]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
0ff92245 | 50 | #include <linux/delayacct.h> |
1da177e4 | 51 | #include <linux/init.h> |
edc79b2a | 52 | #include <linux/writeback.h> |
1da177e4 LT |
53 | |
54 | #include <asm/pgalloc.h> | |
55 | #include <asm/uaccess.h> | |
56 | #include <asm/tlb.h> | |
57 | #include <asm/tlbflush.h> | |
58 | #include <asm/pgtable.h> | |
59 | ||
60 | #include <linux/swapops.h> | |
61 | #include <linux/elf.h> | |
62 | ||
d41dee36 | 63 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
64 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
65 | unsigned long max_mapnr; | |
66 | struct page *mem_map; | |
67 | ||
68 | EXPORT_SYMBOL(max_mapnr); | |
69 | EXPORT_SYMBOL(mem_map); | |
70 | #endif | |
71 | ||
72 | unsigned long num_physpages; | |
73 | /* | |
74 | * A number of key systems in x86 including ioremap() rely on the assumption | |
75 | * that high_memory defines the upper bound on direct map memory, then end | |
76 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
77 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
78 | * and ZONE_HIGHMEM. | |
79 | */ | |
80 | void * high_memory; | |
1da177e4 LT |
81 | |
82 | EXPORT_SYMBOL(num_physpages); | |
83 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 84 | |
a62eaf15 AK |
85 | int randomize_va_space __read_mostly = 1; |
86 | ||
87 | static int __init disable_randmaps(char *s) | |
88 | { | |
89 | randomize_va_space = 0; | |
9b41046c | 90 | return 1; |
a62eaf15 AK |
91 | } |
92 | __setup("norandmaps", disable_randmaps); | |
93 | ||
94 | ||
1da177e4 LT |
95 | /* |
96 | * If a p?d_bad entry is found while walking page tables, report | |
97 | * the error, before resetting entry to p?d_none. Usually (but | |
98 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
99 | */ | |
100 | ||
101 | void pgd_clear_bad(pgd_t *pgd) | |
102 | { | |
103 | pgd_ERROR(*pgd); | |
104 | pgd_clear(pgd); | |
105 | } | |
106 | ||
107 | void pud_clear_bad(pud_t *pud) | |
108 | { | |
109 | pud_ERROR(*pud); | |
110 | pud_clear(pud); | |
111 | } | |
112 | ||
113 | void pmd_clear_bad(pmd_t *pmd) | |
114 | { | |
115 | pmd_ERROR(*pmd); | |
116 | pmd_clear(pmd); | |
117 | } | |
118 | ||
119 | /* | |
120 | * Note: this doesn't free the actual pages themselves. That | |
121 | * has been handled earlier when unmapping all the memory regions. | |
122 | */ | |
e0da382c | 123 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 124 | { |
e0da382c HD |
125 | struct page *page = pmd_page(*pmd); |
126 | pmd_clear(pmd); | |
4c21e2f2 | 127 | pte_lock_deinit(page); |
e0da382c | 128 | pte_free_tlb(tlb, page); |
df849a15 | 129 | dec_zone_page_state(page, NR_PAGETABLE); |
e0da382c | 130 | tlb->mm->nr_ptes--; |
1da177e4 LT |
131 | } |
132 | ||
e0da382c HD |
133 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
134 | unsigned long addr, unsigned long end, | |
135 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
136 | { |
137 | pmd_t *pmd; | |
138 | unsigned long next; | |
e0da382c | 139 | unsigned long start; |
1da177e4 | 140 | |
e0da382c | 141 | start = addr; |
1da177e4 | 142 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
143 | do { |
144 | next = pmd_addr_end(addr, end); | |
145 | if (pmd_none_or_clear_bad(pmd)) | |
146 | continue; | |
e0da382c | 147 | free_pte_range(tlb, pmd); |
1da177e4 LT |
148 | } while (pmd++, addr = next, addr != end); |
149 | ||
e0da382c HD |
150 | start &= PUD_MASK; |
151 | if (start < floor) | |
152 | return; | |
153 | if (ceiling) { | |
154 | ceiling &= PUD_MASK; | |
155 | if (!ceiling) | |
156 | return; | |
1da177e4 | 157 | } |
e0da382c HD |
158 | if (end - 1 > ceiling - 1) |
159 | return; | |
160 | ||
161 | pmd = pmd_offset(pud, start); | |
162 | pud_clear(pud); | |
163 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
164 | } |
165 | ||
e0da382c HD |
166 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
167 | unsigned long addr, unsigned long end, | |
168 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
169 | { |
170 | pud_t *pud; | |
171 | unsigned long next; | |
e0da382c | 172 | unsigned long start; |
1da177e4 | 173 | |
e0da382c | 174 | start = addr; |
1da177e4 | 175 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
176 | do { |
177 | next = pud_addr_end(addr, end); | |
178 | if (pud_none_or_clear_bad(pud)) | |
179 | continue; | |
e0da382c | 180 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
181 | } while (pud++, addr = next, addr != end); |
182 | ||
e0da382c HD |
183 | start &= PGDIR_MASK; |
184 | if (start < floor) | |
185 | return; | |
186 | if (ceiling) { | |
187 | ceiling &= PGDIR_MASK; | |
188 | if (!ceiling) | |
189 | return; | |
1da177e4 | 190 | } |
e0da382c HD |
191 | if (end - 1 > ceiling - 1) |
192 | return; | |
193 | ||
194 | pud = pud_offset(pgd, start); | |
195 | pgd_clear(pgd); | |
196 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
197 | } |
198 | ||
199 | /* | |
e0da382c HD |
200 | * This function frees user-level page tables of a process. |
201 | * | |
1da177e4 LT |
202 | * Must be called with pagetable lock held. |
203 | */ | |
3bf5ee95 | 204 | void free_pgd_range(struct mmu_gather **tlb, |
e0da382c HD |
205 | unsigned long addr, unsigned long end, |
206 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
207 | { |
208 | pgd_t *pgd; | |
209 | unsigned long next; | |
e0da382c HD |
210 | unsigned long start; |
211 | ||
212 | /* | |
213 | * The next few lines have given us lots of grief... | |
214 | * | |
215 | * Why are we testing PMD* at this top level? Because often | |
216 | * there will be no work to do at all, and we'd prefer not to | |
217 | * go all the way down to the bottom just to discover that. | |
218 | * | |
219 | * Why all these "- 1"s? Because 0 represents both the bottom | |
220 | * of the address space and the top of it (using -1 for the | |
221 | * top wouldn't help much: the masks would do the wrong thing). | |
222 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
223 | * the address space, but end 0 and ceiling 0 refer to the top | |
224 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
225 | * that end 0 case should be mythical). | |
226 | * | |
227 | * Wherever addr is brought up or ceiling brought down, we must | |
228 | * be careful to reject "the opposite 0" before it confuses the | |
229 | * subsequent tests. But what about where end is brought down | |
230 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
231 | * | |
232 | * Whereas we round start (addr) and ceiling down, by different | |
233 | * masks at different levels, in order to test whether a table | |
234 | * now has no other vmas using it, so can be freed, we don't | |
235 | * bother to round floor or end up - the tests don't need that. | |
236 | */ | |
1da177e4 | 237 | |
e0da382c HD |
238 | addr &= PMD_MASK; |
239 | if (addr < floor) { | |
240 | addr += PMD_SIZE; | |
241 | if (!addr) | |
242 | return; | |
243 | } | |
244 | if (ceiling) { | |
245 | ceiling &= PMD_MASK; | |
246 | if (!ceiling) | |
247 | return; | |
248 | } | |
249 | if (end - 1 > ceiling - 1) | |
250 | end -= PMD_SIZE; | |
251 | if (addr > end - 1) | |
252 | return; | |
253 | ||
254 | start = addr; | |
3bf5ee95 | 255 | pgd = pgd_offset((*tlb)->mm, addr); |
1da177e4 LT |
256 | do { |
257 | next = pgd_addr_end(addr, end); | |
258 | if (pgd_none_or_clear_bad(pgd)) | |
259 | continue; | |
3bf5ee95 | 260 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 261 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
262 | } |
263 | ||
264 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |
3bf5ee95 | 265 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
266 | { |
267 | while (vma) { | |
268 | struct vm_area_struct *next = vma->vm_next; | |
269 | unsigned long addr = vma->vm_start; | |
270 | ||
8f4f8c16 HD |
271 | /* |
272 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
273 | */ | |
274 | anon_vma_unlink(vma); | |
275 | unlink_file_vma(vma); | |
276 | ||
9da61aef | 277 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 278 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 279 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
280 | } else { |
281 | /* | |
282 | * Optimization: gather nearby vmas into one call down | |
283 | */ | |
284 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 285 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
286 | vma = next; |
287 | next = vma->vm_next; | |
8f4f8c16 HD |
288 | anon_vma_unlink(vma); |
289 | unlink_file_vma(vma); | |
3bf5ee95 HD |
290 | } |
291 | free_pgd_range(tlb, addr, vma->vm_end, | |
292 | floor, next? next->vm_start: ceiling); | |
293 | } | |
e0da382c HD |
294 | vma = next; |
295 | } | |
1da177e4 LT |
296 | } |
297 | ||
1bb3630e | 298 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 299 | { |
c74df32c | 300 | struct page *new = pte_alloc_one(mm, address); |
1bb3630e HD |
301 | if (!new) |
302 | return -ENOMEM; | |
303 | ||
4c21e2f2 | 304 | pte_lock_init(new); |
c74df32c | 305 | spin_lock(&mm->page_table_lock); |
4c21e2f2 HD |
306 | if (pmd_present(*pmd)) { /* Another has populated it */ |
307 | pte_lock_deinit(new); | |
1bb3630e | 308 | pte_free(new); |
4c21e2f2 | 309 | } else { |
1da177e4 | 310 | mm->nr_ptes++; |
df849a15 | 311 | inc_zone_page_state(new, NR_PAGETABLE); |
1da177e4 LT |
312 | pmd_populate(mm, pmd, new); |
313 | } | |
c74df32c | 314 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 315 | return 0; |
1da177e4 LT |
316 | } |
317 | ||
1bb3630e | 318 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 319 | { |
1bb3630e HD |
320 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
321 | if (!new) | |
322 | return -ENOMEM; | |
323 | ||
324 | spin_lock(&init_mm.page_table_lock); | |
325 | if (pmd_present(*pmd)) /* Another has populated it */ | |
326 | pte_free_kernel(new); | |
327 | else | |
328 | pmd_populate_kernel(&init_mm, pmd, new); | |
329 | spin_unlock(&init_mm.page_table_lock); | |
330 | return 0; | |
1da177e4 LT |
331 | } |
332 | ||
ae859762 HD |
333 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
334 | { | |
335 | if (file_rss) | |
336 | add_mm_counter(mm, file_rss, file_rss); | |
337 | if (anon_rss) | |
338 | add_mm_counter(mm, anon_rss, anon_rss); | |
339 | } | |
340 | ||
b5810039 | 341 | /* |
6aab341e LT |
342 | * This function is called to print an error when a bad pte |
343 | * is found. For example, we might have a PFN-mapped pte in | |
344 | * a region that doesn't allow it. | |
b5810039 NP |
345 | * |
346 | * The calling function must still handle the error. | |
347 | */ | |
348 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | |
349 | { | |
350 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | |
351 | "vm_flags = %lx, vaddr = %lx\n", | |
352 | (long long)pte_val(pte), | |
353 | (vma->vm_mm == current->mm ? current->comm : "???"), | |
354 | vma->vm_flags, vaddr); | |
355 | dump_stack(); | |
356 | } | |
357 | ||
67121172 LT |
358 | static inline int is_cow_mapping(unsigned int flags) |
359 | { | |
360 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
361 | } | |
362 | ||
ee498ed7 | 363 | /* |
6aab341e LT |
364 | * This function gets the "struct page" associated with a pte. |
365 | * | |
366 | * NOTE! Some mappings do not have "struct pages". A raw PFN mapping | |
367 | * will have each page table entry just pointing to a raw page frame | |
368 | * number, and as far as the VM layer is concerned, those do not have | |
369 | * pages associated with them - even if the PFN might point to memory | |
370 | * that otherwise is perfectly fine and has a "struct page". | |
371 | * | |
372 | * The way we recognize those mappings is through the rules set up | |
373 | * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, | |
374 | * and the vm_pgoff will point to the first PFN mapped: thus every | |
375 | * page that is a raw mapping will always honor the rule | |
376 | * | |
377 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
378 | * | |
379 | * and if that isn't true, the page has been COW'ed (in which case it | |
380 | * _does_ have a "struct page" associated with it even if it is in a | |
381 | * VM_PFNMAP range). | |
ee498ed7 | 382 | */ |
6aab341e | 383 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) |
ee498ed7 | 384 | { |
6aab341e LT |
385 | unsigned long pfn = pte_pfn(pte); |
386 | ||
b7ab795b | 387 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
6aab341e LT |
388 | unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; |
389 | if (pfn == vma->vm_pgoff + off) | |
390 | return NULL; | |
67121172 | 391 | if (!is_cow_mapping(vma->vm_flags)) |
fb155c16 | 392 | return NULL; |
6aab341e LT |
393 | } |
394 | ||
315ab19a NP |
395 | /* |
396 | * Add some anal sanity checks for now. Eventually, | |
397 | * we should just do "return pfn_to_page(pfn)", but | |
398 | * in the meantime we check that we get a valid pfn, | |
399 | * and that the resulting page looks ok. | |
400 | */ | |
6aab341e LT |
401 | if (unlikely(!pfn_valid(pfn))) { |
402 | print_bad_pte(vma, pte, addr); | |
403 | return NULL; | |
404 | } | |
405 | ||
406 | /* | |
407 | * NOTE! We still have PageReserved() pages in the page | |
408 | * tables. | |
409 | * | |
410 | * The PAGE_ZERO() pages and various VDSO mappings can | |
411 | * cause them to exist. | |
412 | */ | |
413 | return pfn_to_page(pfn); | |
ee498ed7 HD |
414 | } |
415 | ||
1da177e4 LT |
416 | /* |
417 | * copy one vm_area from one task to the other. Assumes the page tables | |
418 | * already present in the new task to be cleared in the whole range | |
419 | * covered by this vma. | |
1da177e4 LT |
420 | */ |
421 | ||
8c103762 | 422 | static inline void |
1da177e4 | 423 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 424 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 425 | unsigned long addr, int *rss) |
1da177e4 | 426 | { |
b5810039 | 427 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
428 | pte_t pte = *src_pte; |
429 | struct page *page; | |
1da177e4 LT |
430 | |
431 | /* pte contains position in swap or file, so copy. */ | |
432 | if (unlikely(!pte_present(pte))) { | |
433 | if (!pte_file(pte)) { | |
0697212a CL |
434 | swp_entry_t entry = pte_to_swp_entry(pte); |
435 | ||
436 | swap_duplicate(entry); | |
1da177e4 LT |
437 | /* make sure dst_mm is on swapoff's mmlist. */ |
438 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
439 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
440 | if (list_empty(&dst_mm->mmlist)) |
441 | list_add(&dst_mm->mmlist, | |
442 | &src_mm->mmlist); | |
1da177e4 LT |
443 | spin_unlock(&mmlist_lock); |
444 | } | |
0697212a CL |
445 | if (is_write_migration_entry(entry) && |
446 | is_cow_mapping(vm_flags)) { | |
447 | /* | |
448 | * COW mappings require pages in both parent | |
449 | * and child to be set to read. | |
450 | */ | |
451 | make_migration_entry_read(&entry); | |
452 | pte = swp_entry_to_pte(entry); | |
453 | set_pte_at(src_mm, addr, src_pte, pte); | |
454 | } | |
1da177e4 | 455 | } |
ae859762 | 456 | goto out_set_pte; |
1da177e4 LT |
457 | } |
458 | ||
1da177e4 LT |
459 | /* |
460 | * If it's a COW mapping, write protect it both | |
461 | * in the parent and the child | |
462 | */ | |
67121172 | 463 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 464 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 465 | pte = pte_wrprotect(pte); |
1da177e4 LT |
466 | } |
467 | ||
468 | /* | |
469 | * If it's a shared mapping, mark it clean in | |
470 | * the child | |
471 | */ | |
472 | if (vm_flags & VM_SHARED) | |
473 | pte = pte_mkclean(pte); | |
474 | pte = pte_mkold(pte); | |
6aab341e LT |
475 | |
476 | page = vm_normal_page(vma, addr, pte); | |
477 | if (page) { | |
478 | get_page(page); | |
c97a9e10 | 479 | page_dup_rmap(page, vma, addr); |
6aab341e LT |
480 | rss[!!PageAnon(page)]++; |
481 | } | |
ae859762 HD |
482 | |
483 | out_set_pte: | |
484 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
485 | } |
486 | ||
487 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
488 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
489 | unsigned long addr, unsigned long end) | |
490 | { | |
491 | pte_t *src_pte, *dst_pte; | |
c74df32c | 492 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 493 | int progress = 0; |
8c103762 | 494 | int rss[2]; |
1da177e4 LT |
495 | |
496 | again: | |
ae859762 | 497 | rss[1] = rss[0] = 0; |
c74df32c | 498 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
499 | if (!dst_pte) |
500 | return -ENOMEM; | |
501 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 502 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 503 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
6606c3e0 | 504 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 505 | |
1da177e4 LT |
506 | do { |
507 | /* | |
508 | * We are holding two locks at this point - either of them | |
509 | * could generate latencies in another task on another CPU. | |
510 | */ | |
e040f218 HD |
511 | if (progress >= 32) { |
512 | progress = 0; | |
513 | if (need_resched() || | |
c74df32c HD |
514 | need_lockbreak(src_ptl) || |
515 | need_lockbreak(dst_ptl)) | |
e040f218 HD |
516 | break; |
517 | } | |
1da177e4 LT |
518 | if (pte_none(*src_pte)) { |
519 | progress++; | |
520 | continue; | |
521 | } | |
8c103762 | 522 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
523 | progress += 8; |
524 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 525 | |
6606c3e0 | 526 | arch_leave_lazy_mmu_mode(); |
c74df32c | 527 | spin_unlock(src_ptl); |
1da177e4 | 528 | pte_unmap_nested(src_pte - 1); |
ae859762 | 529 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
530 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
531 | cond_resched(); | |
1da177e4 LT |
532 | if (addr != end) |
533 | goto again; | |
534 | return 0; | |
535 | } | |
536 | ||
537 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
538 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
539 | unsigned long addr, unsigned long end) | |
540 | { | |
541 | pmd_t *src_pmd, *dst_pmd; | |
542 | unsigned long next; | |
543 | ||
544 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
545 | if (!dst_pmd) | |
546 | return -ENOMEM; | |
547 | src_pmd = pmd_offset(src_pud, addr); | |
548 | do { | |
549 | next = pmd_addr_end(addr, end); | |
550 | if (pmd_none_or_clear_bad(src_pmd)) | |
551 | continue; | |
552 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
553 | vma, addr, next)) | |
554 | return -ENOMEM; | |
555 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
556 | return 0; | |
557 | } | |
558 | ||
559 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
560 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
561 | unsigned long addr, unsigned long end) | |
562 | { | |
563 | pud_t *src_pud, *dst_pud; | |
564 | unsigned long next; | |
565 | ||
566 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
567 | if (!dst_pud) | |
568 | return -ENOMEM; | |
569 | src_pud = pud_offset(src_pgd, addr); | |
570 | do { | |
571 | next = pud_addr_end(addr, end); | |
572 | if (pud_none_or_clear_bad(src_pud)) | |
573 | continue; | |
574 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
575 | vma, addr, next)) | |
576 | return -ENOMEM; | |
577 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
578 | return 0; | |
579 | } | |
580 | ||
581 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
582 | struct vm_area_struct *vma) | |
583 | { | |
584 | pgd_t *src_pgd, *dst_pgd; | |
585 | unsigned long next; | |
586 | unsigned long addr = vma->vm_start; | |
587 | unsigned long end = vma->vm_end; | |
588 | ||
d992895b NP |
589 | /* |
590 | * Don't copy ptes where a page fault will fill them correctly. | |
591 | * Fork becomes much lighter when there are big shared or private | |
592 | * readonly mappings. The tradeoff is that copy_page_range is more | |
593 | * efficient than faulting. | |
594 | */ | |
4d7672b4 | 595 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
596 | if (!vma->anon_vma) |
597 | return 0; | |
598 | } | |
599 | ||
1da177e4 LT |
600 | if (is_vm_hugetlb_page(vma)) |
601 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
602 | ||
603 | dst_pgd = pgd_offset(dst_mm, addr); | |
604 | src_pgd = pgd_offset(src_mm, addr); | |
605 | do { | |
606 | next = pgd_addr_end(addr, end); | |
607 | if (pgd_none_or_clear_bad(src_pgd)) | |
608 | continue; | |
609 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | |
610 | vma, addr, next)) | |
611 | return -ENOMEM; | |
612 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | |
613 | return 0; | |
614 | } | |
615 | ||
51c6f666 | 616 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 617 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 618 | unsigned long addr, unsigned long end, |
51c6f666 | 619 | long *zap_work, struct zap_details *details) |
1da177e4 | 620 | { |
b5810039 | 621 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 622 | pte_t *pte; |
508034a3 | 623 | spinlock_t *ptl; |
ae859762 HD |
624 | int file_rss = 0; |
625 | int anon_rss = 0; | |
1da177e4 | 626 | |
508034a3 | 627 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 628 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
629 | do { |
630 | pte_t ptent = *pte; | |
51c6f666 RH |
631 | if (pte_none(ptent)) { |
632 | (*zap_work)--; | |
1da177e4 | 633 | continue; |
51c6f666 | 634 | } |
6f5e6b9e HD |
635 | |
636 | (*zap_work) -= PAGE_SIZE; | |
637 | ||
1da177e4 | 638 | if (pte_present(ptent)) { |
ee498ed7 | 639 | struct page *page; |
51c6f666 | 640 | |
6aab341e | 641 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
642 | if (unlikely(details) && page) { |
643 | /* | |
644 | * unmap_shared_mapping_pages() wants to | |
645 | * invalidate cache without truncating: | |
646 | * unmap shared but keep private pages. | |
647 | */ | |
648 | if (details->check_mapping && | |
649 | details->check_mapping != page->mapping) | |
650 | continue; | |
651 | /* | |
652 | * Each page->index must be checked when | |
653 | * invalidating or truncating nonlinear. | |
654 | */ | |
655 | if (details->nonlinear_vma && | |
656 | (page->index < details->first_index || | |
657 | page->index > details->last_index)) | |
658 | continue; | |
659 | } | |
b5810039 | 660 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 661 | tlb->fullmm); |
1da177e4 LT |
662 | tlb_remove_tlb_entry(tlb, pte, addr); |
663 | if (unlikely(!page)) | |
664 | continue; | |
665 | if (unlikely(details) && details->nonlinear_vma | |
666 | && linear_page_index(details->nonlinear_vma, | |
667 | addr) != page->index) | |
b5810039 | 668 | set_pte_at(mm, addr, pte, |
1da177e4 | 669 | pgoff_to_pte(page->index)); |
1da177e4 | 670 | if (PageAnon(page)) |
86d912f4 | 671 | anon_rss--; |
6237bcd9 HD |
672 | else { |
673 | if (pte_dirty(ptent)) | |
674 | set_page_dirty(page); | |
675 | if (pte_young(ptent)) | |
daa88c8d | 676 | SetPageReferenced(page); |
86d912f4 | 677 | file_rss--; |
6237bcd9 | 678 | } |
7de6b805 | 679 | page_remove_rmap(page, vma); |
1da177e4 LT |
680 | tlb_remove_page(tlb, page); |
681 | continue; | |
682 | } | |
683 | /* | |
684 | * If details->check_mapping, we leave swap entries; | |
685 | * if details->nonlinear_vma, we leave file entries. | |
686 | */ | |
687 | if (unlikely(details)) | |
688 | continue; | |
689 | if (!pte_file(ptent)) | |
690 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
9888a1ca | 691 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 692 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 693 | |
86d912f4 | 694 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 695 | arch_leave_lazy_mmu_mode(); |
508034a3 | 696 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
697 | |
698 | return addr; | |
1da177e4 LT |
699 | } |
700 | ||
51c6f666 | 701 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 702 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 703 | unsigned long addr, unsigned long end, |
51c6f666 | 704 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
705 | { |
706 | pmd_t *pmd; | |
707 | unsigned long next; | |
708 | ||
709 | pmd = pmd_offset(pud, addr); | |
710 | do { | |
711 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
712 | if (pmd_none_or_clear_bad(pmd)) { |
713 | (*zap_work)--; | |
1da177e4 | 714 | continue; |
51c6f666 RH |
715 | } |
716 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
717 | zap_work, details); | |
718 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
719 | ||
720 | return addr; | |
1da177e4 LT |
721 | } |
722 | ||
51c6f666 | 723 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 724 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 725 | unsigned long addr, unsigned long end, |
51c6f666 | 726 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
727 | { |
728 | pud_t *pud; | |
729 | unsigned long next; | |
730 | ||
731 | pud = pud_offset(pgd, addr); | |
732 | do { | |
733 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
734 | if (pud_none_or_clear_bad(pud)) { |
735 | (*zap_work)--; | |
1da177e4 | 736 | continue; |
51c6f666 RH |
737 | } |
738 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
739 | zap_work, details); | |
740 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
741 | ||
742 | return addr; | |
1da177e4 LT |
743 | } |
744 | ||
51c6f666 RH |
745 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
746 | struct vm_area_struct *vma, | |
1da177e4 | 747 | unsigned long addr, unsigned long end, |
51c6f666 | 748 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
749 | { |
750 | pgd_t *pgd; | |
751 | unsigned long next; | |
752 | ||
753 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
754 | details = NULL; | |
755 | ||
756 | BUG_ON(addr >= end); | |
757 | tlb_start_vma(tlb, vma); | |
758 | pgd = pgd_offset(vma->vm_mm, addr); | |
759 | do { | |
760 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
761 | if (pgd_none_or_clear_bad(pgd)) { |
762 | (*zap_work)--; | |
1da177e4 | 763 | continue; |
51c6f666 RH |
764 | } |
765 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
766 | zap_work, details); | |
767 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 768 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
769 | |
770 | return addr; | |
1da177e4 LT |
771 | } |
772 | ||
773 | #ifdef CONFIG_PREEMPT | |
774 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
775 | #else | |
776 | /* No preempt: go for improved straight-line efficiency */ | |
777 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
778 | #endif | |
779 | ||
780 | /** | |
781 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
782 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
783 | * @vma: the starting vma |
784 | * @start_addr: virtual address at which to start unmapping | |
785 | * @end_addr: virtual address at which to end unmapping | |
786 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
787 | * @details: details of nonlinear truncation or shared cache invalidation | |
788 | * | |
ee39b37b | 789 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 790 | * |
508034a3 | 791 | * Unmap all pages in the vma list. |
1da177e4 | 792 | * |
508034a3 HD |
793 | * We aim to not hold locks for too long (for scheduling latency reasons). |
794 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
795 | * return the ending mmu_gather to the caller. |
796 | * | |
797 | * Only addresses between `start' and `end' will be unmapped. | |
798 | * | |
799 | * The VMA list must be sorted in ascending virtual address order. | |
800 | * | |
801 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
802 | * range after unmap_vmas() returns. So the only responsibility here is to | |
803 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
804 | * drops the lock and schedules. | |
805 | */ | |
508034a3 | 806 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
807 | struct vm_area_struct *vma, unsigned long start_addr, |
808 | unsigned long end_addr, unsigned long *nr_accounted, | |
809 | struct zap_details *details) | |
810 | { | |
51c6f666 | 811 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
812 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
813 | int tlb_start_valid = 0; | |
ee39b37b | 814 | unsigned long start = start_addr; |
1da177e4 | 815 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 816 | int fullmm = (*tlbp)->fullmm; |
1da177e4 LT |
817 | |
818 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | |
1da177e4 LT |
819 | unsigned long end; |
820 | ||
821 | start = max(vma->vm_start, start_addr); | |
822 | if (start >= vma->vm_end) | |
823 | continue; | |
824 | end = min(vma->vm_end, end_addr); | |
825 | if (end <= vma->vm_start) | |
826 | continue; | |
827 | ||
828 | if (vma->vm_flags & VM_ACCOUNT) | |
829 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
830 | ||
1da177e4 | 831 | while (start != end) { |
1da177e4 LT |
832 | if (!tlb_start_valid) { |
833 | tlb_start = start; | |
834 | tlb_start_valid = 1; | |
835 | } | |
836 | ||
51c6f666 | 837 | if (unlikely(is_vm_hugetlb_page(vma))) { |
1da177e4 | 838 | unmap_hugepage_range(vma, start, end); |
51c6f666 RH |
839 | zap_work -= (end - start) / |
840 | (HPAGE_SIZE / PAGE_SIZE); | |
841 | start = end; | |
842 | } else | |
843 | start = unmap_page_range(*tlbp, vma, | |
844 | start, end, &zap_work, details); | |
845 | ||
846 | if (zap_work > 0) { | |
847 | BUG_ON(start != end); | |
848 | break; | |
1da177e4 LT |
849 | } |
850 | ||
1da177e4 LT |
851 | tlb_finish_mmu(*tlbp, tlb_start, start); |
852 | ||
853 | if (need_resched() || | |
1da177e4 LT |
854 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { |
855 | if (i_mmap_lock) { | |
508034a3 | 856 | *tlbp = NULL; |
1da177e4 LT |
857 | goto out; |
858 | } | |
1da177e4 | 859 | cond_resched(); |
1da177e4 LT |
860 | } |
861 | ||
508034a3 | 862 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 863 | tlb_start_valid = 0; |
51c6f666 | 864 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
865 | } |
866 | } | |
867 | out: | |
ee39b37b | 868 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
869 | } |
870 | ||
871 | /** | |
872 | * zap_page_range - remove user pages in a given range | |
873 | * @vma: vm_area_struct holding the applicable pages | |
874 | * @address: starting address of pages to zap | |
875 | * @size: number of bytes to zap | |
876 | * @details: details of nonlinear truncation or shared cache invalidation | |
877 | */ | |
ee39b37b | 878 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
879 | unsigned long size, struct zap_details *details) |
880 | { | |
881 | struct mm_struct *mm = vma->vm_mm; | |
882 | struct mmu_gather *tlb; | |
883 | unsigned long end = address + size; | |
884 | unsigned long nr_accounted = 0; | |
885 | ||
1da177e4 | 886 | lru_add_drain(); |
1da177e4 | 887 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 888 | update_hiwater_rss(mm); |
508034a3 HD |
889 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
890 | if (tlb) | |
891 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 892 | return end; |
1da177e4 LT |
893 | } |
894 | ||
895 | /* | |
896 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 897 | */ |
6aab341e | 898 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 899 | unsigned int flags) |
1da177e4 LT |
900 | { |
901 | pgd_t *pgd; | |
902 | pud_t *pud; | |
903 | pmd_t *pmd; | |
904 | pte_t *ptep, pte; | |
deceb6cd | 905 | spinlock_t *ptl; |
1da177e4 | 906 | struct page *page; |
6aab341e | 907 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 908 | |
deceb6cd HD |
909 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
910 | if (!IS_ERR(page)) { | |
911 | BUG_ON(flags & FOLL_GET); | |
912 | goto out; | |
913 | } | |
1da177e4 | 914 | |
deceb6cd | 915 | page = NULL; |
1da177e4 LT |
916 | pgd = pgd_offset(mm, address); |
917 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 918 | goto no_page_table; |
1da177e4 LT |
919 | |
920 | pud = pud_offset(pgd, address); | |
921 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
deceb6cd | 922 | goto no_page_table; |
1da177e4 LT |
923 | |
924 | pmd = pmd_offset(pud, address); | |
925 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
deceb6cd HD |
926 | goto no_page_table; |
927 | ||
928 | if (pmd_huge(*pmd)) { | |
929 | BUG_ON(flags & FOLL_GET); | |
930 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 931 | goto out; |
deceb6cd | 932 | } |
1da177e4 | 933 | |
deceb6cd | 934 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
935 | if (!ptep) |
936 | goto out; | |
937 | ||
938 | pte = *ptep; | |
deceb6cd HD |
939 | if (!pte_present(pte)) |
940 | goto unlock; | |
941 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | |
942 | goto unlock; | |
6aab341e LT |
943 | page = vm_normal_page(vma, address, pte); |
944 | if (unlikely(!page)) | |
deceb6cd | 945 | goto unlock; |
1da177e4 | 946 | |
deceb6cd HD |
947 | if (flags & FOLL_GET) |
948 | get_page(page); | |
949 | if (flags & FOLL_TOUCH) { | |
950 | if ((flags & FOLL_WRITE) && | |
951 | !pte_dirty(pte) && !PageDirty(page)) | |
952 | set_page_dirty(page); | |
953 | mark_page_accessed(page); | |
954 | } | |
955 | unlock: | |
956 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 957 | out: |
deceb6cd | 958 | return page; |
1da177e4 | 959 | |
deceb6cd HD |
960 | no_page_table: |
961 | /* | |
962 | * When core dumping an enormous anonymous area that nobody | |
963 | * has touched so far, we don't want to allocate page tables. | |
964 | */ | |
965 | if (flags & FOLL_ANON) { | |
557ed1fa | 966 | page = ZERO_PAGE(0); |
deceb6cd HD |
967 | if (flags & FOLL_GET) |
968 | get_page(page); | |
969 | BUG_ON(flags & FOLL_WRITE); | |
970 | } | |
971 | return page; | |
1da177e4 LT |
972 | } |
973 | ||
1da177e4 LT |
974 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
975 | unsigned long start, int len, int write, int force, | |
976 | struct page **pages, struct vm_area_struct **vmas) | |
977 | { | |
978 | int i; | |
deceb6cd | 979 | unsigned int vm_flags; |
1da177e4 LT |
980 | |
981 | /* | |
982 | * Require read or write permissions. | |
983 | * If 'force' is set, we only require the "MAY" flags. | |
984 | */ | |
deceb6cd HD |
985 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
986 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
987 | i = 0; |
988 | ||
989 | do { | |
deceb6cd HD |
990 | struct vm_area_struct *vma; |
991 | unsigned int foll_flags; | |
1da177e4 LT |
992 | |
993 | vma = find_extend_vma(mm, start); | |
994 | if (!vma && in_gate_area(tsk, start)) { | |
995 | unsigned long pg = start & PAGE_MASK; | |
996 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
997 | pgd_t *pgd; | |
998 | pud_t *pud; | |
999 | pmd_t *pmd; | |
1000 | pte_t *pte; | |
1001 | if (write) /* user gate pages are read-only */ | |
1002 | return i ? : -EFAULT; | |
1003 | if (pg > TASK_SIZE) | |
1004 | pgd = pgd_offset_k(pg); | |
1005 | else | |
1006 | pgd = pgd_offset_gate(mm, pg); | |
1007 | BUG_ON(pgd_none(*pgd)); | |
1008 | pud = pud_offset(pgd, pg); | |
1009 | BUG_ON(pud_none(*pud)); | |
1010 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1011 | if (pmd_none(*pmd)) |
1012 | return i ? : -EFAULT; | |
1da177e4 | 1013 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1014 | if (pte_none(*pte)) { |
1015 | pte_unmap(pte); | |
1016 | return i ? : -EFAULT; | |
1017 | } | |
1da177e4 | 1018 | if (pages) { |
fa2a455b | 1019 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1020 | pages[i] = page; |
1021 | if (page) | |
1022 | get_page(page); | |
1da177e4 LT |
1023 | } |
1024 | pte_unmap(pte); | |
1025 | if (vmas) | |
1026 | vmas[i] = gate_vma; | |
1027 | i++; | |
1028 | start += PAGE_SIZE; | |
1029 | len--; | |
1030 | continue; | |
1031 | } | |
1032 | ||
1ff80389 | 1033 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
deceb6cd | 1034 | || !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
1035 | return i ? : -EFAULT; |
1036 | ||
1037 | if (is_vm_hugetlb_page(vma)) { | |
1038 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
5b23dbe8 | 1039 | &start, &len, i, write); |
1da177e4 LT |
1040 | continue; |
1041 | } | |
deceb6cd HD |
1042 | |
1043 | foll_flags = FOLL_TOUCH; | |
1044 | if (pages) | |
1045 | foll_flags |= FOLL_GET; | |
1046 | if (!write && !(vma->vm_flags & VM_LOCKED) && | |
54cb8821 NP |
1047 | (!vma->vm_ops || (!vma->vm_ops->nopage && |
1048 | !vma->vm_ops->fault))) | |
deceb6cd HD |
1049 | foll_flags |= FOLL_ANON; |
1050 | ||
1da177e4 | 1051 | do { |
08ef4729 | 1052 | struct page *page; |
1da177e4 | 1053 | |
462e00cc ES |
1054 | /* |
1055 | * If tsk is ooming, cut off its access to large memory | |
1056 | * allocations. It has a pending SIGKILL, but it can't | |
1057 | * be processed until returning to user space. | |
1058 | */ | |
1059 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) | |
1060 | return -ENOMEM; | |
1061 | ||
deceb6cd HD |
1062 | if (write) |
1063 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1064 | |
deceb6cd | 1065 | cond_resched(); |
6aab341e | 1066 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1067 | int ret; |
83c54070 | 1068 | ret = handle_mm_fault(mm, vma, start, |
deceb6cd | 1069 | foll_flags & FOLL_WRITE); |
83c54070 NP |
1070 | if (ret & VM_FAULT_ERROR) { |
1071 | if (ret & VM_FAULT_OOM) | |
1072 | return i ? i : -ENOMEM; | |
1073 | else if (ret & VM_FAULT_SIGBUS) | |
1074 | return i ? i : -EFAULT; | |
1075 | BUG(); | |
1076 | } | |
1077 | if (ret & VM_FAULT_MAJOR) | |
1078 | tsk->maj_flt++; | |
1079 | else | |
1080 | tsk->min_flt++; | |
1081 | ||
a68d2ebc | 1082 | /* |
83c54070 NP |
1083 | * The VM_FAULT_WRITE bit tells us that |
1084 | * do_wp_page has broken COW when necessary, | |
1085 | * even if maybe_mkwrite decided not to set | |
1086 | * pte_write. We can thus safely do subsequent | |
1087 | * page lookups as if they were reads. | |
a68d2ebc LT |
1088 | */ |
1089 | if (ret & VM_FAULT_WRITE) | |
deceb6cd | 1090 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1091 | |
7f7bbbe5 | 1092 | cond_resched(); |
1da177e4 LT |
1093 | } |
1094 | if (pages) { | |
08ef4729 | 1095 | pages[i] = page; |
03beb076 | 1096 | |
a6f36be3 | 1097 | flush_anon_page(vma, page, start); |
08ef4729 | 1098 | flush_dcache_page(page); |
1da177e4 LT |
1099 | } |
1100 | if (vmas) | |
1101 | vmas[i] = vma; | |
1102 | i++; | |
1103 | start += PAGE_SIZE; | |
1104 | len--; | |
08ef4729 | 1105 | } while (len && start < vma->vm_end); |
08ef4729 | 1106 | } while (len); |
1da177e4 LT |
1107 | return i; |
1108 | } | |
1da177e4 LT |
1109 | EXPORT_SYMBOL(get_user_pages); |
1110 | ||
49c91fb0 | 1111 | pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) |
c9cfcddf LT |
1112 | { |
1113 | pgd_t * pgd = pgd_offset(mm, addr); | |
1114 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1115 | if (pud) { | |
49c91fb0 | 1116 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1117 | if (pmd) |
1118 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1119 | } | |
1120 | return NULL; | |
1121 | } | |
1122 | ||
238f58d8 LT |
1123 | /* |
1124 | * This is the old fallback for page remapping. | |
1125 | * | |
1126 | * For historical reasons, it only allows reserved pages. Only | |
1127 | * old drivers should use this, and they needed to mark their | |
1128 | * pages reserved for the old functions anyway. | |
1129 | */ | |
1130 | static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) | |
1131 | { | |
1132 | int retval; | |
c9cfcddf | 1133 | pte_t *pte; |
238f58d8 LT |
1134 | spinlock_t *ptl; |
1135 | ||
1136 | retval = -EINVAL; | |
a145dd41 | 1137 | if (PageAnon(page)) |
238f58d8 LT |
1138 | goto out; |
1139 | retval = -ENOMEM; | |
1140 | flush_dcache_page(page); | |
c9cfcddf | 1141 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 LT |
1142 | if (!pte) |
1143 | goto out; | |
1144 | retval = -EBUSY; | |
1145 | if (!pte_none(*pte)) | |
1146 | goto out_unlock; | |
1147 | ||
1148 | /* Ok, finally just insert the thing.. */ | |
1149 | get_page(page); | |
1150 | inc_mm_counter(mm, file_rss); | |
1151 | page_add_file_rmap(page); | |
1152 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1153 | ||
1154 | retval = 0; | |
1155 | out_unlock: | |
1156 | pte_unmap_unlock(pte, ptl); | |
1157 | out: | |
1158 | return retval; | |
1159 | } | |
1160 | ||
bfa5bf6d REB |
1161 | /** |
1162 | * vm_insert_page - insert single page into user vma | |
1163 | * @vma: user vma to map to | |
1164 | * @addr: target user address of this page | |
1165 | * @page: source kernel page | |
1166 | * | |
a145dd41 LT |
1167 | * This allows drivers to insert individual pages they've allocated |
1168 | * into a user vma. | |
1169 | * | |
1170 | * The page has to be a nice clean _individual_ kernel allocation. | |
1171 | * If you allocate a compound page, you need to have marked it as | |
1172 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1173 | * (see split_page()). |
a145dd41 LT |
1174 | * |
1175 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1176 | * took an arbitrary page protection parameter. This doesn't allow | |
1177 | * that. Your vma protection will have to be set up correctly, which | |
1178 | * means that if you want a shared writable mapping, you'd better | |
1179 | * ask for a shared writable mapping! | |
1180 | * | |
1181 | * The page does not need to be reserved. | |
1182 | */ | |
1183 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) | |
1184 | { | |
1185 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1186 | return -EFAULT; | |
1187 | if (!page_count(page)) | |
1188 | return -EINVAL; | |
4d7672b4 | 1189 | vma->vm_flags |= VM_INSERTPAGE; |
a145dd41 LT |
1190 | return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); |
1191 | } | |
e3c3374f | 1192 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1193 | |
e0dc0d8f NP |
1194 | /** |
1195 | * vm_insert_pfn - insert single pfn into user vma | |
1196 | * @vma: user vma to map to | |
1197 | * @addr: target user address of this page | |
1198 | * @pfn: source kernel pfn | |
1199 | * | |
1200 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1201 | * they've allocated into a user vma. Same comments apply. | |
1202 | * | |
1203 | * This function should only be called from a vm_ops->fault handler, and | |
1204 | * in that case the handler should return NULL. | |
1205 | */ | |
1206 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
1207 | unsigned long pfn) | |
1208 | { | |
1209 | struct mm_struct *mm = vma->vm_mm; | |
1210 | int retval; | |
1211 | pte_t *pte, entry; | |
1212 | spinlock_t *ptl; | |
1213 | ||
1214 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | |
1215 | BUG_ON(is_cow_mapping(vma->vm_flags)); | |
1216 | ||
1217 | retval = -ENOMEM; | |
1218 | pte = get_locked_pte(mm, addr, &ptl); | |
1219 | if (!pte) | |
1220 | goto out; | |
1221 | retval = -EBUSY; | |
1222 | if (!pte_none(*pte)) | |
1223 | goto out_unlock; | |
1224 | ||
1225 | /* Ok, finally just insert the thing.. */ | |
1226 | entry = pfn_pte(pfn, vma->vm_page_prot); | |
1227 | set_pte_at(mm, addr, pte, entry); | |
1228 | update_mmu_cache(vma, addr, entry); | |
1229 | ||
1230 | retval = 0; | |
1231 | out_unlock: | |
1232 | pte_unmap_unlock(pte, ptl); | |
1233 | ||
1234 | out: | |
1235 | return retval; | |
1236 | } | |
1237 | EXPORT_SYMBOL(vm_insert_pfn); | |
1238 | ||
1da177e4 LT |
1239 | /* |
1240 | * maps a range of physical memory into the requested pages. the old | |
1241 | * mappings are removed. any references to nonexistent pages results | |
1242 | * in null mappings (currently treated as "copy-on-access") | |
1243 | */ | |
1244 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1245 | unsigned long addr, unsigned long end, | |
1246 | unsigned long pfn, pgprot_t prot) | |
1247 | { | |
1248 | pte_t *pte; | |
c74df32c | 1249 | spinlock_t *ptl; |
1da177e4 | 1250 | |
c74df32c | 1251 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1252 | if (!pte) |
1253 | return -ENOMEM; | |
6606c3e0 | 1254 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1255 | do { |
1256 | BUG_ON(!pte_none(*pte)); | |
b5810039 | 1257 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); |
1da177e4 LT |
1258 | pfn++; |
1259 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1260 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1261 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1262 | return 0; |
1263 | } | |
1264 | ||
1265 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1266 | unsigned long addr, unsigned long end, | |
1267 | unsigned long pfn, pgprot_t prot) | |
1268 | { | |
1269 | pmd_t *pmd; | |
1270 | unsigned long next; | |
1271 | ||
1272 | pfn -= addr >> PAGE_SHIFT; | |
1273 | pmd = pmd_alloc(mm, pud, addr); | |
1274 | if (!pmd) | |
1275 | return -ENOMEM; | |
1276 | do { | |
1277 | next = pmd_addr_end(addr, end); | |
1278 | if (remap_pte_range(mm, pmd, addr, next, | |
1279 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1280 | return -ENOMEM; | |
1281 | } while (pmd++, addr = next, addr != end); | |
1282 | return 0; | |
1283 | } | |
1284 | ||
1285 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1286 | unsigned long addr, unsigned long end, | |
1287 | unsigned long pfn, pgprot_t prot) | |
1288 | { | |
1289 | pud_t *pud; | |
1290 | unsigned long next; | |
1291 | ||
1292 | pfn -= addr >> PAGE_SHIFT; | |
1293 | pud = pud_alloc(mm, pgd, addr); | |
1294 | if (!pud) | |
1295 | return -ENOMEM; | |
1296 | do { | |
1297 | next = pud_addr_end(addr, end); | |
1298 | if (remap_pmd_range(mm, pud, addr, next, | |
1299 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1300 | return -ENOMEM; | |
1301 | } while (pud++, addr = next, addr != end); | |
1302 | return 0; | |
1303 | } | |
1304 | ||
bfa5bf6d REB |
1305 | /** |
1306 | * remap_pfn_range - remap kernel memory to userspace | |
1307 | * @vma: user vma to map to | |
1308 | * @addr: target user address to start at | |
1309 | * @pfn: physical address of kernel memory | |
1310 | * @size: size of map area | |
1311 | * @prot: page protection flags for this mapping | |
1312 | * | |
1313 | * Note: this is only safe if the mm semaphore is held when called. | |
1314 | */ | |
1da177e4 LT |
1315 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1316 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1317 | { | |
1318 | pgd_t *pgd; | |
1319 | unsigned long next; | |
2d15cab8 | 1320 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1321 | struct mm_struct *mm = vma->vm_mm; |
1322 | int err; | |
1323 | ||
1324 | /* | |
1325 | * Physically remapped pages are special. Tell the | |
1326 | * rest of the world about it: | |
1327 | * VM_IO tells people not to look at these pages | |
1328 | * (accesses can have side effects). | |
0b14c179 HD |
1329 | * VM_RESERVED is specified all over the place, because |
1330 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1331 | * in 2.6 the LRU scan won't even find its pages, so this | |
1332 | * flag means no more than count its pages in reserved_vm, | |
1333 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1334 | * VM_PFNMAP tells the core MM that the base pages are just |
1335 | * raw PFN mappings, and do not have a "struct page" associated | |
1336 | * with them. | |
fb155c16 LT |
1337 | * |
1338 | * There's a horrible special case to handle copy-on-write | |
1339 | * behaviour that some programs depend on. We mark the "original" | |
1340 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1341 | */ |
67121172 | 1342 | if (is_cow_mapping(vma->vm_flags)) { |
fb155c16 | 1343 | if (addr != vma->vm_start || end != vma->vm_end) |
7fc7e2ee | 1344 | return -EINVAL; |
fb155c16 LT |
1345 | vma->vm_pgoff = pfn; |
1346 | } | |
1347 | ||
6aab341e | 1348 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 LT |
1349 | |
1350 | BUG_ON(addr >= end); | |
1351 | pfn -= addr >> PAGE_SHIFT; | |
1352 | pgd = pgd_offset(mm, addr); | |
1353 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1354 | do { |
1355 | next = pgd_addr_end(addr, end); | |
1356 | err = remap_pud_range(mm, pgd, addr, next, | |
1357 | pfn + (addr >> PAGE_SHIFT), prot); | |
1358 | if (err) | |
1359 | break; | |
1360 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1361 | return err; |
1362 | } | |
1363 | EXPORT_SYMBOL(remap_pfn_range); | |
1364 | ||
aee16b3c JF |
1365 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1366 | unsigned long addr, unsigned long end, | |
1367 | pte_fn_t fn, void *data) | |
1368 | { | |
1369 | pte_t *pte; | |
1370 | int err; | |
1371 | struct page *pmd_page; | |
94909914 | 1372 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1373 | |
1374 | pte = (mm == &init_mm) ? | |
1375 | pte_alloc_kernel(pmd, addr) : | |
1376 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1377 | if (!pte) | |
1378 | return -ENOMEM; | |
1379 | ||
1380 | BUG_ON(pmd_huge(*pmd)); | |
1381 | ||
1382 | pmd_page = pmd_page(*pmd); | |
1383 | ||
1384 | do { | |
1385 | err = fn(pte, pmd_page, addr, data); | |
1386 | if (err) | |
1387 | break; | |
1388 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1389 | ||
1390 | if (mm != &init_mm) | |
1391 | pte_unmap_unlock(pte-1, ptl); | |
1392 | return err; | |
1393 | } | |
1394 | ||
1395 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1396 | unsigned long addr, unsigned long end, | |
1397 | pte_fn_t fn, void *data) | |
1398 | { | |
1399 | pmd_t *pmd; | |
1400 | unsigned long next; | |
1401 | int err; | |
1402 | ||
1403 | pmd = pmd_alloc(mm, pud, addr); | |
1404 | if (!pmd) | |
1405 | return -ENOMEM; | |
1406 | do { | |
1407 | next = pmd_addr_end(addr, end); | |
1408 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1409 | if (err) | |
1410 | break; | |
1411 | } while (pmd++, addr = next, addr != end); | |
1412 | return err; | |
1413 | } | |
1414 | ||
1415 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1416 | unsigned long addr, unsigned long end, | |
1417 | pte_fn_t fn, void *data) | |
1418 | { | |
1419 | pud_t *pud; | |
1420 | unsigned long next; | |
1421 | int err; | |
1422 | ||
1423 | pud = pud_alloc(mm, pgd, addr); | |
1424 | if (!pud) | |
1425 | return -ENOMEM; | |
1426 | do { | |
1427 | next = pud_addr_end(addr, end); | |
1428 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1429 | if (err) | |
1430 | break; | |
1431 | } while (pud++, addr = next, addr != end); | |
1432 | return err; | |
1433 | } | |
1434 | ||
1435 | /* | |
1436 | * Scan a region of virtual memory, filling in page tables as necessary | |
1437 | * and calling a provided function on each leaf page table. | |
1438 | */ | |
1439 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1440 | unsigned long size, pte_fn_t fn, void *data) | |
1441 | { | |
1442 | pgd_t *pgd; | |
1443 | unsigned long next; | |
1444 | unsigned long end = addr + size; | |
1445 | int err; | |
1446 | ||
1447 | BUG_ON(addr >= end); | |
1448 | pgd = pgd_offset(mm, addr); | |
1449 | do { | |
1450 | next = pgd_addr_end(addr, end); | |
1451 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1452 | if (err) | |
1453 | break; | |
1454 | } while (pgd++, addr = next, addr != end); | |
1455 | return err; | |
1456 | } | |
1457 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1458 | ||
8f4e2101 HD |
1459 | /* |
1460 | * handle_pte_fault chooses page fault handler according to an entry | |
1461 | * which was read non-atomically. Before making any commitment, on | |
1462 | * those architectures or configurations (e.g. i386 with PAE) which | |
1463 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1464 | * must check under lock before unmapping the pte and proceeding | |
1465 | * (but do_wp_page is only called after already making such a check; | |
1466 | * and do_anonymous_page and do_no_page can safely check later on). | |
1467 | */ | |
4c21e2f2 | 1468 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1469 | pte_t *page_table, pte_t orig_pte) |
1470 | { | |
1471 | int same = 1; | |
1472 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1473 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1474 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1475 | spin_lock(ptl); | |
8f4e2101 | 1476 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1477 | spin_unlock(ptl); |
8f4e2101 HD |
1478 | } |
1479 | #endif | |
1480 | pte_unmap(page_table); | |
1481 | return same; | |
1482 | } | |
1483 | ||
1da177e4 LT |
1484 | /* |
1485 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1486 | * servicing faults for write access. In the normal case, do always want | |
1487 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1488 | * that do not have writing enabled, when used by access_process_vm. | |
1489 | */ | |
1490 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1491 | { | |
1492 | if (likely(vma->vm_flags & VM_WRITE)) | |
1493 | pte = pte_mkwrite(pte); | |
1494 | return pte; | |
1495 | } | |
1496 | ||
9de455b2 | 1497 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1498 | { |
1499 | /* | |
1500 | * If the source page was a PFN mapping, we don't have | |
1501 | * a "struct page" for it. We do a best-effort copy by | |
1502 | * just copying from the original user address. If that | |
1503 | * fails, we just zero-fill it. Live with it. | |
1504 | */ | |
1505 | if (unlikely(!src)) { | |
1506 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1507 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1508 | ||
1509 | /* | |
1510 | * This really shouldn't fail, because the page is there | |
1511 | * in the page tables. But it might just be unreadable, | |
1512 | * in which case we just give up and fill the result with | |
1513 | * zeroes. | |
1514 | */ | |
1515 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1516 | memset(kaddr, 0, PAGE_SIZE); |
1517 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1518 | flush_dcache_page(dst); |
6aab341e | 1519 | return; |
9de455b2 | 1520 | |
6aab341e | 1521 | } |
9de455b2 | 1522 | copy_user_highpage(dst, src, va, vma); |
6aab341e LT |
1523 | } |
1524 | ||
1da177e4 LT |
1525 | /* |
1526 | * This routine handles present pages, when users try to write | |
1527 | * to a shared page. It is done by copying the page to a new address | |
1528 | * and decrementing the shared-page counter for the old page. | |
1529 | * | |
1da177e4 LT |
1530 | * Note that this routine assumes that the protection checks have been |
1531 | * done by the caller (the low-level page fault routine in most cases). | |
1532 | * Thus we can safely just mark it writable once we've done any necessary | |
1533 | * COW. | |
1534 | * | |
1535 | * We also mark the page dirty at this point even though the page will | |
1536 | * change only once the write actually happens. This avoids a few races, | |
1537 | * and potentially makes it more efficient. | |
1538 | * | |
8f4e2101 HD |
1539 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1540 | * but allow concurrent faults), with pte both mapped and locked. | |
1541 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1542 | */ |
65500d23 HD |
1543 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1544 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1545 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1546 | { |
e5bbe4df | 1547 | struct page *old_page, *new_page; |
1da177e4 | 1548 | pte_t entry; |
83c54070 | 1549 | int reuse = 0, ret = 0; |
a200ee18 | 1550 | int page_mkwrite = 0; |
d08b3851 | 1551 | struct page *dirty_page = NULL; |
1da177e4 | 1552 | |
6aab341e | 1553 | old_page = vm_normal_page(vma, address, orig_pte); |
6aab341e LT |
1554 | if (!old_page) |
1555 | goto gotten; | |
1da177e4 | 1556 | |
d08b3851 | 1557 | /* |
ee6a6457 PZ |
1558 | * Take out anonymous pages first, anonymous shared vmas are |
1559 | * not dirty accountable. | |
d08b3851 | 1560 | */ |
ee6a6457 PZ |
1561 | if (PageAnon(old_page)) { |
1562 | if (!TestSetPageLocked(old_page)) { | |
1563 | reuse = can_share_swap_page(old_page); | |
1564 | unlock_page(old_page); | |
1565 | } | |
1566 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
d08b3851 | 1567 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
1568 | /* |
1569 | * Only catch write-faults on shared writable pages, | |
1570 | * read-only shared pages can get COWed by | |
1571 | * get_user_pages(.write=1, .force=1). | |
1572 | */ | |
9637a5ef DH |
1573 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1574 | /* | |
1575 | * Notify the address space that the page is about to | |
1576 | * become writable so that it can prohibit this or wait | |
1577 | * for the page to get into an appropriate state. | |
1578 | * | |
1579 | * We do this without the lock held, so that it can | |
1580 | * sleep if it needs to. | |
1581 | */ | |
1582 | page_cache_get(old_page); | |
1583 | pte_unmap_unlock(page_table, ptl); | |
1584 | ||
1585 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | |
1586 | goto unwritable_page; | |
1587 | ||
9637a5ef DH |
1588 | /* |
1589 | * Since we dropped the lock we need to revalidate | |
1590 | * the PTE as someone else may have changed it. If | |
1591 | * they did, we just return, as we can count on the | |
1592 | * MMU to tell us if they didn't also make it writable. | |
1593 | */ | |
1594 | page_table = pte_offset_map_lock(mm, pmd, address, | |
1595 | &ptl); | |
c3704ceb | 1596 | page_cache_release(old_page); |
9637a5ef DH |
1597 | if (!pte_same(*page_table, orig_pte)) |
1598 | goto unlock; | |
a200ee18 PZ |
1599 | |
1600 | page_mkwrite = 1; | |
1da177e4 | 1601 | } |
d08b3851 PZ |
1602 | dirty_page = old_page; |
1603 | get_page(dirty_page); | |
9637a5ef | 1604 | reuse = 1; |
9637a5ef DH |
1605 | } |
1606 | ||
1607 | if (reuse) { | |
1608 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | |
1609 | entry = pte_mkyoung(orig_pte); | |
1610 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 1611 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
8dab5241 | 1612 | update_mmu_cache(vma, address, entry); |
9637a5ef DH |
1613 | ret |= VM_FAULT_WRITE; |
1614 | goto unlock; | |
1da177e4 | 1615 | } |
1da177e4 LT |
1616 | |
1617 | /* | |
1618 | * Ok, we need to copy. Oh, well.. | |
1619 | */ | |
b5810039 | 1620 | page_cache_get(old_page); |
920fc356 | 1621 | gotten: |
8f4e2101 | 1622 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1623 | |
1624 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 1625 | goto oom; |
557ed1fa NP |
1626 | VM_BUG_ON(old_page == ZERO_PAGE(0)); |
1627 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
1628 | if (!new_page) | |
1629 | goto oom; | |
1630 | cow_user_page(new_page, old_page, address, vma); | |
65500d23 | 1631 | |
1da177e4 LT |
1632 | /* |
1633 | * Re-check the pte - we dropped the lock | |
1634 | */ | |
8f4e2101 | 1635 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 1636 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 1637 | if (old_page) { |
7de6b805 | 1638 | page_remove_rmap(old_page, vma); |
920fc356 HD |
1639 | if (!PageAnon(old_page)) { |
1640 | dec_mm_counter(mm, file_rss); | |
1641 | inc_mm_counter(mm, anon_rss); | |
1642 | } | |
1643 | } else | |
4294621f | 1644 | inc_mm_counter(mm, anon_rss); |
eca35133 | 1645 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
1646 | entry = mk_pte(new_page, vma->vm_page_prot); |
1647 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
1648 | /* |
1649 | * Clear the pte entry and flush it first, before updating the | |
1650 | * pte with the new entry. This will avoid a race condition | |
1651 | * seen in the presence of one thread doing SMC and another | |
1652 | * thread doing COW. | |
1653 | */ | |
1654 | ptep_clear_flush(vma, address, page_table); | |
1655 | set_pte_at(mm, address, page_table, entry); | |
65500d23 | 1656 | update_mmu_cache(vma, address, entry); |
1da177e4 | 1657 | lru_cache_add_active(new_page); |
9617d95e | 1658 | page_add_new_anon_rmap(new_page, vma, address); |
1da177e4 LT |
1659 | |
1660 | /* Free the old page.. */ | |
1661 | new_page = old_page; | |
f33ea7f4 | 1662 | ret |= VM_FAULT_WRITE; |
1da177e4 | 1663 | } |
920fc356 HD |
1664 | if (new_page) |
1665 | page_cache_release(new_page); | |
1666 | if (old_page) | |
1667 | page_cache_release(old_page); | |
65500d23 | 1668 | unlock: |
8f4e2101 | 1669 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 1670 | if (dirty_page) { |
79352894 NP |
1671 | /* |
1672 | * Yes, Virginia, this is actually required to prevent a race | |
1673 | * with clear_page_dirty_for_io() from clearing the page dirty | |
1674 | * bit after it clear all dirty ptes, but before a racing | |
1675 | * do_wp_page installs a dirty pte. | |
1676 | * | |
1677 | * do_no_page is protected similarly. | |
1678 | */ | |
1679 | wait_on_page_locked(dirty_page); | |
a200ee18 | 1680 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
1681 | put_page(dirty_page); |
1682 | } | |
f33ea7f4 | 1683 | return ret; |
65500d23 | 1684 | oom: |
920fc356 HD |
1685 | if (old_page) |
1686 | page_cache_release(old_page); | |
1da177e4 | 1687 | return VM_FAULT_OOM; |
9637a5ef DH |
1688 | |
1689 | unwritable_page: | |
1690 | page_cache_release(old_page); | |
1691 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
1692 | } |
1693 | ||
1694 | /* | |
1695 | * Helper functions for unmap_mapping_range(). | |
1696 | * | |
1697 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
1698 | * | |
1699 | * We have to restart searching the prio_tree whenever we drop the lock, | |
1700 | * since the iterator is only valid while the lock is held, and anyway | |
1701 | * a later vma might be split and reinserted earlier while lock dropped. | |
1702 | * | |
1703 | * The list of nonlinear vmas could be handled more efficiently, using | |
1704 | * a placeholder, but handle it in the same way until a need is shown. | |
1705 | * It is important to search the prio_tree before nonlinear list: a vma | |
1706 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
1707 | * while the lock is dropped; but never shifted from list to prio_tree. | |
1708 | * | |
1709 | * In order to make forward progress despite restarting the search, | |
1710 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
1711 | * quickly skip it next time around. Since the prio_tree search only | |
1712 | * shows us those vmas affected by unmapping the range in question, we | |
1713 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
1714 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
1715 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
1716 | * i_mmap_lock. | |
1717 | * | |
1718 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 1719 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
1720 | * and restart from that address when we reach that vma again. It might |
1721 | * have been split or merged, shrunk or extended, but never shifted: so | |
1722 | * restart_addr remains valid so long as it remains in the vma's range. | |
1723 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
1724 | * values so we can save vma's restart_addr in its truncate_count field. | |
1725 | */ | |
1726 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
1727 | ||
1728 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
1729 | { | |
1730 | struct vm_area_struct *vma; | |
1731 | struct prio_tree_iter iter; | |
1732 | ||
1733 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
1734 | vma->vm_truncate_count = 0; | |
1735 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
1736 | vma->vm_truncate_count = 0; | |
1737 | } | |
1738 | ||
1739 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
1740 | unsigned long start_addr, unsigned long end_addr, | |
1741 | struct zap_details *details) | |
1742 | { | |
1743 | unsigned long restart_addr; | |
1744 | int need_break; | |
1745 | ||
d00806b1 NP |
1746 | /* |
1747 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 1748 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
1749 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
1750 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 1751 | */ |
d00806b1 | 1752 | |
1da177e4 LT |
1753 | again: |
1754 | restart_addr = vma->vm_truncate_count; | |
1755 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
1756 | start_addr = restart_addr; | |
1757 | if (start_addr >= end_addr) { | |
1758 | /* Top of vma has been split off since last time */ | |
1759 | vma->vm_truncate_count = details->truncate_count; | |
1760 | return 0; | |
1761 | } | |
1762 | } | |
1763 | ||
ee39b37b HD |
1764 | restart_addr = zap_page_range(vma, start_addr, |
1765 | end_addr - start_addr, details); | |
1da177e4 LT |
1766 | need_break = need_resched() || |
1767 | need_lockbreak(details->i_mmap_lock); | |
1768 | ||
ee39b37b | 1769 | if (restart_addr >= end_addr) { |
1da177e4 LT |
1770 | /* We have now completed this vma: mark it so */ |
1771 | vma->vm_truncate_count = details->truncate_count; | |
1772 | if (!need_break) | |
1773 | return 0; | |
1774 | } else { | |
1775 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 1776 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
1777 | if (!need_break) |
1778 | goto again; | |
1779 | } | |
1780 | ||
1781 | spin_unlock(details->i_mmap_lock); | |
1782 | cond_resched(); | |
1783 | spin_lock(details->i_mmap_lock); | |
1784 | return -EINTR; | |
1785 | } | |
1786 | ||
1787 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
1788 | struct zap_details *details) | |
1789 | { | |
1790 | struct vm_area_struct *vma; | |
1791 | struct prio_tree_iter iter; | |
1792 | pgoff_t vba, vea, zba, zea; | |
1793 | ||
1794 | restart: | |
1795 | vma_prio_tree_foreach(vma, &iter, root, | |
1796 | details->first_index, details->last_index) { | |
1797 | /* Skip quickly over those we have already dealt with */ | |
1798 | if (vma->vm_truncate_count == details->truncate_count) | |
1799 | continue; | |
1800 | ||
1801 | vba = vma->vm_pgoff; | |
1802 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
1803 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
1804 | zba = details->first_index; | |
1805 | if (zba < vba) | |
1806 | zba = vba; | |
1807 | zea = details->last_index; | |
1808 | if (zea > vea) | |
1809 | zea = vea; | |
1810 | ||
1811 | if (unmap_mapping_range_vma(vma, | |
1812 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
1813 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
1814 | details) < 0) | |
1815 | goto restart; | |
1816 | } | |
1817 | } | |
1818 | ||
1819 | static inline void unmap_mapping_range_list(struct list_head *head, | |
1820 | struct zap_details *details) | |
1821 | { | |
1822 | struct vm_area_struct *vma; | |
1823 | ||
1824 | /* | |
1825 | * In nonlinear VMAs there is no correspondence between virtual address | |
1826 | * offset and file offset. So we must perform an exhaustive search | |
1827 | * across *all* the pages in each nonlinear VMA, not just the pages | |
1828 | * whose virtual address lies outside the file truncation point. | |
1829 | */ | |
1830 | restart: | |
1831 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
1832 | /* Skip quickly over those we have already dealt with */ | |
1833 | if (vma->vm_truncate_count == details->truncate_count) | |
1834 | continue; | |
1835 | details->nonlinear_vma = vma; | |
1836 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
1837 | vma->vm_end, details) < 0) | |
1838 | goto restart; | |
1839 | } | |
1840 | } | |
1841 | ||
1842 | /** | |
72fd4a35 | 1843 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 1844 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
1845 | * @holebegin: byte in first page to unmap, relative to the start of |
1846 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
1847 | * boundary. Note that this is different from vmtruncate(), which | |
1848 | * must keep the partial page. In contrast, we must get rid of | |
1849 | * partial pages. | |
1850 | * @holelen: size of prospective hole in bytes. This will be rounded | |
1851 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
1852 | * end of the file. | |
1853 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
1854 | * but 0 when invalidating pagecache, don't throw away private data. | |
1855 | */ | |
1856 | void unmap_mapping_range(struct address_space *mapping, | |
1857 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
1858 | { | |
1859 | struct zap_details details; | |
1860 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
1861 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1862 | ||
1863 | /* Check for overflow. */ | |
1864 | if (sizeof(holelen) > sizeof(hlen)) { | |
1865 | long long holeend = | |
1866 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1867 | if (holeend & ~(long long)ULONG_MAX) | |
1868 | hlen = ULONG_MAX - hba + 1; | |
1869 | } | |
1870 | ||
1871 | details.check_mapping = even_cows? NULL: mapping; | |
1872 | details.nonlinear_vma = NULL; | |
1873 | details.first_index = hba; | |
1874 | details.last_index = hba + hlen - 1; | |
1875 | if (details.last_index < details.first_index) | |
1876 | details.last_index = ULONG_MAX; | |
1877 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
1878 | ||
1879 | spin_lock(&mapping->i_mmap_lock); | |
1880 | ||
d00806b1 | 1881 | /* Protect against endless unmapping loops */ |
1da177e4 | 1882 | mapping->truncate_count++; |
1da177e4 LT |
1883 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
1884 | if (mapping->truncate_count == 0) | |
1885 | reset_vma_truncate_counts(mapping); | |
1886 | mapping->truncate_count++; | |
1887 | } | |
1888 | details.truncate_count = mapping->truncate_count; | |
1889 | ||
1890 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
1891 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
1892 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
1893 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
1894 | spin_unlock(&mapping->i_mmap_lock); | |
1895 | } | |
1896 | EXPORT_SYMBOL(unmap_mapping_range); | |
1897 | ||
bfa5bf6d REB |
1898 | /** |
1899 | * vmtruncate - unmap mappings "freed" by truncate() syscall | |
1900 | * @inode: inode of the file used | |
1901 | * @offset: file offset to start truncating | |
1da177e4 LT |
1902 | * |
1903 | * NOTE! We have to be ready to update the memory sharing | |
1904 | * between the file and the memory map for a potential last | |
1905 | * incomplete page. Ugly, but necessary. | |
1906 | */ | |
1907 | int vmtruncate(struct inode * inode, loff_t offset) | |
1908 | { | |
1909 | struct address_space *mapping = inode->i_mapping; | |
1910 | unsigned long limit; | |
1911 | ||
1912 | if (inode->i_size < offset) | |
1913 | goto do_expand; | |
1914 | /* | |
1915 | * truncation of in-use swapfiles is disallowed - it would cause | |
1916 | * subsequent swapout to scribble on the now-freed blocks. | |
1917 | */ | |
1918 | if (IS_SWAPFILE(inode)) | |
1919 | goto out_busy; | |
1920 | i_size_write(inode, offset); | |
d00806b1 NP |
1921 | |
1922 | /* | |
1923 | * unmap_mapping_range is called twice, first simply for efficiency | |
1924 | * so that truncate_inode_pages does fewer single-page unmaps. However | |
1925 | * after this first call, and before truncate_inode_pages finishes, | |
1926 | * it is possible for private pages to be COWed, which remain after | |
1927 | * truncate_inode_pages finishes, hence the second unmap_mapping_range | |
1928 | * call must be made for correctness. | |
1929 | */ | |
1da177e4 LT |
1930 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); |
1931 | truncate_inode_pages(mapping, offset); | |
d00806b1 | 1932 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); |
1da177e4 LT |
1933 | goto out_truncate; |
1934 | ||
1935 | do_expand: | |
1936 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
1937 | if (limit != RLIM_INFINITY && offset > limit) | |
1938 | goto out_sig; | |
1939 | if (offset > inode->i_sb->s_maxbytes) | |
1940 | goto out_big; | |
1941 | i_size_write(inode, offset); | |
1942 | ||
1943 | out_truncate: | |
1944 | if (inode->i_op && inode->i_op->truncate) | |
1945 | inode->i_op->truncate(inode); | |
1946 | return 0; | |
1947 | out_sig: | |
1948 | send_sig(SIGXFSZ, current, 0); | |
1949 | out_big: | |
1950 | return -EFBIG; | |
1951 | out_busy: | |
1952 | return -ETXTBSY; | |
1953 | } | |
1da177e4 LT |
1954 | EXPORT_SYMBOL(vmtruncate); |
1955 | ||
f6b3ec23 BP |
1956 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
1957 | { | |
1958 | struct address_space *mapping = inode->i_mapping; | |
1959 | ||
1960 | /* | |
1961 | * If the underlying filesystem is not going to provide | |
1962 | * a way to truncate a range of blocks (punch a hole) - | |
1963 | * we should return failure right now. | |
1964 | */ | |
1965 | if (!inode->i_op || !inode->i_op->truncate_range) | |
1966 | return -ENOSYS; | |
1967 | ||
1b1dcc1b | 1968 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
1969 | down_write(&inode->i_alloc_sem); |
1970 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
1971 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 1972 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
1973 | inode->i_op->truncate_range(inode, offset, end); |
1974 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 1975 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
1976 | |
1977 | return 0; | |
1978 | } | |
f6b3ec23 | 1979 | |
bfa5bf6d REB |
1980 | /** |
1981 | * swapin_readahead - swap in pages in hope we need them soon | |
1982 | * @entry: swap entry of this memory | |
1983 | * @addr: address to start | |
1984 | * @vma: user vma this addresses belong to | |
1985 | * | |
1da177e4 LT |
1986 | * Primitive swap readahead code. We simply read an aligned block of |
1987 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
1988 | * because it doesn't cost us any seek time. We also make sure to queue | |
bfa5bf6d | 1989 | * the 'original' request together with the readahead ones... |
1da177e4 LT |
1990 | * |
1991 | * This has been extended to use the NUMA policies from the mm triggering | |
1992 | * the readahead. | |
1993 | * | |
1994 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | |
1995 | */ | |
1996 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | |
1997 | { | |
1998 | #ifdef CONFIG_NUMA | |
1999 | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | |
2000 | #endif | |
2001 | int i, num; | |
2002 | struct page *new_page; | |
2003 | unsigned long offset; | |
2004 | ||
2005 | /* | |
2006 | * Get the number of handles we should do readahead io to. | |
2007 | */ | |
2008 | num = valid_swaphandles(entry, &offset); | |
2009 | for (i = 0; i < num; offset++, i++) { | |
2010 | /* Ok, do the async read-ahead now */ | |
2011 | new_page = read_swap_cache_async(swp_entry(swp_type(entry), | |
2012 | offset), vma, addr); | |
2013 | if (!new_page) | |
2014 | break; | |
2015 | page_cache_release(new_page); | |
2016 | #ifdef CONFIG_NUMA | |
2017 | /* | |
2018 | * Find the next applicable VMA for the NUMA policy. | |
2019 | */ | |
2020 | addr += PAGE_SIZE; | |
2021 | if (addr == 0) | |
2022 | vma = NULL; | |
2023 | if (vma) { | |
2024 | if (addr >= vma->vm_end) { | |
2025 | vma = next_vma; | |
2026 | next_vma = vma ? vma->vm_next : NULL; | |
2027 | } | |
2028 | if (vma && addr < vma->vm_start) | |
2029 | vma = NULL; | |
2030 | } else { | |
2031 | if (next_vma && addr >= next_vma->vm_start) { | |
2032 | vma = next_vma; | |
2033 | next_vma = vma->vm_next; | |
2034 | } | |
2035 | } | |
2036 | #endif | |
2037 | } | |
2038 | lru_add_drain(); /* Push any new pages onto the LRU now */ | |
2039 | } | |
2040 | ||
2041 | /* | |
8f4e2101 HD |
2042 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2043 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2044 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2045 | */ |
65500d23 HD |
2046 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2047 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2048 | int write_access, pte_t orig_pte) | |
1da177e4 | 2049 | { |
8f4e2101 | 2050 | spinlock_t *ptl; |
1da177e4 | 2051 | struct page *page; |
65500d23 | 2052 | swp_entry_t entry; |
1da177e4 | 2053 | pte_t pte; |
83c54070 | 2054 | int ret = 0; |
1da177e4 | 2055 | |
4c21e2f2 | 2056 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2057 | goto out; |
65500d23 HD |
2058 | |
2059 | entry = pte_to_swp_entry(orig_pte); | |
0697212a CL |
2060 | if (is_migration_entry(entry)) { |
2061 | migration_entry_wait(mm, pmd, address); | |
2062 | goto out; | |
2063 | } | |
0ff92245 | 2064 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2065 | page = lookup_swap_cache(entry); |
2066 | if (!page) { | |
098fe651 | 2067 | grab_swap_token(); /* Contend for token _before_ read-in */ |
1da177e4 LT |
2068 | swapin_readahead(entry, address, vma); |
2069 | page = read_swap_cache_async(entry, vma, address); | |
2070 | if (!page) { | |
2071 | /* | |
8f4e2101 HD |
2072 | * Back out if somebody else faulted in this pte |
2073 | * while we released the pte lock. | |
1da177e4 | 2074 | */ |
8f4e2101 | 2075 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2076 | if (likely(pte_same(*page_table, orig_pte))) |
2077 | ret = VM_FAULT_OOM; | |
0ff92245 | 2078 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2079 | goto unlock; |
1da177e4 LT |
2080 | } |
2081 | ||
2082 | /* Had to read the page from swap area: Major fault */ | |
2083 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2084 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
2085 | } |
2086 | ||
2087 | mark_page_accessed(page); | |
2088 | lock_page(page); | |
20a1022d | 2089 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2090 | |
2091 | /* | |
8f4e2101 | 2092 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2093 | */ |
8f4e2101 | 2094 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2095 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2096 | goto out_nomap; |
b8107480 KK |
2097 | |
2098 | if (unlikely(!PageUptodate(page))) { | |
2099 | ret = VM_FAULT_SIGBUS; | |
2100 | goto out_nomap; | |
1da177e4 LT |
2101 | } |
2102 | ||
2103 | /* The page isn't present yet, go ahead with the fault. */ | |
1da177e4 | 2104 | |
4294621f | 2105 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
2106 | pte = mk_pte(page, vma->vm_page_prot); |
2107 | if (write_access && can_share_swap_page(page)) { | |
2108 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
2109 | write_access = 0; | |
2110 | } | |
1da177e4 LT |
2111 | |
2112 | flush_icache_page(vma, page); | |
2113 | set_pte_at(mm, address, page_table, pte); | |
2114 | page_add_anon_rmap(page, vma, address); | |
2115 | ||
c475a8ab HD |
2116 | swap_free(entry); |
2117 | if (vm_swap_full()) | |
2118 | remove_exclusive_swap_page(page); | |
2119 | unlock_page(page); | |
2120 | ||
1da177e4 | 2121 | if (write_access) { |
83c54070 | 2122 | /* XXX: We could OR the do_wp_page code with this one? */ |
1da177e4 | 2123 | if (do_wp_page(mm, vma, address, |
83c54070 | 2124 | page_table, pmd, ptl, pte) & VM_FAULT_OOM) |
1da177e4 LT |
2125 | ret = VM_FAULT_OOM; |
2126 | goto out; | |
2127 | } | |
2128 | ||
2129 | /* No need to invalidate - it was non-present before */ | |
2130 | update_mmu_cache(vma, address, pte); | |
65500d23 | 2131 | unlock: |
8f4e2101 | 2132 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2133 | out: |
2134 | return ret; | |
b8107480 | 2135 | out_nomap: |
8f4e2101 | 2136 | pte_unmap_unlock(page_table, ptl); |
b8107480 KK |
2137 | unlock_page(page); |
2138 | page_cache_release(page); | |
65500d23 | 2139 | return ret; |
1da177e4 LT |
2140 | } |
2141 | ||
2142 | /* | |
8f4e2101 HD |
2143 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2144 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2145 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2146 | */ |
65500d23 HD |
2147 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2148 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2149 | int write_access) | |
1da177e4 | 2150 | { |
8f4e2101 HD |
2151 | struct page *page; |
2152 | spinlock_t *ptl; | |
1da177e4 | 2153 | pte_t entry; |
1da177e4 | 2154 | |
557ed1fa NP |
2155 | /* Allocate our own private page. */ |
2156 | pte_unmap(page_table); | |
8f4e2101 | 2157 | |
557ed1fa NP |
2158 | if (unlikely(anon_vma_prepare(vma))) |
2159 | goto oom; | |
2160 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2161 | if (!page) | |
2162 | goto oom; | |
8f4e2101 | 2163 | |
557ed1fa NP |
2164 | entry = mk_pte(page, vma->vm_page_prot); |
2165 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1da177e4 | 2166 | |
557ed1fa NP |
2167 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2168 | if (!pte_none(*page_table)) | |
2169 | goto release; | |
2170 | inc_mm_counter(mm, anon_rss); | |
2171 | lru_cache_add_active(page); | |
2172 | page_add_new_anon_rmap(page, vma, address); | |
65500d23 | 2173 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2174 | |
2175 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2176 | update_mmu_cache(vma, address, entry); |
65500d23 | 2177 | unlock: |
8f4e2101 | 2178 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2179 | return 0; |
8f4e2101 HD |
2180 | release: |
2181 | page_cache_release(page); | |
2182 | goto unlock; | |
65500d23 | 2183 | oom: |
1da177e4 LT |
2184 | return VM_FAULT_OOM; |
2185 | } | |
2186 | ||
2187 | /* | |
54cb8821 | 2188 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2189 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2190 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2191 | * the next page fault. | |
1da177e4 LT |
2192 | * |
2193 | * As this is called only for pages that do not currently exist, we | |
2194 | * do not need to flush old virtual caches or the TLB. | |
2195 | * | |
8f4e2101 | 2196 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2197 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2198 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2199 | */ |
54cb8821 | 2200 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2201 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2202 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2203 | { |
16abfa08 | 2204 | pte_t *page_table; |
8f4e2101 | 2205 | spinlock_t *ptl; |
d0217ac0 | 2206 | struct page *page; |
1da177e4 | 2207 | pte_t entry; |
1da177e4 | 2208 | int anon = 0; |
d08b3851 | 2209 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2210 | struct vm_fault vmf; |
2211 | int ret; | |
a200ee18 | 2212 | int page_mkwrite = 0; |
54cb8821 | 2213 | |
d0217ac0 NP |
2214 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2215 | vmf.pgoff = pgoff; | |
2216 | vmf.flags = flags; | |
2217 | vmf.page = NULL; | |
1da177e4 | 2218 | |
325f04db HD |
2219 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
2220 | ||
54cb8821 | 2221 | if (likely(vma->vm_ops->fault)) { |
d0217ac0 | 2222 | ret = vma->vm_ops->fault(vma, &vmf); |
83c54070 NP |
2223 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2224 | return ret; | |
54cb8821 NP |
2225 | } else { |
2226 | /* Legacy ->nopage path */ | |
83c54070 | 2227 | ret = 0; |
d0217ac0 | 2228 | vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); |
54cb8821 | 2229 | /* no page was available -- either SIGBUS or OOM */ |
d0217ac0 | 2230 | if (unlikely(vmf.page == NOPAGE_SIGBUS)) |
54cb8821 | 2231 | return VM_FAULT_SIGBUS; |
d0217ac0 | 2232 | else if (unlikely(vmf.page == NOPAGE_OOM)) |
54cb8821 NP |
2233 | return VM_FAULT_OOM; |
2234 | } | |
1da177e4 | 2235 | |
d00806b1 | 2236 | /* |
d0217ac0 | 2237 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2238 | * locked. |
2239 | */ | |
83c54070 | 2240 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2241 | lock_page(vmf.page); |
54cb8821 | 2242 | else |
d0217ac0 | 2243 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2244 | |
1da177e4 LT |
2245 | /* |
2246 | * Should we do an early C-O-W break? | |
2247 | */ | |
d0217ac0 | 2248 | page = vmf.page; |
54cb8821 | 2249 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2250 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2251 | anon = 1; |
d00806b1 | 2252 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2253 | ret = VM_FAULT_OOM; |
54cb8821 | 2254 | goto out; |
d00806b1 | 2255 | } |
83c54070 NP |
2256 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2257 | vma, address); | |
d00806b1 | 2258 | if (!page) { |
d0217ac0 | 2259 | ret = VM_FAULT_OOM; |
54cb8821 | 2260 | goto out; |
d00806b1 | 2261 | } |
d0217ac0 | 2262 | copy_user_highpage(page, vmf.page, address, vma); |
9637a5ef | 2263 | } else { |
54cb8821 NP |
2264 | /* |
2265 | * If the page will be shareable, see if the backing | |
9637a5ef | 2266 | * address space wants to know that the page is about |
54cb8821 NP |
2267 | * to become writable |
2268 | */ | |
69676147 MF |
2269 | if (vma->vm_ops->page_mkwrite) { |
2270 | unlock_page(page); | |
2271 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { | |
d0217ac0 NP |
2272 | ret = VM_FAULT_SIGBUS; |
2273 | anon = 1; /* no anon but release vmf.page */ | |
69676147 MF |
2274 | goto out_unlocked; |
2275 | } | |
2276 | lock_page(page); | |
d0217ac0 NP |
2277 | /* |
2278 | * XXX: this is not quite right (racy vs | |
2279 | * invalidate) to unlock and relock the page | |
2280 | * like this, however a better fix requires | |
2281 | * reworking page_mkwrite locking API, which | |
2282 | * is better done later. | |
2283 | */ | |
2284 | if (!page->mapping) { | |
83c54070 | 2285 | ret = 0; |
d0217ac0 NP |
2286 | anon = 1; /* no anon but release vmf.page */ |
2287 | goto out; | |
2288 | } | |
a200ee18 | 2289 | page_mkwrite = 1; |
9637a5ef DH |
2290 | } |
2291 | } | |
54cb8821 | 2292 | |
1da177e4 LT |
2293 | } |
2294 | ||
8f4e2101 | 2295 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2296 | |
2297 | /* | |
2298 | * This silly early PAGE_DIRTY setting removes a race | |
2299 | * due to the bad i386 page protection. But it's valid | |
2300 | * for other architectures too. | |
2301 | * | |
2302 | * Note that if write_access is true, we either now have | |
2303 | * an exclusive copy of the page, or this is a shared mapping, | |
2304 | * so we can make it writable and dirty to avoid having to | |
2305 | * handle that later. | |
2306 | */ | |
2307 | /* Only go through if we didn't race with anybody else... */ | |
54cb8821 | 2308 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2309 | flush_icache_page(vma, page); |
2310 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2311 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 LT |
2312 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2313 | set_pte_at(mm, address, page_table, entry); | |
2314 | if (anon) { | |
d00806b1 NP |
2315 | inc_mm_counter(mm, anon_rss); |
2316 | lru_cache_add_active(page); | |
2317 | page_add_new_anon_rmap(page, vma, address); | |
f57e88a8 | 2318 | } else { |
4294621f | 2319 | inc_mm_counter(mm, file_rss); |
d00806b1 | 2320 | page_add_file_rmap(page); |
54cb8821 | 2321 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 2322 | dirty_page = page; |
d08b3851 PZ |
2323 | get_page(dirty_page); |
2324 | } | |
4294621f | 2325 | } |
d00806b1 NP |
2326 | |
2327 | /* no need to invalidate: a not-present page won't be cached */ | |
2328 | update_mmu_cache(vma, address, entry); | |
1da177e4 | 2329 | } else { |
d00806b1 NP |
2330 | if (anon) |
2331 | page_cache_release(page); | |
2332 | else | |
54cb8821 | 2333 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
2334 | } |
2335 | ||
8f4e2101 | 2336 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
2337 | |
2338 | out: | |
d0217ac0 | 2339 | unlock_page(vmf.page); |
69676147 | 2340 | out_unlocked: |
d00806b1 | 2341 | if (anon) |
d0217ac0 | 2342 | page_cache_release(vmf.page); |
d00806b1 | 2343 | else if (dirty_page) { |
a200ee18 | 2344 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
2345 | put_page(dirty_page); |
2346 | } | |
d00806b1 | 2347 | |
83c54070 | 2348 | return ret; |
54cb8821 | 2349 | } |
d00806b1 | 2350 | |
54cb8821 NP |
2351 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2352 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2353 | int write_access, pte_t orig_pte) | |
2354 | { | |
2355 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 2356 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 NP |
2357 | unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); |
2358 | ||
16abfa08 HD |
2359 | pte_unmap(page_table); |
2360 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
2361 | } |
2362 | ||
1da177e4 | 2363 | |
f4b81804 JS |
2364 | /* |
2365 | * do_no_pfn() tries to create a new page mapping for a page without | |
2366 | * a struct_page backing it | |
2367 | * | |
2368 | * As this is called only for pages that do not currently exist, we | |
2369 | * do not need to flush old virtual caches or the TLB. | |
2370 | * | |
2371 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2372 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2373 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
2374 | * | |
2375 | * It is expected that the ->nopfn handler always returns the same pfn | |
2376 | * for a given virtual mapping. | |
2377 | * | |
2378 | * Mark this `noinline' to prevent it from bloating the main pagefault code. | |
2379 | */ | |
2380 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | |
2381 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2382 | int write_access) | |
2383 | { | |
2384 | spinlock_t *ptl; | |
2385 | pte_t entry; | |
2386 | unsigned long pfn; | |
f4b81804 JS |
2387 | |
2388 | pte_unmap(page_table); | |
2389 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | |
2390 | BUG_ON(is_cow_mapping(vma->vm_flags)); | |
2391 | ||
2392 | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | |
22cd25ed | 2393 | if (unlikely(pfn == NOPFN_OOM)) |
f4b81804 | 2394 | return VM_FAULT_OOM; |
22cd25ed | 2395 | else if (unlikely(pfn == NOPFN_SIGBUS)) |
f4b81804 | 2396 | return VM_FAULT_SIGBUS; |
22cd25ed | 2397 | else if (unlikely(pfn == NOPFN_REFAULT)) |
83c54070 | 2398 | return 0; |
f4b81804 JS |
2399 | |
2400 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2401 | ||
2402 | /* Only go through if we didn't race with anybody else... */ | |
2403 | if (pte_none(*page_table)) { | |
2404 | entry = pfn_pte(pfn, vma->vm_page_prot); | |
2405 | if (write_access) | |
2406 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2407 | set_pte_at(mm, address, page_table, entry); | |
2408 | } | |
2409 | pte_unmap_unlock(page_table, ptl); | |
83c54070 | 2410 | return 0; |
f4b81804 JS |
2411 | } |
2412 | ||
1da177e4 LT |
2413 | /* |
2414 | * Fault of a previously existing named mapping. Repopulate the pte | |
2415 | * from the encoded file_pte if possible. This enables swappable | |
2416 | * nonlinear vmas. | |
8f4e2101 HD |
2417 | * |
2418 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2419 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2420 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2421 | */ |
d0217ac0 | 2422 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 HD |
2423 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2424 | int write_access, pte_t orig_pte) | |
1da177e4 | 2425 | { |
d0217ac0 NP |
2426 | unsigned int flags = FAULT_FLAG_NONLINEAR | |
2427 | (write_access ? FAULT_FLAG_WRITE : 0); | |
65500d23 | 2428 | pgoff_t pgoff; |
1da177e4 | 2429 | |
4c21e2f2 | 2430 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 2431 | return 0; |
1da177e4 | 2432 | |
d0217ac0 NP |
2433 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || |
2434 | !(vma->vm_flags & VM_CAN_NONLINEAR))) { | |
65500d23 HD |
2435 | /* |
2436 | * Page table corrupted: show pte and kill process. | |
2437 | */ | |
b5810039 | 2438 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
2439 | return VM_FAULT_OOM; |
2440 | } | |
65500d23 HD |
2441 | |
2442 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 2443 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
2444 | } |
2445 | ||
2446 | /* | |
2447 | * These routines also need to handle stuff like marking pages dirty | |
2448 | * and/or accessed for architectures that don't do it in hardware (most | |
2449 | * RISC architectures). The early dirtying is also good on the i386. | |
2450 | * | |
2451 | * There is also a hook called "update_mmu_cache()" that architectures | |
2452 | * with external mmu caches can use to update those (ie the Sparc or | |
2453 | * PowerPC hashed page tables that act as extended TLBs). | |
2454 | * | |
c74df32c HD |
2455 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2456 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2457 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2458 | */ |
2459 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 HD |
2460 | struct vm_area_struct *vma, unsigned long address, |
2461 | pte_t *pte, pmd_t *pmd, int write_access) | |
1da177e4 LT |
2462 | { |
2463 | pte_t entry; | |
8f4e2101 | 2464 | spinlock_t *ptl; |
1da177e4 | 2465 | |
8dab5241 | 2466 | entry = *pte; |
1da177e4 | 2467 | if (!pte_present(entry)) { |
65500d23 | 2468 | if (pte_none(entry)) { |
f4b81804 | 2469 | if (vma->vm_ops) { |
54cb8821 NP |
2470 | if (vma->vm_ops->fault || vma->vm_ops->nopage) |
2471 | return do_linear_fault(mm, vma, address, | |
2472 | pte, pmd, write_access, entry); | |
f4b81804 JS |
2473 | if (unlikely(vma->vm_ops->nopfn)) |
2474 | return do_no_pfn(mm, vma, address, pte, | |
2475 | pmd, write_access); | |
2476 | } | |
2477 | return do_anonymous_page(mm, vma, address, | |
2478 | pte, pmd, write_access); | |
65500d23 | 2479 | } |
1da177e4 | 2480 | if (pte_file(entry)) |
d0217ac0 | 2481 | return do_nonlinear_fault(mm, vma, address, |
65500d23 HD |
2482 | pte, pmd, write_access, entry); |
2483 | return do_swap_page(mm, vma, address, | |
2484 | pte, pmd, write_access, entry); | |
1da177e4 LT |
2485 | } |
2486 | ||
4c21e2f2 | 2487 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2488 | spin_lock(ptl); |
2489 | if (unlikely(!pte_same(*pte, entry))) | |
2490 | goto unlock; | |
1da177e4 LT |
2491 | if (write_access) { |
2492 | if (!pte_write(entry)) | |
8f4e2101 HD |
2493 | return do_wp_page(mm, vma, address, |
2494 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2495 | entry = pte_mkdirty(entry); |
2496 | } | |
2497 | entry = pte_mkyoung(entry); | |
8dab5241 | 2498 | if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { |
1a44e149 | 2499 | update_mmu_cache(vma, address, entry); |
1a44e149 AA |
2500 | } else { |
2501 | /* | |
2502 | * This is needed only for protection faults but the arch code | |
2503 | * is not yet telling us if this is a protection fault or not. | |
2504 | * This still avoids useless tlb flushes for .text page faults | |
2505 | * with threads. | |
2506 | */ | |
2507 | if (write_access) | |
2508 | flush_tlb_page(vma, address); | |
2509 | } | |
8f4e2101 HD |
2510 | unlock: |
2511 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 2512 | return 0; |
1da177e4 LT |
2513 | } |
2514 | ||
2515 | /* | |
2516 | * By the time we get here, we already hold the mm semaphore | |
2517 | */ | |
83c54070 | 2518 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2519 | unsigned long address, int write_access) |
2520 | { | |
2521 | pgd_t *pgd; | |
2522 | pud_t *pud; | |
2523 | pmd_t *pmd; | |
2524 | pte_t *pte; | |
2525 | ||
2526 | __set_current_state(TASK_RUNNING); | |
2527 | ||
f8891e5e | 2528 | count_vm_event(PGFAULT); |
1da177e4 | 2529 | |
ac9b9c66 HD |
2530 | if (unlikely(is_vm_hugetlb_page(vma))) |
2531 | return hugetlb_fault(mm, vma, address, write_access); | |
1da177e4 | 2532 | |
1da177e4 | 2533 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2534 | pud = pud_alloc(mm, pgd, address); |
2535 | if (!pud) | |
c74df32c | 2536 | return VM_FAULT_OOM; |
1da177e4 LT |
2537 | pmd = pmd_alloc(mm, pud, address); |
2538 | if (!pmd) | |
c74df32c | 2539 | return VM_FAULT_OOM; |
1da177e4 LT |
2540 | pte = pte_alloc_map(mm, pmd, address); |
2541 | if (!pte) | |
c74df32c | 2542 | return VM_FAULT_OOM; |
1da177e4 | 2543 | |
c74df32c | 2544 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
1da177e4 LT |
2545 | } |
2546 | ||
2547 | #ifndef __PAGETABLE_PUD_FOLDED | |
2548 | /* | |
2549 | * Allocate page upper directory. | |
872fec16 | 2550 | * We've already handled the fast-path in-line. |
1da177e4 | 2551 | */ |
1bb3630e | 2552 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2553 | { |
c74df32c HD |
2554 | pud_t *new = pud_alloc_one(mm, address); |
2555 | if (!new) | |
1bb3630e | 2556 | return -ENOMEM; |
1da177e4 | 2557 | |
872fec16 | 2558 | spin_lock(&mm->page_table_lock); |
1bb3630e | 2559 | if (pgd_present(*pgd)) /* Another has populated it */ |
1da177e4 | 2560 | pud_free(new); |
1bb3630e HD |
2561 | else |
2562 | pgd_populate(mm, pgd, new); | |
c74df32c | 2563 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2564 | return 0; |
1da177e4 LT |
2565 | } |
2566 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
2567 | ||
2568 | #ifndef __PAGETABLE_PMD_FOLDED | |
2569 | /* | |
2570 | * Allocate page middle directory. | |
872fec16 | 2571 | * We've already handled the fast-path in-line. |
1da177e4 | 2572 | */ |
1bb3630e | 2573 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 2574 | { |
c74df32c HD |
2575 | pmd_t *new = pmd_alloc_one(mm, address); |
2576 | if (!new) | |
1bb3630e | 2577 | return -ENOMEM; |
1da177e4 | 2578 | |
872fec16 | 2579 | spin_lock(&mm->page_table_lock); |
1da177e4 | 2580 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 2581 | if (pud_present(*pud)) /* Another has populated it */ |
1da177e4 | 2582 | pmd_free(new); |
1bb3630e HD |
2583 | else |
2584 | pud_populate(mm, pud, new); | |
1da177e4 | 2585 | #else |
1bb3630e | 2586 | if (pgd_present(*pud)) /* Another has populated it */ |
1da177e4 | 2587 | pmd_free(new); |
1bb3630e HD |
2588 | else |
2589 | pgd_populate(mm, pud, new); | |
1da177e4 | 2590 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 2591 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2592 | return 0; |
e0f39591 | 2593 | } |
1da177e4 LT |
2594 | #endif /* __PAGETABLE_PMD_FOLDED */ |
2595 | ||
2596 | int make_pages_present(unsigned long addr, unsigned long end) | |
2597 | { | |
2598 | int ret, len, write; | |
2599 | struct vm_area_struct * vma; | |
2600 | ||
2601 | vma = find_vma(current->mm, addr); | |
2602 | if (!vma) | |
2603 | return -1; | |
2604 | write = (vma->vm_flags & VM_WRITE) != 0; | |
5bcb28b1 ES |
2605 | BUG_ON(addr >= end); |
2606 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 2607 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
2608 | ret = get_user_pages(current, current->mm, addr, |
2609 | len, write, 0, NULL, NULL); | |
2610 | if (ret < 0) | |
2611 | return ret; | |
2612 | return ret == len ? 0 : -1; | |
2613 | } | |
2614 | ||
2615 | /* | |
2616 | * Map a vmalloc()-space virtual address to the physical page. | |
2617 | */ | |
2618 | struct page * vmalloc_to_page(void * vmalloc_addr) | |
2619 | { | |
2620 | unsigned long addr = (unsigned long) vmalloc_addr; | |
2621 | struct page *page = NULL; | |
2622 | pgd_t *pgd = pgd_offset_k(addr); | |
2623 | pud_t *pud; | |
2624 | pmd_t *pmd; | |
2625 | pte_t *ptep, pte; | |
2626 | ||
2627 | if (!pgd_none(*pgd)) { | |
2628 | pud = pud_offset(pgd, addr); | |
2629 | if (!pud_none(*pud)) { | |
2630 | pmd = pmd_offset(pud, addr); | |
2631 | if (!pmd_none(*pmd)) { | |
2632 | ptep = pte_offset_map(pmd, addr); | |
2633 | pte = *ptep; | |
2634 | if (pte_present(pte)) | |
2635 | page = pte_page(pte); | |
2636 | pte_unmap(ptep); | |
2637 | } | |
2638 | } | |
2639 | } | |
2640 | return page; | |
2641 | } | |
2642 | ||
2643 | EXPORT_SYMBOL(vmalloc_to_page); | |
2644 | ||
2645 | /* | |
2646 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
2647 | */ | |
2648 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | |
2649 | { | |
2650 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
2651 | } | |
2652 | ||
2653 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
2654 | ||
1da177e4 LT |
2655 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2656 | ||
2657 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 2658 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
2659 | |
2660 | static int __init gate_vma_init(void) | |
2661 | { | |
2662 | gate_vma.vm_mm = NULL; | |
2663 | gate_vma.vm_start = FIXADDR_USER_START; | |
2664 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
2665 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
2666 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
2667 | /* |
2668 | * Make sure the vDSO gets into every core dump. | |
2669 | * Dumping its contents makes post-mortem fully interpretable later | |
2670 | * without matching up the same kernel and hardware config to see | |
2671 | * what PC values meant. | |
2672 | */ | |
2673 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
2674 | return 0; |
2675 | } | |
2676 | __initcall(gate_vma_init); | |
2677 | #endif | |
2678 | ||
2679 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2680 | { | |
2681 | #ifdef AT_SYSINFO_EHDR | |
2682 | return &gate_vma; | |
2683 | #else | |
2684 | return NULL; | |
2685 | #endif | |
2686 | } | |
2687 | ||
2688 | int in_gate_area_no_task(unsigned long addr) | |
2689 | { | |
2690 | #ifdef AT_SYSINFO_EHDR | |
2691 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2692 | return 1; | |
2693 | #endif | |
2694 | return 0; | |
2695 | } | |
2696 | ||
2697 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 DH |
2698 | |
2699 | /* | |
2700 | * Access another process' address space. | |
2701 | * Source/target buffer must be kernel space, | |
2702 | * Do not walk the page table directly, use get_user_pages | |
2703 | */ | |
2704 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
2705 | { | |
2706 | struct mm_struct *mm; | |
2707 | struct vm_area_struct *vma; | |
2708 | struct page *page; | |
2709 | void *old_buf = buf; | |
2710 | ||
2711 | mm = get_task_mm(tsk); | |
2712 | if (!mm) | |
2713 | return 0; | |
2714 | ||
2715 | down_read(&mm->mmap_sem); | |
183ff22b | 2716 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
2717 | while (len) { |
2718 | int bytes, ret, offset; | |
2719 | void *maddr; | |
2720 | ||
2721 | ret = get_user_pages(tsk, mm, addr, 1, | |
2722 | write, 1, &page, &vma); | |
2723 | if (ret <= 0) | |
2724 | break; | |
2725 | ||
2726 | bytes = len; | |
2727 | offset = addr & (PAGE_SIZE-1); | |
2728 | if (bytes > PAGE_SIZE-offset) | |
2729 | bytes = PAGE_SIZE-offset; | |
2730 | ||
2731 | maddr = kmap(page); | |
2732 | if (write) { | |
2733 | copy_to_user_page(vma, page, addr, | |
2734 | maddr + offset, buf, bytes); | |
2735 | set_page_dirty_lock(page); | |
2736 | } else { | |
2737 | copy_from_user_page(vma, page, addr, | |
2738 | buf, maddr + offset, bytes); | |
2739 | } | |
2740 | kunmap(page); | |
2741 | page_cache_release(page); | |
2742 | len -= bytes; | |
2743 | buf += bytes; | |
2744 | addr += bytes; | |
2745 | } | |
2746 | up_read(&mm->mmap_sem); | |
2747 | mmput(mm); | |
2748 | ||
2749 | return buf - old_buf; | |
2750 | } |