, u64 *data), | |
2634 | int writeback) | |
2635 | { | |
2636 | struct kvm_msrs msrs; | |
2637 | struct kvm_msr_entry *entries; | |
2638 | int r, n; | |
2639 | unsigned size; | |
2640 | ||
2641 | r = -EFAULT; | |
2642 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | |
2643 | goto out; | |
2644 | ||
2645 | r = -E2BIG; | |
2646 | if (msrs.nmsrs >= MAX_IO_MSRS) | |
2647 | goto out; | |
2648 | ||
313a3dc7 | 2649 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
ff5c2c03 SL |
2650 | entries = memdup_user(user_msrs->entries, size); |
2651 | if (IS_ERR(entries)) { | |
2652 | r = PTR_ERR(entries); | |
313a3dc7 | 2653 | goto out; |
ff5c2c03 | 2654 | } |
313a3dc7 CO |
2655 | |
2656 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | |
2657 | if (r < 0) | |
2658 | goto out_free; | |
2659 | ||
2660 | r = -EFAULT; | |
2661 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | |
2662 | goto out_free; | |
2663 | ||
2664 | r = n; | |
2665 | ||
2666 | out_free: | |
7a73c028 | 2667 | kfree(entries); |
313a3dc7 CO |
2668 | out: |
2669 | return r; | |
2670 | } | |
2671 | ||
784aa3d7 | 2672 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
018d00d2 ZX |
2673 | { |
2674 | int r; | |
2675 | ||
2676 | switch (ext) { | |
2677 | case KVM_CAP_IRQCHIP: | |
2678 | case KVM_CAP_HLT: | |
2679 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | |
018d00d2 | 2680 | case KVM_CAP_SET_TSS_ADDR: |
07716717 | 2681 | case KVM_CAP_EXT_CPUID: |
9c15bb1d | 2682 | case KVM_CAP_EXT_EMUL_CPUID: |
c8076604 | 2683 | case KVM_CAP_CLOCKSOURCE: |
7837699f | 2684 | case KVM_CAP_PIT: |
a28e4f5a | 2685 | case KVM_CAP_NOP_IO_DELAY: |
62d9f0db | 2686 | case KVM_CAP_MP_STATE: |
ed848624 | 2687 | case KVM_CAP_SYNC_MMU: |
a355c85c | 2688 | case KVM_CAP_USER_NMI: |
52d939a0 | 2689 | case KVM_CAP_REINJECT_CONTROL: |
4925663a | 2690 | case KVM_CAP_IRQ_INJECT_STATUS: |
d34e6b17 | 2691 | case KVM_CAP_IOEVENTFD: |
f848a5a8 | 2692 | case KVM_CAP_IOEVENTFD_NO_LENGTH: |
c5ff41ce | 2693 | case KVM_CAP_PIT2: |
e9f42757 | 2694 | case KVM_CAP_PIT_STATE2: |
b927a3ce | 2695 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
ffde22ac | 2696 | case KVM_CAP_XEN_HVM: |
3cfc3092 | 2697 | case KVM_CAP_VCPU_EVENTS: |
55cd8e5a | 2698 | case KVM_CAP_HYPERV: |
10388a07 | 2699 | case KVM_CAP_HYPERV_VAPIC: |
c25bc163 | 2700 | case KVM_CAP_HYPERV_SPIN: |
5c919412 | 2701 | case KVM_CAP_HYPERV_SYNIC: |
efc479e6 | 2702 | case KVM_CAP_HYPERV_SYNIC2: |
d3457c87 | 2703 | case KVM_CAP_HYPERV_VP_INDEX: |
ab9f4ecb | 2704 | case KVM_CAP_PCI_SEGMENT: |
a1efbe77 | 2705 | case KVM_CAP_DEBUGREGS: |
d2be1651 | 2706 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2d5b5a66 | 2707 | case KVM_CAP_XSAVE: |
344d9588 | 2708 | case KVM_CAP_ASYNC_PF: |
92a1f12d | 2709 | case KVM_CAP_GET_TSC_KHZ: |
1c0b28c2 | 2710 | case KVM_CAP_KVMCLOCK_CTRL: |
4d8b81ab | 2711 | case KVM_CAP_READONLY_MEM: |
5f66b620 | 2712 | case KVM_CAP_HYPERV_TIME: |
100943c5 | 2713 | case KVM_CAP_IOAPIC_POLARITY_IGNORED: |
defcf51f | 2714 | case KVM_CAP_TSC_DEADLINE_TIMER: |
90de4a18 NA |
2715 | case KVM_CAP_ENABLE_CAP_VM: |
2716 | case KVM_CAP_DISABLE_QUIRKS: | |
d71ba788 | 2717 | case KVM_CAP_SET_BOOT_CPU_ID: |
49df6397 | 2718 | case KVM_CAP_SPLIT_IRQCHIP: |
460df4c1 | 2719 | case KVM_CAP_IMMEDIATE_EXIT: |
018d00d2 ZX |
2720 | r = 1; |
2721 | break; | |
e3fd9a93 PB |
2722 | case KVM_CAP_ADJUST_CLOCK: |
2723 | r = KVM_CLOCK_TSC_STABLE; | |
2724 | break; | |
668fffa3 MT |
2725 | case KVM_CAP_X86_GUEST_MWAIT: |
2726 | r = kvm_mwait_in_guest(); | |
2727 | break; | |
6d396b55 PB |
2728 | case KVM_CAP_X86_SMM: |
2729 | /* SMBASE is usually relocated above 1M on modern chipsets, | |
2730 | * and SMM handlers might indeed rely on 4G segment limits, | |
2731 | * so do not report SMM to be available if real mode is | |
2732 | * emulated via vm86 mode. Still, do not go to great lengths | |
2733 | * to avoid userspace's usage of the feature, because it is a | |
2734 | * fringe case that is not enabled except via specific settings | |
2735 | * of the module parameters. | |
2736 | */ | |
2737 | r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); | |
2738 | break; | |
774ead3a AK |
2739 | case KVM_CAP_VAPIC: |
2740 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | |
2741 | break; | |
f725230a | 2742 | case KVM_CAP_NR_VCPUS: |
8c3ba334 SL |
2743 | r = KVM_SOFT_MAX_VCPUS; |
2744 | break; | |
2745 | case KVM_CAP_MAX_VCPUS: | |
f725230a AK |
2746 | r = KVM_MAX_VCPUS; |
2747 | break; | |
a988b910 | 2748 | case KVM_CAP_NR_MEMSLOTS: |
bbacc0c1 | 2749 | r = KVM_USER_MEM_SLOTS; |
a988b910 | 2750 | break; |
a68a6a72 MT |
2751 | case KVM_CAP_PV_MMU: /* obsolete */ |
2752 | r = 0; | |
2f333bcb | 2753 | break; |
890ca9ae YH |
2754 | case KVM_CAP_MCE: |
2755 | r = KVM_MAX_MCE_BANKS; | |
2756 | break; | |
2d5b5a66 | 2757 | case KVM_CAP_XCRS: |
d366bf7e | 2758 | r = boot_cpu_has(X86_FEATURE_XSAVE); |
2d5b5a66 | 2759 | break; |
92a1f12d JR |
2760 | case KVM_CAP_TSC_CONTROL: |
2761 | r = kvm_has_tsc_control; | |
2762 | break; | |
37131313 RK |
2763 | case KVM_CAP_X2APIC_API: |
2764 | r = KVM_X2APIC_API_VALID_FLAGS; | |
2765 | break; | |
018d00d2 ZX |
2766 | default: |
2767 | r = 0; | |
2768 | break; | |
2769 | } | |
2770 | return r; | |
2771 | ||
2772 | } | |
2773 | ||
043405e1 CO |
2774 | long kvm_arch_dev_ioctl(struct file *filp, |
2775 | unsigned int ioctl, unsigned long arg) | |
2776 | { | |
2777 | void __user *argp = (void __user *)arg; | |
2778 | long r; | |
2779 | ||
2780 | switch (ioctl) { | |
2781 | case KVM_GET_MSR_INDEX_LIST: { | |
2782 | struct kvm_msr_list __user *user_msr_list = argp; | |
2783 | struct kvm_msr_list msr_list; | |
2784 | unsigned n; | |
2785 | ||
2786 | r = -EFAULT; | |
2787 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | |
2788 | goto out; | |
2789 | n = msr_list.nmsrs; | |
62ef68bb | 2790 | msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; |
043405e1 CO |
2791 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
2792 | goto out; | |
2793 | r = -E2BIG; | |
e125e7b6 | 2794 | if (n < msr_list.nmsrs) |
043405e1 CO |
2795 | goto out; |
2796 | r = -EFAULT; | |
2797 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | |
2798 | num_msrs_to_save * sizeof(u32))) | |
2799 | goto out; | |
e125e7b6 | 2800 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
043405e1 | 2801 | &emulated_msrs, |
62ef68bb | 2802 | num_emulated_msrs * sizeof(u32))) |
043405e1 CO |
2803 | goto out; |
2804 | r = 0; | |
2805 | break; | |
2806 | } | |
9c15bb1d BP |
2807 | case KVM_GET_SUPPORTED_CPUID: |
2808 | case KVM_GET_EMULATED_CPUID: { | |
674eea0f AK |
2809 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
2810 | struct kvm_cpuid2 cpuid; | |
2811 | ||
2812 | r = -EFAULT; | |
2813 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
2814 | goto out; | |
9c15bb1d BP |
2815 | |
2816 | r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, | |
2817 | ioctl); | |
674eea0f AK |
2818 | if (r) |
2819 | goto out; | |
2820 | ||
2821 | r = -EFAULT; | |
2822 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
2823 | goto out; | |
2824 | r = 0; | |
2825 | break; | |
2826 | } | |
890ca9ae | 2827 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
890ca9ae | 2828 | r = -EFAULT; |
c45dcc71 AR |
2829 | if (copy_to_user(argp, &kvm_mce_cap_supported, |
2830 | sizeof(kvm_mce_cap_supported))) | |
890ca9ae YH |
2831 | goto out; |
2832 | r = 0; | |
2833 | break; | |
2834 | } | |
043405e1 CO |
2835 | default: |
2836 | r = -EINVAL; | |
2837 | } | |
2838 | out: | |
2839 | return r; | |
2840 | } | |
2841 | ||
f5f48ee1 SY |
2842 | static void wbinvd_ipi(void *garbage) |
2843 | { | |
2844 | wbinvd(); | |
2845 | } | |
2846 | ||
2847 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
2848 | { | |
e0f0bbc5 | 2849 | return kvm_arch_has_noncoherent_dma(vcpu->kvm); |
f5f48ee1 SY |
2850 | } |
2851 | ||
313a3dc7 CO |
2852 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
2853 | { | |
f5f48ee1 SY |
2854 | /* Address WBINVD may be executed by guest */ |
2855 | if (need_emulate_wbinvd(vcpu)) { | |
2856 | if (kvm_x86_ops->has_wbinvd_exit()) | |
2857 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
2858 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | |
2859 | smp_call_function_single(vcpu->cpu, | |
2860 | wbinvd_ipi, NULL, 1); | |
2861 | } | |
2862 | ||
313a3dc7 | 2863 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
8f6055cb | 2864 | |
0dd6a6ed ZA |
2865 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
2866 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | |
2867 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | |
2868 | vcpu->arch.tsc_offset_adjustment = 0; | |
105b21bb | 2869 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed | 2870 | } |
8f6055cb | 2871 | |
48434c20 | 2872 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
6f526ec5 | 2873 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
4ea1636b | 2874 | rdtsc() - vcpu->arch.last_host_tsc; |
e48672fa ZA |
2875 | if (tsc_delta < 0) |
2876 | mark_tsc_unstable("KVM discovered backwards TSC"); | |
ce7a058a | 2877 | |
c285545f | 2878 | if (check_tsc_unstable()) { |
07c1419a | 2879 | u64 offset = kvm_compute_tsc_offset(vcpu, |
b183aa58 | 2880 | vcpu->arch.last_guest_tsc); |
a545ab6a | 2881 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
c285545f | 2882 | vcpu->arch.tsc_catchup = 1; |
c285545f | 2883 | } |
a749e247 PB |
2884 | |
2885 | if (kvm_lapic_hv_timer_in_use(vcpu)) | |
2886 | kvm_lapic_restart_hv_timer(vcpu); | |
2887 | ||
d98d07ca MT |
2888 | /* |
2889 | * On a host with synchronized TSC, there is no need to update | |
2890 | * kvmclock on vcpu->cpu migration | |
2891 | */ | |
2892 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | |
0061d53d | 2893 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
c285545f | 2894 | if (vcpu->cpu != cpu) |
1bd2009e | 2895 | kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); |
e48672fa | 2896 | vcpu->cpu = cpu; |
6b7d7e76 | 2897 | } |
c9aaa895 | 2898 | |
c9aaa895 | 2899 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
313a3dc7 CO |
2900 | } |
2901 | ||
0b9f6c46 PX |
2902 | static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) |
2903 | { | |
2904 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
2905 | return; | |
2906 | ||
2907 | vcpu->arch.st.steal.preempted = 1; | |
2908 | ||
4e335d9e | 2909 | kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, |
0b9f6c46 PX |
2910 | &vcpu->arch.st.steal.preempted, |
2911 | offsetof(struct kvm_steal_time, preempted), | |
2912 | sizeof(vcpu->arch.st.steal.preempted)); | |
2913 | } | |
2914 | ||
313a3dc7 CO |
2915 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
2916 | { | |
cc0d907c | 2917 | int idx; |
de63ad4c LM |
2918 | |
2919 | if (vcpu->preempted) | |
2920 | vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); | |
2921 | ||
931f261b AA |
2922 | /* |
2923 | * Disable page faults because we're in atomic context here. | |
2924 | * kvm_write_guest_offset_cached() would call might_fault() | |
2925 | * that relies on pagefault_disable() to tell if there's a | |
2926 | * bug. NOTE: the write to guest memory may not go through if | |
2927 | * during postcopy live migration or if there's heavy guest | |
2928 | * paging. | |
2929 | */ | |
2930 | pagefault_disable(); | |
cc0d907c AA |
2931 | /* |
2932 | * kvm_memslots() will be called by | |
2933 | * kvm_write_guest_offset_cached() so take the srcu lock. | |
2934 | */ | |
2935 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
0b9f6c46 | 2936 | kvm_steal_time_set_preempted(vcpu); |
cc0d907c | 2937 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
931f261b | 2938 | pagefault_enable(); |
02daab21 | 2939 | kvm_x86_ops->vcpu_put(vcpu); |
4ea1636b | 2940 | vcpu->arch.last_host_tsc = rdtsc(); |
313a3dc7 CO |
2941 | } |
2942 | ||
313a3dc7 CO |
2943 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
2944 | struct kvm_lapic_state *s) | |
2945 | { | |
76dfafd5 | 2946 | if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) |
d62caabb AS |
2947 | kvm_x86_ops->sync_pir_to_irr(vcpu); |
2948 | ||
a92e2543 | 2949 | return kvm_apic_get_state(vcpu, s); |
313a3dc7 CO |
2950 | } |
2951 | ||
2952 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | |
2953 | struct kvm_lapic_state *s) | |
2954 | { | |
a92e2543 RK |
2955 | int r; |
2956 | ||
2957 | r = kvm_apic_set_state(vcpu, s); | |
2958 | if (r) | |
2959 | return r; | |
cb142eb7 | 2960 | update_cr8_intercept(vcpu); |
313a3dc7 CO |
2961 | |
2962 | return 0; | |
2963 | } | |
2964 | ||
127a457a MG |
2965 | static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) |
2966 | { | |
2967 | return (!lapic_in_kernel(vcpu) || | |
2968 | kvm_apic_accept_pic_intr(vcpu)); | |
2969 | } | |
2970 | ||
782d422b MG |
2971 | /* |
2972 | * if userspace requested an interrupt window, check that the | |
2973 | * interrupt window is open. | |
2974 | * | |
2975 | * No need to exit to userspace if we already have an interrupt queued. | |
2976 | */ | |
2977 | static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) | |
2978 | { | |
2979 | return kvm_arch_interrupt_allowed(vcpu) && | |
2980 | !kvm_cpu_has_interrupt(vcpu) && | |
2981 | !kvm_event_needs_reinjection(vcpu) && | |
2982 | kvm_cpu_accept_dm_intr(vcpu); | |
2983 | } | |
2984 | ||
f77bc6a4 ZX |
2985 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
2986 | struct kvm_interrupt *irq) | |
2987 | { | |
02cdb50f | 2988 | if (irq->irq >= KVM_NR_INTERRUPTS) |
f77bc6a4 | 2989 | return -EINVAL; |
1c1a9ce9 SR |
2990 | |
2991 | if (!irqchip_in_kernel(vcpu->kvm)) { | |
2992 | kvm_queue_interrupt(vcpu, irq->irq, false); | |
2993 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
2994 | return 0; | |
2995 | } | |
2996 | ||
2997 | /* | |
2998 | * With in-kernel LAPIC, we only use this to inject EXTINT, so | |
2999 | * fail for in-kernel 8259. | |
3000 | */ | |
3001 | if (pic_in_kernel(vcpu->kvm)) | |
f77bc6a4 | 3002 | return -ENXIO; |
f77bc6a4 | 3003 | |
1c1a9ce9 SR |
3004 | if (vcpu->arch.pending_external_vector != -1) |
3005 | return -EEXIST; | |
f77bc6a4 | 3006 | |
1c1a9ce9 | 3007 | vcpu->arch.pending_external_vector = irq->irq; |
934bf653 | 3008 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
f77bc6a4 ZX |
3009 | return 0; |
3010 | } | |
3011 | ||
c4abb7c9 JK |
3012 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
3013 | { | |
c4abb7c9 | 3014 | kvm_inject_nmi(vcpu); |
c4abb7c9 JK |
3015 | |
3016 | return 0; | |
3017 | } | |
3018 | ||
f077825a PB |
3019 | static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) |
3020 | { | |
64d60670 PB |
3021 | kvm_make_request(KVM_REQ_SMI, vcpu); |
3022 | ||
f077825a PB |
3023 | return 0; |
3024 | } | |
3025 | ||
b209749f AK |
3026 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
3027 | struct kvm_tpr_access_ctl *tac) | |
3028 | { | |
3029 | if (tac->flags) | |
3030 | return -EINVAL; | |
3031 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | |
3032 | return 0; | |
3033 | } | |
3034 | ||
890ca9ae YH |
3035 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
3036 | u64 mcg_cap) | |
3037 | { | |
3038 | int r; | |
3039 | unsigned bank_num = mcg_cap & 0xff, bank; | |
3040 | ||
3041 | r = -EINVAL; | |
a9e38c3e | 3042 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
890ca9ae | 3043 | goto out; |
c45dcc71 | 3044 | if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) |
890ca9ae YH |
3045 | goto out; |
3046 | r = 0; | |
3047 | vcpu->arch.mcg_cap = mcg_cap; | |
3048 | /* Init IA32_MCG_CTL to all 1s */ | |
3049 | if (mcg_cap & MCG_CTL_P) | |
3050 | vcpu->arch.mcg_ctl = ~(u64)0; | |
3051 | /* Init IA32_MCi_CTL to all 1s */ | |
3052 | for (bank = 0; bank < bank_num; bank++) | |
3053 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; | |
c45dcc71 AR |
3054 | |
3055 | if (kvm_x86_ops->setup_mce) | |
3056 | kvm_x86_ops->setup_mce(vcpu); | |
890ca9ae YH |
3057 | out: |
3058 | return r; | |
3059 | } | |
3060 | ||
3061 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | |
3062 | struct kvm_x86_mce *mce) | |
3063 | { | |
3064 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
3065 | unsigned bank_num = mcg_cap & 0xff; | |
3066 | u64 *banks = vcpu->arch.mce_banks; | |
3067 | ||
3068 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | |
3069 | return -EINVAL; | |
3070 | /* | |
3071 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | |
3072 | * reporting is disabled | |
3073 | */ | |
3074 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | |
3075 | vcpu->arch.mcg_ctl != ~(u64)0) | |
3076 | return 0; | |
3077 | banks += 4 * mce->bank; | |
3078 | /* | |
3079 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | |
3080 | * reporting is disabled for the bank | |
3081 | */ | |
3082 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | |
3083 | return 0; | |
3084 | if (mce->status & MCI_STATUS_UC) { | |
3085 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | |
fc78f519 | 3086 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
a8eeb04a | 3087 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
890ca9ae YH |
3088 | return 0; |
3089 | } | |
3090 | if (banks[1] & MCI_STATUS_VAL) | |
3091 | mce->status |= MCI_STATUS_OVER; | |
3092 | banks[2] = mce->addr; | |
3093 | banks[3] = mce->misc; | |
3094 | vcpu->arch.mcg_status = mce->mcg_status; | |
3095 | banks[1] = mce->status; | |
3096 | kvm_queue_exception(vcpu, MC_VECTOR); | |
3097 | } else if (!(banks[1] & MCI_STATUS_VAL) | |
3098 | || !(banks[1] & MCI_STATUS_UC)) { | |
3099 | if (banks[1] & MCI_STATUS_VAL) | |
3100 | mce->status |= MCI_STATUS_OVER; | |
3101 | banks[2] = mce->addr; | |
3102 | banks[3] = mce->misc; | |
3103 | banks[1] = mce->status; | |
3104 | } else | |
3105 | banks[1] |= MCI_STATUS_OVER; | |
3106 | return 0; | |
3107 | } | |
3108 | ||
3cfc3092 JK |
3109 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
3110 | struct kvm_vcpu_events *events) | |
3111 | { | |
7460fb4a | 3112 | process_nmi(vcpu); |
664f8e26 WL |
3113 | /* |
3114 | * FIXME: pass injected and pending separately. This is only | |
3115 | * needed for nested virtualization, whose state cannot be | |
3116 | * migrated yet. For now we can combine them. | |
3117 | */ | |
03b82a30 | 3118 | events->exception.injected = |
664f8e26 WL |
3119 | (vcpu->arch.exception.pending || |
3120 | vcpu->arch.exception.injected) && | |
03b82a30 | 3121 | !kvm_exception_is_soft(vcpu->arch.exception.nr); |
3cfc3092 JK |
3122 | events->exception.nr = vcpu->arch.exception.nr; |
3123 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; | |
97e69aa6 | 3124 | events->exception.pad = 0; |
3cfc3092 JK |
3125 | events->exception.error_code = vcpu->arch.exception.error_code; |
3126 | ||
03b82a30 JK |
3127 | events->interrupt.injected = |
3128 | vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; | |
3cfc3092 | 3129 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
03b82a30 | 3130 | events->interrupt.soft = 0; |
37ccdcbe | 3131 | events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
3cfc3092 JK |
3132 | |
3133 | events->nmi.injected = vcpu->arch.nmi_injected; | |
7460fb4a | 3134 | events->nmi.pending = vcpu->arch.nmi_pending != 0; |
3cfc3092 | 3135 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
97e69aa6 | 3136 | events->nmi.pad = 0; |
3cfc3092 | 3137 | |
66450a21 | 3138 | events->sipi_vector = 0; /* never valid when reporting to user space */ |
3cfc3092 | 3139 | |
f077825a PB |
3140 | events->smi.smm = is_smm(vcpu); |
3141 | events->smi.pending = vcpu->arch.smi_pending; | |
3142 | events->smi.smm_inside_nmi = | |
3143 | !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); | |
3144 | events->smi.latched_init = kvm_lapic_latched_init(vcpu); | |
3145 | ||
dab4b911 | 3146 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
f077825a PB |
3147 | | KVM_VCPUEVENT_VALID_SHADOW |
3148 | | KVM_VCPUEVENT_VALID_SMM); | |
97e69aa6 | 3149 | memset(&events->reserved, 0, sizeof(events->reserved)); |
3cfc3092 JK |
3150 | } |
3151 | ||
6ef4e07e XG |
3152 | static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); |
3153 | ||
3cfc3092 JK |
3154 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
3155 | struct kvm_vcpu_events *events) | |
3156 | { | |
dab4b911 | 3157 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 | 3158 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
f077825a PB |
3159 | | KVM_VCPUEVENT_VALID_SHADOW |
3160 | | KVM_VCPUEVENT_VALID_SMM)) | |
3cfc3092 JK |
3161 | return -EINVAL; |
3162 | ||
78e546c8 | 3163 | if (events->exception.injected && |
28d06353 JM |
3164 | (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || |
3165 | is_guest_mode(vcpu))) | |
78e546c8 PB |
3166 | return -EINVAL; |
3167 | ||
28bf2888 DH |
3168 | /* INITs are latched while in SMM */ |
3169 | if (events->flags & KVM_VCPUEVENT_VALID_SMM && | |
3170 | (events->smi.smm || events->smi.pending) && | |
3171 | vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) | |
3172 | return -EINVAL; | |
3173 | ||
7460fb4a | 3174 | process_nmi(vcpu); |
664f8e26 | 3175 | vcpu->arch.exception.injected = false; |
3cfc3092 JK |
3176 | vcpu->arch.exception.pending = events->exception.injected; |
3177 | vcpu->arch.exception.nr = events->exception.nr; | |
3178 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; | |
3179 | vcpu->arch.exception.error_code = events->exception.error_code; | |
3180 | ||
3181 | vcpu->arch.interrupt.pending = events->interrupt.injected; | |
3182 | vcpu->arch.interrupt.nr = events->interrupt.nr; | |
3183 | vcpu->arch.interrupt.soft = events->interrupt.soft; | |
48005f64 JK |
3184 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
3185 | kvm_x86_ops->set_interrupt_shadow(vcpu, | |
3186 | events->interrupt.shadow); | |
3cfc3092 JK |
3187 | |
3188 | vcpu->arch.nmi_injected = events->nmi.injected; | |
dab4b911 JK |
3189 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
3190 | vcpu->arch.nmi_pending = events->nmi.pending; | |
3cfc3092 JK |
3191 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
3192 | ||
66450a21 | 3193 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
bce87cce | 3194 | lapic_in_kernel(vcpu)) |
66450a21 | 3195 | vcpu->arch.apic->sipi_vector = events->sipi_vector; |
3cfc3092 | 3196 | |
f077825a | 3197 | if (events->flags & KVM_VCPUEVENT_VALID_SMM) { |
6ef4e07e | 3198 | u32 hflags = vcpu->arch.hflags; |
f077825a | 3199 | if (events->smi.smm) |
6ef4e07e | 3200 | hflags |= HF_SMM_MASK; |
f077825a | 3201 | else |
6ef4e07e XG |
3202 | hflags &= ~HF_SMM_MASK; |
3203 | kvm_set_hflags(vcpu, hflags); | |
3204 | ||
f077825a | 3205 | vcpu->arch.smi_pending = events->smi.pending; |
f4ef1910 WL |
3206 | |
3207 | if (events->smi.smm) { | |
3208 | if (events->smi.smm_inside_nmi) | |
3209 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
f077825a | 3210 | else |
f4ef1910 WL |
3211 | vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; |
3212 | if (lapic_in_kernel(vcpu)) { | |
3213 | if (events->smi.latched_init) | |
3214 | set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
3215 | else | |
3216 | clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
3217 | } | |
f077825a PB |
3218 | } |
3219 | } | |
3220 | ||
3842d135 AK |
3221 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
3222 | ||
3cfc3092 JK |
3223 | return 0; |
3224 | } | |
3225 | ||
a1efbe77 JK |
3226 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
3227 | struct kvm_debugregs *dbgregs) | |
3228 | { | |
73aaf249 JK |
3229 | unsigned long val; |
3230 | ||
a1efbe77 | 3231 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
16f8a6f9 | 3232 | kvm_get_dr(vcpu, 6, &val); |
73aaf249 | 3233 | dbgregs->dr6 = val; |
a1efbe77 JK |
3234 | dbgregs->dr7 = vcpu->arch.dr7; |
3235 | dbgregs->flags = 0; | |
97e69aa6 | 3236 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
a1efbe77 JK |
3237 | } |
3238 | ||
3239 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | |
3240 | struct kvm_debugregs *dbgregs) | |
3241 | { | |
3242 | if (dbgregs->flags) | |
3243 | return -EINVAL; | |
3244 | ||
d14bdb55 PB |
3245 | if (dbgregs->dr6 & ~0xffffffffull) |
3246 | return -EINVAL; | |
3247 | if (dbgregs->dr7 & ~0xffffffffull) | |
3248 | return -EINVAL; | |
3249 | ||
a1efbe77 | 3250 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
ae561ede | 3251 | kvm_update_dr0123(vcpu); |
a1efbe77 | 3252 | vcpu->arch.dr6 = dbgregs->dr6; |
73aaf249 | 3253 | kvm_update_dr6(vcpu); |
a1efbe77 | 3254 | vcpu->arch.dr7 = dbgregs->dr7; |
9926c9fd | 3255 | kvm_update_dr7(vcpu); |
a1efbe77 | 3256 | |
a1efbe77 JK |
3257 | return 0; |
3258 | } | |
3259 | ||
df1daba7 PB |
3260 | #define XSTATE_COMPACTION_ENABLED (1ULL << 63) |
3261 | ||
3262 | static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) | |
3263 | { | |
c47ada30 | 3264 | struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
400e4b20 | 3265 | u64 xstate_bv = xsave->header.xfeatures; |
df1daba7 PB |
3266 | u64 valid; |
3267 | ||
3268 | /* | |
3269 | * Copy legacy XSAVE area, to avoid complications with CPUID | |
3270 | * leaves 0 and 1 in the loop below. | |
3271 | */ | |
3272 | memcpy(dest, xsave, XSAVE_HDR_OFFSET); | |
3273 | ||
3274 | /* Set XSTATE_BV */ | |
00c87e9a | 3275 | xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3276 | *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; |
3277 | ||
3278 | /* | |
3279 | * Copy each region from the possibly compacted offset to the | |
3280 | * non-compacted offset. | |
3281 | */ | |
d91cab78 | 3282 | valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3283 | while (valid) { |
3284 | u64 feature = valid & -valid; | |
3285 | int index = fls64(feature) - 1; | |
3286 | void *src = get_xsave_addr(xsave, feature); | |
3287 | ||
3288 | if (src) { | |
3289 | u32 size, offset, ecx, edx; | |
3290 | cpuid_count(XSTATE_CPUID, index, | |
3291 | &size, &offset, &ecx, &edx); | |
38cfd5e3 PB |
3292 | if (feature == XFEATURE_MASK_PKRU) |
3293 | memcpy(dest + offset, &vcpu->arch.pkru, | |
3294 | sizeof(vcpu->arch.pkru)); | |
3295 | else | |
3296 | memcpy(dest + offset, src, size); | |
3297 | ||
df1daba7 PB |
3298 | } |
3299 | ||
3300 | valid -= feature; | |
3301 | } | |
3302 | } | |
3303 | ||
3304 | static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) | |
3305 | { | |
c47ada30 | 3306 | struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
df1daba7 PB |
3307 | u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); |
3308 | u64 valid; | |
3309 | ||
3310 | /* | |
3311 | * Copy legacy XSAVE area, to avoid complications with CPUID | |
3312 | * leaves 0 and 1 in the loop below. | |
3313 | */ | |
3314 | memcpy(xsave, src, XSAVE_HDR_OFFSET); | |
3315 | ||
3316 | /* Set XSTATE_BV and possibly XCOMP_BV. */ | |
400e4b20 | 3317 | xsave->header.xfeatures = xstate_bv; |
782511b0 | 3318 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
3a54450b | 3319 | xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; |
df1daba7 PB |
3320 | |
3321 | /* | |
3322 | * Copy each region from the non-compacted offset to the | |
3323 | * possibly compacted offset. | |
3324 | */ | |
d91cab78 | 3325 | valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3326 | while (valid) { |
3327 | u64 feature = valid & -valid; | |
3328 | int index = fls64(feature) - 1; | |
3329 | void *dest = get_xsave_addr(xsave, feature); | |
3330 | ||
3331 | if (dest) { | |
3332 | u32 size, offset, ecx, edx; | |
3333 | cpuid_count(XSTATE_CPUID, index, | |
3334 | &size, &offset, &ecx, &edx); | |
38cfd5e3 PB |
3335 | if (feature == XFEATURE_MASK_PKRU) |
3336 | memcpy(&vcpu->arch.pkru, src + offset, | |
3337 | sizeof(vcpu->arch.pkru)); | |
3338 | else | |
3339 | memcpy(dest, src + offset, size); | |
ee4100da | 3340 | } |
df1daba7 PB |
3341 | |
3342 | valid -= feature; | |
3343 | } | |
3344 | } | |
3345 | ||
2d5b5a66 SY |
3346 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
3347 | struct kvm_xsave *guest_xsave) | |
3348 | { | |
d366bf7e | 3349 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
df1daba7 PB |
3350 | memset(guest_xsave, 0, sizeof(struct kvm_xsave)); |
3351 | fill_xsave((u8 *) guest_xsave->region, vcpu); | |
4344ee98 | 3352 | } else { |
2d5b5a66 | 3353 | memcpy(guest_xsave->region, |
7366ed77 | 3354 | &vcpu->arch.guest_fpu.state.fxsave, |
c47ada30 | 3355 | sizeof(struct fxregs_state)); |
2d5b5a66 | 3356 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = |
d91cab78 | 3357 | XFEATURE_MASK_FPSSE; |
2d5b5a66 SY |
3358 | } |
3359 | } | |
3360 | ||
a575813b WL |
3361 | #define XSAVE_MXCSR_OFFSET 24 |
3362 | ||
2d5b5a66 SY |
3363 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
3364 | struct kvm_xsave *guest_xsave) | |
3365 | { | |
3366 | u64 xstate_bv = | |
3367 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | |
a575813b | 3368 | u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; |
2d5b5a66 | 3369 | |
d366bf7e | 3370 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
d7876f1b PB |
3371 | /* |
3372 | * Here we allow setting states that are not present in | |
3373 | * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility | |
3374 | * with old userspace. | |
3375 | */ | |
a575813b WL |
3376 | if (xstate_bv & ~kvm_supported_xcr0() || |
3377 | mxcsr & ~mxcsr_feature_mask) | |
d7876f1b | 3378 | return -EINVAL; |
df1daba7 | 3379 | load_xsave(vcpu, (u8 *)guest_xsave->region); |
d7876f1b | 3380 | } else { |
a575813b WL |
3381 | if (xstate_bv & ~XFEATURE_MASK_FPSSE || |
3382 | mxcsr & ~mxcsr_feature_mask) | |
2d5b5a66 | 3383 | return -EINVAL; |
7366ed77 | 3384 | memcpy(&vcpu->arch.guest_fpu.state.fxsave, |
c47ada30 | 3385 | guest_xsave->region, sizeof(struct fxregs_state)); |
2d5b5a66 SY |
3386 | } |
3387 | return 0; | |
3388 | } | |
3389 | ||
3390 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | |
3391 | struct kvm_xcrs *guest_xcrs) | |
3392 | { | |
d366bf7e | 3393 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) { |
2d5b5a66 SY |
3394 | guest_xcrs->nr_xcrs = 0; |
3395 | return; | |
3396 | } | |
3397 | ||
3398 | guest_xcrs->nr_xcrs = 1; | |
3399 | guest_xcrs->flags = 0; | |
3400 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | |
3401 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | |
3402 | } | |
3403 | ||
3404 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | |
3405 | struct kvm_xcrs *guest_xcrs) | |
3406 | { | |
3407 | int i, r = 0; | |
3408 | ||
d366bf7e | 3409 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) |
2d5b5a66 SY |
3410 | return -EINVAL; |
3411 | ||
3412 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | |
3413 | return -EINVAL; | |
3414 | ||
3415 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | |
3416 | /* Only support XCR0 currently */ | |
c67a04cb | 3417 | if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { |
2d5b5a66 | 3418 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
c67a04cb | 3419 | guest_xcrs->xcrs[i].value); |
2d5b5a66 SY |
3420 | break; |
3421 | } | |
3422 | if (r) | |
3423 | r = -EINVAL; | |
3424 | return r; | |
3425 | } | |
3426 | ||
1c0b28c2 EM |
3427 | /* |
3428 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | |
3429 | * stopped by the hypervisor. This function will be called from the host only. | |
3430 | * EINVAL is returned when the host attempts to set the flag for a guest that | |
3431 | * does not support pv clocks. | |
3432 | */ | |
3433 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | |
3434 | { | |
0b79459b | 3435 | if (!vcpu->arch.pv_time_enabled) |
1c0b28c2 | 3436 | return -EINVAL; |
51d59c6b | 3437 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
1c0b28c2 EM |
3438 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
3439 | return 0; | |
3440 | } | |
3441 | ||
5c919412 AS |
3442 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
3443 | struct kvm_enable_cap *cap) | |
3444 | { | |
3445 | if (cap->flags) | |
3446 | return -EINVAL; | |
3447 | ||
3448 | switch (cap->cap) { | |
efc479e6 RK |
3449 | case KVM_CAP_HYPERV_SYNIC2: |
3450 | if (cap->args[0]) | |
3451 | return -EINVAL; | |
5c919412 | 3452 | case KVM_CAP_HYPERV_SYNIC: |
546d87e5 WL |
3453 | if (!irqchip_in_kernel(vcpu->kvm)) |
3454 | return -EINVAL; | |
efc479e6 RK |
3455 | return kvm_hv_activate_synic(vcpu, cap->cap == |
3456 | KVM_CAP_HYPERV_SYNIC2); | |
5c919412 AS |
3457 | default: |
3458 | return -EINVAL; | |
3459 | } | |
3460 | } | |
3461 | ||
313a3dc7 CO |
3462 | long kvm_arch_vcpu_ioctl(struct file *filp, |
3463 | unsigned int ioctl, unsigned long arg) | |
3464 | { | |
3465 | struct kvm_vcpu *vcpu = filp->private_data; | |
3466 | void __user *argp = (void __user *)arg; | |
3467 | int r; | |
d1ac91d8 AK |
3468 | union { |
3469 | struct kvm_lapic_state *lapic; | |
3470 | struct kvm_xsave *xsave; | |
3471 | struct kvm_xcrs *xcrs; | |
3472 | void *buffer; | |
3473 | } u; | |
3474 | ||
3475 | u.buffer = NULL; | |
313a3dc7 CO |
3476 | switch (ioctl) { |
3477 | case KVM_GET_LAPIC: { | |
2204ae3c | 3478 | r = -EINVAL; |
bce87cce | 3479 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 3480 | goto out; |
d1ac91d8 | 3481 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
313a3dc7 | 3482 | |
b772ff36 | 3483 | r = -ENOMEM; |
d1ac91d8 | 3484 | if (!u.lapic) |
b772ff36 | 3485 | goto out; |
d1ac91d8 | 3486 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3487 | if (r) |
3488 | goto out; | |
3489 | r = -EFAULT; | |
d1ac91d8 | 3490 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
313a3dc7 CO |
3491 | goto out; |
3492 | r = 0; | |
3493 | break; | |
3494 | } | |
3495 | case KVM_SET_LAPIC: { | |
2204ae3c | 3496 | r = -EINVAL; |
bce87cce | 3497 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 3498 | goto out; |
ff5c2c03 | 3499 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
18595411 GC |
3500 | if (IS_ERR(u.lapic)) |
3501 | return PTR_ERR(u.lapic); | |
ff5c2c03 | 3502 | |
d1ac91d8 | 3503 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3504 | break; |
3505 | } | |
f77bc6a4 ZX |
3506 | case KVM_INTERRUPT: { |
3507 | struct kvm_interrupt irq; | |
3508 | ||
3509 | r = -EFAULT; | |
3510 | if (copy_from_user(&irq, argp, sizeof irq)) | |
3511 | goto out; | |
3512 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | |
f77bc6a4 ZX |
3513 | break; |
3514 | } | |
c4abb7c9 JK |
3515 | case KVM_NMI: { |
3516 | r = kvm_vcpu_ioctl_nmi(vcpu); | |
c4abb7c9 JK |
3517 | break; |
3518 | } | |
f077825a PB |
3519 | case KVM_SMI: { |
3520 | r = kvm_vcpu_ioctl_smi(vcpu); | |
3521 | break; | |
3522 | } | |
313a3dc7 CO |
3523 | case KVM_SET_CPUID: { |
3524 | struct kvm_cpuid __user *cpuid_arg = argp; | |
3525 | struct kvm_cpuid cpuid; | |
3526 | ||
3527 | r = -EFAULT; | |
3528 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3529 | goto out; | |
3530 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
313a3dc7 CO |
3531 | break; |
3532 | } | |
07716717 DK |
3533 | case KVM_SET_CPUID2: { |
3534 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3535 | struct kvm_cpuid2 cpuid; | |
3536 | ||
3537 | r = -EFAULT; | |
3538 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3539 | goto out; | |
3540 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | |
19355475 | 3541 | cpuid_arg->entries); |
07716717 DK |
3542 | break; |
3543 | } | |
3544 | case KVM_GET_CPUID2: { | |
3545 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3546 | struct kvm_cpuid2 cpuid; | |
3547 | ||
3548 | r = -EFAULT; | |
3549 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3550 | goto out; | |
3551 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | |
19355475 | 3552 | cpuid_arg->entries); |
07716717 DK |
3553 | if (r) |
3554 | goto out; | |
3555 | r = -EFAULT; | |
3556 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
3557 | goto out; | |
3558 | r = 0; | |
3559 | break; | |
3560 | } | |
313a3dc7 | 3561 | case KVM_GET_MSRS: |
609e36d3 | 3562 | r = msr_io(vcpu, argp, do_get_msr, 1); |
313a3dc7 CO |
3563 | break; |
3564 | case KVM_SET_MSRS: | |
3565 | r = msr_io(vcpu, argp, do_set_msr, 0); | |
3566 | break; | |
b209749f AK |
3567 | case KVM_TPR_ACCESS_REPORTING: { |
3568 | struct kvm_tpr_access_ctl tac; | |
3569 | ||
3570 | r = -EFAULT; | |
3571 | if (copy_from_user(&tac, argp, sizeof tac)) | |
3572 | goto out; | |
3573 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | |
3574 | if (r) | |
3575 | goto out; | |
3576 | r = -EFAULT; | |
3577 | if (copy_to_user(argp, &tac, sizeof tac)) | |
3578 | goto out; | |
3579 | r = 0; | |
3580 | break; | |
3581 | }; | |
b93463aa AK |
3582 | case KVM_SET_VAPIC_ADDR: { |
3583 | struct kvm_vapic_addr va; | |
7301d6ab | 3584 | int idx; |
b93463aa AK |
3585 | |
3586 | r = -EINVAL; | |
35754c98 | 3587 | if (!lapic_in_kernel(vcpu)) |
b93463aa AK |
3588 | goto out; |
3589 | r = -EFAULT; | |
3590 | if (copy_from_user(&va, argp, sizeof va)) | |
3591 | goto out; | |
7301d6ab | 3592 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
fda4e2e8 | 3593 | r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
7301d6ab | 3594 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b93463aa AK |
3595 | break; |
3596 | } | |
890ca9ae YH |
3597 | case KVM_X86_SETUP_MCE: { |
3598 | u64 mcg_cap; | |
3599 | ||
3600 | r = -EFAULT; | |
3601 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | |
3602 | goto out; | |
3603 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | |
3604 | break; | |
3605 | } | |
3606 | case KVM_X86_SET_MCE: { | |
3607 | struct kvm_x86_mce mce; | |
3608 | ||
3609 | r = -EFAULT; | |
3610 | if (copy_from_user(&mce, argp, sizeof mce)) | |
3611 | goto out; | |
3612 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | |
3613 | break; | |
3614 | } | |
3cfc3092 JK |
3615 | case KVM_GET_VCPU_EVENTS: { |
3616 | struct kvm_vcpu_events events; | |
3617 | ||
3618 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | |
3619 | ||
3620 | r = -EFAULT; | |
3621 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | |
3622 | break; | |
3623 | r = 0; | |
3624 | break; | |
3625 | } | |
3626 | case KVM_SET_VCPU_EVENTS: { | |
3627 | struct kvm_vcpu_events events; | |
3628 | ||
3629 | r = -EFAULT; | |
3630 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | |
3631 | break; | |
3632 | ||
3633 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | |
3634 | break; | |
3635 | } | |
a1efbe77 JK |
3636 | case KVM_GET_DEBUGREGS: { |
3637 | struct kvm_debugregs dbgregs; | |
3638 | ||
3639 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | |
3640 | ||
3641 | r = -EFAULT; | |
3642 | if (copy_to_user(argp, &dbgregs, | |
3643 | sizeof(struct kvm_debugregs))) | |
3644 | break; | |
3645 | r = 0; | |
3646 | break; | |
3647 | } | |
3648 | case KVM_SET_DEBUGREGS: { | |
3649 | struct kvm_debugregs dbgregs; | |
3650 | ||
3651 | r = -EFAULT; | |
3652 | if (copy_from_user(&dbgregs, argp, | |
3653 | sizeof(struct kvm_debugregs))) | |
3654 | break; | |
3655 | ||
3656 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | |
3657 | break; | |
3658 | } | |
2d5b5a66 | 3659 | case KVM_GET_XSAVE: { |
d1ac91d8 | 3660 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
2d5b5a66 | 3661 | r = -ENOMEM; |
d1ac91d8 | 3662 | if (!u.xsave) |
2d5b5a66 SY |
3663 | break; |
3664 | ||
d1ac91d8 | 3665 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3666 | |
3667 | r = -EFAULT; | |
d1ac91d8 | 3668 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
2d5b5a66 SY |
3669 | break; |
3670 | r = 0; | |
3671 | break; | |
3672 | } | |
3673 | case KVM_SET_XSAVE: { | |
ff5c2c03 | 3674 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
18595411 GC |
3675 | if (IS_ERR(u.xsave)) |
3676 | return PTR_ERR(u.xsave); | |
2d5b5a66 | 3677 | |
d1ac91d8 | 3678 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3679 | break; |
3680 | } | |
3681 | case KVM_GET_XCRS: { | |
d1ac91d8 | 3682 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
2d5b5a66 | 3683 | r = -ENOMEM; |
d1ac91d8 | 3684 | if (!u.xcrs) |
2d5b5a66 SY |
3685 | break; |
3686 | ||
d1ac91d8 | 3687 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3688 | |
3689 | r = -EFAULT; | |
d1ac91d8 | 3690 | if (copy_to_user(argp, u.xcrs, |
2d5b5a66 SY |
3691 | sizeof(struct kvm_xcrs))) |
3692 | break; | |
3693 | r = 0; | |
3694 | break; | |
3695 | } | |
3696 | case KVM_SET_XCRS: { | |
ff5c2c03 | 3697 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
18595411 GC |
3698 | if (IS_ERR(u.xcrs)) |
3699 | return PTR_ERR(u.xcrs); | |
2d5b5a66 | 3700 | |
d1ac91d8 | 3701 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3702 | break; |
3703 | } | |
92a1f12d JR |
3704 | case KVM_SET_TSC_KHZ: { |
3705 | u32 user_tsc_khz; | |
3706 | ||
3707 | r = -EINVAL; | |
92a1f12d JR |
3708 | user_tsc_khz = (u32)arg; |
3709 | ||
3710 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) | |
3711 | goto out; | |
3712 | ||
cc578287 ZA |
3713 | if (user_tsc_khz == 0) |
3714 | user_tsc_khz = tsc_khz; | |
3715 | ||
381d585c HZ |
3716 | if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) |
3717 | r = 0; | |
92a1f12d | 3718 | |
92a1f12d JR |
3719 | goto out; |
3720 | } | |
3721 | case KVM_GET_TSC_KHZ: { | |
cc578287 | 3722 | r = vcpu->arch.virtual_tsc_khz; |
92a1f12d JR |
3723 | goto out; |
3724 | } | |
1c0b28c2 EM |
3725 | case KVM_KVMCLOCK_CTRL: { |
3726 | r = kvm_set_guest_paused(vcpu); | |
3727 | goto out; | |
3728 | } | |
5c919412 AS |
3729 | case KVM_ENABLE_CAP: { |
3730 | struct kvm_enable_cap cap; | |
3731 | ||
3732 | r = -EFAULT; | |
3733 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
3734 | goto out; | |
3735 | r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); | |
3736 | break; | |
3737 | } | |
313a3dc7 CO |
3738 | default: |
3739 | r = -EINVAL; | |
3740 | } | |
3741 | out: | |
d1ac91d8 | 3742 | kfree(u.buffer); |
313a3dc7 CO |
3743 | return r; |
3744 | } | |
3745 | ||
5b1c1493 CO |
3746 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
3747 | { | |
3748 | return VM_FAULT_SIGBUS; | |
3749 | } | |
3750 | ||
1fe779f8 CO |
3751 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
3752 | { | |
3753 | int ret; | |
3754 | ||
3755 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | |
951179ce | 3756 | return -EINVAL; |
1fe779f8 CO |
3757 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
3758 | return ret; | |
3759 | } | |
3760 | ||
b927a3ce SY |
3761 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
3762 | u64 ident_addr) | |
3763 | { | |
3764 | kvm->arch.ept_identity_map_addr = ident_addr; | |
3765 | return 0; | |
3766 | } | |
3767 | ||
1fe779f8 CO |
3768 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
3769 | u32 kvm_nr_mmu_pages) | |
3770 | { | |
3771 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | |
3772 | return -EINVAL; | |
3773 | ||
79fac95e | 3774 | mutex_lock(&kvm->slots_lock); |
1fe779f8 CO |
3775 | |
3776 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | |
f05e70ac | 3777 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
1fe779f8 | 3778 | |
79fac95e | 3779 | mutex_unlock(&kvm->slots_lock); |
1fe779f8 CO |
3780 | return 0; |
3781 | } | |
3782 | ||
3783 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | |
3784 | { | |
39de71ec | 3785 | return kvm->arch.n_max_mmu_pages; |
1fe779f8 CO |
3786 | } |
3787 | ||
1fe779f8 CO |
3788 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
3789 | { | |
90bca052 | 3790 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
3791 | int r; |
3792 | ||
3793 | r = 0; | |
3794 | switch (chip->chip_id) { | |
3795 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 | 3796 | memcpy(&chip->chip.pic, &pic->pics[0], |
1fe779f8 CO |
3797 | sizeof(struct kvm_pic_state)); |
3798 | break; | |
3799 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 | 3800 | memcpy(&chip->chip.pic, &pic->pics[1], |
1fe779f8 CO |
3801 | sizeof(struct kvm_pic_state)); |
3802 | break; | |
3803 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 3804 | kvm_get_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3805 | break; |
3806 | default: | |
3807 | r = -EINVAL; | |
3808 | break; | |
3809 | } | |
3810 | return r; | |
3811 | } | |
3812 | ||
3813 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |
3814 | { | |
90bca052 | 3815 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
3816 | int r; |
3817 | ||
3818 | r = 0; | |
3819 | switch (chip->chip_id) { | |
3820 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 DH |
3821 | spin_lock(&pic->lock); |
3822 | memcpy(&pic->pics[0], &chip->chip.pic, | |
1fe779f8 | 3823 | sizeof(struct kvm_pic_state)); |
90bca052 | 3824 | spin_unlock(&pic->lock); |
1fe779f8 CO |
3825 | break; |
3826 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 DH |
3827 | spin_lock(&pic->lock); |
3828 | memcpy(&pic->pics[1], &chip->chip.pic, | |
1fe779f8 | 3829 | sizeof(struct kvm_pic_state)); |
90bca052 | 3830 | spin_unlock(&pic->lock); |
1fe779f8 CO |
3831 | break; |
3832 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 3833 | kvm_set_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3834 | break; |
3835 | default: | |
3836 | r = -EINVAL; | |
3837 | break; | |
3838 | } | |
90bca052 | 3839 | kvm_pic_update_irq(pic); |
1fe779f8 CO |
3840 | return r; |
3841 | } | |
3842 | ||
e0f63cb9 SY |
3843 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
3844 | { | |
34f3941c RK |
3845 | struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; |
3846 | ||
3847 | BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); | |
3848 | ||
3849 | mutex_lock(&kps->lock); | |
3850 | memcpy(ps, &kps->channels, sizeof(*ps)); | |
3851 | mutex_unlock(&kps->lock); | |
2da29bcc | 3852 | return 0; |
e0f63cb9 SY |
3853 | } |
3854 | ||
3855 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | |
3856 | { | |
0185604c | 3857 | int i; |
09edea72 RK |
3858 | struct kvm_pit *pit = kvm->arch.vpit; |
3859 | ||
3860 | mutex_lock(&pit->pit_state.lock); | |
34f3941c | 3861 | memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); |
0185604c | 3862 | for (i = 0; i < 3; i++) |
09edea72 RK |
3863 | kvm_pit_load_count(pit, i, ps->channels[i].count, 0); |
3864 | mutex_unlock(&pit->pit_state.lock); | |
2da29bcc | 3865 | return 0; |
e9f42757 BK |
3866 | } |
3867 | ||
3868 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3869 | { | |
e9f42757 BK |
3870 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3871 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | |
3872 | sizeof(ps->channels)); | |
3873 | ps->flags = kvm->arch.vpit->pit_state.flags; | |
3874 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
97e69aa6 | 3875 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
2da29bcc | 3876 | return 0; |
e9f42757 BK |
3877 | } |
3878 | ||
3879 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3880 | { | |
2da29bcc | 3881 | int start = 0; |
0185604c | 3882 | int i; |
e9f42757 | 3883 | u32 prev_legacy, cur_legacy; |
09edea72 RK |
3884 | struct kvm_pit *pit = kvm->arch.vpit; |
3885 | ||
3886 | mutex_lock(&pit->pit_state.lock); | |
3887 | prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
e9f42757 BK |
3888 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
3889 | if (!prev_legacy && cur_legacy) | |
3890 | start = 1; | |
09edea72 RK |
3891 | memcpy(&pit->pit_state.channels, &ps->channels, |
3892 | sizeof(pit->pit_state.channels)); | |
3893 | pit->pit_state.flags = ps->flags; | |
0185604c | 3894 | for (i = 0; i < 3; i++) |
09edea72 | 3895 | kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, |
e5e57e7a | 3896 | start && i == 0); |
09edea72 | 3897 | mutex_unlock(&pit->pit_state.lock); |
2da29bcc | 3898 | return 0; |
e0f63cb9 SY |
3899 | } |
3900 | ||
52d939a0 MT |
3901 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
3902 | struct kvm_reinject_control *control) | |
3903 | { | |
71474e2f RK |
3904 | struct kvm_pit *pit = kvm->arch.vpit; |
3905 | ||
3906 | if (!pit) | |
52d939a0 | 3907 | return -ENXIO; |
b39c90b6 | 3908 | |
71474e2f RK |
3909 | /* pit->pit_state.lock was overloaded to prevent userspace from getting |
3910 | * an inconsistent state after running multiple KVM_REINJECT_CONTROL | |
3911 | * ioctls in parallel. Use a separate lock if that ioctl isn't rare. | |
3912 | */ | |
3913 | mutex_lock(&pit->pit_state.lock); | |
3914 | kvm_pit_set_reinject(pit, control->pit_reinject); | |
3915 | mutex_unlock(&pit->pit_state.lock); | |
b39c90b6 | 3916 | |
52d939a0 MT |
3917 | return 0; |
3918 | } | |
3919 | ||
95d4c16c | 3920 | /** |
60c34612 TY |
3921 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
3922 | * @kvm: kvm instance | |
3923 | * @log: slot id and address to which we copy the log | |
95d4c16c | 3924 | * |
e108ff2f PB |
3925 | * Steps 1-4 below provide general overview of dirty page logging. See |
3926 | * kvm_get_dirty_log_protect() function description for additional details. | |
3927 | * | |
3928 | * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we | |
3929 | * always flush the TLB (step 4) even if previous step failed and the dirty | |
3930 | * bitmap may be corrupt. Regardless of previous outcome the KVM logging API | |
3931 | * does not preclude user space subsequent dirty log read. Flushing TLB ensures | |
3932 | * writes will be marked dirty for next log read. | |
95d4c16c | 3933 | * |
60c34612 TY |
3934 | * 1. Take a snapshot of the bit and clear it if needed. |
3935 | * 2. Write protect the corresponding page. | |
e108ff2f PB |
3936 | * 3. Copy the snapshot to the userspace. |
3937 | * 4. Flush TLB's if needed. | |
5bb064dc | 3938 | */ |
60c34612 | 3939 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
5bb064dc | 3940 | { |
60c34612 | 3941 | bool is_dirty = false; |
e108ff2f | 3942 | int r; |
5bb064dc | 3943 | |
79fac95e | 3944 | mutex_lock(&kvm->slots_lock); |
5bb064dc | 3945 | |
88178fd4 KH |
3946 | /* |
3947 | * Flush potentially hardware-cached dirty pages to dirty_bitmap. | |
3948 | */ | |
3949 | if (kvm_x86_ops->flush_log_dirty) | |
3950 | kvm_x86_ops->flush_log_dirty(kvm); | |
3951 | ||
e108ff2f | 3952 | r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
198c74f4 XG |
3953 | |
3954 | /* | |
3955 | * All the TLBs can be flushed out of mmu lock, see the comments in | |
3956 | * kvm_mmu_slot_remove_write_access(). | |
3957 | */ | |
e108ff2f | 3958 | lockdep_assert_held(&kvm->slots_lock); |
198c74f4 XG |
3959 | if (is_dirty) |
3960 | kvm_flush_remote_tlbs(kvm); | |
3961 | ||
79fac95e | 3962 | mutex_unlock(&kvm->slots_lock); |
5bb064dc ZX |
3963 | return r; |
3964 | } | |
3965 | ||
aa2fbe6d YZ |
3966 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
3967 | bool line_status) | |
23d43cf9 CD |
3968 | { |
3969 | if (!irqchip_in_kernel(kvm)) | |
3970 | return -ENXIO; | |
3971 | ||
3972 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | |
aa2fbe6d YZ |
3973 | irq_event->irq, irq_event->level, |
3974 | line_status); | |
23d43cf9 CD |
3975 | return 0; |
3976 | } | |
3977 | ||
90de4a18 NA |
3978 | static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
3979 | struct kvm_enable_cap *cap) | |
3980 | { | |
3981 | int r; | |
3982 | ||
3983 | if (cap->flags) | |
3984 | return -EINVAL; | |
3985 | ||
3986 | switch (cap->cap) { | |
3987 | case KVM_CAP_DISABLE_QUIRKS: | |
3988 | kvm->arch.disabled_quirks = cap->args[0]; | |
3989 | r = 0; | |
3990 | break; | |
49df6397 SR |
3991 | case KVM_CAP_SPLIT_IRQCHIP: { |
3992 | mutex_lock(&kvm->lock); | |
b053b2ae SR |
3993 | r = -EINVAL; |
3994 | if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) | |
3995 | goto split_irqchip_unlock; | |
49df6397 SR |
3996 | r = -EEXIST; |
3997 | if (irqchip_in_kernel(kvm)) | |
3998 | goto split_irqchip_unlock; | |
557abc40 | 3999 | if (kvm->created_vcpus) |
49df6397 SR |
4000 | goto split_irqchip_unlock; |
4001 | r = kvm_setup_empty_irq_routing(kvm); | |
5c0aea0e | 4002 | if (r) |
49df6397 SR |
4003 | goto split_irqchip_unlock; |
4004 | /* Pairs with irqchip_in_kernel. */ | |
4005 | smp_wmb(); | |
49776faf | 4006 | kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; |
b053b2ae | 4007 | kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; |
49df6397 SR |
4008 | r = 0; |
4009 | split_irqchip_unlock: | |
4010 | mutex_unlock(&kvm->lock); | |
4011 | break; | |
4012 | } | |
37131313 RK |
4013 | case KVM_CAP_X2APIC_API: |
4014 | r = -EINVAL; | |
4015 | if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) | |
4016 | break; | |
4017 | ||
4018 | if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) | |
4019 | kvm->arch.x2apic_format = true; | |
c519265f RK |
4020 | if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
4021 | kvm->arch.x2apic_broadcast_quirk_disabled = true; | |
37131313 RK |
4022 | |
4023 | r = 0; | |
4024 | break; | |
90de4a18 NA |
4025 | default: |
4026 | r = -EINVAL; | |
4027 | break; | |
4028 | } | |
4029 | return r; | |
4030 | } | |
4031 | ||
1fe779f8 CO |
4032 | long kvm_arch_vm_ioctl(struct file *filp, |
4033 | unsigned int ioctl, unsigned long arg) | |
4034 | { | |
4035 | struct kvm *kvm = filp->private_data; | |
4036 | void __user *argp = (void __user *)arg; | |
367e1319 | 4037 | int r = -ENOTTY; |
f0d66275 DH |
4038 | /* |
4039 | * This union makes it completely explicit to gcc-3.x | |
4040 | * that these two variables' stack usage should be | |
4041 | * combined, not added together. | |
4042 | */ | |
4043 | union { | |
4044 | struct kvm_pit_state ps; | |
e9f42757 | 4045 | struct kvm_pit_state2 ps2; |
c5ff41ce | 4046 | struct kvm_pit_config pit_config; |
f0d66275 | 4047 | } u; |
1fe779f8 CO |
4048 | |
4049 | switch (ioctl) { | |
4050 | case KVM_SET_TSS_ADDR: | |
4051 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | |
1fe779f8 | 4052 | break; |
b927a3ce SY |
4053 | case KVM_SET_IDENTITY_MAP_ADDR: { |
4054 | u64 ident_addr; | |
4055 | ||
1af1ac91 DH |
4056 | mutex_lock(&kvm->lock); |
4057 | r = -EINVAL; | |
4058 | if (kvm->created_vcpus) | |
4059 | goto set_identity_unlock; | |
b927a3ce SY |
4060 | r = -EFAULT; |
4061 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | |
1af1ac91 | 4062 | goto set_identity_unlock; |
b927a3ce | 4063 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
1af1ac91 DH |
4064 | set_identity_unlock: |
4065 | mutex_unlock(&kvm->lock); | |
b927a3ce SY |
4066 | break; |
4067 | } | |
1fe779f8 CO |
4068 | case KVM_SET_NR_MMU_PAGES: |
4069 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | |
1fe779f8 CO |
4070 | break; |
4071 | case KVM_GET_NR_MMU_PAGES: | |
4072 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | |
4073 | break; | |
3ddea128 | 4074 | case KVM_CREATE_IRQCHIP: { |
3ddea128 | 4075 | mutex_lock(&kvm->lock); |
09941366 | 4076 | |
3ddea128 | 4077 | r = -EEXIST; |
35e6eaa3 | 4078 | if (irqchip_in_kernel(kvm)) |
3ddea128 | 4079 | goto create_irqchip_unlock; |
09941366 | 4080 | |
3e515705 | 4081 | r = -EINVAL; |
557abc40 | 4082 | if (kvm->created_vcpus) |
3e515705 | 4083 | goto create_irqchip_unlock; |
09941366 RK |
4084 | |
4085 | r = kvm_pic_init(kvm); | |
4086 | if (r) | |
3ddea128 | 4087 | goto create_irqchip_unlock; |
09941366 RK |
4088 | |
4089 | r = kvm_ioapic_init(kvm); | |
4090 | if (r) { | |
09941366 | 4091 | kvm_pic_destroy(kvm); |
3ddea128 | 4092 | goto create_irqchip_unlock; |
09941366 RK |
4093 | } |
4094 | ||
399ec807 AK |
4095 | r = kvm_setup_default_irq_routing(kvm); |
4096 | if (r) { | |
72bb2fcd | 4097 | kvm_ioapic_destroy(kvm); |
09941366 | 4098 | kvm_pic_destroy(kvm); |
71ba994c | 4099 | goto create_irqchip_unlock; |
399ec807 | 4100 | } |
49776faf | 4101 | /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ |
71ba994c | 4102 | smp_wmb(); |
49776faf | 4103 | kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; |
3ddea128 MT |
4104 | create_irqchip_unlock: |
4105 | mutex_unlock(&kvm->lock); | |
1fe779f8 | 4106 | break; |
3ddea128 | 4107 | } |
7837699f | 4108 | case KVM_CREATE_PIT: |
c5ff41ce JK |
4109 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
4110 | goto create_pit; | |
4111 | case KVM_CREATE_PIT2: | |
4112 | r = -EFAULT; | |
4113 | if (copy_from_user(&u.pit_config, argp, | |
4114 | sizeof(struct kvm_pit_config))) | |
4115 | goto out; | |
4116 | create_pit: | |
250715a6 | 4117 | mutex_lock(&kvm->lock); |
269e05e4 AK |
4118 | r = -EEXIST; |
4119 | if (kvm->arch.vpit) | |
4120 | goto create_pit_unlock; | |
7837699f | 4121 | r = -ENOMEM; |
c5ff41ce | 4122 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
7837699f SY |
4123 | if (kvm->arch.vpit) |
4124 | r = 0; | |
269e05e4 | 4125 | create_pit_unlock: |
250715a6 | 4126 | mutex_unlock(&kvm->lock); |
7837699f | 4127 | break; |
1fe779f8 CO |
4128 | case KVM_GET_IRQCHIP: { |
4129 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 4130 | struct kvm_irqchip *chip; |
1fe779f8 | 4131 | |
ff5c2c03 SL |
4132 | chip = memdup_user(argp, sizeof(*chip)); |
4133 | if (IS_ERR(chip)) { | |
4134 | r = PTR_ERR(chip); | |
1fe779f8 | 4135 | goto out; |
ff5c2c03 SL |
4136 | } |
4137 | ||
1fe779f8 | 4138 | r = -ENXIO; |
826da321 | 4139 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
4140 | goto get_irqchip_out; |
4141 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | |
1fe779f8 | 4142 | if (r) |
f0d66275 | 4143 | goto get_irqchip_out; |
1fe779f8 | 4144 | r = -EFAULT; |
f0d66275 DH |
4145 | if (copy_to_user(argp, chip, sizeof *chip)) |
4146 | goto get_irqchip_out; | |
1fe779f8 | 4147 | r = 0; |
f0d66275 DH |
4148 | get_irqchip_out: |
4149 | kfree(chip); | |
1fe779f8 CO |
4150 | break; |
4151 | } | |
4152 | case KVM_SET_IRQCHIP: { | |
4153 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 4154 | struct kvm_irqchip *chip; |
1fe779f8 | 4155 | |
ff5c2c03 SL |
4156 | chip = memdup_user(argp, sizeof(*chip)); |
4157 | if (IS_ERR(chip)) { | |
4158 | r = PTR_ERR(chip); | |
1fe779f8 | 4159 | goto out; |
ff5c2c03 SL |
4160 | } |
4161 | ||
1fe779f8 | 4162 | r = -ENXIO; |
826da321 | 4163 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
4164 | goto set_irqchip_out; |
4165 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | |
1fe779f8 | 4166 | if (r) |
f0d66275 | 4167 | goto set_irqchip_out; |
1fe779f8 | 4168 | r = 0; |
f0d66275 DH |
4169 | set_irqchip_out: |
4170 | kfree(chip); | |
1fe779f8 CO |
4171 | break; |
4172 | } | |
e0f63cb9 | 4173 | case KVM_GET_PIT: { |
e0f63cb9 | 4174 | r = -EFAULT; |
f0d66275 | 4175 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
4176 | goto out; |
4177 | r = -ENXIO; | |
4178 | if (!kvm->arch.vpit) | |
4179 | goto out; | |
f0d66275 | 4180 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
e0f63cb9 SY |
4181 | if (r) |
4182 | goto out; | |
4183 | r = -EFAULT; | |
f0d66275 | 4184 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
4185 | goto out; |
4186 | r = 0; | |
4187 | break; | |
4188 | } | |
4189 | case KVM_SET_PIT: { | |
e0f63cb9 | 4190 | r = -EFAULT; |
f0d66275 | 4191 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
e0f63cb9 SY |
4192 | goto out; |
4193 | r = -ENXIO; | |
4194 | if (!kvm->arch.vpit) | |
4195 | goto out; | |
f0d66275 | 4196 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
e0f63cb9 SY |
4197 | break; |
4198 | } | |
e9f42757 BK |
4199 | case KVM_GET_PIT2: { |
4200 | r = -ENXIO; | |
4201 | if (!kvm->arch.vpit) | |
4202 | goto out; | |
4203 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | |
4204 | if (r) | |
4205 | goto out; | |
4206 | r = -EFAULT; | |
4207 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | |
4208 | goto out; | |
4209 | r = 0; | |
4210 | break; | |
4211 | } | |
4212 | case KVM_SET_PIT2: { | |
4213 | r = -EFAULT; | |
4214 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | |
4215 | goto out; | |
4216 | r = -ENXIO; | |
4217 | if (!kvm->arch.vpit) | |
4218 | goto out; | |
4219 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | |
e9f42757 BK |
4220 | break; |
4221 | } | |
52d939a0 MT |
4222 | case KVM_REINJECT_CONTROL: { |
4223 | struct kvm_reinject_control control; | |
4224 | r = -EFAULT; | |
4225 | if (copy_from_user(&control, argp, sizeof(control))) | |
4226 | goto out; | |
4227 | r = kvm_vm_ioctl_reinject(kvm, &control); | |
52d939a0 MT |
4228 | break; |
4229 | } | |
d71ba788 PB |
4230 | case KVM_SET_BOOT_CPU_ID: |
4231 | r = 0; | |
4232 | mutex_lock(&kvm->lock); | |
557abc40 | 4233 | if (kvm->created_vcpus) |
d71ba788 PB |
4234 | r = -EBUSY; |
4235 | else | |
4236 | kvm->arch.bsp_vcpu_id = arg; | |
4237 | mutex_unlock(&kvm->lock); | |
4238 | break; | |
ffde22ac ES |
4239 | case KVM_XEN_HVM_CONFIG: { |
4240 | r = -EFAULT; | |
4241 | if (copy_from_user(&kvm->arch.xen_hvm_config, argp, | |
4242 | sizeof(struct kvm_xen_hvm_config))) | |
4243 | goto out; | |
4244 | r = -EINVAL; | |
4245 | if (kvm->arch.xen_hvm_config.flags) | |
4246 | goto out; | |
4247 | r = 0; | |
4248 | break; | |
4249 | } | |
afbcf7ab | 4250 | case KVM_SET_CLOCK: { |
afbcf7ab GC |
4251 | struct kvm_clock_data user_ns; |
4252 | u64 now_ns; | |
afbcf7ab GC |
4253 | |
4254 | r = -EFAULT; | |
4255 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | |
4256 | goto out; | |
4257 | ||
4258 | r = -EINVAL; | |
4259 | if (user_ns.flags) | |
4260 | goto out; | |
4261 | ||
4262 | r = 0; | |
0bc48bea RK |
4263 | /* |
4264 | * TODO: userspace has to take care of races with VCPU_RUN, so | |
4265 | * kvm_gen_update_masterclock() can be cut down to locked | |
4266 | * pvclock_update_vm_gtod_copy(). | |
4267 | */ | |
4268 | kvm_gen_update_masterclock(kvm); | |
e891a32e | 4269 | now_ns = get_kvmclock_ns(kvm); |
108b249c | 4270 | kvm->arch.kvmclock_offset += user_ns.clock - now_ns; |
0bc48bea | 4271 | kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); |
afbcf7ab GC |
4272 | break; |
4273 | } | |
4274 | case KVM_GET_CLOCK: { | |
afbcf7ab GC |
4275 | struct kvm_clock_data user_ns; |
4276 | u64 now_ns; | |
4277 | ||
e891a32e | 4278 | now_ns = get_kvmclock_ns(kvm); |
108b249c | 4279 | user_ns.clock = now_ns; |
e3fd9a93 | 4280 | user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; |
97e69aa6 | 4281 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
afbcf7ab GC |
4282 | |
4283 | r = -EFAULT; | |
4284 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | |
4285 | goto out; | |
4286 | r = 0; | |
4287 | break; | |
4288 | } | |
90de4a18 NA |
4289 | case KVM_ENABLE_CAP: { |
4290 | struct kvm_enable_cap cap; | |
afbcf7ab | 4291 | |
90de4a18 NA |
4292 | r = -EFAULT; |
4293 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
4294 | goto out; | |
4295 | r = kvm_vm_ioctl_enable_cap(kvm, &cap); | |
4296 | break; | |
4297 | } | |
1fe779f8 | 4298 | default: |
ad6260da | 4299 | r = -ENOTTY; |
1fe779f8 CO |
4300 | } |
4301 | out: | |
4302 | return r; | |
4303 | } | |
4304 | ||
a16b043c | 4305 | static void kvm_init_msr_list(void) |
043405e1 CO |
4306 | { |
4307 | u32 dummy[2]; | |
4308 | unsigned i, j; | |
4309 | ||
62ef68bb | 4310 | for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { |
043405e1 CO |
4311 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
4312 | continue; | |
93c4adc7 PB |
4313 | |
4314 | /* | |
4315 | * Even MSRs that are valid in the host may not be exposed | |
9dbe6cf9 | 4316 | * to the guests in some cases. |
93c4adc7 PB |
4317 | */ |
4318 | switch (msrs_to_save[i]) { | |
4319 | case MSR_IA32_BNDCFGS: | |
4320 | if (!kvm_x86_ops->mpx_supported()) | |
4321 | continue; | |
4322 | break; | |
9dbe6cf9 PB |
4323 | case MSR_TSC_AUX: |
4324 | if (!kvm_x86_ops->rdtscp_supported()) | |
4325 | continue; | |
4326 | break; | |
93c4adc7 PB |
4327 | default: |
4328 | break; | |
4329 | } | |
4330 | ||
043405e1 CO |
4331 | if (j < i) |
4332 | msrs_to_save[j] = msrs_to_save[i]; | |
4333 | j++; | |
4334 | } | |
4335 | num_msrs_to_save = j; | |
62ef68bb PB |
4336 | |
4337 | for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { | |
4338 | switch (emulated_msrs[i]) { | |
6d396b55 PB |
4339 | case MSR_IA32_SMBASE: |
4340 | if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) | |
4341 | continue; | |
4342 | break; | |
62ef68bb PB |
4343 | default: |
4344 | break; | |
4345 | } | |
4346 | ||
4347 | if (j < i) | |
4348 | emulated_msrs[j] = emulated_msrs[i]; | |
4349 | j++; | |
4350 | } | |
4351 | num_emulated_msrs = j; | |
043405e1 CO |
4352 | } |
4353 | ||
bda9020e MT |
4354 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
4355 | const void *v) | |
bbd9b64e | 4356 | { |
70252a10 AK |
4357 | int handled = 0; |
4358 | int n; | |
4359 | ||
4360 | do { | |
4361 | n = min(len, 8); | |
bce87cce | 4362 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
4363 | !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) |
4364 | && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 AK |
4365 | break; |
4366 | handled += n; | |
4367 | addr += n; | |
4368 | len -= n; | |
4369 | v += n; | |
4370 | } while (len); | |
bbd9b64e | 4371 | |
70252a10 | 4372 | return handled; |
bbd9b64e CO |
4373 | } |
4374 | ||
bda9020e | 4375 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
bbd9b64e | 4376 | { |
70252a10 AK |
4377 | int handled = 0; |
4378 | int n; | |
4379 | ||
4380 | do { | |
4381 | n = min(len, 8); | |
bce87cce | 4382 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
4383 | !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, |
4384 | addr, n, v)) | |
4385 | && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 AK |
4386 | break; |
4387 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); | |
4388 | handled += n; | |
4389 | addr += n; | |
4390 | len -= n; | |
4391 | v += n; | |
4392 | } while (len); | |
bbd9b64e | 4393 | |
70252a10 | 4394 | return handled; |
bbd9b64e CO |
4395 | } |
4396 | ||
2dafc6c2 GN |
4397 | static void kvm_set_segment(struct kvm_vcpu *vcpu, |
4398 | struct kvm_segment *var, int seg) | |
4399 | { | |
4400 | kvm_x86_ops->set_segment(vcpu, var, seg); | |
4401 | } | |
4402 | ||
4403 | void kvm_get_segment(struct kvm_vcpu *vcpu, | |
4404 | struct kvm_segment *var, int seg) | |
4405 | { | |
4406 | kvm_x86_ops->get_segment(vcpu, var, seg); | |
4407 | } | |
4408 | ||
54987b7a PB |
4409 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, |
4410 | struct x86_exception *exception) | |
02f59dc9 JR |
4411 | { |
4412 | gpa_t t_gpa; | |
02f59dc9 JR |
4413 | |
4414 | BUG_ON(!mmu_is_nested(vcpu)); | |
4415 | ||
4416 | /* NPT walks are always user-walks */ | |
4417 | access |= PFERR_USER_MASK; | |
54987b7a | 4418 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); |
02f59dc9 JR |
4419 | |
4420 | return t_gpa; | |
4421 | } | |
4422 | ||
ab9ae313 AK |
4423 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
4424 | struct x86_exception *exception) | |
1871c602 GN |
4425 | { |
4426 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
ab9ae313 | 4427 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4428 | } |
4429 | ||
ab9ae313 AK |
4430 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
4431 | struct x86_exception *exception) | |
1871c602 GN |
4432 | { |
4433 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
4434 | access |= PFERR_FETCH_MASK; | |
ab9ae313 | 4435 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4436 | } |
4437 | ||
ab9ae313 AK |
4438 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
4439 | struct x86_exception *exception) | |
1871c602 GN |
4440 | { |
4441 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
4442 | access |= PFERR_WRITE_MASK; | |
ab9ae313 | 4443 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4444 | } |
4445 | ||
4446 | /* uses this to access any guest's mapped memory without checking CPL */ | |
ab9ae313 AK |
4447 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
4448 | struct x86_exception *exception) | |
1871c602 | 4449 | { |
ab9ae313 | 4450 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
1871c602 GN |
4451 | } |
4452 | ||
4453 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |
4454 | struct kvm_vcpu *vcpu, u32 access, | |
bcc55cba | 4455 | struct x86_exception *exception) |
bbd9b64e CO |
4456 | { |
4457 | void *data = val; | |
10589a46 | 4458 | int r = X86EMUL_CONTINUE; |
bbd9b64e CO |
4459 | |
4460 | while (bytes) { | |
14dfe855 | 4461 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
ab9ae313 | 4462 | exception); |
bbd9b64e | 4463 | unsigned offset = addr & (PAGE_SIZE-1); |
77c2002e | 4464 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
bbd9b64e CO |
4465 | int ret; |
4466 | ||
bcc55cba | 4467 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 4468 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa PB |
4469 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, |
4470 | offset, toread); | |
10589a46 | 4471 | if (ret < 0) { |
c3cd7ffa | 4472 | r = X86EMUL_IO_NEEDED; |
10589a46 MT |
4473 | goto out; |
4474 | } | |
bbd9b64e | 4475 | |
77c2002e IE |
4476 | bytes -= toread; |
4477 | data += toread; | |
4478 | addr += toread; | |
bbd9b64e | 4479 | } |
10589a46 | 4480 | out: |
10589a46 | 4481 | return r; |
bbd9b64e | 4482 | } |
77c2002e | 4483 | |
1871c602 | 4484 | /* used for instruction fetching */ |
0f65dd70 AK |
4485 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
4486 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 4487 | struct x86_exception *exception) |
1871c602 | 4488 | { |
0f65dd70 | 4489 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 4490 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
44583cba PB |
4491 | unsigned offset; |
4492 | int ret; | |
0f65dd70 | 4493 | |
44583cba PB |
4494 | /* Inline kvm_read_guest_virt_helper for speed. */ |
4495 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, | |
4496 | exception); | |
4497 | if (unlikely(gpa == UNMAPPED_GVA)) | |
4498 | return X86EMUL_PROPAGATE_FAULT; | |
4499 | ||
4500 | offset = addr & (PAGE_SIZE-1); | |
4501 | if (WARN_ON(offset + bytes > PAGE_SIZE)) | |
4502 | bytes = (unsigned)PAGE_SIZE - offset; | |
54bf36aa PB |
4503 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, |
4504 | offset, bytes); | |
44583cba PB |
4505 | if (unlikely(ret < 0)) |
4506 | return X86EMUL_IO_NEEDED; | |
4507 | ||
4508 | return X86EMUL_CONTINUE; | |
1871c602 GN |
4509 | } |
4510 | ||
064aea77 | 4511 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 4512 | gva_t addr, void *val, unsigned int bytes, |
bcc55cba | 4513 | struct x86_exception *exception) |
1871c602 | 4514 | { |
0f65dd70 | 4515 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 4516 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 4517 | |
1871c602 | 4518 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
bcc55cba | 4519 | exception); |
1871c602 | 4520 | } |
064aea77 | 4521 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
1871c602 | 4522 | |
0f65dd70 AK |
4523 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
4524 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 4525 | struct x86_exception *exception) |
1871c602 | 4526 | { |
0f65dd70 | 4527 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
bcc55cba | 4528 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
1871c602 GN |
4529 | } |
4530 | ||
7a036a6f RK |
4531 | static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, |
4532 | unsigned long addr, void *val, unsigned int bytes) | |
4533 | { | |
4534 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4535 | int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); | |
4536 | ||
4537 | return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; | |
4538 | } | |
4539 | ||
6a4d7550 | 4540 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 4541 | gva_t addr, void *val, |
2dafc6c2 | 4542 | unsigned int bytes, |
bcc55cba | 4543 | struct x86_exception *exception) |
77c2002e | 4544 | { |
0f65dd70 | 4545 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
77c2002e IE |
4546 | void *data = val; |
4547 | int r = X86EMUL_CONTINUE; | |
4548 | ||
4549 | while (bytes) { | |
14dfe855 JR |
4550 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
4551 | PFERR_WRITE_MASK, | |
ab9ae313 | 4552 | exception); |
77c2002e IE |
4553 | unsigned offset = addr & (PAGE_SIZE-1); |
4554 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | |
4555 | int ret; | |
4556 | ||
bcc55cba | 4557 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 4558 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa | 4559 | ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); |
77c2002e | 4560 | if (ret < 0) { |
c3cd7ffa | 4561 | r = X86EMUL_IO_NEEDED; |
77c2002e IE |
4562 | goto out; |
4563 | } | |
4564 | ||
4565 | bytes -= towrite; | |
4566 | data += towrite; | |
4567 | addr += towrite; | |
4568 | } | |
4569 | out: | |
4570 | return r; | |
4571 | } | |
6a4d7550 | 4572 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
77c2002e | 4573 | |
0f89b207 TL |
4574 | static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
4575 | gpa_t gpa, bool write) | |
4576 | { | |
4577 | /* For APIC access vmexit */ | |
4578 | if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
4579 | return 1; | |
4580 | ||
4581 | if (vcpu_match_mmio_gpa(vcpu, gpa)) { | |
4582 | trace_vcpu_match_mmio(gva, gpa, write, true); | |
4583 | return 1; | |
4584 | } | |
4585 | ||
4586 | return 0; | |
4587 | } | |
4588 | ||
af7cc7d1 XG |
4589 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
4590 | gpa_t *gpa, struct x86_exception *exception, | |
4591 | bool write) | |
4592 | { | |
97d64b78 AK |
4593 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
4594 | | (write ? PFERR_WRITE_MASK : 0); | |
af7cc7d1 | 4595 | |
be94f6b7 HH |
4596 | /* |
4597 | * currently PKRU is only applied to ept enabled guest so | |
4598 | * there is no pkey in EPT page table for L1 guest or EPT | |
4599 | * shadow page table for L2 guest. | |
4600 | */ | |
97d64b78 | 4601 | if (vcpu_match_mmio_gva(vcpu, gva) |
97ec8c06 | 4602 | && !permission_fault(vcpu, vcpu->arch.walk_mmu, |
be94f6b7 | 4603 | vcpu->arch.access, 0, access)) { |
bebb106a XG |
4604 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
4605 | (gva & (PAGE_SIZE - 1)); | |
4f022648 | 4606 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
bebb106a XG |
4607 | return 1; |
4608 | } | |
4609 | ||
af7cc7d1 XG |
4610 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
4611 | ||
4612 | if (*gpa == UNMAPPED_GVA) | |
4613 | return -1; | |
4614 | ||
0f89b207 | 4615 | return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); |
af7cc7d1 XG |
4616 | } |
4617 | ||
3200f405 | 4618 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
bcc55cba | 4619 | const void *val, int bytes) |
bbd9b64e CO |
4620 | { |
4621 | int ret; | |
4622 | ||
54bf36aa | 4623 | ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); |
9f811285 | 4624 | if (ret < 0) |
bbd9b64e | 4625 | return 0; |
0eb05bf2 | 4626 | kvm_page_track_write(vcpu, gpa, val, bytes); |
bbd9b64e CO |
4627 | return 1; |
4628 | } | |
4629 | ||
77d197b2 XG |
4630 | struct read_write_emulator_ops { |
4631 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | |
4632 | int bytes); | |
4633 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4634 | void *val, int bytes); | |
4635 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4636 | int bytes, void *val); | |
4637 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4638 | void *val, int bytes); | |
4639 | bool write; | |
4640 | }; | |
4641 | ||
4642 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | |
4643 | { | |
4644 | if (vcpu->mmio_read_completed) { | |
77d197b2 | 4645 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
f78146b0 | 4646 | vcpu->mmio_fragments[0].gpa, *(u64 *)val); |
77d197b2 XG |
4647 | vcpu->mmio_read_completed = 0; |
4648 | return 1; | |
4649 | } | |
4650 | ||
4651 | return 0; | |
4652 | } | |
4653 | ||
4654 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4655 | void *val, int bytes) | |
4656 | { | |
54bf36aa | 4657 | return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); |
77d197b2 XG |
4658 | } |
4659 | ||
4660 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4661 | void *val, int bytes) | |
4662 | { | |
4663 | return emulator_write_phys(vcpu, gpa, val, bytes); | |
4664 | } | |
4665 | ||
4666 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | |
4667 | { | |
4668 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); | |
4669 | return vcpu_mmio_write(vcpu, gpa, bytes, val); | |
4670 | } | |
4671 | ||
4672 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4673 | void *val, int bytes) | |
4674 | { | |
4675 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); | |
4676 | return X86EMUL_IO_NEEDED; | |
4677 | } | |
4678 | ||
4679 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4680 | void *val, int bytes) | |
4681 | { | |
f78146b0 AK |
4682 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
4683 | ||
87da7e66 | 4684 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
77d197b2 XG |
4685 | return X86EMUL_CONTINUE; |
4686 | } | |
4687 | ||
0fbe9b0b | 4688 | static const struct read_write_emulator_ops read_emultor = { |
77d197b2 XG |
4689 | .read_write_prepare = read_prepare, |
4690 | .read_write_emulate = read_emulate, | |
4691 | .read_write_mmio = vcpu_mmio_read, | |
4692 | .read_write_exit_mmio = read_exit_mmio, | |
4693 | }; | |
4694 | ||
0fbe9b0b | 4695 | static const struct read_write_emulator_ops write_emultor = { |
77d197b2 XG |
4696 | .read_write_emulate = write_emulate, |
4697 | .read_write_mmio = write_mmio, | |
4698 | .read_write_exit_mmio = write_exit_mmio, | |
4699 | .write = true, | |
4700 | }; | |
4701 | ||
22388a3c XG |
4702 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
4703 | unsigned int bytes, | |
4704 | struct x86_exception *exception, | |
4705 | struct kvm_vcpu *vcpu, | |
0fbe9b0b | 4706 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4707 | { |
af7cc7d1 XG |
4708 | gpa_t gpa; |
4709 | int handled, ret; | |
22388a3c | 4710 | bool write = ops->write; |
f78146b0 | 4711 | struct kvm_mmio_fragment *frag; |
0f89b207 TL |
4712 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
4713 | ||
4714 | /* | |
4715 | * If the exit was due to a NPF we may already have a GPA. | |
4716 | * If the GPA is present, use it to avoid the GVA to GPA table walk. | |
4717 | * Note, this cannot be used on string operations since string | |
4718 | * operation using rep will only have the initial GPA from the NPF | |
4719 | * occurred. | |
4720 | */ | |
4721 | if (vcpu->arch.gpa_available && | |
4722 | emulator_can_use_gpa(ctxt) && | |
618232e2 BS |
4723 | (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { |
4724 | gpa = vcpu->arch.gpa_val; | |
4725 | ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); | |
4726 | } else { | |
4727 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); | |
4728 | if (ret < 0) | |
4729 | return X86EMUL_PROPAGATE_FAULT; | |
0f89b207 | 4730 | } |
10589a46 | 4731 | |
618232e2 | 4732 | if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) |
bbd9b64e CO |
4733 | return X86EMUL_CONTINUE; |
4734 | ||
bbd9b64e CO |
4735 | /* |
4736 | * Is this MMIO handled locally? | |
4737 | */ | |
22388a3c | 4738 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
70252a10 | 4739 | if (handled == bytes) |
bbd9b64e | 4740 | return X86EMUL_CONTINUE; |
bbd9b64e | 4741 | |
70252a10 AK |
4742 | gpa += handled; |
4743 | bytes -= handled; | |
4744 | val += handled; | |
4745 | ||
87da7e66 XG |
4746 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
4747 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | |
4748 | frag->gpa = gpa; | |
4749 | frag->data = val; | |
4750 | frag->len = bytes; | |
f78146b0 | 4751 | return X86EMUL_CONTINUE; |
bbd9b64e CO |
4752 | } |
4753 | ||
52eb5a6d XL |
4754 | static int emulator_read_write(struct x86_emulate_ctxt *ctxt, |
4755 | unsigned long addr, | |
22388a3c XG |
4756 | void *val, unsigned int bytes, |
4757 | struct x86_exception *exception, | |
0fbe9b0b | 4758 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4759 | { |
0f65dd70 | 4760 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
f78146b0 AK |
4761 | gpa_t gpa; |
4762 | int rc; | |
4763 | ||
4764 | if (ops->read_write_prepare && | |
4765 | ops->read_write_prepare(vcpu, val, bytes)) | |
4766 | return X86EMUL_CONTINUE; | |
4767 | ||
4768 | vcpu->mmio_nr_fragments = 0; | |
0f65dd70 | 4769 | |
bbd9b64e CO |
4770 | /* Crossing a page boundary? */ |
4771 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | |
f78146b0 | 4772 | int now; |
bbd9b64e CO |
4773 | |
4774 | now = -addr & ~PAGE_MASK; | |
22388a3c XG |
4775 | rc = emulator_read_write_onepage(addr, val, now, exception, |
4776 | vcpu, ops); | |
4777 | ||
bbd9b64e CO |
4778 | if (rc != X86EMUL_CONTINUE) |
4779 | return rc; | |
4780 | addr += now; | |
bac15531 NA |
4781 | if (ctxt->mode != X86EMUL_MODE_PROT64) |
4782 | addr = (u32)addr; | |
bbd9b64e CO |
4783 | val += now; |
4784 | bytes -= now; | |
4785 | } | |
22388a3c | 4786 | |
f78146b0 AK |
4787 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
4788 | vcpu, ops); | |
4789 | if (rc != X86EMUL_CONTINUE) | |
4790 | return rc; | |
4791 | ||
4792 | if (!vcpu->mmio_nr_fragments) | |
4793 | return rc; | |
4794 | ||
4795 | gpa = vcpu->mmio_fragments[0].gpa; | |
4796 | ||
4797 | vcpu->mmio_needed = 1; | |
4798 | vcpu->mmio_cur_fragment = 0; | |
4799 | ||
87da7e66 | 4800 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
f78146b0 AK |
4801 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
4802 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
4803 | vcpu->run->mmio.phys_addr = gpa; | |
4804 | ||
4805 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | |
22388a3c XG |
4806 | } |
4807 | ||
4808 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | |
4809 | unsigned long addr, | |
4810 | void *val, | |
4811 | unsigned int bytes, | |
4812 | struct x86_exception *exception) | |
4813 | { | |
4814 | return emulator_read_write(ctxt, addr, val, bytes, | |
4815 | exception, &read_emultor); | |
4816 | } | |
4817 | ||
52eb5a6d | 4818 | static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
22388a3c XG |
4819 | unsigned long addr, |
4820 | const void *val, | |
4821 | unsigned int bytes, | |
4822 | struct x86_exception *exception) | |
4823 | { | |
4824 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | |
4825 | exception, &write_emultor); | |
bbd9b64e | 4826 | } |
bbd9b64e | 4827 | |
daea3e73 AK |
4828 | #define CMPXCHG_TYPE(t, ptr, old, new) \ |
4829 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | |
4830 | ||
4831 | #ifdef CONFIG_X86_64 | |
4832 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | |
4833 | #else | |
4834 | # define CMPXCHG64(ptr, old, new) \ | |
9749a6c0 | 4835 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
daea3e73 AK |
4836 | #endif |
4837 | ||
0f65dd70 AK |
4838 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
4839 | unsigned long addr, | |
bbd9b64e CO |
4840 | const void *old, |
4841 | const void *new, | |
4842 | unsigned int bytes, | |
0f65dd70 | 4843 | struct x86_exception *exception) |
bbd9b64e | 4844 | { |
0f65dd70 | 4845 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
daea3e73 AK |
4846 | gpa_t gpa; |
4847 | struct page *page; | |
4848 | char *kaddr; | |
4849 | bool exchanged; | |
2bacc55c | 4850 | |
daea3e73 AK |
4851 | /* guests cmpxchg8b have to be emulated atomically */ |
4852 | if (bytes > 8 || (bytes & (bytes - 1))) | |
4853 | goto emul_write; | |
10589a46 | 4854 | |
daea3e73 | 4855 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
2bacc55c | 4856 | |
daea3e73 AK |
4857 | if (gpa == UNMAPPED_GVA || |
4858 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
4859 | goto emul_write; | |
2bacc55c | 4860 | |
daea3e73 AK |
4861 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
4862 | goto emul_write; | |
72dc67a6 | 4863 | |
54bf36aa | 4864 | page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); |
32cad84f | 4865 | if (is_error_page(page)) |
c19b8bd6 | 4866 | goto emul_write; |
72dc67a6 | 4867 | |
8fd75e12 | 4868 | kaddr = kmap_atomic(page); |
daea3e73 AK |
4869 | kaddr += offset_in_page(gpa); |
4870 | switch (bytes) { | |
4871 | case 1: | |
4872 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | |
4873 | break; | |
4874 | case 2: | |
4875 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | |
4876 | break; | |
4877 | case 4: | |
4878 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | |
4879 | break; | |
4880 | case 8: | |
4881 | exchanged = CMPXCHG64(kaddr, old, new); | |
4882 | break; | |
4883 | default: | |
4884 | BUG(); | |
2bacc55c | 4885 | } |
8fd75e12 | 4886 | kunmap_atomic(kaddr); |
daea3e73 AK |
4887 | kvm_release_page_dirty(page); |
4888 | ||
4889 | if (!exchanged) | |
4890 | return X86EMUL_CMPXCHG_FAILED; | |
4891 | ||
54bf36aa | 4892 | kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); |
0eb05bf2 | 4893 | kvm_page_track_write(vcpu, gpa, new, bytes); |
8f6abd06 GN |
4894 | |
4895 | return X86EMUL_CONTINUE; | |
4a5f48f6 | 4896 | |
3200f405 | 4897 | emul_write: |
daea3e73 | 4898 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
2bacc55c | 4899 | |
0f65dd70 | 4900 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
bbd9b64e CO |
4901 | } |
4902 | ||
cf8f70bf GN |
4903 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
4904 | { | |
cbfc6c91 | 4905 | int r = 0, i; |
cf8f70bf | 4906 | |
cbfc6c91 WL |
4907 | for (i = 0; i < vcpu->arch.pio.count; i++) { |
4908 | if (vcpu->arch.pio.in) | |
4909 | r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, | |
4910 | vcpu->arch.pio.size, pd); | |
4911 | else | |
4912 | r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, | |
4913 | vcpu->arch.pio.port, vcpu->arch.pio.size, | |
4914 | pd); | |
4915 | if (r) | |
4916 | break; | |
4917 | pd += vcpu->arch.pio.size; | |
4918 | } | |
cf8f70bf GN |
4919 | return r; |
4920 | } | |
4921 | ||
6f6fbe98 XG |
4922 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
4923 | unsigned short port, void *val, | |
4924 | unsigned int count, bool in) | |
cf8f70bf | 4925 | { |
cf8f70bf | 4926 | vcpu->arch.pio.port = port; |
6f6fbe98 | 4927 | vcpu->arch.pio.in = in; |
7972995b | 4928 | vcpu->arch.pio.count = count; |
cf8f70bf GN |
4929 | vcpu->arch.pio.size = size; |
4930 | ||
4931 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | |
7972995b | 4932 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4933 | return 1; |
4934 | } | |
4935 | ||
4936 | vcpu->run->exit_reason = KVM_EXIT_IO; | |
6f6fbe98 | 4937 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
cf8f70bf GN |
4938 | vcpu->run->io.size = size; |
4939 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | |
4940 | vcpu->run->io.count = count; | |
4941 | vcpu->run->io.port = port; | |
4942 | ||
4943 | return 0; | |
4944 | } | |
4945 | ||
6f6fbe98 XG |
4946 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
4947 | int size, unsigned short port, void *val, | |
4948 | unsigned int count) | |
cf8f70bf | 4949 | { |
ca1d4a9e | 4950 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
6f6fbe98 | 4951 | int ret; |
ca1d4a9e | 4952 | |
6f6fbe98 XG |
4953 | if (vcpu->arch.pio.count) |
4954 | goto data_avail; | |
cf8f70bf | 4955 | |
cbfc6c91 WL |
4956 | memset(vcpu->arch.pio_data, 0, size * count); |
4957 | ||
6f6fbe98 XG |
4958 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
4959 | if (ret) { | |
4960 | data_avail: | |
4961 | memcpy(val, vcpu->arch.pio_data, size * count); | |
1171903d | 4962 | trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); |
7972995b | 4963 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4964 | return 1; |
4965 | } | |
4966 | ||
cf8f70bf GN |
4967 | return 0; |
4968 | } | |
4969 | ||
6f6fbe98 XG |
4970 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
4971 | int size, unsigned short port, | |
4972 | const void *val, unsigned int count) | |
4973 | { | |
4974 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4975 | ||
4976 | memcpy(vcpu->arch.pio_data, val, size * count); | |
1171903d | 4977 | trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); |
6f6fbe98 XG |
4978 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
4979 | } | |
4980 | ||
bbd9b64e CO |
4981 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
4982 | { | |
4983 | return kvm_x86_ops->get_segment_base(vcpu, seg); | |
4984 | } | |
4985 | ||
3cb16fe7 | 4986 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
bbd9b64e | 4987 | { |
3cb16fe7 | 4988 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
bbd9b64e CO |
4989 | } |
4990 | ||
ae6a2375 | 4991 | static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) |
f5f48ee1 SY |
4992 | { |
4993 | if (!need_emulate_wbinvd(vcpu)) | |
4994 | return X86EMUL_CONTINUE; | |
4995 | ||
4996 | if (kvm_x86_ops->has_wbinvd_exit()) { | |
2eec7343 JK |
4997 | int cpu = get_cpu(); |
4998 | ||
4999 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
5000 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
5001 | wbinvd_ipi, NULL, 1); | |
2eec7343 | 5002 | put_cpu(); |
f5f48ee1 | 5003 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
2eec7343 JK |
5004 | } else |
5005 | wbinvd(); | |
f5f48ee1 SY |
5006 | return X86EMUL_CONTINUE; |
5007 | } | |
5cb56059 JS |
5008 | |
5009 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
5010 | { | |
6affcbed KH |
5011 | kvm_emulate_wbinvd_noskip(vcpu); |
5012 | return kvm_skip_emulated_instruction(vcpu); | |
5cb56059 | 5013 | } |
f5f48ee1 SY |
5014 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
5015 | ||
5cb56059 JS |
5016 | |
5017 | ||
bcaf5cc5 AK |
5018 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
5019 | { | |
5cb56059 | 5020 | kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); |
bcaf5cc5 AK |
5021 | } |
5022 | ||
52eb5a6d XL |
5023 | static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, |
5024 | unsigned long *dest) | |
bbd9b64e | 5025 | { |
16f8a6f9 | 5026 | return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
bbd9b64e CO |
5027 | } |
5028 | ||
52eb5a6d XL |
5029 | static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, |
5030 | unsigned long value) | |
bbd9b64e | 5031 | { |
338dbc97 | 5032 | |
717746e3 | 5033 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
bbd9b64e CO |
5034 | } |
5035 | ||
52a46617 | 5036 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
5fdbf976 | 5037 | { |
52a46617 | 5038 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
5fdbf976 MT |
5039 | } |
5040 | ||
717746e3 | 5041 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
bbd9b64e | 5042 | { |
717746e3 | 5043 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
52a46617 GN |
5044 | unsigned long value; |
5045 | ||
5046 | switch (cr) { | |
5047 | case 0: | |
5048 | value = kvm_read_cr0(vcpu); | |
5049 | break; | |
5050 | case 2: | |
5051 | value = vcpu->arch.cr2; | |
5052 | break; | |
5053 | case 3: | |
9f8fe504 | 5054 | value = kvm_read_cr3(vcpu); |
52a46617 GN |
5055 | break; |
5056 | case 4: | |
5057 | value = kvm_read_cr4(vcpu); | |
5058 | break; | |
5059 | case 8: | |
5060 | value = kvm_get_cr8(vcpu); | |
5061 | break; | |
5062 | default: | |
a737f256 | 5063 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
52a46617 GN |
5064 | return 0; |
5065 | } | |
5066 | ||
5067 | return value; | |
5068 | } | |
5069 | ||
717746e3 | 5070 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
52a46617 | 5071 | { |
717746e3 | 5072 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
0f12244f GN |
5073 | int res = 0; |
5074 | ||
52a46617 GN |
5075 | switch (cr) { |
5076 | case 0: | |
49a9b07e | 5077 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
52a46617 GN |
5078 | break; |
5079 | case 2: | |
5080 | vcpu->arch.cr2 = val; | |
5081 | break; | |
5082 | case 3: | |
2390218b | 5083 | res = kvm_set_cr3(vcpu, val); |
52a46617 GN |
5084 | break; |
5085 | case 4: | |
a83b29c6 | 5086 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
52a46617 GN |
5087 | break; |
5088 | case 8: | |
eea1cff9 | 5089 | res = kvm_set_cr8(vcpu, val); |
52a46617 GN |
5090 | break; |
5091 | default: | |
a737f256 | 5092 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
0f12244f | 5093 | res = -1; |
52a46617 | 5094 | } |
0f12244f GN |
5095 | |
5096 | return res; | |
52a46617 GN |
5097 | } |
5098 | ||
717746e3 | 5099 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
9c537244 | 5100 | { |
717746e3 | 5101 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
9c537244 GN |
5102 | } |
5103 | ||
4bff1e86 | 5104 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
2dafc6c2 | 5105 | { |
4bff1e86 | 5106 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
2dafc6c2 GN |
5107 | } |
5108 | ||
4bff1e86 | 5109 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
160ce1f1 | 5110 | { |
4bff1e86 | 5111 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
160ce1f1 MG |
5112 | } |
5113 | ||
1ac9d0cf AK |
5114 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
5115 | { | |
5116 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | |
5117 | } | |
5118 | ||
5119 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | |
5120 | { | |
5121 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | |
5122 | } | |
5123 | ||
4bff1e86 AK |
5124 | static unsigned long emulator_get_cached_segment_base( |
5125 | struct x86_emulate_ctxt *ctxt, int seg) | |
5951c442 | 5126 | { |
4bff1e86 | 5127 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
5951c442 GN |
5128 | } |
5129 | ||
1aa36616 AK |
5130 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
5131 | struct desc_struct *desc, u32 *base3, | |
5132 | int seg) | |
2dafc6c2 GN |
5133 | { |
5134 | struct kvm_segment var; | |
5135 | ||
4bff1e86 | 5136 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
1aa36616 | 5137 | *selector = var.selector; |
2dafc6c2 | 5138 | |
378a8b09 GN |
5139 | if (var.unusable) { |
5140 | memset(desc, 0, sizeof(*desc)); | |
f0367ee1 RK |
5141 | if (base3) |
5142 | *base3 = 0; | |
2dafc6c2 | 5143 | return false; |
378a8b09 | 5144 | } |
2dafc6c2 GN |
5145 | |
5146 | if (var.g) | |
5147 | var.limit >>= 12; | |
5148 | set_desc_limit(desc, var.limit); | |
5149 | set_desc_base(desc, (unsigned long)var.base); | |
5601d05b GN |
5150 | #ifdef CONFIG_X86_64 |
5151 | if (base3) | |
5152 | *base3 = var.base >> 32; | |
5153 | #endif | |
2dafc6c2 GN |
5154 | desc->type = var.type; |
5155 | desc->s = var.s; | |
5156 | desc->dpl = var.dpl; | |
5157 | desc->p = var.present; | |
5158 | desc->avl = var.avl; | |
5159 | desc->l = var.l; | |
5160 | desc->d = var.db; | |
5161 | desc->g = var.g; | |
5162 | ||
5163 | return true; | |
5164 | } | |
5165 | ||
1aa36616 AK |
5166 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
5167 | struct desc_struct *desc, u32 base3, | |
5168 | int seg) | |
2dafc6c2 | 5169 | { |
4bff1e86 | 5170 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
2dafc6c2 GN |
5171 | struct kvm_segment var; |
5172 | ||
1aa36616 | 5173 | var.selector = selector; |
2dafc6c2 | 5174 | var.base = get_desc_base(desc); |
5601d05b GN |
5175 | #ifdef CONFIG_X86_64 |
5176 | var.base |= ((u64)base3) << 32; | |
5177 | #endif | |
2dafc6c2 GN |
5178 | var.limit = get_desc_limit(desc); |
5179 | if (desc->g) | |
5180 | var.limit = (var.limit << 12) | 0xfff; | |
5181 | var.type = desc->type; | |
2dafc6c2 GN |
5182 | var.dpl = desc->dpl; |
5183 | var.db = desc->d; | |
5184 | var.s = desc->s; | |
5185 | var.l = desc->l; | |
5186 | var.g = desc->g; | |
5187 | var.avl = desc->avl; | |
5188 | var.present = desc->p; | |
5189 | var.unusable = !var.present; | |
5190 | var.padding = 0; | |
5191 | ||
5192 | kvm_set_segment(vcpu, &var, seg); | |
5193 | return; | |
5194 | } | |
5195 | ||
717746e3 AK |
5196 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
5197 | u32 msr_index, u64 *pdata) | |
5198 | { | |
609e36d3 PB |
5199 | struct msr_data msr; |
5200 | int r; | |
5201 | ||
5202 | msr.index = msr_index; | |
5203 | msr.host_initiated = false; | |
5204 | r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); | |
5205 | if (r) | |
5206 | return r; | |
5207 | ||
5208 | *pdata = msr.data; | |
5209 | return 0; | |
717746e3 AK |
5210 | } |
5211 | ||
5212 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | |
5213 | u32 msr_index, u64 data) | |
5214 | { | |
8fe8ab46 WA |
5215 | struct msr_data msr; |
5216 | ||
5217 | msr.data = data; | |
5218 | msr.index = msr_index; | |
5219 | msr.host_initiated = false; | |
5220 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | |
717746e3 AK |
5221 | } |
5222 | ||
64d60670 PB |
5223 | static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) |
5224 | { | |
5225 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5226 | ||
5227 | return vcpu->arch.smbase; | |
5228 | } | |
5229 | ||
5230 | static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) | |
5231 | { | |
5232 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5233 | ||
5234 | vcpu->arch.smbase = smbase; | |
5235 | } | |
5236 | ||
67f4d428 NA |
5237 | static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, |
5238 | u32 pmc) | |
5239 | { | |
c6702c9d | 5240 | return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); |
67f4d428 NA |
5241 | } |
5242 | ||
222d21aa AK |
5243 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
5244 | u32 pmc, u64 *pdata) | |
5245 | { | |
c6702c9d | 5246 | return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); |
222d21aa AK |
5247 | } |
5248 | ||
6c3287f7 AK |
5249 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
5250 | { | |
5251 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | |
5252 | } | |
5253 | ||
2953538e | 5254 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
8a76d7f2 | 5255 | struct x86_instruction_info *info, |
c4f035c6 AK |
5256 | enum x86_intercept_stage stage) |
5257 | { | |
2953538e | 5258 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
c4f035c6 AK |
5259 | } |
5260 | ||
e911eb3b YZ |
5261 | static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
5262 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) | |
bdb42f5a | 5263 | { |
e911eb3b | 5264 | return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); |
bdb42f5a SB |
5265 | } |
5266 | ||
dd856efa AK |
5267 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
5268 | { | |
5269 | return kvm_register_read(emul_to_vcpu(ctxt), reg); | |
5270 | } | |
5271 | ||
5272 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | |
5273 | { | |
5274 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); | |
5275 | } | |
5276 | ||
801806d9 NA |
5277 | static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) |
5278 | { | |
5279 | kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); | |
5280 | } | |
5281 | ||
6ed071f0 LP |
5282 | static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) |
5283 | { | |
5284 | return emul_to_vcpu(ctxt)->arch.hflags; | |
5285 | } | |
5286 | ||
5287 | static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) | |
5288 | { | |
5289 | kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); | |
5290 | } | |
5291 | ||
0234bf88 LP |
5292 | static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) |
5293 | { | |
5294 | return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); | |
5295 | } | |
5296 | ||
0225fb50 | 5297 | static const struct x86_emulate_ops emulate_ops = { |
dd856efa AK |
5298 | .read_gpr = emulator_read_gpr, |
5299 | .write_gpr = emulator_write_gpr, | |
1871c602 | 5300 | .read_std = kvm_read_guest_virt_system, |
2dafc6c2 | 5301 | .write_std = kvm_write_guest_virt_system, |
7a036a6f | 5302 | .read_phys = kvm_read_guest_phys_system, |
1871c602 | 5303 | .fetch = kvm_fetch_guest_virt, |
bbd9b64e CO |
5304 | .read_emulated = emulator_read_emulated, |
5305 | .write_emulated = emulator_write_emulated, | |
5306 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | |
3cb16fe7 | 5307 | .invlpg = emulator_invlpg, |
cf8f70bf GN |
5308 | .pio_in_emulated = emulator_pio_in_emulated, |
5309 | .pio_out_emulated = emulator_pio_out_emulated, | |
1aa36616 AK |
5310 | .get_segment = emulator_get_segment, |
5311 | .set_segment = emulator_set_segment, | |
5951c442 | 5312 | .get_cached_segment_base = emulator_get_cached_segment_base, |
2dafc6c2 | 5313 | .get_gdt = emulator_get_gdt, |
160ce1f1 | 5314 | .get_idt = emulator_get_idt, |
1ac9d0cf AK |
5315 | .set_gdt = emulator_set_gdt, |
5316 | .set_idt = emulator_set_idt, | |
52a46617 GN |
5317 | .get_cr = emulator_get_cr, |
5318 | .set_cr = emulator_set_cr, | |
9c537244 | 5319 | .cpl = emulator_get_cpl, |
35aa5375 GN |
5320 | .get_dr = emulator_get_dr, |
5321 | .set_dr = emulator_set_dr, | |
64d60670 PB |
5322 | .get_smbase = emulator_get_smbase, |
5323 | .set_smbase = emulator_set_smbase, | |
717746e3 AK |
5324 | .set_msr = emulator_set_msr, |
5325 | .get_msr = emulator_get_msr, | |
67f4d428 | 5326 | .check_pmc = emulator_check_pmc, |
222d21aa | 5327 | .read_pmc = emulator_read_pmc, |
6c3287f7 | 5328 | .halt = emulator_halt, |
bcaf5cc5 | 5329 | .wbinvd = emulator_wbinvd, |
d6aa1000 | 5330 | .fix_hypercall = emulator_fix_hypercall, |
c4f035c6 | 5331 | .intercept = emulator_intercept, |
bdb42f5a | 5332 | .get_cpuid = emulator_get_cpuid, |
801806d9 | 5333 | .set_nmi_mask = emulator_set_nmi_mask, |
6ed071f0 LP |
5334 | .get_hflags = emulator_get_hflags, |
5335 | .set_hflags = emulator_set_hflags, | |
0234bf88 | 5336 | .pre_leave_smm = emulator_pre_leave_smm, |
bbd9b64e CO |
5337 | }; |
5338 | ||
95cb2295 GN |
5339 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
5340 | { | |
37ccdcbe | 5341 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
95cb2295 GN |
5342 | /* |
5343 | * an sti; sti; sequence only disable interrupts for the first | |
5344 | * instruction. So, if the last instruction, be it emulated or | |
5345 | * not, left the system with the INT_STI flag enabled, it | |
5346 | * means that the last instruction is an sti. We should not | |
5347 | * leave the flag on in this case. The same goes for mov ss | |
5348 | */ | |
37ccdcbe PB |
5349 | if (int_shadow & mask) |
5350 | mask = 0; | |
6addfc42 | 5351 | if (unlikely(int_shadow || mask)) { |
95cb2295 | 5352 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); |
6addfc42 PB |
5353 | if (!mask) |
5354 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
5355 | } | |
95cb2295 GN |
5356 | } |
5357 | ||
ef54bcfe | 5358 | static bool inject_emulated_exception(struct kvm_vcpu *vcpu) |
54b8486f GN |
5359 | { |
5360 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | |
da9cb575 | 5361 | if (ctxt->exception.vector == PF_VECTOR) |
ef54bcfe PB |
5362 | return kvm_propagate_fault(vcpu, &ctxt->exception); |
5363 | ||
5364 | if (ctxt->exception.error_code_valid) | |
da9cb575 AK |
5365 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
5366 | ctxt->exception.error_code); | |
54b8486f | 5367 | else |
da9cb575 | 5368 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
ef54bcfe | 5369 | return false; |
54b8486f GN |
5370 | } |
5371 | ||
8ec4722d MG |
5372 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
5373 | { | |
adf52235 | 5374 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d MG |
5375 | int cs_db, cs_l; |
5376 | ||
8ec4722d MG |
5377 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
5378 | ||
adf52235 | 5379 | ctxt->eflags = kvm_get_rflags(vcpu); |
c8401dda PB |
5380 | ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; |
5381 | ||
adf52235 TY |
5382 | ctxt->eip = kvm_rip_read(vcpu); |
5383 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | |
5384 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | |
42bf549f | 5385 | (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : |
adf52235 TY |
5386 | cs_db ? X86EMUL_MODE_PROT32 : |
5387 | X86EMUL_MODE_PROT16; | |
a584539b | 5388 | BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); |
64d60670 PB |
5389 | BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); |
5390 | BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); | |
adf52235 | 5391 | |
dd856efa | 5392 | init_decode_cache(ctxt); |
7ae441ea | 5393 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
8ec4722d MG |
5394 | } |
5395 | ||
71f9833b | 5396 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
63995653 | 5397 | { |
9d74191a | 5398 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
63995653 MG |
5399 | int ret; |
5400 | ||
5401 | init_emulate_ctxt(vcpu); | |
5402 | ||
9dac77fa AK |
5403 | ctxt->op_bytes = 2; |
5404 | ctxt->ad_bytes = 2; | |
5405 | ctxt->_eip = ctxt->eip + inc_eip; | |
9d74191a | 5406 | ret = emulate_int_real(ctxt, irq); |
63995653 MG |
5407 | |
5408 | if (ret != X86EMUL_CONTINUE) | |
5409 | return EMULATE_FAIL; | |
5410 | ||
9dac77fa | 5411 | ctxt->eip = ctxt->_eip; |
9d74191a TY |
5412 | kvm_rip_write(vcpu, ctxt->eip); |
5413 | kvm_set_rflags(vcpu, ctxt->eflags); | |
63995653 MG |
5414 | |
5415 | if (irq == NMI_VECTOR) | |
7460fb4a | 5416 | vcpu->arch.nmi_pending = 0; |
63995653 MG |
5417 | else |
5418 | vcpu->arch.interrupt.pending = false; | |
5419 | ||
5420 | return EMULATE_DONE; | |
5421 | } | |
5422 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | |
5423 | ||
6d77dbfc GN |
5424 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
5425 | { | |
fc3a9157 JR |
5426 | int r = EMULATE_DONE; |
5427 | ||
6d77dbfc GN |
5428 | ++vcpu->stat.insn_emulation_fail; |
5429 | trace_kvm_emulate_insn_failed(vcpu); | |
a2b9e6c1 | 5430 | if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { |
fc3a9157 JR |
5431 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
5432 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
5433 | vcpu->run->internal.ndata = 0; | |
1f4dcb3b | 5434 | r = EMULATE_USER_EXIT; |
fc3a9157 | 5435 | } |
6d77dbfc | 5436 | kvm_queue_exception(vcpu, UD_VECTOR); |
fc3a9157 JR |
5437 | |
5438 | return r; | |
6d77dbfc GN |
5439 | } |
5440 | ||
93c05d3e | 5441 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, |
991eebf9 GN |
5442 | bool write_fault_to_shadow_pgtable, |
5443 | int emulation_type) | |
a6f177ef | 5444 | { |
95b3cf69 | 5445 | gpa_t gpa = cr2; |
ba049e93 | 5446 | kvm_pfn_t pfn; |
a6f177ef | 5447 | |
991eebf9 GN |
5448 | if (emulation_type & EMULTYPE_NO_REEXECUTE) |
5449 | return false; | |
5450 | ||
95b3cf69 XG |
5451 | if (!vcpu->arch.mmu.direct_map) { |
5452 | /* | |
5453 | * Write permission should be allowed since only | |
5454 | * write access need to be emulated. | |
5455 | */ | |
5456 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
a6f177ef | 5457 | |
95b3cf69 XG |
5458 | /* |
5459 | * If the mapping is invalid in guest, let cpu retry | |
5460 | * it to generate fault. | |
5461 | */ | |
5462 | if (gpa == UNMAPPED_GVA) | |
5463 | return true; | |
5464 | } | |
a6f177ef | 5465 | |
8e3d9d06 XG |
5466 | /* |
5467 | * Do not retry the unhandleable instruction if it faults on the | |
5468 | * readonly host memory, otherwise it will goto a infinite loop: | |
5469 | * retry instruction -> write #PF -> emulation fail -> retry | |
5470 | * instruction -> ... | |
5471 | */ | |
5472 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | |
95b3cf69 XG |
5473 | |
5474 | /* | |
5475 | * If the instruction failed on the error pfn, it can not be fixed, | |
5476 | * report the error to userspace. | |
5477 | */ | |
5478 | if (is_error_noslot_pfn(pfn)) | |
5479 | return false; | |
5480 | ||
5481 | kvm_release_pfn_clean(pfn); | |
5482 | ||
5483 | /* The instructions are well-emulated on direct mmu. */ | |
5484 | if (vcpu->arch.mmu.direct_map) { | |
5485 | unsigned int indirect_shadow_pages; | |
5486 | ||
5487 | spin_lock(&vcpu->kvm->mmu_lock); | |
5488 | indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; | |
5489 | spin_unlock(&vcpu->kvm->mmu_lock); | |
5490 | ||
5491 | if (indirect_shadow_pages) | |
5492 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
5493 | ||
a6f177ef | 5494 | return true; |
8e3d9d06 | 5495 | } |
a6f177ef | 5496 | |
95b3cf69 XG |
5497 | /* |
5498 | * if emulation was due to access to shadowed page table | |
5499 | * and it failed try to unshadow page and re-enter the | |
5500 | * guest to let CPU execute the instruction. | |
5501 | */ | |
5502 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
93c05d3e XG |
5503 | |
5504 | /* | |
5505 | * If the access faults on its page table, it can not | |
5506 | * be fixed by unprotecting shadow page and it should | |
5507 | * be reported to userspace. | |
5508 | */ | |
5509 | return !write_fault_to_shadow_pgtable; | |
a6f177ef GN |
5510 | } |
5511 | ||
1cb3f3ae XG |
5512 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
5513 | unsigned long cr2, int emulation_type) | |
5514 | { | |
5515 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5516 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | |
5517 | ||
5518 | last_retry_eip = vcpu->arch.last_retry_eip; | |
5519 | last_retry_addr = vcpu->arch.last_retry_addr; | |
5520 | ||
5521 | /* | |
5522 | * If the emulation is caused by #PF and it is non-page_table | |
5523 | * writing instruction, it means the VM-EXIT is caused by shadow | |
5524 | * page protected, we can zap the shadow page and retry this | |
5525 | * instruction directly. | |
5526 | * | |
5527 | * Note: if the guest uses a non-page-table modifying instruction | |
5528 | * on the PDE that points to the instruction, then we will unmap | |
5529 | * the instruction and go to an infinite loop. So, we cache the | |
5530 | * last retried eip and the last fault address, if we meet the eip | |
5531 | * and the address again, we can break out of the potential infinite | |
5532 | * loop. | |
5533 | */ | |
5534 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | |
5535 | ||
5536 | if (!(emulation_type & EMULTYPE_RETRY)) | |
5537 | return false; | |
5538 | ||
5539 | if (x86_page_table_writing_insn(ctxt)) | |
5540 | return false; | |
5541 | ||
5542 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | |
5543 | return false; | |
5544 | ||
5545 | vcpu->arch.last_retry_eip = ctxt->eip; | |
5546 | vcpu->arch.last_retry_addr = cr2; | |
5547 | ||
5548 | if (!vcpu->arch.mmu.direct_map) | |
5549 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
5550 | ||
22368028 | 5551 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
1cb3f3ae XG |
5552 | |
5553 | return true; | |
5554 | } | |
5555 | ||
716d51ab GN |
5556 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
5557 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | |
5558 | ||
64d60670 | 5559 | static void kvm_smm_changed(struct kvm_vcpu *vcpu) |
a584539b | 5560 | { |
64d60670 | 5561 | if (!(vcpu->arch.hflags & HF_SMM_MASK)) { |
660a5d51 PB |
5562 | /* This is a good place to trace that we are exiting SMM. */ |
5563 | trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); | |
5564 | ||
c43203ca PB |
5565 | /* Process a latched INIT or SMI, if any. */ |
5566 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
64d60670 | 5567 | } |
699023e2 PB |
5568 | |
5569 | kvm_mmu_reset_context(vcpu); | |
64d60670 PB |
5570 | } |
5571 | ||
5572 | static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) | |
5573 | { | |
5574 | unsigned changed = vcpu->arch.hflags ^ emul_flags; | |
5575 | ||
a584539b | 5576 | vcpu->arch.hflags = emul_flags; |
64d60670 PB |
5577 | |
5578 | if (changed & HF_SMM_MASK) | |
5579 | kvm_smm_changed(vcpu); | |
a584539b PB |
5580 | } |
5581 | ||
4a1e10d5 PB |
5582 | static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, |
5583 | unsigned long *db) | |
5584 | { | |
5585 | u32 dr6 = 0; | |
5586 | int i; | |
5587 | u32 enable, rwlen; | |
5588 | ||
5589 | enable = dr7; | |
5590 | rwlen = dr7 >> 16; | |
5591 | for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) | |
5592 | if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) | |
5593 | dr6 |= (1 << i); | |
5594 | return dr6; | |
5595 | } | |
5596 | ||
c8401dda | 5597 | static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) |
663f4c61 PB |
5598 | { |
5599 | struct kvm_run *kvm_run = vcpu->run; | |
5600 | ||
c8401dda PB |
5601 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
5602 | kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; | |
5603 | kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; | |
5604 | kvm_run->debug.arch.exception = DB_VECTOR; | |
5605 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
5606 | *r = EMULATE_USER_EXIT; | |
5607 | } else { | |
5608 | /* | |
5609 | * "Certain debug exceptions may clear bit 0-3. The | |
5610 | * remaining contents of the DR6 register are never | |
5611 | * cleared by the processor". | |
5612 | */ | |
5613 | vcpu->arch.dr6 &= ~15; | |
5614 | vcpu->arch.dr6 |= DR6_BS | DR6_RTM; | |
5615 | kvm_queue_exception(vcpu, DB_VECTOR); | |
663f4c61 PB |
5616 | } |
5617 | } | |
5618 | ||
6affcbed KH |
5619 | int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
5620 | { | |
5621 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); | |
5622 | int r = EMULATE_DONE; | |
5623 | ||
5624 | kvm_x86_ops->skip_emulated_instruction(vcpu); | |
c8401dda PB |
5625 | |
5626 | /* | |
5627 | * rflags is the old, "raw" value of the flags. The new value has | |
5628 | * not been saved yet. | |
5629 | * | |
5630 | * This is correct even for TF set by the guest, because "the | |
5631 | * processor will not generate this exception after the instruction | |
5632 | * that sets the TF flag". | |
5633 | */ | |
5634 | if (unlikely(rflags & X86_EFLAGS_TF)) | |
5635 | kvm_vcpu_do_singlestep(vcpu, &r); | |
6affcbed KH |
5636 | return r == EMULATE_DONE; |
5637 | } | |
5638 | EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); | |
5639 | ||
4a1e10d5 PB |
5640 | static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) |
5641 | { | |
4a1e10d5 PB |
5642 | if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && |
5643 | (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { | |
82b32774 NA |
5644 | struct kvm_run *kvm_run = vcpu->run; |
5645 | unsigned long eip = kvm_get_linear_rip(vcpu); | |
5646 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
5647 | vcpu->arch.guest_debug_dr7, |
5648 | vcpu->arch.eff_db); | |
5649 | ||
5650 | if (dr6 != 0) { | |
6f43ed01 | 5651 | kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; |
82b32774 | 5652 | kvm_run->debug.arch.pc = eip; |
4a1e10d5 PB |
5653 | kvm_run->debug.arch.exception = DB_VECTOR; |
5654 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
5655 | *r = EMULATE_USER_EXIT; | |
5656 | return true; | |
5657 | } | |
5658 | } | |
5659 | ||
4161a569 NA |
5660 | if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && |
5661 | !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { | |
82b32774 NA |
5662 | unsigned long eip = kvm_get_linear_rip(vcpu); |
5663 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
5664 | vcpu->arch.dr7, |
5665 | vcpu->arch.db); | |
5666 | ||
5667 | if (dr6 != 0) { | |
5668 | vcpu->arch.dr6 &= ~15; | |
6f43ed01 | 5669 | vcpu->arch.dr6 |= dr6 | DR6_RTM; |
4a1e10d5 PB |
5670 | kvm_queue_exception(vcpu, DB_VECTOR); |
5671 | *r = EMULATE_DONE; | |
5672 | return true; | |
5673 | } | |
5674 | } | |
5675 | ||
5676 | return false; | |
5677 | } | |
5678 | ||
51d8b661 AP |
5679 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
5680 | unsigned long cr2, | |
dc25e89e AP |
5681 | int emulation_type, |
5682 | void *insn, | |
5683 | int insn_len) | |
bbd9b64e | 5684 | { |
95cb2295 | 5685 | int r; |
9d74191a | 5686 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
7ae441ea | 5687 | bool writeback = true; |
93c05d3e | 5688 | bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; |
bbd9b64e | 5689 | |
93c05d3e XG |
5690 | /* |
5691 | * Clear write_fault_to_shadow_pgtable here to ensure it is | |
5692 | * never reused. | |
5693 | */ | |
5694 | vcpu->arch.write_fault_to_shadow_pgtable = false; | |
26eef70c | 5695 | kvm_clear_exception_queue(vcpu); |
8d7d8102 | 5696 | |
571008da | 5697 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
8ec4722d | 5698 | init_emulate_ctxt(vcpu); |
4a1e10d5 PB |
5699 | |
5700 | /* | |
5701 | * We will reenter on the same instruction since | |
5702 | * we do not set complete_userspace_io. This does not | |
5703 | * handle watchpoints yet, those would be handled in | |
5704 | * the emulate_ops. | |
5705 | */ | |
5706 | if (kvm_vcpu_check_breakpoint(vcpu, &r)) | |
5707 | return r; | |
5708 | ||
9d74191a TY |
5709 | ctxt->interruptibility = 0; |
5710 | ctxt->have_exception = false; | |
e0ad0b47 | 5711 | ctxt->exception.vector = -1; |
9d74191a | 5712 | ctxt->perm_ok = false; |
bbd9b64e | 5713 | |
b51e974f | 5714 | ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; |
4005996e | 5715 | |
9d74191a | 5716 | r = x86_decode_insn(ctxt, insn, insn_len); |
bbd9b64e | 5717 | |
e46479f8 | 5718 | trace_kvm_emulate_insn_start(vcpu); |
f2b5756b | 5719 | ++vcpu->stat.insn_emulation; |
1d2887e2 | 5720 | if (r != EMULATION_OK) { |
4005996e AK |
5721 | if (emulation_type & EMULTYPE_TRAP_UD) |
5722 | return EMULATE_FAIL; | |
991eebf9 GN |
5723 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
5724 | emulation_type)) | |
bbd9b64e | 5725 | return EMULATE_DONE; |
6ea6e843 PB |
5726 | if (ctxt->have_exception && inject_emulated_exception(vcpu)) |
5727 | return EMULATE_DONE; | |
6d77dbfc GN |
5728 | if (emulation_type & EMULTYPE_SKIP) |
5729 | return EMULATE_FAIL; | |
5730 | return handle_emulation_failure(vcpu); | |
bbd9b64e CO |
5731 | } |
5732 | } | |
5733 | ||
ba8afb6b | 5734 | if (emulation_type & EMULTYPE_SKIP) { |
9dac77fa | 5735 | kvm_rip_write(vcpu, ctxt->_eip); |
bb663c7a NA |
5736 | if (ctxt->eflags & X86_EFLAGS_RF) |
5737 | kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); | |
ba8afb6b GN |
5738 | return EMULATE_DONE; |
5739 | } | |
5740 | ||
1cb3f3ae XG |
5741 | if (retry_instruction(ctxt, cr2, emulation_type)) |
5742 | return EMULATE_DONE; | |
5743 | ||
7ae441ea | 5744 | /* this is needed for vmware backdoor interface to work since it |
4d2179e1 | 5745 | changes registers values during IO operation */ |
7ae441ea GN |
5746 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
5747 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | |
dd856efa | 5748 | emulator_invalidate_register_cache(ctxt); |
7ae441ea | 5749 | } |
4d2179e1 | 5750 | |
5cd21917 | 5751 | restart: |
0f89b207 TL |
5752 | /* Save the faulting GPA (cr2) in the address field */ |
5753 | ctxt->exception.address = cr2; | |
5754 | ||
9d74191a | 5755 | r = x86_emulate_insn(ctxt); |
bbd9b64e | 5756 | |
775fde86 JR |
5757 | if (r == EMULATION_INTERCEPTED) |
5758 | return EMULATE_DONE; | |
5759 | ||
d2ddd1c4 | 5760 | if (r == EMULATION_FAILED) { |
991eebf9 GN |
5761 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
5762 | emulation_type)) | |
c3cd7ffa GN |
5763 | return EMULATE_DONE; |
5764 | ||
6d77dbfc | 5765 | return handle_emulation_failure(vcpu); |
bbd9b64e CO |
5766 | } |
5767 | ||
9d74191a | 5768 | if (ctxt->have_exception) { |
d2ddd1c4 | 5769 | r = EMULATE_DONE; |
ef54bcfe PB |
5770 | if (inject_emulated_exception(vcpu)) |
5771 | return r; | |
d2ddd1c4 | 5772 | } else if (vcpu->arch.pio.count) { |
0912c977 PB |
5773 | if (!vcpu->arch.pio.in) { |
5774 | /* FIXME: return into emulator if single-stepping. */ | |
3457e419 | 5775 | vcpu->arch.pio.count = 0; |
0912c977 | 5776 | } else { |
7ae441ea | 5777 | writeback = false; |
716d51ab GN |
5778 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
5779 | } | |
ac0a48c3 | 5780 | r = EMULATE_USER_EXIT; |
7ae441ea GN |
5781 | } else if (vcpu->mmio_needed) { |
5782 | if (!vcpu->mmio_is_write) | |
5783 | writeback = false; | |
ac0a48c3 | 5784 | r = EMULATE_USER_EXIT; |
716d51ab | 5785 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
7ae441ea | 5786 | } else if (r == EMULATION_RESTART) |
5cd21917 | 5787 | goto restart; |
d2ddd1c4 GN |
5788 | else |
5789 | r = EMULATE_DONE; | |
f850e2e6 | 5790 | |
7ae441ea | 5791 | if (writeback) { |
6addfc42 | 5792 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
9d74191a | 5793 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
7ae441ea | 5794 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
9d74191a | 5795 | kvm_rip_write(vcpu, ctxt->eip); |
c8401dda PB |
5796 | if (r == EMULATE_DONE && |
5797 | (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) | |
5798 | kvm_vcpu_do_singlestep(vcpu, &r); | |
38827dbd NA |
5799 | if (!ctxt->have_exception || |
5800 | exception_type(ctxt->exception.vector) == EXCPT_TRAP) | |
5801 | __kvm_set_rflags(vcpu, ctxt->eflags); | |
6addfc42 PB |
5802 | |
5803 | /* | |
5804 | * For STI, interrupts are shadowed; so KVM_REQ_EVENT will | |
5805 | * do nothing, and it will be requested again as soon as | |
5806 | * the shadow expires. But we still need to check here, | |
5807 | * because POPF has no interrupt shadow. | |
5808 | */ | |
5809 | if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) | |
5810 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7ae441ea GN |
5811 | } else |
5812 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | |
e85d28f8 GN |
5813 | |
5814 | return r; | |
de7d789a | 5815 | } |
51d8b661 | 5816 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); |
de7d789a | 5817 | |
cf8f70bf | 5818 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
de7d789a | 5819 | { |
cf8f70bf | 5820 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
ca1d4a9e AK |
5821 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
5822 | size, port, &val, 1); | |
cf8f70bf | 5823 | /* do not return to emulator after return from userspace */ |
7972995b | 5824 | vcpu->arch.pio.count = 0; |
de7d789a CO |
5825 | return ret; |
5826 | } | |
cf8f70bf | 5827 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
de7d789a | 5828 | |
8370c3d0 TL |
5829 | static int complete_fast_pio_in(struct kvm_vcpu *vcpu) |
5830 | { | |
5831 | unsigned long val; | |
5832 | ||
5833 | /* We should only ever be called with arch.pio.count equal to 1 */ | |
5834 | BUG_ON(vcpu->arch.pio.count != 1); | |
5835 | ||
5836 | /* For size less than 4 we merge, else we zero extend */ | |
5837 | val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) | |
5838 | : 0; | |
5839 | ||
5840 | /* | |
5841 | * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform | |
5842 | * the copy and tracing | |
5843 | */ | |
5844 | emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, | |
5845 | vcpu->arch.pio.port, &val, 1); | |
5846 | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | |
5847 | ||
5848 | return 1; | |
5849 | } | |
5850 | ||
5851 | int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) | |
5852 | { | |
5853 | unsigned long val; | |
5854 | int ret; | |
5855 | ||
5856 | /* For size less than 4 we merge, else we zero extend */ | |
5857 | val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; | |
5858 | ||
5859 | ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, | |
5860 | &val, 1); | |
5861 | if (ret) { | |
5862 | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | |
5863 | return ret; | |
5864 | } | |
5865 | ||
5866 | vcpu->arch.complete_userspace_io = complete_fast_pio_in; | |
5867 | ||
5868 | return 0; | |
5869 | } | |
5870 | EXPORT_SYMBOL_GPL(kvm_fast_pio_in); | |
5871 | ||
251a5fd6 | 5872 | static int kvmclock_cpu_down_prep(unsigned int cpu) |
8cfdc000 | 5873 | { |
0a3aee0d | 5874 | __this_cpu_write(cpu_tsc_khz, 0); |
251a5fd6 | 5875 | return 0; |
8cfdc000 ZA |
5876 | } |
5877 | ||
5878 | static void tsc_khz_changed(void *data) | |
c8076604 | 5879 | { |
8cfdc000 ZA |
5880 | struct cpufreq_freqs *freq = data; |
5881 | unsigned long khz = 0; | |
5882 | ||
5883 | if (data) | |
5884 | khz = freq->new; | |
5885 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
5886 | khz = cpufreq_quick_get(raw_smp_processor_id()); | |
5887 | if (!khz) | |
5888 | khz = tsc_khz; | |
0a3aee0d | 5889 | __this_cpu_write(cpu_tsc_khz, khz); |
c8076604 GH |
5890 | } |
5891 | ||
c8076604 GH |
5892 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
5893 | void *data) | |
5894 | { | |
5895 | struct cpufreq_freqs *freq = data; | |
5896 | struct kvm *kvm; | |
5897 | struct kvm_vcpu *vcpu; | |
5898 | int i, send_ipi = 0; | |
5899 | ||
8cfdc000 ZA |
5900 | /* |
5901 | * We allow guests to temporarily run on slowing clocks, | |
5902 | * provided we notify them after, or to run on accelerating | |
5903 | * clocks, provided we notify them before. Thus time never | |
5904 | * goes backwards. | |
5905 | * | |
5906 | * However, we have a problem. We can't atomically update | |
5907 | * the frequency of a given CPU from this function; it is | |
5908 | * merely a notifier, which can be called from any CPU. | |
5909 | * Changing the TSC frequency at arbitrary points in time | |
5910 | * requires a recomputation of local variables related to | |
5911 | * the TSC for each VCPU. We must flag these local variables | |
5912 | * to be updated and be sure the update takes place with the | |
5913 | * new frequency before any guests proceed. | |
5914 | * | |
5915 | * Unfortunately, the combination of hotplug CPU and frequency | |
5916 | * change creates an intractable locking scenario; the order | |
5917 | * of when these callouts happen is undefined with respect to | |
5918 | * CPU hotplug, and they can race with each other. As such, | |
5919 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | |
5920 | * undefined; you can actually have a CPU frequency change take | |
5921 | * place in between the computation of X and the setting of the | |
5922 | * variable. To protect against this problem, all updates of | |
5923 | * the per_cpu tsc_khz variable are done in an interrupt | |
5924 | * protected IPI, and all callers wishing to update the value | |
5925 | * must wait for a synchronous IPI to complete (which is trivial | |
5926 | * if the caller is on the CPU already). This establishes the | |
5927 | * necessary total order on variable updates. | |
5928 | * | |
5929 | * Note that because a guest time update may take place | |
5930 | * anytime after the setting of the VCPU's request bit, the | |
5931 | * correct TSC value must be set before the request. However, | |
5932 | * to ensure the update actually makes it to any guest which | |
5933 | * starts running in hardware virtualization between the set | |
5934 | * and the acquisition of the spinlock, we must also ping the | |
5935 | * CPU after setting the request bit. | |
5936 | * | |
5937 | */ | |
5938 | ||
c8076604 GH |
5939 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
5940 | return 0; | |
5941 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | |
5942 | return 0; | |
8cfdc000 ZA |
5943 | |
5944 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | |
c8076604 | 5945 | |
2f303b74 | 5946 | spin_lock(&kvm_lock); |
c8076604 | 5947 | list_for_each_entry(kvm, &vm_list, vm_list) { |
988a2cae | 5948 | kvm_for_each_vcpu(i, vcpu, kvm) { |
c8076604 GH |
5949 | if (vcpu->cpu != freq->cpu) |
5950 | continue; | |
c285545f | 5951 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
c8076604 | 5952 | if (vcpu->cpu != smp_processor_id()) |
8cfdc000 | 5953 | send_ipi = 1; |
c8076604 GH |
5954 | } |
5955 | } | |
2f303b74 | 5956 | spin_unlock(&kvm_lock); |
c8076604 GH |
5957 | |
5958 | if (freq->old < freq->new && send_ipi) { | |
5959 | /* | |
5960 | * We upscale the frequency. Must make the guest | |
5961 | * doesn't see old kvmclock values while running with | |
5962 | * the new frequency, otherwise we risk the guest sees | |
5963 | * time go backwards. | |
5964 | * | |
5965 | * In case we update the frequency for another cpu | |
5966 | * (which might be in guest context) send an interrupt | |
5967 | * to kick the cpu out of guest context. Next time | |
5968 | * guest context is entered kvmclock will be updated, | |
5969 | * so the guest will not see stale values. | |
5970 | */ | |
8cfdc000 | 5971 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
c8076604 GH |
5972 | } |
5973 | return 0; | |
5974 | } | |
5975 | ||
5976 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | |
8cfdc000 ZA |
5977 | .notifier_call = kvmclock_cpufreq_notifier |
5978 | }; | |
5979 | ||
251a5fd6 | 5980 | static int kvmclock_cpu_online(unsigned int cpu) |
8cfdc000 | 5981 | { |
251a5fd6 SAS |
5982 | tsc_khz_changed(NULL); |
5983 | return 0; | |
8cfdc000 ZA |
5984 | } |
5985 | ||
b820cc0c ZA |
5986 | static void kvm_timer_init(void) |
5987 | { | |
c285545f | 5988 | max_tsc_khz = tsc_khz; |
460dd42e | 5989 | |
b820cc0c | 5990 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
c285545f ZA |
5991 | #ifdef CONFIG_CPU_FREQ |
5992 | struct cpufreq_policy policy; | |
758f588d BP |
5993 | int cpu; |
5994 | ||
c285545f | 5995 | memset(&policy, 0, sizeof(policy)); |
3e26f230 AK |
5996 | cpu = get_cpu(); |
5997 | cpufreq_get_policy(&policy, cpu); | |
c285545f ZA |
5998 | if (policy.cpuinfo.max_freq) |
5999 | max_tsc_khz = policy.cpuinfo.max_freq; | |
3e26f230 | 6000 | put_cpu(); |
c285545f | 6001 | #endif |
b820cc0c ZA |
6002 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
6003 | CPUFREQ_TRANSITION_NOTIFIER); | |
6004 | } | |
c285545f | 6005 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
460dd42e | 6006 | |
73c1b41e | 6007 | cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", |
251a5fd6 | 6008 | kvmclock_cpu_online, kvmclock_cpu_down_prep); |
b820cc0c ZA |
6009 | } |
6010 | ||
ff9d07a0 ZY |
6011 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
6012 | ||
f5132b01 | 6013 | int kvm_is_in_guest(void) |
ff9d07a0 | 6014 | { |
086c9855 | 6015 | return __this_cpu_read(current_vcpu) != NULL; |
ff9d07a0 ZY |
6016 | } |
6017 | ||
6018 | static int kvm_is_user_mode(void) | |
6019 | { | |
6020 | int user_mode = 3; | |
dcf46b94 | 6021 | |
086c9855 AS |
6022 | if (__this_cpu_read(current_vcpu)) |
6023 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 6024 | |
ff9d07a0 ZY |
6025 | return user_mode != 0; |
6026 | } | |
6027 | ||
6028 | static unsigned long kvm_get_guest_ip(void) | |
6029 | { | |
6030 | unsigned long ip = 0; | |
dcf46b94 | 6031 | |
086c9855 AS |
6032 | if (__this_cpu_read(current_vcpu)) |
6033 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 6034 | |
ff9d07a0 ZY |
6035 | return ip; |
6036 | } | |
6037 | ||
6038 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | |
6039 | .is_in_guest = kvm_is_in_guest, | |
6040 | .is_user_mode = kvm_is_user_mode, | |
6041 | .get_guest_ip = kvm_get_guest_ip, | |
6042 | }; | |
6043 | ||
6044 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) | |
6045 | { | |
086c9855 | 6046 | __this_cpu_write(current_vcpu, vcpu); |
ff9d07a0 ZY |
6047 | } |
6048 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); | |
6049 | ||
6050 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) | |
6051 | { | |
086c9855 | 6052 | __this_cpu_write(current_vcpu, NULL); |
ff9d07a0 ZY |
6053 | } |
6054 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); | |
6055 | ||
ce88decf XG |
6056 | static void kvm_set_mmio_spte_mask(void) |
6057 | { | |
6058 | u64 mask; | |
6059 | int maxphyaddr = boot_cpu_data.x86_phys_bits; | |
6060 | ||
6061 | /* | |
6062 | * Set the reserved bits and the present bit of an paging-structure | |
6063 | * entry to generate page fault with PFER.RSV = 1. | |
6064 | */ | |
885032b9 | 6065 | /* Mask the reserved physical address bits. */ |
d1431483 | 6066 | mask = rsvd_bits(maxphyaddr, 51); |
885032b9 | 6067 | |
885032b9 | 6068 | /* Set the present bit. */ |
ce88decf XG |
6069 | mask |= 1ull; |
6070 | ||
6071 | #ifdef CONFIG_X86_64 | |
6072 | /* | |
6073 | * If reserved bit is not supported, clear the present bit to disable | |
6074 | * mmio page fault. | |
6075 | */ | |
6076 | if (maxphyaddr == 52) | |
6077 | mask &= ~1ull; | |
6078 | #endif | |
6079 | ||
dcdca5fe | 6080 | kvm_mmu_set_mmio_spte_mask(mask, mask); |
ce88decf XG |
6081 | } |
6082 | ||
16e8d74d MT |
6083 | #ifdef CONFIG_X86_64 |
6084 | static void pvclock_gtod_update_fn(struct work_struct *work) | |
6085 | { | |
d828199e MT |
6086 | struct kvm *kvm; |
6087 | ||
6088 | struct kvm_vcpu *vcpu; | |
6089 | int i; | |
6090 | ||
2f303b74 | 6091 | spin_lock(&kvm_lock); |
d828199e MT |
6092 | list_for_each_entry(kvm, &vm_list, vm_list) |
6093 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 6094 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
d828199e | 6095 | atomic_set(&kvm_guest_has_master_clock, 0); |
2f303b74 | 6096 | spin_unlock(&kvm_lock); |
16e8d74d MT |
6097 | } |
6098 | ||
6099 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | |
6100 | ||
6101 | /* | |
6102 | * Notification about pvclock gtod data update. | |
6103 | */ | |
6104 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | |
6105 | void *priv) | |
6106 | { | |
6107 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
6108 | struct timekeeper *tk = priv; | |
6109 | ||
6110 | update_pvclock_gtod(tk); | |
6111 | ||
6112 | /* disable master clock if host does not trust, or does not | |
6113 | * use, TSC clocksource | |
6114 | */ | |
6115 | if (gtod->clock.vclock_mode != VCLOCK_TSC && | |
6116 | atomic_read(&kvm_guest_has_master_clock) != 0) | |
6117 | queue_work(system_long_wq, &pvclock_gtod_work); | |
6118 | ||
6119 | return 0; | |
6120 | } | |
6121 | ||
6122 | static struct notifier_block pvclock_gtod_notifier = { | |
6123 | .notifier_call = pvclock_gtod_notify, | |
6124 | }; | |
6125 | #endif | |
6126 | ||
f8c16bba | 6127 | int kvm_arch_init(void *opaque) |
043405e1 | 6128 | { |
b820cc0c | 6129 | int r; |
6b61edf7 | 6130 | struct kvm_x86_ops *ops = opaque; |
f8c16bba | 6131 | |
f8c16bba ZX |
6132 | if (kvm_x86_ops) { |
6133 | printk(KERN_ERR "kvm: already loaded the other module\n"); | |
56c6d28a ZX |
6134 | r = -EEXIST; |
6135 | goto out; | |
f8c16bba ZX |
6136 | } |
6137 | ||
6138 | if (!ops->cpu_has_kvm_support()) { | |
6139 | printk(KERN_ERR "kvm: no hardware support\n"); | |
56c6d28a ZX |
6140 | r = -EOPNOTSUPP; |
6141 | goto out; | |
f8c16bba ZX |
6142 | } |
6143 | if (ops->disabled_by_bios()) { | |
6144 | printk(KERN_ERR "kvm: disabled by bios\n"); | |
56c6d28a ZX |
6145 | r = -EOPNOTSUPP; |
6146 | goto out; | |
f8c16bba ZX |
6147 | } |
6148 | ||
013f6a5d MT |
6149 | r = -ENOMEM; |
6150 | shared_msrs = alloc_percpu(struct kvm_shared_msrs); | |
6151 | if (!shared_msrs) { | |
6152 | printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); | |
6153 | goto out; | |
6154 | } | |
6155 | ||
97db56ce AK |
6156 | r = kvm_mmu_module_init(); |
6157 | if (r) | |
013f6a5d | 6158 | goto out_free_percpu; |
97db56ce | 6159 | |
ce88decf | 6160 | kvm_set_mmio_spte_mask(); |
97db56ce | 6161 | |
f8c16bba | 6162 | kvm_x86_ops = ops; |
920c8377 | 6163 | |
7b52345e | 6164 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
ffb128c8 | 6165 | PT_DIRTY_MASK, PT64_NX_MASK, 0, |
d0ec49d4 | 6166 | PT_PRESENT_MASK, 0, sme_me_mask); |
b820cc0c | 6167 | kvm_timer_init(); |
c8076604 | 6168 | |
ff9d07a0 ZY |
6169 | perf_register_guest_info_callbacks(&kvm_guest_cbs); |
6170 | ||
d366bf7e | 6171 | if (boot_cpu_has(X86_FEATURE_XSAVE)) |
2acf923e DC |
6172 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
6173 | ||
c5cc421b | 6174 | kvm_lapic_init(); |
16e8d74d MT |
6175 | #ifdef CONFIG_X86_64 |
6176 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | |
6177 | #endif | |
6178 | ||
f8c16bba | 6179 | return 0; |
56c6d28a | 6180 | |
013f6a5d MT |
6181 | out_free_percpu: |
6182 | free_percpu(shared_msrs); | |
56c6d28a | 6183 | out: |
56c6d28a | 6184 | return r; |
043405e1 | 6185 | } |
8776e519 | 6186 | |
f8c16bba ZX |
6187 | void kvm_arch_exit(void) |
6188 | { | |
cef84c30 | 6189 | kvm_lapic_exit(); |
ff9d07a0 ZY |
6190 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
6191 | ||
888d256e JK |
6192 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
6193 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | |
6194 | CPUFREQ_TRANSITION_NOTIFIER); | |
251a5fd6 | 6195 | cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); |
16e8d74d MT |
6196 | #ifdef CONFIG_X86_64 |
6197 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | |
6198 | #endif | |
f8c16bba | 6199 | kvm_x86_ops = NULL; |
56c6d28a | 6200 | kvm_mmu_module_exit(); |
013f6a5d | 6201 | free_percpu(shared_msrs); |
56c6d28a | 6202 | } |
f8c16bba | 6203 | |
5cb56059 | 6204 | int kvm_vcpu_halt(struct kvm_vcpu *vcpu) |
8776e519 HB |
6205 | { |
6206 | ++vcpu->stat.halt_exits; | |
35754c98 | 6207 | if (lapic_in_kernel(vcpu)) { |
a4535290 | 6208 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
8776e519 HB |
6209 | return 1; |
6210 | } else { | |
6211 | vcpu->run->exit_reason = KVM_EXIT_HLT; | |
6212 | return 0; | |
6213 | } | |
6214 | } | |
5cb56059 JS |
6215 | EXPORT_SYMBOL_GPL(kvm_vcpu_halt); |
6216 | ||
6217 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | |
6218 | { | |
6affcbed KH |
6219 | int ret = kvm_skip_emulated_instruction(vcpu); |
6220 | /* | |
6221 | * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered | |
6222 | * KVM_EXIT_DEBUG here. | |
6223 | */ | |
6224 | return kvm_vcpu_halt(vcpu) && ret; | |
5cb56059 | 6225 | } |
8776e519 HB |
6226 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
6227 | ||
8ef81a9a | 6228 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
6229 | static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, |
6230 | unsigned long clock_type) | |
6231 | { | |
6232 | struct kvm_clock_pairing clock_pairing; | |
6233 | struct timespec ts; | |
80fbd89c | 6234 | u64 cycle; |
55dd00a7 MT |
6235 | int ret; |
6236 | ||
6237 | if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) | |
6238 | return -KVM_EOPNOTSUPP; | |
6239 | ||
6240 | if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) | |
6241 | return -KVM_EOPNOTSUPP; | |
6242 | ||
6243 | clock_pairing.sec = ts.tv_sec; | |
6244 | clock_pairing.nsec = ts.tv_nsec; | |
6245 | clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); | |
6246 | clock_pairing.flags = 0; | |
6247 | ||
6248 | ret = 0; | |
6249 | if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, | |
6250 | sizeof(struct kvm_clock_pairing))) | |
6251 | ret = -KVM_EFAULT; | |
6252 | ||
6253 | return ret; | |
6254 | } | |
8ef81a9a | 6255 | #endif |
55dd00a7 | 6256 | |
6aef266c SV |
6257 | /* |
6258 | * kvm_pv_kick_cpu_op: Kick a vcpu. | |
6259 | * | |
6260 | * @apicid - apicid of vcpu to be kicked. | |
6261 | */ | |
6262 | static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) | |
6263 | { | |
24d2166b | 6264 | struct kvm_lapic_irq lapic_irq; |
6aef266c | 6265 | |
24d2166b R |
6266 | lapic_irq.shorthand = 0; |
6267 | lapic_irq.dest_mode = 0; | |
ebd28fcb | 6268 | lapic_irq.level = 0; |
24d2166b | 6269 | lapic_irq.dest_id = apicid; |
93bbf0b8 | 6270 | lapic_irq.msi_redir_hint = false; |
6aef266c | 6271 | |
24d2166b | 6272 | lapic_irq.delivery_mode = APIC_DM_REMRD; |
795a149e | 6273 | kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); |
6aef266c SV |
6274 | } |
6275 | ||
d62caabb AS |
6276 | void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) |
6277 | { | |
6278 | vcpu->arch.apicv_active = false; | |
6279 | kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); | |
6280 | } | |
6281 | ||
8776e519 HB |
6282 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
6283 | { | |
6284 | unsigned long nr, a0, a1, a2, a3, ret; | |
6affcbed | 6285 | int op_64_bit, r; |
8776e519 | 6286 | |
6affcbed | 6287 | r = kvm_skip_emulated_instruction(vcpu); |
5cb56059 | 6288 | |
55cd8e5a GN |
6289 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
6290 | return kvm_hv_hypercall(vcpu); | |
6291 | ||
5fdbf976 MT |
6292 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
6293 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
6294 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
6295 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
6296 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
8776e519 | 6297 | |
229456fc | 6298 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
2714d1d3 | 6299 | |
a449c7aa NA |
6300 | op_64_bit = is_64_bit_mode(vcpu); |
6301 | if (!op_64_bit) { | |
8776e519 HB |
6302 | nr &= 0xFFFFFFFF; |
6303 | a0 &= 0xFFFFFFFF; | |
6304 | a1 &= 0xFFFFFFFF; | |
6305 | a2 &= 0xFFFFFFFF; | |
6306 | a3 &= 0xFFFFFFFF; | |
6307 | } | |
6308 | ||
07708c4a JK |
6309 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
6310 | ret = -KVM_EPERM; | |
6311 | goto out; | |
6312 | } | |
6313 | ||
8776e519 | 6314 | switch (nr) { |
b93463aa AK |
6315 | case KVM_HC_VAPIC_POLL_IRQ: |
6316 | ret = 0; | |
6317 | break; | |
6aef266c SV |
6318 | case KVM_HC_KICK_CPU: |
6319 | kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); | |
6320 | ret = 0; | |
6321 | break; | |
8ef81a9a | 6322 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
6323 | case KVM_HC_CLOCK_PAIRING: |
6324 | ret = kvm_pv_clock_pairing(vcpu, a0, a1); | |
6325 | break; | |
8ef81a9a | 6326 | #endif |
8776e519 HB |
6327 | default: |
6328 | ret = -KVM_ENOSYS; | |
6329 | break; | |
6330 | } | |
07708c4a | 6331 | out: |
a449c7aa NA |
6332 | if (!op_64_bit) |
6333 | ret = (u32)ret; | |
5fdbf976 | 6334 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
f11c3a8d | 6335 | ++vcpu->stat.hypercalls; |
2f333bcb | 6336 | return r; |
8776e519 HB |
6337 | } |
6338 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | |
6339 | ||
b6785def | 6340 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
8776e519 | 6341 | { |
d6aa1000 | 6342 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8776e519 | 6343 | char instruction[3]; |
5fdbf976 | 6344 | unsigned long rip = kvm_rip_read(vcpu); |
8776e519 | 6345 | |
8776e519 | 6346 | kvm_x86_ops->patch_hypercall(vcpu, instruction); |
8776e519 | 6347 | |
ce2e852e DV |
6348 | return emulator_write_emulated(ctxt, rip, instruction, 3, |
6349 | &ctxt->exception); | |
8776e519 HB |
6350 | } |
6351 | ||
851ba692 | 6352 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
b6c7a5dc | 6353 | { |
782d422b MG |
6354 | return vcpu->run->request_interrupt_window && |
6355 | likely(!pic_in_kernel(vcpu->kvm)); | |
b6c7a5dc HB |
6356 | } |
6357 | ||
851ba692 | 6358 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
b6c7a5dc | 6359 | { |
851ba692 AK |
6360 | struct kvm_run *kvm_run = vcpu->run; |
6361 | ||
91586a3b | 6362 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
f077825a | 6363 | kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; |
2d3ad1f4 | 6364 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
b6c7a5dc | 6365 | kvm_run->apic_base = kvm_get_apic_base(vcpu); |
127a457a MG |
6366 | kvm_run->ready_for_interrupt_injection = |
6367 | pic_in_kernel(vcpu->kvm) || | |
782d422b | 6368 | kvm_vcpu_ready_for_interrupt_injection(vcpu); |
b6c7a5dc HB |
6369 | } |
6370 | ||
95ba8273 GN |
6371 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
6372 | { | |
6373 | int max_irr, tpr; | |
6374 | ||
6375 | if (!kvm_x86_ops->update_cr8_intercept) | |
6376 | return; | |
6377 | ||
bce87cce | 6378 | if (!lapic_in_kernel(vcpu)) |
88c808fd AK |
6379 | return; |
6380 | ||
d62caabb AS |
6381 | if (vcpu->arch.apicv_active) |
6382 | return; | |
6383 | ||
8db3baa2 GN |
6384 | if (!vcpu->arch.apic->vapic_addr) |
6385 | max_irr = kvm_lapic_find_highest_irr(vcpu); | |
6386 | else | |
6387 | max_irr = -1; | |
95ba8273 GN |
6388 | |
6389 | if (max_irr != -1) | |
6390 | max_irr >>= 4; | |
6391 | ||
6392 | tpr = kvm_lapic_get_cr8(vcpu); | |
6393 | ||
6394 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | |
6395 | } | |
6396 | ||
b6b8a145 | 6397 | static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) |
95ba8273 | 6398 | { |
b6b8a145 JK |
6399 | int r; |
6400 | ||
95ba8273 | 6401 | /* try to reinject previous events if any */ |
664f8e26 WL |
6402 | if (vcpu->arch.exception.injected) { |
6403 | kvm_x86_ops->queue_exception(vcpu); | |
6404 | return 0; | |
6405 | } | |
6406 | ||
6407 | /* | |
6408 | * Exceptions must be injected immediately, or the exception | |
6409 | * frame will have the address of the NMI or interrupt handler. | |
6410 | */ | |
6411 | if (!vcpu->arch.exception.pending) { | |
6412 | if (vcpu->arch.nmi_injected) { | |
6413 | kvm_x86_ops->set_nmi(vcpu); | |
6414 | return 0; | |
6415 | } | |
6416 | ||
6417 | if (vcpu->arch.interrupt.pending) { | |
6418 | kvm_x86_ops->set_irq(vcpu); | |
6419 | return 0; | |
6420 | } | |
6421 | } | |
6422 | ||
6423 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { | |
6424 | r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); | |
6425 | if (r != 0) | |
6426 | return r; | |
6427 | } | |
6428 | ||
6429 | /* try to inject new event if pending */ | |
b59bb7bd | 6430 | if (vcpu->arch.exception.pending) { |
5c1c85d0 AK |
6431 | trace_kvm_inj_exception(vcpu->arch.exception.nr, |
6432 | vcpu->arch.exception.has_error_code, | |
6433 | vcpu->arch.exception.error_code); | |
d6e8c854 | 6434 | |
664f8e26 WL |
6435 | vcpu->arch.exception.pending = false; |
6436 | vcpu->arch.exception.injected = true; | |
6437 | ||
d6e8c854 NA |
6438 | if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) |
6439 | __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | | |
6440 | X86_EFLAGS_RF); | |
6441 | ||
6bdf0662 NA |
6442 | if (vcpu->arch.exception.nr == DB_VECTOR && |
6443 | (vcpu->arch.dr7 & DR7_GD)) { | |
6444 | vcpu->arch.dr7 &= ~DR7_GD; | |
6445 | kvm_update_dr7(vcpu); | |
6446 | } | |
6447 | ||
cfcd20e5 | 6448 | kvm_x86_ops->queue_exception(vcpu); |
72d7b374 | 6449 | } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) { |
c43203ca | 6450 | vcpu->arch.smi_pending = false; |
ee2cd4b7 | 6451 | enter_smm(vcpu); |
c43203ca | 6452 | } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { |
321c5658 YS |
6453 | --vcpu->arch.nmi_pending; |
6454 | vcpu->arch.nmi_injected = true; | |
6455 | kvm_x86_ops->set_nmi(vcpu); | |
c7c9c56c | 6456 | } else if (kvm_cpu_has_injectable_intr(vcpu)) { |
9242b5b6 BD |
6457 | /* |
6458 | * Because interrupts can be injected asynchronously, we are | |
6459 | * calling check_nested_events again here to avoid a race condition. | |
6460 | * See https://lkml.org/lkml/2014/7/2/60 for discussion about this | |
6461 | * proposal and current concerns. Perhaps we should be setting | |
6462 | * KVM_REQ_EVENT only on certain events and not unconditionally? | |
6463 | */ | |
6464 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { | |
6465 | r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); | |
6466 | if (r != 0) | |
6467 | return r; | |
6468 | } | |
95ba8273 | 6469 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
66fd3f7f GN |
6470 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
6471 | false); | |
6472 | kvm_x86_ops->set_irq(vcpu); | |
95ba8273 GN |
6473 | } |
6474 | } | |
ee2cd4b7 | 6475 | |
b6b8a145 | 6476 | return 0; |
95ba8273 GN |
6477 | } |
6478 | ||
7460fb4a AK |
6479 | static void process_nmi(struct kvm_vcpu *vcpu) |
6480 | { | |
6481 | unsigned limit = 2; | |
6482 | ||
6483 | /* | |
6484 | * x86 is limited to one NMI running, and one NMI pending after it. | |
6485 | * If an NMI is already in progress, limit further NMIs to just one. | |
6486 | * Otherwise, allow two (and we'll inject the first one immediately). | |
6487 | */ | |
6488 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | |
6489 | limit = 1; | |
6490 | ||
6491 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | |
6492 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | |
6493 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
6494 | } | |
6495 | ||
ee2cd4b7 | 6496 | static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) |
660a5d51 PB |
6497 | { |
6498 | u32 flags = 0; | |
6499 | flags |= seg->g << 23; | |
6500 | flags |= seg->db << 22; | |
6501 | flags |= seg->l << 21; | |
6502 | flags |= seg->avl << 20; | |
6503 | flags |= seg->present << 15; | |
6504 | flags |= seg->dpl << 13; | |
6505 | flags |= seg->s << 12; | |
6506 | flags |= seg->type << 8; | |
6507 | return flags; | |
6508 | } | |
6509 | ||
ee2cd4b7 | 6510 | static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) |
660a5d51 PB |
6511 | { |
6512 | struct kvm_segment seg; | |
6513 | int offset; | |
6514 | ||
6515 | kvm_get_segment(vcpu, &seg, n); | |
6516 | put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); | |
6517 | ||
6518 | if (n < 3) | |
6519 | offset = 0x7f84 + n * 12; | |
6520 | else | |
6521 | offset = 0x7f2c + (n - 3) * 12; | |
6522 | ||
6523 | put_smstate(u32, buf, offset + 8, seg.base); | |
6524 | put_smstate(u32, buf, offset + 4, seg.limit); | |
ee2cd4b7 | 6525 | put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
6526 | } |
6527 | ||
efbb288a | 6528 | #ifdef CONFIG_X86_64 |
ee2cd4b7 | 6529 | static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) |
660a5d51 PB |
6530 | { |
6531 | struct kvm_segment seg; | |
6532 | int offset; | |
6533 | u16 flags; | |
6534 | ||
6535 | kvm_get_segment(vcpu, &seg, n); | |
6536 | offset = 0x7e00 + n * 16; | |
6537 | ||
ee2cd4b7 | 6538 | flags = enter_smm_get_segment_flags(&seg) >> 8; |
660a5d51 PB |
6539 | put_smstate(u16, buf, offset, seg.selector); |
6540 | put_smstate(u16, buf, offset + 2, flags); | |
6541 | put_smstate(u32, buf, offset + 4, seg.limit); | |
6542 | put_smstate(u64, buf, offset + 8, seg.base); | |
6543 | } | |
efbb288a | 6544 | #endif |
660a5d51 | 6545 | |
ee2cd4b7 | 6546 | static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) |
660a5d51 PB |
6547 | { |
6548 | struct desc_ptr dt; | |
6549 | struct kvm_segment seg; | |
6550 | unsigned long val; | |
6551 | int i; | |
6552 | ||
6553 | put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); | |
6554 | put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); | |
6555 | put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); | |
6556 | put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); | |
6557 | ||
6558 | for (i = 0; i < 8; i++) | |
6559 | put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); | |
6560 | ||
6561 | kvm_get_dr(vcpu, 6, &val); | |
6562 | put_smstate(u32, buf, 0x7fcc, (u32)val); | |
6563 | kvm_get_dr(vcpu, 7, &val); | |
6564 | put_smstate(u32, buf, 0x7fc8, (u32)val); | |
6565 | ||
6566 | kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); | |
6567 | put_smstate(u32, buf, 0x7fc4, seg.selector); | |
6568 | put_smstate(u32, buf, 0x7f64, seg.base); | |
6569 | put_smstate(u32, buf, 0x7f60, seg.limit); | |
ee2cd4b7 | 6570 | put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
6571 | |
6572 | kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); | |
6573 | put_smstate(u32, buf, 0x7fc0, seg.selector); | |
6574 | put_smstate(u32, buf, 0x7f80, seg.base); | |
6575 | put_smstate(u32, buf, 0x7f7c, seg.limit); | |
ee2cd4b7 | 6576 | put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
6577 | |
6578 | kvm_x86_ops->get_gdt(vcpu, &dt); | |
6579 | put_smstate(u32, buf, 0x7f74, dt.address); | |
6580 | put_smstate(u32, buf, 0x7f70, dt.size); | |
6581 | ||
6582 | kvm_x86_ops->get_idt(vcpu, &dt); | |
6583 | put_smstate(u32, buf, 0x7f58, dt.address); | |
6584 | put_smstate(u32, buf, 0x7f54, dt.size); | |
6585 | ||
6586 | for (i = 0; i < 6; i++) | |
ee2cd4b7 | 6587 | enter_smm_save_seg_32(vcpu, buf, i); |
660a5d51 PB |
6588 | |
6589 | put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); | |
6590 | ||
6591 | /* revision id */ | |
6592 | put_smstate(u32, buf, 0x7efc, 0x00020000); | |
6593 | put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); | |
6594 | } | |
6595 | ||
ee2cd4b7 | 6596 | static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) |
660a5d51 PB |
6597 | { |
6598 | #ifdef CONFIG_X86_64 | |
6599 | struct desc_ptr dt; | |
6600 | struct kvm_segment seg; | |
6601 | unsigned long val; | |
6602 | int i; | |
6603 | ||
6604 | for (i = 0; i < 16; i++) | |
6605 | put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); | |
6606 | ||
6607 | put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); | |
6608 | put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); | |
6609 | ||
6610 | kvm_get_dr(vcpu, 6, &val); | |
6611 | put_smstate(u64, buf, 0x7f68, val); | |
6612 | kvm_get_dr(vcpu, 7, &val); | |
6613 | put_smstate(u64, buf, 0x7f60, val); | |
6614 | ||
6615 | put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); | |
6616 | put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); | |
6617 | put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); | |
6618 | ||
6619 | put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); | |
6620 | ||
6621 | /* revision id */ | |
6622 | put_smstate(u32, buf, 0x7efc, 0x00020064); | |
6623 | ||
6624 | put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); | |
6625 | ||
6626 | kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); | |
6627 | put_smstate(u16, buf, 0x7e90, seg.selector); | |
ee2cd4b7 | 6628 | put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); |
660a5d51 PB |
6629 | put_smstate(u32, buf, 0x7e94, seg.limit); |
6630 | put_smstate(u64, buf, 0x7e98, seg.base); | |
6631 | ||
6632 | kvm_x86_ops->get_idt(vcpu, &dt); | |
6633 | put_smstate(u32, buf, 0x7e84, dt.size); | |
6634 | put_smstate(u64, buf, 0x7e88, dt.address); | |
6635 | ||
6636 | kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); | |
6637 | put_smstate(u16, buf, 0x7e70, seg.selector); | |
ee2cd4b7 | 6638 | put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); |
660a5d51 PB |
6639 | put_smstate(u32, buf, 0x7e74, seg.limit); |
6640 | put_smstate(u64, buf, 0x7e78, seg.base); | |
6641 | ||
6642 | kvm_x86_ops->get_gdt(vcpu, &dt); | |
6643 | put_smstate(u32, buf, 0x7e64, dt.size); | |
6644 | put_smstate(u64, buf, 0x7e68, dt.address); | |
6645 | ||
6646 | for (i = 0; i < 6; i++) | |
ee2cd4b7 | 6647 | enter_smm_save_seg_64(vcpu, buf, i); |
660a5d51 PB |
6648 | #else |
6649 | WARN_ON_ONCE(1); | |
6650 | #endif | |
6651 | } | |
6652 | ||
ee2cd4b7 | 6653 | static void enter_smm(struct kvm_vcpu *vcpu) |
64d60670 | 6654 | { |
660a5d51 | 6655 | struct kvm_segment cs, ds; |
18c3626e | 6656 | struct desc_ptr dt; |
660a5d51 PB |
6657 | char buf[512]; |
6658 | u32 cr0; | |
6659 | ||
660a5d51 | 6660 | trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); |
660a5d51 | 6661 | memset(buf, 0, 512); |
d6321d49 | 6662 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
ee2cd4b7 | 6663 | enter_smm_save_state_64(vcpu, buf); |
660a5d51 | 6664 | else |
ee2cd4b7 | 6665 | enter_smm_save_state_32(vcpu, buf); |
660a5d51 | 6666 | |
0234bf88 LP |
6667 | /* |
6668 | * Give pre_enter_smm() a chance to make ISA-specific changes to the | |
6669 | * vCPU state (e.g. leave guest mode) after we've saved the state into | |
6670 | * the SMM state-save area. | |
6671 | */ | |
6672 | kvm_x86_ops->pre_enter_smm(vcpu, buf); | |
6673 | ||
6674 | vcpu->arch.hflags |= HF_SMM_MASK; | |
54bf36aa | 6675 | kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); |
660a5d51 PB |
6676 | |
6677 | if (kvm_x86_ops->get_nmi_mask(vcpu)) | |
6678 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
6679 | else | |
6680 | kvm_x86_ops->set_nmi_mask(vcpu, true); | |
6681 | ||
6682 | kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); | |
6683 | kvm_rip_write(vcpu, 0x8000); | |
6684 | ||
6685 | cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); | |
6686 | kvm_x86_ops->set_cr0(vcpu, cr0); | |
6687 | vcpu->arch.cr0 = cr0; | |
6688 | ||
6689 | kvm_x86_ops->set_cr4(vcpu, 0); | |
6690 | ||
18c3626e PB |
6691 | /* Undocumented: IDT limit is set to zero on entry to SMM. */ |
6692 | dt.address = dt.size = 0; | |
6693 | kvm_x86_ops->set_idt(vcpu, &dt); | |
6694 | ||
660a5d51 PB |
6695 | __kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
6696 | ||
6697 | cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; | |
6698 | cs.base = vcpu->arch.smbase; | |
6699 | ||
6700 | ds.selector = 0; | |
6701 | ds.base = 0; | |
6702 | ||
6703 | cs.limit = ds.limit = 0xffffffff; | |
6704 | cs.type = ds.type = 0x3; | |
6705 | cs.dpl = ds.dpl = 0; | |
6706 | cs.db = ds.db = 0; | |
6707 | cs.s = ds.s = 1; | |
6708 | cs.l = ds.l = 0; | |
6709 | cs.g = ds.g = 1; | |
6710 | cs.avl = ds.avl = 0; | |
6711 | cs.present = ds.present = 1; | |
6712 | cs.unusable = ds.unusable = 0; | |
6713 | cs.padding = ds.padding = 0; | |
6714 | ||
6715 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
6716 | kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); | |
6717 | kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); | |
6718 | kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); | |
6719 | kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); | |
6720 | kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); | |
6721 | ||
d6321d49 | 6722 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
660a5d51 PB |
6723 | kvm_x86_ops->set_efer(vcpu, 0); |
6724 | ||
6725 | kvm_update_cpuid(vcpu); | |
6726 | kvm_mmu_reset_context(vcpu); | |
64d60670 PB |
6727 | } |
6728 | ||
ee2cd4b7 | 6729 | static void process_smi(struct kvm_vcpu *vcpu) |
c43203ca PB |
6730 | { |
6731 | vcpu->arch.smi_pending = true; | |
6732 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
6733 | } | |
6734 | ||
2860c4b1 PB |
6735 | void kvm_make_scan_ioapic_request(struct kvm *kvm) |
6736 | { | |
6737 | kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); | |
6738 | } | |
6739 | ||
3d81bc7e | 6740 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
c7c9c56c | 6741 | { |
5c919412 AS |
6742 | u64 eoi_exit_bitmap[4]; |
6743 | ||
3d81bc7e YZ |
6744 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
6745 | return; | |
c7c9c56c | 6746 | |
6308630b | 6747 | bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); |
c7c9c56c | 6748 | |
b053b2ae | 6749 | if (irqchip_split(vcpu->kvm)) |
6308630b | 6750 | kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); |
db2bdcbb | 6751 | else { |
76dfafd5 | 6752 | if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) |
d62caabb | 6753 | kvm_x86_ops->sync_pir_to_irr(vcpu); |
6308630b | 6754 | kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); |
db2bdcbb | 6755 | } |
5c919412 AS |
6756 | bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, |
6757 | vcpu_to_synic(vcpu)->vec_bitmap, 256); | |
6758 | kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); | |
c7c9c56c YZ |
6759 | } |
6760 | ||
a70656b6 RK |
6761 | static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) |
6762 | { | |
6763 | ++vcpu->stat.tlb_flush; | |
6764 | kvm_x86_ops->tlb_flush(vcpu); | |
6765 | } | |
6766 | ||
b1394e74 RK |
6767 | void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, |
6768 | unsigned long start, unsigned long end) | |
6769 | { | |
6770 | unsigned long apic_address; | |
6771 | ||
6772 | /* | |
6773 | * The physical address of apic access page is stored in the VMCS. | |
6774 | * Update it when it becomes invalid. | |
6775 | */ | |
6776 | apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); | |
6777 | if (start <= apic_address && apic_address < end) | |
6778 | kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); | |
6779 | } | |
6780 | ||
4256f43f TC |
6781 | void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) |
6782 | { | |
c24ae0dc TC |
6783 | struct page *page = NULL; |
6784 | ||
35754c98 | 6785 | if (!lapic_in_kernel(vcpu)) |
f439ed27 PB |
6786 | return; |
6787 | ||
4256f43f TC |
6788 | if (!kvm_x86_ops->set_apic_access_page_addr) |
6789 | return; | |
6790 | ||
c24ae0dc | 6791 | page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
e8fd5e9e AA |
6792 | if (is_error_page(page)) |
6793 | return; | |
c24ae0dc TC |
6794 | kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); |
6795 | ||
6796 | /* | |
6797 | * Do not pin apic access page in memory, the MMU notifier | |
6798 | * will call us again if it is migrated or swapped out. | |
6799 | */ | |
6800 | put_page(page); | |
4256f43f TC |
6801 | } |
6802 | EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); | |
6803 | ||
9357d939 | 6804 | /* |
362c698f | 6805 | * Returns 1 to let vcpu_run() continue the guest execution loop without |
9357d939 TY |
6806 | * exiting to the userspace. Otherwise, the value will be returned to the |
6807 | * userspace. | |
6808 | */ | |
851ba692 | 6809 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
b6c7a5dc HB |
6810 | { |
6811 | int r; | |
62a193ed MG |
6812 | bool req_int_win = |
6813 | dm_request_for_irq_injection(vcpu) && | |
6814 | kvm_cpu_accept_dm_intr(vcpu); | |
6815 | ||
730dca42 | 6816 | bool req_immediate_exit = false; |
b6c7a5dc | 6817 | |
2fa6e1e1 | 6818 | if (kvm_request_pending(vcpu)) { |
a8eeb04a | 6819 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
2e53d63a | 6820 | kvm_mmu_unload(vcpu); |
a8eeb04a | 6821 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
2f599714 | 6822 | __kvm_migrate_timers(vcpu); |
d828199e MT |
6823 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
6824 | kvm_gen_update_masterclock(vcpu->kvm); | |
0061d53d MT |
6825 | if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) |
6826 | kvm_gen_kvmclock_update(vcpu); | |
34c238a1 ZA |
6827 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
6828 | r = kvm_guest_time_update(vcpu); | |
8cfdc000 ZA |
6829 | if (unlikely(r)) |
6830 | goto out; | |
6831 | } | |
a8eeb04a | 6832 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4731d4c7 | 6833 | kvm_mmu_sync_roots(vcpu); |
a8eeb04a | 6834 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
a70656b6 | 6835 | kvm_vcpu_flush_tlb(vcpu); |
a8eeb04a | 6836 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
851ba692 | 6837 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
b93463aa AK |
6838 | r = 0; |
6839 | goto out; | |
6840 | } | |
a8eeb04a | 6841 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
851ba692 | 6842 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
bbeac283 | 6843 | vcpu->mmio_needed = 0; |
71c4dfaf JR |
6844 | r = 0; |
6845 | goto out; | |
6846 | } | |
af585b92 GN |
6847 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
6848 | /* Page is swapped out. Do synthetic halt */ | |
6849 | vcpu->arch.apf.halted = true; | |
6850 | r = 1; | |
6851 | goto out; | |
6852 | } | |
c9aaa895 GC |
6853 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
6854 | record_steal_time(vcpu); | |
64d60670 PB |
6855 | if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
6856 | process_smi(vcpu); | |
7460fb4a AK |
6857 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
6858 | process_nmi(vcpu); | |
f5132b01 | 6859 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
c6702c9d | 6860 | kvm_pmu_handle_event(vcpu); |
f5132b01 | 6861 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) |
c6702c9d | 6862 | kvm_pmu_deliver_pmi(vcpu); |
7543a635 SR |
6863 | if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { |
6864 | BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); | |
6865 | if (test_bit(vcpu->arch.pending_ioapic_eoi, | |
6308630b | 6866 | vcpu->arch.ioapic_handled_vectors)) { |
7543a635 SR |
6867 | vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; |
6868 | vcpu->run->eoi.vector = | |
6869 | vcpu->arch.pending_ioapic_eoi; | |
6870 | r = 0; | |
6871 | goto out; | |
6872 | } | |
6873 | } | |
3d81bc7e YZ |
6874 | if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
6875 | vcpu_scan_ioapic(vcpu); | |
4256f43f TC |
6876 | if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) |
6877 | kvm_vcpu_reload_apic_access_page(vcpu); | |
2ce79189 AS |
6878 | if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { |
6879 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
6880 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; | |
6881 | r = 0; | |
6882 | goto out; | |
6883 | } | |
e516cebb AS |
6884 | if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { |
6885 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
6886 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; | |
6887 | r = 0; | |
6888 | goto out; | |
6889 | } | |
db397571 AS |
6890 | if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { |
6891 | vcpu->run->exit_reason = KVM_EXIT_HYPERV; | |
6892 | vcpu->run->hyperv = vcpu->arch.hyperv.exit; | |
6893 | r = 0; | |
6894 | goto out; | |
6895 | } | |
f3b138c5 AS |
6896 | |
6897 | /* | |
6898 | * KVM_REQ_HV_STIMER has to be processed after | |
6899 | * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers | |
6900 | * depend on the guest clock being up-to-date | |
6901 | */ | |
1f4b34f8 AS |
6902 | if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) |
6903 | kvm_hv_process_stimers(vcpu); | |
2f52d58c | 6904 | } |
b93463aa | 6905 | |
b463a6f7 | 6906 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
0f1e261e | 6907 | ++vcpu->stat.req_event; |
66450a21 JK |
6908 | kvm_apic_accept_events(vcpu); |
6909 | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | |
6910 | r = 1; | |
6911 | goto out; | |
6912 | } | |
6913 | ||
b6b8a145 JK |
6914 | if (inject_pending_event(vcpu, req_int_win) != 0) |
6915 | req_immediate_exit = true; | |
321c5658 | 6916 | else { |
cc3d967f | 6917 | /* Enable SMI/NMI/IRQ window open exits if needed. |
c43203ca | 6918 | * |
cc3d967f LP |
6919 | * SMIs have three cases: |
6920 | * 1) They can be nested, and then there is nothing to | |
6921 | * do here because RSM will cause a vmexit anyway. | |
6922 | * 2) There is an ISA-specific reason why SMI cannot be | |
6923 | * injected, and the moment when this changes can be | |
6924 | * intercepted. | |
6925 | * 3) Or the SMI can be pending because | |
6926 | * inject_pending_event has completed the injection | |
6927 | * of an IRQ or NMI from the previous vmexit, and | |
6928 | * then we request an immediate exit to inject the | |
6929 | * SMI. | |
c43203ca PB |
6930 | */ |
6931 | if (vcpu->arch.smi_pending && !is_smm(vcpu)) | |
cc3d967f LP |
6932 | if (!kvm_x86_ops->enable_smi_window(vcpu)) |
6933 | req_immediate_exit = true; | |
321c5658 YS |
6934 | if (vcpu->arch.nmi_pending) |
6935 | kvm_x86_ops->enable_nmi_window(vcpu); | |
6936 | if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) | |
6937 | kvm_x86_ops->enable_irq_window(vcpu); | |
664f8e26 | 6938 | WARN_ON(vcpu->arch.exception.pending); |
321c5658 | 6939 | } |
b463a6f7 AK |
6940 | |
6941 | if (kvm_lapic_enabled(vcpu)) { | |
6942 | update_cr8_intercept(vcpu); | |
6943 | kvm_lapic_sync_to_vapic(vcpu); | |
6944 | } | |
6945 | } | |
6946 | ||
d8368af8 AK |
6947 | r = kvm_mmu_reload(vcpu); |
6948 | if (unlikely(r)) { | |
d905c069 | 6949 | goto cancel_injection; |
d8368af8 AK |
6950 | } |
6951 | ||
b6c7a5dc HB |
6952 | preempt_disable(); |
6953 | ||
6954 | kvm_x86_ops->prepare_guest_switch(vcpu); | |
b95234c8 PB |
6955 | |
6956 | /* | |
6957 | * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt | |
6958 | * IPI are then delayed after guest entry, which ensures that they | |
6959 | * result in virtual interrupt delivery. | |
6960 | */ | |
6961 | local_irq_disable(); | |
6b7e2d09 XG |
6962 | vcpu->mode = IN_GUEST_MODE; |
6963 | ||
01b71917 MT |
6964 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
6965 | ||
0f127d12 | 6966 | /* |
b95234c8 | 6967 | * 1) We should set ->mode before checking ->requests. Please see |
cde9af6e | 6968 | * the comment in kvm_vcpu_exiting_guest_mode(). |
b95234c8 PB |
6969 | * |
6970 | * 2) For APICv, we should set ->mode before checking PIR.ON. This | |
6971 | * pairs with the memory barrier implicit in pi_test_and_set_on | |
6972 | * (see vmx_deliver_posted_interrupt). | |
6973 | * | |
6974 | * 3) This also orders the write to mode from any reads to the page | |
6975 | * tables done while the VCPU is running. Please see the comment | |
6976 | * in kvm_flush_remote_tlbs. | |
6b7e2d09 | 6977 | */ |
01b71917 | 6978 | smp_mb__after_srcu_read_unlock(); |
b6c7a5dc | 6979 | |
b95234c8 PB |
6980 | /* |
6981 | * This handles the case where a posted interrupt was | |
6982 | * notified with kvm_vcpu_kick. | |
6983 | */ | |
6984 | if (kvm_lapic_enabled(vcpu)) { | |
6985 | if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) | |
6986 | kvm_x86_ops->sync_pir_to_irr(vcpu); | |
6987 | } | |
32f88400 | 6988 | |
2fa6e1e1 | 6989 | if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) |
d94e1dc9 | 6990 | || need_resched() || signal_pending(current)) { |
6b7e2d09 | 6991 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 6992 | smp_wmb(); |
6c142801 AK |
6993 | local_irq_enable(); |
6994 | preempt_enable(); | |
01b71917 | 6995 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
6c142801 | 6996 | r = 1; |
d905c069 | 6997 | goto cancel_injection; |
6c142801 AK |
6998 | } |
6999 | ||
fc5b7f3b DM |
7000 | kvm_load_guest_xcr0(vcpu); |
7001 | ||
c43203ca PB |
7002 | if (req_immediate_exit) { |
7003 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
d6185f20 | 7004 | smp_send_reschedule(vcpu->cpu); |
c43203ca | 7005 | } |
d6185f20 | 7006 | |
8b89fe1f PB |
7007 | trace_kvm_entry(vcpu->vcpu_id); |
7008 | wait_lapic_expire(vcpu); | |
6edaa530 | 7009 | guest_enter_irqoff(); |
b6c7a5dc | 7010 | |
42dbaa5a | 7011 | if (unlikely(vcpu->arch.switch_db_regs)) { |
42dbaa5a JK |
7012 | set_debugreg(0, 7); |
7013 | set_debugreg(vcpu->arch.eff_db[0], 0); | |
7014 | set_debugreg(vcpu->arch.eff_db[1], 1); | |
7015 | set_debugreg(vcpu->arch.eff_db[2], 2); | |
7016 | set_debugreg(vcpu->arch.eff_db[3], 3); | |
c77fb5fe | 7017 | set_debugreg(vcpu->arch.dr6, 6); |
ae561ede | 7018 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; |
42dbaa5a | 7019 | } |
b6c7a5dc | 7020 | |
851ba692 | 7021 | kvm_x86_ops->run(vcpu); |
b6c7a5dc | 7022 | |
c77fb5fe PB |
7023 | /* |
7024 | * Do this here before restoring debug registers on the host. And | |
7025 | * since we do this before handling the vmexit, a DR access vmexit | |
7026 | * can (a) read the correct value of the debug registers, (b) set | |
7027 | * KVM_DEBUGREG_WONT_EXIT again. | |
7028 | */ | |
7029 | if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { | |
c77fb5fe PB |
7030 | WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); |
7031 | kvm_x86_ops->sync_dirty_debug_regs(vcpu); | |
70e4da7a PB |
7032 | kvm_update_dr0123(vcpu); |
7033 | kvm_update_dr6(vcpu); | |
7034 | kvm_update_dr7(vcpu); | |
7035 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; | |
c77fb5fe PB |
7036 | } |
7037 | ||
24f1e32c FW |
7038 | /* |
7039 | * If the guest has used debug registers, at least dr7 | |
7040 | * will be disabled while returning to the host. | |
7041 | * If we don't have active breakpoints in the host, we don't | |
7042 | * care about the messed up debug address registers. But if | |
7043 | * we have some of them active, restore the old state. | |
7044 | */ | |
59d8eb53 | 7045 | if (hw_breakpoint_active()) |
24f1e32c | 7046 | hw_breakpoint_restore(); |
42dbaa5a | 7047 | |
4ba76538 | 7048 | vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
1d5f066e | 7049 | |
6b7e2d09 | 7050 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 7051 | smp_wmb(); |
a547c6db | 7052 | |
fc5b7f3b DM |
7053 | kvm_put_guest_xcr0(vcpu); |
7054 | ||
a547c6db | 7055 | kvm_x86_ops->handle_external_intr(vcpu); |
b6c7a5dc HB |
7056 | |
7057 | ++vcpu->stat.exits; | |
7058 | ||
f2485b3e | 7059 | guest_exit_irqoff(); |
b6c7a5dc | 7060 | |
f2485b3e | 7061 | local_irq_enable(); |
b6c7a5dc HB |
7062 | preempt_enable(); |
7063 | ||
f656ce01 | 7064 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
3200f405 | 7065 | |
b6c7a5dc HB |
7066 | /* |
7067 | * Profile KVM exit RIPs: | |
7068 | */ | |
7069 | if (unlikely(prof_on == KVM_PROFILING)) { | |
5fdbf976 MT |
7070 | unsigned long rip = kvm_rip_read(vcpu); |
7071 | profile_hit(KVM_PROFILING, (void *)rip); | |
b6c7a5dc HB |
7072 | } |
7073 | ||
cc578287 ZA |
7074 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
7075 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
298101da | 7076 | |
5cfb1d5a MT |
7077 | if (vcpu->arch.apic_attention) |
7078 | kvm_lapic_sync_from_vapic(vcpu); | |
b93463aa | 7079 | |
618232e2 | 7080 | vcpu->arch.gpa_available = false; |
851ba692 | 7081 | r = kvm_x86_ops->handle_exit(vcpu); |
d905c069 MT |
7082 | return r; |
7083 | ||
7084 | cancel_injection: | |
7085 | kvm_x86_ops->cancel_injection(vcpu); | |
ae7a2a3f MT |
7086 | if (unlikely(vcpu->arch.apic_attention)) |
7087 | kvm_lapic_sync_from_vapic(vcpu); | |
d7690175 MT |
7088 | out: |
7089 | return r; | |
7090 | } | |
b6c7a5dc | 7091 | |
362c698f PB |
7092 | static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) |
7093 | { | |
bf9f6ac8 FW |
7094 | if (!kvm_arch_vcpu_runnable(vcpu) && |
7095 | (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { | |
9c8fd1ba PB |
7096 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
7097 | kvm_vcpu_block(vcpu); | |
7098 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | |
bf9f6ac8 FW |
7099 | |
7100 | if (kvm_x86_ops->post_block) | |
7101 | kvm_x86_ops->post_block(vcpu); | |
7102 | ||
9c8fd1ba PB |
7103 | if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
7104 | return 1; | |
7105 | } | |
362c698f PB |
7106 | |
7107 | kvm_apic_accept_events(vcpu); | |
7108 | switch(vcpu->arch.mp_state) { | |
7109 | case KVM_MP_STATE_HALTED: | |
7110 | vcpu->arch.pv.pv_unhalted = false; | |
7111 | vcpu->arch.mp_state = | |
7112 | KVM_MP_STATE_RUNNABLE; | |
7113 | case KVM_MP_STATE_RUNNABLE: | |
7114 | vcpu->arch.apf.halted = false; | |
7115 | break; | |
7116 | case KVM_MP_STATE_INIT_RECEIVED: | |
7117 | break; | |
7118 | default: | |
7119 | return -EINTR; | |
7120 | break; | |
7121 | } | |
7122 | return 1; | |
7123 | } | |
09cec754 | 7124 | |
5d9bc648 PB |
7125 | static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) |
7126 | { | |
0ad3bed6 PB |
7127 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) |
7128 | kvm_x86_ops->check_nested_events(vcpu, false); | |
7129 | ||
5d9bc648 PB |
7130 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
7131 | !vcpu->arch.apf.halted); | |
7132 | } | |
7133 | ||
362c698f | 7134 | static int vcpu_run(struct kvm_vcpu *vcpu) |
d7690175 MT |
7135 | { |
7136 | int r; | |
f656ce01 | 7137 | struct kvm *kvm = vcpu->kvm; |
d7690175 | 7138 | |
f656ce01 | 7139 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 7140 | |
362c698f | 7141 | for (;;) { |
58f800d5 | 7142 | if (kvm_vcpu_running(vcpu)) { |
851ba692 | 7143 | r = vcpu_enter_guest(vcpu); |
bf9f6ac8 | 7144 | } else { |
362c698f | 7145 | r = vcpu_block(kvm, vcpu); |
bf9f6ac8 FW |
7146 | } |
7147 | ||
09cec754 GN |
7148 | if (r <= 0) |
7149 | break; | |
7150 | ||
72875d8a | 7151 | kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); |
09cec754 GN |
7152 | if (kvm_cpu_has_pending_timer(vcpu)) |
7153 | kvm_inject_pending_timer_irqs(vcpu); | |
7154 | ||
782d422b MG |
7155 | if (dm_request_for_irq_injection(vcpu) && |
7156 | kvm_vcpu_ready_for_interrupt_injection(vcpu)) { | |
4ca7dd8c PB |
7157 | r = 0; |
7158 | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | |
09cec754 | 7159 | ++vcpu->stat.request_irq_exits; |
362c698f | 7160 | break; |
09cec754 | 7161 | } |
af585b92 GN |
7162 | |
7163 | kvm_check_async_pf_completion(vcpu); | |
7164 | ||
09cec754 GN |
7165 | if (signal_pending(current)) { |
7166 | r = -EINTR; | |
851ba692 | 7167 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 | 7168 | ++vcpu->stat.signal_exits; |
362c698f | 7169 | break; |
09cec754 GN |
7170 | } |
7171 | if (need_resched()) { | |
f656ce01 | 7172 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
c08ac06a | 7173 | cond_resched(); |
f656ce01 | 7174 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 7175 | } |
b6c7a5dc HB |
7176 | } |
7177 | ||
f656ce01 | 7178 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
b6c7a5dc HB |
7179 | |
7180 | return r; | |
7181 | } | |
7182 | ||
716d51ab GN |
7183 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
7184 | { | |
7185 | int r; | |
7186 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | |
7187 | r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | |
7188 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | |
7189 | if (r != EMULATE_DONE) | |
7190 | return 0; | |
7191 | return 1; | |
7192 | } | |
7193 | ||
7194 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | |
7195 | { | |
7196 | BUG_ON(!vcpu->arch.pio.count); | |
7197 | ||
7198 | return complete_emulated_io(vcpu); | |
7199 | } | |
7200 | ||
f78146b0 AK |
7201 | /* |
7202 | * Implements the following, as a state machine: | |
7203 | * | |
7204 | * read: | |
7205 | * for each fragment | |
87da7e66 XG |
7206 | * for each mmio piece in the fragment |
7207 | * write gpa, len | |
7208 | * exit | |
7209 | * copy data | |
f78146b0 AK |
7210 | * execute insn |
7211 | * | |
7212 | * write: | |
7213 | * for each fragment | |
87da7e66 XG |
7214 | * for each mmio piece in the fragment |
7215 | * write gpa, len | |
7216 | * copy data | |
7217 | * exit | |
f78146b0 | 7218 | */ |
716d51ab | 7219 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5287f194 AK |
7220 | { |
7221 | struct kvm_run *run = vcpu->run; | |
f78146b0 | 7222 | struct kvm_mmio_fragment *frag; |
87da7e66 | 7223 | unsigned len; |
5287f194 | 7224 | |
716d51ab | 7225 | BUG_ON(!vcpu->mmio_needed); |
5287f194 | 7226 | |
716d51ab | 7227 | /* Complete previous fragment */ |
87da7e66 XG |
7228 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
7229 | len = min(8u, frag->len); | |
716d51ab | 7230 | if (!vcpu->mmio_is_write) |
87da7e66 XG |
7231 | memcpy(frag->data, run->mmio.data, len); |
7232 | ||
7233 | if (frag->len <= 8) { | |
7234 | /* Switch to the next fragment. */ | |
7235 | frag++; | |
7236 | vcpu->mmio_cur_fragment++; | |
7237 | } else { | |
7238 | /* Go forward to the next mmio piece. */ | |
7239 | frag->data += len; | |
7240 | frag->gpa += len; | |
7241 | frag->len -= len; | |
7242 | } | |
7243 | ||
a08d3b3b | 7244 | if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
716d51ab | 7245 | vcpu->mmio_needed = 0; |
0912c977 PB |
7246 | |
7247 | /* FIXME: return into emulator if single-stepping. */ | |
cef4dea0 | 7248 | if (vcpu->mmio_is_write) |
716d51ab GN |
7249 | return 1; |
7250 | vcpu->mmio_read_completed = 1; | |
7251 | return complete_emulated_io(vcpu); | |
7252 | } | |
87da7e66 | 7253 | |
716d51ab GN |
7254 | run->exit_reason = KVM_EXIT_MMIO; |
7255 | run->mmio.phys_addr = frag->gpa; | |
7256 | if (vcpu->mmio_is_write) | |
87da7e66 XG |
7257 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
7258 | run->mmio.len = min(8u, frag->len); | |
716d51ab GN |
7259 | run->mmio.is_write = vcpu->mmio_is_write; |
7260 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | |
7261 | return 0; | |
5287f194 AK |
7262 | } |
7263 | ||
716d51ab | 7264 | |
b6c7a5dc HB |
7265 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
7266 | { | |
c5bedc68 | 7267 | struct fpu *fpu = ¤t->thread.fpu; |
b6c7a5dc | 7268 | int r; |
b6c7a5dc | 7269 | |
2ce03d85 | 7270 | fpu__initialize(fpu); |
e5c30142 | 7271 | |
20b7035c | 7272 | kvm_sigset_activate(vcpu); |
ac9f6dc0 | 7273 | |
a4535290 | 7274 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
2f173d26 JS |
7275 | if (kvm_run->immediate_exit) { |
7276 | r = -EINTR; | |
7277 | goto out; | |
7278 | } | |
b6c7a5dc | 7279 | kvm_vcpu_block(vcpu); |
66450a21 | 7280 | kvm_apic_accept_events(vcpu); |
72875d8a | 7281 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
ac9f6dc0 | 7282 | r = -EAGAIN; |
a0595000 JS |
7283 | if (signal_pending(current)) { |
7284 | r = -EINTR; | |
7285 | vcpu->run->exit_reason = KVM_EXIT_INTR; | |
7286 | ++vcpu->stat.signal_exits; | |
7287 | } | |
ac9f6dc0 | 7288 | goto out; |
b6c7a5dc HB |
7289 | } |
7290 | ||
b6c7a5dc | 7291 | /* re-sync apic's tpr */ |
35754c98 | 7292 | if (!lapic_in_kernel(vcpu)) { |
eea1cff9 AP |
7293 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
7294 | r = -EINVAL; | |
7295 | goto out; | |
7296 | } | |
7297 | } | |
b6c7a5dc | 7298 | |
f775b13e RR |
7299 | kvm_load_guest_fpu(vcpu); |
7300 | ||
716d51ab GN |
7301 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
7302 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | |
7303 | vcpu->arch.complete_userspace_io = NULL; | |
7304 | r = cui(vcpu); | |
7305 | if (r <= 0) | |
f775b13e | 7306 | goto out_fpu; |
716d51ab GN |
7307 | } else |
7308 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | |
5287f194 | 7309 | |
460df4c1 PB |
7310 | if (kvm_run->immediate_exit) |
7311 | r = -EINTR; | |
7312 | else | |
7313 | r = vcpu_run(vcpu); | |
b6c7a5dc | 7314 | |
f775b13e RR |
7315 | out_fpu: |
7316 | kvm_put_guest_fpu(vcpu); | |
b6c7a5dc | 7317 | out: |
f1d86e46 | 7318 | post_kvm_run_save(vcpu); |
20b7035c | 7319 | kvm_sigset_deactivate(vcpu); |
b6c7a5dc | 7320 | |
b6c7a5dc HB |
7321 | return r; |
7322 | } | |
7323 | ||
7324 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
7325 | { | |
7ae441ea GN |
7326 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
7327 | /* | |
7328 | * We are here if userspace calls get_regs() in the middle of | |
7329 | * instruction emulation. Registers state needs to be copied | |
4a969980 | 7330 | * back from emulation context to vcpu. Userspace shouldn't do |
7ae441ea GN |
7331 | * that usually, but some bad designed PV devices (vmware |
7332 | * backdoor interface) need this to work | |
7333 | */ | |
dd856efa | 7334 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
7ae441ea GN |
7335 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
7336 | } | |
5fdbf976 MT |
7337 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
7338 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
7339 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
7340 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
7341 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
7342 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | |
7343 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | |
7344 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | |
b6c7a5dc | 7345 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
7346 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
7347 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | |
7348 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | |
7349 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | |
7350 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | |
7351 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | |
7352 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | |
7353 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | |
b6c7a5dc HB |
7354 | #endif |
7355 | ||
5fdbf976 | 7356 | regs->rip = kvm_rip_read(vcpu); |
91586a3b | 7357 | regs->rflags = kvm_get_rflags(vcpu); |
b6c7a5dc | 7358 | |
b6c7a5dc HB |
7359 | return 0; |
7360 | } | |
7361 | ||
7362 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
7363 | { | |
7ae441ea GN |
7364 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
7365 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | |
7366 | ||
5fdbf976 MT |
7367 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
7368 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | |
7369 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | |
7370 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | |
7371 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | |
7372 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | |
7373 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | |
7374 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | |
b6c7a5dc | 7375 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
7376 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
7377 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | |
7378 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | |
7379 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | |
7380 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | |
7381 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | |
7382 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | |
7383 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | |
b6c7a5dc HB |
7384 | #endif |
7385 | ||
5fdbf976 | 7386 | kvm_rip_write(vcpu, regs->rip); |
91586a3b | 7387 | kvm_set_rflags(vcpu, regs->rflags); |
b6c7a5dc | 7388 | |
b4f14abd JK |
7389 | vcpu->arch.exception.pending = false; |
7390 | ||
3842d135 AK |
7391 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
7392 | ||
b6c7a5dc HB |
7393 | return 0; |
7394 | } | |
7395 | ||
b6c7a5dc HB |
7396 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
7397 | { | |
7398 | struct kvm_segment cs; | |
7399 | ||
3e6e0aab | 7400 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
b6c7a5dc HB |
7401 | *db = cs.db; |
7402 | *l = cs.l; | |
7403 | } | |
7404 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | |
7405 | ||
7406 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | |
7407 | struct kvm_sregs *sregs) | |
7408 | { | |
89a27f4d | 7409 | struct desc_ptr dt; |
b6c7a5dc | 7410 | |
3e6e0aab GT |
7411 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
7412 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
7413 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
7414 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
7415 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
7416 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 7417 | |
3e6e0aab GT |
7418 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
7419 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc HB |
7420 | |
7421 | kvm_x86_ops->get_idt(vcpu, &dt); | |
89a27f4d GN |
7422 | sregs->idt.limit = dt.size; |
7423 | sregs->idt.base = dt.address; | |
b6c7a5dc | 7424 | kvm_x86_ops->get_gdt(vcpu, &dt); |
89a27f4d GN |
7425 | sregs->gdt.limit = dt.size; |
7426 | sregs->gdt.base = dt.address; | |
b6c7a5dc | 7427 | |
4d4ec087 | 7428 | sregs->cr0 = kvm_read_cr0(vcpu); |
ad312c7c | 7429 | sregs->cr2 = vcpu->arch.cr2; |
9f8fe504 | 7430 | sregs->cr3 = kvm_read_cr3(vcpu); |
fc78f519 | 7431 | sregs->cr4 = kvm_read_cr4(vcpu); |
2d3ad1f4 | 7432 | sregs->cr8 = kvm_get_cr8(vcpu); |
f6801dff | 7433 | sregs->efer = vcpu->arch.efer; |
b6c7a5dc HB |
7434 | sregs->apic_base = kvm_get_apic_base(vcpu); |
7435 | ||
923c61bb | 7436 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
b6c7a5dc | 7437 | |
36752c9b | 7438 | if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
14d0bc1f GN |
7439 | set_bit(vcpu->arch.interrupt.nr, |
7440 | (unsigned long *)sregs->interrupt_bitmap); | |
16d7a191 | 7441 | |
b6c7a5dc HB |
7442 | return 0; |
7443 | } | |
7444 | ||
62d9f0db MT |
7445 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
7446 | struct kvm_mp_state *mp_state) | |
7447 | { | |
66450a21 | 7448 | kvm_apic_accept_events(vcpu); |
6aef266c SV |
7449 | if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && |
7450 | vcpu->arch.pv.pv_unhalted) | |
7451 | mp_state->mp_state = KVM_MP_STATE_RUNNABLE; | |
7452 | else | |
7453 | mp_state->mp_state = vcpu->arch.mp_state; | |
7454 | ||
62d9f0db MT |
7455 | return 0; |
7456 | } | |
7457 | ||
7458 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |
7459 | struct kvm_mp_state *mp_state) | |
7460 | { | |
bce87cce | 7461 | if (!lapic_in_kernel(vcpu) && |
66450a21 JK |
7462 | mp_state->mp_state != KVM_MP_STATE_RUNNABLE) |
7463 | return -EINVAL; | |
7464 | ||
28bf2888 DH |
7465 | /* INITs are latched while in SMM */ |
7466 | if ((is_smm(vcpu) || vcpu->arch.smi_pending) && | |
7467 | (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || | |
7468 | mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) | |
7469 | return -EINVAL; | |
7470 | ||
66450a21 JK |
7471 | if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { |
7472 | vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
7473 | set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); | |
7474 | } else | |
7475 | vcpu->arch.mp_state = mp_state->mp_state; | |
3842d135 | 7476 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
62d9f0db MT |
7477 | return 0; |
7478 | } | |
7479 | ||
7f3d35fd KW |
7480 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
7481 | int reason, bool has_error_code, u32 error_code) | |
b6c7a5dc | 7482 | { |
9d74191a | 7483 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d | 7484 | int ret; |
e01c2426 | 7485 | |
8ec4722d | 7486 | init_emulate_ctxt(vcpu); |
c697518a | 7487 | |
7f3d35fd | 7488 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
9d74191a | 7489 | has_error_code, error_code); |
c697518a | 7490 | |
c697518a | 7491 | if (ret) |
19d04437 | 7492 | return EMULATE_FAIL; |
37817f29 | 7493 | |
9d74191a TY |
7494 | kvm_rip_write(vcpu, ctxt->eip); |
7495 | kvm_set_rflags(vcpu, ctxt->eflags); | |
3842d135 | 7496 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
19d04437 | 7497 | return EMULATE_DONE; |
37817f29 IE |
7498 | } |
7499 | EXPORT_SYMBOL_GPL(kvm_task_switch); | |
7500 | ||
b6c7a5dc HB |
7501 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
7502 | struct kvm_sregs *sregs) | |
7503 | { | |
58cb628d | 7504 | struct msr_data apic_base_msr; |
b6c7a5dc | 7505 | int mmu_reset_needed = 0; |
63f42e02 | 7506 | int pending_vec, max_bits, idx; |
89a27f4d | 7507 | struct desc_ptr dt; |
b6c7a5dc | 7508 | |
d6321d49 RK |
7509 | if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && |
7510 | (sregs->cr4 & X86_CR4_OSXSAVE)) | |
6d1068b3 PM |
7511 | return -EINVAL; |
7512 | ||
d3802286 JM |
7513 | apic_base_msr.data = sregs->apic_base; |
7514 | apic_base_msr.host_initiated = true; | |
7515 | if (kvm_set_apic_base(vcpu, &apic_base_msr)) | |
6d1068b3 PM |
7516 | return -EINVAL; |
7517 | ||
89a27f4d GN |
7518 | dt.size = sregs->idt.limit; |
7519 | dt.address = sregs->idt.base; | |
b6c7a5dc | 7520 | kvm_x86_ops->set_idt(vcpu, &dt); |
89a27f4d GN |
7521 | dt.size = sregs->gdt.limit; |
7522 | dt.address = sregs->gdt.base; | |
b6c7a5dc HB |
7523 | kvm_x86_ops->set_gdt(vcpu, &dt); |
7524 | ||
ad312c7c | 7525 | vcpu->arch.cr2 = sregs->cr2; |
9f8fe504 | 7526 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
dc7e795e | 7527 | vcpu->arch.cr3 = sregs->cr3; |
aff48baa | 7528 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
b6c7a5dc | 7529 | |
2d3ad1f4 | 7530 | kvm_set_cr8(vcpu, sregs->cr8); |
b6c7a5dc | 7531 | |
f6801dff | 7532 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
b6c7a5dc | 7533 | kvm_x86_ops->set_efer(vcpu, sregs->efer); |
b6c7a5dc | 7534 | |
4d4ec087 | 7535 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
b6c7a5dc | 7536 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
d7306163 | 7537 | vcpu->arch.cr0 = sregs->cr0; |
b6c7a5dc | 7538 | |
fc78f519 | 7539 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
b6c7a5dc | 7540 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
b9baba86 | 7541 | if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
00b27a3e | 7542 | kvm_update_cpuid(vcpu); |
63f42e02 XG |
7543 | |
7544 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
7c93be44 | 7545 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
9f8fe504 | 7546 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
7c93be44 MT |
7547 | mmu_reset_needed = 1; |
7548 | } | |
63f42e02 | 7549 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b6c7a5dc HB |
7550 | |
7551 | if (mmu_reset_needed) | |
7552 | kvm_mmu_reset_context(vcpu); | |
7553 | ||
a50abc3b | 7554 | max_bits = KVM_NR_INTERRUPTS; |
923c61bb GN |
7555 | pending_vec = find_first_bit( |
7556 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | |
7557 | if (pending_vec < max_bits) { | |
66fd3f7f | 7558 | kvm_queue_interrupt(vcpu, pending_vec, false); |
923c61bb | 7559 | pr_debug("Set back pending irq %d\n", pending_vec); |
b6c7a5dc HB |
7560 | } |
7561 | ||
3e6e0aab GT |
7562 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
7563 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
7564 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
7565 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
7566 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
7567 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 7568 | |
3e6e0aab GT |
7569 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
7570 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 7571 | |
5f0269f5 ME |
7572 | update_cr8_intercept(vcpu); |
7573 | ||
9c3e4aab | 7574 | /* Older userspace won't unhalt the vcpu on reset. */ |
c5af89b6 | 7575 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
9c3e4aab | 7576 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
3eeb3288 | 7577 | !is_protmode(vcpu)) |
9c3e4aab MT |
7578 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7579 | ||
3842d135 AK |
7580 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
7581 | ||
b6c7a5dc HB |
7582 | return 0; |
7583 | } | |
7584 | ||
d0bfb940 JK |
7585 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
7586 | struct kvm_guest_debug *dbg) | |
b6c7a5dc | 7587 | { |
355be0b9 | 7588 | unsigned long rflags; |
ae675ef0 | 7589 | int i, r; |
b6c7a5dc | 7590 | |
4f926bf2 JK |
7591 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
7592 | r = -EBUSY; | |
7593 | if (vcpu->arch.exception.pending) | |
2122ff5e | 7594 | goto out; |
4f926bf2 JK |
7595 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
7596 | kvm_queue_exception(vcpu, DB_VECTOR); | |
7597 | else | |
7598 | kvm_queue_exception(vcpu, BP_VECTOR); | |
7599 | } | |
7600 | ||
91586a3b JK |
7601 | /* |
7602 | * Read rflags as long as potentially injected trace flags are still | |
7603 | * filtered out. | |
7604 | */ | |
7605 | rflags = kvm_get_rflags(vcpu); | |
355be0b9 JK |
7606 | |
7607 | vcpu->guest_debug = dbg->control; | |
7608 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | |
7609 | vcpu->guest_debug = 0; | |
7610 | ||
7611 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | |
ae675ef0 JK |
7612 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
7613 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | |
c8639010 | 7614 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
ae675ef0 JK |
7615 | } else { |
7616 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
7617 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae675ef0 | 7618 | } |
c8639010 | 7619 | kvm_update_dr7(vcpu); |
ae675ef0 | 7620 | |
f92653ee JK |
7621 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
7622 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | |
7623 | get_segment_base(vcpu, VCPU_SREG_CS); | |
94fe45da | 7624 | |
91586a3b JK |
7625 | /* |
7626 | * Trigger an rflags update that will inject or remove the trace | |
7627 | * flags. | |
7628 | */ | |
7629 | kvm_set_rflags(vcpu, rflags); | |
b6c7a5dc | 7630 | |
a96036b8 | 7631 | kvm_x86_ops->update_bp_intercept(vcpu); |
b6c7a5dc | 7632 | |
4f926bf2 | 7633 | r = 0; |
d0bfb940 | 7634 | |
2122ff5e | 7635 | out: |
b6c7a5dc HB |
7636 | |
7637 | return r; | |
7638 | } | |
7639 | ||
8b006791 ZX |
7640 | /* |
7641 | * Translate a guest virtual address to a guest physical address. | |
7642 | */ | |
7643 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | |
7644 | struct kvm_translation *tr) | |
7645 | { | |
7646 | unsigned long vaddr = tr->linear_address; | |
7647 | gpa_t gpa; | |
f656ce01 | 7648 | int idx; |
8b006791 | 7649 | |
f656ce01 | 7650 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
1871c602 | 7651 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
f656ce01 | 7652 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8b006791 ZX |
7653 | tr->physical_address = gpa; |
7654 | tr->valid = gpa != UNMAPPED_GVA; | |
7655 | tr->writeable = 1; | |
7656 | tr->usermode = 0; | |
8b006791 ZX |
7657 | |
7658 | return 0; | |
7659 | } | |
7660 | ||
d0752060 HB |
7661 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
7662 | { | |
c47ada30 | 7663 | struct fxregs_state *fxsave = |
7366ed77 | 7664 | &vcpu->arch.guest_fpu.state.fxsave; |
d0752060 | 7665 | |
d0752060 HB |
7666 | memcpy(fpu->fpr, fxsave->st_space, 128); |
7667 | fpu->fcw = fxsave->cwd; | |
7668 | fpu->fsw = fxsave->swd; | |
7669 | fpu->ftwx = fxsave->twd; | |
7670 | fpu->last_opcode = fxsave->fop; | |
7671 | fpu->last_ip = fxsave->rip; | |
7672 | fpu->last_dp = fxsave->rdp; | |
7673 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | |
7674 | ||
d0752060 HB |
7675 | return 0; |
7676 | } | |
7677 | ||
7678 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | |
7679 | { | |
c47ada30 | 7680 | struct fxregs_state *fxsave = |
7366ed77 | 7681 | &vcpu->arch.guest_fpu.state.fxsave; |
d0752060 | 7682 | |
d0752060 HB |
7683 | memcpy(fxsave->st_space, fpu->fpr, 128); |
7684 | fxsave->cwd = fpu->fcw; | |
7685 | fxsave->swd = fpu->fsw; | |
7686 | fxsave->twd = fpu->ftwx; | |
7687 | fxsave->fop = fpu->last_opcode; | |
7688 | fxsave->rip = fpu->last_ip; | |
7689 | fxsave->rdp = fpu->last_dp; | |
7690 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | |
7691 | ||
d0752060 HB |
7692 | return 0; |
7693 | } | |
7694 | ||
0ee6a517 | 7695 | static void fx_init(struct kvm_vcpu *vcpu) |
d0752060 | 7696 | { |
bf935b0b | 7697 | fpstate_init(&vcpu->arch.guest_fpu.state); |
782511b0 | 7698 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
7366ed77 | 7699 | vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = |
df1daba7 | 7700 | host_xcr0 | XSTATE_COMPACTION_ENABLED; |
d0752060 | 7701 | |
2acf923e DC |
7702 | /* |
7703 | * Ensure guest xcr0 is valid for loading | |
7704 | */ | |
d91cab78 | 7705 | vcpu->arch.xcr0 = XFEATURE_MASK_FP; |
2acf923e | 7706 | |
ad312c7c | 7707 | vcpu->arch.cr0 |= X86_CR0_ET; |
d0752060 | 7708 | } |
d0752060 | 7709 | |
f775b13e | 7710 | /* Swap (qemu) user FPU context for the guest FPU context. */ |
d0752060 HB |
7711 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
7712 | { | |
f775b13e RR |
7713 | preempt_disable(); |
7714 | copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); | |
38cfd5e3 PB |
7715 | /* PKRU is separately restored in kvm_x86_ops->run. */ |
7716 | __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, | |
7717 | ~XFEATURE_MASK_PKRU); | |
f775b13e | 7718 | preempt_enable(); |
0c04851c | 7719 | trace_kvm_fpu(1); |
d0752060 | 7720 | } |
d0752060 | 7721 | |
f775b13e | 7722 | /* When vcpu_run ends, restore user space FPU context. */ |
d0752060 HB |
7723 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
7724 | { | |
f775b13e | 7725 | preempt_disable(); |
4f836347 | 7726 | copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); |
f775b13e RR |
7727 | copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); |
7728 | preempt_enable(); | |
f096ed85 | 7729 | ++vcpu->stat.fpu_reload; |
0c04851c | 7730 | trace_kvm_fpu(0); |
d0752060 | 7731 | } |
e9b11c17 ZX |
7732 | |
7733 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | |
7734 | { | |
bd768e14 IY |
7735 | void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; |
7736 | ||
12f9a48f | 7737 | kvmclock_reset(vcpu); |
7f1ea208 | 7738 | |
e9b11c17 | 7739 | kvm_x86_ops->vcpu_free(vcpu); |
bd768e14 | 7740 | free_cpumask_var(wbinvd_dirty_mask); |
e9b11c17 ZX |
7741 | } |
7742 | ||
7743 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | |
7744 | unsigned int id) | |
7745 | { | |
c447e76b LL |
7746 | struct kvm_vcpu *vcpu; |
7747 | ||
6755bae8 ZA |
7748 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
7749 | printk_once(KERN_WARNING | |
7750 | "kvm: SMP vm created on host with unstable TSC; " | |
7751 | "guest TSC will not be reliable\n"); | |
c447e76b LL |
7752 | |
7753 | vcpu = kvm_x86_ops->vcpu_create(kvm, id); | |
7754 | ||
c447e76b | 7755 | return vcpu; |
26e5215f | 7756 | } |
e9b11c17 | 7757 | |
26e5215f AK |
7758 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
7759 | { | |
7760 | int r; | |
e9b11c17 | 7761 | |
19efffa2 | 7762 | kvm_vcpu_mtrr_init(vcpu); |
9fc77441 MT |
7763 | r = vcpu_load(vcpu); |
7764 | if (r) | |
7765 | return r; | |
d28bc9dd | 7766 | kvm_vcpu_reset(vcpu, false); |
8a3c1a33 | 7767 | kvm_mmu_setup(vcpu); |
e9b11c17 | 7768 | vcpu_put(vcpu); |
26e5215f | 7769 | return r; |
e9b11c17 ZX |
7770 | } |
7771 | ||
31928aa5 | 7772 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
42897d86 | 7773 | { |
8fe8ab46 | 7774 | struct msr_data msr; |
332967a3 | 7775 | struct kvm *kvm = vcpu->kvm; |
42897d86 | 7776 | |
d3457c87 RK |
7777 | kvm_hv_vcpu_postcreate(vcpu); |
7778 | ||
31928aa5 DD |
7779 | if (vcpu_load(vcpu)) |
7780 | return; | |
8fe8ab46 WA |
7781 | msr.data = 0x0; |
7782 | msr.index = MSR_IA32_TSC; | |
7783 | msr.host_initiated = true; | |
7784 | kvm_write_tsc(vcpu, &msr); | |
42897d86 MT |
7785 | vcpu_put(vcpu); |
7786 | ||
630994b3 MT |
7787 | if (!kvmclock_periodic_sync) |
7788 | return; | |
7789 | ||
332967a3 AJ |
7790 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
7791 | KVMCLOCK_SYNC_PERIOD); | |
42897d86 MT |
7792 | } |
7793 | ||
d40ccc62 | 7794 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
e9b11c17 | 7795 | { |
9fc77441 | 7796 | int r; |
344d9588 GN |
7797 | vcpu->arch.apf.msr_val = 0; |
7798 | ||
9fc77441 MT |
7799 | r = vcpu_load(vcpu); |
7800 | BUG_ON(r); | |
e9b11c17 ZX |
7801 | kvm_mmu_unload(vcpu); |
7802 | vcpu_put(vcpu); | |
7803 | ||
7804 | kvm_x86_ops->vcpu_free(vcpu); | |
7805 | } | |
7806 | ||
d28bc9dd | 7807 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
e9b11c17 | 7808 | { |
e69fab5d PB |
7809 | vcpu->arch.hflags = 0; |
7810 | ||
c43203ca | 7811 | vcpu->arch.smi_pending = 0; |
7460fb4a AK |
7812 | atomic_set(&vcpu->arch.nmi_queued, 0); |
7813 | vcpu->arch.nmi_pending = 0; | |
448fa4a9 | 7814 | vcpu->arch.nmi_injected = false; |
5f7552d4 NA |
7815 | kvm_clear_interrupt_queue(vcpu); |
7816 | kvm_clear_exception_queue(vcpu); | |
664f8e26 | 7817 | vcpu->arch.exception.pending = false; |
448fa4a9 | 7818 | |
42dbaa5a | 7819 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
ae561ede | 7820 | kvm_update_dr0123(vcpu); |
6f43ed01 | 7821 | vcpu->arch.dr6 = DR6_INIT; |
73aaf249 | 7822 | kvm_update_dr6(vcpu); |
42dbaa5a | 7823 | vcpu->arch.dr7 = DR7_FIXED_1; |
c8639010 | 7824 | kvm_update_dr7(vcpu); |
42dbaa5a | 7825 | |
1119022c NA |
7826 | vcpu->arch.cr2 = 0; |
7827 | ||
3842d135 | 7828 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
344d9588 | 7829 | vcpu->arch.apf.msr_val = 0; |
c9aaa895 | 7830 | vcpu->arch.st.msr_val = 0; |
3842d135 | 7831 | |
12f9a48f GC |
7832 | kvmclock_reset(vcpu); |
7833 | ||
af585b92 GN |
7834 | kvm_clear_async_pf_completion_queue(vcpu); |
7835 | kvm_async_pf_hash_reset(vcpu); | |
7836 | vcpu->arch.apf.halted = false; | |
3842d135 | 7837 | |
a554d207 WL |
7838 | if (kvm_mpx_supported()) { |
7839 | void *mpx_state_buffer; | |
7840 | ||
7841 | /* | |
7842 | * To avoid have the INIT path from kvm_apic_has_events() that be | |
7843 | * called with loaded FPU and does not let userspace fix the state. | |
7844 | */ | |
f775b13e RR |
7845 | if (init_event) |
7846 | kvm_put_guest_fpu(vcpu); | |
a554d207 WL |
7847 | mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, |
7848 | XFEATURE_MASK_BNDREGS); | |
7849 | if (mpx_state_buffer) | |
7850 | memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); | |
7851 | mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, | |
7852 | XFEATURE_MASK_BNDCSR); | |
7853 | if (mpx_state_buffer) | |
7854 | memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); | |
f775b13e RR |
7855 | if (init_event) |
7856 | kvm_load_guest_fpu(vcpu); | |
a554d207 WL |
7857 | } |
7858 | ||
64d60670 | 7859 | if (!init_event) { |
d28bc9dd | 7860 | kvm_pmu_reset(vcpu); |
64d60670 | 7861 | vcpu->arch.smbase = 0x30000; |
db2336a8 KH |
7862 | |
7863 | vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; | |
7864 | vcpu->arch.msr_misc_features_enables = 0; | |
a554d207 WL |
7865 | |
7866 | vcpu->arch.xcr0 = XFEATURE_MASK_FP; | |
64d60670 | 7867 | } |
f5132b01 | 7868 | |
66f7b72e JS |
7869 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
7870 | vcpu->arch.regs_avail = ~0; | |
7871 | vcpu->arch.regs_dirty = ~0; | |
7872 | ||
a554d207 WL |
7873 | vcpu->arch.ia32_xss = 0; |
7874 | ||
d28bc9dd | 7875 | kvm_x86_ops->vcpu_reset(vcpu, init_event); |
e9b11c17 ZX |
7876 | } |
7877 | ||
2b4a273b | 7878 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
66450a21 JK |
7879 | { |
7880 | struct kvm_segment cs; | |
7881 | ||
7882 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | |
7883 | cs.selector = vector << 8; | |
7884 | cs.base = vector << 12; | |
7885 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
7886 | kvm_rip_write(vcpu, 0); | |
e9b11c17 ZX |
7887 | } |
7888 | ||
13a34e06 | 7889 | int kvm_arch_hardware_enable(void) |
e9b11c17 | 7890 | { |
ca84d1a2 ZA |
7891 | struct kvm *kvm; |
7892 | struct kvm_vcpu *vcpu; | |
7893 | int i; | |
0dd6a6ed ZA |
7894 | int ret; |
7895 | u64 local_tsc; | |
7896 | u64 max_tsc = 0; | |
7897 | bool stable, backwards_tsc = false; | |
18863bdd AK |
7898 | |
7899 | kvm_shared_msr_cpu_online(); | |
13a34e06 | 7900 | ret = kvm_x86_ops->hardware_enable(); |
0dd6a6ed ZA |
7901 | if (ret != 0) |
7902 | return ret; | |
7903 | ||
4ea1636b | 7904 | local_tsc = rdtsc(); |
0dd6a6ed ZA |
7905 | stable = !check_tsc_unstable(); |
7906 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
7907 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
7908 | if (!stable && vcpu->cpu == smp_processor_id()) | |
105b21bb | 7909 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
7910 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
7911 | backwards_tsc = true; | |
7912 | if (vcpu->arch.last_host_tsc > max_tsc) | |
7913 | max_tsc = vcpu->arch.last_host_tsc; | |
7914 | } | |
7915 | } | |
7916 | } | |
7917 | ||
7918 | /* | |
7919 | * Sometimes, even reliable TSCs go backwards. This happens on | |
7920 | * platforms that reset TSC during suspend or hibernate actions, but | |
7921 | * maintain synchronization. We must compensate. Fortunately, we can | |
7922 | * detect that condition here, which happens early in CPU bringup, | |
7923 | * before any KVM threads can be running. Unfortunately, we can't | |
7924 | * bring the TSCs fully up to date with real time, as we aren't yet far | |
7925 | * enough into CPU bringup that we know how much real time has actually | |
108b249c | 7926 | * elapsed; our helper function, ktime_get_boot_ns() will be using boot |
0dd6a6ed ZA |
7927 | * variables that haven't been updated yet. |
7928 | * | |
7929 | * So we simply find the maximum observed TSC above, then record the | |
7930 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | |
7931 | * the adjustment will be applied. Note that we accumulate | |
7932 | * adjustments, in case multiple suspend cycles happen before some VCPU | |
7933 | * gets a chance to run again. In the event that no KVM threads get a | |
7934 | * chance to run, we will miss the entire elapsed period, as we'll have | |
7935 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | |
7936 | * loose cycle time. This isn't too big a deal, since the loss will be | |
7937 | * uniform across all VCPUs (not to mention the scenario is extremely | |
7938 | * unlikely). It is possible that a second hibernate recovery happens | |
7939 | * much faster than a first, causing the observed TSC here to be | |
7940 | * smaller; this would require additional padding adjustment, which is | |
7941 | * why we set last_host_tsc to the local tsc observed here. | |
7942 | * | |
7943 | * N.B. - this code below runs only on platforms with reliable TSC, | |
7944 | * as that is the only way backwards_tsc is set above. Also note | |
7945 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | |
7946 | * have the same delta_cyc adjustment applied if backwards_tsc | |
7947 | * is detected. Note further, this adjustment is only done once, | |
7948 | * as we reset last_host_tsc on all VCPUs to stop this from being | |
7949 | * called multiple times (one for each physical CPU bringup). | |
7950 | * | |
4a969980 | 7951 | * Platforms with unreliable TSCs don't have to deal with this, they |
0dd6a6ed ZA |
7952 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
7953 | * catchup mode. This will catchup all VCPUs to real time, but cannot | |
7954 | * guarantee that they stay in perfect synchronization. | |
7955 | */ | |
7956 | if (backwards_tsc) { | |
7957 | u64 delta_cyc = max_tsc - local_tsc; | |
7958 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
a826faf1 | 7959 | kvm->arch.backwards_tsc_observed = true; |
0dd6a6ed ZA |
7960 | kvm_for_each_vcpu(i, vcpu, kvm) { |
7961 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | |
7962 | vcpu->arch.last_host_tsc = local_tsc; | |
105b21bb | 7963 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
7964 | } |
7965 | ||
7966 | /* | |
7967 | * We have to disable TSC offset matching.. if you were | |
7968 | * booting a VM while issuing an S4 host suspend.... | |
7969 | * you may have some problem. Solving this issue is | |
7970 | * left as an exercise to the reader. | |
7971 | */ | |
7972 | kvm->arch.last_tsc_nsec = 0; | |
7973 | kvm->arch.last_tsc_write = 0; | |
7974 | } | |
7975 | ||
7976 | } | |
7977 | return 0; | |
e9b11c17 ZX |
7978 | } |
7979 | ||
13a34e06 | 7980 | void kvm_arch_hardware_disable(void) |
e9b11c17 | 7981 | { |
13a34e06 RK |
7982 | kvm_x86_ops->hardware_disable(); |
7983 | drop_user_return_notifiers(); | |
e9b11c17 ZX |
7984 | } |
7985 | ||
7986 | int kvm_arch_hardware_setup(void) | |
7987 | { | |
9e9c3fe4 NA |
7988 | int r; |
7989 | ||
7990 | r = kvm_x86_ops->hardware_setup(); | |
7991 | if (r != 0) | |
7992 | return r; | |
7993 | ||
35181e86 HZ |
7994 | if (kvm_has_tsc_control) { |
7995 | /* | |
7996 | * Make sure the user can only configure tsc_khz values that | |
7997 | * fit into a signed integer. | |
7998 | * A min value is not calculated needed because it will always | |
7999 | * be 1 on all machines. | |
8000 | */ | |
8001 | u64 max = min(0x7fffffffULL, | |
8002 | __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); | |
8003 | kvm_max_guest_tsc_khz = max; | |
8004 | ||
ad721883 | 8005 | kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; |
35181e86 | 8006 | } |
ad721883 | 8007 | |
9e9c3fe4 NA |
8008 | kvm_init_msr_list(); |
8009 | return 0; | |
e9b11c17 ZX |
8010 | } |
8011 | ||
8012 | void kvm_arch_hardware_unsetup(void) | |
8013 | { | |
8014 | kvm_x86_ops->hardware_unsetup(); | |
8015 | } | |
8016 | ||
8017 | void kvm_arch_check_processor_compat(void *rtn) | |
8018 | { | |
8019 | kvm_x86_ops->check_processor_compatibility(rtn); | |
d71ba788 PB |
8020 | } |
8021 | ||
8022 | bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) | |
8023 | { | |
8024 | return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; | |
8025 | } | |
8026 | EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); | |
8027 | ||
8028 | bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) | |
8029 | { | |
8030 | return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; | |
e9b11c17 ZX |
8031 | } |
8032 | ||
54e9818f | 8033 | struct static_key kvm_no_apic_vcpu __read_mostly; |
bce87cce | 8034 | EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); |
54e9818f | 8035 | |
e9b11c17 ZX |
8036 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
8037 | { | |
8038 | struct page *page; | |
e9b11c17 ZX |
8039 | int r; |
8040 | ||
b2a05fef | 8041 | vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); |
9aabc88f | 8042 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
26de7988 | 8043 | if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) |
a4535290 | 8044 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
e9b11c17 | 8045 | else |
a4535290 | 8046 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
e9b11c17 ZX |
8047 | |
8048 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | |
8049 | if (!page) { | |
8050 | r = -ENOMEM; | |
8051 | goto fail; | |
8052 | } | |
ad312c7c | 8053 | vcpu->arch.pio_data = page_address(page); |
e9b11c17 | 8054 | |
cc578287 | 8055 | kvm_set_tsc_khz(vcpu, max_tsc_khz); |
c285545f | 8056 | |
e9b11c17 ZX |
8057 | r = kvm_mmu_create(vcpu); |
8058 | if (r < 0) | |
8059 | goto fail_free_pio_data; | |
8060 | ||
26de7988 | 8061 | if (irqchip_in_kernel(vcpu->kvm)) { |
e9b11c17 ZX |
8062 | r = kvm_create_lapic(vcpu); |
8063 | if (r < 0) | |
8064 | goto fail_mmu_destroy; | |
54e9818f GN |
8065 | } else |
8066 | static_key_slow_inc(&kvm_no_apic_vcpu); | |
e9b11c17 | 8067 | |
890ca9ae YH |
8068 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
8069 | GFP_KERNEL); | |
8070 | if (!vcpu->arch.mce_banks) { | |
8071 | r = -ENOMEM; | |
443c39bc | 8072 | goto fail_free_lapic; |
890ca9ae YH |
8073 | } |
8074 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | |
8075 | ||
f1797359 WY |
8076 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { |
8077 | r = -ENOMEM; | |
f5f48ee1 | 8078 | goto fail_free_mce_banks; |
f1797359 | 8079 | } |
f5f48ee1 | 8080 | |
0ee6a517 | 8081 | fx_init(vcpu); |
66f7b72e | 8082 | |
4344ee98 | 8083 | vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
d7876f1b | 8084 | |
5a4f55cd EK |
8085 | vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
8086 | ||
74545705 RK |
8087 | vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; |
8088 | ||
af585b92 | 8089 | kvm_async_pf_hash_reset(vcpu); |
f5132b01 | 8090 | kvm_pmu_init(vcpu); |
af585b92 | 8091 | |
1c1a9ce9 | 8092 | vcpu->arch.pending_external_vector = -1; |
de63ad4c | 8093 | vcpu->arch.preempted_in_kernel = false; |
1c1a9ce9 | 8094 | |
5c919412 AS |
8095 | kvm_hv_vcpu_init(vcpu); |
8096 | ||
e9b11c17 | 8097 | return 0; |
0ee6a517 | 8098 | |
f5f48ee1 SY |
8099 | fail_free_mce_banks: |
8100 | kfree(vcpu->arch.mce_banks); | |
443c39bc WY |
8101 | fail_free_lapic: |
8102 | kvm_free_lapic(vcpu); | |
e9b11c17 ZX |
8103 | fail_mmu_destroy: |
8104 | kvm_mmu_destroy(vcpu); | |
8105 | fail_free_pio_data: | |
ad312c7c | 8106 | free_page((unsigned long)vcpu->arch.pio_data); |
e9b11c17 ZX |
8107 | fail: |
8108 | return r; | |
8109 | } | |
8110 | ||
8111 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | |
8112 | { | |
f656ce01 MT |
8113 | int idx; |
8114 | ||
1f4b34f8 | 8115 | kvm_hv_vcpu_uninit(vcpu); |
f5132b01 | 8116 | kvm_pmu_destroy(vcpu); |
36cb93fd | 8117 | kfree(vcpu->arch.mce_banks); |
e9b11c17 | 8118 | kvm_free_lapic(vcpu); |
f656ce01 | 8119 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
e9b11c17 | 8120 | kvm_mmu_destroy(vcpu); |
f656ce01 | 8121 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
ad312c7c | 8122 | free_page((unsigned long)vcpu->arch.pio_data); |
35754c98 | 8123 | if (!lapic_in_kernel(vcpu)) |
54e9818f | 8124 | static_key_slow_dec(&kvm_no_apic_vcpu); |
e9b11c17 | 8125 | } |
d19a9cd2 | 8126 | |
e790d9ef RK |
8127 | void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) |
8128 | { | |
ae97a3b8 | 8129 | kvm_x86_ops->sched_in(vcpu, cpu); |
e790d9ef RK |
8130 | } |
8131 | ||
e08b9637 | 8132 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
d19a9cd2 | 8133 | { |
e08b9637 CO |
8134 | if (type) |
8135 | return -EINVAL; | |
8136 | ||
6ef768fa | 8137 | INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); |
f05e70ac | 8138 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
365c8868 | 8139 | INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); |
4d5c5d0f | 8140 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
e0f0bbc5 | 8141 | atomic_set(&kvm->arch.noncoherent_dma_count, 0); |
d19a9cd2 | 8142 | |
5550af4d SY |
8143 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
8144 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | |
7a84428a AW |
8145 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
8146 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | |
8147 | &kvm->arch.irq_sources_bitmap); | |
5550af4d | 8148 | |
038f8c11 | 8149 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
1e08ec4a | 8150 | mutex_init(&kvm->arch.apic_map_lock); |
3f5ad8be | 8151 | mutex_init(&kvm->arch.hyperv.hv_lock); |
d828199e MT |
8152 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
8153 | ||
108b249c | 8154 | kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); |
d828199e | 8155 | pvclock_update_vm_gtod_copy(kvm); |
53f658b3 | 8156 | |
7e44e449 | 8157 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); |
332967a3 | 8158 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); |
7e44e449 | 8159 | |
0eb05bf2 | 8160 | kvm_page_track_init(kvm); |
13d268ca | 8161 | kvm_mmu_init_vm(kvm); |
0eb05bf2 | 8162 | |
03543133 SS |
8163 | if (kvm_x86_ops->vm_init) |
8164 | return kvm_x86_ops->vm_init(kvm); | |
8165 | ||
d89f5eff | 8166 | return 0; |
d19a9cd2 ZX |
8167 | } |
8168 | ||
8169 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | |
8170 | { | |
9fc77441 MT |
8171 | int r; |
8172 | r = vcpu_load(vcpu); | |
8173 | BUG_ON(r); | |
d19a9cd2 ZX |
8174 | kvm_mmu_unload(vcpu); |
8175 | vcpu_put(vcpu); | |
8176 | } | |
8177 | ||
8178 | static void kvm_free_vcpus(struct kvm *kvm) | |
8179 | { | |
8180 | unsigned int i; | |
988a2cae | 8181 | struct kvm_vcpu *vcpu; |
d19a9cd2 ZX |
8182 | |
8183 | /* | |
8184 | * Unpin any mmu pages first. | |
8185 | */ | |
af585b92 GN |
8186 | kvm_for_each_vcpu(i, vcpu, kvm) { |
8187 | kvm_clear_async_pf_completion_queue(vcpu); | |
988a2cae | 8188 | kvm_unload_vcpu_mmu(vcpu); |
af585b92 | 8189 | } |
988a2cae GN |
8190 | kvm_for_each_vcpu(i, vcpu, kvm) |
8191 | kvm_arch_vcpu_free(vcpu); | |
8192 | ||
8193 | mutex_lock(&kvm->lock); | |
8194 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | |
8195 | kvm->vcpus[i] = NULL; | |
d19a9cd2 | 8196 | |
988a2cae GN |
8197 | atomic_set(&kvm->online_vcpus, 0); |
8198 | mutex_unlock(&kvm->lock); | |
d19a9cd2 ZX |
8199 | } |
8200 | ||
ad8ba2cd SY |
8201 | void kvm_arch_sync_events(struct kvm *kvm) |
8202 | { | |
332967a3 | 8203 | cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); |
7e44e449 | 8204 | cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); |
aea924f6 | 8205 | kvm_free_pit(kvm); |
ad8ba2cd SY |
8206 | } |
8207 | ||
1d8007bd | 8208 | int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
9da0e4d5 PB |
8209 | { |
8210 | int i, r; | |
25188b99 | 8211 | unsigned long hva; |
f0d648bd PB |
8212 | struct kvm_memslots *slots = kvm_memslots(kvm); |
8213 | struct kvm_memory_slot *slot, old; | |
9da0e4d5 PB |
8214 | |
8215 | /* Called with kvm->slots_lock held. */ | |
1d8007bd PB |
8216 | if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) |
8217 | return -EINVAL; | |
9da0e4d5 | 8218 | |
f0d648bd PB |
8219 | slot = id_to_memslot(slots, id); |
8220 | if (size) { | |
b21629da | 8221 | if (slot->npages) |
f0d648bd PB |
8222 | return -EEXIST; |
8223 | ||
8224 | /* | |
8225 | * MAP_SHARED to prevent internal slot pages from being moved | |
8226 | * by fork()/COW. | |
8227 | */ | |
8228 | hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, | |
8229 | MAP_SHARED | MAP_ANONYMOUS, 0); | |
8230 | if (IS_ERR((void *)hva)) | |
8231 | return PTR_ERR((void *)hva); | |
8232 | } else { | |
8233 | if (!slot->npages) | |
8234 | return 0; | |
8235 | ||
8236 | hva = 0; | |
8237 | } | |
8238 | ||
8239 | old = *slot; | |
9da0e4d5 | 8240 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
1d8007bd | 8241 | struct kvm_userspace_memory_region m; |
9da0e4d5 | 8242 | |
1d8007bd PB |
8243 | m.slot = id | (i << 16); |
8244 | m.flags = 0; | |
8245 | m.guest_phys_addr = gpa; | |
f0d648bd | 8246 | m.userspace_addr = hva; |
1d8007bd | 8247 | m.memory_size = size; |
9da0e4d5 PB |
8248 | r = __kvm_set_memory_region(kvm, &m); |
8249 | if (r < 0) | |
8250 | return r; | |
8251 | } | |
8252 | ||
f0d648bd PB |
8253 | if (!size) { |
8254 | r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); | |
8255 | WARN_ON(r < 0); | |
8256 | } | |
8257 | ||
9da0e4d5 PB |
8258 | return 0; |
8259 | } | |
8260 | EXPORT_SYMBOL_GPL(__x86_set_memory_region); | |
8261 | ||
1d8007bd | 8262 | int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
9da0e4d5 PB |
8263 | { |
8264 | int r; | |
8265 | ||
8266 | mutex_lock(&kvm->slots_lock); | |
1d8007bd | 8267 | r = __x86_set_memory_region(kvm, id, gpa, size); |
9da0e4d5 PB |
8268 | mutex_unlock(&kvm->slots_lock); |
8269 | ||
8270 | return r; | |
8271 | } | |
8272 | EXPORT_SYMBOL_GPL(x86_set_memory_region); | |
8273 | ||
d19a9cd2 ZX |
8274 | void kvm_arch_destroy_vm(struct kvm *kvm) |
8275 | { | |
27469d29 AH |
8276 | if (current->mm == kvm->mm) { |
8277 | /* | |
8278 | * Free memory regions allocated on behalf of userspace, | |
8279 | * unless the the memory map has changed due to process exit | |
8280 | * or fd copying. | |
8281 | */ | |
1d8007bd PB |
8282 | x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); |
8283 | x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); | |
8284 | x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); | |
27469d29 | 8285 | } |
03543133 SS |
8286 | if (kvm_x86_ops->vm_destroy) |
8287 | kvm_x86_ops->vm_destroy(kvm); | |
c761159c PX |
8288 | kvm_pic_destroy(kvm); |
8289 | kvm_ioapic_destroy(kvm); | |
d19a9cd2 | 8290 | kvm_free_vcpus(kvm); |
af1bae54 | 8291 | kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
13d268ca | 8292 | kvm_mmu_uninit_vm(kvm); |
2beb6dad | 8293 | kvm_page_track_cleanup(kvm); |
d19a9cd2 | 8294 | } |
0de10343 | 8295 | |
5587027c | 8296 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, |
db3fe4eb TY |
8297 | struct kvm_memory_slot *dont) |
8298 | { | |
8299 | int i; | |
8300 | ||
d89cc617 TY |
8301 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
8302 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | |
548ef284 | 8303 | kvfree(free->arch.rmap[i]); |
d89cc617 | 8304 | free->arch.rmap[i] = NULL; |
77d11309 | 8305 | } |
d89cc617 TY |
8306 | if (i == 0) |
8307 | continue; | |
8308 | ||
8309 | if (!dont || free->arch.lpage_info[i - 1] != | |
8310 | dont->arch.lpage_info[i - 1]) { | |
548ef284 | 8311 | kvfree(free->arch.lpage_info[i - 1]); |
d89cc617 | 8312 | free->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
8313 | } |
8314 | } | |
21ebbeda XG |
8315 | |
8316 | kvm_page_track_free_memslot(free, dont); | |
db3fe4eb TY |
8317 | } |
8318 | ||
5587027c AK |
8319 | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
8320 | unsigned long npages) | |
db3fe4eb TY |
8321 | { |
8322 | int i; | |
8323 | ||
d89cc617 | 8324 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
92f94f1e | 8325 | struct kvm_lpage_info *linfo; |
db3fe4eb TY |
8326 | unsigned long ugfn; |
8327 | int lpages; | |
d89cc617 | 8328 | int level = i + 1; |
db3fe4eb TY |
8329 | |
8330 | lpages = gfn_to_index(slot->base_gfn + npages - 1, | |
8331 | slot->base_gfn, level) + 1; | |
8332 | ||
d89cc617 | 8333 | slot->arch.rmap[i] = |
a7c3e901 | 8334 | kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL); |
d89cc617 | 8335 | if (!slot->arch.rmap[i]) |
77d11309 | 8336 | goto out_free; |
d89cc617 TY |
8337 | if (i == 0) |
8338 | continue; | |
77d11309 | 8339 | |
a7c3e901 | 8340 | linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL); |
92f94f1e | 8341 | if (!linfo) |
db3fe4eb TY |
8342 | goto out_free; |
8343 | ||
92f94f1e XG |
8344 | slot->arch.lpage_info[i - 1] = linfo; |
8345 | ||
db3fe4eb | 8346 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 8347 | linfo[0].disallow_lpage = 1; |
db3fe4eb | 8348 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 8349 | linfo[lpages - 1].disallow_lpage = 1; |
db3fe4eb TY |
8350 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
8351 | /* | |
8352 | * If the gfn and userspace address are not aligned wrt each | |
8353 | * other, or if explicitly asked to, disable large page | |
8354 | * support for this slot | |
8355 | */ | |
8356 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | |
8357 | !kvm_largepages_enabled()) { | |
8358 | unsigned long j; | |
8359 | ||
8360 | for (j = 0; j < lpages; ++j) | |
92f94f1e | 8361 | linfo[j].disallow_lpage = 1; |
db3fe4eb TY |
8362 | } |
8363 | } | |
8364 | ||
21ebbeda XG |
8365 | if (kvm_page_track_create_memslot(slot, npages)) |
8366 | goto out_free; | |
8367 | ||
db3fe4eb TY |
8368 | return 0; |
8369 | ||
8370 | out_free: | |
d89cc617 | 8371 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
548ef284 | 8372 | kvfree(slot->arch.rmap[i]); |
d89cc617 TY |
8373 | slot->arch.rmap[i] = NULL; |
8374 | if (i == 0) | |
8375 | continue; | |
8376 | ||
548ef284 | 8377 | kvfree(slot->arch.lpage_info[i - 1]); |
d89cc617 | 8378 | slot->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
8379 | } |
8380 | return -ENOMEM; | |
8381 | } | |
8382 | ||
15f46015 | 8383 | void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) |
e59dbe09 | 8384 | { |
e6dff7d1 TY |
8385 | /* |
8386 | * memslots->generation has been incremented. | |
8387 | * mmio generation may have reached its maximum value. | |
8388 | */ | |
54bf36aa | 8389 | kvm_mmu_invalidate_mmio_sptes(kvm, slots); |
e59dbe09 TY |
8390 | } |
8391 | ||
f7784b8e MT |
8392 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
8393 | struct kvm_memory_slot *memslot, | |
09170a49 | 8394 | const struct kvm_userspace_memory_region *mem, |
7b6195a9 | 8395 | enum kvm_mr_change change) |
0de10343 | 8396 | { |
f7784b8e MT |
8397 | return 0; |
8398 | } | |
8399 | ||
88178fd4 KH |
8400 | static void kvm_mmu_slot_apply_flags(struct kvm *kvm, |
8401 | struct kvm_memory_slot *new) | |
8402 | { | |
8403 | /* Still write protect RO slot */ | |
8404 | if (new->flags & KVM_MEM_READONLY) { | |
8405 | kvm_mmu_slot_remove_write_access(kvm, new); | |
8406 | return; | |
8407 | } | |
8408 | ||
8409 | /* | |
8410 | * Call kvm_x86_ops dirty logging hooks when they are valid. | |
8411 | * | |
8412 | * kvm_x86_ops->slot_disable_log_dirty is called when: | |
8413 | * | |
8414 | * - KVM_MR_CREATE with dirty logging is disabled | |
8415 | * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag | |
8416 | * | |
8417 | * The reason is, in case of PML, we need to set D-bit for any slots | |
8418 | * with dirty logging disabled in order to eliminate unnecessary GPA | |
8419 | * logging in PML buffer (and potential PML buffer full VMEXT). This | |
8420 | * guarantees leaving PML enabled during guest's lifetime won't have | |
8421 | * any additonal overhead from PML when guest is running with dirty | |
8422 | * logging disabled for memory slots. | |
8423 | * | |
8424 | * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot | |
8425 | * to dirty logging mode. | |
8426 | * | |
8427 | * If kvm_x86_ops dirty logging hooks are invalid, use write protect. | |
8428 | * | |
8429 | * In case of write protect: | |
8430 | * | |
8431 | * Write protect all pages for dirty logging. | |
8432 | * | |
8433 | * All the sptes including the large sptes which point to this | |
8434 | * slot are set to readonly. We can not create any new large | |
8435 | * spte on this slot until the end of the logging. | |
8436 | * | |
8437 | * See the comments in fast_page_fault(). | |
8438 | */ | |
8439 | if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
8440 | if (kvm_x86_ops->slot_enable_log_dirty) | |
8441 | kvm_x86_ops->slot_enable_log_dirty(kvm, new); | |
8442 | else | |
8443 | kvm_mmu_slot_remove_write_access(kvm, new); | |
8444 | } else { | |
8445 | if (kvm_x86_ops->slot_disable_log_dirty) | |
8446 | kvm_x86_ops->slot_disable_log_dirty(kvm, new); | |
8447 | } | |
8448 | } | |
8449 | ||
f7784b8e | 8450 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
09170a49 | 8451 | const struct kvm_userspace_memory_region *mem, |
8482644a | 8452 | const struct kvm_memory_slot *old, |
f36f3f28 | 8453 | const struct kvm_memory_slot *new, |
8482644a | 8454 | enum kvm_mr_change change) |
f7784b8e | 8455 | { |
8482644a | 8456 | int nr_mmu_pages = 0; |
f7784b8e | 8457 | |
48c0e4e9 XG |
8458 | if (!kvm->arch.n_requested_mmu_pages) |
8459 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | |
8460 | ||
48c0e4e9 | 8461 | if (nr_mmu_pages) |
0de10343 | 8462 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
1c91cad4 | 8463 | |
3ea3b7fa WL |
8464 | /* |
8465 | * Dirty logging tracks sptes in 4k granularity, meaning that large | |
8466 | * sptes have to be split. If live migration is successful, the guest | |
8467 | * in the source machine will be destroyed and large sptes will be | |
8468 | * created in the destination. However, if the guest continues to run | |
8469 | * in the source machine (for example if live migration fails), small | |
8470 | * sptes will remain around and cause bad performance. | |
8471 | * | |
8472 | * Scan sptes if dirty logging has been stopped, dropping those | |
8473 | * which can be collapsed into a single large-page spte. Later | |
8474 | * page faults will create the large-page sptes. | |
8475 | */ | |
8476 | if ((change != KVM_MR_DELETE) && | |
8477 | (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && | |
8478 | !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) | |
8479 | kvm_mmu_zap_collapsible_sptes(kvm, new); | |
8480 | ||
c972f3b1 | 8481 | /* |
88178fd4 | 8482 | * Set up write protection and/or dirty logging for the new slot. |
c126d94f | 8483 | * |
88178fd4 KH |
8484 | * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have |
8485 | * been zapped so no dirty logging staff is needed for old slot. For | |
8486 | * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the | |
8487 | * new and it's also covered when dealing with the new slot. | |
f36f3f28 PB |
8488 | * |
8489 | * FIXME: const-ify all uses of struct kvm_memory_slot. | |
c972f3b1 | 8490 | */ |
88178fd4 | 8491 | if (change != KVM_MR_DELETE) |
f36f3f28 | 8492 | kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); |
0de10343 | 8493 | } |
1d737c8a | 8494 | |
2df72e9b | 8495 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
34d4cb8f | 8496 | { |
6ca18b69 | 8497 | kvm_mmu_invalidate_zap_all_pages(kvm); |
34d4cb8f MT |
8498 | } |
8499 | ||
2df72e9b MT |
8500 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
8501 | struct kvm_memory_slot *slot) | |
8502 | { | |
ae7cd873 | 8503 | kvm_page_track_flush_slot(kvm, slot); |
2df72e9b MT |
8504 | } |
8505 | ||
5d9bc648 PB |
8506 | static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) |
8507 | { | |
8508 | if (!list_empty_careful(&vcpu->async_pf.done)) | |
8509 | return true; | |
8510 | ||
8511 | if (kvm_apic_has_events(vcpu)) | |
8512 | return true; | |
8513 | ||
8514 | if (vcpu->arch.pv.pv_unhalted) | |
8515 | return true; | |
8516 | ||
a5f01f8e WL |
8517 | if (vcpu->arch.exception.pending) |
8518 | return true; | |
8519 | ||
47a66eed Z |
8520 | if (kvm_test_request(KVM_REQ_NMI, vcpu) || |
8521 | (vcpu->arch.nmi_pending && | |
8522 | kvm_x86_ops->nmi_allowed(vcpu))) | |
5d9bc648 PB |
8523 | return true; |
8524 | ||
47a66eed Z |
8525 | if (kvm_test_request(KVM_REQ_SMI, vcpu) || |
8526 | (vcpu->arch.smi_pending && !is_smm(vcpu))) | |
73917739 PB |
8527 | return true; |
8528 | ||
5d9bc648 PB |
8529 | if (kvm_arch_interrupt_allowed(vcpu) && |
8530 | kvm_cpu_has_interrupt(vcpu)) | |
8531 | return true; | |
8532 | ||
1f4b34f8 AS |
8533 | if (kvm_hv_has_stimer_pending(vcpu)) |
8534 | return true; | |
8535 | ||
5d9bc648 PB |
8536 | return false; |
8537 | } | |
8538 | ||
1d737c8a ZX |
8539 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
8540 | { | |
5d9bc648 | 8541 | return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); |
1d737c8a | 8542 | } |
5736199a | 8543 | |
199b5763 LM |
8544 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
8545 | { | |
de63ad4c | 8546 | return vcpu->arch.preempted_in_kernel; |
199b5763 LM |
8547 | } |
8548 | ||
b6d33834 | 8549 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
5736199a | 8550 | { |
b6d33834 | 8551 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
5736199a | 8552 | } |
78646121 GN |
8553 | |
8554 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | |
8555 | { | |
8556 | return kvm_x86_ops->interrupt_allowed(vcpu); | |
8557 | } | |
229456fc | 8558 | |
82b32774 | 8559 | unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) |
f92653ee | 8560 | { |
82b32774 NA |
8561 | if (is_64_bit_mode(vcpu)) |
8562 | return kvm_rip_read(vcpu); | |
8563 | return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + | |
8564 | kvm_rip_read(vcpu)); | |
8565 | } | |
8566 | EXPORT_SYMBOL_GPL(kvm_get_linear_rip); | |
f92653ee | 8567 | |
82b32774 NA |
8568 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
8569 | { | |
8570 | return kvm_get_linear_rip(vcpu) == linear_rip; | |
f92653ee JK |
8571 | } |
8572 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | |
8573 | ||
94fe45da JK |
8574 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
8575 | { | |
8576 | unsigned long rflags; | |
8577 | ||
8578 | rflags = kvm_x86_ops->get_rflags(vcpu); | |
8579 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | |
c310bac5 | 8580 | rflags &= ~X86_EFLAGS_TF; |
94fe45da JK |
8581 | return rflags; |
8582 | } | |
8583 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | |
8584 | ||
6addfc42 | 8585 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
94fe45da JK |
8586 | { |
8587 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | |
f92653ee | 8588 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
c310bac5 | 8589 | rflags |= X86_EFLAGS_TF; |
94fe45da | 8590 | kvm_x86_ops->set_rflags(vcpu, rflags); |
6addfc42 PB |
8591 | } |
8592 | ||
8593 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
8594 | { | |
8595 | __kvm_set_rflags(vcpu, rflags); | |
3842d135 | 8596 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
94fe45da JK |
8597 | } |
8598 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | |
8599 | ||
56028d08 GN |
8600 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
8601 | { | |
8602 | int r; | |
8603 | ||
fb67e14f | 8604 | if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || |
f2e10669 | 8605 | work->wakeup_all) |
56028d08 GN |
8606 | return; |
8607 | ||
8608 | r = kvm_mmu_reload(vcpu); | |
8609 | if (unlikely(r)) | |
8610 | return; | |
8611 | ||
fb67e14f XG |
8612 | if (!vcpu->arch.mmu.direct_map && |
8613 | work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) | |
8614 | return; | |
8615 | ||
56028d08 GN |
8616 | vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
8617 | } | |
8618 | ||
af585b92 GN |
8619 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
8620 | { | |
8621 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | |
8622 | } | |
8623 | ||
8624 | static inline u32 kvm_async_pf_next_probe(u32 key) | |
8625 | { | |
8626 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | |
8627 | } | |
8628 | ||
8629 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8630 | { | |
8631 | u32 key = kvm_async_pf_hash_fn(gfn); | |
8632 | ||
8633 | while (vcpu->arch.apf.gfns[key] != ~0) | |
8634 | key = kvm_async_pf_next_probe(key); | |
8635 | ||
8636 | vcpu->arch.apf.gfns[key] = gfn; | |
8637 | } | |
8638 | ||
8639 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8640 | { | |
8641 | int i; | |
8642 | u32 key = kvm_async_pf_hash_fn(gfn); | |
8643 | ||
8644 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | |
c7d28c24 XG |
8645 | (vcpu->arch.apf.gfns[key] != gfn && |
8646 | vcpu->arch.apf.gfns[key] != ~0); i++) | |
af585b92 GN |
8647 | key = kvm_async_pf_next_probe(key); |
8648 | ||
8649 | return key; | |
8650 | } | |
8651 | ||
8652 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8653 | { | |
8654 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | |
8655 | } | |
8656 | ||
8657 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8658 | { | |
8659 | u32 i, j, k; | |
8660 | ||
8661 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | |
8662 | while (true) { | |
8663 | vcpu->arch.apf.gfns[i] = ~0; | |
8664 | do { | |
8665 | j = kvm_async_pf_next_probe(j); | |
8666 | if (vcpu->arch.apf.gfns[j] == ~0) | |
8667 | return; | |
8668 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | |
8669 | /* | |
8670 | * k lies cyclically in ]i,j] | |
8671 | * | i.k.j | | |
8672 | * |....j i.k.| or |.k..j i...| | |
8673 | */ | |
8674 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | |
8675 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | |
8676 | i = j; | |
8677 | } | |
8678 | } | |
8679 | ||
7c90705b GN |
8680 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
8681 | { | |
4e335d9e PB |
8682 | |
8683 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | |
8684 | sizeof(val)); | |
7c90705b GN |
8685 | } |
8686 | ||
9a6e7c39 WL |
8687 | static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) |
8688 | { | |
8689 | ||
8690 | return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, | |
8691 | sizeof(u32)); | |
8692 | } | |
8693 | ||
af585b92 GN |
8694 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
8695 | struct kvm_async_pf *work) | |
8696 | { | |
6389ee94 AK |
8697 | struct x86_exception fault; |
8698 | ||
7c90705b | 8699 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
af585b92 | 8700 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7c90705b GN |
8701 | |
8702 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | |
fc5f06fa GN |
8703 | (vcpu->arch.apf.send_user_only && |
8704 | kvm_x86_ops->get_cpl(vcpu) == 0)) | |
7c90705b GN |
8705 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
8706 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | |
6389ee94 AK |
8707 | fault.vector = PF_VECTOR; |
8708 | fault.error_code_valid = true; | |
8709 | fault.error_code = 0; | |
8710 | fault.nested_page_fault = false; | |
8711 | fault.address = work->arch.token; | |
adfe20fb | 8712 | fault.async_page_fault = true; |
6389ee94 | 8713 | kvm_inject_page_fault(vcpu, &fault); |
7c90705b | 8714 | } |
af585b92 GN |
8715 | } |
8716 | ||
8717 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | |
8718 | struct kvm_async_pf *work) | |
8719 | { | |
6389ee94 | 8720 | struct x86_exception fault; |
9a6e7c39 | 8721 | u32 val; |
6389ee94 | 8722 | |
f2e10669 | 8723 | if (work->wakeup_all) |
7c90705b GN |
8724 | work->arch.token = ~0; /* broadcast wakeup */ |
8725 | else | |
8726 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | |
24dccf83 | 8727 | trace_kvm_async_pf_ready(work->arch.token, work->gva); |
7c90705b | 8728 | |
9a6e7c39 WL |
8729 | if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && |
8730 | !apf_get_user(vcpu, &val)) { | |
8731 | if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && | |
8732 | vcpu->arch.exception.pending && | |
8733 | vcpu->arch.exception.nr == PF_VECTOR && | |
8734 | !apf_put_user(vcpu, 0)) { | |
8735 | vcpu->arch.exception.injected = false; | |
8736 | vcpu->arch.exception.pending = false; | |
8737 | vcpu->arch.exception.nr = 0; | |
8738 | vcpu->arch.exception.has_error_code = false; | |
8739 | vcpu->arch.exception.error_code = 0; | |
8740 | } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | |
8741 | fault.vector = PF_VECTOR; | |
8742 | fault.error_code_valid = true; | |
8743 | fault.error_code = 0; | |
8744 | fault.nested_page_fault = false; | |
8745 | fault.address = work->arch.token; | |
8746 | fault.async_page_fault = true; | |
8747 | kvm_inject_page_fault(vcpu, &fault); | |
8748 | } | |
7c90705b | 8749 | } |
e6d53e3b | 8750 | vcpu->arch.apf.halted = false; |
a4fa1635 | 8751 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7c90705b GN |
8752 | } |
8753 | ||
8754 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | |
8755 | { | |
8756 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | |
8757 | return true; | |
8758 | else | |
9bc1f09f | 8759 | return kvm_can_do_async_pf(vcpu); |
af585b92 GN |
8760 | } |
8761 | ||
5544eb9b PB |
8762 | void kvm_arch_start_assignment(struct kvm *kvm) |
8763 | { | |
8764 | atomic_inc(&kvm->arch.assigned_device_count); | |
8765 | } | |
8766 | EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); | |
8767 | ||
8768 | void kvm_arch_end_assignment(struct kvm *kvm) | |
8769 | { | |
8770 | atomic_dec(&kvm->arch.assigned_device_count); | |
8771 | } | |
8772 | EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); | |
8773 | ||
8774 | bool kvm_arch_has_assigned_device(struct kvm *kvm) | |
8775 | { | |
8776 | return atomic_read(&kvm->arch.assigned_device_count); | |
8777 | } | |
8778 | EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); | |
8779 | ||
e0f0bbc5 AW |
8780 | void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
8781 | { | |
8782 | atomic_inc(&kvm->arch.noncoherent_dma_count); | |
8783 | } | |
8784 | EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); | |
8785 | ||
8786 | void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) | |
8787 | { | |
8788 | atomic_dec(&kvm->arch.noncoherent_dma_count); | |
8789 | } | |
8790 | EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); | |
8791 | ||
8792 | bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) | |
8793 | { | |
8794 | return atomic_read(&kvm->arch.noncoherent_dma_count); | |
8795 | } | |
8796 | EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); | |
8797 | ||
14717e20 AW |
8798 | bool kvm_arch_has_irq_bypass(void) |
8799 | { | |
8800 | return kvm_x86_ops->update_pi_irte != NULL; | |
8801 | } | |
8802 | ||
87276880 FW |
8803 | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
8804 | struct irq_bypass_producer *prod) | |
8805 | { | |
8806 | struct kvm_kernel_irqfd *irqfd = | |
8807 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
8808 | ||
14717e20 | 8809 | irqfd->producer = prod; |
87276880 | 8810 | |
14717e20 AW |
8811 | return kvm_x86_ops->update_pi_irte(irqfd->kvm, |
8812 | prod->irq, irqfd->gsi, 1); | |
87276880 FW |
8813 | } |
8814 | ||
8815 | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, | |
8816 | struct irq_bypass_producer *prod) | |
8817 | { | |
8818 | int ret; | |
8819 | struct kvm_kernel_irqfd *irqfd = | |
8820 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
8821 | ||
87276880 FW |
8822 | WARN_ON(irqfd->producer != prod); |
8823 | irqfd->producer = NULL; | |
8824 | ||
8825 | /* | |
8826 | * When producer of consumer is unregistered, we change back to | |
8827 | * remapped mode, so we can re-use the current implementation | |
bb3541f1 | 8828 | * when the irq is masked/disabled or the consumer side (KVM |
87276880 FW |
8829 | * int this case doesn't want to receive the interrupts. |
8830 | */ | |
8831 | ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); | |
8832 | if (ret) | |
8833 | printk(KERN_INFO "irq bypass consumer (token %p) unregistration" | |
8834 | " fails: %d\n", irqfd->consumer.token, ret); | |
8835 | } | |
8836 | ||
8837 | int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, | |
8838 | uint32_t guest_irq, bool set) | |
8839 | { | |
8840 | if (!kvm_x86_ops->update_pi_irte) | |
8841 | return -EINVAL; | |
8842 | ||
8843 | return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); | |
8844 | } | |
8845 | ||
52004014 FW |
8846 | bool kvm_vector_hashing_enabled(void) |
8847 | { | |
8848 | return vector_hashing; | |
8849 | } | |
8850 | EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); | |
8851 | ||
229456fc | 8852 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
931c33b1 | 8853 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); |
229456fc MT |
8854 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
8855 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | |
8856 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | |
8857 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | |
0ac406de | 8858 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
d8cabddf | 8859 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
17897f36 | 8860 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
236649de | 8861 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
ec1ff790 | 8862 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
532a46b9 | 8863 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
2e554e8d | 8864 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
489223ed | 8865 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
7b46268d | 8866 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); |
843e4330 | 8867 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); |
efc64404 | 8868 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); |
18f40c53 SS |
8869 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); |
8870 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); |