]>
Commit | Line | Data |
---|---|---|
043405e1 CO |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * derived from drivers/kvm/kvm_main.c | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
4d5c5d0f BAY |
7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | |
9611c187 | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
043405e1 CO |
10 | * |
11 | * Authors: | |
12 | * Avi Kivity <[email protected]> | |
13 | * Yaniv Kamay <[email protected]> | |
4d5c5d0f BAY |
14 | * Amit Shah <[email protected]> |
15 | * Ben-Ami Yassour <[email protected]> | |
043405e1 CO |
16 | * |
17 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
18 | * the COPYING file in the top-level directory. | |
19 | * | |
20 | */ | |
21 | ||
edf88417 | 22 | #include <linux/kvm_host.h> |
313a3dc7 | 23 | #include "irq.h" |
1d737c8a | 24 | #include "mmu.h" |
7837699f | 25 | #include "i8254.h" |
37817f29 | 26 | #include "tss.h" |
5fdbf976 | 27 | #include "kvm_cache_regs.h" |
26eef70c | 28 | #include "x86.h" |
00b27a3e | 29 | #include "cpuid.h" |
474a5bb9 | 30 | #include "pmu.h" |
e83d5887 | 31 | #include "hyperv.h" |
313a3dc7 | 32 | |
18068523 | 33 | #include <linux/clocksource.h> |
4d5c5d0f | 34 | #include <linux/interrupt.h> |
313a3dc7 CO |
35 | #include <linux/kvm.h> |
36 | #include <linux/fs.h> | |
37 | #include <linux/vmalloc.h> | |
1767e931 PG |
38 | #include <linux/export.h> |
39 | #include <linux/moduleparam.h> | |
0de10343 | 40 | #include <linux/mman.h> |
2bacc55c | 41 | #include <linux/highmem.h> |
19de40a8 | 42 | #include <linux/iommu.h> |
62c476c7 | 43 | #include <linux/intel-iommu.h> |
c8076604 | 44 | #include <linux/cpufreq.h> |
18863bdd | 45 | #include <linux/user-return-notifier.h> |
a983fb23 | 46 | #include <linux/srcu.h> |
5a0e3ad6 | 47 | #include <linux/slab.h> |
ff9d07a0 | 48 | #include <linux/perf_event.h> |
7bee342a | 49 | #include <linux/uaccess.h> |
af585b92 | 50 | #include <linux/hash.h> |
a1b60c1c | 51 | #include <linux/pci.h> |
16e8d74d MT |
52 | #include <linux/timekeeper_internal.h> |
53 | #include <linux/pvclock_gtod.h> | |
87276880 FW |
54 | #include <linux/kvm_irqfd.h> |
55 | #include <linux/irqbypass.h> | |
3905f9ad IM |
56 | #include <linux/sched/stat.h> |
57 | ||
aec51dc4 | 58 | #include <trace/events/kvm.h> |
2ed152af | 59 | |
24f1e32c | 60 | #include <asm/debugreg.h> |
d825ed0a | 61 | #include <asm/msr.h> |
a5f61300 | 62 | #include <asm/desc.h> |
890ca9ae | 63 | #include <asm/mce.h> |
f89e32e0 | 64 | #include <linux/kernel_stat.h> |
78f7f1e5 | 65 | #include <asm/fpu/internal.h> /* Ugh! */ |
1d5f066e | 66 | #include <asm/pvclock.h> |
217fc9cf | 67 | #include <asm/div64.h> |
efc64404 | 68 | #include <asm/irq_remapping.h> |
043405e1 | 69 | |
d1898b73 DH |
70 | #define CREATE_TRACE_POINTS |
71 | #include "trace.h" | |
72 | ||
313a3dc7 | 73 | #define MAX_IO_MSRS 256 |
890ca9ae | 74 | #define KVM_MAX_MCE_BANKS 32 |
c45dcc71 AR |
75 | u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; |
76 | EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); | |
890ca9ae | 77 | |
0f65dd70 AK |
78 | #define emul_to_vcpu(ctxt) \ |
79 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | |
80 | ||
50a37eb4 JR |
81 | /* EFER defaults: |
82 | * - enable syscall per default because its emulated by KVM | |
83 | * - enable LME and LMA per default on 64 bit KVM | |
84 | */ | |
85 | #ifdef CONFIG_X86_64 | |
1260edbe LJ |
86 | static |
87 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | |
50a37eb4 | 88 | #else |
1260edbe | 89 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
50a37eb4 | 90 | #endif |
313a3dc7 | 91 | |
ba1389b7 AK |
92 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
93 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | |
417bc304 | 94 | |
c519265f RK |
95 | #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ |
96 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) | |
37131313 | 97 | |
cb142eb7 | 98 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
7460fb4a | 99 | static void process_nmi(struct kvm_vcpu *vcpu); |
ee2cd4b7 | 100 | static void enter_smm(struct kvm_vcpu *vcpu); |
6addfc42 | 101 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
674eea0f | 102 | |
893590c7 | 103 | struct kvm_x86_ops *kvm_x86_ops __read_mostly; |
5fdbf976 | 104 | EXPORT_SYMBOL_GPL(kvm_x86_ops); |
97896d04 | 105 | |
893590c7 | 106 | static bool __read_mostly ignore_msrs = 0; |
476bc001 | 107 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); |
ed85c068 | 108 | |
9ed96e87 MT |
109 | unsigned int min_timer_period_us = 500; |
110 | module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); | |
111 | ||
630994b3 MT |
112 | static bool __read_mostly kvmclock_periodic_sync = true; |
113 | module_param(kvmclock_periodic_sync, bool, S_IRUGO); | |
114 | ||
893590c7 | 115 | bool __read_mostly kvm_has_tsc_control; |
92a1f12d | 116 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); |
893590c7 | 117 | u32 __read_mostly kvm_max_guest_tsc_khz; |
92a1f12d | 118 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); |
bc9b961b HZ |
119 | u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; |
120 | EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); | |
121 | u64 __read_mostly kvm_max_tsc_scaling_ratio; | |
122 | EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); | |
64672c95 YJ |
123 | u64 __read_mostly kvm_default_tsc_scaling_ratio; |
124 | EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); | |
92a1f12d | 125 | |
cc578287 | 126 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
893590c7 | 127 | static u32 __read_mostly tsc_tolerance_ppm = 250; |
cc578287 ZA |
128 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); |
129 | ||
d0659d94 | 130 | /* lapic timer advance (tscdeadline mode only) in nanoseconds */ |
893590c7 | 131 | unsigned int __read_mostly lapic_timer_advance_ns = 0; |
d0659d94 MT |
132 | module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); |
133 | ||
52004014 FW |
134 | static bool __read_mostly vector_hashing = true; |
135 | module_param(vector_hashing, bool, S_IRUGO); | |
136 | ||
18863bdd AK |
137 | #define KVM_NR_SHARED_MSRS 16 |
138 | ||
139 | struct kvm_shared_msrs_global { | |
140 | int nr; | |
2bf78fa7 | 141 | u32 msrs[KVM_NR_SHARED_MSRS]; |
18863bdd AK |
142 | }; |
143 | ||
144 | struct kvm_shared_msrs { | |
145 | struct user_return_notifier urn; | |
146 | bool registered; | |
2bf78fa7 SY |
147 | struct kvm_shared_msr_values { |
148 | u64 host; | |
149 | u64 curr; | |
150 | } values[KVM_NR_SHARED_MSRS]; | |
18863bdd AK |
151 | }; |
152 | ||
153 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | |
013f6a5d | 154 | static struct kvm_shared_msrs __percpu *shared_msrs; |
18863bdd | 155 | |
417bc304 | 156 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
ba1389b7 AK |
157 | { "pf_fixed", VCPU_STAT(pf_fixed) }, |
158 | { "pf_guest", VCPU_STAT(pf_guest) }, | |
159 | { "tlb_flush", VCPU_STAT(tlb_flush) }, | |
160 | { "invlpg", VCPU_STAT(invlpg) }, | |
161 | { "exits", VCPU_STAT(exits) }, | |
162 | { "io_exits", VCPU_STAT(io_exits) }, | |
163 | { "mmio_exits", VCPU_STAT(mmio_exits) }, | |
164 | { "signal_exits", VCPU_STAT(signal_exits) }, | |
165 | { "irq_window", VCPU_STAT(irq_window_exits) }, | |
f08864b4 | 166 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
ba1389b7 | 167 | { "halt_exits", VCPU_STAT(halt_exits) }, |
f7819512 | 168 | { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, |
62bea5bf | 169 | { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, |
3491caf2 | 170 | { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, |
ba1389b7 | 171 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
f11c3a8d | 172 | { "hypercalls", VCPU_STAT(hypercalls) }, |
ba1389b7 AK |
173 | { "request_irq", VCPU_STAT(request_irq_exits) }, |
174 | { "irq_exits", VCPU_STAT(irq_exits) }, | |
175 | { "host_state_reload", VCPU_STAT(host_state_reload) }, | |
176 | { "efer_reload", VCPU_STAT(efer_reload) }, | |
177 | { "fpu_reload", VCPU_STAT(fpu_reload) }, | |
178 | { "insn_emulation", VCPU_STAT(insn_emulation) }, | |
179 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | |
fa89a817 | 180 | { "irq_injections", VCPU_STAT(irq_injections) }, |
c4abb7c9 | 181 | { "nmi_injections", VCPU_STAT(nmi_injections) }, |
0f1e261e | 182 | { "req_event", VCPU_STAT(req_event) }, |
4cee5764 AK |
183 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
184 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | |
185 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | |
186 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | |
187 | { "mmu_flooded", VM_STAT(mmu_flooded) }, | |
188 | { "mmu_recycled", VM_STAT(mmu_recycled) }, | |
dfc5aa00 | 189 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
4731d4c7 | 190 | { "mmu_unsync", VM_STAT(mmu_unsync) }, |
0f74a24c | 191 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
05da4558 | 192 | { "largepages", VM_STAT(lpages) }, |
f3414bc7 DM |
193 | { "max_mmu_page_hash_collisions", |
194 | VM_STAT(max_mmu_page_hash_collisions) }, | |
417bc304 HB |
195 | { NULL } |
196 | }; | |
197 | ||
2acf923e DC |
198 | u64 __read_mostly host_xcr0; |
199 | ||
b6785def | 200 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
d6aa1000 | 201 | |
af585b92 GN |
202 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
203 | { | |
204 | int i; | |
205 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | |
206 | vcpu->arch.apf.gfns[i] = ~0; | |
207 | } | |
208 | ||
18863bdd AK |
209 | static void kvm_on_user_return(struct user_return_notifier *urn) |
210 | { | |
211 | unsigned slot; | |
18863bdd AK |
212 | struct kvm_shared_msrs *locals |
213 | = container_of(urn, struct kvm_shared_msrs, urn); | |
2bf78fa7 | 214 | struct kvm_shared_msr_values *values; |
1650b4eb IA |
215 | unsigned long flags; |
216 | ||
217 | /* | |
218 | * Disabling irqs at this point since the following code could be | |
219 | * interrupted and executed through kvm_arch_hardware_disable() | |
220 | */ | |
221 | local_irq_save(flags); | |
222 | if (locals->registered) { | |
223 | locals->registered = false; | |
224 | user_return_notifier_unregister(urn); | |
225 | } | |
226 | local_irq_restore(flags); | |
18863bdd | 227 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
2bf78fa7 SY |
228 | values = &locals->values[slot]; |
229 | if (values->host != values->curr) { | |
230 | wrmsrl(shared_msrs_global.msrs[slot], values->host); | |
231 | values->curr = values->host; | |
18863bdd AK |
232 | } |
233 | } | |
18863bdd AK |
234 | } |
235 | ||
2bf78fa7 | 236 | static void shared_msr_update(unsigned slot, u32 msr) |
18863bdd | 237 | { |
18863bdd | 238 | u64 value; |
013f6a5d MT |
239 | unsigned int cpu = smp_processor_id(); |
240 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
18863bdd | 241 | |
2bf78fa7 SY |
242 | /* only read, and nobody should modify it at this time, |
243 | * so don't need lock */ | |
244 | if (slot >= shared_msrs_global.nr) { | |
245 | printk(KERN_ERR "kvm: invalid MSR slot!"); | |
246 | return; | |
247 | } | |
248 | rdmsrl_safe(msr, &value); | |
249 | smsr->values[slot].host = value; | |
250 | smsr->values[slot].curr = value; | |
251 | } | |
252 | ||
253 | void kvm_define_shared_msr(unsigned slot, u32 msr) | |
254 | { | |
0123be42 | 255 | BUG_ON(slot >= KVM_NR_SHARED_MSRS); |
c847fe88 | 256 | shared_msrs_global.msrs[slot] = msr; |
18863bdd AK |
257 | if (slot >= shared_msrs_global.nr) |
258 | shared_msrs_global.nr = slot + 1; | |
18863bdd AK |
259 | } |
260 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | |
261 | ||
262 | static void kvm_shared_msr_cpu_online(void) | |
263 | { | |
264 | unsigned i; | |
18863bdd AK |
265 | |
266 | for (i = 0; i < shared_msrs_global.nr; ++i) | |
2bf78fa7 | 267 | shared_msr_update(i, shared_msrs_global.msrs[i]); |
18863bdd AK |
268 | } |
269 | ||
8b3c3104 | 270 | int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
18863bdd | 271 | { |
013f6a5d MT |
272 | unsigned int cpu = smp_processor_id(); |
273 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
8b3c3104 | 274 | int err; |
18863bdd | 275 | |
2bf78fa7 | 276 | if (((value ^ smsr->values[slot].curr) & mask) == 0) |
8b3c3104 | 277 | return 0; |
2bf78fa7 | 278 | smsr->values[slot].curr = value; |
8b3c3104 AH |
279 | err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); |
280 | if (err) | |
281 | return 1; | |
282 | ||
18863bdd AK |
283 | if (!smsr->registered) { |
284 | smsr->urn.on_user_return = kvm_on_user_return; | |
285 | user_return_notifier_register(&smsr->urn); | |
286 | smsr->registered = true; | |
287 | } | |
8b3c3104 | 288 | return 0; |
18863bdd AK |
289 | } |
290 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | |
291 | ||
13a34e06 | 292 | static void drop_user_return_notifiers(void) |
3548bab5 | 293 | { |
013f6a5d MT |
294 | unsigned int cpu = smp_processor_id(); |
295 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
3548bab5 AK |
296 | |
297 | if (smsr->registered) | |
298 | kvm_on_user_return(&smsr->urn); | |
299 | } | |
300 | ||
6866b83e CO |
301 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
302 | { | |
8a5a87d9 | 303 | return vcpu->arch.apic_base; |
6866b83e CO |
304 | } |
305 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | |
306 | ||
58cb628d JK |
307 | int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
308 | { | |
309 | u64 old_state = vcpu->arch.apic_base & | |
310 | (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); | |
311 | u64 new_state = msr_info->data & | |
312 | (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); | |
d6321d49 RK |
313 | u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | |
314 | (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); | |
58cb628d | 315 | |
d3802286 JM |
316 | if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE) |
317 | return 1; | |
58cb628d | 318 | if (!msr_info->host_initiated && |
d3802286 | 319 | ((new_state == MSR_IA32_APICBASE_ENABLE && |
58cb628d JK |
320 | old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || |
321 | (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && | |
322 | old_state == 0))) | |
323 | return 1; | |
324 | ||
325 | kvm_lapic_set_base(vcpu, msr_info->data); | |
326 | return 0; | |
6866b83e CO |
327 | } |
328 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | |
329 | ||
2605fc21 | 330 | asmlinkage __visible void kvm_spurious_fault(void) |
e3ba45b8 GL |
331 | { |
332 | /* Fault while not rebooting. We want the trace. */ | |
333 | BUG(); | |
334 | } | |
335 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | |
336 | ||
3fd28fce ED |
337 | #define EXCPT_BENIGN 0 |
338 | #define EXCPT_CONTRIBUTORY 1 | |
339 | #define EXCPT_PF 2 | |
340 | ||
341 | static int exception_class(int vector) | |
342 | { | |
343 | switch (vector) { | |
344 | case PF_VECTOR: | |
345 | return EXCPT_PF; | |
346 | case DE_VECTOR: | |
347 | case TS_VECTOR: | |
348 | case NP_VECTOR: | |
349 | case SS_VECTOR: | |
350 | case GP_VECTOR: | |
351 | return EXCPT_CONTRIBUTORY; | |
352 | default: | |
353 | break; | |
354 | } | |
355 | return EXCPT_BENIGN; | |
356 | } | |
357 | ||
d6e8c854 NA |
358 | #define EXCPT_FAULT 0 |
359 | #define EXCPT_TRAP 1 | |
360 | #define EXCPT_ABORT 2 | |
361 | #define EXCPT_INTERRUPT 3 | |
362 | ||
363 | static int exception_type(int vector) | |
364 | { | |
365 | unsigned int mask; | |
366 | ||
367 | if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) | |
368 | return EXCPT_INTERRUPT; | |
369 | ||
370 | mask = 1 << vector; | |
371 | ||
372 | /* #DB is trap, as instruction watchpoints are handled elsewhere */ | |
373 | if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) | |
374 | return EXCPT_TRAP; | |
375 | ||
376 | if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) | |
377 | return EXCPT_ABORT; | |
378 | ||
379 | /* Reserved exceptions will result in fault */ | |
380 | return EXCPT_FAULT; | |
381 | } | |
382 | ||
3fd28fce | 383 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
ce7ddec4 JR |
384 | unsigned nr, bool has_error, u32 error_code, |
385 | bool reinject) | |
3fd28fce ED |
386 | { |
387 | u32 prev_nr; | |
388 | int class1, class2; | |
389 | ||
3842d135 AK |
390 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
391 | ||
3fd28fce ED |
392 | if (!vcpu->arch.exception.pending) { |
393 | queue: | |
3ffb2468 NA |
394 | if (has_error && !is_protmode(vcpu)) |
395 | has_error = false; | |
3fd28fce ED |
396 | vcpu->arch.exception.pending = true; |
397 | vcpu->arch.exception.has_error_code = has_error; | |
398 | vcpu->arch.exception.nr = nr; | |
399 | vcpu->arch.exception.error_code = error_code; | |
3f0fd292 | 400 | vcpu->arch.exception.reinject = reinject; |
3fd28fce ED |
401 | return; |
402 | } | |
403 | ||
404 | /* to check exception */ | |
405 | prev_nr = vcpu->arch.exception.nr; | |
406 | if (prev_nr == DF_VECTOR) { | |
407 | /* triple fault -> shutdown */ | |
a8eeb04a | 408 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
3fd28fce ED |
409 | return; |
410 | } | |
411 | class1 = exception_class(prev_nr); | |
412 | class2 = exception_class(nr); | |
413 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | |
414 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | |
415 | /* generate double fault per SDM Table 5-5 */ | |
416 | vcpu->arch.exception.pending = true; | |
417 | vcpu->arch.exception.has_error_code = true; | |
418 | vcpu->arch.exception.nr = DF_VECTOR; | |
419 | vcpu->arch.exception.error_code = 0; | |
420 | } else | |
421 | /* replace previous exception with a new one in a hope | |
422 | that instruction re-execution will regenerate lost | |
423 | exception */ | |
424 | goto queue; | |
425 | } | |
426 | ||
298101da AK |
427 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
428 | { | |
ce7ddec4 | 429 | kvm_multiple_exception(vcpu, nr, false, 0, false); |
298101da AK |
430 | } |
431 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | |
432 | ||
ce7ddec4 JR |
433 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
434 | { | |
435 | kvm_multiple_exception(vcpu, nr, false, 0, true); | |
436 | } | |
437 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | |
438 | ||
6affcbed | 439 | int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
c3c91fee | 440 | { |
db8fcefa AP |
441 | if (err) |
442 | kvm_inject_gp(vcpu, 0); | |
443 | else | |
6affcbed KH |
444 | return kvm_skip_emulated_instruction(vcpu); |
445 | ||
446 | return 1; | |
db8fcefa AP |
447 | } |
448 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | |
8df25a32 | 449 | |
6389ee94 | 450 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
c3c91fee AK |
451 | { |
452 | ++vcpu->stat.pf_guest; | |
adfe20fb WL |
453 | vcpu->arch.exception.nested_apf = |
454 | is_guest_mode(vcpu) && fault->async_page_fault; | |
455 | if (vcpu->arch.exception.nested_apf) | |
456 | vcpu->arch.apf.nested_apf_token = fault->address; | |
457 | else | |
458 | vcpu->arch.cr2 = fault->address; | |
6389ee94 | 459 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); |
c3c91fee | 460 | } |
27d6c865 | 461 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
c3c91fee | 462 | |
ef54bcfe | 463 | static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
d4f8cf66 | 464 | { |
6389ee94 AK |
465 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
466 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | |
d4f8cf66 | 467 | else |
6389ee94 | 468 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
ef54bcfe PB |
469 | |
470 | return fault->nested_page_fault; | |
d4f8cf66 JR |
471 | } |
472 | ||
3419ffc8 SY |
473 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
474 | { | |
7460fb4a AK |
475 | atomic_inc(&vcpu->arch.nmi_queued); |
476 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
3419ffc8 SY |
477 | } |
478 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | |
479 | ||
298101da AK |
480 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
481 | { | |
ce7ddec4 | 482 | kvm_multiple_exception(vcpu, nr, true, error_code, false); |
298101da AK |
483 | } |
484 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | |
485 | ||
ce7ddec4 JR |
486 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
487 | { | |
488 | kvm_multiple_exception(vcpu, nr, true, error_code, true); | |
489 | } | |
490 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | |
491 | ||
0a79b009 AK |
492 | /* |
493 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | |
494 | * a #GP and return false. | |
495 | */ | |
496 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |
298101da | 497 | { |
0a79b009 AK |
498 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
499 | return true; | |
500 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
501 | return false; | |
298101da | 502 | } |
0a79b009 | 503 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
298101da | 504 | |
16f8a6f9 NA |
505 | bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) |
506 | { | |
507 | if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | |
508 | return true; | |
509 | ||
510 | kvm_queue_exception(vcpu, UD_VECTOR); | |
511 | return false; | |
512 | } | |
513 | EXPORT_SYMBOL_GPL(kvm_require_dr); | |
514 | ||
ec92fe44 JR |
515 | /* |
516 | * This function will be used to read from the physical memory of the currently | |
54bf36aa | 517 | * running guest. The difference to kvm_vcpu_read_guest_page is that this function |
ec92fe44 JR |
518 | * can read from guest physical or from the guest's guest physical memory. |
519 | */ | |
520 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
521 | gfn_t ngfn, void *data, int offset, int len, | |
522 | u32 access) | |
523 | { | |
54987b7a | 524 | struct x86_exception exception; |
ec92fe44 JR |
525 | gfn_t real_gfn; |
526 | gpa_t ngpa; | |
527 | ||
528 | ngpa = gfn_to_gpa(ngfn); | |
54987b7a | 529 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); |
ec92fe44 JR |
530 | if (real_gfn == UNMAPPED_GVA) |
531 | return -EFAULT; | |
532 | ||
533 | real_gfn = gpa_to_gfn(real_gfn); | |
534 | ||
54bf36aa | 535 | return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); |
ec92fe44 JR |
536 | } |
537 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | |
538 | ||
69b0049a | 539 | static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
3d06b8bf JR |
540 | void *data, int offset, int len, u32 access) |
541 | { | |
542 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | |
543 | data, offset, len, access); | |
544 | } | |
545 | ||
a03490ed CO |
546 | /* |
547 | * Load the pae pdptrs. Return true is they are all valid. | |
548 | */ | |
ff03a073 | 549 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
a03490ed CO |
550 | { |
551 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | |
552 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | |
553 | int i; | |
554 | int ret; | |
ff03a073 | 555 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
a03490ed | 556 | |
ff03a073 JR |
557 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
558 | offset * sizeof(u64), sizeof(pdpte), | |
559 | PFERR_USER_MASK|PFERR_WRITE_MASK); | |
a03490ed CO |
560 | if (ret < 0) { |
561 | ret = 0; | |
562 | goto out; | |
563 | } | |
564 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | |
812f30b2 | 565 | if ((pdpte[i] & PT_PRESENT_MASK) && |
a0a64f50 XG |
566 | (pdpte[i] & |
567 | vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { | |
a03490ed CO |
568 | ret = 0; |
569 | goto out; | |
570 | } | |
571 | } | |
572 | ret = 1; | |
573 | ||
ff03a073 | 574 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
6de4f3ad AK |
575 | __set_bit(VCPU_EXREG_PDPTR, |
576 | (unsigned long *)&vcpu->arch.regs_avail); | |
577 | __set_bit(VCPU_EXREG_PDPTR, | |
578 | (unsigned long *)&vcpu->arch.regs_dirty); | |
a03490ed | 579 | out: |
a03490ed CO |
580 | |
581 | return ret; | |
582 | } | |
cc4b6871 | 583 | EXPORT_SYMBOL_GPL(load_pdptrs); |
a03490ed | 584 | |
9ed38ffa | 585 | bool pdptrs_changed(struct kvm_vcpu *vcpu) |
d835dfec | 586 | { |
ff03a073 | 587 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
d835dfec | 588 | bool changed = true; |
3d06b8bf JR |
589 | int offset; |
590 | gfn_t gfn; | |
d835dfec AK |
591 | int r; |
592 | ||
593 | if (is_long_mode(vcpu) || !is_pae(vcpu)) | |
594 | return false; | |
595 | ||
6de4f3ad AK |
596 | if (!test_bit(VCPU_EXREG_PDPTR, |
597 | (unsigned long *)&vcpu->arch.regs_avail)) | |
598 | return true; | |
599 | ||
a512177e PB |
600 | gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; |
601 | offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); | |
3d06b8bf JR |
602 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
603 | PFERR_USER_MASK | PFERR_WRITE_MASK); | |
d835dfec AK |
604 | if (r < 0) |
605 | goto out; | |
ff03a073 | 606 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
d835dfec | 607 | out: |
d835dfec AK |
608 | |
609 | return changed; | |
610 | } | |
9ed38ffa | 611 | EXPORT_SYMBOL_GPL(pdptrs_changed); |
d835dfec | 612 | |
49a9b07e | 613 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
a03490ed | 614 | { |
aad82703 | 615 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
d81135a5 | 616 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; |
aad82703 | 617 | |
f9a48e6a AK |
618 | cr0 |= X86_CR0_ET; |
619 | ||
ab344828 | 620 | #ifdef CONFIG_X86_64 |
0f12244f GN |
621 | if (cr0 & 0xffffffff00000000UL) |
622 | return 1; | |
ab344828 GN |
623 | #endif |
624 | ||
625 | cr0 &= ~CR0_RESERVED_BITS; | |
a03490ed | 626 | |
0f12244f GN |
627 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
628 | return 1; | |
a03490ed | 629 | |
0f12244f GN |
630 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
631 | return 1; | |
a03490ed CO |
632 | |
633 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | |
634 | #ifdef CONFIG_X86_64 | |
f6801dff | 635 | if ((vcpu->arch.efer & EFER_LME)) { |
a03490ed CO |
636 | int cs_db, cs_l; |
637 | ||
0f12244f GN |
638 | if (!is_pae(vcpu)) |
639 | return 1; | |
a03490ed | 640 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
0f12244f GN |
641 | if (cs_l) |
642 | return 1; | |
a03490ed CO |
643 | } else |
644 | #endif | |
ff03a073 | 645 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
9f8fe504 | 646 | kvm_read_cr3(vcpu))) |
0f12244f | 647 | return 1; |
a03490ed CO |
648 | } |
649 | ||
ad756a16 MJ |
650 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
651 | return 1; | |
652 | ||
a03490ed | 653 | kvm_x86_ops->set_cr0(vcpu, cr0); |
a03490ed | 654 | |
d170c419 | 655 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
e5f3f027 | 656 | kvm_clear_async_pf_completion_queue(vcpu); |
d170c419 LJ |
657 | kvm_async_pf_hash_reset(vcpu); |
658 | } | |
e5f3f027 | 659 | |
aad82703 SY |
660 | if ((cr0 ^ old_cr0) & update_bits) |
661 | kvm_mmu_reset_context(vcpu); | |
b18d5431 | 662 | |
879ae188 LE |
663 | if (((cr0 ^ old_cr0) & X86_CR0_CD) && |
664 | kvm_arch_has_noncoherent_dma(vcpu->kvm) && | |
665 | !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) | |
b18d5431 XG |
666 | kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); |
667 | ||
0f12244f GN |
668 | return 0; |
669 | } | |
2d3ad1f4 | 670 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
a03490ed | 671 | |
2d3ad1f4 | 672 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
a03490ed | 673 | { |
49a9b07e | 674 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
a03490ed | 675 | } |
2d3ad1f4 | 676 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
a03490ed | 677 | |
42bdf991 MT |
678 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
679 | { | |
680 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | |
681 | !vcpu->guest_xcr0_loaded) { | |
682 | /* kvm_set_xcr() also depends on this */ | |
683 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | |
684 | vcpu->guest_xcr0_loaded = 1; | |
685 | } | |
686 | } | |
687 | ||
688 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | |
689 | { | |
690 | if (vcpu->guest_xcr0_loaded) { | |
691 | if (vcpu->arch.xcr0 != host_xcr0) | |
692 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | |
693 | vcpu->guest_xcr0_loaded = 0; | |
694 | } | |
695 | } | |
696 | ||
69b0049a | 697 | static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
2acf923e | 698 | { |
56c103ec LJ |
699 | u64 xcr0 = xcr; |
700 | u64 old_xcr0 = vcpu->arch.xcr0; | |
46c34cb0 | 701 | u64 valid_bits; |
2acf923e DC |
702 | |
703 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | |
704 | if (index != XCR_XFEATURE_ENABLED_MASK) | |
705 | return 1; | |
d91cab78 | 706 | if (!(xcr0 & XFEATURE_MASK_FP)) |
2acf923e | 707 | return 1; |
d91cab78 | 708 | if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) |
2acf923e | 709 | return 1; |
46c34cb0 PB |
710 | |
711 | /* | |
712 | * Do not allow the guest to set bits that we do not support | |
713 | * saving. However, xcr0 bit 0 is always set, even if the | |
714 | * emulated CPU does not support XSAVE (see fx_init). | |
715 | */ | |
d91cab78 | 716 | valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; |
46c34cb0 | 717 | if (xcr0 & ~valid_bits) |
2acf923e | 718 | return 1; |
46c34cb0 | 719 | |
d91cab78 DH |
720 | if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != |
721 | (!(xcr0 & XFEATURE_MASK_BNDCSR))) | |
390bd528 LJ |
722 | return 1; |
723 | ||
d91cab78 DH |
724 | if (xcr0 & XFEATURE_MASK_AVX512) { |
725 | if (!(xcr0 & XFEATURE_MASK_YMM)) | |
612263b3 | 726 | return 1; |
d91cab78 | 727 | if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) |
612263b3 CP |
728 | return 1; |
729 | } | |
2acf923e | 730 | vcpu->arch.xcr0 = xcr0; |
56c103ec | 731 | |
d91cab78 | 732 | if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) |
56c103ec | 733 | kvm_update_cpuid(vcpu); |
2acf923e DC |
734 | return 0; |
735 | } | |
736 | ||
737 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | |
738 | { | |
764bcbc5 Z |
739 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || |
740 | __kvm_set_xcr(vcpu, index, xcr)) { | |
2acf923e DC |
741 | kvm_inject_gp(vcpu, 0); |
742 | return 1; | |
743 | } | |
744 | return 0; | |
745 | } | |
746 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | |
747 | ||
a83b29c6 | 748 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
a03490ed | 749 | { |
fc78f519 | 750 | unsigned long old_cr4 = kvm_read_cr4(vcpu); |
0be0226f | 751 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | |
b9baba86 | 752 | X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; |
0be0226f | 753 | |
0f12244f GN |
754 | if (cr4 & CR4_RESERVED_BITS) |
755 | return 1; | |
a03490ed | 756 | |
d6321d49 | 757 | if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) |
2acf923e DC |
758 | return 1; |
759 | ||
d6321d49 | 760 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) |
c68b734f YW |
761 | return 1; |
762 | ||
d6321d49 | 763 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) |
97ec8c06 FW |
764 | return 1; |
765 | ||
d6321d49 | 766 | if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) |
74dc2b4f YW |
767 | return 1; |
768 | ||
d6321d49 | 769 | if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) |
b9baba86 HH |
770 | return 1; |
771 | ||
a03490ed | 772 | if (is_long_mode(vcpu)) { |
0f12244f GN |
773 | if (!(cr4 & X86_CR4_PAE)) |
774 | return 1; | |
a2edf57f AK |
775 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
776 | && ((cr4 ^ old_cr4) & pdptr_bits) | |
9f8fe504 AK |
777 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
778 | kvm_read_cr3(vcpu))) | |
0f12244f GN |
779 | return 1; |
780 | ||
ad756a16 | 781 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
d6321d49 | 782 | if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) |
ad756a16 MJ |
783 | return 1; |
784 | ||
785 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | |
786 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | |
787 | return 1; | |
788 | } | |
789 | ||
5e1746d6 | 790 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
0f12244f | 791 | return 1; |
a03490ed | 792 | |
ad756a16 MJ |
793 | if (((cr4 ^ old_cr4) & pdptr_bits) || |
794 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | |
aad82703 | 795 | kvm_mmu_reset_context(vcpu); |
0f12244f | 796 | |
b9baba86 | 797 | if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
00b27a3e | 798 | kvm_update_cpuid(vcpu); |
2acf923e | 799 | |
0f12244f GN |
800 | return 0; |
801 | } | |
2d3ad1f4 | 802 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
a03490ed | 803 | |
2390218b | 804 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 805 | { |
ac146235 | 806 | #ifdef CONFIG_X86_64 |
9d88fca7 | 807 | cr3 &= ~CR3_PCID_INVD; |
ac146235 | 808 | #endif |
9d88fca7 | 809 | |
9f8fe504 | 810 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
0ba73cda | 811 | kvm_mmu_sync_roots(vcpu); |
77c3913b | 812 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
0f12244f | 813 | return 0; |
d835dfec AK |
814 | } |
815 | ||
a03490ed | 816 | if (is_long_mode(vcpu)) { |
d9f89b88 JK |
817 | if (cr3 & CR3_L_MODE_RESERVED_BITS) |
818 | return 1; | |
819 | } else if (is_pae(vcpu) && is_paging(vcpu) && | |
820 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) | |
346874c9 | 821 | return 1; |
a03490ed | 822 | |
0f12244f | 823 | vcpu->arch.cr3 = cr3; |
aff48baa | 824 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
d8d173da | 825 | kvm_mmu_new_cr3(vcpu); |
0f12244f GN |
826 | return 0; |
827 | } | |
2d3ad1f4 | 828 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
a03490ed | 829 | |
eea1cff9 | 830 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
a03490ed | 831 | { |
0f12244f GN |
832 | if (cr8 & CR8_RESERVED_BITS) |
833 | return 1; | |
35754c98 | 834 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
835 | kvm_lapic_set_tpr(vcpu, cr8); |
836 | else | |
ad312c7c | 837 | vcpu->arch.cr8 = cr8; |
0f12244f GN |
838 | return 0; |
839 | } | |
2d3ad1f4 | 840 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
a03490ed | 841 | |
2d3ad1f4 | 842 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
a03490ed | 843 | { |
35754c98 | 844 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
845 | return kvm_lapic_get_cr8(vcpu); |
846 | else | |
ad312c7c | 847 | return vcpu->arch.cr8; |
a03490ed | 848 | } |
2d3ad1f4 | 849 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
a03490ed | 850 | |
ae561ede NA |
851 | static void kvm_update_dr0123(struct kvm_vcpu *vcpu) |
852 | { | |
853 | int i; | |
854 | ||
855 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { | |
856 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
857 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
858 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; | |
859 | } | |
860 | } | |
861 | ||
73aaf249 JK |
862 | static void kvm_update_dr6(struct kvm_vcpu *vcpu) |
863 | { | |
864 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
865 | kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); | |
866 | } | |
867 | ||
c8639010 JK |
868 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
869 | { | |
870 | unsigned long dr7; | |
871 | ||
872 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | |
873 | dr7 = vcpu->arch.guest_debug_dr7; | |
874 | else | |
875 | dr7 = vcpu->arch.dr7; | |
876 | kvm_x86_ops->set_dr7(vcpu, dr7); | |
360b948d PB |
877 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; |
878 | if (dr7 & DR7_BP_EN_MASK) | |
879 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; | |
c8639010 JK |
880 | } |
881 | ||
6f43ed01 NA |
882 | static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) |
883 | { | |
884 | u64 fixed = DR6_FIXED_1; | |
885 | ||
d6321d49 | 886 | if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) |
6f43ed01 NA |
887 | fixed |= DR6_RTM; |
888 | return fixed; | |
889 | } | |
890 | ||
338dbc97 | 891 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
020df079 GN |
892 | { |
893 | switch (dr) { | |
894 | case 0 ... 3: | |
895 | vcpu->arch.db[dr] = val; | |
896 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
897 | vcpu->arch.eff_db[dr] = val; | |
898 | break; | |
899 | case 4: | |
020df079 GN |
900 | /* fall through */ |
901 | case 6: | |
338dbc97 GN |
902 | if (val & 0xffffffff00000000ULL) |
903 | return -1; /* #GP */ | |
6f43ed01 | 904 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); |
73aaf249 | 905 | kvm_update_dr6(vcpu); |
020df079 GN |
906 | break; |
907 | case 5: | |
020df079 GN |
908 | /* fall through */ |
909 | default: /* 7 */ | |
338dbc97 GN |
910 | if (val & 0xffffffff00000000ULL) |
911 | return -1; /* #GP */ | |
020df079 | 912 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
c8639010 | 913 | kvm_update_dr7(vcpu); |
020df079 GN |
914 | break; |
915 | } | |
916 | ||
917 | return 0; | |
918 | } | |
338dbc97 GN |
919 | |
920 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | |
921 | { | |
16f8a6f9 | 922 | if (__kvm_set_dr(vcpu, dr, val)) { |
338dbc97 | 923 | kvm_inject_gp(vcpu, 0); |
16f8a6f9 NA |
924 | return 1; |
925 | } | |
926 | return 0; | |
338dbc97 | 927 | } |
020df079 GN |
928 | EXPORT_SYMBOL_GPL(kvm_set_dr); |
929 | ||
16f8a6f9 | 930 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
020df079 GN |
931 | { |
932 | switch (dr) { | |
933 | case 0 ... 3: | |
934 | *val = vcpu->arch.db[dr]; | |
935 | break; | |
936 | case 4: | |
020df079 GN |
937 | /* fall through */ |
938 | case 6: | |
73aaf249 JK |
939 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
940 | *val = vcpu->arch.dr6; | |
941 | else | |
942 | *val = kvm_x86_ops->get_dr6(vcpu); | |
020df079 GN |
943 | break; |
944 | case 5: | |
020df079 GN |
945 | /* fall through */ |
946 | default: /* 7 */ | |
947 | *val = vcpu->arch.dr7; | |
948 | break; | |
949 | } | |
338dbc97 GN |
950 | return 0; |
951 | } | |
020df079 GN |
952 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
953 | ||
022cd0e8 AK |
954 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
955 | { | |
956 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
957 | u64 data; | |
958 | int err; | |
959 | ||
c6702c9d | 960 | err = kvm_pmu_rdpmc(vcpu, ecx, &data); |
022cd0e8 AK |
961 | if (err) |
962 | return err; | |
963 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | |
964 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | |
965 | return err; | |
966 | } | |
967 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | |
968 | ||
043405e1 CO |
969 | /* |
970 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | |
971 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | |
972 | * | |
973 | * This list is modified at module load time to reflect the | |
e3267cbb | 974 | * capabilities of the host cpu. This capabilities test skips MSRs that are |
62ef68bb PB |
975 | * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs |
976 | * may depend on host virtualization features rather than host cpu features. | |
043405e1 | 977 | */ |
e3267cbb | 978 | |
043405e1 CO |
979 | static u32 msrs_to_save[] = { |
980 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | |
8c06585d | 981 | MSR_STAR, |
043405e1 CO |
982 | #ifdef CONFIG_X86_64 |
983 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | |
984 | #endif | |
b3897a49 | 985 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, |
9dbe6cf9 | 986 | MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, |
043405e1 CO |
987 | }; |
988 | ||
989 | static unsigned num_msrs_to_save; | |
990 | ||
62ef68bb PB |
991 | static u32 emulated_msrs[] = { |
992 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | |
993 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | |
994 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | |
995 | HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, | |
72c139ba | 996 | HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, |
e7d9513b AS |
997 | HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, |
998 | HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, | |
e516cebb | 999 | HV_X64_MSR_RESET, |
11c4b1ca | 1000 | HV_X64_MSR_VP_INDEX, |
9eec50b8 | 1001 | HV_X64_MSR_VP_RUNTIME, |
5c919412 | 1002 | HV_X64_MSR_SCONTROL, |
1f4b34f8 | 1003 | HV_X64_MSR_STIMER0_CONFIG, |
62ef68bb PB |
1004 | HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
1005 | MSR_KVM_PV_EOI_EN, | |
1006 | ||
ba904635 | 1007 | MSR_IA32_TSC_ADJUST, |
a3e06bbe | 1008 | MSR_IA32_TSCDEADLINE, |
043405e1 | 1009 | MSR_IA32_MISC_ENABLE, |
908e75f3 AK |
1010 | MSR_IA32_MCG_STATUS, |
1011 | MSR_IA32_MCG_CTL, | |
c45dcc71 | 1012 | MSR_IA32_MCG_EXT_CTL, |
64d60670 | 1013 | MSR_IA32_SMBASE, |
db2336a8 KH |
1014 | MSR_PLATFORM_INFO, |
1015 | MSR_MISC_FEATURES_ENABLES, | |
043405e1 CO |
1016 | }; |
1017 | ||
62ef68bb PB |
1018 | static unsigned num_emulated_msrs; |
1019 | ||
384bb783 | 1020 | bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
15c4a640 | 1021 | { |
b69e8cae | 1022 | if (efer & efer_reserved_bits) |
384bb783 | 1023 | return false; |
15c4a640 | 1024 | |
1b4d56b8 | 1025 | if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) |
384bb783 | 1026 | return false; |
1b2fd70c | 1027 | |
1b4d56b8 | 1028 | if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
384bb783 | 1029 | return false; |
d8017474 | 1030 | |
384bb783 JK |
1031 | return true; |
1032 | } | |
1033 | EXPORT_SYMBOL_GPL(kvm_valid_efer); | |
1034 | ||
1035 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) | |
1036 | { | |
1037 | u64 old_efer = vcpu->arch.efer; | |
1038 | ||
1039 | if (!kvm_valid_efer(vcpu, efer)) | |
1040 | return 1; | |
1041 | ||
1042 | if (is_paging(vcpu) | |
1043 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | |
1044 | return 1; | |
1045 | ||
15c4a640 | 1046 | efer &= ~EFER_LMA; |
f6801dff | 1047 | efer |= vcpu->arch.efer & EFER_LMA; |
15c4a640 | 1048 | |
a3d204e2 SY |
1049 | kvm_x86_ops->set_efer(vcpu, efer); |
1050 | ||
aad82703 SY |
1051 | /* Update reserved bits */ |
1052 | if ((efer ^ old_efer) & EFER_NX) | |
1053 | kvm_mmu_reset_context(vcpu); | |
1054 | ||
b69e8cae | 1055 | return 0; |
15c4a640 CO |
1056 | } |
1057 | ||
f2b4b7dd JR |
1058 | void kvm_enable_efer_bits(u64 mask) |
1059 | { | |
1060 | efer_reserved_bits &= ~mask; | |
1061 | } | |
1062 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | |
1063 | ||
15c4a640 CO |
1064 | /* |
1065 | * Writes msr value into into the appropriate "register". | |
1066 | * Returns 0 on success, non-0 otherwise. | |
1067 | * Assumes vcpu_load() was already called. | |
1068 | */ | |
8fe8ab46 | 1069 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 1070 | { |
854e8bb1 NA |
1071 | switch (msr->index) { |
1072 | case MSR_FS_BASE: | |
1073 | case MSR_GS_BASE: | |
1074 | case MSR_KERNEL_GS_BASE: | |
1075 | case MSR_CSTAR: | |
1076 | case MSR_LSTAR: | |
1077 | if (is_noncanonical_address(msr->data)) | |
1078 | return 1; | |
1079 | break; | |
1080 | case MSR_IA32_SYSENTER_EIP: | |
1081 | case MSR_IA32_SYSENTER_ESP: | |
1082 | /* | |
1083 | * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if | |
1084 | * non-canonical address is written on Intel but not on | |
1085 | * AMD (which ignores the top 32-bits, because it does | |
1086 | * not implement 64-bit SYSENTER). | |
1087 | * | |
1088 | * 64-bit code should hence be able to write a non-canonical | |
1089 | * value on AMD. Making the address canonical ensures that | |
1090 | * vmentry does not fail on Intel after writing a non-canonical | |
1091 | * value, and that something deterministic happens if the guest | |
1092 | * invokes 64-bit SYSENTER. | |
1093 | */ | |
1094 | msr->data = get_canonical(msr->data); | |
1095 | } | |
8fe8ab46 | 1096 | return kvm_x86_ops->set_msr(vcpu, msr); |
15c4a640 | 1097 | } |
854e8bb1 | 1098 | EXPORT_SYMBOL_GPL(kvm_set_msr); |
15c4a640 | 1099 | |
313a3dc7 CO |
1100 | /* |
1101 | * Adapt set_msr() to msr_io()'s calling convention | |
1102 | */ | |
609e36d3 PB |
1103 | static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1104 | { | |
1105 | struct msr_data msr; | |
1106 | int r; | |
1107 | ||
1108 | msr.index = index; | |
1109 | msr.host_initiated = true; | |
1110 | r = kvm_get_msr(vcpu, &msr); | |
1111 | if (r) | |
1112 | return r; | |
1113 | ||
1114 | *data = msr.data; | |
1115 | return 0; | |
1116 | } | |
1117 | ||
313a3dc7 CO |
1118 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1119 | { | |
8fe8ab46 WA |
1120 | struct msr_data msr; |
1121 | ||
1122 | msr.data = *data; | |
1123 | msr.index = index; | |
1124 | msr.host_initiated = true; | |
1125 | return kvm_set_msr(vcpu, &msr); | |
313a3dc7 CO |
1126 | } |
1127 | ||
16e8d74d MT |
1128 | #ifdef CONFIG_X86_64 |
1129 | struct pvclock_gtod_data { | |
1130 | seqcount_t seq; | |
1131 | ||
1132 | struct { /* extract of a clocksource struct */ | |
1133 | int vclock_mode; | |
a5a1d1c2 TG |
1134 | u64 cycle_last; |
1135 | u64 mask; | |
16e8d74d MT |
1136 | u32 mult; |
1137 | u32 shift; | |
1138 | } clock; | |
1139 | ||
cbcf2dd3 TG |
1140 | u64 boot_ns; |
1141 | u64 nsec_base; | |
55dd00a7 | 1142 | u64 wall_time_sec; |
16e8d74d MT |
1143 | }; |
1144 | ||
1145 | static struct pvclock_gtod_data pvclock_gtod_data; | |
1146 | ||
1147 | static void update_pvclock_gtod(struct timekeeper *tk) | |
1148 | { | |
1149 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | |
cbcf2dd3 TG |
1150 | u64 boot_ns; |
1151 | ||
876e7881 | 1152 | boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); |
16e8d74d MT |
1153 | |
1154 | write_seqcount_begin(&vdata->seq); | |
1155 | ||
1156 | /* copy pvclock gtod data */ | |
876e7881 PZ |
1157 | vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; |
1158 | vdata->clock.cycle_last = tk->tkr_mono.cycle_last; | |
1159 | vdata->clock.mask = tk->tkr_mono.mask; | |
1160 | vdata->clock.mult = tk->tkr_mono.mult; | |
1161 | vdata->clock.shift = tk->tkr_mono.shift; | |
16e8d74d | 1162 | |
cbcf2dd3 | 1163 | vdata->boot_ns = boot_ns; |
876e7881 | 1164 | vdata->nsec_base = tk->tkr_mono.xtime_nsec; |
16e8d74d | 1165 | |
55dd00a7 MT |
1166 | vdata->wall_time_sec = tk->xtime_sec; |
1167 | ||
16e8d74d MT |
1168 | write_seqcount_end(&vdata->seq); |
1169 | } | |
1170 | #endif | |
1171 | ||
bab5bb39 NK |
1172 | void kvm_set_pending_timer(struct kvm_vcpu *vcpu) |
1173 | { | |
1174 | /* | |
1175 | * Note: KVM_REQ_PENDING_TIMER is implicitly checked in | |
1176 | * vcpu_enter_guest. This function is only called from | |
1177 | * the physical CPU that is running vcpu. | |
1178 | */ | |
1179 | kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); | |
1180 | } | |
16e8d74d | 1181 | |
18068523 GOC |
1182 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
1183 | { | |
9ed3c444 AK |
1184 | int version; |
1185 | int r; | |
50d0a0f9 | 1186 | struct pvclock_wall_clock wc; |
87aeb54f | 1187 | struct timespec64 boot; |
18068523 GOC |
1188 | |
1189 | if (!wall_clock) | |
1190 | return; | |
1191 | ||
9ed3c444 AK |
1192 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
1193 | if (r) | |
1194 | return; | |
1195 | ||
1196 | if (version & 1) | |
1197 | ++version; /* first time write, random junk */ | |
1198 | ||
1199 | ++version; | |
18068523 | 1200 | |
1dab1345 NK |
1201 | if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) |
1202 | return; | |
18068523 | 1203 | |
50d0a0f9 GH |
1204 | /* |
1205 | * The guest calculates current wall clock time by adding | |
34c238a1 | 1206 | * system time (updated by kvm_guest_time_update below) to the |
50d0a0f9 GH |
1207 | * wall clock specified here. guest system time equals host |
1208 | * system time for us, thus we must fill in host boot time here. | |
1209 | */ | |
87aeb54f | 1210 | getboottime64(&boot); |
50d0a0f9 | 1211 | |
4b648665 | 1212 | if (kvm->arch.kvmclock_offset) { |
87aeb54f AB |
1213 | struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); |
1214 | boot = timespec64_sub(boot, ts); | |
4b648665 | 1215 | } |
87aeb54f | 1216 | wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ |
50d0a0f9 GH |
1217 | wc.nsec = boot.tv_nsec; |
1218 | wc.version = version; | |
18068523 GOC |
1219 | |
1220 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | |
1221 | ||
1222 | version++; | |
1223 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | |
18068523 GOC |
1224 | } |
1225 | ||
50d0a0f9 GH |
1226 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
1227 | { | |
b51012de PB |
1228 | do_shl32_div32(dividend, divisor); |
1229 | return dividend; | |
50d0a0f9 GH |
1230 | } |
1231 | ||
3ae13faa | 1232 | static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, |
5f4e3f88 | 1233 | s8 *pshift, u32 *pmultiplier) |
50d0a0f9 | 1234 | { |
5f4e3f88 | 1235 | uint64_t scaled64; |
50d0a0f9 GH |
1236 | int32_t shift = 0; |
1237 | uint64_t tps64; | |
1238 | uint32_t tps32; | |
1239 | ||
3ae13faa PB |
1240 | tps64 = base_hz; |
1241 | scaled64 = scaled_hz; | |
50933623 | 1242 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
50d0a0f9 GH |
1243 | tps64 >>= 1; |
1244 | shift--; | |
1245 | } | |
1246 | ||
1247 | tps32 = (uint32_t)tps64; | |
50933623 JK |
1248 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
1249 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | |
5f4e3f88 ZA |
1250 | scaled64 >>= 1; |
1251 | else | |
1252 | tps32 <<= 1; | |
50d0a0f9 GH |
1253 | shift++; |
1254 | } | |
1255 | ||
5f4e3f88 ZA |
1256 | *pshift = shift; |
1257 | *pmultiplier = div_frac(scaled64, tps32); | |
50d0a0f9 | 1258 | |
3ae13faa PB |
1259 | pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", |
1260 | __func__, base_hz, scaled_hz, shift, *pmultiplier); | |
50d0a0f9 GH |
1261 | } |
1262 | ||
d828199e | 1263 | #ifdef CONFIG_X86_64 |
16e8d74d | 1264 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
d828199e | 1265 | #endif |
16e8d74d | 1266 | |
c8076604 | 1267 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
69b0049a | 1268 | static unsigned long max_tsc_khz; |
c8076604 | 1269 | |
cc578287 | 1270 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1e993611 | 1271 | { |
cc578287 ZA |
1272 | u64 v = (u64)khz * (1000000 + ppm); |
1273 | do_div(v, 1000000); | |
1274 | return v; | |
1e993611 JR |
1275 | } |
1276 | ||
381d585c HZ |
1277 | static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) |
1278 | { | |
1279 | u64 ratio; | |
1280 | ||
1281 | /* Guest TSC same frequency as host TSC? */ | |
1282 | if (!scale) { | |
1283 | vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; | |
1284 | return 0; | |
1285 | } | |
1286 | ||
1287 | /* TSC scaling supported? */ | |
1288 | if (!kvm_has_tsc_control) { | |
1289 | if (user_tsc_khz > tsc_khz) { | |
1290 | vcpu->arch.tsc_catchup = 1; | |
1291 | vcpu->arch.tsc_always_catchup = 1; | |
1292 | return 0; | |
1293 | } else { | |
1294 | WARN(1, "user requested TSC rate below hardware speed\n"); | |
1295 | return -1; | |
1296 | } | |
1297 | } | |
1298 | ||
1299 | /* TSC scaling required - calculate ratio */ | |
1300 | ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, | |
1301 | user_tsc_khz, tsc_khz); | |
1302 | ||
1303 | if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { | |
1304 | WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", | |
1305 | user_tsc_khz); | |
1306 | return -1; | |
1307 | } | |
1308 | ||
1309 | vcpu->arch.tsc_scaling_ratio = ratio; | |
1310 | return 0; | |
1311 | } | |
1312 | ||
4941b8cb | 1313 | static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
759379dd | 1314 | { |
cc578287 ZA |
1315 | u32 thresh_lo, thresh_hi; |
1316 | int use_scaling = 0; | |
217fc9cf | 1317 | |
03ba32ca | 1318 | /* tsc_khz can be zero if TSC calibration fails */ |
4941b8cb | 1319 | if (user_tsc_khz == 0) { |
ad721883 HZ |
1320 | /* set tsc_scaling_ratio to a safe value */ |
1321 | vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; | |
381d585c | 1322 | return -1; |
ad721883 | 1323 | } |
03ba32ca | 1324 | |
c285545f | 1325 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
3ae13faa | 1326 | kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, |
cc578287 ZA |
1327 | &vcpu->arch.virtual_tsc_shift, |
1328 | &vcpu->arch.virtual_tsc_mult); | |
4941b8cb | 1329 | vcpu->arch.virtual_tsc_khz = user_tsc_khz; |
cc578287 ZA |
1330 | |
1331 | /* | |
1332 | * Compute the variation in TSC rate which is acceptable | |
1333 | * within the range of tolerance and decide if the | |
1334 | * rate being applied is within that bounds of the hardware | |
1335 | * rate. If so, no scaling or compensation need be done. | |
1336 | */ | |
1337 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | |
1338 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | |
4941b8cb PB |
1339 | if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { |
1340 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); | |
cc578287 ZA |
1341 | use_scaling = 1; |
1342 | } | |
4941b8cb | 1343 | return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); |
c285545f ZA |
1344 | } |
1345 | ||
1346 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | |
1347 | { | |
e26101b1 | 1348 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
cc578287 ZA |
1349 | vcpu->arch.virtual_tsc_mult, |
1350 | vcpu->arch.virtual_tsc_shift); | |
e26101b1 | 1351 | tsc += vcpu->arch.this_tsc_write; |
c285545f ZA |
1352 | return tsc; |
1353 | } | |
1354 | ||
69b0049a | 1355 | static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
b48aa97e MT |
1356 | { |
1357 | #ifdef CONFIG_X86_64 | |
1358 | bool vcpus_matched; | |
b48aa97e MT |
1359 | struct kvm_arch *ka = &vcpu->kvm->arch; |
1360 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1361 | ||
1362 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1363 | atomic_read(&vcpu->kvm->online_vcpus)); | |
1364 | ||
7f187922 MT |
1365 | /* |
1366 | * Once the masterclock is enabled, always perform request in | |
1367 | * order to update it. | |
1368 | * | |
1369 | * In order to enable masterclock, the host clocksource must be TSC | |
1370 | * and the vcpus need to have matched TSCs. When that happens, | |
1371 | * perform request to enable masterclock. | |
1372 | */ | |
1373 | if (ka->use_master_clock || | |
1374 | (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) | |
b48aa97e MT |
1375 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
1376 | ||
1377 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | |
1378 | atomic_read(&vcpu->kvm->online_vcpus), | |
1379 | ka->use_master_clock, gtod->clock.vclock_mode); | |
1380 | #endif | |
1381 | } | |
1382 | ||
ba904635 WA |
1383 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
1384 | { | |
3e3f5026 | 1385 | u64 curr_offset = vcpu->arch.tsc_offset; |
ba904635 WA |
1386 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; |
1387 | } | |
1388 | ||
35181e86 HZ |
1389 | /* |
1390 | * Multiply tsc by a fixed point number represented by ratio. | |
1391 | * | |
1392 | * The most significant 64-N bits (mult) of ratio represent the | |
1393 | * integral part of the fixed point number; the remaining N bits | |
1394 | * (frac) represent the fractional part, ie. ratio represents a fixed | |
1395 | * point number (mult + frac * 2^(-N)). | |
1396 | * | |
1397 | * N equals to kvm_tsc_scaling_ratio_frac_bits. | |
1398 | */ | |
1399 | static inline u64 __scale_tsc(u64 ratio, u64 tsc) | |
1400 | { | |
1401 | return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); | |
1402 | } | |
1403 | ||
1404 | u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) | |
1405 | { | |
1406 | u64 _tsc = tsc; | |
1407 | u64 ratio = vcpu->arch.tsc_scaling_ratio; | |
1408 | ||
1409 | if (ratio != kvm_default_tsc_scaling_ratio) | |
1410 | _tsc = __scale_tsc(ratio, tsc); | |
1411 | ||
1412 | return _tsc; | |
1413 | } | |
1414 | EXPORT_SYMBOL_GPL(kvm_scale_tsc); | |
1415 | ||
07c1419a HZ |
1416 | static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
1417 | { | |
1418 | u64 tsc; | |
1419 | ||
1420 | tsc = kvm_scale_tsc(vcpu, rdtsc()); | |
1421 | ||
1422 | return target_tsc - tsc; | |
1423 | } | |
1424 | ||
4ba76538 HZ |
1425 | u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) |
1426 | { | |
ea26e4ec | 1427 | return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); |
4ba76538 HZ |
1428 | } |
1429 | EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); | |
1430 | ||
a545ab6a LC |
1431 | static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
1432 | { | |
1433 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | |
1434 | vcpu->arch.tsc_offset = offset; | |
1435 | } | |
1436 | ||
8fe8ab46 | 1437 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
99e3e30a ZA |
1438 | { |
1439 | struct kvm *kvm = vcpu->kvm; | |
f38e098f | 1440 | u64 offset, ns, elapsed; |
99e3e30a | 1441 | unsigned long flags; |
b48aa97e | 1442 | bool matched; |
0d3da0d2 | 1443 | bool already_matched; |
8fe8ab46 | 1444 | u64 data = msr->data; |
c5e8ec8e | 1445 | bool synchronizing = false; |
99e3e30a | 1446 | |
038f8c11 | 1447 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
07c1419a | 1448 | offset = kvm_compute_tsc_offset(vcpu, data); |
108b249c | 1449 | ns = ktime_get_boot_ns(); |
f38e098f | 1450 | elapsed = ns - kvm->arch.last_tsc_nsec; |
5d3cb0f6 | 1451 | |
03ba32ca | 1452 | if (vcpu->arch.virtual_tsc_khz) { |
bd8fab39 DP |
1453 | if (data == 0 && msr->host_initiated) { |
1454 | /* | |
1455 | * detection of vcpu initialization -- need to sync | |
1456 | * with other vCPUs. This particularly helps to keep | |
1457 | * kvm_clock stable after CPU hotplug | |
1458 | */ | |
1459 | synchronizing = true; | |
1460 | } else { | |
1461 | u64 tsc_exp = kvm->arch.last_tsc_write + | |
1462 | nsec_to_cycles(vcpu, elapsed); | |
1463 | u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; | |
1464 | /* | |
1465 | * Special case: TSC write with a small delta (1 second) | |
1466 | * of virtual cycle time against real time is | |
1467 | * interpreted as an attempt to synchronize the CPU. | |
1468 | */ | |
1469 | synchronizing = data < tsc_exp + tsc_hz && | |
1470 | data + tsc_hz > tsc_exp; | |
1471 | } | |
c5e8ec8e | 1472 | } |
f38e098f ZA |
1473 | |
1474 | /* | |
5d3cb0f6 ZA |
1475 | * For a reliable TSC, we can match TSC offsets, and for an unstable |
1476 | * TSC, we add elapsed time in this computation. We could let the | |
1477 | * compensation code attempt to catch up if we fall behind, but | |
1478 | * it's better to try to match offsets from the beginning. | |
1479 | */ | |
c5e8ec8e | 1480 | if (synchronizing && |
5d3cb0f6 | 1481 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
f38e098f | 1482 | if (!check_tsc_unstable()) { |
e26101b1 | 1483 | offset = kvm->arch.cur_tsc_offset; |
f38e098f ZA |
1484 | pr_debug("kvm: matched tsc offset for %llu\n", data); |
1485 | } else { | |
857e4099 | 1486 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
5d3cb0f6 | 1487 | data += delta; |
07c1419a | 1488 | offset = kvm_compute_tsc_offset(vcpu, data); |
759379dd | 1489 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
f38e098f | 1490 | } |
b48aa97e | 1491 | matched = true; |
0d3da0d2 | 1492 | already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); |
e26101b1 ZA |
1493 | } else { |
1494 | /* | |
1495 | * We split periods of matched TSC writes into generations. | |
1496 | * For each generation, we track the original measured | |
1497 | * nanosecond time, offset, and write, so if TSCs are in | |
1498 | * sync, we can match exact offset, and if not, we can match | |
4a969980 | 1499 | * exact software computation in compute_guest_tsc() |
e26101b1 ZA |
1500 | * |
1501 | * These values are tracked in kvm->arch.cur_xxx variables. | |
1502 | */ | |
1503 | kvm->arch.cur_tsc_generation++; | |
1504 | kvm->arch.cur_tsc_nsec = ns; | |
1505 | kvm->arch.cur_tsc_write = data; | |
1506 | kvm->arch.cur_tsc_offset = offset; | |
b48aa97e | 1507 | matched = false; |
0d3da0d2 | 1508 | pr_debug("kvm: new tsc generation %llu, clock %llu\n", |
e26101b1 | 1509 | kvm->arch.cur_tsc_generation, data); |
f38e098f | 1510 | } |
e26101b1 ZA |
1511 | |
1512 | /* | |
1513 | * We also track th most recent recorded KHZ, write and time to | |
1514 | * allow the matching interval to be extended at each write. | |
1515 | */ | |
f38e098f ZA |
1516 | kvm->arch.last_tsc_nsec = ns; |
1517 | kvm->arch.last_tsc_write = data; | |
5d3cb0f6 | 1518 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
99e3e30a | 1519 | |
b183aa58 | 1520 | vcpu->arch.last_guest_tsc = data; |
e26101b1 ZA |
1521 | |
1522 | /* Keep track of which generation this VCPU has synchronized to */ | |
1523 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | |
1524 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | |
1525 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | |
1526 | ||
d6321d49 | 1527 | if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) |
ba904635 | 1528 | update_ia32_tsc_adjust_msr(vcpu, offset); |
d6321d49 | 1529 | |
a545ab6a | 1530 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
e26101b1 | 1531 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
b48aa97e MT |
1532 | |
1533 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | |
0d3da0d2 | 1534 | if (!matched) { |
b48aa97e | 1535 | kvm->arch.nr_vcpus_matched_tsc = 0; |
0d3da0d2 TG |
1536 | } else if (!already_matched) { |
1537 | kvm->arch.nr_vcpus_matched_tsc++; | |
1538 | } | |
b48aa97e MT |
1539 | |
1540 | kvm_track_tsc_matching(vcpu); | |
1541 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | |
99e3e30a | 1542 | } |
e26101b1 | 1543 | |
99e3e30a ZA |
1544 | EXPORT_SYMBOL_GPL(kvm_write_tsc); |
1545 | ||
58ea6767 HZ |
1546 | static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, |
1547 | s64 adjustment) | |
1548 | { | |
ea26e4ec | 1549 | kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); |
58ea6767 HZ |
1550 | } |
1551 | ||
1552 | static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) | |
1553 | { | |
1554 | if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) | |
1555 | WARN_ON(adjustment < 0); | |
1556 | adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); | |
ea26e4ec | 1557 | adjust_tsc_offset_guest(vcpu, adjustment); |
58ea6767 HZ |
1558 | } |
1559 | ||
d828199e MT |
1560 | #ifdef CONFIG_X86_64 |
1561 | ||
a5a1d1c2 | 1562 | static u64 read_tsc(void) |
d828199e | 1563 | { |
a5a1d1c2 | 1564 | u64 ret = (u64)rdtsc_ordered(); |
03b9730b | 1565 | u64 last = pvclock_gtod_data.clock.cycle_last; |
d828199e MT |
1566 | |
1567 | if (likely(ret >= last)) | |
1568 | return ret; | |
1569 | ||
1570 | /* | |
1571 | * GCC likes to generate cmov here, but this branch is extremely | |
6a6256f9 | 1572 | * predictable (it's just a function of time and the likely is |
d828199e MT |
1573 | * very likely) and there's a data dependence, so force GCC |
1574 | * to generate a branch instead. I don't barrier() because | |
1575 | * we don't actually need a barrier, and if this function | |
1576 | * ever gets inlined it will generate worse code. | |
1577 | */ | |
1578 | asm volatile (""); | |
1579 | return last; | |
1580 | } | |
1581 | ||
a5a1d1c2 | 1582 | static inline u64 vgettsc(u64 *cycle_now) |
d828199e MT |
1583 | { |
1584 | long v; | |
1585 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1586 | ||
1587 | *cycle_now = read_tsc(); | |
1588 | ||
1589 | v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; | |
1590 | return v * gtod->clock.mult; | |
1591 | } | |
1592 | ||
a5a1d1c2 | 1593 | static int do_monotonic_boot(s64 *t, u64 *cycle_now) |
d828199e | 1594 | { |
cbcf2dd3 | 1595 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
d828199e | 1596 | unsigned long seq; |
d828199e | 1597 | int mode; |
cbcf2dd3 | 1598 | u64 ns; |
d828199e | 1599 | |
d828199e MT |
1600 | do { |
1601 | seq = read_seqcount_begin(>od->seq); | |
1602 | mode = gtod->clock.vclock_mode; | |
cbcf2dd3 | 1603 | ns = gtod->nsec_base; |
d828199e MT |
1604 | ns += vgettsc(cycle_now); |
1605 | ns >>= gtod->clock.shift; | |
cbcf2dd3 | 1606 | ns += gtod->boot_ns; |
d828199e | 1607 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
cbcf2dd3 | 1608 | *t = ns; |
d828199e MT |
1609 | |
1610 | return mode; | |
1611 | } | |
1612 | ||
55dd00a7 MT |
1613 | static int do_realtime(struct timespec *ts, u64 *cycle_now) |
1614 | { | |
1615 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1616 | unsigned long seq; | |
1617 | int mode; | |
1618 | u64 ns; | |
1619 | ||
1620 | do { | |
1621 | seq = read_seqcount_begin(>od->seq); | |
1622 | mode = gtod->clock.vclock_mode; | |
1623 | ts->tv_sec = gtod->wall_time_sec; | |
1624 | ns = gtod->nsec_base; | |
1625 | ns += vgettsc(cycle_now); | |
1626 | ns >>= gtod->clock.shift; | |
1627 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
1628 | ||
1629 | ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); | |
1630 | ts->tv_nsec = ns; | |
1631 | ||
1632 | return mode; | |
1633 | } | |
1634 | ||
d828199e | 1635 | /* returns true if host is using tsc clocksource */ |
a5a1d1c2 | 1636 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) |
d828199e | 1637 | { |
d828199e MT |
1638 | /* checked again under seqlock below */ |
1639 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | |
1640 | return false; | |
1641 | ||
cbcf2dd3 | 1642 | return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; |
d828199e | 1643 | } |
55dd00a7 MT |
1644 | |
1645 | /* returns true if host is using tsc clocksource */ | |
1646 | static bool kvm_get_walltime_and_clockread(struct timespec *ts, | |
1647 | u64 *cycle_now) | |
1648 | { | |
1649 | /* checked again under seqlock below */ | |
1650 | if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | |
1651 | return false; | |
1652 | ||
1653 | return do_realtime(ts, cycle_now) == VCLOCK_TSC; | |
1654 | } | |
d828199e MT |
1655 | #endif |
1656 | ||
1657 | /* | |
1658 | * | |
b48aa97e MT |
1659 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
1660 | * across virtual CPUs, the following condition is possible. | |
1661 | * Each numbered line represents an event visible to both | |
d828199e MT |
1662 | * CPUs at the next numbered event. |
1663 | * | |
1664 | * "timespecX" represents host monotonic time. "tscX" represents | |
1665 | * RDTSC value. | |
1666 | * | |
1667 | * VCPU0 on CPU0 | VCPU1 on CPU1 | |
1668 | * | |
1669 | * 1. read timespec0,tsc0 | |
1670 | * 2. | timespec1 = timespec0 + N | |
1671 | * | tsc1 = tsc0 + M | |
1672 | * 3. transition to guest | transition to guest | |
1673 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | |
1674 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | |
1675 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | |
1676 | * | |
1677 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | |
1678 | * | |
1679 | * - ret0 < ret1 | |
1680 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | |
1681 | * ... | |
1682 | * - 0 < N - M => M < N | |
1683 | * | |
1684 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | |
1685 | * always the case (the difference between two distinct xtime instances | |
1686 | * might be smaller then the difference between corresponding TSC reads, | |
1687 | * when updating guest vcpus pvclock areas). | |
1688 | * | |
1689 | * To avoid that problem, do not allow visibility of distinct | |
1690 | * system_timestamp/tsc_timestamp values simultaneously: use a master | |
1691 | * copy of host monotonic time values. Update that master copy | |
1692 | * in lockstep. | |
1693 | * | |
b48aa97e | 1694 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
d828199e MT |
1695 | * |
1696 | */ | |
1697 | ||
1698 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | |
1699 | { | |
1700 | #ifdef CONFIG_X86_64 | |
1701 | struct kvm_arch *ka = &kvm->arch; | |
1702 | int vclock_mode; | |
b48aa97e MT |
1703 | bool host_tsc_clocksource, vcpus_matched; |
1704 | ||
1705 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1706 | atomic_read(&kvm->online_vcpus)); | |
d828199e MT |
1707 | |
1708 | /* | |
1709 | * If the host uses TSC clock, then passthrough TSC as stable | |
1710 | * to the guest. | |
1711 | */ | |
b48aa97e | 1712 | host_tsc_clocksource = kvm_get_time_and_clockread( |
d828199e MT |
1713 | &ka->master_kernel_ns, |
1714 | &ka->master_cycle_now); | |
1715 | ||
16a96021 | 1716 | ka->use_master_clock = host_tsc_clocksource && vcpus_matched |
a826faf1 | 1717 | && !ka->backwards_tsc_observed |
54750f2c | 1718 | && !ka->boot_vcpu_runs_old_kvmclock; |
b48aa97e | 1719 | |
d828199e MT |
1720 | if (ka->use_master_clock) |
1721 | atomic_set(&kvm_guest_has_master_clock, 1); | |
1722 | ||
1723 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | |
b48aa97e MT |
1724 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
1725 | vcpus_matched); | |
d828199e MT |
1726 | #endif |
1727 | } | |
1728 | ||
2860c4b1 PB |
1729 | void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
1730 | { | |
1731 | kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | |
1732 | } | |
1733 | ||
2e762ff7 MT |
1734 | static void kvm_gen_update_masterclock(struct kvm *kvm) |
1735 | { | |
1736 | #ifdef CONFIG_X86_64 | |
1737 | int i; | |
1738 | struct kvm_vcpu *vcpu; | |
1739 | struct kvm_arch *ka = &kvm->arch; | |
1740 | ||
1741 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1742 | kvm_make_mclock_inprogress_request(kvm); | |
1743 | /* no guest entries from this point */ | |
1744 | pvclock_update_vm_gtod_copy(kvm); | |
1745 | ||
1746 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 1747 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2e762ff7 MT |
1748 | |
1749 | /* guest entries allowed */ | |
1750 | kvm_for_each_vcpu(i, vcpu, kvm) | |
72875d8a | 1751 | kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
2e762ff7 MT |
1752 | |
1753 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1754 | #endif | |
1755 | } | |
1756 | ||
e891a32e | 1757 | u64 get_kvmclock_ns(struct kvm *kvm) |
108b249c | 1758 | { |
108b249c | 1759 | struct kvm_arch *ka = &kvm->arch; |
8b953440 | 1760 | struct pvclock_vcpu_time_info hv_clock; |
e2c2206a | 1761 | u64 ret; |
108b249c | 1762 | |
8b953440 PB |
1763 | spin_lock(&ka->pvclock_gtod_sync_lock); |
1764 | if (!ka->use_master_clock) { | |
1765 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1766 | return ktime_get_boot_ns() + ka->kvmclock_offset; | |
108b249c PB |
1767 | } |
1768 | ||
8b953440 PB |
1769 | hv_clock.tsc_timestamp = ka->master_cycle_now; |
1770 | hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | |
1771 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1772 | ||
e2c2206a WL |
1773 | /* both __this_cpu_read() and rdtsc() should be on the same cpu */ |
1774 | get_cpu(); | |
1775 | ||
8b953440 PB |
1776 | kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, |
1777 | &hv_clock.tsc_shift, | |
1778 | &hv_clock.tsc_to_system_mul); | |
e2c2206a WL |
1779 | ret = __pvclock_read_cycles(&hv_clock, rdtsc()); |
1780 | ||
1781 | put_cpu(); | |
1782 | ||
1783 | return ret; | |
108b249c PB |
1784 | } |
1785 | ||
0d6dd2ff PB |
1786 | static void kvm_setup_pvclock_page(struct kvm_vcpu *v) |
1787 | { | |
1788 | struct kvm_vcpu_arch *vcpu = &v->arch; | |
1789 | struct pvclock_vcpu_time_info guest_hv_clock; | |
1790 | ||
4e335d9e | 1791 | if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, |
0d6dd2ff PB |
1792 | &guest_hv_clock, sizeof(guest_hv_clock)))) |
1793 | return; | |
1794 | ||
1795 | /* This VCPU is paused, but it's legal for a guest to read another | |
1796 | * VCPU's kvmclock, so we really have to follow the specification where | |
1797 | * it says that version is odd if data is being modified, and even after | |
1798 | * it is consistent. | |
1799 | * | |
1800 | * Version field updates must be kept separate. This is because | |
1801 | * kvm_write_guest_cached might use a "rep movs" instruction, and | |
1802 | * writes within a string instruction are weakly ordered. So there | |
1803 | * are three writes overall. | |
1804 | * | |
1805 | * As a small optimization, only write the version field in the first | |
1806 | * and third write. The vcpu->pv_time cache is still valid, because the | |
1807 | * version field is the first in the struct. | |
1808 | */ | |
1809 | BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); | |
1810 | ||
1811 | vcpu->hv_clock.version = guest_hv_clock.version + 1; | |
4e335d9e PB |
1812 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1813 | &vcpu->hv_clock, | |
1814 | sizeof(vcpu->hv_clock.version)); | |
0d6dd2ff PB |
1815 | |
1816 | smp_wmb(); | |
1817 | ||
1818 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | |
1819 | vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); | |
1820 | ||
1821 | if (vcpu->pvclock_set_guest_stopped_request) { | |
1822 | vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; | |
1823 | vcpu->pvclock_set_guest_stopped_request = false; | |
1824 | } | |
1825 | ||
1826 | trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); | |
1827 | ||
4e335d9e PB |
1828 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1829 | &vcpu->hv_clock, | |
1830 | sizeof(vcpu->hv_clock)); | |
0d6dd2ff PB |
1831 | |
1832 | smp_wmb(); | |
1833 | ||
1834 | vcpu->hv_clock.version++; | |
4e335d9e PB |
1835 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
1836 | &vcpu->hv_clock, | |
1837 | sizeof(vcpu->hv_clock.version)); | |
0d6dd2ff PB |
1838 | } |
1839 | ||
34c238a1 | 1840 | static int kvm_guest_time_update(struct kvm_vcpu *v) |
18068523 | 1841 | { |
78db6a50 | 1842 | unsigned long flags, tgt_tsc_khz; |
18068523 | 1843 | struct kvm_vcpu_arch *vcpu = &v->arch; |
d828199e | 1844 | struct kvm_arch *ka = &v->kvm->arch; |
f25e656d | 1845 | s64 kernel_ns; |
d828199e | 1846 | u64 tsc_timestamp, host_tsc; |
51d59c6b | 1847 | u8 pvclock_flags; |
d828199e MT |
1848 | bool use_master_clock; |
1849 | ||
1850 | kernel_ns = 0; | |
1851 | host_tsc = 0; | |
18068523 | 1852 | |
d828199e MT |
1853 | /* |
1854 | * If the host uses TSC clock, then passthrough TSC as stable | |
1855 | * to the guest. | |
1856 | */ | |
1857 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1858 | use_master_clock = ka->use_master_clock; | |
1859 | if (use_master_clock) { | |
1860 | host_tsc = ka->master_cycle_now; | |
1861 | kernel_ns = ka->master_kernel_ns; | |
1862 | } | |
1863 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
c09664bb MT |
1864 | |
1865 | /* Keep irq disabled to prevent changes to the clock */ | |
1866 | local_irq_save(flags); | |
78db6a50 PB |
1867 | tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); |
1868 | if (unlikely(tgt_tsc_khz == 0)) { | |
c09664bb MT |
1869 | local_irq_restore(flags); |
1870 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | |
1871 | return 1; | |
1872 | } | |
d828199e | 1873 | if (!use_master_clock) { |
4ea1636b | 1874 | host_tsc = rdtsc(); |
108b249c | 1875 | kernel_ns = ktime_get_boot_ns(); |
d828199e MT |
1876 | } |
1877 | ||
4ba76538 | 1878 | tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); |
d828199e | 1879 | |
c285545f ZA |
1880 | /* |
1881 | * We may have to catch up the TSC to match elapsed wall clock | |
1882 | * time for two reasons, even if kvmclock is used. | |
1883 | * 1) CPU could have been running below the maximum TSC rate | |
1884 | * 2) Broken TSC compensation resets the base at each VCPU | |
1885 | * entry to avoid unknown leaps of TSC even when running | |
1886 | * again on the same CPU. This may cause apparent elapsed | |
1887 | * time to disappear, and the guest to stand still or run | |
1888 | * very slowly. | |
1889 | */ | |
1890 | if (vcpu->tsc_catchup) { | |
1891 | u64 tsc = compute_guest_tsc(v, kernel_ns); | |
1892 | if (tsc > tsc_timestamp) { | |
f1e2b260 | 1893 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
c285545f ZA |
1894 | tsc_timestamp = tsc; |
1895 | } | |
50d0a0f9 GH |
1896 | } |
1897 | ||
18068523 GOC |
1898 | local_irq_restore(flags); |
1899 | ||
0d6dd2ff | 1900 | /* With all the info we got, fill in the values */ |
18068523 | 1901 | |
78db6a50 PB |
1902 | if (kvm_has_tsc_control) |
1903 | tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); | |
1904 | ||
1905 | if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { | |
3ae13faa | 1906 | kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, |
5f4e3f88 ZA |
1907 | &vcpu->hv_clock.tsc_shift, |
1908 | &vcpu->hv_clock.tsc_to_system_mul); | |
78db6a50 | 1909 | vcpu->hw_tsc_khz = tgt_tsc_khz; |
8cfdc000 ZA |
1910 | } |
1911 | ||
1d5f066e | 1912 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
759379dd | 1913 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
28e4639a | 1914 | vcpu->last_guest_tsc = tsc_timestamp; |
51d59c6b | 1915 | |
d828199e | 1916 | /* If the host uses TSC clocksource, then it is stable */ |
0d6dd2ff | 1917 | pvclock_flags = 0; |
d828199e MT |
1918 | if (use_master_clock) |
1919 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | |
1920 | ||
78c0337a MT |
1921 | vcpu->hv_clock.flags = pvclock_flags; |
1922 | ||
095cf55d PB |
1923 | if (vcpu->pv_time_enabled) |
1924 | kvm_setup_pvclock_page(v); | |
1925 | if (v == kvm_get_vcpu(v->kvm, 0)) | |
1926 | kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); | |
8cfdc000 | 1927 | return 0; |
c8076604 GH |
1928 | } |
1929 | ||
0061d53d MT |
1930 | /* |
1931 | * kvmclock updates which are isolated to a given vcpu, such as | |
1932 | * vcpu->cpu migration, should not allow system_timestamp from | |
1933 | * the rest of the vcpus to remain static. Otherwise ntp frequency | |
1934 | * correction applies to one vcpu's system_timestamp but not | |
1935 | * the others. | |
1936 | * | |
1937 | * So in those cases, request a kvmclock update for all vcpus. | |
7e44e449 AJ |
1938 | * We need to rate-limit these requests though, as they can |
1939 | * considerably slow guests that have a large number of vcpus. | |
1940 | * The time for a remote vcpu to update its kvmclock is bound | |
1941 | * by the delay we use to rate-limit the updates. | |
0061d53d MT |
1942 | */ |
1943 | ||
7e44e449 AJ |
1944 | #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) |
1945 | ||
1946 | static void kvmclock_update_fn(struct work_struct *work) | |
0061d53d MT |
1947 | { |
1948 | int i; | |
7e44e449 AJ |
1949 | struct delayed_work *dwork = to_delayed_work(work); |
1950 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
1951 | kvmclock_update_work); | |
1952 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
0061d53d MT |
1953 | struct kvm_vcpu *vcpu; |
1954 | ||
1955 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
105b21bb | 1956 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0061d53d MT |
1957 | kvm_vcpu_kick(vcpu); |
1958 | } | |
1959 | } | |
1960 | ||
7e44e449 AJ |
1961 | static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) |
1962 | { | |
1963 | struct kvm *kvm = v->kvm; | |
1964 | ||
105b21bb | 1965 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
7e44e449 AJ |
1966 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, |
1967 | KVMCLOCK_UPDATE_DELAY); | |
1968 | } | |
1969 | ||
332967a3 AJ |
1970 | #define KVMCLOCK_SYNC_PERIOD (300 * HZ) |
1971 | ||
1972 | static void kvmclock_sync_fn(struct work_struct *work) | |
1973 | { | |
1974 | struct delayed_work *dwork = to_delayed_work(work); | |
1975 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
1976 | kvmclock_sync_work); | |
1977 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
1978 | ||
630994b3 MT |
1979 | if (!kvmclock_periodic_sync) |
1980 | return; | |
1981 | ||
332967a3 AJ |
1982 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); |
1983 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | |
1984 | KVMCLOCK_SYNC_PERIOD); | |
1985 | } | |
1986 | ||
890ca9ae | 1987 | static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
15c4a640 | 1988 | { |
890ca9ae YH |
1989 | u64 mcg_cap = vcpu->arch.mcg_cap; |
1990 | unsigned bank_num = mcg_cap & 0xff; | |
1991 | ||
15c4a640 | 1992 | switch (msr) { |
15c4a640 | 1993 | case MSR_IA32_MCG_STATUS: |
890ca9ae | 1994 | vcpu->arch.mcg_status = data; |
15c4a640 | 1995 | break; |
c7ac679c | 1996 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
1997 | if (!(mcg_cap & MCG_CTL_P)) |
1998 | return 1; | |
1999 | if (data != 0 && data != ~(u64)0) | |
2000 | return -1; | |
2001 | vcpu->arch.mcg_ctl = data; | |
2002 | break; | |
2003 | default: | |
2004 | if (msr >= MSR_IA32_MC0_CTL && | |
81760dcc | 2005 | msr < MSR_IA32_MCx_CTL(bank_num)) { |
890ca9ae | 2006 | u32 offset = msr - MSR_IA32_MC0_CTL; |
114be429 AP |
2007 | /* only 0 or all 1s can be written to IA32_MCi_CTL |
2008 | * some Linux kernels though clear bit 10 in bank 4 to | |
2009 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore | |
2010 | * this to avoid an uncatched #GP in the guest | |
2011 | */ | |
890ca9ae | 2012 | if ((offset & 0x3) == 0 && |
114be429 | 2013 | data != 0 && (data | (1 << 10)) != ~(u64)0) |
890ca9ae YH |
2014 | return -1; |
2015 | vcpu->arch.mce_banks[offset] = data; | |
2016 | break; | |
2017 | } | |
2018 | return 1; | |
2019 | } | |
2020 | return 0; | |
2021 | } | |
2022 | ||
ffde22ac ES |
2023 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
2024 | { | |
2025 | struct kvm *kvm = vcpu->kvm; | |
2026 | int lm = is_long_mode(vcpu); | |
2027 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | |
2028 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | |
2029 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | |
2030 | : kvm->arch.xen_hvm_config.blob_size_32; | |
2031 | u32 page_num = data & ~PAGE_MASK; | |
2032 | u64 page_addr = data & PAGE_MASK; | |
2033 | u8 *page; | |
2034 | int r; | |
2035 | ||
2036 | r = -E2BIG; | |
2037 | if (page_num >= blob_size) | |
2038 | goto out; | |
2039 | r = -ENOMEM; | |
ff5c2c03 SL |
2040 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
2041 | if (IS_ERR(page)) { | |
2042 | r = PTR_ERR(page); | |
ffde22ac | 2043 | goto out; |
ff5c2c03 | 2044 | } |
54bf36aa | 2045 | if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) |
ffde22ac ES |
2046 | goto out_free; |
2047 | r = 0; | |
2048 | out_free: | |
2049 | kfree(page); | |
2050 | out: | |
2051 | return r; | |
2052 | } | |
2053 | ||
344d9588 GN |
2054 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
2055 | { | |
2056 | gpa_t gpa = data & ~0x3f; | |
2057 | ||
52a5c155 WL |
2058 | /* Bits 3:5 are reserved, Should be zero */ |
2059 | if (data & 0x38) | |
344d9588 GN |
2060 | return 1; |
2061 | ||
2062 | vcpu->arch.apf.msr_val = data; | |
2063 | ||
2064 | if (!(data & KVM_ASYNC_PF_ENABLED)) { | |
2065 | kvm_clear_async_pf_completion_queue(vcpu); | |
2066 | kvm_async_pf_hash_reset(vcpu); | |
2067 | return 0; | |
2068 | } | |
2069 | ||
4e335d9e | 2070 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, |
8f964525 | 2071 | sizeof(u32))) |
344d9588 GN |
2072 | return 1; |
2073 | ||
6adba527 | 2074 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
52a5c155 | 2075 | vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
344d9588 GN |
2076 | kvm_async_pf_wakeup_all(vcpu); |
2077 | return 0; | |
2078 | } | |
2079 | ||
12f9a48f GC |
2080 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
2081 | { | |
0b79459b | 2082 | vcpu->arch.pv_time_enabled = false; |
12f9a48f GC |
2083 | } |
2084 | ||
c9aaa895 GC |
2085 | static void record_steal_time(struct kvm_vcpu *vcpu) |
2086 | { | |
2087 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
2088 | return; | |
2089 | ||
4e335d9e | 2090 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
c9aaa895 GC |
2091 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) |
2092 | return; | |
2093 | ||
0b9f6c46 PX |
2094 | vcpu->arch.st.steal.preempted = 0; |
2095 | ||
35f3fae1 WL |
2096 | if (vcpu->arch.st.steal.version & 1) |
2097 | vcpu->arch.st.steal.version += 1; /* first time write, random junk */ | |
2098 | ||
2099 | vcpu->arch.st.steal.version += 1; | |
2100 | ||
4e335d9e | 2101 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
35f3fae1 WL |
2102 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2103 | ||
2104 | smp_wmb(); | |
2105 | ||
c54cdf14 LC |
2106 | vcpu->arch.st.steal.steal += current->sched_info.run_delay - |
2107 | vcpu->arch.st.last_steal; | |
2108 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
35f3fae1 | 2109 | |
4e335d9e | 2110 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
35f3fae1 WL |
2111 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2112 | ||
2113 | smp_wmb(); | |
2114 | ||
2115 | vcpu->arch.st.steal.version += 1; | |
c9aaa895 | 2116 | |
4e335d9e | 2117 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
c9aaa895 GC |
2118 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2119 | } | |
2120 | ||
8fe8ab46 | 2121 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 2122 | { |
5753785f | 2123 | bool pr = false; |
8fe8ab46 WA |
2124 | u32 msr = msr_info->index; |
2125 | u64 data = msr_info->data; | |
5753785f | 2126 | |
15c4a640 | 2127 | switch (msr) { |
2e32b719 BP |
2128 | case MSR_AMD64_NB_CFG: |
2129 | case MSR_IA32_UCODE_REV: | |
2130 | case MSR_IA32_UCODE_WRITE: | |
2131 | case MSR_VM_HSAVE_PA: | |
2132 | case MSR_AMD64_PATCH_LOADER: | |
2133 | case MSR_AMD64_BU_CFG2: | |
405a353a | 2134 | case MSR_AMD64_DC_CFG: |
2e32b719 BP |
2135 | break; |
2136 | ||
15c4a640 | 2137 | case MSR_EFER: |
b69e8cae | 2138 | return set_efer(vcpu, data); |
8f1589d9 AP |
2139 | case MSR_K7_HWCR: |
2140 | data &= ~(u64)0x40; /* ignore flush filter disable */ | |
82494028 | 2141 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
a223c313 | 2142 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
22d48b2d | 2143 | data &= ~(u64)0x40000; /* ignore Mc status write enable */ |
8f1589d9 | 2144 | if (data != 0) { |
a737f256 CD |
2145 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
2146 | data); | |
8f1589d9 AP |
2147 | return 1; |
2148 | } | |
15c4a640 | 2149 | break; |
f7c6d140 AP |
2150 | case MSR_FAM10H_MMIO_CONF_BASE: |
2151 | if (data != 0) { | |
a737f256 CD |
2152 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
2153 | "0x%llx\n", data); | |
f7c6d140 AP |
2154 | return 1; |
2155 | } | |
15c4a640 | 2156 | break; |
b5e2fec0 AG |
2157 | case MSR_IA32_DEBUGCTLMSR: |
2158 | if (!data) { | |
2159 | /* We support the non-activated case already */ | |
2160 | break; | |
2161 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | |
2162 | /* Values other than LBR and BTF are vendor-specific, | |
2163 | thus reserved and should throw a #GP */ | |
2164 | return 1; | |
2165 | } | |
a737f256 CD |
2166 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
2167 | __func__, data); | |
b5e2fec0 | 2168 | break; |
9ba075a6 | 2169 | case 0x200 ... 0x2ff: |
ff53604b | 2170 | return kvm_mtrr_set_msr(vcpu, msr, data); |
15c4a640 | 2171 | case MSR_IA32_APICBASE: |
58cb628d | 2172 | return kvm_set_apic_base(vcpu, msr_info); |
0105d1a5 GN |
2173 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
2174 | return kvm_x2apic_msr_write(vcpu, msr, data); | |
a3e06bbe LJ |
2175 | case MSR_IA32_TSCDEADLINE: |
2176 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | |
2177 | break; | |
ba904635 | 2178 | case MSR_IA32_TSC_ADJUST: |
d6321d49 | 2179 | if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { |
ba904635 | 2180 | if (!msr_info->host_initiated) { |
d913b904 | 2181 | s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
d7add054 | 2182 | adjust_tsc_offset_guest(vcpu, adj); |
ba904635 WA |
2183 | } |
2184 | vcpu->arch.ia32_tsc_adjust_msr = data; | |
2185 | } | |
2186 | break; | |
15c4a640 | 2187 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 2188 | vcpu->arch.ia32_misc_enable_msr = data; |
15c4a640 | 2189 | break; |
64d60670 PB |
2190 | case MSR_IA32_SMBASE: |
2191 | if (!msr_info->host_initiated) | |
2192 | return 1; | |
2193 | vcpu->arch.smbase = data; | |
2194 | break; | |
11c6bffa | 2195 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
2196 | case MSR_KVM_WALL_CLOCK: |
2197 | vcpu->kvm->arch.wall_clock = data; | |
2198 | kvm_write_wall_clock(vcpu->kvm, data); | |
2199 | break; | |
11c6bffa | 2200 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 | 2201 | case MSR_KVM_SYSTEM_TIME: { |
54750f2c MT |
2202 | struct kvm_arch *ka = &vcpu->kvm->arch; |
2203 | ||
12f9a48f | 2204 | kvmclock_reset(vcpu); |
18068523 | 2205 | |
54750f2c MT |
2206 | if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { |
2207 | bool tmp = (msr == MSR_KVM_SYSTEM_TIME); | |
2208 | ||
2209 | if (ka->boot_vcpu_runs_old_kvmclock != tmp) | |
1bd2009e | 2210 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
54750f2c MT |
2211 | |
2212 | ka->boot_vcpu_runs_old_kvmclock = tmp; | |
2213 | } | |
2214 | ||
18068523 | 2215 | vcpu->arch.time = data; |
0061d53d | 2216 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
18068523 GOC |
2217 | |
2218 | /* we verify if the enable bit is set... */ | |
2219 | if (!(data & 1)) | |
2220 | break; | |
2221 | ||
4e335d9e | 2222 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, |
8f964525 AH |
2223 | &vcpu->arch.pv_time, data & ~1ULL, |
2224 | sizeof(struct pvclock_vcpu_time_info))) | |
0b79459b AH |
2225 | vcpu->arch.pv_time_enabled = false; |
2226 | else | |
2227 | vcpu->arch.pv_time_enabled = true; | |
32cad84f | 2228 | |
18068523 GOC |
2229 | break; |
2230 | } | |
344d9588 GN |
2231 | case MSR_KVM_ASYNC_PF_EN: |
2232 | if (kvm_pv_enable_async_pf(vcpu, data)) | |
2233 | return 1; | |
2234 | break; | |
c9aaa895 GC |
2235 | case MSR_KVM_STEAL_TIME: |
2236 | ||
2237 | if (unlikely(!sched_info_on())) | |
2238 | return 1; | |
2239 | ||
2240 | if (data & KVM_STEAL_RESERVED_MASK) | |
2241 | return 1; | |
2242 | ||
4e335d9e | 2243 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, |
8f964525 AH |
2244 | data & KVM_STEAL_VALID_BITS, |
2245 | sizeof(struct kvm_steal_time))) | |
c9aaa895 GC |
2246 | return 1; |
2247 | ||
2248 | vcpu->arch.st.msr_val = data; | |
2249 | ||
2250 | if (!(data & KVM_MSR_ENABLED)) | |
2251 | break; | |
2252 | ||
c9aaa895 GC |
2253 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
2254 | ||
2255 | break; | |
ae7a2a3f MT |
2256 | case MSR_KVM_PV_EOI_EN: |
2257 | if (kvm_lapic_enable_pv_eoi(vcpu, data)) | |
2258 | return 1; | |
2259 | break; | |
c9aaa895 | 2260 | |
890ca9ae YH |
2261 | case MSR_IA32_MCG_CTL: |
2262 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 2263 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
890ca9ae | 2264 | return set_msr_mce(vcpu, msr, data); |
71db6023 | 2265 | |
6912ac32 WH |
2266 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
2267 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
2268 | pr = true; /* fall through */ | |
2269 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: | |
2270 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 2271 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 2272 | return kvm_pmu_set_msr(vcpu, msr_info); |
5753785f GN |
2273 | |
2274 | if (pr || data != 0) | |
a737f256 CD |
2275 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
2276 | "0x%x data 0x%llx\n", msr, data); | |
5753785f | 2277 | break; |
84e0cefa JS |
2278 | case MSR_K7_CLK_CTL: |
2279 | /* | |
2280 | * Ignore all writes to this no longer documented MSR. | |
2281 | * Writes are only relevant for old K7 processors, | |
2282 | * all pre-dating SVM, but a recommended workaround from | |
4a969980 | 2283 | * AMD for these chips. It is possible to specify the |
84e0cefa JS |
2284 | * affected processor models on the command line, hence |
2285 | * the need to ignore the workaround. | |
2286 | */ | |
2287 | break; | |
55cd8e5a | 2288 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
e7d9513b AS |
2289 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2290 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 2291 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
e7d9513b AS |
2292 | return kvm_hv_set_msr_common(vcpu, msr, data, |
2293 | msr_info->host_initiated); | |
91c9c3ed | 2294 | case MSR_IA32_BBL_CR_CTL3: |
2295 | /* Drop writes to this legacy MSR -- see rdmsr | |
2296 | * counterpart for further detail. | |
2297 | */ | |
796f4687 | 2298 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); |
91c9c3ed | 2299 | break; |
2b036c6b | 2300 | case MSR_AMD64_OSVW_ID_LENGTH: |
d6321d49 | 2301 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
2302 | return 1; |
2303 | vcpu->arch.osvw.length = data; | |
2304 | break; | |
2305 | case MSR_AMD64_OSVW_STATUS: | |
d6321d49 | 2306 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
2307 | return 1; |
2308 | vcpu->arch.osvw.status = data; | |
2309 | break; | |
db2336a8 KH |
2310 | case MSR_PLATFORM_INFO: |
2311 | if (!msr_info->host_initiated || | |
2312 | data & ~MSR_PLATFORM_INFO_CPUID_FAULT || | |
2313 | (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && | |
2314 | cpuid_fault_enabled(vcpu))) | |
2315 | return 1; | |
2316 | vcpu->arch.msr_platform_info = data; | |
2317 | break; | |
2318 | case MSR_MISC_FEATURES_ENABLES: | |
2319 | if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || | |
2320 | (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && | |
2321 | !supports_cpuid_fault(vcpu))) | |
2322 | return 1; | |
2323 | vcpu->arch.msr_misc_features_enables = data; | |
2324 | break; | |
15c4a640 | 2325 | default: |
ffde22ac ES |
2326 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
2327 | return xen_hvm_config(vcpu, data); | |
c6702c9d | 2328 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 2329 | return kvm_pmu_set_msr(vcpu, msr_info); |
ed85c068 | 2330 | if (!ignore_msrs) { |
ae0f5499 | 2331 | vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", |
a737f256 | 2332 | msr, data); |
ed85c068 AP |
2333 | return 1; |
2334 | } else { | |
796f4687 | 2335 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", |
a737f256 | 2336 | msr, data); |
ed85c068 AP |
2337 | break; |
2338 | } | |
15c4a640 CO |
2339 | } |
2340 | return 0; | |
2341 | } | |
2342 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | |
2343 | ||
2344 | ||
2345 | /* | |
2346 | * Reads an msr value (of 'msr_index') into 'pdata'. | |
2347 | * Returns 0 on success, non-0 otherwise. | |
2348 | * Assumes vcpu_load() was already called. | |
2349 | */ | |
609e36d3 | 2350 | int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 2351 | { |
609e36d3 | 2352 | return kvm_x86_ops->get_msr(vcpu, msr); |
15c4a640 | 2353 | } |
ff651cb6 | 2354 | EXPORT_SYMBOL_GPL(kvm_get_msr); |
15c4a640 | 2355 | |
890ca9ae | 2356 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
15c4a640 CO |
2357 | { |
2358 | u64 data; | |
890ca9ae YH |
2359 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2360 | unsigned bank_num = mcg_cap & 0xff; | |
15c4a640 CO |
2361 | |
2362 | switch (msr) { | |
15c4a640 CO |
2363 | case MSR_IA32_P5_MC_ADDR: |
2364 | case MSR_IA32_P5_MC_TYPE: | |
890ca9ae YH |
2365 | data = 0; |
2366 | break; | |
15c4a640 | 2367 | case MSR_IA32_MCG_CAP: |
890ca9ae YH |
2368 | data = vcpu->arch.mcg_cap; |
2369 | break; | |
c7ac679c | 2370 | case MSR_IA32_MCG_CTL: |
890ca9ae YH |
2371 | if (!(mcg_cap & MCG_CTL_P)) |
2372 | return 1; | |
2373 | data = vcpu->arch.mcg_ctl; | |
2374 | break; | |
2375 | case MSR_IA32_MCG_STATUS: | |
2376 | data = vcpu->arch.mcg_status; | |
2377 | break; | |
2378 | default: | |
2379 | if (msr >= MSR_IA32_MC0_CTL && | |
81760dcc | 2380 | msr < MSR_IA32_MCx_CTL(bank_num)) { |
890ca9ae YH |
2381 | u32 offset = msr - MSR_IA32_MC0_CTL; |
2382 | data = vcpu->arch.mce_banks[offset]; | |
2383 | break; | |
2384 | } | |
2385 | return 1; | |
2386 | } | |
2387 | *pdata = data; | |
2388 | return 0; | |
2389 | } | |
2390 | ||
609e36d3 | 2391 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
890ca9ae | 2392 | { |
609e36d3 | 2393 | switch (msr_info->index) { |
890ca9ae | 2394 | case MSR_IA32_PLATFORM_ID: |
15c4a640 | 2395 | case MSR_IA32_EBL_CR_POWERON: |
b5e2fec0 AG |
2396 | case MSR_IA32_DEBUGCTLMSR: |
2397 | case MSR_IA32_LASTBRANCHFROMIP: | |
2398 | case MSR_IA32_LASTBRANCHTOIP: | |
2399 | case MSR_IA32_LASTINTFROMIP: | |
2400 | case MSR_IA32_LASTINTTOIP: | |
60af2ecd | 2401 | case MSR_K8_SYSCFG: |
3afb1121 PB |
2402 | case MSR_K8_TSEG_ADDR: |
2403 | case MSR_K8_TSEG_MASK: | |
60af2ecd | 2404 | case MSR_K7_HWCR: |
61a6bd67 | 2405 | case MSR_VM_HSAVE_PA: |
1fdbd48c | 2406 | case MSR_K8_INT_PENDING_MSG: |
c323c0e5 | 2407 | case MSR_AMD64_NB_CFG: |
f7c6d140 | 2408 | case MSR_FAM10H_MMIO_CONF_BASE: |
2e32b719 | 2409 | case MSR_AMD64_BU_CFG2: |
0c2df2a1 | 2410 | case MSR_IA32_PERF_CTL: |
405a353a | 2411 | case MSR_AMD64_DC_CFG: |
609e36d3 | 2412 | msr_info->data = 0; |
15c4a640 | 2413 | break; |
6912ac32 WH |
2414 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
2415 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: | |
2416 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
2417 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 2418 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
609e36d3 PB |
2419 | return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
2420 | msr_info->data = 0; | |
5753785f | 2421 | break; |
742bc670 | 2422 | case MSR_IA32_UCODE_REV: |
609e36d3 | 2423 | msr_info->data = 0x100000000ULL; |
742bc670 | 2424 | break; |
9ba075a6 | 2425 | case MSR_MTRRcap: |
9ba075a6 | 2426 | case 0x200 ... 0x2ff: |
ff53604b | 2427 | return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); |
15c4a640 | 2428 | case 0xcd: /* fsb frequency */ |
609e36d3 | 2429 | msr_info->data = 3; |
15c4a640 | 2430 | break; |
7b914098 JS |
2431 | /* |
2432 | * MSR_EBC_FREQUENCY_ID | |
2433 | * Conservative value valid for even the basic CPU models. | |
2434 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | |
2435 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | |
2436 | * and 266MHz for model 3, or 4. Set Core Clock | |
2437 | * Frequency to System Bus Frequency Ratio to 1 (bits | |
2438 | * 31:24) even though these are only valid for CPU | |
2439 | * models > 2, however guests may end up dividing or | |
2440 | * multiplying by zero otherwise. | |
2441 | */ | |
2442 | case MSR_EBC_FREQUENCY_ID: | |
609e36d3 | 2443 | msr_info->data = 1 << 24; |
7b914098 | 2444 | break; |
15c4a640 | 2445 | case MSR_IA32_APICBASE: |
609e36d3 | 2446 | msr_info->data = kvm_get_apic_base(vcpu); |
15c4a640 | 2447 | break; |
0105d1a5 | 2448 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
609e36d3 | 2449 | return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); |
0105d1a5 | 2450 | break; |
a3e06bbe | 2451 | case MSR_IA32_TSCDEADLINE: |
609e36d3 | 2452 | msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); |
a3e06bbe | 2453 | break; |
ba904635 | 2454 | case MSR_IA32_TSC_ADJUST: |
609e36d3 | 2455 | msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
ba904635 | 2456 | break; |
15c4a640 | 2457 | case MSR_IA32_MISC_ENABLE: |
609e36d3 | 2458 | msr_info->data = vcpu->arch.ia32_misc_enable_msr; |
15c4a640 | 2459 | break; |
64d60670 PB |
2460 | case MSR_IA32_SMBASE: |
2461 | if (!msr_info->host_initiated) | |
2462 | return 1; | |
2463 | msr_info->data = vcpu->arch.smbase; | |
15c4a640 | 2464 | break; |
847f0ad8 AG |
2465 | case MSR_IA32_PERF_STATUS: |
2466 | /* TSC increment by tick */ | |
609e36d3 | 2467 | msr_info->data = 1000ULL; |
847f0ad8 | 2468 | /* CPU multiplier */ |
b0996ae4 | 2469 | msr_info->data |= (((uint64_t)4ULL) << 40); |
847f0ad8 | 2470 | break; |
15c4a640 | 2471 | case MSR_EFER: |
609e36d3 | 2472 | msr_info->data = vcpu->arch.efer; |
15c4a640 | 2473 | break; |
18068523 | 2474 | case MSR_KVM_WALL_CLOCK: |
11c6bffa | 2475 | case MSR_KVM_WALL_CLOCK_NEW: |
609e36d3 | 2476 | msr_info->data = vcpu->kvm->arch.wall_clock; |
18068523 GOC |
2477 | break; |
2478 | case MSR_KVM_SYSTEM_TIME: | |
11c6bffa | 2479 | case MSR_KVM_SYSTEM_TIME_NEW: |
609e36d3 | 2480 | msr_info->data = vcpu->arch.time; |
18068523 | 2481 | break; |
344d9588 | 2482 | case MSR_KVM_ASYNC_PF_EN: |
609e36d3 | 2483 | msr_info->data = vcpu->arch.apf.msr_val; |
344d9588 | 2484 | break; |
c9aaa895 | 2485 | case MSR_KVM_STEAL_TIME: |
609e36d3 | 2486 | msr_info->data = vcpu->arch.st.msr_val; |
c9aaa895 | 2487 | break; |
1d92128f | 2488 | case MSR_KVM_PV_EOI_EN: |
609e36d3 | 2489 | msr_info->data = vcpu->arch.pv_eoi.msr_val; |
1d92128f | 2490 | break; |
890ca9ae YH |
2491 | case MSR_IA32_P5_MC_ADDR: |
2492 | case MSR_IA32_P5_MC_TYPE: | |
2493 | case MSR_IA32_MCG_CAP: | |
2494 | case MSR_IA32_MCG_CTL: | |
2495 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 2496 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
609e36d3 | 2497 | return get_msr_mce(vcpu, msr_info->index, &msr_info->data); |
84e0cefa JS |
2498 | case MSR_K7_CLK_CTL: |
2499 | /* | |
2500 | * Provide expected ramp-up count for K7. All other | |
2501 | * are set to zero, indicating minimum divisors for | |
2502 | * every field. | |
2503 | * | |
2504 | * This prevents guest kernels on AMD host with CPU | |
2505 | * type 6, model 8 and higher from exploding due to | |
2506 | * the rdmsr failing. | |
2507 | */ | |
609e36d3 | 2508 | msr_info->data = 0x20000000; |
84e0cefa | 2509 | break; |
55cd8e5a | 2510 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
e7d9513b AS |
2511 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2512 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 2513 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
e83d5887 AS |
2514 | return kvm_hv_get_msr_common(vcpu, |
2515 | msr_info->index, &msr_info->data); | |
55cd8e5a | 2516 | break; |
91c9c3ed | 2517 | case MSR_IA32_BBL_CR_CTL3: |
2518 | /* This legacy MSR exists but isn't fully documented in current | |
2519 | * silicon. It is however accessed by winxp in very narrow | |
2520 | * scenarios where it sets bit #19, itself documented as | |
2521 | * a "reserved" bit. Best effort attempt to source coherent | |
2522 | * read data here should the balance of the register be | |
2523 | * interpreted by the guest: | |
2524 | * | |
2525 | * L2 cache control register 3: 64GB range, 256KB size, | |
2526 | * enabled, latency 0x1, configured | |
2527 | */ | |
609e36d3 | 2528 | msr_info->data = 0xbe702111; |
91c9c3ed | 2529 | break; |
2b036c6b | 2530 | case MSR_AMD64_OSVW_ID_LENGTH: |
d6321d49 | 2531 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 2532 | return 1; |
609e36d3 | 2533 | msr_info->data = vcpu->arch.osvw.length; |
2b036c6b BO |
2534 | break; |
2535 | case MSR_AMD64_OSVW_STATUS: | |
d6321d49 | 2536 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 2537 | return 1; |
609e36d3 | 2538 | msr_info->data = vcpu->arch.osvw.status; |
2b036c6b | 2539 | break; |
db2336a8 KH |
2540 | case MSR_PLATFORM_INFO: |
2541 | msr_info->data = vcpu->arch.msr_platform_info; | |
2542 | break; | |
2543 | case MSR_MISC_FEATURES_ENABLES: | |
2544 | msr_info->data = vcpu->arch.msr_misc_features_enables; | |
2545 | break; | |
15c4a640 | 2546 | default: |
c6702c9d | 2547 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
609e36d3 | 2548 | return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
ed85c068 | 2549 | if (!ignore_msrs) { |
ae0f5499 BD |
2550 | vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", |
2551 | msr_info->index); | |
ed85c068 AP |
2552 | return 1; |
2553 | } else { | |
609e36d3 PB |
2554 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); |
2555 | msr_info->data = 0; | |
ed85c068 AP |
2556 | } |
2557 | break; | |
15c4a640 | 2558 | } |
15c4a640 CO |
2559 | return 0; |
2560 | } | |
2561 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | |
2562 | ||
313a3dc7 CO |
2563 | /* |
2564 | * Read or write a bunch of msrs. All parameters are kernel addresses. | |
2565 | * | |
2566 | * @return number of msrs set successfully. | |
2567 | */ | |
2568 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | |
2569 | struct kvm_msr_entry *entries, | |
2570 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2571 | unsigned index, u64 *data)) | |
2572 | { | |
f656ce01 | 2573 | int i, idx; |
313a3dc7 | 2574 | |
f656ce01 | 2575 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
313a3dc7 CO |
2576 | for (i = 0; i < msrs->nmsrs; ++i) |
2577 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | |
2578 | break; | |
f656ce01 | 2579 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 2580 | |
313a3dc7 CO |
2581 | return i; |
2582 | } | |
2583 | ||
2584 | /* | |
2585 | * Read or write a bunch of msrs. Parameters are user addresses. | |
2586 | * | |
2587 | * @return number of msrs set successfully. | |
2588 | */ | |
2589 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | |
2590 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2591 | unsigned index, u64 *data), | |
2592 | int writeback) | |
2593 | { | |
2594 | struct kvm_msrs msrs; | |
2595 | struct kvm_msr_entry *entries; | |
2596 | int r, n; | |
2597 | unsigned size; | |
2598 | ||
2599 | r = -EFAULT; | |
2600 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | |
2601 | goto out; | |
2602 | ||
2603 | r = -E2BIG; | |
2604 | if (msrs.nmsrs >= MAX_IO_MSRS) | |
2605 | goto out; | |
2606 | ||
313a3dc7 | 2607 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
ff5c2c03 SL |
2608 | entries = memdup_user(user_msrs->entries, size); |
2609 | if (IS_ERR(entries)) { | |
2610 | r = PTR_ERR(entries); | |
313a3dc7 | 2611 | goto out; |
ff5c2c03 | 2612 | } |
313a3dc7 CO |
2613 | |
2614 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | |
2615 | if (r < 0) | |
2616 | goto out_free; | |
2617 | ||
2618 | r = -EFAULT; | |
2619 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | |
2620 | goto out_free; | |
2621 | ||
2622 | r = n; | |
2623 | ||
2624 | out_free: | |
7a73c028 | 2625 | kfree(entries); |
313a3dc7 CO |
2626 | out: |
2627 | return r; | |
2628 | } | |
2629 | ||
784aa3d7 | 2630 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
018d00d2 ZX |
2631 | { |
2632 | int r; | |
2633 | ||
2634 | switch (ext) { | |
2635 | case KVM_CAP_IRQCHIP: | |
2636 | case KVM_CAP_HLT: | |
2637 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | |
018d00d2 | 2638 | case KVM_CAP_SET_TSS_ADDR: |
07716717 | 2639 | case KVM_CAP_EXT_CPUID: |
9c15bb1d | 2640 | case KVM_CAP_EXT_EMUL_CPUID: |
c8076604 | 2641 | case KVM_CAP_CLOCKSOURCE: |
7837699f | 2642 | case KVM_CAP_PIT: |
a28e4f5a | 2643 | case KVM_CAP_NOP_IO_DELAY: |
62d9f0db | 2644 | case KVM_CAP_MP_STATE: |
ed848624 | 2645 | case KVM_CAP_SYNC_MMU: |
a355c85c | 2646 | case KVM_CAP_USER_NMI: |
52d939a0 | 2647 | case KVM_CAP_REINJECT_CONTROL: |
4925663a | 2648 | case KVM_CAP_IRQ_INJECT_STATUS: |
d34e6b17 | 2649 | case KVM_CAP_IOEVENTFD: |
f848a5a8 | 2650 | case KVM_CAP_IOEVENTFD_NO_LENGTH: |
c5ff41ce | 2651 | case KVM_CAP_PIT2: |
e9f42757 | 2652 | case KVM_CAP_PIT_STATE2: |
b927a3ce | 2653 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
ffde22ac | 2654 | case KVM_CAP_XEN_HVM: |
3cfc3092 | 2655 | case KVM_CAP_VCPU_EVENTS: |
55cd8e5a | 2656 | case KVM_CAP_HYPERV: |
10388a07 | 2657 | case KVM_CAP_HYPERV_VAPIC: |
c25bc163 | 2658 | case KVM_CAP_HYPERV_SPIN: |
5c919412 | 2659 | case KVM_CAP_HYPERV_SYNIC: |
efc479e6 | 2660 | case KVM_CAP_HYPERV_SYNIC2: |
d3457c87 | 2661 | case KVM_CAP_HYPERV_VP_INDEX: |
ab9f4ecb | 2662 | case KVM_CAP_PCI_SEGMENT: |
a1efbe77 | 2663 | case KVM_CAP_DEBUGREGS: |
d2be1651 | 2664 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2d5b5a66 | 2665 | case KVM_CAP_XSAVE: |
344d9588 | 2666 | case KVM_CAP_ASYNC_PF: |
92a1f12d | 2667 | case KVM_CAP_GET_TSC_KHZ: |
1c0b28c2 | 2668 | case KVM_CAP_KVMCLOCK_CTRL: |
4d8b81ab | 2669 | case KVM_CAP_READONLY_MEM: |
5f66b620 | 2670 | case KVM_CAP_HYPERV_TIME: |
100943c5 | 2671 | case KVM_CAP_IOAPIC_POLARITY_IGNORED: |
defcf51f | 2672 | case KVM_CAP_TSC_DEADLINE_TIMER: |
90de4a18 NA |
2673 | case KVM_CAP_ENABLE_CAP_VM: |
2674 | case KVM_CAP_DISABLE_QUIRKS: | |
d71ba788 | 2675 | case KVM_CAP_SET_BOOT_CPU_ID: |
49df6397 | 2676 | case KVM_CAP_SPLIT_IRQCHIP: |
460df4c1 | 2677 | case KVM_CAP_IMMEDIATE_EXIT: |
018d00d2 ZX |
2678 | r = 1; |
2679 | break; | |
e3fd9a93 PB |
2680 | case KVM_CAP_ADJUST_CLOCK: |
2681 | r = KVM_CLOCK_TSC_STABLE; | |
2682 | break; | |
668fffa3 MT |
2683 | case KVM_CAP_X86_GUEST_MWAIT: |
2684 | r = kvm_mwait_in_guest(); | |
2685 | break; | |
6d396b55 PB |
2686 | case KVM_CAP_X86_SMM: |
2687 | /* SMBASE is usually relocated above 1M on modern chipsets, | |
2688 | * and SMM handlers might indeed rely on 4G segment limits, | |
2689 | * so do not report SMM to be available if real mode is | |
2690 | * emulated via vm86 mode. Still, do not go to great lengths | |
2691 | * to avoid userspace's usage of the feature, because it is a | |
2692 | * fringe case that is not enabled except via specific settings | |
2693 | * of the module parameters. | |
2694 | */ | |
2695 | r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); | |
2696 | break; | |
774ead3a AK |
2697 | case KVM_CAP_VAPIC: |
2698 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | |
2699 | break; | |
f725230a | 2700 | case KVM_CAP_NR_VCPUS: |
8c3ba334 SL |
2701 | r = KVM_SOFT_MAX_VCPUS; |
2702 | break; | |
2703 | case KVM_CAP_MAX_VCPUS: | |
f725230a AK |
2704 | r = KVM_MAX_VCPUS; |
2705 | break; | |
a988b910 | 2706 | case KVM_CAP_NR_MEMSLOTS: |
bbacc0c1 | 2707 | r = KVM_USER_MEM_SLOTS; |
a988b910 | 2708 | break; |
a68a6a72 MT |
2709 | case KVM_CAP_PV_MMU: /* obsolete */ |
2710 | r = 0; | |
2f333bcb | 2711 | break; |
890ca9ae YH |
2712 | case KVM_CAP_MCE: |
2713 | r = KVM_MAX_MCE_BANKS; | |
2714 | break; | |
2d5b5a66 | 2715 | case KVM_CAP_XCRS: |
d366bf7e | 2716 | r = boot_cpu_has(X86_FEATURE_XSAVE); |
2d5b5a66 | 2717 | break; |
92a1f12d JR |
2718 | case KVM_CAP_TSC_CONTROL: |
2719 | r = kvm_has_tsc_control; | |
2720 | break; | |
37131313 RK |
2721 | case KVM_CAP_X2APIC_API: |
2722 | r = KVM_X2APIC_API_VALID_FLAGS; | |
2723 | break; | |
018d00d2 ZX |
2724 | default: |
2725 | r = 0; | |
2726 | break; | |
2727 | } | |
2728 | return r; | |
2729 | ||
2730 | } | |
2731 | ||
043405e1 CO |
2732 | long kvm_arch_dev_ioctl(struct file *filp, |
2733 | unsigned int ioctl, unsigned long arg) | |
2734 | { | |
2735 | void __user *argp = (void __user *)arg; | |
2736 | long r; | |
2737 | ||
2738 | switch (ioctl) { | |
2739 | case KVM_GET_MSR_INDEX_LIST: { | |
2740 | struct kvm_msr_list __user *user_msr_list = argp; | |
2741 | struct kvm_msr_list msr_list; | |
2742 | unsigned n; | |
2743 | ||
2744 | r = -EFAULT; | |
2745 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | |
2746 | goto out; | |
2747 | n = msr_list.nmsrs; | |
62ef68bb | 2748 | msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; |
043405e1 CO |
2749 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
2750 | goto out; | |
2751 | r = -E2BIG; | |
e125e7b6 | 2752 | if (n < msr_list.nmsrs) |
043405e1 CO |
2753 | goto out; |
2754 | r = -EFAULT; | |
2755 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | |
2756 | num_msrs_to_save * sizeof(u32))) | |
2757 | goto out; | |
e125e7b6 | 2758 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
043405e1 | 2759 | &emulated_msrs, |
62ef68bb | 2760 | num_emulated_msrs * sizeof(u32))) |
043405e1 CO |
2761 | goto out; |
2762 | r = 0; | |
2763 | break; | |
2764 | } | |
9c15bb1d BP |
2765 | case KVM_GET_SUPPORTED_CPUID: |
2766 | case KVM_GET_EMULATED_CPUID: { | |
674eea0f AK |
2767 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
2768 | struct kvm_cpuid2 cpuid; | |
2769 | ||
2770 | r = -EFAULT; | |
2771 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
2772 | goto out; | |
9c15bb1d BP |
2773 | |
2774 | r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, | |
2775 | ioctl); | |
674eea0f AK |
2776 | if (r) |
2777 | goto out; | |
2778 | ||
2779 | r = -EFAULT; | |
2780 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
2781 | goto out; | |
2782 | r = 0; | |
2783 | break; | |
2784 | } | |
890ca9ae | 2785 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
890ca9ae | 2786 | r = -EFAULT; |
c45dcc71 AR |
2787 | if (copy_to_user(argp, &kvm_mce_cap_supported, |
2788 | sizeof(kvm_mce_cap_supported))) | |
890ca9ae YH |
2789 | goto out; |
2790 | r = 0; | |
2791 | break; | |
2792 | } | |
043405e1 CO |
2793 | default: |
2794 | r = -EINVAL; | |
2795 | } | |
2796 | out: | |
2797 | return r; | |
2798 | } | |
2799 | ||
f5f48ee1 SY |
2800 | static void wbinvd_ipi(void *garbage) |
2801 | { | |
2802 | wbinvd(); | |
2803 | } | |
2804 | ||
2805 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
2806 | { | |
e0f0bbc5 | 2807 | return kvm_arch_has_noncoherent_dma(vcpu->kvm); |
f5f48ee1 SY |
2808 | } |
2809 | ||
313a3dc7 CO |
2810 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
2811 | { | |
f5f48ee1 SY |
2812 | /* Address WBINVD may be executed by guest */ |
2813 | if (need_emulate_wbinvd(vcpu)) { | |
2814 | if (kvm_x86_ops->has_wbinvd_exit()) | |
2815 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
2816 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | |
2817 | smp_call_function_single(vcpu->cpu, | |
2818 | wbinvd_ipi, NULL, 1); | |
2819 | } | |
2820 | ||
313a3dc7 | 2821 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
8f6055cb | 2822 | |
0dd6a6ed ZA |
2823 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
2824 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | |
2825 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | |
2826 | vcpu->arch.tsc_offset_adjustment = 0; | |
105b21bb | 2827 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed | 2828 | } |
8f6055cb | 2829 | |
48434c20 | 2830 | if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
6f526ec5 | 2831 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
4ea1636b | 2832 | rdtsc() - vcpu->arch.last_host_tsc; |
e48672fa ZA |
2833 | if (tsc_delta < 0) |
2834 | mark_tsc_unstable("KVM discovered backwards TSC"); | |
ce7a058a | 2835 | |
c285545f | 2836 | if (check_tsc_unstable()) { |
07c1419a | 2837 | u64 offset = kvm_compute_tsc_offset(vcpu, |
b183aa58 | 2838 | vcpu->arch.last_guest_tsc); |
a545ab6a | 2839 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
c285545f | 2840 | vcpu->arch.tsc_catchup = 1; |
c285545f | 2841 | } |
a749e247 PB |
2842 | |
2843 | if (kvm_lapic_hv_timer_in_use(vcpu)) | |
2844 | kvm_lapic_restart_hv_timer(vcpu); | |
2845 | ||
d98d07ca MT |
2846 | /* |
2847 | * On a host with synchronized TSC, there is no need to update | |
2848 | * kvmclock on vcpu->cpu migration | |
2849 | */ | |
2850 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | |
0061d53d | 2851 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
c285545f | 2852 | if (vcpu->cpu != cpu) |
1bd2009e | 2853 | kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); |
e48672fa | 2854 | vcpu->cpu = cpu; |
6b7d7e76 | 2855 | } |
c9aaa895 | 2856 | |
c9aaa895 | 2857 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
313a3dc7 CO |
2858 | } |
2859 | ||
0b9f6c46 PX |
2860 | static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) |
2861 | { | |
2862 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
2863 | return; | |
2864 | ||
2865 | vcpu->arch.st.steal.preempted = 1; | |
2866 | ||
4e335d9e | 2867 | kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, |
0b9f6c46 PX |
2868 | &vcpu->arch.st.steal.preempted, |
2869 | offsetof(struct kvm_steal_time, preempted), | |
2870 | sizeof(vcpu->arch.st.steal.preempted)); | |
2871 | } | |
2872 | ||
313a3dc7 CO |
2873 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
2874 | { | |
cc0d907c | 2875 | int idx; |
de63ad4c LM |
2876 | |
2877 | if (vcpu->preempted) | |
2878 | vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); | |
2879 | ||
931f261b AA |
2880 | /* |
2881 | * Disable page faults because we're in atomic context here. | |
2882 | * kvm_write_guest_offset_cached() would call might_fault() | |
2883 | * that relies on pagefault_disable() to tell if there's a | |
2884 | * bug. NOTE: the write to guest memory may not go through if | |
2885 | * during postcopy live migration or if there's heavy guest | |
2886 | * paging. | |
2887 | */ | |
2888 | pagefault_disable(); | |
cc0d907c AA |
2889 | /* |
2890 | * kvm_memslots() will be called by | |
2891 | * kvm_write_guest_offset_cached() so take the srcu lock. | |
2892 | */ | |
2893 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
0b9f6c46 | 2894 | kvm_steal_time_set_preempted(vcpu); |
cc0d907c | 2895 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
931f261b | 2896 | pagefault_enable(); |
02daab21 | 2897 | kvm_x86_ops->vcpu_put(vcpu); |
1c11e713 | 2898 | kvm_put_guest_fpu(vcpu); |
4ea1636b | 2899 | vcpu->arch.last_host_tsc = rdtsc(); |
313a3dc7 CO |
2900 | } |
2901 | ||
313a3dc7 CO |
2902 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
2903 | struct kvm_lapic_state *s) | |
2904 | { | |
76dfafd5 | 2905 | if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) |
d62caabb AS |
2906 | kvm_x86_ops->sync_pir_to_irr(vcpu); |
2907 | ||
a92e2543 | 2908 | return kvm_apic_get_state(vcpu, s); |
313a3dc7 CO |
2909 | } |
2910 | ||
2911 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | |
2912 | struct kvm_lapic_state *s) | |
2913 | { | |
a92e2543 RK |
2914 | int r; |
2915 | ||
2916 | r = kvm_apic_set_state(vcpu, s); | |
2917 | if (r) | |
2918 | return r; | |
cb142eb7 | 2919 | update_cr8_intercept(vcpu); |
313a3dc7 CO |
2920 | |
2921 | return 0; | |
2922 | } | |
2923 | ||
127a457a MG |
2924 | static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) |
2925 | { | |
2926 | return (!lapic_in_kernel(vcpu) || | |
2927 | kvm_apic_accept_pic_intr(vcpu)); | |
2928 | } | |
2929 | ||
782d422b MG |
2930 | /* |
2931 | * if userspace requested an interrupt window, check that the | |
2932 | * interrupt window is open. | |
2933 | * | |
2934 | * No need to exit to userspace if we already have an interrupt queued. | |
2935 | */ | |
2936 | static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) | |
2937 | { | |
2938 | return kvm_arch_interrupt_allowed(vcpu) && | |
2939 | !kvm_cpu_has_interrupt(vcpu) && | |
2940 | !kvm_event_needs_reinjection(vcpu) && | |
2941 | kvm_cpu_accept_dm_intr(vcpu); | |
2942 | } | |
2943 | ||
f77bc6a4 ZX |
2944 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
2945 | struct kvm_interrupt *irq) | |
2946 | { | |
02cdb50f | 2947 | if (irq->irq >= KVM_NR_INTERRUPTS) |
f77bc6a4 | 2948 | return -EINVAL; |
1c1a9ce9 SR |
2949 | |
2950 | if (!irqchip_in_kernel(vcpu->kvm)) { | |
2951 | kvm_queue_interrupt(vcpu, irq->irq, false); | |
2952 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
2953 | return 0; | |
2954 | } | |
2955 | ||
2956 | /* | |
2957 | * With in-kernel LAPIC, we only use this to inject EXTINT, so | |
2958 | * fail for in-kernel 8259. | |
2959 | */ | |
2960 | if (pic_in_kernel(vcpu->kvm)) | |
f77bc6a4 | 2961 | return -ENXIO; |
f77bc6a4 | 2962 | |
1c1a9ce9 SR |
2963 | if (vcpu->arch.pending_external_vector != -1) |
2964 | return -EEXIST; | |
f77bc6a4 | 2965 | |
1c1a9ce9 | 2966 | vcpu->arch.pending_external_vector = irq->irq; |
934bf653 | 2967 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
f77bc6a4 ZX |
2968 | return 0; |
2969 | } | |
2970 | ||
c4abb7c9 JK |
2971 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
2972 | { | |
c4abb7c9 | 2973 | kvm_inject_nmi(vcpu); |
c4abb7c9 JK |
2974 | |
2975 | return 0; | |
2976 | } | |
2977 | ||
f077825a PB |
2978 | static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) |
2979 | { | |
64d60670 PB |
2980 | kvm_make_request(KVM_REQ_SMI, vcpu); |
2981 | ||
f077825a PB |
2982 | return 0; |
2983 | } | |
2984 | ||
b209749f AK |
2985 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
2986 | struct kvm_tpr_access_ctl *tac) | |
2987 | { | |
2988 | if (tac->flags) | |
2989 | return -EINVAL; | |
2990 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | |
2991 | return 0; | |
2992 | } | |
2993 | ||
890ca9ae YH |
2994 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
2995 | u64 mcg_cap) | |
2996 | { | |
2997 | int r; | |
2998 | unsigned bank_num = mcg_cap & 0xff, bank; | |
2999 | ||
3000 | r = -EINVAL; | |
a9e38c3e | 3001 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
890ca9ae | 3002 | goto out; |
c45dcc71 | 3003 | if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) |
890ca9ae YH |
3004 | goto out; |
3005 | r = 0; | |
3006 | vcpu->arch.mcg_cap = mcg_cap; | |
3007 | /* Init IA32_MCG_CTL to all 1s */ | |
3008 | if (mcg_cap & MCG_CTL_P) | |
3009 | vcpu->arch.mcg_ctl = ~(u64)0; | |
3010 | /* Init IA32_MCi_CTL to all 1s */ | |
3011 | for (bank = 0; bank < bank_num; bank++) | |
3012 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; | |
c45dcc71 AR |
3013 | |
3014 | if (kvm_x86_ops->setup_mce) | |
3015 | kvm_x86_ops->setup_mce(vcpu); | |
890ca9ae YH |
3016 | out: |
3017 | return r; | |
3018 | } | |
3019 | ||
3020 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | |
3021 | struct kvm_x86_mce *mce) | |
3022 | { | |
3023 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
3024 | unsigned bank_num = mcg_cap & 0xff; | |
3025 | u64 *banks = vcpu->arch.mce_banks; | |
3026 | ||
3027 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | |
3028 | return -EINVAL; | |
3029 | /* | |
3030 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | |
3031 | * reporting is disabled | |
3032 | */ | |
3033 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | |
3034 | vcpu->arch.mcg_ctl != ~(u64)0) | |
3035 | return 0; | |
3036 | banks += 4 * mce->bank; | |
3037 | /* | |
3038 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | |
3039 | * reporting is disabled for the bank | |
3040 | */ | |
3041 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | |
3042 | return 0; | |
3043 | if (mce->status & MCI_STATUS_UC) { | |
3044 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | |
fc78f519 | 3045 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
a8eeb04a | 3046 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
890ca9ae YH |
3047 | return 0; |
3048 | } | |
3049 | if (banks[1] & MCI_STATUS_VAL) | |
3050 | mce->status |= MCI_STATUS_OVER; | |
3051 | banks[2] = mce->addr; | |
3052 | banks[3] = mce->misc; | |
3053 | vcpu->arch.mcg_status = mce->mcg_status; | |
3054 | banks[1] = mce->status; | |
3055 | kvm_queue_exception(vcpu, MC_VECTOR); | |
3056 | } else if (!(banks[1] & MCI_STATUS_VAL) | |
3057 | || !(banks[1] & MCI_STATUS_UC)) { | |
3058 | if (banks[1] & MCI_STATUS_VAL) | |
3059 | mce->status |= MCI_STATUS_OVER; | |
3060 | banks[2] = mce->addr; | |
3061 | banks[3] = mce->misc; | |
3062 | banks[1] = mce->status; | |
3063 | } else | |
3064 | banks[1] |= MCI_STATUS_OVER; | |
3065 | return 0; | |
3066 | } | |
3067 | ||
3cfc3092 JK |
3068 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
3069 | struct kvm_vcpu_events *events) | |
3070 | { | |
7460fb4a | 3071 | process_nmi(vcpu); |
03b82a30 JK |
3072 | events->exception.injected = |
3073 | vcpu->arch.exception.pending && | |
3074 | !kvm_exception_is_soft(vcpu->arch.exception.nr); | |
3cfc3092 JK |
3075 | events->exception.nr = vcpu->arch.exception.nr; |
3076 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; | |
97e69aa6 | 3077 | events->exception.pad = 0; |
3cfc3092 JK |
3078 | events->exception.error_code = vcpu->arch.exception.error_code; |
3079 | ||
03b82a30 JK |
3080 | events->interrupt.injected = |
3081 | vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; | |
3cfc3092 | 3082 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
03b82a30 | 3083 | events->interrupt.soft = 0; |
37ccdcbe | 3084 | events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
3cfc3092 JK |
3085 | |
3086 | events->nmi.injected = vcpu->arch.nmi_injected; | |
7460fb4a | 3087 | events->nmi.pending = vcpu->arch.nmi_pending != 0; |
3cfc3092 | 3088 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
97e69aa6 | 3089 | events->nmi.pad = 0; |
3cfc3092 | 3090 | |
66450a21 | 3091 | events->sipi_vector = 0; /* never valid when reporting to user space */ |
3cfc3092 | 3092 | |
f077825a PB |
3093 | events->smi.smm = is_smm(vcpu); |
3094 | events->smi.pending = vcpu->arch.smi_pending; | |
3095 | events->smi.smm_inside_nmi = | |
3096 | !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); | |
3097 | events->smi.latched_init = kvm_lapic_latched_init(vcpu); | |
3098 | ||
dab4b911 | 3099 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
f077825a PB |
3100 | | KVM_VCPUEVENT_VALID_SHADOW |
3101 | | KVM_VCPUEVENT_VALID_SMM); | |
97e69aa6 | 3102 | memset(&events->reserved, 0, sizeof(events->reserved)); |
3cfc3092 JK |
3103 | } |
3104 | ||
6ef4e07e XG |
3105 | static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); |
3106 | ||
3cfc3092 JK |
3107 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
3108 | struct kvm_vcpu_events *events) | |
3109 | { | |
dab4b911 | 3110 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 | 3111 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
f077825a PB |
3112 | | KVM_VCPUEVENT_VALID_SHADOW |
3113 | | KVM_VCPUEVENT_VALID_SMM)) | |
3cfc3092 JK |
3114 | return -EINVAL; |
3115 | ||
78e546c8 | 3116 | if (events->exception.injected && |
28d06353 JM |
3117 | (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || |
3118 | is_guest_mode(vcpu))) | |
78e546c8 PB |
3119 | return -EINVAL; |
3120 | ||
28bf2888 DH |
3121 | /* INITs are latched while in SMM */ |
3122 | if (events->flags & KVM_VCPUEVENT_VALID_SMM && | |
3123 | (events->smi.smm || events->smi.pending) && | |
3124 | vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) | |
3125 | return -EINVAL; | |
3126 | ||
7460fb4a | 3127 | process_nmi(vcpu); |
3cfc3092 JK |
3128 | vcpu->arch.exception.pending = events->exception.injected; |
3129 | vcpu->arch.exception.nr = events->exception.nr; | |
3130 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; | |
3131 | vcpu->arch.exception.error_code = events->exception.error_code; | |
3132 | ||
3133 | vcpu->arch.interrupt.pending = events->interrupt.injected; | |
3134 | vcpu->arch.interrupt.nr = events->interrupt.nr; | |
3135 | vcpu->arch.interrupt.soft = events->interrupt.soft; | |
48005f64 JK |
3136 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
3137 | kvm_x86_ops->set_interrupt_shadow(vcpu, | |
3138 | events->interrupt.shadow); | |
3cfc3092 JK |
3139 | |
3140 | vcpu->arch.nmi_injected = events->nmi.injected; | |
dab4b911 JK |
3141 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
3142 | vcpu->arch.nmi_pending = events->nmi.pending; | |
3cfc3092 JK |
3143 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
3144 | ||
66450a21 | 3145 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
bce87cce | 3146 | lapic_in_kernel(vcpu)) |
66450a21 | 3147 | vcpu->arch.apic->sipi_vector = events->sipi_vector; |
3cfc3092 | 3148 | |
f077825a | 3149 | if (events->flags & KVM_VCPUEVENT_VALID_SMM) { |
6ef4e07e | 3150 | u32 hflags = vcpu->arch.hflags; |
f077825a | 3151 | if (events->smi.smm) |
6ef4e07e | 3152 | hflags |= HF_SMM_MASK; |
f077825a | 3153 | else |
6ef4e07e XG |
3154 | hflags &= ~HF_SMM_MASK; |
3155 | kvm_set_hflags(vcpu, hflags); | |
3156 | ||
f077825a | 3157 | vcpu->arch.smi_pending = events->smi.pending; |
f4ef1910 WL |
3158 | |
3159 | if (events->smi.smm) { | |
3160 | if (events->smi.smm_inside_nmi) | |
3161 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
f077825a | 3162 | else |
f4ef1910 WL |
3163 | vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; |
3164 | if (lapic_in_kernel(vcpu)) { | |
3165 | if (events->smi.latched_init) | |
3166 | set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
3167 | else | |
3168 | clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
3169 | } | |
f077825a PB |
3170 | } |
3171 | } | |
3172 | ||
3842d135 AK |
3173 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
3174 | ||
3cfc3092 JK |
3175 | return 0; |
3176 | } | |
3177 | ||
a1efbe77 JK |
3178 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
3179 | struct kvm_debugregs *dbgregs) | |
3180 | { | |
73aaf249 JK |
3181 | unsigned long val; |
3182 | ||
a1efbe77 | 3183 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
16f8a6f9 | 3184 | kvm_get_dr(vcpu, 6, &val); |
73aaf249 | 3185 | dbgregs->dr6 = val; |
a1efbe77 JK |
3186 | dbgregs->dr7 = vcpu->arch.dr7; |
3187 | dbgregs->flags = 0; | |
97e69aa6 | 3188 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
a1efbe77 JK |
3189 | } |
3190 | ||
3191 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | |
3192 | struct kvm_debugregs *dbgregs) | |
3193 | { | |
3194 | if (dbgregs->flags) | |
3195 | return -EINVAL; | |
3196 | ||
d14bdb55 PB |
3197 | if (dbgregs->dr6 & ~0xffffffffull) |
3198 | return -EINVAL; | |
3199 | if (dbgregs->dr7 & ~0xffffffffull) | |
3200 | return -EINVAL; | |
3201 | ||
a1efbe77 | 3202 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
ae561ede | 3203 | kvm_update_dr0123(vcpu); |
a1efbe77 | 3204 | vcpu->arch.dr6 = dbgregs->dr6; |
73aaf249 | 3205 | kvm_update_dr6(vcpu); |
a1efbe77 | 3206 | vcpu->arch.dr7 = dbgregs->dr7; |
9926c9fd | 3207 | kvm_update_dr7(vcpu); |
a1efbe77 | 3208 | |
a1efbe77 JK |
3209 | return 0; |
3210 | } | |
3211 | ||
df1daba7 PB |
3212 | #define XSTATE_COMPACTION_ENABLED (1ULL << 63) |
3213 | ||
3214 | static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) | |
3215 | { | |
c47ada30 | 3216 | struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
400e4b20 | 3217 | u64 xstate_bv = xsave->header.xfeatures; |
df1daba7 PB |
3218 | u64 valid; |
3219 | ||
3220 | /* | |
3221 | * Copy legacy XSAVE area, to avoid complications with CPUID | |
3222 | * leaves 0 and 1 in the loop below. | |
3223 | */ | |
3224 | memcpy(dest, xsave, XSAVE_HDR_OFFSET); | |
3225 | ||
3226 | /* Set XSTATE_BV */ | |
00c87e9a | 3227 | xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3228 | *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; |
3229 | ||
3230 | /* | |
3231 | * Copy each region from the possibly compacted offset to the | |
3232 | * non-compacted offset. | |
3233 | */ | |
d91cab78 | 3234 | valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3235 | while (valid) { |
3236 | u64 feature = valid & -valid; | |
3237 | int index = fls64(feature) - 1; | |
3238 | void *src = get_xsave_addr(xsave, feature); | |
3239 | ||
3240 | if (src) { | |
3241 | u32 size, offset, ecx, edx; | |
3242 | cpuid_count(XSTATE_CPUID, index, | |
3243 | &size, &offset, &ecx, &edx); | |
3244 | memcpy(dest + offset, src, size); | |
3245 | } | |
3246 | ||
3247 | valid -= feature; | |
3248 | } | |
3249 | } | |
3250 | ||
3251 | static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) | |
3252 | { | |
c47ada30 | 3253 | struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
df1daba7 PB |
3254 | u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); |
3255 | u64 valid; | |
3256 | ||
3257 | /* | |
3258 | * Copy legacy XSAVE area, to avoid complications with CPUID | |
3259 | * leaves 0 and 1 in the loop below. | |
3260 | */ | |
3261 | memcpy(xsave, src, XSAVE_HDR_OFFSET); | |
3262 | ||
3263 | /* Set XSTATE_BV and possibly XCOMP_BV. */ | |
400e4b20 | 3264 | xsave->header.xfeatures = xstate_bv; |
782511b0 | 3265 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
3a54450b | 3266 | xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; |
df1daba7 PB |
3267 | |
3268 | /* | |
3269 | * Copy each region from the non-compacted offset to the | |
3270 | * possibly compacted offset. | |
3271 | */ | |
d91cab78 | 3272 | valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3273 | while (valid) { |
3274 | u64 feature = valid & -valid; | |
3275 | int index = fls64(feature) - 1; | |
3276 | void *dest = get_xsave_addr(xsave, feature); | |
3277 | ||
3278 | if (dest) { | |
3279 | u32 size, offset, ecx, edx; | |
3280 | cpuid_count(XSTATE_CPUID, index, | |
3281 | &size, &offset, &ecx, &edx); | |
3282 | memcpy(dest, src + offset, size); | |
ee4100da | 3283 | } |
df1daba7 PB |
3284 | |
3285 | valid -= feature; | |
3286 | } | |
3287 | } | |
3288 | ||
2d5b5a66 SY |
3289 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
3290 | struct kvm_xsave *guest_xsave) | |
3291 | { | |
d366bf7e | 3292 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
df1daba7 PB |
3293 | memset(guest_xsave, 0, sizeof(struct kvm_xsave)); |
3294 | fill_xsave((u8 *) guest_xsave->region, vcpu); | |
4344ee98 | 3295 | } else { |
2d5b5a66 | 3296 | memcpy(guest_xsave->region, |
7366ed77 | 3297 | &vcpu->arch.guest_fpu.state.fxsave, |
c47ada30 | 3298 | sizeof(struct fxregs_state)); |
2d5b5a66 | 3299 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = |
d91cab78 | 3300 | XFEATURE_MASK_FPSSE; |
2d5b5a66 SY |
3301 | } |
3302 | } | |
3303 | ||
a575813b WL |
3304 | #define XSAVE_MXCSR_OFFSET 24 |
3305 | ||
2d5b5a66 SY |
3306 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
3307 | struct kvm_xsave *guest_xsave) | |
3308 | { | |
3309 | u64 xstate_bv = | |
3310 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | |
a575813b | 3311 | u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; |
2d5b5a66 | 3312 | |
d366bf7e | 3313 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
d7876f1b PB |
3314 | /* |
3315 | * Here we allow setting states that are not present in | |
3316 | * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility | |
3317 | * with old userspace. | |
3318 | */ | |
a575813b WL |
3319 | if (xstate_bv & ~kvm_supported_xcr0() || |
3320 | mxcsr & ~mxcsr_feature_mask) | |
d7876f1b | 3321 | return -EINVAL; |
df1daba7 | 3322 | load_xsave(vcpu, (u8 *)guest_xsave->region); |
d7876f1b | 3323 | } else { |
a575813b WL |
3324 | if (xstate_bv & ~XFEATURE_MASK_FPSSE || |
3325 | mxcsr & ~mxcsr_feature_mask) | |
2d5b5a66 | 3326 | return -EINVAL; |
7366ed77 | 3327 | memcpy(&vcpu->arch.guest_fpu.state.fxsave, |
c47ada30 | 3328 | guest_xsave->region, sizeof(struct fxregs_state)); |
2d5b5a66 SY |
3329 | } |
3330 | return 0; | |
3331 | } | |
3332 | ||
3333 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | |
3334 | struct kvm_xcrs *guest_xcrs) | |
3335 | { | |
d366bf7e | 3336 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) { |
2d5b5a66 SY |
3337 | guest_xcrs->nr_xcrs = 0; |
3338 | return; | |
3339 | } | |
3340 | ||
3341 | guest_xcrs->nr_xcrs = 1; | |
3342 | guest_xcrs->flags = 0; | |
3343 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | |
3344 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | |
3345 | } | |
3346 | ||
3347 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | |
3348 | struct kvm_xcrs *guest_xcrs) | |
3349 | { | |
3350 | int i, r = 0; | |
3351 | ||
d366bf7e | 3352 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) |
2d5b5a66 SY |
3353 | return -EINVAL; |
3354 | ||
3355 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | |
3356 | return -EINVAL; | |
3357 | ||
3358 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | |
3359 | /* Only support XCR0 currently */ | |
c67a04cb | 3360 | if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { |
2d5b5a66 | 3361 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
c67a04cb | 3362 | guest_xcrs->xcrs[i].value); |
2d5b5a66 SY |
3363 | break; |
3364 | } | |
3365 | if (r) | |
3366 | r = -EINVAL; | |
3367 | return r; | |
3368 | } | |
3369 | ||
1c0b28c2 EM |
3370 | /* |
3371 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | |
3372 | * stopped by the hypervisor. This function will be called from the host only. | |
3373 | * EINVAL is returned when the host attempts to set the flag for a guest that | |
3374 | * does not support pv clocks. | |
3375 | */ | |
3376 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | |
3377 | { | |
0b79459b | 3378 | if (!vcpu->arch.pv_time_enabled) |
1c0b28c2 | 3379 | return -EINVAL; |
51d59c6b | 3380 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
1c0b28c2 EM |
3381 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
3382 | return 0; | |
3383 | } | |
3384 | ||
5c919412 AS |
3385 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
3386 | struct kvm_enable_cap *cap) | |
3387 | { | |
3388 | if (cap->flags) | |
3389 | return -EINVAL; | |
3390 | ||
3391 | switch (cap->cap) { | |
efc479e6 RK |
3392 | case KVM_CAP_HYPERV_SYNIC2: |
3393 | if (cap->args[0]) | |
3394 | return -EINVAL; | |
5c919412 | 3395 | case KVM_CAP_HYPERV_SYNIC: |
546d87e5 WL |
3396 | if (!irqchip_in_kernel(vcpu->kvm)) |
3397 | return -EINVAL; | |
efc479e6 RK |
3398 | return kvm_hv_activate_synic(vcpu, cap->cap == |
3399 | KVM_CAP_HYPERV_SYNIC2); | |
5c919412 AS |
3400 | default: |
3401 | return -EINVAL; | |
3402 | } | |
3403 | } | |
3404 | ||
313a3dc7 CO |
3405 | long kvm_arch_vcpu_ioctl(struct file *filp, |
3406 | unsigned int ioctl, unsigned long arg) | |
3407 | { | |
3408 | struct kvm_vcpu *vcpu = filp->private_data; | |
3409 | void __user *argp = (void __user *)arg; | |
3410 | int r; | |
d1ac91d8 AK |
3411 | union { |
3412 | struct kvm_lapic_state *lapic; | |
3413 | struct kvm_xsave *xsave; | |
3414 | struct kvm_xcrs *xcrs; | |
3415 | void *buffer; | |
3416 | } u; | |
3417 | ||
3418 | u.buffer = NULL; | |
313a3dc7 CO |
3419 | switch (ioctl) { |
3420 | case KVM_GET_LAPIC: { | |
2204ae3c | 3421 | r = -EINVAL; |
bce87cce | 3422 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 3423 | goto out; |
d1ac91d8 | 3424 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
313a3dc7 | 3425 | |
b772ff36 | 3426 | r = -ENOMEM; |
d1ac91d8 | 3427 | if (!u.lapic) |
b772ff36 | 3428 | goto out; |
d1ac91d8 | 3429 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3430 | if (r) |
3431 | goto out; | |
3432 | r = -EFAULT; | |
d1ac91d8 | 3433 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
313a3dc7 CO |
3434 | goto out; |
3435 | r = 0; | |
3436 | break; | |
3437 | } | |
3438 | case KVM_SET_LAPIC: { | |
2204ae3c | 3439 | r = -EINVAL; |
bce87cce | 3440 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 3441 | goto out; |
ff5c2c03 | 3442 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
18595411 GC |
3443 | if (IS_ERR(u.lapic)) |
3444 | return PTR_ERR(u.lapic); | |
ff5c2c03 | 3445 | |
d1ac91d8 | 3446 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3447 | break; |
3448 | } | |
f77bc6a4 ZX |
3449 | case KVM_INTERRUPT: { |
3450 | struct kvm_interrupt irq; | |
3451 | ||
3452 | r = -EFAULT; | |
3453 | if (copy_from_user(&irq, argp, sizeof irq)) | |
3454 | goto out; | |
3455 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | |
f77bc6a4 ZX |
3456 | break; |
3457 | } | |
c4abb7c9 JK |
3458 | case KVM_NMI: { |
3459 | r = kvm_vcpu_ioctl_nmi(vcpu); | |
c4abb7c9 JK |
3460 | break; |
3461 | } | |
f077825a PB |
3462 | case KVM_SMI: { |
3463 | r = kvm_vcpu_ioctl_smi(vcpu); | |
3464 | break; | |
3465 | } | |
313a3dc7 CO |
3466 | case KVM_SET_CPUID: { |
3467 | struct kvm_cpuid __user *cpuid_arg = argp; | |
3468 | struct kvm_cpuid cpuid; | |
3469 | ||
3470 | r = -EFAULT; | |
3471 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3472 | goto out; | |
3473 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
313a3dc7 CO |
3474 | break; |
3475 | } | |
07716717 DK |
3476 | case KVM_SET_CPUID2: { |
3477 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3478 | struct kvm_cpuid2 cpuid; | |
3479 | ||
3480 | r = -EFAULT; | |
3481 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3482 | goto out; | |
3483 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | |
19355475 | 3484 | cpuid_arg->entries); |
07716717 DK |
3485 | break; |
3486 | } | |
3487 | case KVM_GET_CPUID2: { | |
3488 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3489 | struct kvm_cpuid2 cpuid; | |
3490 | ||
3491 | r = -EFAULT; | |
3492 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3493 | goto out; | |
3494 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | |
19355475 | 3495 | cpuid_arg->entries); |
07716717 DK |
3496 | if (r) |
3497 | goto out; | |
3498 | r = -EFAULT; | |
3499 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
3500 | goto out; | |
3501 | r = 0; | |
3502 | break; | |
3503 | } | |
313a3dc7 | 3504 | case KVM_GET_MSRS: |
609e36d3 | 3505 | r = msr_io(vcpu, argp, do_get_msr, 1); |
313a3dc7 CO |
3506 | break; |
3507 | case KVM_SET_MSRS: | |
3508 | r = msr_io(vcpu, argp, do_set_msr, 0); | |
3509 | break; | |
b209749f AK |
3510 | case KVM_TPR_ACCESS_REPORTING: { |
3511 | struct kvm_tpr_access_ctl tac; | |
3512 | ||
3513 | r = -EFAULT; | |
3514 | if (copy_from_user(&tac, argp, sizeof tac)) | |
3515 | goto out; | |
3516 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | |
3517 | if (r) | |
3518 | goto out; | |
3519 | r = -EFAULT; | |
3520 | if (copy_to_user(argp, &tac, sizeof tac)) | |
3521 | goto out; | |
3522 | r = 0; | |
3523 | break; | |
3524 | }; | |
b93463aa AK |
3525 | case KVM_SET_VAPIC_ADDR: { |
3526 | struct kvm_vapic_addr va; | |
7301d6ab | 3527 | int idx; |
b93463aa AK |
3528 | |
3529 | r = -EINVAL; | |
35754c98 | 3530 | if (!lapic_in_kernel(vcpu)) |
b93463aa AK |
3531 | goto out; |
3532 | r = -EFAULT; | |
3533 | if (copy_from_user(&va, argp, sizeof va)) | |
3534 | goto out; | |
7301d6ab | 3535 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
fda4e2e8 | 3536 | r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
7301d6ab | 3537 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b93463aa AK |
3538 | break; |
3539 | } | |
890ca9ae YH |
3540 | case KVM_X86_SETUP_MCE: { |
3541 | u64 mcg_cap; | |
3542 | ||
3543 | r = -EFAULT; | |
3544 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | |
3545 | goto out; | |
3546 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | |
3547 | break; | |
3548 | } | |
3549 | case KVM_X86_SET_MCE: { | |
3550 | struct kvm_x86_mce mce; | |
3551 | ||
3552 | r = -EFAULT; | |
3553 | if (copy_from_user(&mce, argp, sizeof mce)) | |
3554 | goto out; | |
3555 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | |
3556 | break; | |
3557 | } | |
3cfc3092 JK |
3558 | case KVM_GET_VCPU_EVENTS: { |
3559 | struct kvm_vcpu_events events; | |
3560 | ||
3561 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | |
3562 | ||
3563 | r = -EFAULT; | |
3564 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | |
3565 | break; | |
3566 | r = 0; | |
3567 | break; | |
3568 | } | |
3569 | case KVM_SET_VCPU_EVENTS: { | |
3570 | struct kvm_vcpu_events events; | |
3571 | ||
3572 | r = -EFAULT; | |
3573 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | |
3574 | break; | |
3575 | ||
3576 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | |
3577 | break; | |
3578 | } | |
a1efbe77 JK |
3579 | case KVM_GET_DEBUGREGS: { |
3580 | struct kvm_debugregs dbgregs; | |
3581 | ||
3582 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | |
3583 | ||
3584 | r = -EFAULT; | |
3585 | if (copy_to_user(argp, &dbgregs, | |
3586 | sizeof(struct kvm_debugregs))) | |
3587 | break; | |
3588 | r = 0; | |
3589 | break; | |
3590 | } | |
3591 | case KVM_SET_DEBUGREGS: { | |
3592 | struct kvm_debugregs dbgregs; | |
3593 | ||
3594 | r = -EFAULT; | |
3595 | if (copy_from_user(&dbgregs, argp, | |
3596 | sizeof(struct kvm_debugregs))) | |
3597 | break; | |
3598 | ||
3599 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | |
3600 | break; | |
3601 | } | |
2d5b5a66 | 3602 | case KVM_GET_XSAVE: { |
d1ac91d8 | 3603 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
2d5b5a66 | 3604 | r = -ENOMEM; |
d1ac91d8 | 3605 | if (!u.xsave) |
2d5b5a66 SY |
3606 | break; |
3607 | ||
d1ac91d8 | 3608 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3609 | |
3610 | r = -EFAULT; | |
d1ac91d8 | 3611 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
2d5b5a66 SY |
3612 | break; |
3613 | r = 0; | |
3614 | break; | |
3615 | } | |
3616 | case KVM_SET_XSAVE: { | |
ff5c2c03 | 3617 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
18595411 GC |
3618 | if (IS_ERR(u.xsave)) |
3619 | return PTR_ERR(u.xsave); | |
2d5b5a66 | 3620 | |
d1ac91d8 | 3621 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3622 | break; |
3623 | } | |
3624 | case KVM_GET_XCRS: { | |
d1ac91d8 | 3625 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
2d5b5a66 | 3626 | r = -ENOMEM; |
d1ac91d8 | 3627 | if (!u.xcrs) |
2d5b5a66 SY |
3628 | break; |
3629 | ||
d1ac91d8 | 3630 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3631 | |
3632 | r = -EFAULT; | |
d1ac91d8 | 3633 | if (copy_to_user(argp, u.xcrs, |
2d5b5a66 SY |
3634 | sizeof(struct kvm_xcrs))) |
3635 | break; | |
3636 | r = 0; | |
3637 | break; | |
3638 | } | |
3639 | case KVM_SET_XCRS: { | |
ff5c2c03 | 3640 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
18595411 GC |
3641 | if (IS_ERR(u.xcrs)) |
3642 | return PTR_ERR(u.xcrs); | |
2d5b5a66 | 3643 | |
d1ac91d8 | 3644 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3645 | break; |
3646 | } | |
92a1f12d JR |
3647 | case KVM_SET_TSC_KHZ: { |
3648 | u32 user_tsc_khz; | |
3649 | ||
3650 | r = -EINVAL; | |
92a1f12d JR |
3651 | user_tsc_khz = (u32)arg; |
3652 | ||
3653 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) | |
3654 | goto out; | |
3655 | ||
cc578287 ZA |
3656 | if (user_tsc_khz == 0) |
3657 | user_tsc_khz = tsc_khz; | |
3658 | ||
381d585c HZ |
3659 | if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) |
3660 | r = 0; | |
92a1f12d | 3661 | |
92a1f12d JR |
3662 | goto out; |
3663 | } | |
3664 | case KVM_GET_TSC_KHZ: { | |
cc578287 | 3665 | r = vcpu->arch.virtual_tsc_khz; |
92a1f12d JR |
3666 | goto out; |
3667 | } | |
1c0b28c2 EM |
3668 | case KVM_KVMCLOCK_CTRL: { |
3669 | r = kvm_set_guest_paused(vcpu); | |
3670 | goto out; | |
3671 | } | |
5c919412 AS |
3672 | case KVM_ENABLE_CAP: { |
3673 | struct kvm_enable_cap cap; | |
3674 | ||
3675 | r = -EFAULT; | |
3676 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
3677 | goto out; | |
3678 | r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); | |
3679 | break; | |
3680 | } | |
313a3dc7 CO |
3681 | default: |
3682 | r = -EINVAL; | |
3683 | } | |
3684 | out: | |
d1ac91d8 | 3685 | kfree(u.buffer); |
313a3dc7 CO |
3686 | return r; |
3687 | } | |
3688 | ||
5b1c1493 CO |
3689 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
3690 | { | |
3691 | return VM_FAULT_SIGBUS; | |
3692 | } | |
3693 | ||
1fe779f8 CO |
3694 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
3695 | { | |
3696 | int ret; | |
3697 | ||
3698 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | |
951179ce | 3699 | return -EINVAL; |
1fe779f8 CO |
3700 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
3701 | return ret; | |
3702 | } | |
3703 | ||
b927a3ce SY |
3704 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
3705 | u64 ident_addr) | |
3706 | { | |
3707 | kvm->arch.ept_identity_map_addr = ident_addr; | |
3708 | return 0; | |
3709 | } | |
3710 | ||
1fe779f8 CO |
3711 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
3712 | u32 kvm_nr_mmu_pages) | |
3713 | { | |
3714 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | |
3715 | return -EINVAL; | |
3716 | ||
79fac95e | 3717 | mutex_lock(&kvm->slots_lock); |
1fe779f8 CO |
3718 | |
3719 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | |
f05e70ac | 3720 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
1fe779f8 | 3721 | |
79fac95e | 3722 | mutex_unlock(&kvm->slots_lock); |
1fe779f8 CO |
3723 | return 0; |
3724 | } | |
3725 | ||
3726 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | |
3727 | { | |
39de71ec | 3728 | return kvm->arch.n_max_mmu_pages; |
1fe779f8 CO |
3729 | } |
3730 | ||
1fe779f8 CO |
3731 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
3732 | { | |
90bca052 | 3733 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
3734 | int r; |
3735 | ||
3736 | r = 0; | |
3737 | switch (chip->chip_id) { | |
3738 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 | 3739 | memcpy(&chip->chip.pic, &pic->pics[0], |
1fe779f8 CO |
3740 | sizeof(struct kvm_pic_state)); |
3741 | break; | |
3742 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 | 3743 | memcpy(&chip->chip.pic, &pic->pics[1], |
1fe779f8 CO |
3744 | sizeof(struct kvm_pic_state)); |
3745 | break; | |
3746 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 3747 | kvm_get_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3748 | break; |
3749 | default: | |
3750 | r = -EINVAL; | |
3751 | break; | |
3752 | } | |
3753 | return r; | |
3754 | } | |
3755 | ||
3756 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |
3757 | { | |
90bca052 | 3758 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
3759 | int r; |
3760 | ||
3761 | r = 0; | |
3762 | switch (chip->chip_id) { | |
3763 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 DH |
3764 | spin_lock(&pic->lock); |
3765 | memcpy(&pic->pics[0], &chip->chip.pic, | |
1fe779f8 | 3766 | sizeof(struct kvm_pic_state)); |
90bca052 | 3767 | spin_unlock(&pic->lock); |
1fe779f8 CO |
3768 | break; |
3769 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 DH |
3770 | spin_lock(&pic->lock); |
3771 | memcpy(&pic->pics[1], &chip->chip.pic, | |
1fe779f8 | 3772 | sizeof(struct kvm_pic_state)); |
90bca052 | 3773 | spin_unlock(&pic->lock); |
1fe779f8 CO |
3774 | break; |
3775 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 3776 | kvm_set_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
3777 | break; |
3778 | default: | |
3779 | r = -EINVAL; | |
3780 | break; | |
3781 | } | |
90bca052 | 3782 | kvm_pic_update_irq(pic); |
1fe779f8 CO |
3783 | return r; |
3784 | } | |
3785 | ||
e0f63cb9 SY |
3786 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
3787 | { | |
34f3941c RK |
3788 | struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; |
3789 | ||
3790 | BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); | |
3791 | ||
3792 | mutex_lock(&kps->lock); | |
3793 | memcpy(ps, &kps->channels, sizeof(*ps)); | |
3794 | mutex_unlock(&kps->lock); | |
2da29bcc | 3795 | return 0; |
e0f63cb9 SY |
3796 | } |
3797 | ||
3798 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | |
3799 | { | |
0185604c | 3800 | int i; |
09edea72 RK |
3801 | struct kvm_pit *pit = kvm->arch.vpit; |
3802 | ||
3803 | mutex_lock(&pit->pit_state.lock); | |
34f3941c | 3804 | memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); |
0185604c | 3805 | for (i = 0; i < 3; i++) |
09edea72 RK |
3806 | kvm_pit_load_count(pit, i, ps->channels[i].count, 0); |
3807 | mutex_unlock(&pit->pit_state.lock); | |
2da29bcc | 3808 | return 0; |
e9f42757 BK |
3809 | } |
3810 | ||
3811 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3812 | { | |
e9f42757 BK |
3813 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
3814 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | |
3815 | sizeof(ps->channels)); | |
3816 | ps->flags = kvm->arch.vpit->pit_state.flags; | |
3817 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
97e69aa6 | 3818 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
2da29bcc | 3819 | return 0; |
e9f42757 BK |
3820 | } |
3821 | ||
3822 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
3823 | { | |
2da29bcc | 3824 | int start = 0; |
0185604c | 3825 | int i; |
e9f42757 | 3826 | u32 prev_legacy, cur_legacy; |
09edea72 RK |
3827 | struct kvm_pit *pit = kvm->arch.vpit; |
3828 | ||
3829 | mutex_lock(&pit->pit_state.lock); | |
3830 | prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
e9f42757 BK |
3831 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
3832 | if (!prev_legacy && cur_legacy) | |
3833 | start = 1; | |
09edea72 RK |
3834 | memcpy(&pit->pit_state.channels, &ps->channels, |
3835 | sizeof(pit->pit_state.channels)); | |
3836 | pit->pit_state.flags = ps->flags; | |
0185604c | 3837 | for (i = 0; i < 3; i++) |
09edea72 | 3838 | kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, |
e5e57e7a | 3839 | start && i == 0); |
09edea72 | 3840 | mutex_unlock(&pit->pit_state.lock); |
2da29bcc | 3841 | return 0; |
e0f63cb9 SY |
3842 | } |
3843 | ||
52d939a0 MT |
3844 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
3845 | struct kvm_reinject_control *control) | |
3846 | { | |
71474e2f RK |
3847 | struct kvm_pit *pit = kvm->arch.vpit; |
3848 | ||
3849 | if (!pit) | |
52d939a0 | 3850 | return -ENXIO; |
b39c90b6 | 3851 | |
71474e2f RK |
3852 | /* pit->pit_state.lock was overloaded to prevent userspace from getting |
3853 | * an inconsistent state after running multiple KVM_REINJECT_CONTROL | |
3854 | * ioctls in parallel. Use a separate lock if that ioctl isn't rare. | |
3855 | */ | |
3856 | mutex_lock(&pit->pit_state.lock); | |
3857 | kvm_pit_set_reinject(pit, control->pit_reinject); | |
3858 | mutex_unlock(&pit->pit_state.lock); | |
b39c90b6 | 3859 | |
52d939a0 MT |
3860 | return 0; |
3861 | } | |
3862 | ||
95d4c16c | 3863 | /** |
60c34612 TY |
3864 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
3865 | * @kvm: kvm instance | |
3866 | * @log: slot id and address to which we copy the log | |
95d4c16c | 3867 | * |
e108ff2f PB |
3868 | * Steps 1-4 below provide general overview of dirty page logging. See |
3869 | * kvm_get_dirty_log_protect() function description for additional details. | |
3870 | * | |
3871 | * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we | |
3872 | * always flush the TLB (step 4) even if previous step failed and the dirty | |
3873 | * bitmap may be corrupt. Regardless of previous outcome the KVM logging API | |
3874 | * does not preclude user space subsequent dirty log read. Flushing TLB ensures | |
3875 | * writes will be marked dirty for next log read. | |
95d4c16c | 3876 | * |
60c34612 TY |
3877 | * 1. Take a snapshot of the bit and clear it if needed. |
3878 | * 2. Write protect the corresponding page. | |
e108ff2f PB |
3879 | * 3. Copy the snapshot to the userspace. |
3880 | * 4. Flush TLB's if needed. | |
5bb064dc | 3881 | */ |
60c34612 | 3882 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
5bb064dc | 3883 | { |
60c34612 | 3884 | bool is_dirty = false; |
e108ff2f | 3885 | int r; |
5bb064dc | 3886 | |
79fac95e | 3887 | mutex_lock(&kvm->slots_lock); |
5bb064dc | 3888 | |
88178fd4 KH |
3889 | /* |
3890 | * Flush potentially hardware-cached dirty pages to dirty_bitmap. | |
3891 | */ | |
3892 | if (kvm_x86_ops->flush_log_dirty) | |
3893 | kvm_x86_ops->flush_log_dirty(kvm); | |
3894 | ||
e108ff2f | 3895 | r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
198c74f4 XG |
3896 | |
3897 | /* | |
3898 | * All the TLBs can be flushed out of mmu lock, see the comments in | |
3899 | * kvm_mmu_slot_remove_write_access(). | |
3900 | */ | |
e108ff2f | 3901 | lockdep_assert_held(&kvm->slots_lock); |
198c74f4 XG |
3902 | if (is_dirty) |
3903 | kvm_flush_remote_tlbs(kvm); | |
3904 | ||
79fac95e | 3905 | mutex_unlock(&kvm->slots_lock); |
5bb064dc ZX |
3906 | return r; |
3907 | } | |
3908 | ||
aa2fbe6d YZ |
3909 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
3910 | bool line_status) | |
23d43cf9 CD |
3911 | { |
3912 | if (!irqchip_in_kernel(kvm)) | |
3913 | return -ENXIO; | |
3914 | ||
3915 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | |
aa2fbe6d YZ |
3916 | irq_event->irq, irq_event->level, |
3917 | line_status); | |
23d43cf9 CD |
3918 | return 0; |
3919 | } | |
3920 | ||
90de4a18 NA |
3921 | static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
3922 | struct kvm_enable_cap *cap) | |
3923 | { | |
3924 | int r; | |
3925 | ||
3926 | if (cap->flags) | |
3927 | return -EINVAL; | |
3928 | ||
3929 | switch (cap->cap) { | |
3930 | case KVM_CAP_DISABLE_QUIRKS: | |
3931 | kvm->arch.disabled_quirks = cap->args[0]; | |
3932 | r = 0; | |
3933 | break; | |
49df6397 SR |
3934 | case KVM_CAP_SPLIT_IRQCHIP: { |
3935 | mutex_lock(&kvm->lock); | |
b053b2ae SR |
3936 | r = -EINVAL; |
3937 | if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) | |
3938 | goto split_irqchip_unlock; | |
49df6397 SR |
3939 | r = -EEXIST; |
3940 | if (irqchip_in_kernel(kvm)) | |
3941 | goto split_irqchip_unlock; | |
557abc40 | 3942 | if (kvm->created_vcpus) |
49df6397 SR |
3943 | goto split_irqchip_unlock; |
3944 | r = kvm_setup_empty_irq_routing(kvm); | |
5c0aea0e | 3945 | if (r) |
49df6397 SR |
3946 | goto split_irqchip_unlock; |
3947 | /* Pairs with irqchip_in_kernel. */ | |
3948 | smp_wmb(); | |
49776faf | 3949 | kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; |
b053b2ae | 3950 | kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; |
49df6397 SR |
3951 | r = 0; |
3952 | split_irqchip_unlock: | |
3953 | mutex_unlock(&kvm->lock); | |
3954 | break; | |
3955 | } | |
37131313 RK |
3956 | case KVM_CAP_X2APIC_API: |
3957 | r = -EINVAL; | |
3958 | if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) | |
3959 | break; | |
3960 | ||
3961 | if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) | |
3962 | kvm->arch.x2apic_format = true; | |
c519265f RK |
3963 | if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
3964 | kvm->arch.x2apic_broadcast_quirk_disabled = true; | |
37131313 RK |
3965 | |
3966 | r = 0; | |
3967 | break; | |
90de4a18 NA |
3968 | default: |
3969 | r = -EINVAL; | |
3970 | break; | |
3971 | } | |
3972 | return r; | |
3973 | } | |
3974 | ||
1fe779f8 CO |
3975 | long kvm_arch_vm_ioctl(struct file *filp, |
3976 | unsigned int ioctl, unsigned long arg) | |
3977 | { | |
3978 | struct kvm *kvm = filp->private_data; | |
3979 | void __user *argp = (void __user *)arg; | |
367e1319 | 3980 | int r = -ENOTTY; |
f0d66275 DH |
3981 | /* |
3982 | * This union makes it completely explicit to gcc-3.x | |
3983 | * that these two variables' stack usage should be | |
3984 | * combined, not added together. | |
3985 | */ | |
3986 | union { | |
3987 | struct kvm_pit_state ps; | |
e9f42757 | 3988 | struct kvm_pit_state2 ps2; |
c5ff41ce | 3989 | struct kvm_pit_config pit_config; |
f0d66275 | 3990 | } u; |
1fe779f8 CO |
3991 | |
3992 | switch (ioctl) { | |
3993 | case KVM_SET_TSS_ADDR: | |
3994 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | |
1fe779f8 | 3995 | break; |
b927a3ce SY |
3996 | case KVM_SET_IDENTITY_MAP_ADDR: { |
3997 | u64 ident_addr; | |
3998 | ||
3999 | r = -EFAULT; | |
4000 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | |
4001 | goto out; | |
4002 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); | |
b927a3ce SY |
4003 | break; |
4004 | } | |
1fe779f8 CO |
4005 | case KVM_SET_NR_MMU_PAGES: |
4006 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | |
1fe779f8 CO |
4007 | break; |
4008 | case KVM_GET_NR_MMU_PAGES: | |
4009 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | |
4010 | break; | |
3ddea128 | 4011 | case KVM_CREATE_IRQCHIP: { |
3ddea128 | 4012 | mutex_lock(&kvm->lock); |
09941366 | 4013 | |
3ddea128 | 4014 | r = -EEXIST; |
35e6eaa3 | 4015 | if (irqchip_in_kernel(kvm)) |
3ddea128 | 4016 | goto create_irqchip_unlock; |
09941366 | 4017 | |
3e515705 | 4018 | r = -EINVAL; |
557abc40 | 4019 | if (kvm->created_vcpus) |
3e515705 | 4020 | goto create_irqchip_unlock; |
09941366 RK |
4021 | |
4022 | r = kvm_pic_init(kvm); | |
4023 | if (r) | |
3ddea128 | 4024 | goto create_irqchip_unlock; |
09941366 RK |
4025 | |
4026 | r = kvm_ioapic_init(kvm); | |
4027 | if (r) { | |
09941366 | 4028 | kvm_pic_destroy(kvm); |
3ddea128 | 4029 | goto create_irqchip_unlock; |
09941366 RK |
4030 | } |
4031 | ||
399ec807 AK |
4032 | r = kvm_setup_default_irq_routing(kvm); |
4033 | if (r) { | |
72bb2fcd | 4034 | kvm_ioapic_destroy(kvm); |
09941366 | 4035 | kvm_pic_destroy(kvm); |
71ba994c | 4036 | goto create_irqchip_unlock; |
399ec807 | 4037 | } |
49776faf | 4038 | /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ |
71ba994c | 4039 | smp_wmb(); |
49776faf | 4040 | kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; |
3ddea128 MT |
4041 | create_irqchip_unlock: |
4042 | mutex_unlock(&kvm->lock); | |
1fe779f8 | 4043 | break; |
3ddea128 | 4044 | } |
7837699f | 4045 | case KVM_CREATE_PIT: |
c5ff41ce JK |
4046 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
4047 | goto create_pit; | |
4048 | case KVM_CREATE_PIT2: | |
4049 | r = -EFAULT; | |
4050 | if (copy_from_user(&u.pit_config, argp, | |
4051 | sizeof(struct kvm_pit_config))) | |
4052 | goto out; | |
4053 | create_pit: | |
250715a6 | 4054 | mutex_lock(&kvm->lock); |
269e05e4 AK |
4055 | r = -EEXIST; |
4056 | if (kvm->arch.vpit) | |
4057 | goto create_pit_unlock; | |
7837699f | 4058 | r = -ENOMEM; |
c5ff41ce | 4059 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
7837699f SY |
4060 | if (kvm->arch.vpit) |
4061 | r = 0; | |
269e05e4 | 4062 | create_pit_unlock: |
250715a6 | 4063 | mutex_unlock(&kvm->lock); |
7837699f | 4064 | break; |
1fe779f8 CO |
4065 | case KVM_GET_IRQCHIP: { |
4066 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 4067 | struct kvm_irqchip *chip; |
1fe779f8 | 4068 | |
ff5c2c03 SL |
4069 | chip = memdup_user(argp, sizeof(*chip)); |
4070 | if (IS_ERR(chip)) { | |
4071 | r = PTR_ERR(chip); | |
1fe779f8 | 4072 | goto out; |
ff5c2c03 SL |
4073 | } |
4074 | ||
1fe779f8 | 4075 | r = -ENXIO; |
826da321 | 4076 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
4077 | goto get_irqchip_out; |
4078 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | |
1fe779f8 | 4079 | if (r) |
f0d66275 | 4080 | goto get_irqchip_out; |
1fe779f8 | 4081 | r = -EFAULT; |
f0d66275 DH |
4082 | if (copy_to_user(argp, chip, sizeof *chip)) |
4083 | goto get_irqchip_out; | |
1fe779f8 | 4084 | r = 0; |
f0d66275 DH |
4085 | get_irqchip_out: |
4086 | kfree(chip); | |
1fe779f8 CO |
4087 | break; |
4088 | } | |
4089 | case KVM_SET_IRQCHIP: { | |
4090 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 4091 | struct kvm_irqchip *chip; |
1fe779f8 | 4092 | |
ff5c2c03 SL |
4093 | chip = memdup_user(argp, sizeof(*chip)); |
4094 | if (IS_ERR(chip)) { | |
4095 | r = PTR_ERR(chip); | |
1fe779f8 | 4096 | goto out; |
ff5c2c03 SL |
4097 | } |
4098 | ||
1fe779f8 | 4099 | r = -ENXIO; |
826da321 | 4100 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
4101 | goto set_irqchip_out; |
4102 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | |
1fe779f8 | 4103 | if (r) |
f0d66275 | 4104 | goto set_irqchip_out; |
1fe779f8 | 4105 | r = 0; |
f0d66275 DH |
4106 | set_irqchip_out: |
4107 | kfree(chip); | |
1fe779f8 CO |
4108 | break; |
4109 | } | |
e0f63cb9 | 4110 | case KVM_GET_PIT: { |
e0f63cb9 | 4111 | r = -EFAULT; |
f0d66275 | 4112 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
4113 | goto out; |
4114 | r = -ENXIO; | |
4115 | if (!kvm->arch.vpit) | |
4116 | goto out; | |
f0d66275 | 4117 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
e0f63cb9 SY |
4118 | if (r) |
4119 | goto out; | |
4120 | r = -EFAULT; | |
f0d66275 | 4121 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
4122 | goto out; |
4123 | r = 0; | |
4124 | break; | |
4125 | } | |
4126 | case KVM_SET_PIT: { | |
e0f63cb9 | 4127 | r = -EFAULT; |
f0d66275 | 4128 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
e0f63cb9 SY |
4129 | goto out; |
4130 | r = -ENXIO; | |
4131 | if (!kvm->arch.vpit) | |
4132 | goto out; | |
f0d66275 | 4133 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
e0f63cb9 SY |
4134 | break; |
4135 | } | |
e9f42757 BK |
4136 | case KVM_GET_PIT2: { |
4137 | r = -ENXIO; | |
4138 | if (!kvm->arch.vpit) | |
4139 | goto out; | |
4140 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | |
4141 | if (r) | |
4142 | goto out; | |
4143 | r = -EFAULT; | |
4144 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | |
4145 | goto out; | |
4146 | r = 0; | |
4147 | break; | |
4148 | } | |
4149 | case KVM_SET_PIT2: { | |
4150 | r = -EFAULT; | |
4151 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | |
4152 | goto out; | |
4153 | r = -ENXIO; | |
4154 | if (!kvm->arch.vpit) | |
4155 | goto out; | |
4156 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | |
e9f42757 BK |
4157 | break; |
4158 | } | |
52d939a0 MT |
4159 | case KVM_REINJECT_CONTROL: { |
4160 | struct kvm_reinject_control control; | |
4161 | r = -EFAULT; | |
4162 | if (copy_from_user(&control, argp, sizeof(control))) | |
4163 | goto out; | |
4164 | r = kvm_vm_ioctl_reinject(kvm, &control); | |
52d939a0 MT |
4165 | break; |
4166 | } | |
d71ba788 PB |
4167 | case KVM_SET_BOOT_CPU_ID: |
4168 | r = 0; | |
4169 | mutex_lock(&kvm->lock); | |
557abc40 | 4170 | if (kvm->created_vcpus) |
d71ba788 PB |
4171 | r = -EBUSY; |
4172 | else | |
4173 | kvm->arch.bsp_vcpu_id = arg; | |
4174 | mutex_unlock(&kvm->lock); | |
4175 | break; | |
ffde22ac ES |
4176 | case KVM_XEN_HVM_CONFIG: { |
4177 | r = -EFAULT; | |
4178 | if (copy_from_user(&kvm->arch.xen_hvm_config, argp, | |
4179 | sizeof(struct kvm_xen_hvm_config))) | |
4180 | goto out; | |
4181 | r = -EINVAL; | |
4182 | if (kvm->arch.xen_hvm_config.flags) | |
4183 | goto out; | |
4184 | r = 0; | |
4185 | break; | |
4186 | } | |
afbcf7ab | 4187 | case KVM_SET_CLOCK: { |
afbcf7ab GC |
4188 | struct kvm_clock_data user_ns; |
4189 | u64 now_ns; | |
afbcf7ab GC |
4190 | |
4191 | r = -EFAULT; | |
4192 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | |
4193 | goto out; | |
4194 | ||
4195 | r = -EINVAL; | |
4196 | if (user_ns.flags) | |
4197 | goto out; | |
4198 | ||
4199 | r = 0; | |
0bc48bea RK |
4200 | /* |
4201 | * TODO: userspace has to take care of races with VCPU_RUN, so | |
4202 | * kvm_gen_update_masterclock() can be cut down to locked | |
4203 | * pvclock_update_vm_gtod_copy(). | |
4204 | */ | |
4205 | kvm_gen_update_masterclock(kvm); | |
e891a32e | 4206 | now_ns = get_kvmclock_ns(kvm); |
108b249c | 4207 | kvm->arch.kvmclock_offset += user_ns.clock - now_ns; |
0bc48bea | 4208 | kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); |
afbcf7ab GC |
4209 | break; |
4210 | } | |
4211 | case KVM_GET_CLOCK: { | |
afbcf7ab GC |
4212 | struct kvm_clock_data user_ns; |
4213 | u64 now_ns; | |
4214 | ||
e891a32e | 4215 | now_ns = get_kvmclock_ns(kvm); |
108b249c | 4216 | user_ns.clock = now_ns; |
e3fd9a93 | 4217 | user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; |
97e69aa6 | 4218 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
afbcf7ab GC |
4219 | |
4220 | r = -EFAULT; | |
4221 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | |
4222 | goto out; | |
4223 | r = 0; | |
4224 | break; | |
4225 | } | |
90de4a18 NA |
4226 | case KVM_ENABLE_CAP: { |
4227 | struct kvm_enable_cap cap; | |
afbcf7ab | 4228 | |
90de4a18 NA |
4229 | r = -EFAULT; |
4230 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
4231 | goto out; | |
4232 | r = kvm_vm_ioctl_enable_cap(kvm, &cap); | |
4233 | break; | |
4234 | } | |
1fe779f8 | 4235 | default: |
ad6260da | 4236 | r = -ENOTTY; |
1fe779f8 CO |
4237 | } |
4238 | out: | |
4239 | return r; | |
4240 | } | |
4241 | ||
a16b043c | 4242 | static void kvm_init_msr_list(void) |
043405e1 CO |
4243 | { |
4244 | u32 dummy[2]; | |
4245 | unsigned i, j; | |
4246 | ||
62ef68bb | 4247 | for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { |
043405e1 CO |
4248 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
4249 | continue; | |
93c4adc7 PB |
4250 | |
4251 | /* | |
4252 | * Even MSRs that are valid in the host may not be exposed | |
9dbe6cf9 | 4253 | * to the guests in some cases. |
93c4adc7 PB |
4254 | */ |
4255 | switch (msrs_to_save[i]) { | |
4256 | case MSR_IA32_BNDCFGS: | |
4257 | if (!kvm_x86_ops->mpx_supported()) | |
4258 | continue; | |
4259 | break; | |
9dbe6cf9 PB |
4260 | case MSR_TSC_AUX: |
4261 | if (!kvm_x86_ops->rdtscp_supported()) | |
4262 | continue; | |
4263 | break; | |
93c4adc7 PB |
4264 | default: |
4265 | break; | |
4266 | } | |
4267 | ||
043405e1 CO |
4268 | if (j < i) |
4269 | msrs_to_save[j] = msrs_to_save[i]; | |
4270 | j++; | |
4271 | } | |
4272 | num_msrs_to_save = j; | |
62ef68bb PB |
4273 | |
4274 | for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { | |
4275 | switch (emulated_msrs[i]) { | |
6d396b55 PB |
4276 | case MSR_IA32_SMBASE: |
4277 | if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) | |
4278 | continue; | |
4279 | break; | |
62ef68bb PB |
4280 | default: |
4281 | break; | |
4282 | } | |
4283 | ||
4284 | if (j < i) | |
4285 | emulated_msrs[j] = emulated_msrs[i]; | |
4286 | j++; | |
4287 | } | |
4288 | num_emulated_msrs = j; | |
043405e1 CO |
4289 | } |
4290 | ||
bda9020e MT |
4291 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
4292 | const void *v) | |
bbd9b64e | 4293 | { |
70252a10 AK |
4294 | int handled = 0; |
4295 | int n; | |
4296 | ||
4297 | do { | |
4298 | n = min(len, 8); | |
bce87cce | 4299 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
4300 | !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) |
4301 | && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 AK |
4302 | break; |
4303 | handled += n; | |
4304 | addr += n; | |
4305 | len -= n; | |
4306 | v += n; | |
4307 | } while (len); | |
bbd9b64e | 4308 | |
70252a10 | 4309 | return handled; |
bbd9b64e CO |
4310 | } |
4311 | ||
bda9020e | 4312 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
bbd9b64e | 4313 | { |
70252a10 AK |
4314 | int handled = 0; |
4315 | int n; | |
4316 | ||
4317 | do { | |
4318 | n = min(len, 8); | |
bce87cce | 4319 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
4320 | !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, |
4321 | addr, n, v)) | |
4322 | && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 AK |
4323 | break; |
4324 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); | |
4325 | handled += n; | |
4326 | addr += n; | |
4327 | len -= n; | |
4328 | v += n; | |
4329 | } while (len); | |
bbd9b64e | 4330 | |
70252a10 | 4331 | return handled; |
bbd9b64e CO |
4332 | } |
4333 | ||
2dafc6c2 GN |
4334 | static void kvm_set_segment(struct kvm_vcpu *vcpu, |
4335 | struct kvm_segment *var, int seg) | |
4336 | { | |
4337 | kvm_x86_ops->set_segment(vcpu, var, seg); | |
4338 | } | |
4339 | ||
4340 | void kvm_get_segment(struct kvm_vcpu *vcpu, | |
4341 | struct kvm_segment *var, int seg) | |
4342 | { | |
4343 | kvm_x86_ops->get_segment(vcpu, var, seg); | |
4344 | } | |
4345 | ||
54987b7a PB |
4346 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, |
4347 | struct x86_exception *exception) | |
02f59dc9 JR |
4348 | { |
4349 | gpa_t t_gpa; | |
02f59dc9 JR |
4350 | |
4351 | BUG_ON(!mmu_is_nested(vcpu)); | |
4352 | ||
4353 | /* NPT walks are always user-walks */ | |
4354 | access |= PFERR_USER_MASK; | |
54987b7a | 4355 | t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); |
02f59dc9 JR |
4356 | |
4357 | return t_gpa; | |
4358 | } | |
4359 | ||
ab9ae313 AK |
4360 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
4361 | struct x86_exception *exception) | |
1871c602 GN |
4362 | { |
4363 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
ab9ae313 | 4364 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4365 | } |
4366 | ||
ab9ae313 AK |
4367 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
4368 | struct x86_exception *exception) | |
1871c602 GN |
4369 | { |
4370 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
4371 | access |= PFERR_FETCH_MASK; | |
ab9ae313 | 4372 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4373 | } |
4374 | ||
ab9ae313 AK |
4375 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
4376 | struct x86_exception *exception) | |
1871c602 GN |
4377 | { |
4378 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
4379 | access |= PFERR_WRITE_MASK; | |
ab9ae313 | 4380 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4381 | } |
4382 | ||
4383 | /* uses this to access any guest's mapped memory without checking CPL */ | |
ab9ae313 AK |
4384 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
4385 | struct x86_exception *exception) | |
1871c602 | 4386 | { |
ab9ae313 | 4387 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
1871c602 GN |
4388 | } |
4389 | ||
4390 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |
4391 | struct kvm_vcpu *vcpu, u32 access, | |
bcc55cba | 4392 | struct x86_exception *exception) |
bbd9b64e CO |
4393 | { |
4394 | void *data = val; | |
10589a46 | 4395 | int r = X86EMUL_CONTINUE; |
bbd9b64e CO |
4396 | |
4397 | while (bytes) { | |
14dfe855 | 4398 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
ab9ae313 | 4399 | exception); |
bbd9b64e | 4400 | unsigned offset = addr & (PAGE_SIZE-1); |
77c2002e | 4401 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
bbd9b64e CO |
4402 | int ret; |
4403 | ||
bcc55cba | 4404 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 4405 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa PB |
4406 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, |
4407 | offset, toread); | |
10589a46 | 4408 | if (ret < 0) { |
c3cd7ffa | 4409 | r = X86EMUL_IO_NEEDED; |
10589a46 MT |
4410 | goto out; |
4411 | } | |
bbd9b64e | 4412 | |
77c2002e IE |
4413 | bytes -= toread; |
4414 | data += toread; | |
4415 | addr += toread; | |
bbd9b64e | 4416 | } |
10589a46 | 4417 | out: |
10589a46 | 4418 | return r; |
bbd9b64e | 4419 | } |
77c2002e | 4420 | |
1871c602 | 4421 | /* used for instruction fetching */ |
0f65dd70 AK |
4422 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
4423 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 4424 | struct x86_exception *exception) |
1871c602 | 4425 | { |
0f65dd70 | 4426 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 4427 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
44583cba PB |
4428 | unsigned offset; |
4429 | int ret; | |
0f65dd70 | 4430 | |
44583cba PB |
4431 | /* Inline kvm_read_guest_virt_helper for speed. */ |
4432 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, | |
4433 | exception); | |
4434 | if (unlikely(gpa == UNMAPPED_GVA)) | |
4435 | return X86EMUL_PROPAGATE_FAULT; | |
4436 | ||
4437 | offset = addr & (PAGE_SIZE-1); | |
4438 | if (WARN_ON(offset + bytes > PAGE_SIZE)) | |
4439 | bytes = (unsigned)PAGE_SIZE - offset; | |
54bf36aa PB |
4440 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, |
4441 | offset, bytes); | |
44583cba PB |
4442 | if (unlikely(ret < 0)) |
4443 | return X86EMUL_IO_NEEDED; | |
4444 | ||
4445 | return X86EMUL_CONTINUE; | |
1871c602 GN |
4446 | } |
4447 | ||
064aea77 | 4448 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 4449 | gva_t addr, void *val, unsigned int bytes, |
bcc55cba | 4450 | struct x86_exception *exception) |
1871c602 | 4451 | { |
0f65dd70 | 4452 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 4453 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 4454 | |
1871c602 | 4455 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
bcc55cba | 4456 | exception); |
1871c602 | 4457 | } |
064aea77 | 4458 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
1871c602 | 4459 | |
0f65dd70 AK |
4460 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
4461 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 4462 | struct x86_exception *exception) |
1871c602 | 4463 | { |
0f65dd70 | 4464 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
bcc55cba | 4465 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
1871c602 GN |
4466 | } |
4467 | ||
7a036a6f RK |
4468 | static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, |
4469 | unsigned long addr, void *val, unsigned int bytes) | |
4470 | { | |
4471 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4472 | int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); | |
4473 | ||
4474 | return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; | |
4475 | } | |
4476 | ||
6a4d7550 | 4477 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, |
0f65dd70 | 4478 | gva_t addr, void *val, |
2dafc6c2 | 4479 | unsigned int bytes, |
bcc55cba | 4480 | struct x86_exception *exception) |
77c2002e | 4481 | { |
0f65dd70 | 4482 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
77c2002e IE |
4483 | void *data = val; |
4484 | int r = X86EMUL_CONTINUE; | |
4485 | ||
4486 | while (bytes) { | |
14dfe855 JR |
4487 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
4488 | PFERR_WRITE_MASK, | |
ab9ae313 | 4489 | exception); |
77c2002e IE |
4490 | unsigned offset = addr & (PAGE_SIZE-1); |
4491 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | |
4492 | int ret; | |
4493 | ||
bcc55cba | 4494 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 4495 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa | 4496 | ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); |
77c2002e | 4497 | if (ret < 0) { |
c3cd7ffa | 4498 | r = X86EMUL_IO_NEEDED; |
77c2002e IE |
4499 | goto out; |
4500 | } | |
4501 | ||
4502 | bytes -= towrite; | |
4503 | data += towrite; | |
4504 | addr += towrite; | |
4505 | } | |
4506 | out: | |
4507 | return r; | |
4508 | } | |
6a4d7550 | 4509 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
77c2002e | 4510 | |
0f89b207 TL |
4511 | static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
4512 | gpa_t gpa, bool write) | |
4513 | { | |
4514 | /* For APIC access vmexit */ | |
4515 | if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
4516 | return 1; | |
4517 | ||
4518 | if (vcpu_match_mmio_gpa(vcpu, gpa)) { | |
4519 | trace_vcpu_match_mmio(gva, gpa, write, true); | |
4520 | return 1; | |
4521 | } | |
4522 | ||
4523 | return 0; | |
4524 | } | |
4525 | ||
af7cc7d1 XG |
4526 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
4527 | gpa_t *gpa, struct x86_exception *exception, | |
4528 | bool write) | |
4529 | { | |
97d64b78 AK |
4530 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
4531 | | (write ? PFERR_WRITE_MASK : 0); | |
af7cc7d1 | 4532 | |
be94f6b7 HH |
4533 | /* |
4534 | * currently PKRU is only applied to ept enabled guest so | |
4535 | * there is no pkey in EPT page table for L1 guest or EPT | |
4536 | * shadow page table for L2 guest. | |
4537 | */ | |
97d64b78 | 4538 | if (vcpu_match_mmio_gva(vcpu, gva) |
97ec8c06 | 4539 | && !permission_fault(vcpu, vcpu->arch.walk_mmu, |
be94f6b7 | 4540 | vcpu->arch.access, 0, access)) { |
bebb106a XG |
4541 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
4542 | (gva & (PAGE_SIZE - 1)); | |
4f022648 | 4543 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
bebb106a XG |
4544 | return 1; |
4545 | } | |
4546 | ||
af7cc7d1 XG |
4547 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
4548 | ||
4549 | if (*gpa == UNMAPPED_GVA) | |
4550 | return -1; | |
4551 | ||
0f89b207 | 4552 | return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); |
af7cc7d1 XG |
4553 | } |
4554 | ||
3200f405 | 4555 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
bcc55cba | 4556 | const void *val, int bytes) |
bbd9b64e CO |
4557 | { |
4558 | int ret; | |
4559 | ||
54bf36aa | 4560 | ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); |
9f811285 | 4561 | if (ret < 0) |
bbd9b64e | 4562 | return 0; |
0eb05bf2 | 4563 | kvm_page_track_write(vcpu, gpa, val, bytes); |
bbd9b64e CO |
4564 | return 1; |
4565 | } | |
4566 | ||
77d197b2 XG |
4567 | struct read_write_emulator_ops { |
4568 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | |
4569 | int bytes); | |
4570 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4571 | void *val, int bytes); | |
4572 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4573 | int bytes, void *val); | |
4574 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4575 | void *val, int bytes); | |
4576 | bool write; | |
4577 | }; | |
4578 | ||
4579 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | |
4580 | { | |
4581 | if (vcpu->mmio_read_completed) { | |
77d197b2 | 4582 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
f78146b0 | 4583 | vcpu->mmio_fragments[0].gpa, *(u64 *)val); |
77d197b2 XG |
4584 | vcpu->mmio_read_completed = 0; |
4585 | return 1; | |
4586 | } | |
4587 | ||
4588 | return 0; | |
4589 | } | |
4590 | ||
4591 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4592 | void *val, int bytes) | |
4593 | { | |
54bf36aa | 4594 | return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); |
77d197b2 XG |
4595 | } |
4596 | ||
4597 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4598 | void *val, int bytes) | |
4599 | { | |
4600 | return emulator_write_phys(vcpu, gpa, val, bytes); | |
4601 | } | |
4602 | ||
4603 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | |
4604 | { | |
4605 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); | |
4606 | return vcpu_mmio_write(vcpu, gpa, bytes, val); | |
4607 | } | |
4608 | ||
4609 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4610 | void *val, int bytes) | |
4611 | { | |
4612 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); | |
4613 | return X86EMUL_IO_NEEDED; | |
4614 | } | |
4615 | ||
4616 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
4617 | void *val, int bytes) | |
4618 | { | |
f78146b0 AK |
4619 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
4620 | ||
87da7e66 | 4621 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
77d197b2 XG |
4622 | return X86EMUL_CONTINUE; |
4623 | } | |
4624 | ||
0fbe9b0b | 4625 | static const struct read_write_emulator_ops read_emultor = { |
77d197b2 XG |
4626 | .read_write_prepare = read_prepare, |
4627 | .read_write_emulate = read_emulate, | |
4628 | .read_write_mmio = vcpu_mmio_read, | |
4629 | .read_write_exit_mmio = read_exit_mmio, | |
4630 | }; | |
4631 | ||
0fbe9b0b | 4632 | static const struct read_write_emulator_ops write_emultor = { |
77d197b2 XG |
4633 | .read_write_emulate = write_emulate, |
4634 | .read_write_mmio = write_mmio, | |
4635 | .read_write_exit_mmio = write_exit_mmio, | |
4636 | .write = true, | |
4637 | }; | |
4638 | ||
22388a3c XG |
4639 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
4640 | unsigned int bytes, | |
4641 | struct x86_exception *exception, | |
4642 | struct kvm_vcpu *vcpu, | |
0fbe9b0b | 4643 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4644 | { |
af7cc7d1 XG |
4645 | gpa_t gpa; |
4646 | int handled, ret; | |
22388a3c | 4647 | bool write = ops->write; |
f78146b0 | 4648 | struct kvm_mmio_fragment *frag; |
0f89b207 TL |
4649 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
4650 | ||
4651 | /* | |
4652 | * If the exit was due to a NPF we may already have a GPA. | |
4653 | * If the GPA is present, use it to avoid the GVA to GPA table walk. | |
4654 | * Note, this cannot be used on string operations since string | |
4655 | * operation using rep will only have the initial GPA from the NPF | |
4656 | * occurred. | |
4657 | */ | |
4658 | if (vcpu->arch.gpa_available && | |
4659 | emulator_can_use_gpa(ctxt) && | |
4660 | vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) && | |
4661 | (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) { | |
4662 | gpa = exception->address; | |
4663 | goto mmio; | |
4664 | } | |
10589a46 | 4665 | |
22388a3c | 4666 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); |
bbd9b64e | 4667 | |
af7cc7d1 | 4668 | if (ret < 0) |
bbd9b64e | 4669 | return X86EMUL_PROPAGATE_FAULT; |
bbd9b64e CO |
4670 | |
4671 | /* For APIC access vmexit */ | |
af7cc7d1 | 4672 | if (ret) |
bbd9b64e CO |
4673 | goto mmio; |
4674 | ||
22388a3c | 4675 | if (ops->read_write_emulate(vcpu, gpa, val, bytes)) |
bbd9b64e CO |
4676 | return X86EMUL_CONTINUE; |
4677 | ||
4678 | mmio: | |
4679 | /* | |
4680 | * Is this MMIO handled locally? | |
4681 | */ | |
22388a3c | 4682 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
70252a10 | 4683 | if (handled == bytes) |
bbd9b64e | 4684 | return X86EMUL_CONTINUE; |
bbd9b64e | 4685 | |
70252a10 AK |
4686 | gpa += handled; |
4687 | bytes -= handled; | |
4688 | val += handled; | |
4689 | ||
87da7e66 XG |
4690 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
4691 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | |
4692 | frag->gpa = gpa; | |
4693 | frag->data = val; | |
4694 | frag->len = bytes; | |
f78146b0 | 4695 | return X86EMUL_CONTINUE; |
bbd9b64e CO |
4696 | } |
4697 | ||
52eb5a6d XL |
4698 | static int emulator_read_write(struct x86_emulate_ctxt *ctxt, |
4699 | unsigned long addr, | |
22388a3c XG |
4700 | void *val, unsigned int bytes, |
4701 | struct x86_exception *exception, | |
0fbe9b0b | 4702 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 4703 | { |
0f65dd70 | 4704 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
f78146b0 AK |
4705 | gpa_t gpa; |
4706 | int rc; | |
4707 | ||
4708 | if (ops->read_write_prepare && | |
4709 | ops->read_write_prepare(vcpu, val, bytes)) | |
4710 | return X86EMUL_CONTINUE; | |
4711 | ||
4712 | vcpu->mmio_nr_fragments = 0; | |
0f65dd70 | 4713 | |
bbd9b64e CO |
4714 | /* Crossing a page boundary? */ |
4715 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | |
f78146b0 | 4716 | int now; |
bbd9b64e CO |
4717 | |
4718 | now = -addr & ~PAGE_MASK; | |
22388a3c XG |
4719 | rc = emulator_read_write_onepage(addr, val, now, exception, |
4720 | vcpu, ops); | |
4721 | ||
bbd9b64e CO |
4722 | if (rc != X86EMUL_CONTINUE) |
4723 | return rc; | |
4724 | addr += now; | |
bac15531 NA |
4725 | if (ctxt->mode != X86EMUL_MODE_PROT64) |
4726 | addr = (u32)addr; | |
bbd9b64e CO |
4727 | val += now; |
4728 | bytes -= now; | |
4729 | } | |
22388a3c | 4730 | |
f78146b0 AK |
4731 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
4732 | vcpu, ops); | |
4733 | if (rc != X86EMUL_CONTINUE) | |
4734 | return rc; | |
4735 | ||
4736 | if (!vcpu->mmio_nr_fragments) | |
4737 | return rc; | |
4738 | ||
4739 | gpa = vcpu->mmio_fragments[0].gpa; | |
4740 | ||
4741 | vcpu->mmio_needed = 1; | |
4742 | vcpu->mmio_cur_fragment = 0; | |
4743 | ||
87da7e66 | 4744 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
f78146b0 AK |
4745 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
4746 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
4747 | vcpu->run->mmio.phys_addr = gpa; | |
4748 | ||
4749 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | |
22388a3c XG |
4750 | } |
4751 | ||
4752 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | |
4753 | unsigned long addr, | |
4754 | void *val, | |
4755 | unsigned int bytes, | |
4756 | struct x86_exception *exception) | |
4757 | { | |
4758 | return emulator_read_write(ctxt, addr, val, bytes, | |
4759 | exception, &read_emultor); | |
4760 | } | |
4761 | ||
52eb5a6d | 4762 | static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
22388a3c XG |
4763 | unsigned long addr, |
4764 | const void *val, | |
4765 | unsigned int bytes, | |
4766 | struct x86_exception *exception) | |
4767 | { | |
4768 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | |
4769 | exception, &write_emultor); | |
bbd9b64e | 4770 | } |
bbd9b64e | 4771 | |
daea3e73 AK |
4772 | #define CMPXCHG_TYPE(t, ptr, old, new) \ |
4773 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | |
4774 | ||
4775 | #ifdef CONFIG_X86_64 | |
4776 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | |
4777 | #else | |
4778 | # define CMPXCHG64(ptr, old, new) \ | |
9749a6c0 | 4779 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
daea3e73 AK |
4780 | #endif |
4781 | ||
0f65dd70 AK |
4782 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
4783 | unsigned long addr, | |
bbd9b64e CO |
4784 | const void *old, |
4785 | const void *new, | |
4786 | unsigned int bytes, | |
0f65dd70 | 4787 | struct x86_exception *exception) |
bbd9b64e | 4788 | { |
0f65dd70 | 4789 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
daea3e73 AK |
4790 | gpa_t gpa; |
4791 | struct page *page; | |
4792 | char *kaddr; | |
4793 | bool exchanged; | |
2bacc55c | 4794 | |
daea3e73 AK |
4795 | /* guests cmpxchg8b have to be emulated atomically */ |
4796 | if (bytes > 8 || (bytes & (bytes - 1))) | |
4797 | goto emul_write; | |
10589a46 | 4798 | |
daea3e73 | 4799 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
2bacc55c | 4800 | |
daea3e73 AK |
4801 | if (gpa == UNMAPPED_GVA || |
4802 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
4803 | goto emul_write; | |
2bacc55c | 4804 | |
daea3e73 AK |
4805 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
4806 | goto emul_write; | |
72dc67a6 | 4807 | |
54bf36aa | 4808 | page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); |
32cad84f | 4809 | if (is_error_page(page)) |
c19b8bd6 | 4810 | goto emul_write; |
72dc67a6 | 4811 | |
8fd75e12 | 4812 | kaddr = kmap_atomic(page); |
daea3e73 AK |
4813 | kaddr += offset_in_page(gpa); |
4814 | switch (bytes) { | |
4815 | case 1: | |
4816 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | |
4817 | break; | |
4818 | case 2: | |
4819 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | |
4820 | break; | |
4821 | case 4: | |
4822 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | |
4823 | break; | |
4824 | case 8: | |
4825 | exchanged = CMPXCHG64(kaddr, old, new); | |
4826 | break; | |
4827 | default: | |
4828 | BUG(); | |
2bacc55c | 4829 | } |
8fd75e12 | 4830 | kunmap_atomic(kaddr); |
daea3e73 AK |
4831 | kvm_release_page_dirty(page); |
4832 | ||
4833 | if (!exchanged) | |
4834 | return X86EMUL_CMPXCHG_FAILED; | |
4835 | ||
54bf36aa | 4836 | kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); |
0eb05bf2 | 4837 | kvm_page_track_write(vcpu, gpa, new, bytes); |
8f6abd06 GN |
4838 | |
4839 | return X86EMUL_CONTINUE; | |
4a5f48f6 | 4840 | |
3200f405 | 4841 | emul_write: |
daea3e73 | 4842 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
2bacc55c | 4843 | |
0f65dd70 | 4844 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
bbd9b64e CO |
4845 | } |
4846 | ||
cf8f70bf GN |
4847 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
4848 | { | |
cbfc6c91 | 4849 | int r = 0, i; |
cf8f70bf | 4850 | |
cbfc6c91 WL |
4851 | for (i = 0; i < vcpu->arch.pio.count; i++) { |
4852 | if (vcpu->arch.pio.in) | |
4853 | r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, | |
4854 | vcpu->arch.pio.size, pd); | |
4855 | else | |
4856 | r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, | |
4857 | vcpu->arch.pio.port, vcpu->arch.pio.size, | |
4858 | pd); | |
4859 | if (r) | |
4860 | break; | |
4861 | pd += vcpu->arch.pio.size; | |
4862 | } | |
cf8f70bf GN |
4863 | return r; |
4864 | } | |
4865 | ||
6f6fbe98 XG |
4866 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
4867 | unsigned short port, void *val, | |
4868 | unsigned int count, bool in) | |
cf8f70bf | 4869 | { |
cf8f70bf | 4870 | vcpu->arch.pio.port = port; |
6f6fbe98 | 4871 | vcpu->arch.pio.in = in; |
7972995b | 4872 | vcpu->arch.pio.count = count; |
cf8f70bf GN |
4873 | vcpu->arch.pio.size = size; |
4874 | ||
4875 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | |
7972995b | 4876 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4877 | return 1; |
4878 | } | |
4879 | ||
4880 | vcpu->run->exit_reason = KVM_EXIT_IO; | |
6f6fbe98 | 4881 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
cf8f70bf GN |
4882 | vcpu->run->io.size = size; |
4883 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | |
4884 | vcpu->run->io.count = count; | |
4885 | vcpu->run->io.port = port; | |
4886 | ||
4887 | return 0; | |
4888 | } | |
4889 | ||
6f6fbe98 XG |
4890 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
4891 | int size, unsigned short port, void *val, | |
4892 | unsigned int count) | |
cf8f70bf | 4893 | { |
ca1d4a9e | 4894 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
6f6fbe98 | 4895 | int ret; |
ca1d4a9e | 4896 | |
6f6fbe98 XG |
4897 | if (vcpu->arch.pio.count) |
4898 | goto data_avail; | |
cf8f70bf | 4899 | |
cbfc6c91 WL |
4900 | memset(vcpu->arch.pio_data, 0, size * count); |
4901 | ||
6f6fbe98 XG |
4902 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
4903 | if (ret) { | |
4904 | data_avail: | |
4905 | memcpy(val, vcpu->arch.pio_data, size * count); | |
1171903d | 4906 | trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); |
7972995b | 4907 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
4908 | return 1; |
4909 | } | |
4910 | ||
cf8f70bf GN |
4911 | return 0; |
4912 | } | |
4913 | ||
6f6fbe98 XG |
4914 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
4915 | int size, unsigned short port, | |
4916 | const void *val, unsigned int count) | |
4917 | { | |
4918 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4919 | ||
4920 | memcpy(vcpu->arch.pio_data, val, size * count); | |
1171903d | 4921 | trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); |
6f6fbe98 XG |
4922 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
4923 | } | |
4924 | ||
bbd9b64e CO |
4925 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
4926 | { | |
4927 | return kvm_x86_ops->get_segment_base(vcpu, seg); | |
4928 | } | |
4929 | ||
3cb16fe7 | 4930 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
bbd9b64e | 4931 | { |
3cb16fe7 | 4932 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
bbd9b64e CO |
4933 | } |
4934 | ||
ae6a2375 | 4935 | static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) |
f5f48ee1 SY |
4936 | { |
4937 | if (!need_emulate_wbinvd(vcpu)) | |
4938 | return X86EMUL_CONTINUE; | |
4939 | ||
4940 | if (kvm_x86_ops->has_wbinvd_exit()) { | |
2eec7343 JK |
4941 | int cpu = get_cpu(); |
4942 | ||
4943 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
4944 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
4945 | wbinvd_ipi, NULL, 1); | |
2eec7343 | 4946 | put_cpu(); |
f5f48ee1 | 4947 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
2eec7343 JK |
4948 | } else |
4949 | wbinvd(); | |
f5f48ee1 SY |
4950 | return X86EMUL_CONTINUE; |
4951 | } | |
5cb56059 JS |
4952 | |
4953 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
4954 | { | |
6affcbed KH |
4955 | kvm_emulate_wbinvd_noskip(vcpu); |
4956 | return kvm_skip_emulated_instruction(vcpu); | |
5cb56059 | 4957 | } |
f5f48ee1 SY |
4958 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
4959 | ||
5cb56059 JS |
4960 | |
4961 | ||
bcaf5cc5 AK |
4962 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
4963 | { | |
5cb56059 | 4964 | kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); |
bcaf5cc5 AK |
4965 | } |
4966 | ||
52eb5a6d XL |
4967 | static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, |
4968 | unsigned long *dest) | |
bbd9b64e | 4969 | { |
16f8a6f9 | 4970 | return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
bbd9b64e CO |
4971 | } |
4972 | ||
52eb5a6d XL |
4973 | static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, |
4974 | unsigned long value) | |
bbd9b64e | 4975 | { |
338dbc97 | 4976 | |
717746e3 | 4977 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
bbd9b64e CO |
4978 | } |
4979 | ||
52a46617 | 4980 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
5fdbf976 | 4981 | { |
52a46617 | 4982 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
5fdbf976 MT |
4983 | } |
4984 | ||
717746e3 | 4985 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
bbd9b64e | 4986 | { |
717746e3 | 4987 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
52a46617 GN |
4988 | unsigned long value; |
4989 | ||
4990 | switch (cr) { | |
4991 | case 0: | |
4992 | value = kvm_read_cr0(vcpu); | |
4993 | break; | |
4994 | case 2: | |
4995 | value = vcpu->arch.cr2; | |
4996 | break; | |
4997 | case 3: | |
9f8fe504 | 4998 | value = kvm_read_cr3(vcpu); |
52a46617 GN |
4999 | break; |
5000 | case 4: | |
5001 | value = kvm_read_cr4(vcpu); | |
5002 | break; | |
5003 | case 8: | |
5004 | value = kvm_get_cr8(vcpu); | |
5005 | break; | |
5006 | default: | |
a737f256 | 5007 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
52a46617 GN |
5008 | return 0; |
5009 | } | |
5010 | ||
5011 | return value; | |
5012 | } | |
5013 | ||
717746e3 | 5014 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
52a46617 | 5015 | { |
717746e3 | 5016 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
0f12244f GN |
5017 | int res = 0; |
5018 | ||
52a46617 GN |
5019 | switch (cr) { |
5020 | case 0: | |
49a9b07e | 5021 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
52a46617 GN |
5022 | break; |
5023 | case 2: | |
5024 | vcpu->arch.cr2 = val; | |
5025 | break; | |
5026 | case 3: | |
2390218b | 5027 | res = kvm_set_cr3(vcpu, val); |
52a46617 GN |
5028 | break; |
5029 | case 4: | |
a83b29c6 | 5030 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
52a46617 GN |
5031 | break; |
5032 | case 8: | |
eea1cff9 | 5033 | res = kvm_set_cr8(vcpu, val); |
52a46617 GN |
5034 | break; |
5035 | default: | |
a737f256 | 5036 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
0f12244f | 5037 | res = -1; |
52a46617 | 5038 | } |
0f12244f GN |
5039 | |
5040 | return res; | |
52a46617 GN |
5041 | } |
5042 | ||
717746e3 | 5043 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
9c537244 | 5044 | { |
717746e3 | 5045 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
9c537244 GN |
5046 | } |
5047 | ||
4bff1e86 | 5048 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
2dafc6c2 | 5049 | { |
4bff1e86 | 5050 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
2dafc6c2 GN |
5051 | } |
5052 | ||
4bff1e86 | 5053 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
160ce1f1 | 5054 | { |
4bff1e86 | 5055 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
160ce1f1 MG |
5056 | } |
5057 | ||
1ac9d0cf AK |
5058 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
5059 | { | |
5060 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | |
5061 | } | |
5062 | ||
5063 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | |
5064 | { | |
5065 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | |
5066 | } | |
5067 | ||
4bff1e86 AK |
5068 | static unsigned long emulator_get_cached_segment_base( |
5069 | struct x86_emulate_ctxt *ctxt, int seg) | |
5951c442 | 5070 | { |
4bff1e86 | 5071 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
5951c442 GN |
5072 | } |
5073 | ||
1aa36616 AK |
5074 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
5075 | struct desc_struct *desc, u32 *base3, | |
5076 | int seg) | |
2dafc6c2 GN |
5077 | { |
5078 | struct kvm_segment var; | |
5079 | ||
4bff1e86 | 5080 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
1aa36616 | 5081 | *selector = var.selector; |
2dafc6c2 | 5082 | |
378a8b09 GN |
5083 | if (var.unusable) { |
5084 | memset(desc, 0, sizeof(*desc)); | |
f0367ee1 RK |
5085 | if (base3) |
5086 | *base3 = 0; | |
2dafc6c2 | 5087 | return false; |
378a8b09 | 5088 | } |
2dafc6c2 GN |
5089 | |
5090 | if (var.g) | |
5091 | var.limit >>= 12; | |
5092 | set_desc_limit(desc, var.limit); | |
5093 | set_desc_base(desc, (unsigned long)var.base); | |
5601d05b GN |
5094 | #ifdef CONFIG_X86_64 |
5095 | if (base3) | |
5096 | *base3 = var.base >> 32; | |
5097 | #endif | |
2dafc6c2 GN |
5098 | desc->type = var.type; |
5099 | desc->s = var.s; | |
5100 | desc->dpl = var.dpl; | |
5101 | desc->p = var.present; | |
5102 | desc->avl = var.avl; | |
5103 | desc->l = var.l; | |
5104 | desc->d = var.db; | |
5105 | desc->g = var.g; | |
5106 | ||
5107 | return true; | |
5108 | } | |
5109 | ||
1aa36616 AK |
5110 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
5111 | struct desc_struct *desc, u32 base3, | |
5112 | int seg) | |
2dafc6c2 | 5113 | { |
4bff1e86 | 5114 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
2dafc6c2 GN |
5115 | struct kvm_segment var; |
5116 | ||
1aa36616 | 5117 | var.selector = selector; |
2dafc6c2 | 5118 | var.base = get_desc_base(desc); |
5601d05b GN |
5119 | #ifdef CONFIG_X86_64 |
5120 | var.base |= ((u64)base3) << 32; | |
5121 | #endif | |
2dafc6c2 GN |
5122 | var.limit = get_desc_limit(desc); |
5123 | if (desc->g) | |
5124 | var.limit = (var.limit << 12) | 0xfff; | |
5125 | var.type = desc->type; | |
2dafc6c2 GN |
5126 | var.dpl = desc->dpl; |
5127 | var.db = desc->d; | |
5128 | var.s = desc->s; | |
5129 | var.l = desc->l; | |
5130 | var.g = desc->g; | |
5131 | var.avl = desc->avl; | |
5132 | var.present = desc->p; | |
5133 | var.unusable = !var.present; | |
5134 | var.padding = 0; | |
5135 | ||
5136 | kvm_set_segment(vcpu, &var, seg); | |
5137 | return; | |
5138 | } | |
5139 | ||
717746e3 AK |
5140 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
5141 | u32 msr_index, u64 *pdata) | |
5142 | { | |
609e36d3 PB |
5143 | struct msr_data msr; |
5144 | int r; | |
5145 | ||
5146 | msr.index = msr_index; | |
5147 | msr.host_initiated = false; | |
5148 | r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); | |
5149 | if (r) | |
5150 | return r; | |
5151 | ||
5152 | *pdata = msr.data; | |
5153 | return 0; | |
717746e3 AK |
5154 | } |
5155 | ||
5156 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | |
5157 | u32 msr_index, u64 data) | |
5158 | { | |
8fe8ab46 WA |
5159 | struct msr_data msr; |
5160 | ||
5161 | msr.data = data; | |
5162 | msr.index = msr_index; | |
5163 | msr.host_initiated = false; | |
5164 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | |
717746e3 AK |
5165 | } |
5166 | ||
64d60670 PB |
5167 | static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) |
5168 | { | |
5169 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5170 | ||
5171 | return vcpu->arch.smbase; | |
5172 | } | |
5173 | ||
5174 | static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) | |
5175 | { | |
5176 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5177 | ||
5178 | vcpu->arch.smbase = smbase; | |
5179 | } | |
5180 | ||
67f4d428 NA |
5181 | static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, |
5182 | u32 pmc) | |
5183 | { | |
c6702c9d | 5184 | return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); |
67f4d428 NA |
5185 | } |
5186 | ||
222d21aa AK |
5187 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
5188 | u32 pmc, u64 *pdata) | |
5189 | { | |
c6702c9d | 5190 | return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); |
222d21aa AK |
5191 | } |
5192 | ||
6c3287f7 AK |
5193 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
5194 | { | |
5195 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | |
5196 | } | |
5197 | ||
5037f6f3 AK |
5198 | static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) |
5199 | { | |
5200 | preempt_disable(); | |
5197b808 | 5201 | kvm_load_guest_fpu(emul_to_vcpu(ctxt)); |
5037f6f3 AK |
5202 | } |
5203 | ||
5204 | static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) | |
5205 | { | |
5206 | preempt_enable(); | |
5207 | } | |
5208 | ||
2953538e | 5209 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
8a76d7f2 | 5210 | struct x86_instruction_info *info, |
c4f035c6 AK |
5211 | enum x86_intercept_stage stage) |
5212 | { | |
2953538e | 5213 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
c4f035c6 AK |
5214 | } |
5215 | ||
0017f93a | 5216 | static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
bdb42f5a SB |
5217 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) |
5218 | { | |
0017f93a | 5219 | kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); |
bdb42f5a SB |
5220 | } |
5221 | ||
dd856efa AK |
5222 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
5223 | { | |
5224 | return kvm_register_read(emul_to_vcpu(ctxt), reg); | |
5225 | } | |
5226 | ||
5227 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | |
5228 | { | |
5229 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); | |
5230 | } | |
5231 | ||
801806d9 NA |
5232 | static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) |
5233 | { | |
5234 | kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); | |
5235 | } | |
5236 | ||
6ed071f0 LP |
5237 | static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) |
5238 | { | |
5239 | return emul_to_vcpu(ctxt)->arch.hflags; | |
5240 | } | |
5241 | ||
5242 | static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) | |
5243 | { | |
5244 | kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); | |
5245 | } | |
5246 | ||
0225fb50 | 5247 | static const struct x86_emulate_ops emulate_ops = { |
dd856efa AK |
5248 | .read_gpr = emulator_read_gpr, |
5249 | .write_gpr = emulator_write_gpr, | |
1871c602 | 5250 | .read_std = kvm_read_guest_virt_system, |
2dafc6c2 | 5251 | .write_std = kvm_write_guest_virt_system, |
7a036a6f | 5252 | .read_phys = kvm_read_guest_phys_system, |
1871c602 | 5253 | .fetch = kvm_fetch_guest_virt, |
bbd9b64e CO |
5254 | .read_emulated = emulator_read_emulated, |
5255 | .write_emulated = emulator_write_emulated, | |
5256 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | |
3cb16fe7 | 5257 | .invlpg = emulator_invlpg, |
cf8f70bf GN |
5258 | .pio_in_emulated = emulator_pio_in_emulated, |
5259 | .pio_out_emulated = emulator_pio_out_emulated, | |
1aa36616 AK |
5260 | .get_segment = emulator_get_segment, |
5261 | .set_segment = emulator_set_segment, | |
5951c442 | 5262 | .get_cached_segment_base = emulator_get_cached_segment_base, |
2dafc6c2 | 5263 | .get_gdt = emulator_get_gdt, |
160ce1f1 | 5264 | .get_idt = emulator_get_idt, |
1ac9d0cf AK |
5265 | .set_gdt = emulator_set_gdt, |
5266 | .set_idt = emulator_set_idt, | |
52a46617 GN |
5267 | .get_cr = emulator_get_cr, |
5268 | .set_cr = emulator_set_cr, | |
9c537244 | 5269 | .cpl = emulator_get_cpl, |
35aa5375 GN |
5270 | .get_dr = emulator_get_dr, |
5271 | .set_dr = emulator_set_dr, | |
64d60670 PB |
5272 | .get_smbase = emulator_get_smbase, |
5273 | .set_smbase = emulator_set_smbase, | |
717746e3 AK |
5274 | .set_msr = emulator_set_msr, |
5275 | .get_msr = emulator_get_msr, | |
67f4d428 | 5276 | .check_pmc = emulator_check_pmc, |
222d21aa | 5277 | .read_pmc = emulator_read_pmc, |
6c3287f7 | 5278 | .halt = emulator_halt, |
bcaf5cc5 | 5279 | .wbinvd = emulator_wbinvd, |
d6aa1000 | 5280 | .fix_hypercall = emulator_fix_hypercall, |
5037f6f3 AK |
5281 | .get_fpu = emulator_get_fpu, |
5282 | .put_fpu = emulator_put_fpu, | |
c4f035c6 | 5283 | .intercept = emulator_intercept, |
bdb42f5a | 5284 | .get_cpuid = emulator_get_cpuid, |
801806d9 | 5285 | .set_nmi_mask = emulator_set_nmi_mask, |
6ed071f0 LP |
5286 | .get_hflags = emulator_get_hflags, |
5287 | .set_hflags = emulator_set_hflags, | |
bbd9b64e CO |
5288 | }; |
5289 | ||
95cb2295 GN |
5290 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
5291 | { | |
37ccdcbe | 5292 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
95cb2295 GN |
5293 | /* |
5294 | * an sti; sti; sequence only disable interrupts for the first | |
5295 | * instruction. So, if the last instruction, be it emulated or | |
5296 | * not, left the system with the INT_STI flag enabled, it | |
5297 | * means that the last instruction is an sti. We should not | |
5298 | * leave the flag on in this case. The same goes for mov ss | |
5299 | */ | |
37ccdcbe PB |
5300 | if (int_shadow & mask) |
5301 | mask = 0; | |
6addfc42 | 5302 | if (unlikely(int_shadow || mask)) { |
95cb2295 | 5303 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); |
6addfc42 PB |
5304 | if (!mask) |
5305 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
5306 | } | |
95cb2295 GN |
5307 | } |
5308 | ||
ef54bcfe | 5309 | static bool inject_emulated_exception(struct kvm_vcpu *vcpu) |
54b8486f GN |
5310 | { |
5311 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | |
da9cb575 | 5312 | if (ctxt->exception.vector == PF_VECTOR) |
ef54bcfe PB |
5313 | return kvm_propagate_fault(vcpu, &ctxt->exception); |
5314 | ||
5315 | if (ctxt->exception.error_code_valid) | |
da9cb575 AK |
5316 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
5317 | ctxt->exception.error_code); | |
54b8486f | 5318 | else |
da9cb575 | 5319 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
ef54bcfe | 5320 | return false; |
54b8486f GN |
5321 | } |
5322 | ||
8ec4722d MG |
5323 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
5324 | { | |
adf52235 | 5325 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d MG |
5326 | int cs_db, cs_l; |
5327 | ||
8ec4722d MG |
5328 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
5329 | ||
adf52235 | 5330 | ctxt->eflags = kvm_get_rflags(vcpu); |
c8401dda PB |
5331 | ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; |
5332 | ||
adf52235 TY |
5333 | ctxt->eip = kvm_rip_read(vcpu); |
5334 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | |
5335 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | |
42bf549f | 5336 | (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : |
adf52235 TY |
5337 | cs_db ? X86EMUL_MODE_PROT32 : |
5338 | X86EMUL_MODE_PROT16; | |
a584539b | 5339 | BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); |
64d60670 PB |
5340 | BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); |
5341 | BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); | |
adf52235 | 5342 | |
dd856efa | 5343 | init_decode_cache(ctxt); |
7ae441ea | 5344 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
8ec4722d MG |
5345 | } |
5346 | ||
71f9833b | 5347 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
63995653 | 5348 | { |
9d74191a | 5349 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
63995653 MG |
5350 | int ret; |
5351 | ||
5352 | init_emulate_ctxt(vcpu); | |
5353 | ||
9dac77fa AK |
5354 | ctxt->op_bytes = 2; |
5355 | ctxt->ad_bytes = 2; | |
5356 | ctxt->_eip = ctxt->eip + inc_eip; | |
9d74191a | 5357 | ret = emulate_int_real(ctxt, irq); |
63995653 MG |
5358 | |
5359 | if (ret != X86EMUL_CONTINUE) | |
5360 | return EMULATE_FAIL; | |
5361 | ||
9dac77fa | 5362 | ctxt->eip = ctxt->_eip; |
9d74191a TY |
5363 | kvm_rip_write(vcpu, ctxt->eip); |
5364 | kvm_set_rflags(vcpu, ctxt->eflags); | |
63995653 MG |
5365 | |
5366 | if (irq == NMI_VECTOR) | |
7460fb4a | 5367 | vcpu->arch.nmi_pending = 0; |
63995653 MG |
5368 | else |
5369 | vcpu->arch.interrupt.pending = false; | |
5370 | ||
5371 | return EMULATE_DONE; | |
5372 | } | |
5373 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | |
5374 | ||
6d77dbfc GN |
5375 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
5376 | { | |
fc3a9157 JR |
5377 | int r = EMULATE_DONE; |
5378 | ||
6d77dbfc GN |
5379 | ++vcpu->stat.insn_emulation_fail; |
5380 | trace_kvm_emulate_insn_failed(vcpu); | |
a2b9e6c1 | 5381 | if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { |
fc3a9157 JR |
5382 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
5383 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
5384 | vcpu->run->internal.ndata = 0; | |
5385 | r = EMULATE_FAIL; | |
5386 | } | |
6d77dbfc | 5387 | kvm_queue_exception(vcpu, UD_VECTOR); |
fc3a9157 JR |
5388 | |
5389 | return r; | |
6d77dbfc GN |
5390 | } |
5391 | ||
93c05d3e | 5392 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, |
991eebf9 GN |
5393 | bool write_fault_to_shadow_pgtable, |
5394 | int emulation_type) | |
a6f177ef | 5395 | { |
95b3cf69 | 5396 | gpa_t gpa = cr2; |
ba049e93 | 5397 | kvm_pfn_t pfn; |
a6f177ef | 5398 | |
991eebf9 GN |
5399 | if (emulation_type & EMULTYPE_NO_REEXECUTE) |
5400 | return false; | |
5401 | ||
95b3cf69 XG |
5402 | if (!vcpu->arch.mmu.direct_map) { |
5403 | /* | |
5404 | * Write permission should be allowed since only | |
5405 | * write access need to be emulated. | |
5406 | */ | |
5407 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
a6f177ef | 5408 | |
95b3cf69 XG |
5409 | /* |
5410 | * If the mapping is invalid in guest, let cpu retry | |
5411 | * it to generate fault. | |
5412 | */ | |
5413 | if (gpa == UNMAPPED_GVA) | |
5414 | return true; | |
5415 | } | |
a6f177ef | 5416 | |
8e3d9d06 XG |
5417 | /* |
5418 | * Do not retry the unhandleable instruction if it faults on the | |
5419 | * readonly host memory, otherwise it will goto a infinite loop: | |
5420 | * retry instruction -> write #PF -> emulation fail -> retry | |
5421 | * instruction -> ... | |
5422 | */ | |
5423 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | |
95b3cf69 XG |
5424 | |
5425 | /* | |
5426 | * If the instruction failed on the error pfn, it can not be fixed, | |
5427 | * report the error to userspace. | |
5428 | */ | |
5429 | if (is_error_noslot_pfn(pfn)) | |
5430 | return false; | |
5431 | ||
5432 | kvm_release_pfn_clean(pfn); | |
5433 | ||
5434 | /* The instructions are well-emulated on direct mmu. */ | |
5435 | if (vcpu->arch.mmu.direct_map) { | |
5436 | unsigned int indirect_shadow_pages; | |
5437 | ||
5438 | spin_lock(&vcpu->kvm->mmu_lock); | |
5439 | indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; | |
5440 | spin_unlock(&vcpu->kvm->mmu_lock); | |
5441 | ||
5442 | if (indirect_shadow_pages) | |
5443 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
5444 | ||
a6f177ef | 5445 | return true; |
8e3d9d06 | 5446 | } |
a6f177ef | 5447 | |
95b3cf69 XG |
5448 | /* |
5449 | * if emulation was due to access to shadowed page table | |
5450 | * and it failed try to unshadow page and re-enter the | |
5451 | * guest to let CPU execute the instruction. | |
5452 | */ | |
5453 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
93c05d3e XG |
5454 | |
5455 | /* | |
5456 | * If the access faults on its page table, it can not | |
5457 | * be fixed by unprotecting shadow page and it should | |
5458 | * be reported to userspace. | |
5459 | */ | |
5460 | return !write_fault_to_shadow_pgtable; | |
a6f177ef GN |
5461 | } |
5462 | ||
1cb3f3ae XG |
5463 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
5464 | unsigned long cr2, int emulation_type) | |
5465 | { | |
5466 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5467 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | |
5468 | ||
5469 | last_retry_eip = vcpu->arch.last_retry_eip; | |
5470 | last_retry_addr = vcpu->arch.last_retry_addr; | |
5471 | ||
5472 | /* | |
5473 | * If the emulation is caused by #PF and it is non-page_table | |
5474 | * writing instruction, it means the VM-EXIT is caused by shadow | |
5475 | * page protected, we can zap the shadow page and retry this | |
5476 | * instruction directly. | |
5477 | * | |
5478 | * Note: if the guest uses a non-page-table modifying instruction | |
5479 | * on the PDE that points to the instruction, then we will unmap | |
5480 | * the instruction and go to an infinite loop. So, we cache the | |
5481 | * last retried eip and the last fault address, if we meet the eip | |
5482 | * and the address again, we can break out of the potential infinite | |
5483 | * loop. | |
5484 | */ | |
5485 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | |
5486 | ||
5487 | if (!(emulation_type & EMULTYPE_RETRY)) | |
5488 | return false; | |
5489 | ||
5490 | if (x86_page_table_writing_insn(ctxt)) | |
5491 | return false; | |
5492 | ||
5493 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | |
5494 | return false; | |
5495 | ||
5496 | vcpu->arch.last_retry_eip = ctxt->eip; | |
5497 | vcpu->arch.last_retry_addr = cr2; | |
5498 | ||
5499 | if (!vcpu->arch.mmu.direct_map) | |
5500 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
5501 | ||
22368028 | 5502 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
1cb3f3ae XG |
5503 | |
5504 | return true; | |
5505 | } | |
5506 | ||
716d51ab GN |
5507 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
5508 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | |
5509 | ||
64d60670 | 5510 | static void kvm_smm_changed(struct kvm_vcpu *vcpu) |
a584539b | 5511 | { |
64d60670 | 5512 | if (!(vcpu->arch.hflags & HF_SMM_MASK)) { |
660a5d51 PB |
5513 | /* This is a good place to trace that we are exiting SMM. */ |
5514 | trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); | |
5515 | ||
c43203ca PB |
5516 | /* Process a latched INIT or SMI, if any. */ |
5517 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
64d60670 | 5518 | } |
699023e2 PB |
5519 | |
5520 | kvm_mmu_reset_context(vcpu); | |
64d60670 PB |
5521 | } |
5522 | ||
5523 | static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) | |
5524 | { | |
5525 | unsigned changed = vcpu->arch.hflags ^ emul_flags; | |
5526 | ||
a584539b | 5527 | vcpu->arch.hflags = emul_flags; |
64d60670 PB |
5528 | |
5529 | if (changed & HF_SMM_MASK) | |
5530 | kvm_smm_changed(vcpu); | |
a584539b PB |
5531 | } |
5532 | ||
4a1e10d5 PB |
5533 | static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, |
5534 | unsigned long *db) | |
5535 | { | |
5536 | u32 dr6 = 0; | |
5537 | int i; | |
5538 | u32 enable, rwlen; | |
5539 | ||
5540 | enable = dr7; | |
5541 | rwlen = dr7 >> 16; | |
5542 | for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) | |
5543 | if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) | |
5544 | dr6 |= (1 << i); | |
5545 | return dr6; | |
5546 | } | |
5547 | ||
c8401dda | 5548 | static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) |
663f4c61 PB |
5549 | { |
5550 | struct kvm_run *kvm_run = vcpu->run; | |
5551 | ||
c8401dda PB |
5552 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
5553 | kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; | |
5554 | kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; | |
5555 | kvm_run->debug.arch.exception = DB_VECTOR; | |
5556 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
5557 | *r = EMULATE_USER_EXIT; | |
5558 | } else { | |
5559 | /* | |
5560 | * "Certain debug exceptions may clear bit 0-3. The | |
5561 | * remaining contents of the DR6 register are never | |
5562 | * cleared by the processor". | |
5563 | */ | |
5564 | vcpu->arch.dr6 &= ~15; | |
5565 | vcpu->arch.dr6 |= DR6_BS | DR6_RTM; | |
5566 | kvm_queue_exception(vcpu, DB_VECTOR); | |
663f4c61 PB |
5567 | } |
5568 | } | |
5569 | ||
6affcbed KH |
5570 | int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
5571 | { | |
5572 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); | |
5573 | int r = EMULATE_DONE; | |
5574 | ||
5575 | kvm_x86_ops->skip_emulated_instruction(vcpu); | |
c8401dda PB |
5576 | |
5577 | /* | |
5578 | * rflags is the old, "raw" value of the flags. The new value has | |
5579 | * not been saved yet. | |
5580 | * | |
5581 | * This is correct even for TF set by the guest, because "the | |
5582 | * processor will not generate this exception after the instruction | |
5583 | * that sets the TF flag". | |
5584 | */ | |
5585 | if (unlikely(rflags & X86_EFLAGS_TF)) | |
5586 | kvm_vcpu_do_singlestep(vcpu, &r); | |
6affcbed KH |
5587 | return r == EMULATE_DONE; |
5588 | } | |
5589 | EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); | |
5590 | ||
4a1e10d5 PB |
5591 | static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) |
5592 | { | |
4a1e10d5 PB |
5593 | if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && |
5594 | (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { | |
82b32774 NA |
5595 | struct kvm_run *kvm_run = vcpu->run; |
5596 | unsigned long eip = kvm_get_linear_rip(vcpu); | |
5597 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
5598 | vcpu->arch.guest_debug_dr7, |
5599 | vcpu->arch.eff_db); | |
5600 | ||
5601 | if (dr6 != 0) { | |
6f43ed01 | 5602 | kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; |
82b32774 | 5603 | kvm_run->debug.arch.pc = eip; |
4a1e10d5 PB |
5604 | kvm_run->debug.arch.exception = DB_VECTOR; |
5605 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
5606 | *r = EMULATE_USER_EXIT; | |
5607 | return true; | |
5608 | } | |
5609 | } | |
5610 | ||
4161a569 NA |
5611 | if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && |
5612 | !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { | |
82b32774 NA |
5613 | unsigned long eip = kvm_get_linear_rip(vcpu); |
5614 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
5615 | vcpu->arch.dr7, |
5616 | vcpu->arch.db); | |
5617 | ||
5618 | if (dr6 != 0) { | |
5619 | vcpu->arch.dr6 &= ~15; | |
6f43ed01 | 5620 | vcpu->arch.dr6 |= dr6 | DR6_RTM; |
4a1e10d5 PB |
5621 | kvm_queue_exception(vcpu, DB_VECTOR); |
5622 | *r = EMULATE_DONE; | |
5623 | return true; | |
5624 | } | |
5625 | } | |
5626 | ||
5627 | return false; | |
5628 | } | |
5629 | ||
51d8b661 AP |
5630 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
5631 | unsigned long cr2, | |
dc25e89e AP |
5632 | int emulation_type, |
5633 | void *insn, | |
5634 | int insn_len) | |
bbd9b64e | 5635 | { |
95cb2295 | 5636 | int r; |
9d74191a | 5637 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
7ae441ea | 5638 | bool writeback = true; |
93c05d3e | 5639 | bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; |
bbd9b64e | 5640 | |
93c05d3e XG |
5641 | /* |
5642 | * Clear write_fault_to_shadow_pgtable here to ensure it is | |
5643 | * never reused. | |
5644 | */ | |
5645 | vcpu->arch.write_fault_to_shadow_pgtable = false; | |
26eef70c | 5646 | kvm_clear_exception_queue(vcpu); |
8d7d8102 | 5647 | |
571008da | 5648 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
8ec4722d | 5649 | init_emulate_ctxt(vcpu); |
4a1e10d5 PB |
5650 | |
5651 | /* | |
5652 | * We will reenter on the same instruction since | |
5653 | * we do not set complete_userspace_io. This does not | |
5654 | * handle watchpoints yet, those would be handled in | |
5655 | * the emulate_ops. | |
5656 | */ | |
5657 | if (kvm_vcpu_check_breakpoint(vcpu, &r)) | |
5658 | return r; | |
5659 | ||
9d74191a TY |
5660 | ctxt->interruptibility = 0; |
5661 | ctxt->have_exception = false; | |
e0ad0b47 | 5662 | ctxt->exception.vector = -1; |
9d74191a | 5663 | ctxt->perm_ok = false; |
bbd9b64e | 5664 | |
b51e974f | 5665 | ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; |
4005996e | 5666 | |
9d74191a | 5667 | r = x86_decode_insn(ctxt, insn, insn_len); |
bbd9b64e | 5668 | |
e46479f8 | 5669 | trace_kvm_emulate_insn_start(vcpu); |
f2b5756b | 5670 | ++vcpu->stat.insn_emulation; |
1d2887e2 | 5671 | if (r != EMULATION_OK) { |
4005996e AK |
5672 | if (emulation_type & EMULTYPE_TRAP_UD) |
5673 | return EMULATE_FAIL; | |
991eebf9 GN |
5674 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
5675 | emulation_type)) | |
bbd9b64e | 5676 | return EMULATE_DONE; |
6d77dbfc GN |
5677 | if (emulation_type & EMULTYPE_SKIP) |
5678 | return EMULATE_FAIL; | |
5679 | return handle_emulation_failure(vcpu); | |
bbd9b64e CO |
5680 | } |
5681 | } | |
5682 | ||
ba8afb6b | 5683 | if (emulation_type & EMULTYPE_SKIP) { |
9dac77fa | 5684 | kvm_rip_write(vcpu, ctxt->_eip); |
bb663c7a NA |
5685 | if (ctxt->eflags & X86_EFLAGS_RF) |
5686 | kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); | |
ba8afb6b GN |
5687 | return EMULATE_DONE; |
5688 | } | |
5689 | ||
1cb3f3ae XG |
5690 | if (retry_instruction(ctxt, cr2, emulation_type)) |
5691 | return EMULATE_DONE; | |
5692 | ||
7ae441ea | 5693 | /* this is needed for vmware backdoor interface to work since it |
4d2179e1 | 5694 | changes registers values during IO operation */ |
7ae441ea GN |
5695 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
5696 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | |
dd856efa | 5697 | emulator_invalidate_register_cache(ctxt); |
7ae441ea | 5698 | } |
4d2179e1 | 5699 | |
5cd21917 | 5700 | restart: |
0f89b207 TL |
5701 | /* Save the faulting GPA (cr2) in the address field */ |
5702 | ctxt->exception.address = cr2; | |
5703 | ||
9d74191a | 5704 | r = x86_emulate_insn(ctxt); |
bbd9b64e | 5705 | |
775fde86 JR |
5706 | if (r == EMULATION_INTERCEPTED) |
5707 | return EMULATE_DONE; | |
5708 | ||
d2ddd1c4 | 5709 | if (r == EMULATION_FAILED) { |
991eebf9 GN |
5710 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
5711 | emulation_type)) | |
c3cd7ffa GN |
5712 | return EMULATE_DONE; |
5713 | ||
6d77dbfc | 5714 | return handle_emulation_failure(vcpu); |
bbd9b64e CO |
5715 | } |
5716 | ||
9d74191a | 5717 | if (ctxt->have_exception) { |
d2ddd1c4 | 5718 | r = EMULATE_DONE; |
ef54bcfe PB |
5719 | if (inject_emulated_exception(vcpu)) |
5720 | return r; | |
d2ddd1c4 | 5721 | } else if (vcpu->arch.pio.count) { |
0912c977 PB |
5722 | if (!vcpu->arch.pio.in) { |
5723 | /* FIXME: return into emulator if single-stepping. */ | |
3457e419 | 5724 | vcpu->arch.pio.count = 0; |
0912c977 | 5725 | } else { |
7ae441ea | 5726 | writeback = false; |
716d51ab GN |
5727 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
5728 | } | |
ac0a48c3 | 5729 | r = EMULATE_USER_EXIT; |
7ae441ea GN |
5730 | } else if (vcpu->mmio_needed) { |
5731 | if (!vcpu->mmio_is_write) | |
5732 | writeback = false; | |
ac0a48c3 | 5733 | r = EMULATE_USER_EXIT; |
716d51ab | 5734 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
7ae441ea | 5735 | } else if (r == EMULATION_RESTART) |
5cd21917 | 5736 | goto restart; |
d2ddd1c4 GN |
5737 | else |
5738 | r = EMULATE_DONE; | |
f850e2e6 | 5739 | |
7ae441ea | 5740 | if (writeback) { |
6addfc42 | 5741 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
9d74191a | 5742 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
7ae441ea | 5743 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
9d74191a | 5744 | kvm_rip_write(vcpu, ctxt->eip); |
c8401dda PB |
5745 | if (r == EMULATE_DONE && |
5746 | (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) | |
5747 | kvm_vcpu_do_singlestep(vcpu, &r); | |
38827dbd NA |
5748 | if (!ctxt->have_exception || |
5749 | exception_type(ctxt->exception.vector) == EXCPT_TRAP) | |
5750 | __kvm_set_rflags(vcpu, ctxt->eflags); | |
6addfc42 PB |
5751 | |
5752 | /* | |
5753 | * For STI, interrupts are shadowed; so KVM_REQ_EVENT will | |
5754 | * do nothing, and it will be requested again as soon as | |
5755 | * the shadow expires. But we still need to check here, | |
5756 | * because POPF has no interrupt shadow. | |
5757 | */ | |
5758 | if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) | |
5759 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7ae441ea GN |
5760 | } else |
5761 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | |
e85d28f8 GN |
5762 | |
5763 | return r; | |
de7d789a | 5764 | } |
51d8b661 | 5765 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); |
de7d789a | 5766 | |
cf8f70bf | 5767 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
de7d789a | 5768 | { |
cf8f70bf | 5769 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
ca1d4a9e AK |
5770 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
5771 | size, port, &val, 1); | |
cf8f70bf | 5772 | /* do not return to emulator after return from userspace */ |
7972995b | 5773 | vcpu->arch.pio.count = 0; |
de7d789a CO |
5774 | return ret; |
5775 | } | |
cf8f70bf | 5776 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
de7d789a | 5777 | |
8370c3d0 TL |
5778 | static int complete_fast_pio_in(struct kvm_vcpu *vcpu) |
5779 | { | |
5780 | unsigned long val; | |
5781 | ||
5782 | /* We should only ever be called with arch.pio.count equal to 1 */ | |
5783 | BUG_ON(vcpu->arch.pio.count != 1); | |
5784 | ||
5785 | /* For size less than 4 we merge, else we zero extend */ | |
5786 | val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) | |
5787 | : 0; | |
5788 | ||
5789 | /* | |
5790 | * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform | |
5791 | * the copy and tracing | |
5792 | */ | |
5793 | emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, | |
5794 | vcpu->arch.pio.port, &val, 1); | |
5795 | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | |
5796 | ||
5797 | return 1; | |
5798 | } | |
5799 | ||
5800 | int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) | |
5801 | { | |
5802 | unsigned long val; | |
5803 | int ret; | |
5804 | ||
5805 | /* For size less than 4 we merge, else we zero extend */ | |
5806 | val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; | |
5807 | ||
5808 | ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, | |
5809 | &val, 1); | |
5810 | if (ret) { | |
5811 | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | |
5812 | return ret; | |
5813 | } | |
5814 | ||
5815 | vcpu->arch.complete_userspace_io = complete_fast_pio_in; | |
5816 | ||
5817 | return 0; | |
5818 | } | |
5819 | EXPORT_SYMBOL_GPL(kvm_fast_pio_in); | |
5820 | ||
251a5fd6 | 5821 | static int kvmclock_cpu_down_prep(unsigned int cpu) |
8cfdc000 | 5822 | { |
0a3aee0d | 5823 | __this_cpu_write(cpu_tsc_khz, 0); |
251a5fd6 | 5824 | return 0; |
8cfdc000 ZA |
5825 | } |
5826 | ||
5827 | static void tsc_khz_changed(void *data) | |
c8076604 | 5828 | { |
8cfdc000 ZA |
5829 | struct cpufreq_freqs *freq = data; |
5830 | unsigned long khz = 0; | |
5831 | ||
5832 | if (data) | |
5833 | khz = freq->new; | |
5834 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
5835 | khz = cpufreq_quick_get(raw_smp_processor_id()); | |
5836 | if (!khz) | |
5837 | khz = tsc_khz; | |
0a3aee0d | 5838 | __this_cpu_write(cpu_tsc_khz, khz); |
c8076604 GH |
5839 | } |
5840 | ||
c8076604 GH |
5841 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
5842 | void *data) | |
5843 | { | |
5844 | struct cpufreq_freqs *freq = data; | |
5845 | struct kvm *kvm; | |
5846 | struct kvm_vcpu *vcpu; | |
5847 | int i, send_ipi = 0; | |
5848 | ||
8cfdc000 ZA |
5849 | /* |
5850 | * We allow guests to temporarily run on slowing clocks, | |
5851 | * provided we notify them after, or to run on accelerating | |
5852 | * clocks, provided we notify them before. Thus time never | |
5853 | * goes backwards. | |
5854 | * | |
5855 | * However, we have a problem. We can't atomically update | |
5856 | * the frequency of a given CPU from this function; it is | |
5857 | * merely a notifier, which can be called from any CPU. | |
5858 | * Changing the TSC frequency at arbitrary points in time | |
5859 | * requires a recomputation of local variables related to | |
5860 | * the TSC for each VCPU. We must flag these local variables | |
5861 | * to be updated and be sure the update takes place with the | |
5862 | * new frequency before any guests proceed. | |
5863 | * | |
5864 | * Unfortunately, the combination of hotplug CPU and frequency | |
5865 | * change creates an intractable locking scenario; the order | |
5866 | * of when these callouts happen is undefined with respect to | |
5867 | * CPU hotplug, and they can race with each other. As such, | |
5868 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | |
5869 | * undefined; you can actually have a CPU frequency change take | |
5870 | * place in between the computation of X and the setting of the | |
5871 | * variable. To protect against this problem, all updates of | |
5872 | * the per_cpu tsc_khz variable are done in an interrupt | |
5873 | * protected IPI, and all callers wishing to update the value | |
5874 | * must wait for a synchronous IPI to complete (which is trivial | |
5875 | * if the caller is on the CPU already). This establishes the | |
5876 | * necessary total order on variable updates. | |
5877 | * | |
5878 | * Note that because a guest time update may take place | |
5879 | * anytime after the setting of the VCPU's request bit, the | |
5880 | * correct TSC value must be set before the request. However, | |
5881 | * to ensure the update actually makes it to any guest which | |
5882 | * starts running in hardware virtualization between the set | |
5883 | * and the acquisition of the spinlock, we must also ping the | |
5884 | * CPU after setting the request bit. | |
5885 | * | |
5886 | */ | |
5887 | ||
c8076604 GH |
5888 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
5889 | return 0; | |
5890 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | |
5891 | return 0; | |
8cfdc000 ZA |
5892 | |
5893 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | |
c8076604 | 5894 | |
2f303b74 | 5895 | spin_lock(&kvm_lock); |
c8076604 | 5896 | list_for_each_entry(kvm, &vm_list, vm_list) { |
988a2cae | 5897 | kvm_for_each_vcpu(i, vcpu, kvm) { |
c8076604 GH |
5898 | if (vcpu->cpu != freq->cpu) |
5899 | continue; | |
c285545f | 5900 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
c8076604 | 5901 | if (vcpu->cpu != smp_processor_id()) |
8cfdc000 | 5902 | send_ipi = 1; |
c8076604 GH |
5903 | } |
5904 | } | |
2f303b74 | 5905 | spin_unlock(&kvm_lock); |
c8076604 GH |
5906 | |
5907 | if (freq->old < freq->new && send_ipi) { | |
5908 | /* | |
5909 | * We upscale the frequency. Must make the guest | |
5910 | * doesn't see old kvmclock values while running with | |
5911 | * the new frequency, otherwise we risk the guest sees | |
5912 | * time go backwards. | |
5913 | * | |
5914 | * In case we update the frequency for another cpu | |
5915 | * (which might be in guest context) send an interrupt | |
5916 | * to kick the cpu out of guest context. Next time | |
5917 | * guest context is entered kvmclock will be updated, | |
5918 | * so the guest will not see stale values. | |
5919 | */ | |
8cfdc000 | 5920 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
c8076604 GH |
5921 | } |
5922 | return 0; | |
5923 | } | |
5924 | ||
5925 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | |
8cfdc000 ZA |
5926 | .notifier_call = kvmclock_cpufreq_notifier |
5927 | }; | |
5928 | ||
251a5fd6 | 5929 | static int kvmclock_cpu_online(unsigned int cpu) |
8cfdc000 | 5930 | { |
251a5fd6 SAS |
5931 | tsc_khz_changed(NULL); |
5932 | return 0; | |
8cfdc000 ZA |
5933 | } |
5934 | ||
b820cc0c ZA |
5935 | static void kvm_timer_init(void) |
5936 | { | |
c285545f | 5937 | max_tsc_khz = tsc_khz; |
460dd42e | 5938 | |
b820cc0c | 5939 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
c285545f ZA |
5940 | #ifdef CONFIG_CPU_FREQ |
5941 | struct cpufreq_policy policy; | |
758f588d BP |
5942 | int cpu; |
5943 | ||
c285545f | 5944 | memset(&policy, 0, sizeof(policy)); |
3e26f230 AK |
5945 | cpu = get_cpu(); |
5946 | cpufreq_get_policy(&policy, cpu); | |
c285545f ZA |
5947 | if (policy.cpuinfo.max_freq) |
5948 | max_tsc_khz = policy.cpuinfo.max_freq; | |
3e26f230 | 5949 | put_cpu(); |
c285545f | 5950 | #endif |
b820cc0c ZA |
5951 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
5952 | CPUFREQ_TRANSITION_NOTIFIER); | |
5953 | } | |
c285545f | 5954 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
460dd42e | 5955 | |
73c1b41e | 5956 | cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", |
251a5fd6 | 5957 | kvmclock_cpu_online, kvmclock_cpu_down_prep); |
b820cc0c ZA |
5958 | } |
5959 | ||
ff9d07a0 ZY |
5960 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
5961 | ||
f5132b01 | 5962 | int kvm_is_in_guest(void) |
ff9d07a0 | 5963 | { |
086c9855 | 5964 | return __this_cpu_read(current_vcpu) != NULL; |
ff9d07a0 ZY |
5965 | } |
5966 | ||
5967 | static int kvm_is_user_mode(void) | |
5968 | { | |
5969 | int user_mode = 3; | |
dcf46b94 | 5970 | |
086c9855 AS |
5971 | if (__this_cpu_read(current_vcpu)) |
5972 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 5973 | |
ff9d07a0 ZY |
5974 | return user_mode != 0; |
5975 | } | |
5976 | ||
5977 | static unsigned long kvm_get_guest_ip(void) | |
5978 | { | |
5979 | unsigned long ip = 0; | |
dcf46b94 | 5980 | |
086c9855 AS |
5981 | if (__this_cpu_read(current_vcpu)) |
5982 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 5983 | |
ff9d07a0 ZY |
5984 | return ip; |
5985 | } | |
5986 | ||
5987 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | |
5988 | .is_in_guest = kvm_is_in_guest, | |
5989 | .is_user_mode = kvm_is_user_mode, | |
5990 | .get_guest_ip = kvm_get_guest_ip, | |
5991 | }; | |
5992 | ||
5993 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) | |
5994 | { | |
086c9855 | 5995 | __this_cpu_write(current_vcpu, vcpu); |
ff9d07a0 ZY |
5996 | } |
5997 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); | |
5998 | ||
5999 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) | |
6000 | { | |
086c9855 | 6001 | __this_cpu_write(current_vcpu, NULL); |
ff9d07a0 ZY |
6002 | } |
6003 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); | |
6004 | ||
ce88decf XG |
6005 | static void kvm_set_mmio_spte_mask(void) |
6006 | { | |
6007 | u64 mask; | |
6008 | int maxphyaddr = boot_cpu_data.x86_phys_bits; | |
6009 | ||
6010 | /* | |
6011 | * Set the reserved bits and the present bit of an paging-structure | |
6012 | * entry to generate page fault with PFER.RSV = 1. | |
6013 | */ | |
885032b9 | 6014 | /* Mask the reserved physical address bits. */ |
d1431483 | 6015 | mask = rsvd_bits(maxphyaddr, 51); |
885032b9 | 6016 | |
885032b9 | 6017 | /* Set the present bit. */ |
ce88decf XG |
6018 | mask |= 1ull; |
6019 | ||
6020 | #ifdef CONFIG_X86_64 | |
6021 | /* | |
6022 | * If reserved bit is not supported, clear the present bit to disable | |
6023 | * mmio page fault. | |
6024 | */ | |
6025 | if (maxphyaddr == 52) | |
6026 | mask &= ~1ull; | |
6027 | #endif | |
6028 | ||
dcdca5fe | 6029 | kvm_mmu_set_mmio_spte_mask(mask, mask); |
ce88decf XG |
6030 | } |
6031 | ||
16e8d74d MT |
6032 | #ifdef CONFIG_X86_64 |
6033 | static void pvclock_gtod_update_fn(struct work_struct *work) | |
6034 | { | |
d828199e MT |
6035 | struct kvm *kvm; |
6036 | ||
6037 | struct kvm_vcpu *vcpu; | |
6038 | int i; | |
6039 | ||
2f303b74 | 6040 | spin_lock(&kvm_lock); |
d828199e MT |
6041 | list_for_each_entry(kvm, &vm_list, vm_list) |
6042 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 6043 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
d828199e | 6044 | atomic_set(&kvm_guest_has_master_clock, 0); |
2f303b74 | 6045 | spin_unlock(&kvm_lock); |
16e8d74d MT |
6046 | } |
6047 | ||
6048 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | |
6049 | ||
6050 | /* | |
6051 | * Notification about pvclock gtod data update. | |
6052 | */ | |
6053 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | |
6054 | void *priv) | |
6055 | { | |
6056 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
6057 | struct timekeeper *tk = priv; | |
6058 | ||
6059 | update_pvclock_gtod(tk); | |
6060 | ||
6061 | /* disable master clock if host does not trust, or does not | |
6062 | * use, TSC clocksource | |
6063 | */ | |
6064 | if (gtod->clock.vclock_mode != VCLOCK_TSC && | |
6065 | atomic_read(&kvm_guest_has_master_clock) != 0) | |
6066 | queue_work(system_long_wq, &pvclock_gtod_work); | |
6067 | ||
6068 | return 0; | |
6069 | } | |
6070 | ||
6071 | static struct notifier_block pvclock_gtod_notifier = { | |
6072 | .notifier_call = pvclock_gtod_notify, | |
6073 | }; | |
6074 | #endif | |
6075 | ||
f8c16bba | 6076 | int kvm_arch_init(void *opaque) |
043405e1 | 6077 | { |
b820cc0c | 6078 | int r; |
6b61edf7 | 6079 | struct kvm_x86_ops *ops = opaque; |
f8c16bba | 6080 | |
f8c16bba ZX |
6081 | if (kvm_x86_ops) { |
6082 | printk(KERN_ERR "kvm: already loaded the other module\n"); | |
56c6d28a ZX |
6083 | r = -EEXIST; |
6084 | goto out; | |
f8c16bba ZX |
6085 | } |
6086 | ||
6087 | if (!ops->cpu_has_kvm_support()) { | |
6088 | printk(KERN_ERR "kvm: no hardware support\n"); | |
56c6d28a ZX |
6089 | r = -EOPNOTSUPP; |
6090 | goto out; | |
f8c16bba ZX |
6091 | } |
6092 | if (ops->disabled_by_bios()) { | |
6093 | printk(KERN_ERR "kvm: disabled by bios\n"); | |
56c6d28a ZX |
6094 | r = -EOPNOTSUPP; |
6095 | goto out; | |
f8c16bba ZX |
6096 | } |
6097 | ||
013f6a5d MT |
6098 | r = -ENOMEM; |
6099 | shared_msrs = alloc_percpu(struct kvm_shared_msrs); | |
6100 | if (!shared_msrs) { | |
6101 | printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); | |
6102 | goto out; | |
6103 | } | |
6104 | ||
97db56ce AK |
6105 | r = kvm_mmu_module_init(); |
6106 | if (r) | |
013f6a5d | 6107 | goto out_free_percpu; |
97db56ce | 6108 | |
ce88decf | 6109 | kvm_set_mmio_spte_mask(); |
97db56ce | 6110 | |
f8c16bba | 6111 | kvm_x86_ops = ops; |
920c8377 | 6112 | |
7b52345e | 6113 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
ffb128c8 | 6114 | PT_DIRTY_MASK, PT64_NX_MASK, 0, |
f160c7b7 | 6115 | PT_PRESENT_MASK, 0); |
b820cc0c | 6116 | kvm_timer_init(); |
c8076604 | 6117 | |
ff9d07a0 ZY |
6118 | perf_register_guest_info_callbacks(&kvm_guest_cbs); |
6119 | ||
d366bf7e | 6120 | if (boot_cpu_has(X86_FEATURE_XSAVE)) |
2acf923e DC |
6121 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
6122 | ||
c5cc421b | 6123 | kvm_lapic_init(); |
16e8d74d MT |
6124 | #ifdef CONFIG_X86_64 |
6125 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | |
6126 | #endif | |
6127 | ||
f8c16bba | 6128 | return 0; |
56c6d28a | 6129 | |
013f6a5d MT |
6130 | out_free_percpu: |
6131 | free_percpu(shared_msrs); | |
56c6d28a | 6132 | out: |
56c6d28a | 6133 | return r; |
043405e1 | 6134 | } |
8776e519 | 6135 | |
f8c16bba ZX |
6136 | void kvm_arch_exit(void) |
6137 | { | |
cef84c30 | 6138 | kvm_lapic_exit(); |
ff9d07a0 ZY |
6139 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
6140 | ||
888d256e JK |
6141 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
6142 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | |
6143 | CPUFREQ_TRANSITION_NOTIFIER); | |
251a5fd6 | 6144 | cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); |
16e8d74d MT |
6145 | #ifdef CONFIG_X86_64 |
6146 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | |
6147 | #endif | |
f8c16bba | 6148 | kvm_x86_ops = NULL; |
56c6d28a | 6149 | kvm_mmu_module_exit(); |
013f6a5d | 6150 | free_percpu(shared_msrs); |
56c6d28a | 6151 | } |
f8c16bba | 6152 | |
5cb56059 | 6153 | int kvm_vcpu_halt(struct kvm_vcpu *vcpu) |
8776e519 HB |
6154 | { |
6155 | ++vcpu->stat.halt_exits; | |
35754c98 | 6156 | if (lapic_in_kernel(vcpu)) { |
a4535290 | 6157 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
8776e519 HB |
6158 | return 1; |
6159 | } else { | |
6160 | vcpu->run->exit_reason = KVM_EXIT_HLT; | |
6161 | return 0; | |
6162 | } | |
6163 | } | |
5cb56059 JS |
6164 | EXPORT_SYMBOL_GPL(kvm_vcpu_halt); |
6165 | ||
6166 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | |
6167 | { | |
6affcbed KH |
6168 | int ret = kvm_skip_emulated_instruction(vcpu); |
6169 | /* | |
6170 | * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered | |
6171 | * KVM_EXIT_DEBUG here. | |
6172 | */ | |
6173 | return kvm_vcpu_halt(vcpu) && ret; | |
5cb56059 | 6174 | } |
8776e519 HB |
6175 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
6176 | ||
8ef81a9a | 6177 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
6178 | static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, |
6179 | unsigned long clock_type) | |
6180 | { | |
6181 | struct kvm_clock_pairing clock_pairing; | |
6182 | struct timespec ts; | |
80fbd89c | 6183 | u64 cycle; |
55dd00a7 MT |
6184 | int ret; |
6185 | ||
6186 | if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) | |
6187 | return -KVM_EOPNOTSUPP; | |
6188 | ||
6189 | if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) | |
6190 | return -KVM_EOPNOTSUPP; | |
6191 | ||
6192 | clock_pairing.sec = ts.tv_sec; | |
6193 | clock_pairing.nsec = ts.tv_nsec; | |
6194 | clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); | |
6195 | clock_pairing.flags = 0; | |
6196 | ||
6197 | ret = 0; | |
6198 | if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, | |
6199 | sizeof(struct kvm_clock_pairing))) | |
6200 | ret = -KVM_EFAULT; | |
6201 | ||
6202 | return ret; | |
6203 | } | |
8ef81a9a | 6204 | #endif |
55dd00a7 | 6205 | |
6aef266c SV |
6206 | /* |
6207 | * kvm_pv_kick_cpu_op: Kick a vcpu. | |
6208 | * | |
6209 | * @apicid - apicid of vcpu to be kicked. | |
6210 | */ | |
6211 | static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) | |
6212 | { | |
24d2166b | 6213 | struct kvm_lapic_irq lapic_irq; |
6aef266c | 6214 | |
24d2166b R |
6215 | lapic_irq.shorthand = 0; |
6216 | lapic_irq.dest_mode = 0; | |
ebd28fcb | 6217 | lapic_irq.level = 0; |
24d2166b | 6218 | lapic_irq.dest_id = apicid; |
93bbf0b8 | 6219 | lapic_irq.msi_redir_hint = false; |
6aef266c | 6220 | |
24d2166b | 6221 | lapic_irq.delivery_mode = APIC_DM_REMRD; |
795a149e | 6222 | kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); |
6aef266c SV |
6223 | } |
6224 | ||
d62caabb AS |
6225 | void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) |
6226 | { | |
6227 | vcpu->arch.apicv_active = false; | |
6228 | kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); | |
6229 | } | |
6230 | ||
8776e519 HB |
6231 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
6232 | { | |
6233 | unsigned long nr, a0, a1, a2, a3, ret; | |
6affcbed | 6234 | int op_64_bit, r; |
8776e519 | 6235 | |
6affcbed | 6236 | r = kvm_skip_emulated_instruction(vcpu); |
5cb56059 | 6237 | |
55cd8e5a GN |
6238 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
6239 | return kvm_hv_hypercall(vcpu); | |
6240 | ||
5fdbf976 MT |
6241 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
6242 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
6243 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
6244 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
6245 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
8776e519 | 6246 | |
229456fc | 6247 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
2714d1d3 | 6248 | |
a449c7aa NA |
6249 | op_64_bit = is_64_bit_mode(vcpu); |
6250 | if (!op_64_bit) { | |
8776e519 HB |
6251 | nr &= 0xFFFFFFFF; |
6252 | a0 &= 0xFFFFFFFF; | |
6253 | a1 &= 0xFFFFFFFF; | |
6254 | a2 &= 0xFFFFFFFF; | |
6255 | a3 &= 0xFFFFFFFF; | |
6256 | } | |
6257 | ||
07708c4a JK |
6258 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
6259 | ret = -KVM_EPERM; | |
6260 | goto out; | |
6261 | } | |
6262 | ||
8776e519 | 6263 | switch (nr) { |
b93463aa AK |
6264 | case KVM_HC_VAPIC_POLL_IRQ: |
6265 | ret = 0; | |
6266 | break; | |
6aef266c SV |
6267 | case KVM_HC_KICK_CPU: |
6268 | kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); | |
6269 | ret = 0; | |
6270 | break; | |
8ef81a9a | 6271 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
6272 | case KVM_HC_CLOCK_PAIRING: |
6273 | ret = kvm_pv_clock_pairing(vcpu, a0, a1); | |
6274 | break; | |
8ef81a9a | 6275 | #endif |
8776e519 HB |
6276 | default: |
6277 | ret = -KVM_ENOSYS; | |
6278 | break; | |
6279 | } | |
07708c4a | 6280 | out: |
a449c7aa NA |
6281 | if (!op_64_bit) |
6282 | ret = (u32)ret; | |
5fdbf976 | 6283 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
f11c3a8d | 6284 | ++vcpu->stat.hypercalls; |
2f333bcb | 6285 | return r; |
8776e519 HB |
6286 | } |
6287 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | |
6288 | ||
b6785def | 6289 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
8776e519 | 6290 | { |
d6aa1000 | 6291 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8776e519 | 6292 | char instruction[3]; |
5fdbf976 | 6293 | unsigned long rip = kvm_rip_read(vcpu); |
8776e519 | 6294 | |
8776e519 | 6295 | kvm_x86_ops->patch_hypercall(vcpu, instruction); |
8776e519 | 6296 | |
ce2e852e DV |
6297 | return emulator_write_emulated(ctxt, rip, instruction, 3, |
6298 | &ctxt->exception); | |
8776e519 HB |
6299 | } |
6300 | ||
851ba692 | 6301 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
b6c7a5dc | 6302 | { |
782d422b MG |
6303 | return vcpu->run->request_interrupt_window && |
6304 | likely(!pic_in_kernel(vcpu->kvm)); | |
b6c7a5dc HB |
6305 | } |
6306 | ||
851ba692 | 6307 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
b6c7a5dc | 6308 | { |
851ba692 AK |
6309 | struct kvm_run *kvm_run = vcpu->run; |
6310 | ||
91586a3b | 6311 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
f077825a | 6312 | kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; |
2d3ad1f4 | 6313 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
b6c7a5dc | 6314 | kvm_run->apic_base = kvm_get_apic_base(vcpu); |
127a457a MG |
6315 | kvm_run->ready_for_interrupt_injection = |
6316 | pic_in_kernel(vcpu->kvm) || | |
782d422b | 6317 | kvm_vcpu_ready_for_interrupt_injection(vcpu); |
b6c7a5dc HB |
6318 | } |
6319 | ||
95ba8273 GN |
6320 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
6321 | { | |
6322 | int max_irr, tpr; | |
6323 | ||
6324 | if (!kvm_x86_ops->update_cr8_intercept) | |
6325 | return; | |
6326 | ||
bce87cce | 6327 | if (!lapic_in_kernel(vcpu)) |
88c808fd AK |
6328 | return; |
6329 | ||
d62caabb AS |
6330 | if (vcpu->arch.apicv_active) |
6331 | return; | |
6332 | ||
8db3baa2 GN |
6333 | if (!vcpu->arch.apic->vapic_addr) |
6334 | max_irr = kvm_lapic_find_highest_irr(vcpu); | |
6335 | else | |
6336 | max_irr = -1; | |
95ba8273 GN |
6337 | |
6338 | if (max_irr != -1) | |
6339 | max_irr >>= 4; | |
6340 | ||
6341 | tpr = kvm_lapic_get_cr8(vcpu); | |
6342 | ||
6343 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | |
6344 | } | |
6345 | ||
b6b8a145 | 6346 | static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) |
95ba8273 | 6347 | { |
b6b8a145 JK |
6348 | int r; |
6349 | ||
95ba8273 | 6350 | /* try to reinject previous events if any */ |
b59bb7bd | 6351 | if (vcpu->arch.exception.pending) { |
5c1c85d0 AK |
6352 | trace_kvm_inj_exception(vcpu->arch.exception.nr, |
6353 | vcpu->arch.exception.has_error_code, | |
6354 | vcpu->arch.exception.error_code); | |
d6e8c854 NA |
6355 | |
6356 | if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) | |
6357 | __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | | |
6358 | X86_EFLAGS_RF); | |
6359 | ||
6bdf0662 NA |
6360 | if (vcpu->arch.exception.nr == DB_VECTOR && |
6361 | (vcpu->arch.dr7 & DR7_GD)) { | |
6362 | vcpu->arch.dr7 &= ~DR7_GD; | |
6363 | kvm_update_dr7(vcpu); | |
6364 | } | |
6365 | ||
cfcd20e5 | 6366 | kvm_x86_ops->queue_exception(vcpu); |
b6b8a145 | 6367 | return 0; |
b59bb7bd GN |
6368 | } |
6369 | ||
95ba8273 GN |
6370 | if (vcpu->arch.nmi_injected) { |
6371 | kvm_x86_ops->set_nmi(vcpu); | |
b6b8a145 | 6372 | return 0; |
95ba8273 GN |
6373 | } |
6374 | ||
6375 | if (vcpu->arch.interrupt.pending) { | |
66fd3f7f | 6376 | kvm_x86_ops->set_irq(vcpu); |
b6b8a145 JK |
6377 | return 0; |
6378 | } | |
6379 | ||
6380 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { | |
6381 | r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); | |
6382 | if (r != 0) | |
6383 | return r; | |
95ba8273 GN |
6384 | } |
6385 | ||
6386 | /* try to inject new event if pending */ | |
c43203ca PB |
6387 | if (vcpu->arch.smi_pending && !is_smm(vcpu)) { |
6388 | vcpu->arch.smi_pending = false; | |
ee2cd4b7 | 6389 | enter_smm(vcpu); |
c43203ca | 6390 | } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { |
321c5658 YS |
6391 | --vcpu->arch.nmi_pending; |
6392 | vcpu->arch.nmi_injected = true; | |
6393 | kvm_x86_ops->set_nmi(vcpu); | |
c7c9c56c | 6394 | } else if (kvm_cpu_has_injectable_intr(vcpu)) { |
9242b5b6 BD |
6395 | /* |
6396 | * Because interrupts can be injected asynchronously, we are | |
6397 | * calling check_nested_events again here to avoid a race condition. | |
6398 | * See https://lkml.org/lkml/2014/7/2/60 for discussion about this | |
6399 | * proposal and current concerns. Perhaps we should be setting | |
6400 | * KVM_REQ_EVENT only on certain events and not unconditionally? | |
6401 | */ | |
6402 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { | |
6403 | r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); | |
6404 | if (r != 0) | |
6405 | return r; | |
6406 | } | |
95ba8273 | 6407 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
66fd3f7f GN |
6408 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
6409 | false); | |
6410 | kvm_x86_ops->set_irq(vcpu); | |
95ba8273 GN |
6411 | } |
6412 | } | |
ee2cd4b7 | 6413 | |
b6b8a145 | 6414 | return 0; |
95ba8273 GN |
6415 | } |
6416 | ||
7460fb4a AK |
6417 | static void process_nmi(struct kvm_vcpu *vcpu) |
6418 | { | |
6419 | unsigned limit = 2; | |
6420 | ||
6421 | /* | |
6422 | * x86 is limited to one NMI running, and one NMI pending after it. | |
6423 | * If an NMI is already in progress, limit further NMIs to just one. | |
6424 | * Otherwise, allow two (and we'll inject the first one immediately). | |
6425 | */ | |
6426 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | |
6427 | limit = 1; | |
6428 | ||
6429 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | |
6430 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | |
6431 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
6432 | } | |
6433 | ||
660a5d51 PB |
6434 | #define put_smstate(type, buf, offset, val) \ |
6435 | *(type *)((buf) + (offset) - 0x7e00) = val | |
6436 | ||
ee2cd4b7 | 6437 | static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) |
660a5d51 PB |
6438 | { |
6439 | u32 flags = 0; | |
6440 | flags |= seg->g << 23; | |
6441 | flags |= seg->db << 22; | |
6442 | flags |= seg->l << 21; | |
6443 | flags |= seg->avl << 20; | |
6444 | flags |= seg->present << 15; | |
6445 | flags |= seg->dpl << 13; | |
6446 | flags |= seg->s << 12; | |
6447 | flags |= seg->type << 8; | |
6448 | return flags; | |
6449 | } | |
6450 | ||
ee2cd4b7 | 6451 | static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) |
660a5d51 PB |
6452 | { |
6453 | struct kvm_segment seg; | |
6454 | int offset; | |
6455 | ||
6456 | kvm_get_segment(vcpu, &seg, n); | |
6457 | put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); | |
6458 | ||
6459 | if (n < 3) | |
6460 | offset = 0x7f84 + n * 12; | |
6461 | else | |
6462 | offset = 0x7f2c + (n - 3) * 12; | |
6463 | ||
6464 | put_smstate(u32, buf, offset + 8, seg.base); | |
6465 | put_smstate(u32, buf, offset + 4, seg.limit); | |
ee2cd4b7 | 6466 | put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
6467 | } |
6468 | ||
efbb288a | 6469 | #ifdef CONFIG_X86_64 |
ee2cd4b7 | 6470 | static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) |
660a5d51 PB |
6471 | { |
6472 | struct kvm_segment seg; | |
6473 | int offset; | |
6474 | u16 flags; | |
6475 | ||
6476 | kvm_get_segment(vcpu, &seg, n); | |
6477 | offset = 0x7e00 + n * 16; | |
6478 | ||
ee2cd4b7 | 6479 | flags = enter_smm_get_segment_flags(&seg) >> 8; |
660a5d51 PB |
6480 | put_smstate(u16, buf, offset, seg.selector); |
6481 | put_smstate(u16, buf, offset + 2, flags); | |
6482 | put_smstate(u32, buf, offset + 4, seg.limit); | |
6483 | put_smstate(u64, buf, offset + 8, seg.base); | |
6484 | } | |
efbb288a | 6485 | #endif |
660a5d51 | 6486 | |
ee2cd4b7 | 6487 | static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) |
660a5d51 PB |
6488 | { |
6489 | struct desc_ptr dt; | |
6490 | struct kvm_segment seg; | |
6491 | unsigned long val; | |
6492 | int i; | |
6493 | ||
6494 | put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); | |
6495 | put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); | |
6496 | put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); | |
6497 | put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); | |
6498 | ||
6499 | for (i = 0; i < 8; i++) | |
6500 | put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); | |
6501 | ||
6502 | kvm_get_dr(vcpu, 6, &val); | |
6503 | put_smstate(u32, buf, 0x7fcc, (u32)val); | |
6504 | kvm_get_dr(vcpu, 7, &val); | |
6505 | put_smstate(u32, buf, 0x7fc8, (u32)val); | |
6506 | ||
6507 | kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); | |
6508 | put_smstate(u32, buf, 0x7fc4, seg.selector); | |
6509 | put_smstate(u32, buf, 0x7f64, seg.base); | |
6510 | put_smstate(u32, buf, 0x7f60, seg.limit); | |
ee2cd4b7 | 6511 | put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
6512 | |
6513 | kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); | |
6514 | put_smstate(u32, buf, 0x7fc0, seg.selector); | |
6515 | put_smstate(u32, buf, 0x7f80, seg.base); | |
6516 | put_smstate(u32, buf, 0x7f7c, seg.limit); | |
ee2cd4b7 | 6517 | put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
6518 | |
6519 | kvm_x86_ops->get_gdt(vcpu, &dt); | |
6520 | put_smstate(u32, buf, 0x7f74, dt.address); | |
6521 | put_smstate(u32, buf, 0x7f70, dt.size); | |
6522 | ||
6523 | kvm_x86_ops->get_idt(vcpu, &dt); | |
6524 | put_smstate(u32, buf, 0x7f58, dt.address); | |
6525 | put_smstate(u32, buf, 0x7f54, dt.size); | |
6526 | ||
6527 | for (i = 0; i < 6; i++) | |
ee2cd4b7 | 6528 | enter_smm_save_seg_32(vcpu, buf, i); |
660a5d51 PB |
6529 | |
6530 | put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); | |
6531 | ||
6532 | /* revision id */ | |
6533 | put_smstate(u32, buf, 0x7efc, 0x00020000); | |
6534 | put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); | |
6535 | } | |
6536 | ||
ee2cd4b7 | 6537 | static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) |
660a5d51 PB |
6538 | { |
6539 | #ifdef CONFIG_X86_64 | |
6540 | struct desc_ptr dt; | |
6541 | struct kvm_segment seg; | |
6542 | unsigned long val; | |
6543 | int i; | |
6544 | ||
6545 | for (i = 0; i < 16; i++) | |
6546 | put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); | |
6547 | ||
6548 | put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); | |
6549 | put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); | |
6550 | ||
6551 | kvm_get_dr(vcpu, 6, &val); | |
6552 | put_smstate(u64, buf, 0x7f68, val); | |
6553 | kvm_get_dr(vcpu, 7, &val); | |
6554 | put_smstate(u64, buf, 0x7f60, val); | |
6555 | ||
6556 | put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); | |
6557 | put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); | |
6558 | put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); | |
6559 | ||
6560 | put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); | |
6561 | ||
6562 | /* revision id */ | |
6563 | put_smstate(u32, buf, 0x7efc, 0x00020064); | |
6564 | ||
6565 | put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); | |
6566 | ||
6567 | kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); | |
6568 | put_smstate(u16, buf, 0x7e90, seg.selector); | |
ee2cd4b7 | 6569 | put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); |
660a5d51 PB |
6570 | put_smstate(u32, buf, 0x7e94, seg.limit); |
6571 | put_smstate(u64, buf, 0x7e98, seg.base); | |
6572 | ||
6573 | kvm_x86_ops->get_idt(vcpu, &dt); | |
6574 | put_smstate(u32, buf, 0x7e84, dt.size); | |
6575 | put_smstate(u64, buf, 0x7e88, dt.address); | |
6576 | ||
6577 | kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); | |
6578 | put_smstate(u16, buf, 0x7e70, seg.selector); | |
ee2cd4b7 | 6579 | put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); |
660a5d51 PB |
6580 | put_smstate(u32, buf, 0x7e74, seg.limit); |
6581 | put_smstate(u64, buf, 0x7e78, seg.base); | |
6582 | ||
6583 | kvm_x86_ops->get_gdt(vcpu, &dt); | |
6584 | put_smstate(u32, buf, 0x7e64, dt.size); | |
6585 | put_smstate(u64, buf, 0x7e68, dt.address); | |
6586 | ||
6587 | for (i = 0; i < 6; i++) | |
ee2cd4b7 | 6588 | enter_smm_save_seg_64(vcpu, buf, i); |
660a5d51 PB |
6589 | #else |
6590 | WARN_ON_ONCE(1); | |
6591 | #endif | |
6592 | } | |
6593 | ||
ee2cd4b7 | 6594 | static void enter_smm(struct kvm_vcpu *vcpu) |
64d60670 | 6595 | { |
660a5d51 | 6596 | struct kvm_segment cs, ds; |
18c3626e | 6597 | struct desc_ptr dt; |
660a5d51 PB |
6598 | char buf[512]; |
6599 | u32 cr0; | |
6600 | ||
660a5d51 PB |
6601 | trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); |
6602 | vcpu->arch.hflags |= HF_SMM_MASK; | |
6603 | memset(buf, 0, 512); | |
d6321d49 | 6604 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
ee2cd4b7 | 6605 | enter_smm_save_state_64(vcpu, buf); |
660a5d51 | 6606 | else |
ee2cd4b7 | 6607 | enter_smm_save_state_32(vcpu, buf); |
660a5d51 | 6608 | |
54bf36aa | 6609 | kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); |
660a5d51 PB |
6610 | |
6611 | if (kvm_x86_ops->get_nmi_mask(vcpu)) | |
6612 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
6613 | else | |
6614 | kvm_x86_ops->set_nmi_mask(vcpu, true); | |
6615 | ||
6616 | kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); | |
6617 | kvm_rip_write(vcpu, 0x8000); | |
6618 | ||
6619 | cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); | |
6620 | kvm_x86_ops->set_cr0(vcpu, cr0); | |
6621 | vcpu->arch.cr0 = cr0; | |
6622 | ||
6623 | kvm_x86_ops->set_cr4(vcpu, 0); | |
6624 | ||
18c3626e PB |
6625 | /* Undocumented: IDT limit is set to zero on entry to SMM. */ |
6626 | dt.address = dt.size = 0; | |
6627 | kvm_x86_ops->set_idt(vcpu, &dt); | |
6628 | ||
660a5d51 PB |
6629 | __kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
6630 | ||
6631 | cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; | |
6632 | cs.base = vcpu->arch.smbase; | |
6633 | ||
6634 | ds.selector = 0; | |
6635 | ds.base = 0; | |
6636 | ||
6637 | cs.limit = ds.limit = 0xffffffff; | |
6638 | cs.type = ds.type = 0x3; | |
6639 | cs.dpl = ds.dpl = 0; | |
6640 | cs.db = ds.db = 0; | |
6641 | cs.s = ds.s = 1; | |
6642 | cs.l = ds.l = 0; | |
6643 | cs.g = ds.g = 1; | |
6644 | cs.avl = ds.avl = 0; | |
6645 | cs.present = ds.present = 1; | |
6646 | cs.unusable = ds.unusable = 0; | |
6647 | cs.padding = ds.padding = 0; | |
6648 | ||
6649 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
6650 | kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); | |
6651 | kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); | |
6652 | kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); | |
6653 | kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); | |
6654 | kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); | |
6655 | ||
d6321d49 | 6656 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
660a5d51 PB |
6657 | kvm_x86_ops->set_efer(vcpu, 0); |
6658 | ||
6659 | kvm_update_cpuid(vcpu); | |
6660 | kvm_mmu_reset_context(vcpu); | |
64d60670 PB |
6661 | } |
6662 | ||
ee2cd4b7 | 6663 | static void process_smi(struct kvm_vcpu *vcpu) |
c43203ca PB |
6664 | { |
6665 | vcpu->arch.smi_pending = true; | |
6666 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
6667 | } | |
6668 | ||
2860c4b1 PB |
6669 | void kvm_make_scan_ioapic_request(struct kvm *kvm) |
6670 | { | |
6671 | kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); | |
6672 | } | |
6673 | ||
3d81bc7e | 6674 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
c7c9c56c | 6675 | { |
5c919412 AS |
6676 | u64 eoi_exit_bitmap[4]; |
6677 | ||
3d81bc7e YZ |
6678 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
6679 | return; | |
c7c9c56c | 6680 | |
6308630b | 6681 | bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); |
c7c9c56c | 6682 | |
b053b2ae | 6683 | if (irqchip_split(vcpu->kvm)) |
6308630b | 6684 | kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); |
db2bdcbb | 6685 | else { |
76dfafd5 | 6686 | if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) |
d62caabb | 6687 | kvm_x86_ops->sync_pir_to_irr(vcpu); |
6308630b | 6688 | kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); |
db2bdcbb | 6689 | } |
5c919412 AS |
6690 | bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, |
6691 | vcpu_to_synic(vcpu)->vec_bitmap, 256); | |
6692 | kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); | |
c7c9c56c YZ |
6693 | } |
6694 | ||
a70656b6 RK |
6695 | static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) |
6696 | { | |
6697 | ++vcpu->stat.tlb_flush; | |
6698 | kvm_x86_ops->tlb_flush(vcpu); | |
6699 | } | |
6700 | ||
4256f43f TC |
6701 | void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) |
6702 | { | |
c24ae0dc TC |
6703 | struct page *page = NULL; |
6704 | ||
35754c98 | 6705 | if (!lapic_in_kernel(vcpu)) |
f439ed27 PB |
6706 | return; |
6707 | ||
4256f43f TC |
6708 | if (!kvm_x86_ops->set_apic_access_page_addr) |
6709 | return; | |
6710 | ||
c24ae0dc | 6711 | page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
e8fd5e9e AA |
6712 | if (is_error_page(page)) |
6713 | return; | |
c24ae0dc TC |
6714 | kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); |
6715 | ||
6716 | /* | |
6717 | * Do not pin apic access page in memory, the MMU notifier | |
6718 | * will call us again if it is migrated or swapped out. | |
6719 | */ | |
6720 | put_page(page); | |
4256f43f TC |
6721 | } |
6722 | EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); | |
6723 | ||
fe71557a TC |
6724 | void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, |
6725 | unsigned long address) | |
6726 | { | |
c24ae0dc TC |
6727 | /* |
6728 | * The physical address of apic access page is stored in the VMCS. | |
6729 | * Update it when it becomes invalid. | |
6730 | */ | |
6731 | if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) | |
6732 | kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); | |
fe71557a TC |
6733 | } |
6734 | ||
9357d939 | 6735 | /* |
362c698f | 6736 | * Returns 1 to let vcpu_run() continue the guest execution loop without |
9357d939 TY |
6737 | * exiting to the userspace. Otherwise, the value will be returned to the |
6738 | * userspace. | |
6739 | */ | |
851ba692 | 6740 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
b6c7a5dc HB |
6741 | { |
6742 | int r; | |
62a193ed MG |
6743 | bool req_int_win = |
6744 | dm_request_for_irq_injection(vcpu) && | |
6745 | kvm_cpu_accept_dm_intr(vcpu); | |
6746 | ||
730dca42 | 6747 | bool req_immediate_exit = false; |
b6c7a5dc | 6748 | |
2fa6e1e1 | 6749 | if (kvm_request_pending(vcpu)) { |
a8eeb04a | 6750 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
2e53d63a | 6751 | kvm_mmu_unload(vcpu); |
a8eeb04a | 6752 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
2f599714 | 6753 | __kvm_migrate_timers(vcpu); |
d828199e MT |
6754 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
6755 | kvm_gen_update_masterclock(vcpu->kvm); | |
0061d53d MT |
6756 | if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) |
6757 | kvm_gen_kvmclock_update(vcpu); | |
34c238a1 ZA |
6758 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
6759 | r = kvm_guest_time_update(vcpu); | |
8cfdc000 ZA |
6760 | if (unlikely(r)) |
6761 | goto out; | |
6762 | } | |
a8eeb04a | 6763 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4731d4c7 | 6764 | kvm_mmu_sync_roots(vcpu); |
a8eeb04a | 6765 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
a70656b6 | 6766 | kvm_vcpu_flush_tlb(vcpu); |
a8eeb04a | 6767 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
851ba692 | 6768 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
b93463aa AK |
6769 | r = 0; |
6770 | goto out; | |
6771 | } | |
a8eeb04a | 6772 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
851ba692 | 6773 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
bbeac283 | 6774 | vcpu->mmio_needed = 0; |
71c4dfaf JR |
6775 | r = 0; |
6776 | goto out; | |
6777 | } | |
af585b92 GN |
6778 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
6779 | /* Page is swapped out. Do synthetic halt */ | |
6780 | vcpu->arch.apf.halted = true; | |
6781 | r = 1; | |
6782 | goto out; | |
6783 | } | |
c9aaa895 GC |
6784 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
6785 | record_steal_time(vcpu); | |
64d60670 PB |
6786 | if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
6787 | process_smi(vcpu); | |
7460fb4a AK |
6788 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
6789 | process_nmi(vcpu); | |
f5132b01 | 6790 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
c6702c9d | 6791 | kvm_pmu_handle_event(vcpu); |
f5132b01 | 6792 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) |
c6702c9d | 6793 | kvm_pmu_deliver_pmi(vcpu); |
7543a635 SR |
6794 | if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { |
6795 | BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); | |
6796 | if (test_bit(vcpu->arch.pending_ioapic_eoi, | |
6308630b | 6797 | vcpu->arch.ioapic_handled_vectors)) { |
7543a635 SR |
6798 | vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; |
6799 | vcpu->run->eoi.vector = | |
6800 | vcpu->arch.pending_ioapic_eoi; | |
6801 | r = 0; | |
6802 | goto out; | |
6803 | } | |
6804 | } | |
3d81bc7e YZ |
6805 | if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
6806 | vcpu_scan_ioapic(vcpu); | |
4256f43f TC |
6807 | if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) |
6808 | kvm_vcpu_reload_apic_access_page(vcpu); | |
2ce79189 AS |
6809 | if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { |
6810 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
6811 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; | |
6812 | r = 0; | |
6813 | goto out; | |
6814 | } | |
e516cebb AS |
6815 | if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { |
6816 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
6817 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; | |
6818 | r = 0; | |
6819 | goto out; | |
6820 | } | |
db397571 AS |
6821 | if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { |
6822 | vcpu->run->exit_reason = KVM_EXIT_HYPERV; | |
6823 | vcpu->run->hyperv = vcpu->arch.hyperv.exit; | |
6824 | r = 0; | |
6825 | goto out; | |
6826 | } | |
f3b138c5 AS |
6827 | |
6828 | /* | |
6829 | * KVM_REQ_HV_STIMER has to be processed after | |
6830 | * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers | |
6831 | * depend on the guest clock being up-to-date | |
6832 | */ | |
1f4b34f8 AS |
6833 | if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) |
6834 | kvm_hv_process_stimers(vcpu); | |
2f52d58c | 6835 | } |
b93463aa | 6836 | |
b463a6f7 | 6837 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
0f1e261e | 6838 | ++vcpu->stat.req_event; |
66450a21 JK |
6839 | kvm_apic_accept_events(vcpu); |
6840 | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | |
6841 | r = 1; | |
6842 | goto out; | |
6843 | } | |
6844 | ||
b6b8a145 JK |
6845 | if (inject_pending_event(vcpu, req_int_win) != 0) |
6846 | req_immediate_exit = true; | |
321c5658 | 6847 | else { |
c43203ca PB |
6848 | /* Enable NMI/IRQ window open exits if needed. |
6849 | * | |
6850 | * SMIs have two cases: 1) they can be nested, and | |
6851 | * then there is nothing to do here because RSM will | |
6852 | * cause a vmexit anyway; 2) or the SMI can be pending | |
6853 | * because inject_pending_event has completed the | |
6854 | * injection of an IRQ or NMI from the previous vmexit, | |
6855 | * and then we request an immediate exit to inject the SMI. | |
6856 | */ | |
6857 | if (vcpu->arch.smi_pending && !is_smm(vcpu)) | |
6858 | req_immediate_exit = true; | |
321c5658 YS |
6859 | if (vcpu->arch.nmi_pending) |
6860 | kvm_x86_ops->enable_nmi_window(vcpu); | |
6861 | if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) | |
6862 | kvm_x86_ops->enable_irq_window(vcpu); | |
6863 | } | |
b463a6f7 AK |
6864 | |
6865 | if (kvm_lapic_enabled(vcpu)) { | |
6866 | update_cr8_intercept(vcpu); | |
6867 | kvm_lapic_sync_to_vapic(vcpu); | |
6868 | } | |
6869 | } | |
6870 | ||
d8368af8 AK |
6871 | r = kvm_mmu_reload(vcpu); |
6872 | if (unlikely(r)) { | |
d905c069 | 6873 | goto cancel_injection; |
d8368af8 AK |
6874 | } |
6875 | ||
b6c7a5dc HB |
6876 | preempt_disable(); |
6877 | ||
6878 | kvm_x86_ops->prepare_guest_switch(vcpu); | |
bd7e5b08 | 6879 | kvm_load_guest_fpu(vcpu); |
b95234c8 PB |
6880 | |
6881 | /* | |
6882 | * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt | |
6883 | * IPI are then delayed after guest entry, which ensures that they | |
6884 | * result in virtual interrupt delivery. | |
6885 | */ | |
6886 | local_irq_disable(); | |
6b7e2d09 XG |
6887 | vcpu->mode = IN_GUEST_MODE; |
6888 | ||
01b71917 MT |
6889 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
6890 | ||
0f127d12 | 6891 | /* |
b95234c8 | 6892 | * 1) We should set ->mode before checking ->requests. Please see |
cde9af6e | 6893 | * the comment in kvm_vcpu_exiting_guest_mode(). |
b95234c8 PB |
6894 | * |
6895 | * 2) For APICv, we should set ->mode before checking PIR.ON. This | |
6896 | * pairs with the memory barrier implicit in pi_test_and_set_on | |
6897 | * (see vmx_deliver_posted_interrupt). | |
6898 | * | |
6899 | * 3) This also orders the write to mode from any reads to the page | |
6900 | * tables done while the VCPU is running. Please see the comment | |
6901 | * in kvm_flush_remote_tlbs. | |
6b7e2d09 | 6902 | */ |
01b71917 | 6903 | smp_mb__after_srcu_read_unlock(); |
b6c7a5dc | 6904 | |
b95234c8 PB |
6905 | /* |
6906 | * This handles the case where a posted interrupt was | |
6907 | * notified with kvm_vcpu_kick. | |
6908 | */ | |
6909 | if (kvm_lapic_enabled(vcpu)) { | |
6910 | if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) | |
6911 | kvm_x86_ops->sync_pir_to_irr(vcpu); | |
6912 | } | |
32f88400 | 6913 | |
2fa6e1e1 | 6914 | if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) |
d94e1dc9 | 6915 | || need_resched() || signal_pending(current)) { |
6b7e2d09 | 6916 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 6917 | smp_wmb(); |
6c142801 AK |
6918 | local_irq_enable(); |
6919 | preempt_enable(); | |
01b71917 | 6920 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
6c142801 | 6921 | r = 1; |
d905c069 | 6922 | goto cancel_injection; |
6c142801 AK |
6923 | } |
6924 | ||
fc5b7f3b DM |
6925 | kvm_load_guest_xcr0(vcpu); |
6926 | ||
c43203ca PB |
6927 | if (req_immediate_exit) { |
6928 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
d6185f20 | 6929 | smp_send_reschedule(vcpu->cpu); |
c43203ca | 6930 | } |
d6185f20 | 6931 | |
8b89fe1f PB |
6932 | trace_kvm_entry(vcpu->vcpu_id); |
6933 | wait_lapic_expire(vcpu); | |
6edaa530 | 6934 | guest_enter_irqoff(); |
b6c7a5dc | 6935 | |
42dbaa5a | 6936 | if (unlikely(vcpu->arch.switch_db_regs)) { |
42dbaa5a JK |
6937 | set_debugreg(0, 7); |
6938 | set_debugreg(vcpu->arch.eff_db[0], 0); | |
6939 | set_debugreg(vcpu->arch.eff_db[1], 1); | |
6940 | set_debugreg(vcpu->arch.eff_db[2], 2); | |
6941 | set_debugreg(vcpu->arch.eff_db[3], 3); | |
c77fb5fe | 6942 | set_debugreg(vcpu->arch.dr6, 6); |
ae561ede | 6943 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; |
42dbaa5a | 6944 | } |
b6c7a5dc | 6945 | |
851ba692 | 6946 | kvm_x86_ops->run(vcpu); |
b6c7a5dc | 6947 | |
c77fb5fe PB |
6948 | /* |
6949 | * Do this here before restoring debug registers on the host. And | |
6950 | * since we do this before handling the vmexit, a DR access vmexit | |
6951 | * can (a) read the correct value of the debug registers, (b) set | |
6952 | * KVM_DEBUGREG_WONT_EXIT again. | |
6953 | */ | |
6954 | if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { | |
c77fb5fe PB |
6955 | WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); |
6956 | kvm_x86_ops->sync_dirty_debug_regs(vcpu); | |
70e4da7a PB |
6957 | kvm_update_dr0123(vcpu); |
6958 | kvm_update_dr6(vcpu); | |
6959 | kvm_update_dr7(vcpu); | |
6960 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; | |
c77fb5fe PB |
6961 | } |
6962 | ||
24f1e32c FW |
6963 | /* |
6964 | * If the guest has used debug registers, at least dr7 | |
6965 | * will be disabled while returning to the host. | |
6966 | * If we don't have active breakpoints in the host, we don't | |
6967 | * care about the messed up debug address registers. But if | |
6968 | * we have some of them active, restore the old state. | |
6969 | */ | |
59d8eb53 | 6970 | if (hw_breakpoint_active()) |
24f1e32c | 6971 | hw_breakpoint_restore(); |
42dbaa5a | 6972 | |
4ba76538 | 6973 | vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
1d5f066e | 6974 | |
6b7e2d09 | 6975 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 6976 | smp_wmb(); |
a547c6db | 6977 | |
fc5b7f3b DM |
6978 | kvm_put_guest_xcr0(vcpu); |
6979 | ||
a547c6db | 6980 | kvm_x86_ops->handle_external_intr(vcpu); |
b6c7a5dc HB |
6981 | |
6982 | ++vcpu->stat.exits; | |
6983 | ||
f2485b3e | 6984 | guest_exit_irqoff(); |
b6c7a5dc | 6985 | |
f2485b3e | 6986 | local_irq_enable(); |
b6c7a5dc HB |
6987 | preempt_enable(); |
6988 | ||
f656ce01 | 6989 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
3200f405 | 6990 | |
b6c7a5dc HB |
6991 | /* |
6992 | * Profile KVM exit RIPs: | |
6993 | */ | |
6994 | if (unlikely(prof_on == KVM_PROFILING)) { | |
5fdbf976 MT |
6995 | unsigned long rip = kvm_rip_read(vcpu); |
6996 | profile_hit(KVM_PROFILING, (void *)rip); | |
b6c7a5dc HB |
6997 | } |
6998 | ||
cc578287 ZA |
6999 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
7000 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
298101da | 7001 | |
5cfb1d5a MT |
7002 | if (vcpu->arch.apic_attention) |
7003 | kvm_lapic_sync_from_vapic(vcpu); | |
b93463aa | 7004 | |
851ba692 | 7005 | r = kvm_x86_ops->handle_exit(vcpu); |
d905c069 MT |
7006 | return r; |
7007 | ||
7008 | cancel_injection: | |
7009 | kvm_x86_ops->cancel_injection(vcpu); | |
ae7a2a3f MT |
7010 | if (unlikely(vcpu->arch.apic_attention)) |
7011 | kvm_lapic_sync_from_vapic(vcpu); | |
d7690175 MT |
7012 | out: |
7013 | return r; | |
7014 | } | |
b6c7a5dc | 7015 | |
362c698f PB |
7016 | static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) |
7017 | { | |
bf9f6ac8 FW |
7018 | if (!kvm_arch_vcpu_runnable(vcpu) && |
7019 | (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { | |
9c8fd1ba PB |
7020 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
7021 | kvm_vcpu_block(vcpu); | |
7022 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | |
bf9f6ac8 FW |
7023 | |
7024 | if (kvm_x86_ops->post_block) | |
7025 | kvm_x86_ops->post_block(vcpu); | |
7026 | ||
9c8fd1ba PB |
7027 | if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
7028 | return 1; | |
7029 | } | |
362c698f PB |
7030 | |
7031 | kvm_apic_accept_events(vcpu); | |
7032 | switch(vcpu->arch.mp_state) { | |
7033 | case KVM_MP_STATE_HALTED: | |
7034 | vcpu->arch.pv.pv_unhalted = false; | |
7035 | vcpu->arch.mp_state = | |
7036 | KVM_MP_STATE_RUNNABLE; | |
7037 | case KVM_MP_STATE_RUNNABLE: | |
7038 | vcpu->arch.apf.halted = false; | |
7039 | break; | |
7040 | case KVM_MP_STATE_INIT_RECEIVED: | |
7041 | break; | |
7042 | default: | |
7043 | return -EINTR; | |
7044 | break; | |
7045 | } | |
7046 | return 1; | |
7047 | } | |
09cec754 | 7048 | |
5d9bc648 PB |
7049 | static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) |
7050 | { | |
0ad3bed6 PB |
7051 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) |
7052 | kvm_x86_ops->check_nested_events(vcpu, false); | |
7053 | ||
5d9bc648 PB |
7054 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
7055 | !vcpu->arch.apf.halted); | |
7056 | } | |
7057 | ||
362c698f | 7058 | static int vcpu_run(struct kvm_vcpu *vcpu) |
d7690175 MT |
7059 | { |
7060 | int r; | |
f656ce01 | 7061 | struct kvm *kvm = vcpu->kvm; |
d7690175 | 7062 | |
f656ce01 | 7063 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 7064 | |
362c698f | 7065 | for (;;) { |
58f800d5 | 7066 | if (kvm_vcpu_running(vcpu)) { |
851ba692 | 7067 | r = vcpu_enter_guest(vcpu); |
bf9f6ac8 | 7068 | } else { |
362c698f | 7069 | r = vcpu_block(kvm, vcpu); |
bf9f6ac8 FW |
7070 | } |
7071 | ||
09cec754 GN |
7072 | if (r <= 0) |
7073 | break; | |
7074 | ||
72875d8a | 7075 | kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); |
09cec754 GN |
7076 | if (kvm_cpu_has_pending_timer(vcpu)) |
7077 | kvm_inject_pending_timer_irqs(vcpu); | |
7078 | ||
782d422b MG |
7079 | if (dm_request_for_irq_injection(vcpu) && |
7080 | kvm_vcpu_ready_for_interrupt_injection(vcpu)) { | |
4ca7dd8c PB |
7081 | r = 0; |
7082 | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | |
09cec754 | 7083 | ++vcpu->stat.request_irq_exits; |
362c698f | 7084 | break; |
09cec754 | 7085 | } |
af585b92 GN |
7086 | |
7087 | kvm_check_async_pf_completion(vcpu); | |
7088 | ||
09cec754 GN |
7089 | if (signal_pending(current)) { |
7090 | r = -EINTR; | |
851ba692 | 7091 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 | 7092 | ++vcpu->stat.signal_exits; |
362c698f | 7093 | break; |
09cec754 GN |
7094 | } |
7095 | if (need_resched()) { | |
f656ce01 | 7096 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
c08ac06a | 7097 | cond_resched(); |
f656ce01 | 7098 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 7099 | } |
b6c7a5dc HB |
7100 | } |
7101 | ||
f656ce01 | 7102 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
b6c7a5dc HB |
7103 | |
7104 | return r; | |
7105 | } | |
7106 | ||
716d51ab GN |
7107 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
7108 | { | |
7109 | int r; | |
7110 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | |
7111 | r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | |
7112 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | |
7113 | if (r != EMULATE_DONE) | |
7114 | return 0; | |
7115 | return 1; | |
7116 | } | |
7117 | ||
7118 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | |
7119 | { | |
7120 | BUG_ON(!vcpu->arch.pio.count); | |
7121 | ||
7122 | return complete_emulated_io(vcpu); | |
7123 | } | |
7124 | ||
f78146b0 AK |
7125 | /* |
7126 | * Implements the following, as a state machine: | |
7127 | * | |
7128 | * read: | |
7129 | * for each fragment | |
87da7e66 XG |
7130 | * for each mmio piece in the fragment |
7131 | * write gpa, len | |
7132 | * exit | |
7133 | * copy data | |
f78146b0 AK |
7134 | * execute insn |
7135 | * | |
7136 | * write: | |
7137 | * for each fragment | |
87da7e66 XG |
7138 | * for each mmio piece in the fragment |
7139 | * write gpa, len | |
7140 | * copy data | |
7141 | * exit | |
f78146b0 | 7142 | */ |
716d51ab | 7143 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5287f194 AK |
7144 | { |
7145 | struct kvm_run *run = vcpu->run; | |
f78146b0 | 7146 | struct kvm_mmio_fragment *frag; |
87da7e66 | 7147 | unsigned len; |
5287f194 | 7148 | |
716d51ab | 7149 | BUG_ON(!vcpu->mmio_needed); |
5287f194 | 7150 | |
716d51ab | 7151 | /* Complete previous fragment */ |
87da7e66 XG |
7152 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
7153 | len = min(8u, frag->len); | |
716d51ab | 7154 | if (!vcpu->mmio_is_write) |
87da7e66 XG |
7155 | memcpy(frag->data, run->mmio.data, len); |
7156 | ||
7157 | if (frag->len <= 8) { | |
7158 | /* Switch to the next fragment. */ | |
7159 | frag++; | |
7160 | vcpu->mmio_cur_fragment++; | |
7161 | } else { | |
7162 | /* Go forward to the next mmio piece. */ | |
7163 | frag->data += len; | |
7164 | frag->gpa += len; | |
7165 | frag->len -= len; | |
7166 | } | |
7167 | ||
a08d3b3b | 7168 | if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
716d51ab | 7169 | vcpu->mmio_needed = 0; |
0912c977 PB |
7170 | |
7171 | /* FIXME: return into emulator if single-stepping. */ | |
cef4dea0 | 7172 | if (vcpu->mmio_is_write) |
716d51ab GN |
7173 | return 1; |
7174 | vcpu->mmio_read_completed = 1; | |
7175 | return complete_emulated_io(vcpu); | |
7176 | } | |
87da7e66 | 7177 | |
716d51ab GN |
7178 | run->exit_reason = KVM_EXIT_MMIO; |
7179 | run->mmio.phys_addr = frag->gpa; | |
7180 | if (vcpu->mmio_is_write) | |
87da7e66 XG |
7181 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
7182 | run->mmio.len = min(8u, frag->len); | |
716d51ab GN |
7183 | run->mmio.is_write = vcpu->mmio_is_write; |
7184 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | |
7185 | return 0; | |
5287f194 AK |
7186 | } |
7187 | ||
716d51ab | 7188 | |
b6c7a5dc HB |
7189 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
7190 | { | |
c5bedc68 | 7191 | struct fpu *fpu = ¤t->thread.fpu; |
b6c7a5dc HB |
7192 | int r; |
7193 | sigset_t sigsaved; | |
7194 | ||
c4d72e2d | 7195 | fpu__activate_curr(fpu); |
e5c30142 | 7196 | |
ac9f6dc0 AK |
7197 | if (vcpu->sigset_active) |
7198 | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | |
7199 | ||
a4535290 | 7200 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
b6c7a5dc | 7201 | kvm_vcpu_block(vcpu); |
66450a21 | 7202 | kvm_apic_accept_events(vcpu); |
72875d8a | 7203 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
ac9f6dc0 AK |
7204 | r = -EAGAIN; |
7205 | goto out; | |
b6c7a5dc HB |
7206 | } |
7207 | ||
b6c7a5dc | 7208 | /* re-sync apic's tpr */ |
35754c98 | 7209 | if (!lapic_in_kernel(vcpu)) { |
eea1cff9 AP |
7210 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
7211 | r = -EINVAL; | |
7212 | goto out; | |
7213 | } | |
7214 | } | |
b6c7a5dc | 7215 | |
716d51ab GN |
7216 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
7217 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | |
7218 | vcpu->arch.complete_userspace_io = NULL; | |
7219 | r = cui(vcpu); | |
7220 | if (r <= 0) | |
7221 | goto out; | |
7222 | } else | |
7223 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | |
5287f194 | 7224 | |
460df4c1 PB |
7225 | if (kvm_run->immediate_exit) |
7226 | r = -EINTR; | |
7227 | else | |
7228 | r = vcpu_run(vcpu); | |
b6c7a5dc HB |
7229 | |
7230 | out: | |
f1d86e46 | 7231 | post_kvm_run_save(vcpu); |
b6c7a5dc HB |
7232 | if (vcpu->sigset_active) |
7233 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | |
7234 | ||
b6c7a5dc HB |
7235 | return r; |
7236 | } | |
7237 | ||
7238 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
7239 | { | |
7ae441ea GN |
7240 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
7241 | /* | |
7242 | * We are here if userspace calls get_regs() in the middle of | |
7243 | * instruction emulation. Registers state needs to be copied | |
4a969980 | 7244 | * back from emulation context to vcpu. Userspace shouldn't do |
7ae441ea GN |
7245 | * that usually, but some bad designed PV devices (vmware |
7246 | * backdoor interface) need this to work | |
7247 | */ | |
dd856efa | 7248 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
7ae441ea GN |
7249 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
7250 | } | |
5fdbf976 MT |
7251 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
7252 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
7253 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
7254 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
7255 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
7256 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | |
7257 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | |
7258 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | |
b6c7a5dc | 7259 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
7260 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
7261 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | |
7262 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | |
7263 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | |
7264 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | |
7265 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | |
7266 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | |
7267 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | |
b6c7a5dc HB |
7268 | #endif |
7269 | ||
5fdbf976 | 7270 | regs->rip = kvm_rip_read(vcpu); |
91586a3b | 7271 | regs->rflags = kvm_get_rflags(vcpu); |
b6c7a5dc | 7272 | |
b6c7a5dc HB |
7273 | return 0; |
7274 | } | |
7275 | ||
7276 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | |
7277 | { | |
7ae441ea GN |
7278 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
7279 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | |
7280 | ||
5fdbf976 MT |
7281 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
7282 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | |
7283 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | |
7284 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | |
7285 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | |
7286 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | |
7287 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | |
7288 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | |
b6c7a5dc | 7289 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
7290 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
7291 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | |
7292 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | |
7293 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | |
7294 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | |
7295 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | |
7296 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | |
7297 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | |
b6c7a5dc HB |
7298 | #endif |
7299 | ||
5fdbf976 | 7300 | kvm_rip_write(vcpu, regs->rip); |
91586a3b | 7301 | kvm_set_rflags(vcpu, regs->rflags); |
b6c7a5dc | 7302 | |
b4f14abd JK |
7303 | vcpu->arch.exception.pending = false; |
7304 | ||
3842d135 AK |
7305 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
7306 | ||
b6c7a5dc HB |
7307 | return 0; |
7308 | } | |
7309 | ||
b6c7a5dc HB |
7310 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
7311 | { | |
7312 | struct kvm_segment cs; | |
7313 | ||
3e6e0aab | 7314 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
b6c7a5dc HB |
7315 | *db = cs.db; |
7316 | *l = cs.l; | |
7317 | } | |
7318 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | |
7319 | ||
7320 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | |
7321 | struct kvm_sregs *sregs) | |
7322 | { | |
89a27f4d | 7323 | struct desc_ptr dt; |
b6c7a5dc | 7324 | |
3e6e0aab GT |
7325 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
7326 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
7327 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
7328 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
7329 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
7330 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 7331 | |
3e6e0aab GT |
7332 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
7333 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc HB |
7334 | |
7335 | kvm_x86_ops->get_idt(vcpu, &dt); | |
89a27f4d GN |
7336 | sregs->idt.limit = dt.size; |
7337 | sregs->idt.base = dt.address; | |
b6c7a5dc | 7338 | kvm_x86_ops->get_gdt(vcpu, &dt); |
89a27f4d GN |
7339 | sregs->gdt.limit = dt.size; |
7340 | sregs->gdt.base = dt.address; | |
b6c7a5dc | 7341 | |
4d4ec087 | 7342 | sregs->cr0 = kvm_read_cr0(vcpu); |
ad312c7c | 7343 | sregs->cr2 = vcpu->arch.cr2; |
9f8fe504 | 7344 | sregs->cr3 = kvm_read_cr3(vcpu); |
fc78f519 | 7345 | sregs->cr4 = kvm_read_cr4(vcpu); |
2d3ad1f4 | 7346 | sregs->cr8 = kvm_get_cr8(vcpu); |
f6801dff | 7347 | sregs->efer = vcpu->arch.efer; |
b6c7a5dc HB |
7348 | sregs->apic_base = kvm_get_apic_base(vcpu); |
7349 | ||
923c61bb | 7350 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
b6c7a5dc | 7351 | |
36752c9b | 7352 | if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
14d0bc1f GN |
7353 | set_bit(vcpu->arch.interrupt.nr, |
7354 | (unsigned long *)sregs->interrupt_bitmap); | |
16d7a191 | 7355 | |
b6c7a5dc HB |
7356 | return 0; |
7357 | } | |
7358 | ||
62d9f0db MT |
7359 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
7360 | struct kvm_mp_state *mp_state) | |
7361 | { | |
66450a21 | 7362 | kvm_apic_accept_events(vcpu); |
6aef266c SV |
7363 | if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && |
7364 | vcpu->arch.pv.pv_unhalted) | |
7365 | mp_state->mp_state = KVM_MP_STATE_RUNNABLE; | |
7366 | else | |
7367 | mp_state->mp_state = vcpu->arch.mp_state; | |
7368 | ||
62d9f0db MT |
7369 | return 0; |
7370 | } | |
7371 | ||
7372 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |
7373 | struct kvm_mp_state *mp_state) | |
7374 | { | |
bce87cce | 7375 | if (!lapic_in_kernel(vcpu) && |
66450a21 JK |
7376 | mp_state->mp_state != KVM_MP_STATE_RUNNABLE) |
7377 | return -EINVAL; | |
7378 | ||
28bf2888 DH |
7379 | /* INITs are latched while in SMM */ |
7380 | if ((is_smm(vcpu) || vcpu->arch.smi_pending) && | |
7381 | (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || | |
7382 | mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) | |
7383 | return -EINVAL; | |
7384 | ||
66450a21 JK |
7385 | if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { |
7386 | vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
7387 | set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); | |
7388 | } else | |
7389 | vcpu->arch.mp_state = mp_state->mp_state; | |
3842d135 | 7390 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
62d9f0db MT |
7391 | return 0; |
7392 | } | |
7393 | ||
7f3d35fd KW |
7394 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
7395 | int reason, bool has_error_code, u32 error_code) | |
b6c7a5dc | 7396 | { |
9d74191a | 7397 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d | 7398 | int ret; |
e01c2426 | 7399 | |
8ec4722d | 7400 | init_emulate_ctxt(vcpu); |
c697518a | 7401 | |
7f3d35fd | 7402 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
9d74191a | 7403 | has_error_code, error_code); |
c697518a | 7404 | |
c697518a | 7405 | if (ret) |
19d04437 | 7406 | return EMULATE_FAIL; |
37817f29 | 7407 | |
9d74191a TY |
7408 | kvm_rip_write(vcpu, ctxt->eip); |
7409 | kvm_set_rflags(vcpu, ctxt->eflags); | |
3842d135 | 7410 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
19d04437 | 7411 | return EMULATE_DONE; |
37817f29 IE |
7412 | } |
7413 | EXPORT_SYMBOL_GPL(kvm_task_switch); | |
7414 | ||
b6c7a5dc HB |
7415 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
7416 | struct kvm_sregs *sregs) | |
7417 | { | |
58cb628d | 7418 | struct msr_data apic_base_msr; |
b6c7a5dc | 7419 | int mmu_reset_needed = 0; |
63f42e02 | 7420 | int pending_vec, max_bits, idx; |
89a27f4d | 7421 | struct desc_ptr dt; |
b6c7a5dc | 7422 | |
d6321d49 RK |
7423 | if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && |
7424 | (sregs->cr4 & X86_CR4_OSXSAVE)) | |
6d1068b3 PM |
7425 | return -EINVAL; |
7426 | ||
d3802286 JM |
7427 | apic_base_msr.data = sregs->apic_base; |
7428 | apic_base_msr.host_initiated = true; | |
7429 | if (kvm_set_apic_base(vcpu, &apic_base_msr)) | |
7430 | return -EINVAL; | |
7431 | ||
89a27f4d GN |
7432 | dt.size = sregs->idt.limit; |
7433 | dt.address = sregs->idt.base; | |
b6c7a5dc | 7434 | kvm_x86_ops->set_idt(vcpu, &dt); |
89a27f4d GN |
7435 | dt.size = sregs->gdt.limit; |
7436 | dt.address = sregs->gdt.base; | |
b6c7a5dc HB |
7437 | kvm_x86_ops->set_gdt(vcpu, &dt); |
7438 | ||
ad312c7c | 7439 | vcpu->arch.cr2 = sregs->cr2; |
9f8fe504 | 7440 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
dc7e795e | 7441 | vcpu->arch.cr3 = sregs->cr3; |
aff48baa | 7442 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
b6c7a5dc | 7443 | |
2d3ad1f4 | 7444 | kvm_set_cr8(vcpu, sregs->cr8); |
b6c7a5dc | 7445 | |
f6801dff | 7446 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
b6c7a5dc | 7447 | kvm_x86_ops->set_efer(vcpu, sregs->efer); |
b6c7a5dc | 7448 | |
4d4ec087 | 7449 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
b6c7a5dc | 7450 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
d7306163 | 7451 | vcpu->arch.cr0 = sregs->cr0; |
b6c7a5dc | 7452 | |
fc78f519 | 7453 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
b6c7a5dc | 7454 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
b9baba86 | 7455 | if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
00b27a3e | 7456 | kvm_update_cpuid(vcpu); |
63f42e02 XG |
7457 | |
7458 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
7c93be44 | 7459 | if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
9f8fe504 | 7460 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
7c93be44 MT |
7461 | mmu_reset_needed = 1; |
7462 | } | |
63f42e02 | 7463 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b6c7a5dc HB |
7464 | |
7465 | if (mmu_reset_needed) | |
7466 | kvm_mmu_reset_context(vcpu); | |
7467 | ||
a50abc3b | 7468 | max_bits = KVM_NR_INTERRUPTS; |
923c61bb GN |
7469 | pending_vec = find_first_bit( |
7470 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | |
7471 | if (pending_vec < max_bits) { | |
66fd3f7f | 7472 | kvm_queue_interrupt(vcpu, pending_vec, false); |
923c61bb | 7473 | pr_debug("Set back pending irq %d\n", pending_vec); |
b6c7a5dc HB |
7474 | } |
7475 | ||
3e6e0aab GT |
7476 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
7477 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
7478 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
7479 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
7480 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
7481 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 7482 | |
3e6e0aab GT |
7483 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
7484 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 7485 | |
5f0269f5 ME |
7486 | update_cr8_intercept(vcpu); |
7487 | ||
9c3e4aab | 7488 | /* Older userspace won't unhalt the vcpu on reset. */ |
c5af89b6 | 7489 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
9c3e4aab | 7490 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
3eeb3288 | 7491 | !is_protmode(vcpu)) |
9c3e4aab MT |
7492 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7493 | ||
3842d135 AK |
7494 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
7495 | ||
b6c7a5dc HB |
7496 | return 0; |
7497 | } | |
7498 | ||
d0bfb940 JK |
7499 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
7500 | struct kvm_guest_debug *dbg) | |
b6c7a5dc | 7501 | { |
355be0b9 | 7502 | unsigned long rflags; |
ae675ef0 | 7503 | int i, r; |
b6c7a5dc | 7504 | |
4f926bf2 JK |
7505 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
7506 | r = -EBUSY; | |
7507 | if (vcpu->arch.exception.pending) | |
2122ff5e | 7508 | goto out; |
4f926bf2 JK |
7509 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
7510 | kvm_queue_exception(vcpu, DB_VECTOR); | |
7511 | else | |
7512 | kvm_queue_exception(vcpu, BP_VECTOR); | |
7513 | } | |
7514 | ||
91586a3b JK |
7515 | /* |
7516 | * Read rflags as long as potentially injected trace flags are still | |
7517 | * filtered out. | |
7518 | */ | |
7519 | rflags = kvm_get_rflags(vcpu); | |
355be0b9 JK |
7520 | |
7521 | vcpu->guest_debug = dbg->control; | |
7522 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | |
7523 | vcpu->guest_debug = 0; | |
7524 | ||
7525 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | |
ae675ef0 JK |
7526 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
7527 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | |
c8639010 | 7528 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
ae675ef0 JK |
7529 | } else { |
7530 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
7531 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae675ef0 | 7532 | } |
c8639010 | 7533 | kvm_update_dr7(vcpu); |
ae675ef0 | 7534 | |
f92653ee JK |
7535 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
7536 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | |
7537 | get_segment_base(vcpu, VCPU_SREG_CS); | |
94fe45da | 7538 | |
91586a3b JK |
7539 | /* |
7540 | * Trigger an rflags update that will inject or remove the trace | |
7541 | * flags. | |
7542 | */ | |
7543 | kvm_set_rflags(vcpu, rflags); | |
b6c7a5dc | 7544 | |
a96036b8 | 7545 | kvm_x86_ops->update_bp_intercept(vcpu); |
b6c7a5dc | 7546 | |
4f926bf2 | 7547 | r = 0; |
d0bfb940 | 7548 | |
2122ff5e | 7549 | out: |
b6c7a5dc HB |
7550 | |
7551 | return r; | |
7552 | } | |
7553 | ||
8b006791 ZX |
7554 | /* |
7555 | * Translate a guest virtual address to a guest physical address. | |
7556 | */ | |
7557 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | |
7558 | struct kvm_translation *tr) | |
7559 | { | |
7560 | unsigned long vaddr = tr->linear_address; | |
7561 | gpa_t gpa; | |
f656ce01 | 7562 | int idx; |
8b006791 | 7563 | |
f656ce01 | 7564 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
1871c602 | 7565 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
f656ce01 | 7566 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8b006791 ZX |
7567 | tr->physical_address = gpa; |
7568 | tr->valid = gpa != UNMAPPED_GVA; | |
7569 | tr->writeable = 1; | |
7570 | tr->usermode = 0; | |
8b006791 ZX |
7571 | |
7572 | return 0; | |
7573 | } | |
7574 | ||
d0752060 HB |
7575 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
7576 | { | |
c47ada30 | 7577 | struct fxregs_state *fxsave = |
7366ed77 | 7578 | &vcpu->arch.guest_fpu.state.fxsave; |
d0752060 | 7579 | |
d0752060 HB |
7580 | memcpy(fpu->fpr, fxsave->st_space, 128); |
7581 | fpu->fcw = fxsave->cwd; | |
7582 | fpu->fsw = fxsave->swd; | |
7583 | fpu->ftwx = fxsave->twd; | |
7584 | fpu->last_opcode = fxsave->fop; | |
7585 | fpu->last_ip = fxsave->rip; | |
7586 | fpu->last_dp = fxsave->rdp; | |
7587 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | |
7588 | ||
d0752060 HB |
7589 | return 0; |
7590 | } | |
7591 | ||
7592 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | |
7593 | { | |
c47ada30 | 7594 | struct fxregs_state *fxsave = |
7366ed77 | 7595 | &vcpu->arch.guest_fpu.state.fxsave; |
d0752060 | 7596 | |
d0752060 HB |
7597 | memcpy(fxsave->st_space, fpu->fpr, 128); |
7598 | fxsave->cwd = fpu->fcw; | |
7599 | fxsave->swd = fpu->fsw; | |
7600 | fxsave->twd = fpu->ftwx; | |
7601 | fxsave->fop = fpu->last_opcode; | |
7602 | fxsave->rip = fpu->last_ip; | |
7603 | fxsave->rdp = fpu->last_dp; | |
7604 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | |
7605 | ||
d0752060 HB |
7606 | return 0; |
7607 | } | |
7608 | ||
0ee6a517 | 7609 | static void fx_init(struct kvm_vcpu *vcpu) |
d0752060 | 7610 | { |
bf935b0b | 7611 | fpstate_init(&vcpu->arch.guest_fpu.state); |
782511b0 | 7612 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
7366ed77 | 7613 | vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = |
df1daba7 | 7614 | host_xcr0 | XSTATE_COMPACTION_ENABLED; |
d0752060 | 7615 | |
2acf923e DC |
7616 | /* |
7617 | * Ensure guest xcr0 is valid for loading | |
7618 | */ | |
d91cab78 | 7619 | vcpu->arch.xcr0 = XFEATURE_MASK_FP; |
2acf923e | 7620 | |
ad312c7c | 7621 | vcpu->arch.cr0 |= X86_CR0_ET; |
d0752060 | 7622 | } |
d0752060 HB |
7623 | |
7624 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | |
7625 | { | |
2608d7a1 | 7626 | if (vcpu->guest_fpu_loaded) |
d0752060 HB |
7627 | return; |
7628 | ||
2acf923e DC |
7629 | /* |
7630 | * Restore all possible states in the guest, | |
7631 | * and assume host would use all available bits. | |
7632 | * Guest xcr0 would be loaded later. | |
7633 | */ | |
d0752060 | 7634 | vcpu->guest_fpu_loaded = 1; |
b1a74bf8 | 7635 | __kernel_fpu_begin(); |
003e2e8b | 7636 | __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state); |
0c04851c | 7637 | trace_kvm_fpu(1); |
d0752060 | 7638 | } |
d0752060 HB |
7639 | |
7640 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | |
7641 | { | |
3d42de25 | 7642 | if (!vcpu->guest_fpu_loaded) |
d0752060 HB |
7643 | return; |
7644 | ||
7645 | vcpu->guest_fpu_loaded = 0; | |
4f836347 | 7646 | copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); |
b1a74bf8 | 7647 | __kernel_fpu_end(); |
f096ed85 | 7648 | ++vcpu->stat.fpu_reload; |
0c04851c | 7649 | trace_kvm_fpu(0); |
d0752060 | 7650 | } |
e9b11c17 ZX |
7651 | |
7652 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | |
7653 | { | |
bd768e14 IY |
7654 | void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; |
7655 | ||
12f9a48f | 7656 | kvmclock_reset(vcpu); |
7f1ea208 | 7657 | |
e9b11c17 | 7658 | kvm_x86_ops->vcpu_free(vcpu); |
bd768e14 | 7659 | free_cpumask_var(wbinvd_dirty_mask); |
e9b11c17 ZX |
7660 | } |
7661 | ||
7662 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | |
7663 | unsigned int id) | |
7664 | { | |
c447e76b LL |
7665 | struct kvm_vcpu *vcpu; |
7666 | ||
6755bae8 ZA |
7667 | if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
7668 | printk_once(KERN_WARNING | |
7669 | "kvm: SMP vm created on host with unstable TSC; " | |
7670 | "guest TSC will not be reliable\n"); | |
c447e76b LL |
7671 | |
7672 | vcpu = kvm_x86_ops->vcpu_create(kvm, id); | |
7673 | ||
c447e76b | 7674 | return vcpu; |
26e5215f | 7675 | } |
e9b11c17 | 7676 | |
26e5215f AK |
7677 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
7678 | { | |
7679 | int r; | |
e9b11c17 | 7680 | |
19efffa2 | 7681 | kvm_vcpu_mtrr_init(vcpu); |
9fc77441 MT |
7682 | r = vcpu_load(vcpu); |
7683 | if (r) | |
7684 | return r; | |
d28bc9dd | 7685 | kvm_vcpu_reset(vcpu, false); |
8a3c1a33 | 7686 | kvm_mmu_setup(vcpu); |
e9b11c17 | 7687 | vcpu_put(vcpu); |
26e5215f | 7688 | return r; |
e9b11c17 ZX |
7689 | } |
7690 | ||
31928aa5 | 7691 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
42897d86 | 7692 | { |
8fe8ab46 | 7693 | struct msr_data msr; |
332967a3 | 7694 | struct kvm *kvm = vcpu->kvm; |
42897d86 | 7695 | |
d3457c87 RK |
7696 | kvm_hv_vcpu_postcreate(vcpu); |
7697 | ||
31928aa5 DD |
7698 | if (vcpu_load(vcpu)) |
7699 | return; | |
8fe8ab46 WA |
7700 | msr.data = 0x0; |
7701 | msr.index = MSR_IA32_TSC; | |
7702 | msr.host_initiated = true; | |
7703 | kvm_write_tsc(vcpu, &msr); | |
42897d86 MT |
7704 | vcpu_put(vcpu); |
7705 | ||
630994b3 MT |
7706 | if (!kvmclock_periodic_sync) |
7707 | return; | |
7708 | ||
332967a3 AJ |
7709 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
7710 | KVMCLOCK_SYNC_PERIOD); | |
42897d86 MT |
7711 | } |
7712 | ||
d40ccc62 | 7713 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
e9b11c17 | 7714 | { |
9fc77441 | 7715 | int r; |
344d9588 GN |
7716 | vcpu->arch.apf.msr_val = 0; |
7717 | ||
9fc77441 MT |
7718 | r = vcpu_load(vcpu); |
7719 | BUG_ON(r); | |
e9b11c17 ZX |
7720 | kvm_mmu_unload(vcpu); |
7721 | vcpu_put(vcpu); | |
7722 | ||
7723 | kvm_x86_ops->vcpu_free(vcpu); | |
7724 | } | |
7725 | ||
d28bc9dd | 7726 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
e9b11c17 | 7727 | { |
e69fab5d PB |
7728 | vcpu->arch.hflags = 0; |
7729 | ||
c43203ca | 7730 | vcpu->arch.smi_pending = 0; |
7460fb4a AK |
7731 | atomic_set(&vcpu->arch.nmi_queued, 0); |
7732 | vcpu->arch.nmi_pending = 0; | |
448fa4a9 | 7733 | vcpu->arch.nmi_injected = false; |
5f7552d4 NA |
7734 | kvm_clear_interrupt_queue(vcpu); |
7735 | kvm_clear_exception_queue(vcpu); | |
448fa4a9 | 7736 | |
42dbaa5a | 7737 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
ae561ede | 7738 | kvm_update_dr0123(vcpu); |
6f43ed01 | 7739 | vcpu->arch.dr6 = DR6_INIT; |
73aaf249 | 7740 | kvm_update_dr6(vcpu); |
42dbaa5a | 7741 | vcpu->arch.dr7 = DR7_FIXED_1; |
c8639010 | 7742 | kvm_update_dr7(vcpu); |
42dbaa5a | 7743 | |
1119022c NA |
7744 | vcpu->arch.cr2 = 0; |
7745 | ||
3842d135 | 7746 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
344d9588 | 7747 | vcpu->arch.apf.msr_val = 0; |
c9aaa895 | 7748 | vcpu->arch.st.msr_val = 0; |
3842d135 | 7749 | |
12f9a48f GC |
7750 | kvmclock_reset(vcpu); |
7751 | ||
af585b92 GN |
7752 | kvm_clear_async_pf_completion_queue(vcpu); |
7753 | kvm_async_pf_hash_reset(vcpu); | |
7754 | vcpu->arch.apf.halted = false; | |
3842d135 | 7755 | |
64d60670 | 7756 | if (!init_event) { |
d28bc9dd | 7757 | kvm_pmu_reset(vcpu); |
64d60670 | 7758 | vcpu->arch.smbase = 0x30000; |
db2336a8 KH |
7759 | |
7760 | vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; | |
7761 | vcpu->arch.msr_misc_features_enables = 0; | |
64d60670 | 7762 | } |
f5132b01 | 7763 | |
66f7b72e JS |
7764 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
7765 | vcpu->arch.regs_avail = ~0; | |
7766 | vcpu->arch.regs_dirty = ~0; | |
7767 | ||
d28bc9dd | 7768 | kvm_x86_ops->vcpu_reset(vcpu, init_event); |
e9b11c17 ZX |
7769 | } |
7770 | ||
2b4a273b | 7771 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
66450a21 JK |
7772 | { |
7773 | struct kvm_segment cs; | |
7774 | ||
7775 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | |
7776 | cs.selector = vector << 8; | |
7777 | cs.base = vector << 12; | |
7778 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
7779 | kvm_rip_write(vcpu, 0); | |
e9b11c17 ZX |
7780 | } |
7781 | ||
13a34e06 | 7782 | int kvm_arch_hardware_enable(void) |
e9b11c17 | 7783 | { |
ca84d1a2 ZA |
7784 | struct kvm *kvm; |
7785 | struct kvm_vcpu *vcpu; | |
7786 | int i; | |
0dd6a6ed ZA |
7787 | int ret; |
7788 | u64 local_tsc; | |
7789 | u64 max_tsc = 0; | |
7790 | bool stable, backwards_tsc = false; | |
18863bdd AK |
7791 | |
7792 | kvm_shared_msr_cpu_online(); | |
13a34e06 | 7793 | ret = kvm_x86_ops->hardware_enable(); |
0dd6a6ed ZA |
7794 | if (ret != 0) |
7795 | return ret; | |
7796 | ||
4ea1636b | 7797 | local_tsc = rdtsc(); |
0dd6a6ed ZA |
7798 | stable = !check_tsc_unstable(); |
7799 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
7800 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
7801 | if (!stable && vcpu->cpu == smp_processor_id()) | |
105b21bb | 7802 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
7803 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
7804 | backwards_tsc = true; | |
7805 | if (vcpu->arch.last_host_tsc > max_tsc) | |
7806 | max_tsc = vcpu->arch.last_host_tsc; | |
7807 | } | |
7808 | } | |
7809 | } | |
7810 | ||
7811 | /* | |
7812 | * Sometimes, even reliable TSCs go backwards. This happens on | |
7813 | * platforms that reset TSC during suspend or hibernate actions, but | |
7814 | * maintain synchronization. We must compensate. Fortunately, we can | |
7815 | * detect that condition here, which happens early in CPU bringup, | |
7816 | * before any KVM threads can be running. Unfortunately, we can't | |
7817 | * bring the TSCs fully up to date with real time, as we aren't yet far | |
7818 | * enough into CPU bringup that we know how much real time has actually | |
108b249c | 7819 | * elapsed; our helper function, ktime_get_boot_ns() will be using boot |
0dd6a6ed ZA |
7820 | * variables that haven't been updated yet. |
7821 | * | |
7822 | * So we simply find the maximum observed TSC above, then record the | |
7823 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | |
7824 | * the adjustment will be applied. Note that we accumulate | |
7825 | * adjustments, in case multiple suspend cycles happen before some VCPU | |
7826 | * gets a chance to run again. In the event that no KVM threads get a | |
7827 | * chance to run, we will miss the entire elapsed period, as we'll have | |
7828 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | |
7829 | * loose cycle time. This isn't too big a deal, since the loss will be | |
7830 | * uniform across all VCPUs (not to mention the scenario is extremely | |
7831 | * unlikely). It is possible that a second hibernate recovery happens | |
7832 | * much faster than a first, causing the observed TSC here to be | |
7833 | * smaller; this would require additional padding adjustment, which is | |
7834 | * why we set last_host_tsc to the local tsc observed here. | |
7835 | * | |
7836 | * N.B. - this code below runs only on platforms with reliable TSC, | |
7837 | * as that is the only way backwards_tsc is set above. Also note | |
7838 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | |
7839 | * have the same delta_cyc adjustment applied if backwards_tsc | |
7840 | * is detected. Note further, this adjustment is only done once, | |
7841 | * as we reset last_host_tsc on all VCPUs to stop this from being | |
7842 | * called multiple times (one for each physical CPU bringup). | |
7843 | * | |
4a969980 | 7844 | * Platforms with unreliable TSCs don't have to deal with this, they |
0dd6a6ed ZA |
7845 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
7846 | * catchup mode. This will catchup all VCPUs to real time, but cannot | |
7847 | * guarantee that they stay in perfect synchronization. | |
7848 | */ | |
7849 | if (backwards_tsc) { | |
7850 | u64 delta_cyc = max_tsc - local_tsc; | |
7851 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
a826faf1 | 7852 | kvm->arch.backwards_tsc_observed = true; |
0dd6a6ed ZA |
7853 | kvm_for_each_vcpu(i, vcpu, kvm) { |
7854 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | |
7855 | vcpu->arch.last_host_tsc = local_tsc; | |
105b21bb | 7856 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
7857 | } |
7858 | ||
7859 | /* | |
7860 | * We have to disable TSC offset matching.. if you were | |
7861 | * booting a VM while issuing an S4 host suspend.... | |
7862 | * you may have some problem. Solving this issue is | |
7863 | * left as an exercise to the reader. | |
7864 | */ | |
7865 | kvm->arch.last_tsc_nsec = 0; | |
7866 | kvm->arch.last_tsc_write = 0; | |
7867 | } | |
7868 | ||
7869 | } | |
7870 | return 0; | |
e9b11c17 ZX |
7871 | } |
7872 | ||
13a34e06 | 7873 | void kvm_arch_hardware_disable(void) |
e9b11c17 | 7874 | { |
13a34e06 RK |
7875 | kvm_x86_ops->hardware_disable(); |
7876 | drop_user_return_notifiers(); | |
e9b11c17 ZX |
7877 | } |
7878 | ||
7879 | int kvm_arch_hardware_setup(void) | |
7880 | { | |
9e9c3fe4 NA |
7881 | int r; |
7882 | ||
7883 | r = kvm_x86_ops->hardware_setup(); | |
7884 | if (r != 0) | |
7885 | return r; | |
7886 | ||
35181e86 HZ |
7887 | if (kvm_has_tsc_control) { |
7888 | /* | |
7889 | * Make sure the user can only configure tsc_khz values that | |
7890 | * fit into a signed integer. | |
7891 | * A min value is not calculated needed because it will always | |
7892 | * be 1 on all machines. | |
7893 | */ | |
7894 | u64 max = min(0x7fffffffULL, | |
7895 | __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); | |
7896 | kvm_max_guest_tsc_khz = max; | |
7897 | ||
ad721883 | 7898 | kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; |
35181e86 | 7899 | } |
ad721883 | 7900 | |
9e9c3fe4 NA |
7901 | kvm_init_msr_list(); |
7902 | return 0; | |
e9b11c17 ZX |
7903 | } |
7904 | ||
7905 | void kvm_arch_hardware_unsetup(void) | |
7906 | { | |
7907 | kvm_x86_ops->hardware_unsetup(); | |
7908 | } | |
7909 | ||
7910 | void kvm_arch_check_processor_compat(void *rtn) | |
7911 | { | |
7912 | kvm_x86_ops->check_processor_compatibility(rtn); | |
d71ba788 PB |
7913 | } |
7914 | ||
7915 | bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) | |
7916 | { | |
7917 | return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; | |
7918 | } | |
7919 | EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); | |
7920 | ||
7921 | bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) | |
7922 | { | |
7923 | return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; | |
e9b11c17 ZX |
7924 | } |
7925 | ||
54e9818f | 7926 | struct static_key kvm_no_apic_vcpu __read_mostly; |
bce87cce | 7927 | EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); |
54e9818f | 7928 | |
e9b11c17 ZX |
7929 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
7930 | { | |
7931 | struct page *page; | |
7932 | struct kvm *kvm; | |
7933 | int r; | |
7934 | ||
7935 | BUG_ON(vcpu->kvm == NULL); | |
7936 | kvm = vcpu->kvm; | |
7937 | ||
d62caabb | 7938 | vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); |
6aef266c | 7939 | vcpu->arch.pv.pv_unhalted = false; |
9aabc88f | 7940 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
58d269d8 | 7941 | if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) |
a4535290 | 7942 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
e9b11c17 | 7943 | else |
a4535290 | 7944 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
e9b11c17 ZX |
7945 | |
7946 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | |
7947 | if (!page) { | |
7948 | r = -ENOMEM; | |
7949 | goto fail; | |
7950 | } | |
ad312c7c | 7951 | vcpu->arch.pio_data = page_address(page); |
e9b11c17 | 7952 | |
cc578287 | 7953 | kvm_set_tsc_khz(vcpu, max_tsc_khz); |
c285545f | 7954 | |
e9b11c17 ZX |
7955 | r = kvm_mmu_create(vcpu); |
7956 | if (r < 0) | |
7957 | goto fail_free_pio_data; | |
7958 | ||
7959 | if (irqchip_in_kernel(kvm)) { | |
7960 | r = kvm_create_lapic(vcpu); | |
7961 | if (r < 0) | |
7962 | goto fail_mmu_destroy; | |
54e9818f GN |
7963 | } else |
7964 | static_key_slow_inc(&kvm_no_apic_vcpu); | |
e9b11c17 | 7965 | |
890ca9ae YH |
7966 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
7967 | GFP_KERNEL); | |
7968 | if (!vcpu->arch.mce_banks) { | |
7969 | r = -ENOMEM; | |
443c39bc | 7970 | goto fail_free_lapic; |
890ca9ae YH |
7971 | } |
7972 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | |
7973 | ||
f1797359 WY |
7974 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { |
7975 | r = -ENOMEM; | |
f5f48ee1 | 7976 | goto fail_free_mce_banks; |
f1797359 | 7977 | } |
f5f48ee1 | 7978 | |
0ee6a517 | 7979 | fx_init(vcpu); |
66f7b72e | 7980 | |
ba904635 | 7981 | vcpu->arch.ia32_tsc_adjust_msr = 0x0; |
0b79459b | 7982 | vcpu->arch.pv_time_enabled = false; |
d7876f1b PB |
7983 | |
7984 | vcpu->arch.guest_supported_xcr0 = 0; | |
4344ee98 | 7985 | vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
d7876f1b | 7986 | |
5a4f55cd EK |
7987 | vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
7988 | ||
74545705 RK |
7989 | vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; |
7990 | ||
af585b92 | 7991 | kvm_async_pf_hash_reset(vcpu); |
f5132b01 | 7992 | kvm_pmu_init(vcpu); |
af585b92 | 7993 | |
1c1a9ce9 | 7994 | vcpu->arch.pending_external_vector = -1; |
de63ad4c | 7995 | vcpu->arch.preempted_in_kernel = false; |
1c1a9ce9 | 7996 | |
5c919412 AS |
7997 | kvm_hv_vcpu_init(vcpu); |
7998 | ||
e9b11c17 | 7999 | return 0; |
0ee6a517 | 8000 | |
f5f48ee1 SY |
8001 | fail_free_mce_banks: |
8002 | kfree(vcpu->arch.mce_banks); | |
443c39bc WY |
8003 | fail_free_lapic: |
8004 | kvm_free_lapic(vcpu); | |
e9b11c17 ZX |
8005 | fail_mmu_destroy: |
8006 | kvm_mmu_destroy(vcpu); | |
8007 | fail_free_pio_data: | |
ad312c7c | 8008 | free_page((unsigned long)vcpu->arch.pio_data); |
e9b11c17 ZX |
8009 | fail: |
8010 | return r; | |
8011 | } | |
8012 | ||
8013 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | |
8014 | { | |
f656ce01 MT |
8015 | int idx; |
8016 | ||
1f4b34f8 | 8017 | kvm_hv_vcpu_uninit(vcpu); |
f5132b01 | 8018 | kvm_pmu_destroy(vcpu); |
36cb93fd | 8019 | kfree(vcpu->arch.mce_banks); |
e9b11c17 | 8020 | kvm_free_lapic(vcpu); |
f656ce01 | 8021 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
e9b11c17 | 8022 | kvm_mmu_destroy(vcpu); |
f656ce01 | 8023 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
ad312c7c | 8024 | free_page((unsigned long)vcpu->arch.pio_data); |
35754c98 | 8025 | if (!lapic_in_kernel(vcpu)) |
54e9818f | 8026 | static_key_slow_dec(&kvm_no_apic_vcpu); |
e9b11c17 | 8027 | } |
d19a9cd2 | 8028 | |
e790d9ef RK |
8029 | void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) |
8030 | { | |
ae97a3b8 | 8031 | kvm_x86_ops->sched_in(vcpu, cpu); |
e790d9ef RK |
8032 | } |
8033 | ||
e08b9637 | 8034 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
d19a9cd2 | 8035 | { |
e08b9637 CO |
8036 | if (type) |
8037 | return -EINVAL; | |
8038 | ||
6ef768fa | 8039 | INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); |
f05e70ac | 8040 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
365c8868 | 8041 | INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); |
4d5c5d0f | 8042 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
e0f0bbc5 | 8043 | atomic_set(&kvm->arch.noncoherent_dma_count, 0); |
d19a9cd2 | 8044 | |
5550af4d SY |
8045 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
8046 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | |
7a84428a AW |
8047 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
8048 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | |
8049 | &kvm->arch.irq_sources_bitmap); | |
5550af4d | 8050 | |
038f8c11 | 8051 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
1e08ec4a | 8052 | mutex_init(&kvm->arch.apic_map_lock); |
3f5ad8be | 8053 | mutex_init(&kvm->arch.hyperv.hv_lock); |
d828199e MT |
8054 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
8055 | ||
108b249c | 8056 | kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); |
d828199e | 8057 | pvclock_update_vm_gtod_copy(kvm); |
53f658b3 | 8058 | |
7e44e449 | 8059 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); |
332967a3 | 8060 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); |
7e44e449 | 8061 | |
0eb05bf2 | 8062 | kvm_page_track_init(kvm); |
13d268ca | 8063 | kvm_mmu_init_vm(kvm); |
0eb05bf2 | 8064 | |
03543133 SS |
8065 | if (kvm_x86_ops->vm_init) |
8066 | return kvm_x86_ops->vm_init(kvm); | |
8067 | ||
d89f5eff | 8068 | return 0; |
d19a9cd2 ZX |
8069 | } |
8070 | ||
8071 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | |
8072 | { | |
9fc77441 MT |
8073 | int r; |
8074 | r = vcpu_load(vcpu); | |
8075 | BUG_ON(r); | |
d19a9cd2 ZX |
8076 | kvm_mmu_unload(vcpu); |
8077 | vcpu_put(vcpu); | |
8078 | } | |
8079 | ||
8080 | static void kvm_free_vcpus(struct kvm *kvm) | |
8081 | { | |
8082 | unsigned int i; | |
988a2cae | 8083 | struct kvm_vcpu *vcpu; |
d19a9cd2 ZX |
8084 | |
8085 | /* | |
8086 | * Unpin any mmu pages first. | |
8087 | */ | |
af585b92 GN |
8088 | kvm_for_each_vcpu(i, vcpu, kvm) { |
8089 | kvm_clear_async_pf_completion_queue(vcpu); | |
988a2cae | 8090 | kvm_unload_vcpu_mmu(vcpu); |
af585b92 | 8091 | } |
988a2cae GN |
8092 | kvm_for_each_vcpu(i, vcpu, kvm) |
8093 | kvm_arch_vcpu_free(vcpu); | |
8094 | ||
8095 | mutex_lock(&kvm->lock); | |
8096 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | |
8097 | kvm->vcpus[i] = NULL; | |
d19a9cd2 | 8098 | |
988a2cae GN |
8099 | atomic_set(&kvm->online_vcpus, 0); |
8100 | mutex_unlock(&kvm->lock); | |
d19a9cd2 ZX |
8101 | } |
8102 | ||
ad8ba2cd SY |
8103 | void kvm_arch_sync_events(struct kvm *kvm) |
8104 | { | |
332967a3 | 8105 | cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); |
7e44e449 | 8106 | cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); |
aea924f6 | 8107 | kvm_free_pit(kvm); |
ad8ba2cd SY |
8108 | } |
8109 | ||
1d8007bd | 8110 | int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
9da0e4d5 PB |
8111 | { |
8112 | int i, r; | |
25188b99 | 8113 | unsigned long hva; |
f0d648bd PB |
8114 | struct kvm_memslots *slots = kvm_memslots(kvm); |
8115 | struct kvm_memory_slot *slot, old; | |
9da0e4d5 PB |
8116 | |
8117 | /* Called with kvm->slots_lock held. */ | |
1d8007bd PB |
8118 | if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) |
8119 | return -EINVAL; | |
9da0e4d5 | 8120 | |
f0d648bd PB |
8121 | slot = id_to_memslot(slots, id); |
8122 | if (size) { | |
b21629da | 8123 | if (slot->npages) |
f0d648bd PB |
8124 | return -EEXIST; |
8125 | ||
8126 | /* | |
8127 | * MAP_SHARED to prevent internal slot pages from being moved | |
8128 | * by fork()/COW. | |
8129 | */ | |
8130 | hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, | |
8131 | MAP_SHARED | MAP_ANONYMOUS, 0); | |
8132 | if (IS_ERR((void *)hva)) | |
8133 | return PTR_ERR((void *)hva); | |
8134 | } else { | |
8135 | if (!slot->npages) | |
8136 | return 0; | |
8137 | ||
8138 | hva = 0; | |
8139 | } | |
8140 | ||
8141 | old = *slot; | |
9da0e4d5 | 8142 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
1d8007bd | 8143 | struct kvm_userspace_memory_region m; |
9da0e4d5 | 8144 | |
1d8007bd PB |
8145 | m.slot = id | (i << 16); |
8146 | m.flags = 0; | |
8147 | m.guest_phys_addr = gpa; | |
f0d648bd | 8148 | m.userspace_addr = hva; |
1d8007bd | 8149 | m.memory_size = size; |
9da0e4d5 PB |
8150 | r = __kvm_set_memory_region(kvm, &m); |
8151 | if (r < 0) | |
8152 | return r; | |
8153 | } | |
8154 | ||
f0d648bd PB |
8155 | if (!size) { |
8156 | r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); | |
8157 | WARN_ON(r < 0); | |
8158 | } | |
8159 | ||
9da0e4d5 PB |
8160 | return 0; |
8161 | } | |
8162 | EXPORT_SYMBOL_GPL(__x86_set_memory_region); | |
8163 | ||
1d8007bd | 8164 | int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
9da0e4d5 PB |
8165 | { |
8166 | int r; | |
8167 | ||
8168 | mutex_lock(&kvm->slots_lock); | |
1d8007bd | 8169 | r = __x86_set_memory_region(kvm, id, gpa, size); |
9da0e4d5 PB |
8170 | mutex_unlock(&kvm->slots_lock); |
8171 | ||
8172 | return r; | |
8173 | } | |
8174 | EXPORT_SYMBOL_GPL(x86_set_memory_region); | |
8175 | ||
d19a9cd2 ZX |
8176 | void kvm_arch_destroy_vm(struct kvm *kvm) |
8177 | { | |
27469d29 AH |
8178 | if (current->mm == kvm->mm) { |
8179 | /* | |
8180 | * Free memory regions allocated on behalf of userspace, | |
8181 | * unless the the memory map has changed due to process exit | |
8182 | * or fd copying. | |
8183 | */ | |
1d8007bd PB |
8184 | x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); |
8185 | x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); | |
8186 | x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); | |
27469d29 | 8187 | } |
03543133 SS |
8188 | if (kvm_x86_ops->vm_destroy) |
8189 | kvm_x86_ops->vm_destroy(kvm); | |
c761159c PX |
8190 | kvm_pic_destroy(kvm); |
8191 | kvm_ioapic_destroy(kvm); | |
d19a9cd2 | 8192 | kvm_free_vcpus(kvm); |
af1bae54 | 8193 | kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
13d268ca | 8194 | kvm_mmu_uninit_vm(kvm); |
2beb6dad | 8195 | kvm_page_track_cleanup(kvm); |
d19a9cd2 | 8196 | } |
0de10343 | 8197 | |
5587027c | 8198 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, |
db3fe4eb TY |
8199 | struct kvm_memory_slot *dont) |
8200 | { | |
8201 | int i; | |
8202 | ||
d89cc617 TY |
8203 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
8204 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | |
548ef284 | 8205 | kvfree(free->arch.rmap[i]); |
d89cc617 | 8206 | free->arch.rmap[i] = NULL; |
77d11309 | 8207 | } |
d89cc617 TY |
8208 | if (i == 0) |
8209 | continue; | |
8210 | ||
8211 | if (!dont || free->arch.lpage_info[i - 1] != | |
8212 | dont->arch.lpage_info[i - 1]) { | |
548ef284 | 8213 | kvfree(free->arch.lpage_info[i - 1]); |
d89cc617 | 8214 | free->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
8215 | } |
8216 | } | |
21ebbeda XG |
8217 | |
8218 | kvm_page_track_free_memslot(free, dont); | |
db3fe4eb TY |
8219 | } |
8220 | ||
5587027c AK |
8221 | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
8222 | unsigned long npages) | |
db3fe4eb TY |
8223 | { |
8224 | int i; | |
8225 | ||
d89cc617 | 8226 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
92f94f1e | 8227 | struct kvm_lpage_info *linfo; |
db3fe4eb TY |
8228 | unsigned long ugfn; |
8229 | int lpages; | |
d89cc617 | 8230 | int level = i + 1; |
db3fe4eb TY |
8231 | |
8232 | lpages = gfn_to_index(slot->base_gfn + npages - 1, | |
8233 | slot->base_gfn, level) + 1; | |
8234 | ||
d89cc617 | 8235 | slot->arch.rmap[i] = |
a7c3e901 | 8236 | kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL); |
d89cc617 | 8237 | if (!slot->arch.rmap[i]) |
77d11309 | 8238 | goto out_free; |
d89cc617 TY |
8239 | if (i == 0) |
8240 | continue; | |
77d11309 | 8241 | |
a7c3e901 | 8242 | linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL); |
92f94f1e | 8243 | if (!linfo) |
db3fe4eb TY |
8244 | goto out_free; |
8245 | ||
92f94f1e XG |
8246 | slot->arch.lpage_info[i - 1] = linfo; |
8247 | ||
db3fe4eb | 8248 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 8249 | linfo[0].disallow_lpage = 1; |
db3fe4eb | 8250 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 8251 | linfo[lpages - 1].disallow_lpage = 1; |
db3fe4eb TY |
8252 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
8253 | /* | |
8254 | * If the gfn and userspace address are not aligned wrt each | |
8255 | * other, or if explicitly asked to, disable large page | |
8256 | * support for this slot | |
8257 | */ | |
8258 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | |
8259 | !kvm_largepages_enabled()) { | |
8260 | unsigned long j; | |
8261 | ||
8262 | for (j = 0; j < lpages; ++j) | |
92f94f1e | 8263 | linfo[j].disallow_lpage = 1; |
db3fe4eb TY |
8264 | } |
8265 | } | |
8266 | ||
21ebbeda XG |
8267 | if (kvm_page_track_create_memslot(slot, npages)) |
8268 | goto out_free; | |
8269 | ||
db3fe4eb TY |
8270 | return 0; |
8271 | ||
8272 | out_free: | |
d89cc617 | 8273 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
548ef284 | 8274 | kvfree(slot->arch.rmap[i]); |
d89cc617 TY |
8275 | slot->arch.rmap[i] = NULL; |
8276 | if (i == 0) | |
8277 | continue; | |
8278 | ||
548ef284 | 8279 | kvfree(slot->arch.lpage_info[i - 1]); |
d89cc617 | 8280 | slot->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
8281 | } |
8282 | return -ENOMEM; | |
8283 | } | |
8284 | ||
15f46015 | 8285 | void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) |
e59dbe09 | 8286 | { |
e6dff7d1 TY |
8287 | /* |
8288 | * memslots->generation has been incremented. | |
8289 | * mmio generation may have reached its maximum value. | |
8290 | */ | |
54bf36aa | 8291 | kvm_mmu_invalidate_mmio_sptes(kvm, slots); |
e59dbe09 TY |
8292 | } |
8293 | ||
f7784b8e MT |
8294 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
8295 | struct kvm_memory_slot *memslot, | |
09170a49 | 8296 | const struct kvm_userspace_memory_region *mem, |
7b6195a9 | 8297 | enum kvm_mr_change change) |
0de10343 | 8298 | { |
f7784b8e MT |
8299 | return 0; |
8300 | } | |
8301 | ||
88178fd4 KH |
8302 | static void kvm_mmu_slot_apply_flags(struct kvm *kvm, |
8303 | struct kvm_memory_slot *new) | |
8304 | { | |
8305 | /* Still write protect RO slot */ | |
8306 | if (new->flags & KVM_MEM_READONLY) { | |
8307 | kvm_mmu_slot_remove_write_access(kvm, new); | |
8308 | return; | |
8309 | } | |
8310 | ||
8311 | /* | |
8312 | * Call kvm_x86_ops dirty logging hooks when they are valid. | |
8313 | * | |
8314 | * kvm_x86_ops->slot_disable_log_dirty is called when: | |
8315 | * | |
8316 | * - KVM_MR_CREATE with dirty logging is disabled | |
8317 | * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag | |
8318 | * | |
8319 | * The reason is, in case of PML, we need to set D-bit for any slots | |
8320 | * with dirty logging disabled in order to eliminate unnecessary GPA | |
8321 | * logging in PML buffer (and potential PML buffer full VMEXT). This | |
8322 | * guarantees leaving PML enabled during guest's lifetime won't have | |
8323 | * any additonal overhead from PML when guest is running with dirty | |
8324 | * logging disabled for memory slots. | |
8325 | * | |
8326 | * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot | |
8327 | * to dirty logging mode. | |
8328 | * | |
8329 | * If kvm_x86_ops dirty logging hooks are invalid, use write protect. | |
8330 | * | |
8331 | * In case of write protect: | |
8332 | * | |
8333 | * Write protect all pages for dirty logging. | |
8334 | * | |
8335 | * All the sptes including the large sptes which point to this | |
8336 | * slot are set to readonly. We can not create any new large | |
8337 | * spte on this slot until the end of the logging. | |
8338 | * | |
8339 | * See the comments in fast_page_fault(). | |
8340 | */ | |
8341 | if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
8342 | if (kvm_x86_ops->slot_enable_log_dirty) | |
8343 | kvm_x86_ops->slot_enable_log_dirty(kvm, new); | |
8344 | else | |
8345 | kvm_mmu_slot_remove_write_access(kvm, new); | |
8346 | } else { | |
8347 | if (kvm_x86_ops->slot_disable_log_dirty) | |
8348 | kvm_x86_ops->slot_disable_log_dirty(kvm, new); | |
8349 | } | |
8350 | } | |
8351 | ||
f7784b8e | 8352 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
09170a49 | 8353 | const struct kvm_userspace_memory_region *mem, |
8482644a | 8354 | const struct kvm_memory_slot *old, |
f36f3f28 | 8355 | const struct kvm_memory_slot *new, |
8482644a | 8356 | enum kvm_mr_change change) |
f7784b8e | 8357 | { |
8482644a | 8358 | int nr_mmu_pages = 0; |
f7784b8e | 8359 | |
48c0e4e9 XG |
8360 | if (!kvm->arch.n_requested_mmu_pages) |
8361 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | |
8362 | ||
48c0e4e9 | 8363 | if (nr_mmu_pages) |
0de10343 | 8364 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
1c91cad4 | 8365 | |
3ea3b7fa WL |
8366 | /* |
8367 | * Dirty logging tracks sptes in 4k granularity, meaning that large | |
8368 | * sptes have to be split. If live migration is successful, the guest | |
8369 | * in the source machine will be destroyed and large sptes will be | |
8370 | * created in the destination. However, if the guest continues to run | |
8371 | * in the source machine (for example if live migration fails), small | |
8372 | * sptes will remain around and cause bad performance. | |
8373 | * | |
8374 | * Scan sptes if dirty logging has been stopped, dropping those | |
8375 | * which can be collapsed into a single large-page spte. Later | |
8376 | * page faults will create the large-page sptes. | |
8377 | */ | |
8378 | if ((change != KVM_MR_DELETE) && | |
8379 | (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && | |
8380 | !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) | |
8381 | kvm_mmu_zap_collapsible_sptes(kvm, new); | |
8382 | ||
c972f3b1 | 8383 | /* |
88178fd4 | 8384 | * Set up write protection and/or dirty logging for the new slot. |
c126d94f | 8385 | * |
88178fd4 KH |
8386 | * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have |
8387 | * been zapped so no dirty logging staff is needed for old slot. For | |
8388 | * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the | |
8389 | * new and it's also covered when dealing with the new slot. | |
f36f3f28 PB |
8390 | * |
8391 | * FIXME: const-ify all uses of struct kvm_memory_slot. | |
c972f3b1 | 8392 | */ |
88178fd4 | 8393 | if (change != KVM_MR_DELETE) |
f36f3f28 | 8394 | kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); |
0de10343 | 8395 | } |
1d737c8a | 8396 | |
2df72e9b | 8397 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
34d4cb8f | 8398 | { |
6ca18b69 | 8399 | kvm_mmu_invalidate_zap_all_pages(kvm); |
34d4cb8f MT |
8400 | } |
8401 | ||
2df72e9b MT |
8402 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
8403 | struct kvm_memory_slot *slot) | |
8404 | { | |
ae7cd873 | 8405 | kvm_page_track_flush_slot(kvm, slot); |
2df72e9b MT |
8406 | } |
8407 | ||
5d9bc648 PB |
8408 | static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) |
8409 | { | |
8410 | if (!list_empty_careful(&vcpu->async_pf.done)) | |
8411 | return true; | |
8412 | ||
8413 | if (kvm_apic_has_events(vcpu)) | |
8414 | return true; | |
8415 | ||
8416 | if (vcpu->arch.pv.pv_unhalted) | |
8417 | return true; | |
8418 | ||
47a66eed Z |
8419 | if (kvm_test_request(KVM_REQ_NMI, vcpu) || |
8420 | (vcpu->arch.nmi_pending && | |
8421 | kvm_x86_ops->nmi_allowed(vcpu))) | |
5d9bc648 PB |
8422 | return true; |
8423 | ||
47a66eed Z |
8424 | if (kvm_test_request(KVM_REQ_SMI, vcpu) || |
8425 | (vcpu->arch.smi_pending && !is_smm(vcpu))) | |
73917739 PB |
8426 | return true; |
8427 | ||
5d9bc648 PB |
8428 | if (kvm_arch_interrupt_allowed(vcpu) && |
8429 | kvm_cpu_has_interrupt(vcpu)) | |
8430 | return true; | |
8431 | ||
1f4b34f8 AS |
8432 | if (kvm_hv_has_stimer_pending(vcpu)) |
8433 | return true; | |
8434 | ||
5d9bc648 PB |
8435 | return false; |
8436 | } | |
8437 | ||
1d737c8a ZX |
8438 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
8439 | { | |
5d9bc648 | 8440 | return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); |
1d737c8a | 8441 | } |
5736199a | 8442 | |
199b5763 LM |
8443 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
8444 | { | |
de63ad4c | 8445 | return vcpu->arch.preempted_in_kernel; |
199b5763 LM |
8446 | } |
8447 | ||
b6d33834 | 8448 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
5736199a | 8449 | { |
b6d33834 | 8450 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
5736199a | 8451 | } |
78646121 GN |
8452 | |
8453 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | |
8454 | { | |
8455 | return kvm_x86_ops->interrupt_allowed(vcpu); | |
8456 | } | |
229456fc | 8457 | |
82b32774 | 8458 | unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) |
f92653ee | 8459 | { |
82b32774 NA |
8460 | if (is_64_bit_mode(vcpu)) |
8461 | return kvm_rip_read(vcpu); | |
8462 | return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + | |
8463 | kvm_rip_read(vcpu)); | |
8464 | } | |
8465 | EXPORT_SYMBOL_GPL(kvm_get_linear_rip); | |
f92653ee | 8466 | |
82b32774 NA |
8467 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
8468 | { | |
8469 | return kvm_get_linear_rip(vcpu) == linear_rip; | |
f92653ee JK |
8470 | } |
8471 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | |
8472 | ||
94fe45da JK |
8473 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
8474 | { | |
8475 | unsigned long rflags; | |
8476 | ||
8477 | rflags = kvm_x86_ops->get_rflags(vcpu); | |
8478 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | |
c310bac5 | 8479 | rflags &= ~X86_EFLAGS_TF; |
94fe45da JK |
8480 | return rflags; |
8481 | } | |
8482 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | |
8483 | ||
6addfc42 | 8484 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
94fe45da JK |
8485 | { |
8486 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | |
f92653ee | 8487 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
c310bac5 | 8488 | rflags |= X86_EFLAGS_TF; |
94fe45da | 8489 | kvm_x86_ops->set_rflags(vcpu, rflags); |
6addfc42 PB |
8490 | } |
8491 | ||
8492 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
8493 | { | |
8494 | __kvm_set_rflags(vcpu, rflags); | |
3842d135 | 8495 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
94fe45da JK |
8496 | } |
8497 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | |
8498 | ||
56028d08 GN |
8499 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
8500 | { | |
8501 | int r; | |
8502 | ||
fb67e14f | 8503 | if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || |
f2e10669 | 8504 | work->wakeup_all) |
56028d08 GN |
8505 | return; |
8506 | ||
8507 | r = kvm_mmu_reload(vcpu); | |
8508 | if (unlikely(r)) | |
8509 | return; | |
8510 | ||
fb67e14f XG |
8511 | if (!vcpu->arch.mmu.direct_map && |
8512 | work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) | |
8513 | return; | |
8514 | ||
56028d08 GN |
8515 | vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
8516 | } | |
8517 | ||
af585b92 GN |
8518 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
8519 | { | |
8520 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | |
8521 | } | |
8522 | ||
8523 | static inline u32 kvm_async_pf_next_probe(u32 key) | |
8524 | { | |
8525 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | |
8526 | } | |
8527 | ||
8528 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8529 | { | |
8530 | u32 key = kvm_async_pf_hash_fn(gfn); | |
8531 | ||
8532 | while (vcpu->arch.apf.gfns[key] != ~0) | |
8533 | key = kvm_async_pf_next_probe(key); | |
8534 | ||
8535 | vcpu->arch.apf.gfns[key] = gfn; | |
8536 | } | |
8537 | ||
8538 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8539 | { | |
8540 | int i; | |
8541 | u32 key = kvm_async_pf_hash_fn(gfn); | |
8542 | ||
8543 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | |
c7d28c24 XG |
8544 | (vcpu->arch.apf.gfns[key] != gfn && |
8545 | vcpu->arch.apf.gfns[key] != ~0); i++) | |
af585b92 GN |
8546 | key = kvm_async_pf_next_probe(key); |
8547 | ||
8548 | return key; | |
8549 | } | |
8550 | ||
8551 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8552 | { | |
8553 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | |
8554 | } | |
8555 | ||
8556 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
8557 | { | |
8558 | u32 i, j, k; | |
8559 | ||
8560 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | |
8561 | while (true) { | |
8562 | vcpu->arch.apf.gfns[i] = ~0; | |
8563 | do { | |
8564 | j = kvm_async_pf_next_probe(j); | |
8565 | if (vcpu->arch.apf.gfns[j] == ~0) | |
8566 | return; | |
8567 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | |
8568 | /* | |
8569 | * k lies cyclically in ]i,j] | |
8570 | * | i.k.j | | |
8571 | * |....j i.k.| or |.k..j i...| | |
8572 | */ | |
8573 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | |
8574 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | |
8575 | i = j; | |
8576 | } | |
8577 | } | |
8578 | ||
7c90705b GN |
8579 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
8580 | { | |
4e335d9e PB |
8581 | |
8582 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | |
8583 | sizeof(val)); | |
7c90705b GN |
8584 | } |
8585 | ||
af585b92 GN |
8586 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
8587 | struct kvm_async_pf *work) | |
8588 | { | |
6389ee94 AK |
8589 | struct x86_exception fault; |
8590 | ||
7c90705b | 8591 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
af585b92 | 8592 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7c90705b GN |
8593 | |
8594 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | |
fc5f06fa GN |
8595 | (vcpu->arch.apf.send_user_only && |
8596 | kvm_x86_ops->get_cpl(vcpu) == 0)) | |
7c90705b GN |
8597 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
8598 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | |
6389ee94 AK |
8599 | fault.vector = PF_VECTOR; |
8600 | fault.error_code_valid = true; | |
8601 | fault.error_code = 0; | |
8602 | fault.nested_page_fault = false; | |
8603 | fault.address = work->arch.token; | |
adfe20fb | 8604 | fault.async_page_fault = true; |
6389ee94 | 8605 | kvm_inject_page_fault(vcpu, &fault); |
7c90705b | 8606 | } |
af585b92 GN |
8607 | } |
8608 | ||
8609 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | |
8610 | struct kvm_async_pf *work) | |
8611 | { | |
6389ee94 AK |
8612 | struct x86_exception fault; |
8613 | ||
f2e10669 | 8614 | if (work->wakeup_all) |
7c90705b GN |
8615 | work->arch.token = ~0; /* broadcast wakeup */ |
8616 | else | |
8617 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | |
24dccf83 | 8618 | trace_kvm_async_pf_ready(work->arch.token, work->gva); |
7c90705b GN |
8619 | |
8620 | if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && | |
8621 | !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | |
6389ee94 AK |
8622 | fault.vector = PF_VECTOR; |
8623 | fault.error_code_valid = true; | |
8624 | fault.error_code = 0; | |
8625 | fault.nested_page_fault = false; | |
8626 | fault.address = work->arch.token; | |
adfe20fb | 8627 | fault.async_page_fault = true; |
6389ee94 | 8628 | kvm_inject_page_fault(vcpu, &fault); |
7c90705b | 8629 | } |
e6d53e3b | 8630 | vcpu->arch.apf.halted = false; |
a4fa1635 | 8631 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7c90705b GN |
8632 | } |
8633 | ||
8634 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | |
8635 | { | |
8636 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | |
8637 | return true; | |
8638 | else | |
9bc1f09f | 8639 | return kvm_can_do_async_pf(vcpu); |
af585b92 GN |
8640 | } |
8641 | ||
5544eb9b PB |
8642 | void kvm_arch_start_assignment(struct kvm *kvm) |
8643 | { | |
8644 | atomic_inc(&kvm->arch.assigned_device_count); | |
8645 | } | |
8646 | EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); | |
8647 | ||
8648 | void kvm_arch_end_assignment(struct kvm *kvm) | |
8649 | { | |
8650 | atomic_dec(&kvm->arch.assigned_device_count); | |
8651 | } | |
8652 | EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); | |
8653 | ||
8654 | bool kvm_arch_has_assigned_device(struct kvm *kvm) | |
8655 | { | |
8656 | return atomic_read(&kvm->arch.assigned_device_count); | |
8657 | } | |
8658 | EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); | |
8659 | ||
e0f0bbc5 AW |
8660 | void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
8661 | { | |
8662 | atomic_inc(&kvm->arch.noncoherent_dma_count); | |
8663 | } | |
8664 | EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); | |
8665 | ||
8666 | void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) | |
8667 | { | |
8668 | atomic_dec(&kvm->arch.noncoherent_dma_count); | |
8669 | } | |
8670 | EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); | |
8671 | ||
8672 | bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) | |
8673 | { | |
8674 | return atomic_read(&kvm->arch.noncoherent_dma_count); | |
8675 | } | |
8676 | EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); | |
8677 | ||
14717e20 AW |
8678 | bool kvm_arch_has_irq_bypass(void) |
8679 | { | |
8680 | return kvm_x86_ops->update_pi_irte != NULL; | |
8681 | } | |
8682 | ||
87276880 FW |
8683 | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
8684 | struct irq_bypass_producer *prod) | |
8685 | { | |
8686 | struct kvm_kernel_irqfd *irqfd = | |
8687 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
8688 | ||
14717e20 | 8689 | irqfd->producer = prod; |
87276880 | 8690 | |
14717e20 AW |
8691 | return kvm_x86_ops->update_pi_irte(irqfd->kvm, |
8692 | prod->irq, irqfd->gsi, 1); | |
87276880 FW |
8693 | } |
8694 | ||
8695 | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, | |
8696 | struct irq_bypass_producer *prod) | |
8697 | { | |
8698 | int ret; | |
8699 | struct kvm_kernel_irqfd *irqfd = | |
8700 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
8701 | ||
87276880 FW |
8702 | WARN_ON(irqfd->producer != prod); |
8703 | irqfd->producer = NULL; | |
8704 | ||
8705 | /* | |
8706 | * When producer of consumer is unregistered, we change back to | |
8707 | * remapped mode, so we can re-use the current implementation | |
bb3541f1 | 8708 | * when the irq is masked/disabled or the consumer side (KVM |
87276880 FW |
8709 | * int this case doesn't want to receive the interrupts. |
8710 | */ | |
8711 | ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); | |
8712 | if (ret) | |
8713 | printk(KERN_INFO "irq bypass consumer (token %p) unregistration" | |
8714 | " fails: %d\n", irqfd->consumer.token, ret); | |
8715 | } | |
8716 | ||
8717 | int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, | |
8718 | uint32_t guest_irq, bool set) | |
8719 | { | |
8720 | if (!kvm_x86_ops->update_pi_irte) | |
8721 | return -EINVAL; | |
8722 | ||
8723 | return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); | |
8724 | } | |
8725 | ||
52004014 FW |
8726 | bool kvm_vector_hashing_enabled(void) |
8727 | { | |
8728 | return vector_hashing; | |
8729 | } | |
8730 | EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); | |
8731 | ||
229456fc | 8732 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
931c33b1 | 8733 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); |
229456fc MT |
8734 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
8735 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | |
8736 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | |
8737 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | |
0ac406de | 8738 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
d8cabddf | 8739 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
17897f36 | 8740 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
236649de | 8741 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
ec1ff790 | 8742 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
532a46b9 | 8743 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
2e554e8d | 8744 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
489223ed | 8745 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
7b46268d | 8746 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); |
843e4330 | 8747 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); |
efc64404 | 8748 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); |
18f40c53 SS |
8749 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); |
8750 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); |