]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
0ff92245 | 50 | #include <linux/delayacct.h> |
1da177e4 | 51 | #include <linux/init.h> |
edc79b2a | 52 | #include <linux/writeback.h> |
1da177e4 LT |
53 | |
54 | #include <asm/pgalloc.h> | |
55 | #include <asm/uaccess.h> | |
56 | #include <asm/tlb.h> | |
57 | #include <asm/tlbflush.h> | |
58 | #include <asm/pgtable.h> | |
59 | ||
60 | #include <linux/swapops.h> | |
61 | #include <linux/elf.h> | |
62 | ||
d41dee36 | 63 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
64 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
65 | unsigned long max_mapnr; | |
66 | struct page *mem_map; | |
67 | ||
68 | EXPORT_SYMBOL(max_mapnr); | |
69 | EXPORT_SYMBOL(mem_map); | |
70 | #endif | |
71 | ||
72 | unsigned long num_physpages; | |
73 | /* | |
74 | * A number of key systems in x86 including ioremap() rely on the assumption | |
75 | * that high_memory defines the upper bound on direct map memory, then end | |
76 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
77 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
78 | * and ZONE_HIGHMEM. | |
79 | */ | |
80 | void * high_memory; | |
81 | unsigned long vmalloc_earlyreserve; | |
82 | ||
83 | EXPORT_SYMBOL(num_physpages); | |
84 | EXPORT_SYMBOL(high_memory); | |
85 | EXPORT_SYMBOL(vmalloc_earlyreserve); | |
86 | ||
a62eaf15 AK |
87 | int randomize_va_space __read_mostly = 1; |
88 | ||
89 | static int __init disable_randmaps(char *s) | |
90 | { | |
91 | randomize_va_space = 0; | |
9b41046c | 92 | return 1; |
a62eaf15 AK |
93 | } |
94 | __setup("norandmaps", disable_randmaps); | |
95 | ||
96 | ||
1da177e4 LT |
97 | /* |
98 | * If a p?d_bad entry is found while walking page tables, report | |
99 | * the error, before resetting entry to p?d_none. Usually (but | |
100 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
101 | */ | |
102 | ||
103 | void pgd_clear_bad(pgd_t *pgd) | |
104 | { | |
105 | pgd_ERROR(*pgd); | |
106 | pgd_clear(pgd); | |
107 | } | |
108 | ||
109 | void pud_clear_bad(pud_t *pud) | |
110 | { | |
111 | pud_ERROR(*pud); | |
112 | pud_clear(pud); | |
113 | } | |
114 | ||
115 | void pmd_clear_bad(pmd_t *pmd) | |
116 | { | |
117 | pmd_ERROR(*pmd); | |
118 | pmd_clear(pmd); | |
119 | } | |
120 | ||
121 | /* | |
122 | * Note: this doesn't free the actual pages themselves. That | |
123 | * has been handled earlier when unmapping all the memory regions. | |
124 | */ | |
e0da382c | 125 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 126 | { |
e0da382c HD |
127 | struct page *page = pmd_page(*pmd); |
128 | pmd_clear(pmd); | |
4c21e2f2 | 129 | pte_lock_deinit(page); |
e0da382c | 130 | pte_free_tlb(tlb, page); |
df849a15 | 131 | dec_zone_page_state(page, NR_PAGETABLE); |
e0da382c | 132 | tlb->mm->nr_ptes--; |
1da177e4 LT |
133 | } |
134 | ||
e0da382c HD |
135 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
136 | unsigned long addr, unsigned long end, | |
137 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
138 | { |
139 | pmd_t *pmd; | |
140 | unsigned long next; | |
e0da382c | 141 | unsigned long start; |
1da177e4 | 142 | |
e0da382c | 143 | start = addr; |
1da177e4 | 144 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
145 | do { |
146 | next = pmd_addr_end(addr, end); | |
147 | if (pmd_none_or_clear_bad(pmd)) | |
148 | continue; | |
e0da382c | 149 | free_pte_range(tlb, pmd); |
1da177e4 LT |
150 | } while (pmd++, addr = next, addr != end); |
151 | ||
e0da382c HD |
152 | start &= PUD_MASK; |
153 | if (start < floor) | |
154 | return; | |
155 | if (ceiling) { | |
156 | ceiling &= PUD_MASK; | |
157 | if (!ceiling) | |
158 | return; | |
1da177e4 | 159 | } |
e0da382c HD |
160 | if (end - 1 > ceiling - 1) |
161 | return; | |
162 | ||
163 | pmd = pmd_offset(pud, start); | |
164 | pud_clear(pud); | |
165 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
166 | } |
167 | ||
e0da382c HD |
168 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
169 | unsigned long addr, unsigned long end, | |
170 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
171 | { |
172 | pud_t *pud; | |
173 | unsigned long next; | |
e0da382c | 174 | unsigned long start; |
1da177e4 | 175 | |
e0da382c | 176 | start = addr; |
1da177e4 | 177 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
178 | do { |
179 | next = pud_addr_end(addr, end); | |
180 | if (pud_none_or_clear_bad(pud)) | |
181 | continue; | |
e0da382c | 182 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
183 | } while (pud++, addr = next, addr != end); |
184 | ||
e0da382c HD |
185 | start &= PGDIR_MASK; |
186 | if (start < floor) | |
187 | return; | |
188 | if (ceiling) { | |
189 | ceiling &= PGDIR_MASK; | |
190 | if (!ceiling) | |
191 | return; | |
1da177e4 | 192 | } |
e0da382c HD |
193 | if (end - 1 > ceiling - 1) |
194 | return; | |
195 | ||
196 | pud = pud_offset(pgd, start); | |
197 | pgd_clear(pgd); | |
198 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
199 | } |
200 | ||
201 | /* | |
e0da382c HD |
202 | * This function frees user-level page tables of a process. |
203 | * | |
1da177e4 LT |
204 | * Must be called with pagetable lock held. |
205 | */ | |
3bf5ee95 | 206 | void free_pgd_range(struct mmu_gather **tlb, |
e0da382c HD |
207 | unsigned long addr, unsigned long end, |
208 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
209 | { |
210 | pgd_t *pgd; | |
211 | unsigned long next; | |
e0da382c HD |
212 | unsigned long start; |
213 | ||
214 | /* | |
215 | * The next few lines have given us lots of grief... | |
216 | * | |
217 | * Why are we testing PMD* at this top level? Because often | |
218 | * there will be no work to do at all, and we'd prefer not to | |
219 | * go all the way down to the bottom just to discover that. | |
220 | * | |
221 | * Why all these "- 1"s? Because 0 represents both the bottom | |
222 | * of the address space and the top of it (using -1 for the | |
223 | * top wouldn't help much: the masks would do the wrong thing). | |
224 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
225 | * the address space, but end 0 and ceiling 0 refer to the top | |
226 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
227 | * that end 0 case should be mythical). | |
228 | * | |
229 | * Wherever addr is brought up or ceiling brought down, we must | |
230 | * be careful to reject "the opposite 0" before it confuses the | |
231 | * subsequent tests. But what about where end is brought down | |
232 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
233 | * | |
234 | * Whereas we round start (addr) and ceiling down, by different | |
235 | * masks at different levels, in order to test whether a table | |
236 | * now has no other vmas using it, so can be freed, we don't | |
237 | * bother to round floor or end up - the tests don't need that. | |
238 | */ | |
1da177e4 | 239 | |
e0da382c HD |
240 | addr &= PMD_MASK; |
241 | if (addr < floor) { | |
242 | addr += PMD_SIZE; | |
243 | if (!addr) | |
244 | return; | |
245 | } | |
246 | if (ceiling) { | |
247 | ceiling &= PMD_MASK; | |
248 | if (!ceiling) | |
249 | return; | |
250 | } | |
251 | if (end - 1 > ceiling - 1) | |
252 | end -= PMD_SIZE; | |
253 | if (addr > end - 1) | |
254 | return; | |
255 | ||
256 | start = addr; | |
3bf5ee95 | 257 | pgd = pgd_offset((*tlb)->mm, addr); |
1da177e4 LT |
258 | do { |
259 | next = pgd_addr_end(addr, end); | |
260 | if (pgd_none_or_clear_bad(pgd)) | |
261 | continue; | |
3bf5ee95 | 262 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 263 | } while (pgd++, addr = next, addr != end); |
e0da382c | 264 | |
4d6ddfa9 | 265 | if (!(*tlb)->fullmm) |
3bf5ee95 | 266 | flush_tlb_pgtables((*tlb)->mm, start, end); |
e0da382c HD |
267 | } |
268 | ||
269 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | |
3bf5ee95 | 270 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
271 | { |
272 | while (vma) { | |
273 | struct vm_area_struct *next = vma->vm_next; | |
274 | unsigned long addr = vma->vm_start; | |
275 | ||
8f4f8c16 HD |
276 | /* |
277 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
278 | */ | |
279 | anon_vma_unlink(vma); | |
280 | unlink_file_vma(vma); | |
281 | ||
9da61aef | 282 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 283 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 284 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
285 | } else { |
286 | /* | |
287 | * Optimization: gather nearby vmas into one call down | |
288 | */ | |
289 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 290 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
291 | vma = next; |
292 | next = vma->vm_next; | |
8f4f8c16 HD |
293 | anon_vma_unlink(vma); |
294 | unlink_file_vma(vma); | |
3bf5ee95 HD |
295 | } |
296 | free_pgd_range(tlb, addr, vma->vm_end, | |
297 | floor, next? next->vm_start: ceiling); | |
298 | } | |
e0da382c HD |
299 | vma = next; |
300 | } | |
1da177e4 LT |
301 | } |
302 | ||
1bb3630e | 303 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 304 | { |
c74df32c | 305 | struct page *new = pte_alloc_one(mm, address); |
1bb3630e HD |
306 | if (!new) |
307 | return -ENOMEM; | |
308 | ||
4c21e2f2 | 309 | pte_lock_init(new); |
c74df32c | 310 | spin_lock(&mm->page_table_lock); |
4c21e2f2 HD |
311 | if (pmd_present(*pmd)) { /* Another has populated it */ |
312 | pte_lock_deinit(new); | |
1bb3630e | 313 | pte_free(new); |
4c21e2f2 | 314 | } else { |
1da177e4 | 315 | mm->nr_ptes++; |
df849a15 | 316 | inc_zone_page_state(new, NR_PAGETABLE); |
1da177e4 LT |
317 | pmd_populate(mm, pmd, new); |
318 | } | |
c74df32c | 319 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 320 | return 0; |
1da177e4 LT |
321 | } |
322 | ||
1bb3630e | 323 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 324 | { |
1bb3630e HD |
325 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
326 | if (!new) | |
327 | return -ENOMEM; | |
328 | ||
329 | spin_lock(&init_mm.page_table_lock); | |
330 | if (pmd_present(*pmd)) /* Another has populated it */ | |
331 | pte_free_kernel(new); | |
332 | else | |
333 | pmd_populate_kernel(&init_mm, pmd, new); | |
334 | spin_unlock(&init_mm.page_table_lock); | |
335 | return 0; | |
1da177e4 LT |
336 | } |
337 | ||
ae859762 HD |
338 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
339 | { | |
340 | if (file_rss) | |
341 | add_mm_counter(mm, file_rss, file_rss); | |
342 | if (anon_rss) | |
343 | add_mm_counter(mm, anon_rss, anon_rss); | |
344 | } | |
345 | ||
b5810039 | 346 | /* |
6aab341e LT |
347 | * This function is called to print an error when a bad pte |
348 | * is found. For example, we might have a PFN-mapped pte in | |
349 | * a region that doesn't allow it. | |
b5810039 NP |
350 | * |
351 | * The calling function must still handle the error. | |
352 | */ | |
353 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | |
354 | { | |
355 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | |
356 | "vm_flags = %lx, vaddr = %lx\n", | |
357 | (long long)pte_val(pte), | |
358 | (vma->vm_mm == current->mm ? current->comm : "???"), | |
359 | vma->vm_flags, vaddr); | |
360 | dump_stack(); | |
361 | } | |
362 | ||
67121172 LT |
363 | static inline int is_cow_mapping(unsigned int flags) |
364 | { | |
365 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
366 | } | |
367 | ||
ee498ed7 | 368 | /* |
6aab341e LT |
369 | * This function gets the "struct page" associated with a pte. |
370 | * | |
371 | * NOTE! Some mappings do not have "struct pages". A raw PFN mapping | |
372 | * will have each page table entry just pointing to a raw page frame | |
373 | * number, and as far as the VM layer is concerned, those do not have | |
374 | * pages associated with them - even if the PFN might point to memory | |
375 | * that otherwise is perfectly fine and has a "struct page". | |
376 | * | |
377 | * The way we recognize those mappings is through the rules set up | |
378 | * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, | |
379 | * and the vm_pgoff will point to the first PFN mapped: thus every | |
380 | * page that is a raw mapping will always honor the rule | |
381 | * | |
382 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
383 | * | |
384 | * and if that isn't true, the page has been COW'ed (in which case it | |
385 | * _does_ have a "struct page" associated with it even if it is in a | |
386 | * VM_PFNMAP range). | |
ee498ed7 | 387 | */ |
6aab341e | 388 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) |
ee498ed7 | 389 | { |
6aab341e LT |
390 | unsigned long pfn = pte_pfn(pte); |
391 | ||
b7ab795b | 392 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
6aab341e LT |
393 | unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; |
394 | if (pfn == vma->vm_pgoff + off) | |
395 | return NULL; | |
67121172 | 396 | if (!is_cow_mapping(vma->vm_flags)) |
fb155c16 | 397 | return NULL; |
6aab341e LT |
398 | } |
399 | ||
315ab19a NP |
400 | /* |
401 | * Add some anal sanity checks for now. Eventually, | |
402 | * we should just do "return pfn_to_page(pfn)", but | |
403 | * in the meantime we check that we get a valid pfn, | |
404 | * and that the resulting page looks ok. | |
405 | */ | |
6aab341e LT |
406 | if (unlikely(!pfn_valid(pfn))) { |
407 | print_bad_pte(vma, pte, addr); | |
408 | return NULL; | |
409 | } | |
410 | ||
411 | /* | |
412 | * NOTE! We still have PageReserved() pages in the page | |
413 | * tables. | |
414 | * | |
415 | * The PAGE_ZERO() pages and various VDSO mappings can | |
416 | * cause them to exist. | |
417 | */ | |
418 | return pfn_to_page(pfn); | |
ee498ed7 HD |
419 | } |
420 | ||
1da177e4 LT |
421 | /* |
422 | * copy one vm_area from one task to the other. Assumes the page tables | |
423 | * already present in the new task to be cleared in the whole range | |
424 | * covered by this vma. | |
1da177e4 LT |
425 | */ |
426 | ||
8c103762 | 427 | static inline void |
1da177e4 | 428 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 429 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 430 | unsigned long addr, int *rss) |
1da177e4 | 431 | { |
b5810039 | 432 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
433 | pte_t pte = *src_pte; |
434 | struct page *page; | |
1da177e4 LT |
435 | |
436 | /* pte contains position in swap or file, so copy. */ | |
437 | if (unlikely(!pte_present(pte))) { | |
438 | if (!pte_file(pte)) { | |
0697212a CL |
439 | swp_entry_t entry = pte_to_swp_entry(pte); |
440 | ||
441 | swap_duplicate(entry); | |
1da177e4 LT |
442 | /* make sure dst_mm is on swapoff's mmlist. */ |
443 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
444 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
445 | if (list_empty(&dst_mm->mmlist)) |
446 | list_add(&dst_mm->mmlist, | |
447 | &src_mm->mmlist); | |
1da177e4 LT |
448 | spin_unlock(&mmlist_lock); |
449 | } | |
0697212a CL |
450 | if (is_write_migration_entry(entry) && |
451 | is_cow_mapping(vm_flags)) { | |
452 | /* | |
453 | * COW mappings require pages in both parent | |
454 | * and child to be set to read. | |
455 | */ | |
456 | make_migration_entry_read(&entry); | |
457 | pte = swp_entry_to_pte(entry); | |
458 | set_pte_at(src_mm, addr, src_pte, pte); | |
459 | } | |
1da177e4 | 460 | } |
ae859762 | 461 | goto out_set_pte; |
1da177e4 LT |
462 | } |
463 | ||
1da177e4 LT |
464 | /* |
465 | * If it's a COW mapping, write protect it both | |
466 | * in the parent and the child | |
467 | */ | |
67121172 | 468 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 469 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 470 | pte = pte_wrprotect(pte); |
1da177e4 LT |
471 | } |
472 | ||
473 | /* | |
474 | * If it's a shared mapping, mark it clean in | |
475 | * the child | |
476 | */ | |
477 | if (vm_flags & VM_SHARED) | |
478 | pte = pte_mkclean(pte); | |
479 | pte = pte_mkold(pte); | |
6aab341e LT |
480 | |
481 | page = vm_normal_page(vma, addr, pte); | |
482 | if (page) { | |
483 | get_page(page); | |
484 | page_dup_rmap(page); | |
485 | rss[!!PageAnon(page)]++; | |
486 | } | |
ae859762 HD |
487 | |
488 | out_set_pte: | |
489 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
490 | } |
491 | ||
492 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
493 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
494 | unsigned long addr, unsigned long end) | |
495 | { | |
496 | pte_t *src_pte, *dst_pte; | |
c74df32c | 497 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 498 | int progress = 0; |
8c103762 | 499 | int rss[2]; |
1da177e4 LT |
500 | |
501 | again: | |
ae859762 | 502 | rss[1] = rss[0] = 0; |
c74df32c | 503 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
504 | if (!dst_pte) |
505 | return -ENOMEM; | |
506 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 507 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 508 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
6606c3e0 | 509 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 510 | |
1da177e4 LT |
511 | do { |
512 | /* | |
513 | * We are holding two locks at this point - either of them | |
514 | * could generate latencies in another task on another CPU. | |
515 | */ | |
e040f218 HD |
516 | if (progress >= 32) { |
517 | progress = 0; | |
518 | if (need_resched() || | |
c74df32c HD |
519 | need_lockbreak(src_ptl) || |
520 | need_lockbreak(dst_ptl)) | |
e040f218 HD |
521 | break; |
522 | } | |
1da177e4 LT |
523 | if (pte_none(*src_pte)) { |
524 | progress++; | |
525 | continue; | |
526 | } | |
8c103762 | 527 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
528 | progress += 8; |
529 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 530 | |
6606c3e0 | 531 | arch_leave_lazy_mmu_mode(); |
c74df32c | 532 | spin_unlock(src_ptl); |
1da177e4 | 533 | pte_unmap_nested(src_pte - 1); |
ae859762 | 534 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
535 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
536 | cond_resched(); | |
1da177e4 LT |
537 | if (addr != end) |
538 | goto again; | |
539 | return 0; | |
540 | } | |
541 | ||
542 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
543 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
544 | unsigned long addr, unsigned long end) | |
545 | { | |
546 | pmd_t *src_pmd, *dst_pmd; | |
547 | unsigned long next; | |
548 | ||
549 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
550 | if (!dst_pmd) | |
551 | return -ENOMEM; | |
552 | src_pmd = pmd_offset(src_pud, addr); | |
553 | do { | |
554 | next = pmd_addr_end(addr, end); | |
555 | if (pmd_none_or_clear_bad(src_pmd)) | |
556 | continue; | |
557 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
558 | vma, addr, next)) | |
559 | return -ENOMEM; | |
560 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
561 | return 0; | |
562 | } | |
563 | ||
564 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
565 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
566 | unsigned long addr, unsigned long end) | |
567 | { | |
568 | pud_t *src_pud, *dst_pud; | |
569 | unsigned long next; | |
570 | ||
571 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
572 | if (!dst_pud) | |
573 | return -ENOMEM; | |
574 | src_pud = pud_offset(src_pgd, addr); | |
575 | do { | |
576 | next = pud_addr_end(addr, end); | |
577 | if (pud_none_or_clear_bad(src_pud)) | |
578 | continue; | |
579 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
580 | vma, addr, next)) | |
581 | return -ENOMEM; | |
582 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
583 | return 0; | |
584 | } | |
585 | ||
586 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
587 | struct vm_area_struct *vma) | |
588 | { | |
589 | pgd_t *src_pgd, *dst_pgd; | |
590 | unsigned long next; | |
591 | unsigned long addr = vma->vm_start; | |
592 | unsigned long end = vma->vm_end; | |
593 | ||
d992895b NP |
594 | /* |
595 | * Don't copy ptes where a page fault will fill them correctly. | |
596 | * Fork becomes much lighter when there are big shared or private | |
597 | * readonly mappings. The tradeoff is that copy_page_range is more | |
598 | * efficient than faulting. | |
599 | */ | |
4d7672b4 | 600 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
601 | if (!vma->anon_vma) |
602 | return 0; | |
603 | } | |
604 | ||
1da177e4 LT |
605 | if (is_vm_hugetlb_page(vma)) |
606 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
607 | ||
608 | dst_pgd = pgd_offset(dst_mm, addr); | |
609 | src_pgd = pgd_offset(src_mm, addr); | |
610 | do { | |
611 | next = pgd_addr_end(addr, end); | |
612 | if (pgd_none_or_clear_bad(src_pgd)) | |
613 | continue; | |
614 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | |
615 | vma, addr, next)) | |
616 | return -ENOMEM; | |
617 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | |
618 | return 0; | |
619 | } | |
620 | ||
51c6f666 | 621 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 622 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 623 | unsigned long addr, unsigned long end, |
51c6f666 | 624 | long *zap_work, struct zap_details *details) |
1da177e4 | 625 | { |
b5810039 | 626 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 627 | pte_t *pte; |
508034a3 | 628 | spinlock_t *ptl; |
ae859762 HD |
629 | int file_rss = 0; |
630 | int anon_rss = 0; | |
1da177e4 | 631 | |
508034a3 | 632 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 633 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
634 | do { |
635 | pte_t ptent = *pte; | |
51c6f666 RH |
636 | if (pte_none(ptent)) { |
637 | (*zap_work)--; | |
1da177e4 | 638 | continue; |
51c6f666 | 639 | } |
6f5e6b9e HD |
640 | |
641 | (*zap_work) -= PAGE_SIZE; | |
642 | ||
1da177e4 | 643 | if (pte_present(ptent)) { |
ee498ed7 | 644 | struct page *page; |
51c6f666 | 645 | |
6aab341e | 646 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
647 | if (unlikely(details) && page) { |
648 | /* | |
649 | * unmap_shared_mapping_pages() wants to | |
650 | * invalidate cache without truncating: | |
651 | * unmap shared but keep private pages. | |
652 | */ | |
653 | if (details->check_mapping && | |
654 | details->check_mapping != page->mapping) | |
655 | continue; | |
656 | /* | |
657 | * Each page->index must be checked when | |
658 | * invalidating or truncating nonlinear. | |
659 | */ | |
660 | if (details->nonlinear_vma && | |
661 | (page->index < details->first_index || | |
662 | page->index > details->last_index)) | |
663 | continue; | |
664 | } | |
b5810039 | 665 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 666 | tlb->fullmm); |
1da177e4 LT |
667 | tlb_remove_tlb_entry(tlb, pte, addr); |
668 | if (unlikely(!page)) | |
669 | continue; | |
670 | if (unlikely(details) && details->nonlinear_vma | |
671 | && linear_page_index(details->nonlinear_vma, | |
672 | addr) != page->index) | |
b5810039 | 673 | set_pte_at(mm, addr, pte, |
1da177e4 | 674 | pgoff_to_pte(page->index)); |
1da177e4 | 675 | if (PageAnon(page)) |
86d912f4 | 676 | anon_rss--; |
6237bcd9 HD |
677 | else { |
678 | if (pte_dirty(ptent)) | |
679 | set_page_dirty(page); | |
680 | if (pte_young(ptent)) | |
daa88c8d | 681 | SetPageReferenced(page); |
86d912f4 | 682 | file_rss--; |
6237bcd9 | 683 | } |
7de6b805 | 684 | page_remove_rmap(page, vma); |
1da177e4 LT |
685 | tlb_remove_page(tlb, page); |
686 | continue; | |
687 | } | |
688 | /* | |
689 | * If details->check_mapping, we leave swap entries; | |
690 | * if details->nonlinear_vma, we leave file entries. | |
691 | */ | |
692 | if (unlikely(details)) | |
693 | continue; | |
694 | if (!pte_file(ptent)) | |
695 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
9888a1ca | 696 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 697 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 698 | |
86d912f4 | 699 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 700 | arch_leave_lazy_mmu_mode(); |
508034a3 | 701 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
702 | |
703 | return addr; | |
1da177e4 LT |
704 | } |
705 | ||
51c6f666 | 706 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 707 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 708 | unsigned long addr, unsigned long end, |
51c6f666 | 709 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
710 | { |
711 | pmd_t *pmd; | |
712 | unsigned long next; | |
713 | ||
714 | pmd = pmd_offset(pud, addr); | |
715 | do { | |
716 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
717 | if (pmd_none_or_clear_bad(pmd)) { |
718 | (*zap_work)--; | |
1da177e4 | 719 | continue; |
51c6f666 RH |
720 | } |
721 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
722 | zap_work, details); | |
723 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
724 | ||
725 | return addr; | |
1da177e4 LT |
726 | } |
727 | ||
51c6f666 | 728 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 729 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 730 | unsigned long addr, unsigned long end, |
51c6f666 | 731 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
732 | { |
733 | pud_t *pud; | |
734 | unsigned long next; | |
735 | ||
736 | pud = pud_offset(pgd, addr); | |
737 | do { | |
738 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
739 | if (pud_none_or_clear_bad(pud)) { |
740 | (*zap_work)--; | |
1da177e4 | 741 | continue; |
51c6f666 RH |
742 | } |
743 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
744 | zap_work, details); | |
745 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
746 | ||
747 | return addr; | |
1da177e4 LT |
748 | } |
749 | ||
51c6f666 RH |
750 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
751 | struct vm_area_struct *vma, | |
1da177e4 | 752 | unsigned long addr, unsigned long end, |
51c6f666 | 753 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
754 | { |
755 | pgd_t *pgd; | |
756 | unsigned long next; | |
757 | ||
758 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
759 | details = NULL; | |
760 | ||
761 | BUG_ON(addr >= end); | |
762 | tlb_start_vma(tlb, vma); | |
763 | pgd = pgd_offset(vma->vm_mm, addr); | |
764 | do { | |
765 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
766 | if (pgd_none_or_clear_bad(pgd)) { |
767 | (*zap_work)--; | |
1da177e4 | 768 | continue; |
51c6f666 RH |
769 | } |
770 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
771 | zap_work, details); | |
772 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 773 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
774 | |
775 | return addr; | |
1da177e4 LT |
776 | } |
777 | ||
778 | #ifdef CONFIG_PREEMPT | |
779 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
780 | #else | |
781 | /* No preempt: go for improved straight-line efficiency */ | |
782 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
783 | #endif | |
784 | ||
785 | /** | |
786 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
787 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
788 | * @vma: the starting vma |
789 | * @start_addr: virtual address at which to start unmapping | |
790 | * @end_addr: virtual address at which to end unmapping | |
791 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
792 | * @details: details of nonlinear truncation or shared cache invalidation | |
793 | * | |
ee39b37b | 794 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 795 | * |
508034a3 | 796 | * Unmap all pages in the vma list. |
1da177e4 | 797 | * |
508034a3 HD |
798 | * We aim to not hold locks for too long (for scheduling latency reasons). |
799 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
800 | * return the ending mmu_gather to the caller. |
801 | * | |
802 | * Only addresses between `start' and `end' will be unmapped. | |
803 | * | |
804 | * The VMA list must be sorted in ascending virtual address order. | |
805 | * | |
806 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
807 | * range after unmap_vmas() returns. So the only responsibility here is to | |
808 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
809 | * drops the lock and schedules. | |
810 | */ | |
508034a3 | 811 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
812 | struct vm_area_struct *vma, unsigned long start_addr, |
813 | unsigned long end_addr, unsigned long *nr_accounted, | |
814 | struct zap_details *details) | |
815 | { | |
51c6f666 | 816 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
817 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
818 | int tlb_start_valid = 0; | |
ee39b37b | 819 | unsigned long start = start_addr; |
1da177e4 | 820 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 821 | int fullmm = (*tlbp)->fullmm; |
1da177e4 LT |
822 | |
823 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | |
1da177e4 LT |
824 | unsigned long end; |
825 | ||
826 | start = max(vma->vm_start, start_addr); | |
827 | if (start >= vma->vm_end) | |
828 | continue; | |
829 | end = min(vma->vm_end, end_addr); | |
830 | if (end <= vma->vm_start) | |
831 | continue; | |
832 | ||
833 | if (vma->vm_flags & VM_ACCOUNT) | |
834 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
835 | ||
1da177e4 | 836 | while (start != end) { |
1da177e4 LT |
837 | if (!tlb_start_valid) { |
838 | tlb_start = start; | |
839 | tlb_start_valid = 1; | |
840 | } | |
841 | ||
51c6f666 | 842 | if (unlikely(is_vm_hugetlb_page(vma))) { |
1da177e4 | 843 | unmap_hugepage_range(vma, start, end); |
51c6f666 RH |
844 | zap_work -= (end - start) / |
845 | (HPAGE_SIZE / PAGE_SIZE); | |
846 | start = end; | |
847 | } else | |
848 | start = unmap_page_range(*tlbp, vma, | |
849 | start, end, &zap_work, details); | |
850 | ||
851 | if (zap_work > 0) { | |
852 | BUG_ON(start != end); | |
853 | break; | |
1da177e4 LT |
854 | } |
855 | ||
1da177e4 LT |
856 | tlb_finish_mmu(*tlbp, tlb_start, start); |
857 | ||
858 | if (need_resched() || | |
1da177e4 LT |
859 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { |
860 | if (i_mmap_lock) { | |
508034a3 | 861 | *tlbp = NULL; |
1da177e4 LT |
862 | goto out; |
863 | } | |
1da177e4 | 864 | cond_resched(); |
1da177e4 LT |
865 | } |
866 | ||
508034a3 | 867 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 868 | tlb_start_valid = 0; |
51c6f666 | 869 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
870 | } |
871 | } | |
872 | out: | |
ee39b37b | 873 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
874 | } |
875 | ||
876 | /** | |
877 | * zap_page_range - remove user pages in a given range | |
878 | * @vma: vm_area_struct holding the applicable pages | |
879 | * @address: starting address of pages to zap | |
880 | * @size: number of bytes to zap | |
881 | * @details: details of nonlinear truncation or shared cache invalidation | |
882 | */ | |
ee39b37b | 883 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
884 | unsigned long size, struct zap_details *details) |
885 | { | |
886 | struct mm_struct *mm = vma->vm_mm; | |
887 | struct mmu_gather *tlb; | |
888 | unsigned long end = address + size; | |
889 | unsigned long nr_accounted = 0; | |
890 | ||
1da177e4 | 891 | lru_add_drain(); |
1da177e4 | 892 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 893 | update_hiwater_rss(mm); |
508034a3 HD |
894 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
895 | if (tlb) | |
896 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 897 | return end; |
1da177e4 LT |
898 | } |
899 | ||
900 | /* | |
901 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 902 | */ |
6aab341e | 903 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 904 | unsigned int flags) |
1da177e4 LT |
905 | { |
906 | pgd_t *pgd; | |
907 | pud_t *pud; | |
908 | pmd_t *pmd; | |
909 | pte_t *ptep, pte; | |
deceb6cd | 910 | spinlock_t *ptl; |
1da177e4 | 911 | struct page *page; |
6aab341e | 912 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 913 | |
deceb6cd HD |
914 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
915 | if (!IS_ERR(page)) { | |
916 | BUG_ON(flags & FOLL_GET); | |
917 | goto out; | |
918 | } | |
1da177e4 | 919 | |
deceb6cd | 920 | page = NULL; |
1da177e4 LT |
921 | pgd = pgd_offset(mm, address); |
922 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 923 | goto no_page_table; |
1da177e4 LT |
924 | |
925 | pud = pud_offset(pgd, address); | |
926 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
deceb6cd | 927 | goto no_page_table; |
1da177e4 LT |
928 | |
929 | pmd = pmd_offset(pud, address); | |
930 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
deceb6cd HD |
931 | goto no_page_table; |
932 | ||
933 | if (pmd_huge(*pmd)) { | |
934 | BUG_ON(flags & FOLL_GET); | |
935 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 936 | goto out; |
deceb6cd | 937 | } |
1da177e4 | 938 | |
deceb6cd | 939 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
940 | if (!ptep) |
941 | goto out; | |
942 | ||
943 | pte = *ptep; | |
deceb6cd HD |
944 | if (!pte_present(pte)) |
945 | goto unlock; | |
946 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | |
947 | goto unlock; | |
6aab341e LT |
948 | page = vm_normal_page(vma, address, pte); |
949 | if (unlikely(!page)) | |
deceb6cd | 950 | goto unlock; |
1da177e4 | 951 | |
deceb6cd HD |
952 | if (flags & FOLL_GET) |
953 | get_page(page); | |
954 | if (flags & FOLL_TOUCH) { | |
955 | if ((flags & FOLL_WRITE) && | |
956 | !pte_dirty(pte) && !PageDirty(page)) | |
957 | set_page_dirty(page); | |
958 | mark_page_accessed(page); | |
959 | } | |
960 | unlock: | |
961 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 962 | out: |
deceb6cd | 963 | return page; |
1da177e4 | 964 | |
deceb6cd HD |
965 | no_page_table: |
966 | /* | |
967 | * When core dumping an enormous anonymous area that nobody | |
968 | * has touched so far, we don't want to allocate page tables. | |
969 | */ | |
970 | if (flags & FOLL_ANON) { | |
971 | page = ZERO_PAGE(address); | |
972 | if (flags & FOLL_GET) | |
973 | get_page(page); | |
974 | BUG_ON(flags & FOLL_WRITE); | |
975 | } | |
976 | return page; | |
1da177e4 LT |
977 | } |
978 | ||
1da177e4 LT |
979 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
980 | unsigned long start, int len, int write, int force, | |
981 | struct page **pages, struct vm_area_struct **vmas) | |
982 | { | |
983 | int i; | |
deceb6cd | 984 | unsigned int vm_flags; |
1da177e4 LT |
985 | |
986 | /* | |
987 | * Require read or write permissions. | |
988 | * If 'force' is set, we only require the "MAY" flags. | |
989 | */ | |
deceb6cd HD |
990 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
991 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
992 | i = 0; |
993 | ||
994 | do { | |
deceb6cd HD |
995 | struct vm_area_struct *vma; |
996 | unsigned int foll_flags; | |
1da177e4 LT |
997 | |
998 | vma = find_extend_vma(mm, start); | |
999 | if (!vma && in_gate_area(tsk, start)) { | |
1000 | unsigned long pg = start & PAGE_MASK; | |
1001 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1002 | pgd_t *pgd; | |
1003 | pud_t *pud; | |
1004 | pmd_t *pmd; | |
1005 | pte_t *pte; | |
1006 | if (write) /* user gate pages are read-only */ | |
1007 | return i ? : -EFAULT; | |
1008 | if (pg > TASK_SIZE) | |
1009 | pgd = pgd_offset_k(pg); | |
1010 | else | |
1011 | pgd = pgd_offset_gate(mm, pg); | |
1012 | BUG_ON(pgd_none(*pgd)); | |
1013 | pud = pud_offset(pgd, pg); | |
1014 | BUG_ON(pud_none(*pud)); | |
1015 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1016 | if (pmd_none(*pmd)) |
1017 | return i ? : -EFAULT; | |
1da177e4 | 1018 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1019 | if (pte_none(*pte)) { |
1020 | pte_unmap(pte); | |
1021 | return i ? : -EFAULT; | |
1022 | } | |
1da177e4 | 1023 | if (pages) { |
fa2a455b | 1024 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1025 | pages[i] = page; |
1026 | if (page) | |
1027 | get_page(page); | |
1da177e4 LT |
1028 | } |
1029 | pte_unmap(pte); | |
1030 | if (vmas) | |
1031 | vmas[i] = gate_vma; | |
1032 | i++; | |
1033 | start += PAGE_SIZE; | |
1034 | len--; | |
1035 | continue; | |
1036 | } | |
1037 | ||
1ff80389 | 1038 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
deceb6cd | 1039 | || !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
1040 | return i ? : -EFAULT; |
1041 | ||
1042 | if (is_vm_hugetlb_page(vma)) { | |
1043 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
1044 | &start, &len, i); | |
1045 | continue; | |
1046 | } | |
deceb6cd HD |
1047 | |
1048 | foll_flags = FOLL_TOUCH; | |
1049 | if (pages) | |
1050 | foll_flags |= FOLL_GET; | |
1051 | if (!write && !(vma->vm_flags & VM_LOCKED) && | |
1052 | (!vma->vm_ops || !vma->vm_ops->nopage)) | |
1053 | foll_flags |= FOLL_ANON; | |
1054 | ||
1da177e4 | 1055 | do { |
08ef4729 | 1056 | struct page *page; |
1da177e4 | 1057 | |
deceb6cd HD |
1058 | if (write) |
1059 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1060 | |
deceb6cd | 1061 | cond_resched(); |
6aab341e | 1062 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd HD |
1063 | int ret; |
1064 | ret = __handle_mm_fault(mm, vma, start, | |
1065 | foll_flags & FOLL_WRITE); | |
a68d2ebc LT |
1066 | /* |
1067 | * The VM_FAULT_WRITE bit tells us that do_wp_page has | |
1068 | * broken COW when necessary, even if maybe_mkwrite | |
1069 | * decided not to set pte_write. We can thus safely do | |
1070 | * subsequent page lookups as if they were reads. | |
1071 | */ | |
1072 | if (ret & VM_FAULT_WRITE) | |
deceb6cd | 1073 | foll_flags &= ~FOLL_WRITE; |
a68d2ebc LT |
1074 | |
1075 | switch (ret & ~VM_FAULT_WRITE) { | |
1da177e4 LT |
1076 | case VM_FAULT_MINOR: |
1077 | tsk->min_flt++; | |
1078 | break; | |
1079 | case VM_FAULT_MAJOR: | |
1080 | tsk->maj_flt++; | |
1081 | break; | |
1082 | case VM_FAULT_SIGBUS: | |
1083 | return i ? i : -EFAULT; | |
1084 | case VM_FAULT_OOM: | |
1085 | return i ? i : -ENOMEM; | |
1086 | default: | |
1087 | BUG(); | |
1088 | } | |
7f7bbbe5 | 1089 | cond_resched(); |
1da177e4 LT |
1090 | } |
1091 | if (pages) { | |
08ef4729 | 1092 | pages[i] = page; |
03beb076 | 1093 | |
a6f36be3 | 1094 | flush_anon_page(vma, page, start); |
08ef4729 | 1095 | flush_dcache_page(page); |
1da177e4 LT |
1096 | } |
1097 | if (vmas) | |
1098 | vmas[i] = vma; | |
1099 | i++; | |
1100 | start += PAGE_SIZE; | |
1101 | len--; | |
08ef4729 | 1102 | } while (len && start < vma->vm_end); |
08ef4729 | 1103 | } while (len); |
1da177e4 LT |
1104 | return i; |
1105 | } | |
1da177e4 LT |
1106 | EXPORT_SYMBOL(get_user_pages); |
1107 | ||
1108 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1109 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1110 | { | |
1111 | pte_t *pte; | |
c74df32c | 1112 | spinlock_t *ptl; |
5fcf7bb7 | 1113 | int err = 0; |
1da177e4 | 1114 | |
c74df32c | 1115 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 | 1116 | if (!pte) |
5fcf7bb7 | 1117 | return -EAGAIN; |
6606c3e0 | 1118 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 1119 | do { |
b5810039 NP |
1120 | struct page *page = ZERO_PAGE(addr); |
1121 | pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); | |
5fcf7bb7 HD |
1122 | |
1123 | if (unlikely(!pte_none(*pte))) { | |
1124 | err = -EEXIST; | |
1125 | pte++; | |
1126 | break; | |
1127 | } | |
b5810039 NP |
1128 | page_cache_get(page); |
1129 | page_add_file_rmap(page); | |
1130 | inc_mm_counter(mm, file_rss); | |
1da177e4 LT |
1131 | set_pte_at(mm, addr, pte, zero_pte); |
1132 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1133 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1134 | pte_unmap_unlock(pte - 1, ptl); |
5fcf7bb7 | 1135 | return err; |
1da177e4 LT |
1136 | } |
1137 | ||
1138 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1139 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1140 | { | |
1141 | pmd_t *pmd; | |
1142 | unsigned long next; | |
5fcf7bb7 | 1143 | int err; |
1da177e4 LT |
1144 | |
1145 | pmd = pmd_alloc(mm, pud, addr); | |
1146 | if (!pmd) | |
5fcf7bb7 | 1147 | return -EAGAIN; |
1da177e4 LT |
1148 | do { |
1149 | next = pmd_addr_end(addr, end); | |
5fcf7bb7 HD |
1150 | err = zeromap_pte_range(mm, pmd, addr, next, prot); |
1151 | if (err) | |
1152 | break; | |
1da177e4 | 1153 | } while (pmd++, addr = next, addr != end); |
5fcf7bb7 | 1154 | return err; |
1da177e4 LT |
1155 | } |
1156 | ||
1157 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1158 | unsigned long addr, unsigned long end, pgprot_t prot) | |
1159 | { | |
1160 | pud_t *pud; | |
1161 | unsigned long next; | |
5fcf7bb7 | 1162 | int err; |
1da177e4 LT |
1163 | |
1164 | pud = pud_alloc(mm, pgd, addr); | |
1165 | if (!pud) | |
5fcf7bb7 | 1166 | return -EAGAIN; |
1da177e4 LT |
1167 | do { |
1168 | next = pud_addr_end(addr, end); | |
5fcf7bb7 HD |
1169 | err = zeromap_pmd_range(mm, pud, addr, next, prot); |
1170 | if (err) | |
1171 | break; | |
1da177e4 | 1172 | } while (pud++, addr = next, addr != end); |
5fcf7bb7 | 1173 | return err; |
1da177e4 LT |
1174 | } |
1175 | ||
1176 | int zeromap_page_range(struct vm_area_struct *vma, | |
1177 | unsigned long addr, unsigned long size, pgprot_t prot) | |
1178 | { | |
1179 | pgd_t *pgd; | |
1180 | unsigned long next; | |
1181 | unsigned long end = addr + size; | |
1182 | struct mm_struct *mm = vma->vm_mm; | |
1183 | int err; | |
1184 | ||
1185 | BUG_ON(addr >= end); | |
1186 | pgd = pgd_offset(mm, addr); | |
1187 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1188 | do { |
1189 | next = pgd_addr_end(addr, end); | |
1190 | err = zeromap_pud_range(mm, pgd, addr, next, prot); | |
1191 | if (err) | |
1192 | break; | |
1193 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1194 | return err; |
1195 | } | |
1196 | ||
49c91fb0 | 1197 | pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) |
c9cfcddf LT |
1198 | { |
1199 | pgd_t * pgd = pgd_offset(mm, addr); | |
1200 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1201 | if (pud) { | |
49c91fb0 | 1202 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1203 | if (pmd) |
1204 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1205 | } | |
1206 | return NULL; | |
1207 | } | |
1208 | ||
238f58d8 LT |
1209 | /* |
1210 | * This is the old fallback for page remapping. | |
1211 | * | |
1212 | * For historical reasons, it only allows reserved pages. Only | |
1213 | * old drivers should use this, and they needed to mark their | |
1214 | * pages reserved for the old functions anyway. | |
1215 | */ | |
1216 | static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) | |
1217 | { | |
1218 | int retval; | |
c9cfcddf | 1219 | pte_t *pte; |
238f58d8 LT |
1220 | spinlock_t *ptl; |
1221 | ||
1222 | retval = -EINVAL; | |
a145dd41 | 1223 | if (PageAnon(page)) |
238f58d8 LT |
1224 | goto out; |
1225 | retval = -ENOMEM; | |
1226 | flush_dcache_page(page); | |
c9cfcddf | 1227 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 LT |
1228 | if (!pte) |
1229 | goto out; | |
1230 | retval = -EBUSY; | |
1231 | if (!pte_none(*pte)) | |
1232 | goto out_unlock; | |
1233 | ||
1234 | /* Ok, finally just insert the thing.. */ | |
1235 | get_page(page); | |
1236 | inc_mm_counter(mm, file_rss); | |
1237 | page_add_file_rmap(page); | |
1238 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1239 | ||
1240 | retval = 0; | |
1241 | out_unlock: | |
1242 | pte_unmap_unlock(pte, ptl); | |
1243 | out: | |
1244 | return retval; | |
1245 | } | |
1246 | ||
bfa5bf6d REB |
1247 | /** |
1248 | * vm_insert_page - insert single page into user vma | |
1249 | * @vma: user vma to map to | |
1250 | * @addr: target user address of this page | |
1251 | * @page: source kernel page | |
1252 | * | |
a145dd41 LT |
1253 | * This allows drivers to insert individual pages they've allocated |
1254 | * into a user vma. | |
1255 | * | |
1256 | * The page has to be a nice clean _individual_ kernel allocation. | |
1257 | * If you allocate a compound page, you need to have marked it as | |
1258 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1259 | * (see split_page()). |
a145dd41 LT |
1260 | * |
1261 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1262 | * took an arbitrary page protection parameter. This doesn't allow | |
1263 | * that. Your vma protection will have to be set up correctly, which | |
1264 | * means that if you want a shared writable mapping, you'd better | |
1265 | * ask for a shared writable mapping! | |
1266 | * | |
1267 | * The page does not need to be reserved. | |
1268 | */ | |
1269 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) | |
1270 | { | |
1271 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1272 | return -EFAULT; | |
1273 | if (!page_count(page)) | |
1274 | return -EINVAL; | |
4d7672b4 | 1275 | vma->vm_flags |= VM_INSERTPAGE; |
a145dd41 LT |
1276 | return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); |
1277 | } | |
e3c3374f | 1278 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1279 | |
e0dc0d8f NP |
1280 | /** |
1281 | * vm_insert_pfn - insert single pfn into user vma | |
1282 | * @vma: user vma to map to | |
1283 | * @addr: target user address of this page | |
1284 | * @pfn: source kernel pfn | |
1285 | * | |
1286 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1287 | * they've allocated into a user vma. Same comments apply. | |
1288 | * | |
1289 | * This function should only be called from a vm_ops->fault handler, and | |
1290 | * in that case the handler should return NULL. | |
1291 | */ | |
1292 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
1293 | unsigned long pfn) | |
1294 | { | |
1295 | struct mm_struct *mm = vma->vm_mm; | |
1296 | int retval; | |
1297 | pte_t *pte, entry; | |
1298 | spinlock_t *ptl; | |
1299 | ||
1300 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | |
1301 | BUG_ON(is_cow_mapping(vma->vm_flags)); | |
1302 | ||
1303 | retval = -ENOMEM; | |
1304 | pte = get_locked_pte(mm, addr, &ptl); | |
1305 | if (!pte) | |
1306 | goto out; | |
1307 | retval = -EBUSY; | |
1308 | if (!pte_none(*pte)) | |
1309 | goto out_unlock; | |
1310 | ||
1311 | /* Ok, finally just insert the thing.. */ | |
1312 | entry = pfn_pte(pfn, vma->vm_page_prot); | |
1313 | set_pte_at(mm, addr, pte, entry); | |
1314 | update_mmu_cache(vma, addr, entry); | |
1315 | ||
1316 | retval = 0; | |
1317 | out_unlock: | |
1318 | pte_unmap_unlock(pte, ptl); | |
1319 | ||
1320 | out: | |
1321 | return retval; | |
1322 | } | |
1323 | EXPORT_SYMBOL(vm_insert_pfn); | |
1324 | ||
1da177e4 LT |
1325 | /* |
1326 | * maps a range of physical memory into the requested pages. the old | |
1327 | * mappings are removed. any references to nonexistent pages results | |
1328 | * in null mappings (currently treated as "copy-on-access") | |
1329 | */ | |
1330 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1331 | unsigned long addr, unsigned long end, | |
1332 | unsigned long pfn, pgprot_t prot) | |
1333 | { | |
1334 | pte_t *pte; | |
c74df32c | 1335 | spinlock_t *ptl; |
1da177e4 | 1336 | |
c74df32c | 1337 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1338 | if (!pte) |
1339 | return -ENOMEM; | |
6606c3e0 | 1340 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1341 | do { |
1342 | BUG_ON(!pte_none(*pte)); | |
b5810039 | 1343 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); |
1da177e4 LT |
1344 | pfn++; |
1345 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1346 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1347 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1348 | return 0; |
1349 | } | |
1350 | ||
1351 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1352 | unsigned long addr, unsigned long end, | |
1353 | unsigned long pfn, pgprot_t prot) | |
1354 | { | |
1355 | pmd_t *pmd; | |
1356 | unsigned long next; | |
1357 | ||
1358 | pfn -= addr >> PAGE_SHIFT; | |
1359 | pmd = pmd_alloc(mm, pud, addr); | |
1360 | if (!pmd) | |
1361 | return -ENOMEM; | |
1362 | do { | |
1363 | next = pmd_addr_end(addr, end); | |
1364 | if (remap_pte_range(mm, pmd, addr, next, | |
1365 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1366 | return -ENOMEM; | |
1367 | } while (pmd++, addr = next, addr != end); | |
1368 | return 0; | |
1369 | } | |
1370 | ||
1371 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1372 | unsigned long addr, unsigned long end, | |
1373 | unsigned long pfn, pgprot_t prot) | |
1374 | { | |
1375 | pud_t *pud; | |
1376 | unsigned long next; | |
1377 | ||
1378 | pfn -= addr >> PAGE_SHIFT; | |
1379 | pud = pud_alloc(mm, pgd, addr); | |
1380 | if (!pud) | |
1381 | return -ENOMEM; | |
1382 | do { | |
1383 | next = pud_addr_end(addr, end); | |
1384 | if (remap_pmd_range(mm, pud, addr, next, | |
1385 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1386 | return -ENOMEM; | |
1387 | } while (pud++, addr = next, addr != end); | |
1388 | return 0; | |
1389 | } | |
1390 | ||
bfa5bf6d REB |
1391 | /** |
1392 | * remap_pfn_range - remap kernel memory to userspace | |
1393 | * @vma: user vma to map to | |
1394 | * @addr: target user address to start at | |
1395 | * @pfn: physical address of kernel memory | |
1396 | * @size: size of map area | |
1397 | * @prot: page protection flags for this mapping | |
1398 | * | |
1399 | * Note: this is only safe if the mm semaphore is held when called. | |
1400 | */ | |
1da177e4 LT |
1401 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1402 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1403 | { | |
1404 | pgd_t *pgd; | |
1405 | unsigned long next; | |
2d15cab8 | 1406 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1407 | struct mm_struct *mm = vma->vm_mm; |
1408 | int err; | |
1409 | ||
1410 | /* | |
1411 | * Physically remapped pages are special. Tell the | |
1412 | * rest of the world about it: | |
1413 | * VM_IO tells people not to look at these pages | |
1414 | * (accesses can have side effects). | |
0b14c179 HD |
1415 | * VM_RESERVED is specified all over the place, because |
1416 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1417 | * in 2.6 the LRU scan won't even find its pages, so this | |
1418 | * flag means no more than count its pages in reserved_vm, | |
1419 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1420 | * VM_PFNMAP tells the core MM that the base pages are just |
1421 | * raw PFN mappings, and do not have a "struct page" associated | |
1422 | * with them. | |
fb155c16 LT |
1423 | * |
1424 | * There's a horrible special case to handle copy-on-write | |
1425 | * behaviour that some programs depend on. We mark the "original" | |
1426 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1427 | */ |
67121172 | 1428 | if (is_cow_mapping(vma->vm_flags)) { |
fb155c16 | 1429 | if (addr != vma->vm_start || end != vma->vm_end) |
7fc7e2ee | 1430 | return -EINVAL; |
fb155c16 LT |
1431 | vma->vm_pgoff = pfn; |
1432 | } | |
1433 | ||
6aab341e | 1434 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 LT |
1435 | |
1436 | BUG_ON(addr >= end); | |
1437 | pfn -= addr >> PAGE_SHIFT; | |
1438 | pgd = pgd_offset(mm, addr); | |
1439 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1440 | do { |
1441 | next = pgd_addr_end(addr, end); | |
1442 | err = remap_pud_range(mm, pgd, addr, next, | |
1443 | pfn + (addr >> PAGE_SHIFT), prot); | |
1444 | if (err) | |
1445 | break; | |
1446 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1447 | return err; |
1448 | } | |
1449 | EXPORT_SYMBOL(remap_pfn_range); | |
1450 | ||
8f4e2101 HD |
1451 | /* |
1452 | * handle_pte_fault chooses page fault handler according to an entry | |
1453 | * which was read non-atomically. Before making any commitment, on | |
1454 | * those architectures or configurations (e.g. i386 with PAE) which | |
1455 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1456 | * must check under lock before unmapping the pte and proceeding | |
1457 | * (but do_wp_page is only called after already making such a check; | |
1458 | * and do_anonymous_page and do_no_page can safely check later on). | |
1459 | */ | |
4c21e2f2 | 1460 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1461 | pte_t *page_table, pte_t orig_pte) |
1462 | { | |
1463 | int same = 1; | |
1464 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1465 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1466 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1467 | spin_lock(ptl); | |
8f4e2101 | 1468 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1469 | spin_unlock(ptl); |
8f4e2101 HD |
1470 | } |
1471 | #endif | |
1472 | pte_unmap(page_table); | |
1473 | return same; | |
1474 | } | |
1475 | ||
1da177e4 LT |
1476 | /* |
1477 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1478 | * servicing faults for write access. In the normal case, do always want | |
1479 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1480 | * that do not have writing enabled, when used by access_process_vm. | |
1481 | */ | |
1482 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1483 | { | |
1484 | if (likely(vma->vm_flags & VM_WRITE)) | |
1485 | pte = pte_mkwrite(pte); | |
1486 | return pte; | |
1487 | } | |
1488 | ||
9de455b2 | 1489 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1490 | { |
1491 | /* | |
1492 | * If the source page was a PFN mapping, we don't have | |
1493 | * a "struct page" for it. We do a best-effort copy by | |
1494 | * just copying from the original user address. If that | |
1495 | * fails, we just zero-fill it. Live with it. | |
1496 | */ | |
1497 | if (unlikely(!src)) { | |
1498 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1499 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1500 | ||
1501 | /* | |
1502 | * This really shouldn't fail, because the page is there | |
1503 | * in the page tables. But it might just be unreadable, | |
1504 | * in which case we just give up and fill the result with | |
1505 | * zeroes. | |
1506 | */ | |
1507 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1508 | memset(kaddr, 0, PAGE_SIZE); |
1509 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1510 | flush_dcache_page(dst); |
6aab341e | 1511 | return; |
9de455b2 | 1512 | |
6aab341e | 1513 | } |
9de455b2 | 1514 | copy_user_highpage(dst, src, va, vma); |
6aab341e LT |
1515 | } |
1516 | ||
1da177e4 LT |
1517 | /* |
1518 | * This routine handles present pages, when users try to write | |
1519 | * to a shared page. It is done by copying the page to a new address | |
1520 | * and decrementing the shared-page counter for the old page. | |
1521 | * | |
1da177e4 LT |
1522 | * Note that this routine assumes that the protection checks have been |
1523 | * done by the caller (the low-level page fault routine in most cases). | |
1524 | * Thus we can safely just mark it writable once we've done any necessary | |
1525 | * COW. | |
1526 | * | |
1527 | * We also mark the page dirty at this point even though the page will | |
1528 | * change only once the write actually happens. This avoids a few races, | |
1529 | * and potentially makes it more efficient. | |
1530 | * | |
8f4e2101 HD |
1531 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1532 | * but allow concurrent faults), with pte both mapped and locked. | |
1533 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1534 | */ |
65500d23 HD |
1535 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1536 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1537 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1538 | { |
e5bbe4df | 1539 | struct page *old_page, *new_page; |
1da177e4 | 1540 | pte_t entry; |
d08b3851 PZ |
1541 | int reuse = 0, ret = VM_FAULT_MINOR; |
1542 | struct page *dirty_page = NULL; | |
1da177e4 | 1543 | |
6aab341e | 1544 | old_page = vm_normal_page(vma, address, orig_pte); |
6aab341e LT |
1545 | if (!old_page) |
1546 | goto gotten; | |
1da177e4 | 1547 | |
d08b3851 | 1548 | /* |
ee6a6457 PZ |
1549 | * Take out anonymous pages first, anonymous shared vmas are |
1550 | * not dirty accountable. | |
d08b3851 | 1551 | */ |
ee6a6457 PZ |
1552 | if (PageAnon(old_page)) { |
1553 | if (!TestSetPageLocked(old_page)) { | |
1554 | reuse = can_share_swap_page(old_page); | |
1555 | unlock_page(old_page); | |
1556 | } | |
1557 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
d08b3851 | 1558 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
1559 | /* |
1560 | * Only catch write-faults on shared writable pages, | |
1561 | * read-only shared pages can get COWed by | |
1562 | * get_user_pages(.write=1, .force=1). | |
1563 | */ | |
9637a5ef DH |
1564 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1565 | /* | |
1566 | * Notify the address space that the page is about to | |
1567 | * become writable so that it can prohibit this or wait | |
1568 | * for the page to get into an appropriate state. | |
1569 | * | |
1570 | * We do this without the lock held, so that it can | |
1571 | * sleep if it needs to. | |
1572 | */ | |
1573 | page_cache_get(old_page); | |
1574 | pte_unmap_unlock(page_table, ptl); | |
1575 | ||
1576 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | |
1577 | goto unwritable_page; | |
1578 | ||
9637a5ef DH |
1579 | /* |
1580 | * Since we dropped the lock we need to revalidate | |
1581 | * the PTE as someone else may have changed it. If | |
1582 | * they did, we just return, as we can count on the | |
1583 | * MMU to tell us if they didn't also make it writable. | |
1584 | */ | |
1585 | page_table = pte_offset_map_lock(mm, pmd, address, | |
1586 | &ptl); | |
c3704ceb | 1587 | page_cache_release(old_page); |
9637a5ef DH |
1588 | if (!pte_same(*page_table, orig_pte)) |
1589 | goto unlock; | |
1da177e4 | 1590 | } |
d08b3851 PZ |
1591 | dirty_page = old_page; |
1592 | get_page(dirty_page); | |
9637a5ef | 1593 | reuse = 1; |
9637a5ef DH |
1594 | } |
1595 | ||
1596 | if (reuse) { | |
1597 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | |
1598 | entry = pte_mkyoung(orig_pte); | |
1599 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1600 | ptep_set_access_flags(vma, address, page_table, entry, 1); | |
1601 | update_mmu_cache(vma, address, entry); | |
1602 | lazy_mmu_prot_update(entry); | |
1603 | ret |= VM_FAULT_WRITE; | |
1604 | goto unlock; | |
1da177e4 | 1605 | } |
1da177e4 LT |
1606 | |
1607 | /* | |
1608 | * Ok, we need to copy. Oh, well.. | |
1609 | */ | |
b5810039 | 1610 | page_cache_get(old_page); |
920fc356 | 1611 | gotten: |
8f4e2101 | 1612 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1613 | |
1614 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 1615 | goto oom; |
e5bbe4df | 1616 | if (old_page == ZERO_PAGE(address)) { |
1da177e4 LT |
1617 | new_page = alloc_zeroed_user_highpage(vma, address); |
1618 | if (!new_page) | |
65500d23 | 1619 | goto oom; |
1da177e4 LT |
1620 | } else { |
1621 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | |
1622 | if (!new_page) | |
65500d23 | 1623 | goto oom; |
9de455b2 | 1624 | cow_user_page(new_page, old_page, address, vma); |
1da177e4 | 1625 | } |
65500d23 | 1626 | |
1da177e4 LT |
1627 | /* |
1628 | * Re-check the pte - we dropped the lock | |
1629 | */ | |
8f4e2101 | 1630 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 1631 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 1632 | if (old_page) { |
7de6b805 | 1633 | page_remove_rmap(old_page, vma); |
920fc356 HD |
1634 | if (!PageAnon(old_page)) { |
1635 | dec_mm_counter(mm, file_rss); | |
1636 | inc_mm_counter(mm, anon_rss); | |
1637 | } | |
1638 | } else | |
4294621f | 1639 | inc_mm_counter(mm, anon_rss); |
eca35133 | 1640 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
1641 | entry = mk_pte(new_page, vma->vm_page_prot); |
1642 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
c38c8db7 | 1643 | lazy_mmu_prot_update(entry); |
4ce072f1 SS |
1644 | /* |
1645 | * Clear the pte entry and flush it first, before updating the | |
1646 | * pte with the new entry. This will avoid a race condition | |
1647 | * seen in the presence of one thread doing SMC and another | |
1648 | * thread doing COW. | |
1649 | */ | |
1650 | ptep_clear_flush(vma, address, page_table); | |
1651 | set_pte_at(mm, address, page_table, entry); | |
65500d23 | 1652 | update_mmu_cache(vma, address, entry); |
1da177e4 | 1653 | lru_cache_add_active(new_page); |
9617d95e | 1654 | page_add_new_anon_rmap(new_page, vma, address); |
1da177e4 LT |
1655 | |
1656 | /* Free the old page.. */ | |
1657 | new_page = old_page; | |
f33ea7f4 | 1658 | ret |= VM_FAULT_WRITE; |
1da177e4 | 1659 | } |
920fc356 HD |
1660 | if (new_page) |
1661 | page_cache_release(new_page); | |
1662 | if (old_page) | |
1663 | page_cache_release(old_page); | |
65500d23 | 1664 | unlock: |
8f4e2101 | 1665 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 1666 | if (dirty_page) { |
edc79b2a | 1667 | set_page_dirty_balance(dirty_page); |
d08b3851 PZ |
1668 | put_page(dirty_page); |
1669 | } | |
f33ea7f4 | 1670 | return ret; |
65500d23 | 1671 | oom: |
920fc356 HD |
1672 | if (old_page) |
1673 | page_cache_release(old_page); | |
1da177e4 | 1674 | return VM_FAULT_OOM; |
9637a5ef DH |
1675 | |
1676 | unwritable_page: | |
1677 | page_cache_release(old_page); | |
1678 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
1679 | } |
1680 | ||
1681 | /* | |
1682 | * Helper functions for unmap_mapping_range(). | |
1683 | * | |
1684 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
1685 | * | |
1686 | * We have to restart searching the prio_tree whenever we drop the lock, | |
1687 | * since the iterator is only valid while the lock is held, and anyway | |
1688 | * a later vma might be split and reinserted earlier while lock dropped. | |
1689 | * | |
1690 | * The list of nonlinear vmas could be handled more efficiently, using | |
1691 | * a placeholder, but handle it in the same way until a need is shown. | |
1692 | * It is important to search the prio_tree before nonlinear list: a vma | |
1693 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
1694 | * while the lock is dropped; but never shifted from list to prio_tree. | |
1695 | * | |
1696 | * In order to make forward progress despite restarting the search, | |
1697 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
1698 | * quickly skip it next time around. Since the prio_tree search only | |
1699 | * shows us those vmas affected by unmapping the range in question, we | |
1700 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
1701 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
1702 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
1703 | * i_mmap_lock. | |
1704 | * | |
1705 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 1706 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
1707 | * and restart from that address when we reach that vma again. It might |
1708 | * have been split or merged, shrunk or extended, but never shifted: so | |
1709 | * restart_addr remains valid so long as it remains in the vma's range. | |
1710 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
1711 | * values so we can save vma's restart_addr in its truncate_count field. | |
1712 | */ | |
1713 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
1714 | ||
1715 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
1716 | { | |
1717 | struct vm_area_struct *vma; | |
1718 | struct prio_tree_iter iter; | |
1719 | ||
1720 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
1721 | vma->vm_truncate_count = 0; | |
1722 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
1723 | vma->vm_truncate_count = 0; | |
1724 | } | |
1725 | ||
1726 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
1727 | unsigned long start_addr, unsigned long end_addr, | |
1728 | struct zap_details *details) | |
1729 | { | |
1730 | unsigned long restart_addr; | |
1731 | int need_break; | |
1732 | ||
1733 | again: | |
1734 | restart_addr = vma->vm_truncate_count; | |
1735 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
1736 | start_addr = restart_addr; | |
1737 | if (start_addr >= end_addr) { | |
1738 | /* Top of vma has been split off since last time */ | |
1739 | vma->vm_truncate_count = details->truncate_count; | |
1740 | return 0; | |
1741 | } | |
1742 | } | |
1743 | ||
ee39b37b HD |
1744 | restart_addr = zap_page_range(vma, start_addr, |
1745 | end_addr - start_addr, details); | |
1da177e4 LT |
1746 | need_break = need_resched() || |
1747 | need_lockbreak(details->i_mmap_lock); | |
1748 | ||
ee39b37b | 1749 | if (restart_addr >= end_addr) { |
1da177e4 LT |
1750 | /* We have now completed this vma: mark it so */ |
1751 | vma->vm_truncate_count = details->truncate_count; | |
1752 | if (!need_break) | |
1753 | return 0; | |
1754 | } else { | |
1755 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 1756 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
1757 | if (!need_break) |
1758 | goto again; | |
1759 | } | |
1760 | ||
1761 | spin_unlock(details->i_mmap_lock); | |
1762 | cond_resched(); | |
1763 | spin_lock(details->i_mmap_lock); | |
1764 | return -EINTR; | |
1765 | } | |
1766 | ||
1767 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
1768 | struct zap_details *details) | |
1769 | { | |
1770 | struct vm_area_struct *vma; | |
1771 | struct prio_tree_iter iter; | |
1772 | pgoff_t vba, vea, zba, zea; | |
1773 | ||
1774 | restart: | |
1775 | vma_prio_tree_foreach(vma, &iter, root, | |
1776 | details->first_index, details->last_index) { | |
1777 | /* Skip quickly over those we have already dealt with */ | |
1778 | if (vma->vm_truncate_count == details->truncate_count) | |
1779 | continue; | |
1780 | ||
1781 | vba = vma->vm_pgoff; | |
1782 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
1783 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
1784 | zba = details->first_index; | |
1785 | if (zba < vba) | |
1786 | zba = vba; | |
1787 | zea = details->last_index; | |
1788 | if (zea > vea) | |
1789 | zea = vea; | |
1790 | ||
1791 | if (unmap_mapping_range_vma(vma, | |
1792 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
1793 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
1794 | details) < 0) | |
1795 | goto restart; | |
1796 | } | |
1797 | } | |
1798 | ||
1799 | static inline void unmap_mapping_range_list(struct list_head *head, | |
1800 | struct zap_details *details) | |
1801 | { | |
1802 | struct vm_area_struct *vma; | |
1803 | ||
1804 | /* | |
1805 | * In nonlinear VMAs there is no correspondence between virtual address | |
1806 | * offset and file offset. So we must perform an exhaustive search | |
1807 | * across *all* the pages in each nonlinear VMA, not just the pages | |
1808 | * whose virtual address lies outside the file truncation point. | |
1809 | */ | |
1810 | restart: | |
1811 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
1812 | /* Skip quickly over those we have already dealt with */ | |
1813 | if (vma->vm_truncate_count == details->truncate_count) | |
1814 | continue; | |
1815 | details->nonlinear_vma = vma; | |
1816 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
1817 | vma->vm_end, details) < 0) | |
1818 | goto restart; | |
1819 | } | |
1820 | } | |
1821 | ||
1822 | /** | |
72fd4a35 | 1823 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 1824 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
1825 | * @holebegin: byte in first page to unmap, relative to the start of |
1826 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
1827 | * boundary. Note that this is different from vmtruncate(), which | |
1828 | * must keep the partial page. In contrast, we must get rid of | |
1829 | * partial pages. | |
1830 | * @holelen: size of prospective hole in bytes. This will be rounded | |
1831 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
1832 | * end of the file. | |
1833 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
1834 | * but 0 when invalidating pagecache, don't throw away private data. | |
1835 | */ | |
1836 | void unmap_mapping_range(struct address_space *mapping, | |
1837 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
1838 | { | |
1839 | struct zap_details details; | |
1840 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
1841 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1842 | ||
1843 | /* Check for overflow. */ | |
1844 | if (sizeof(holelen) > sizeof(hlen)) { | |
1845 | long long holeend = | |
1846 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1847 | if (holeend & ~(long long)ULONG_MAX) | |
1848 | hlen = ULONG_MAX - hba + 1; | |
1849 | } | |
1850 | ||
1851 | details.check_mapping = even_cows? NULL: mapping; | |
1852 | details.nonlinear_vma = NULL; | |
1853 | details.first_index = hba; | |
1854 | details.last_index = hba + hlen - 1; | |
1855 | if (details.last_index < details.first_index) | |
1856 | details.last_index = ULONG_MAX; | |
1857 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
1858 | ||
1859 | spin_lock(&mapping->i_mmap_lock); | |
1860 | ||
1861 | /* serialize i_size write against truncate_count write */ | |
1862 | smp_wmb(); | |
1863 | /* Protect against page faults, and endless unmapping loops */ | |
1864 | mapping->truncate_count++; | |
1865 | /* | |
1866 | * For archs where spin_lock has inclusive semantics like ia64 | |
1867 | * this smp_mb() will prevent to read pagetable contents | |
1868 | * before the truncate_count increment is visible to | |
1869 | * other cpus. | |
1870 | */ | |
1871 | smp_mb(); | |
1872 | if (unlikely(is_restart_addr(mapping->truncate_count))) { | |
1873 | if (mapping->truncate_count == 0) | |
1874 | reset_vma_truncate_counts(mapping); | |
1875 | mapping->truncate_count++; | |
1876 | } | |
1877 | details.truncate_count = mapping->truncate_count; | |
1878 | ||
1879 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
1880 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
1881 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
1882 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
1883 | spin_unlock(&mapping->i_mmap_lock); | |
1884 | } | |
1885 | EXPORT_SYMBOL(unmap_mapping_range); | |
1886 | ||
bfa5bf6d REB |
1887 | /** |
1888 | * vmtruncate - unmap mappings "freed" by truncate() syscall | |
1889 | * @inode: inode of the file used | |
1890 | * @offset: file offset to start truncating | |
1da177e4 LT |
1891 | * |
1892 | * NOTE! We have to be ready to update the memory sharing | |
1893 | * between the file and the memory map for a potential last | |
1894 | * incomplete page. Ugly, but necessary. | |
1895 | */ | |
1896 | int vmtruncate(struct inode * inode, loff_t offset) | |
1897 | { | |
1898 | struct address_space *mapping = inode->i_mapping; | |
1899 | unsigned long limit; | |
1900 | ||
1901 | if (inode->i_size < offset) | |
1902 | goto do_expand; | |
1903 | /* | |
1904 | * truncation of in-use swapfiles is disallowed - it would cause | |
1905 | * subsequent swapout to scribble on the now-freed blocks. | |
1906 | */ | |
1907 | if (IS_SWAPFILE(inode)) | |
1908 | goto out_busy; | |
1909 | i_size_write(inode, offset); | |
1910 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
1911 | truncate_inode_pages(mapping, offset); | |
1912 | goto out_truncate; | |
1913 | ||
1914 | do_expand: | |
1915 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
1916 | if (limit != RLIM_INFINITY && offset > limit) | |
1917 | goto out_sig; | |
1918 | if (offset > inode->i_sb->s_maxbytes) | |
1919 | goto out_big; | |
1920 | i_size_write(inode, offset); | |
1921 | ||
1922 | out_truncate: | |
1923 | if (inode->i_op && inode->i_op->truncate) | |
1924 | inode->i_op->truncate(inode); | |
1925 | return 0; | |
1926 | out_sig: | |
1927 | send_sig(SIGXFSZ, current, 0); | |
1928 | out_big: | |
1929 | return -EFBIG; | |
1930 | out_busy: | |
1931 | return -ETXTBSY; | |
1932 | } | |
1da177e4 LT |
1933 | EXPORT_SYMBOL(vmtruncate); |
1934 | ||
f6b3ec23 BP |
1935 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
1936 | { | |
1937 | struct address_space *mapping = inode->i_mapping; | |
1938 | ||
1939 | /* | |
1940 | * If the underlying filesystem is not going to provide | |
1941 | * a way to truncate a range of blocks (punch a hole) - | |
1942 | * we should return failure right now. | |
1943 | */ | |
1944 | if (!inode->i_op || !inode->i_op->truncate_range) | |
1945 | return -ENOSYS; | |
1946 | ||
1b1dcc1b | 1947 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
1948 | down_write(&inode->i_alloc_sem); |
1949 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
1950 | truncate_inode_pages_range(mapping, offset, end); | |
1951 | inode->i_op->truncate_range(inode, offset, end); | |
1952 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 1953 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
1954 | |
1955 | return 0; | |
1956 | } | |
f6b3ec23 | 1957 | |
bfa5bf6d REB |
1958 | /** |
1959 | * swapin_readahead - swap in pages in hope we need them soon | |
1960 | * @entry: swap entry of this memory | |
1961 | * @addr: address to start | |
1962 | * @vma: user vma this addresses belong to | |
1963 | * | |
1da177e4 LT |
1964 | * Primitive swap readahead code. We simply read an aligned block of |
1965 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
1966 | * because it doesn't cost us any seek time. We also make sure to queue | |
bfa5bf6d | 1967 | * the 'original' request together with the readahead ones... |
1da177e4 LT |
1968 | * |
1969 | * This has been extended to use the NUMA policies from the mm triggering | |
1970 | * the readahead. | |
1971 | * | |
1972 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | |
1973 | */ | |
1974 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | |
1975 | { | |
1976 | #ifdef CONFIG_NUMA | |
1977 | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | |
1978 | #endif | |
1979 | int i, num; | |
1980 | struct page *new_page; | |
1981 | unsigned long offset; | |
1982 | ||
1983 | /* | |
1984 | * Get the number of handles we should do readahead io to. | |
1985 | */ | |
1986 | num = valid_swaphandles(entry, &offset); | |
1987 | for (i = 0; i < num; offset++, i++) { | |
1988 | /* Ok, do the async read-ahead now */ | |
1989 | new_page = read_swap_cache_async(swp_entry(swp_type(entry), | |
1990 | offset), vma, addr); | |
1991 | if (!new_page) | |
1992 | break; | |
1993 | page_cache_release(new_page); | |
1994 | #ifdef CONFIG_NUMA | |
1995 | /* | |
1996 | * Find the next applicable VMA for the NUMA policy. | |
1997 | */ | |
1998 | addr += PAGE_SIZE; | |
1999 | if (addr == 0) | |
2000 | vma = NULL; | |
2001 | if (vma) { | |
2002 | if (addr >= vma->vm_end) { | |
2003 | vma = next_vma; | |
2004 | next_vma = vma ? vma->vm_next : NULL; | |
2005 | } | |
2006 | if (vma && addr < vma->vm_start) | |
2007 | vma = NULL; | |
2008 | } else { | |
2009 | if (next_vma && addr >= next_vma->vm_start) { | |
2010 | vma = next_vma; | |
2011 | next_vma = vma->vm_next; | |
2012 | } | |
2013 | } | |
2014 | #endif | |
2015 | } | |
2016 | lru_add_drain(); /* Push any new pages onto the LRU now */ | |
2017 | } | |
2018 | ||
2019 | /* | |
8f4e2101 HD |
2020 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2021 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2022 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2023 | */ |
65500d23 HD |
2024 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2025 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2026 | int write_access, pte_t orig_pte) | |
1da177e4 | 2027 | { |
8f4e2101 | 2028 | spinlock_t *ptl; |
1da177e4 | 2029 | struct page *page; |
65500d23 | 2030 | swp_entry_t entry; |
1da177e4 LT |
2031 | pte_t pte; |
2032 | int ret = VM_FAULT_MINOR; | |
2033 | ||
4c21e2f2 | 2034 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2035 | goto out; |
65500d23 HD |
2036 | |
2037 | entry = pte_to_swp_entry(orig_pte); | |
0697212a CL |
2038 | if (is_migration_entry(entry)) { |
2039 | migration_entry_wait(mm, pmd, address); | |
2040 | goto out; | |
2041 | } | |
0ff92245 | 2042 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2043 | page = lookup_swap_cache(entry); |
2044 | if (!page) { | |
098fe651 | 2045 | grab_swap_token(); /* Contend for token _before_ read-in */ |
1da177e4 LT |
2046 | swapin_readahead(entry, address, vma); |
2047 | page = read_swap_cache_async(entry, vma, address); | |
2048 | if (!page) { | |
2049 | /* | |
8f4e2101 HD |
2050 | * Back out if somebody else faulted in this pte |
2051 | * while we released the pte lock. | |
1da177e4 | 2052 | */ |
8f4e2101 | 2053 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2054 | if (likely(pte_same(*page_table, orig_pte))) |
2055 | ret = VM_FAULT_OOM; | |
0ff92245 | 2056 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2057 | goto unlock; |
1da177e4 LT |
2058 | } |
2059 | ||
2060 | /* Had to read the page from swap area: Major fault */ | |
2061 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2062 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
2063 | } |
2064 | ||
0ff92245 | 2065 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2066 | mark_page_accessed(page); |
2067 | lock_page(page); | |
2068 | ||
2069 | /* | |
8f4e2101 | 2070 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2071 | */ |
8f4e2101 | 2072 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2073 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2074 | goto out_nomap; |
b8107480 KK |
2075 | |
2076 | if (unlikely(!PageUptodate(page))) { | |
2077 | ret = VM_FAULT_SIGBUS; | |
2078 | goto out_nomap; | |
1da177e4 LT |
2079 | } |
2080 | ||
2081 | /* The page isn't present yet, go ahead with the fault. */ | |
1da177e4 | 2082 | |
4294621f | 2083 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
2084 | pte = mk_pte(page, vma->vm_page_prot); |
2085 | if (write_access && can_share_swap_page(page)) { | |
2086 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
2087 | write_access = 0; | |
2088 | } | |
1da177e4 LT |
2089 | |
2090 | flush_icache_page(vma, page); | |
2091 | set_pte_at(mm, address, page_table, pte); | |
2092 | page_add_anon_rmap(page, vma, address); | |
2093 | ||
c475a8ab HD |
2094 | swap_free(entry); |
2095 | if (vm_swap_full()) | |
2096 | remove_exclusive_swap_page(page); | |
2097 | unlock_page(page); | |
2098 | ||
1da177e4 LT |
2099 | if (write_access) { |
2100 | if (do_wp_page(mm, vma, address, | |
8f4e2101 | 2101 | page_table, pmd, ptl, pte) == VM_FAULT_OOM) |
1da177e4 LT |
2102 | ret = VM_FAULT_OOM; |
2103 | goto out; | |
2104 | } | |
2105 | ||
2106 | /* No need to invalidate - it was non-present before */ | |
2107 | update_mmu_cache(vma, address, pte); | |
2108 | lazy_mmu_prot_update(pte); | |
65500d23 | 2109 | unlock: |
8f4e2101 | 2110 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2111 | out: |
2112 | return ret; | |
b8107480 | 2113 | out_nomap: |
8f4e2101 | 2114 | pte_unmap_unlock(page_table, ptl); |
b8107480 KK |
2115 | unlock_page(page); |
2116 | page_cache_release(page); | |
65500d23 | 2117 | return ret; |
1da177e4 LT |
2118 | } |
2119 | ||
2120 | /* | |
8f4e2101 HD |
2121 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2122 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2123 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2124 | */ |
65500d23 HD |
2125 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2126 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2127 | int write_access) | |
1da177e4 | 2128 | { |
8f4e2101 HD |
2129 | struct page *page; |
2130 | spinlock_t *ptl; | |
1da177e4 | 2131 | pte_t entry; |
1da177e4 | 2132 | |
6aab341e | 2133 | if (write_access) { |
1da177e4 LT |
2134 | /* Allocate our own private page. */ |
2135 | pte_unmap(page_table); | |
1da177e4 LT |
2136 | |
2137 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 HD |
2138 | goto oom; |
2139 | page = alloc_zeroed_user_highpage(vma, address); | |
1da177e4 | 2140 | if (!page) |
65500d23 | 2141 | goto oom; |
1da177e4 | 2142 | |
65500d23 HD |
2143 | entry = mk_pte(page, vma->vm_page_prot); |
2144 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
8f4e2101 HD |
2145 | |
2146 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2147 | if (!pte_none(*page_table)) | |
2148 | goto release; | |
2149 | inc_mm_counter(mm, anon_rss); | |
1da177e4 | 2150 | lru_cache_add_active(page); |
9617d95e | 2151 | page_add_new_anon_rmap(page, vma, address); |
b5810039 | 2152 | } else { |
8f4e2101 HD |
2153 | /* Map the ZERO_PAGE - vm_page_prot is readonly */ |
2154 | page = ZERO_PAGE(address); | |
2155 | page_cache_get(page); | |
2156 | entry = mk_pte(page, vma->vm_page_prot); | |
2157 | ||
4c21e2f2 | 2158 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2159 | spin_lock(ptl); |
2160 | if (!pte_none(*page_table)) | |
2161 | goto release; | |
b5810039 NP |
2162 | inc_mm_counter(mm, file_rss); |
2163 | page_add_file_rmap(page); | |
1da177e4 LT |
2164 | } |
2165 | ||
65500d23 | 2166 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2167 | |
2168 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2169 | update_mmu_cache(vma, address, entry); |
1da177e4 | 2170 | lazy_mmu_prot_update(entry); |
65500d23 | 2171 | unlock: |
8f4e2101 | 2172 | pte_unmap_unlock(page_table, ptl); |
1da177e4 | 2173 | return VM_FAULT_MINOR; |
8f4e2101 HD |
2174 | release: |
2175 | page_cache_release(page); | |
2176 | goto unlock; | |
65500d23 | 2177 | oom: |
1da177e4 LT |
2178 | return VM_FAULT_OOM; |
2179 | } | |
2180 | ||
2181 | /* | |
2182 | * do_no_page() tries to create a new page mapping. It aggressively | |
2183 | * tries to share with existing pages, but makes a separate copy if | |
2184 | * the "write_access" parameter is true in order to avoid the next | |
2185 | * page fault. | |
2186 | * | |
2187 | * As this is called only for pages that do not currently exist, we | |
2188 | * do not need to flush old virtual caches or the TLB. | |
2189 | * | |
8f4e2101 HD |
2190 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2191 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2192 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2193 | */ |
65500d23 HD |
2194 | static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2195 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2196 | int write_access) | |
1da177e4 | 2197 | { |
8f4e2101 | 2198 | spinlock_t *ptl; |
65500d23 | 2199 | struct page *new_page; |
1da177e4 LT |
2200 | struct address_space *mapping = NULL; |
2201 | pte_t entry; | |
2202 | unsigned int sequence = 0; | |
2203 | int ret = VM_FAULT_MINOR; | |
2204 | int anon = 0; | |
d08b3851 | 2205 | struct page *dirty_page = NULL; |
1da177e4 | 2206 | |
1da177e4 | 2207 | pte_unmap(page_table); |
325f04db HD |
2208 | BUG_ON(vma->vm_flags & VM_PFNMAP); |
2209 | ||
1da177e4 LT |
2210 | if (vma->vm_file) { |
2211 | mapping = vma->vm_file->f_mapping; | |
2212 | sequence = mapping->truncate_count; | |
2213 | smp_rmb(); /* serializes i_size against truncate_count */ | |
2214 | } | |
2215 | retry: | |
1da177e4 LT |
2216 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); |
2217 | /* | |
2218 | * No smp_rmb is needed here as long as there's a full | |
2219 | * spin_lock/unlock sequence inside the ->nopage callback | |
2220 | * (for the pagecache lookup) that acts as an implicit | |
2221 | * smp_mb() and prevents the i_size read to happen | |
2222 | * after the next truncate_count read. | |
2223 | */ | |
2224 | ||
7f7bbbe5 BH |
2225 | /* no page was available -- either SIGBUS, OOM or REFAULT */ |
2226 | if (unlikely(new_page == NOPAGE_SIGBUS)) | |
1da177e4 | 2227 | return VM_FAULT_SIGBUS; |
7f7bbbe5 | 2228 | else if (unlikely(new_page == NOPAGE_OOM)) |
1da177e4 | 2229 | return VM_FAULT_OOM; |
7f7bbbe5 BH |
2230 | else if (unlikely(new_page == NOPAGE_REFAULT)) |
2231 | return VM_FAULT_MINOR; | |
1da177e4 LT |
2232 | |
2233 | /* | |
2234 | * Should we do an early C-O-W break? | |
2235 | */ | |
9637a5ef DH |
2236 | if (write_access) { |
2237 | if (!(vma->vm_flags & VM_SHARED)) { | |
2238 | struct page *page; | |
1da177e4 | 2239 | |
9637a5ef DH |
2240 | if (unlikely(anon_vma_prepare(vma))) |
2241 | goto oom; | |
2242 | page = alloc_page_vma(GFP_HIGHUSER, vma, address); | |
2243 | if (!page) | |
2244 | goto oom; | |
9de455b2 | 2245 | copy_user_highpage(page, new_page, address, vma); |
9637a5ef DH |
2246 | page_cache_release(new_page); |
2247 | new_page = page; | |
2248 | anon = 1; | |
2249 | ||
2250 | } else { | |
2251 | /* if the page will be shareable, see if the backing | |
2252 | * address space wants to know that the page is about | |
2253 | * to become writable */ | |
2254 | if (vma->vm_ops->page_mkwrite && | |
2255 | vma->vm_ops->page_mkwrite(vma, new_page) < 0 | |
2256 | ) { | |
2257 | page_cache_release(new_page); | |
2258 | return VM_FAULT_SIGBUS; | |
2259 | } | |
2260 | } | |
1da177e4 LT |
2261 | } |
2262 | ||
8f4e2101 | 2263 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2264 | /* |
2265 | * For a file-backed vma, someone could have truncated or otherwise | |
2266 | * invalidated this page. If unmap_mapping_range got called, | |
2267 | * retry getting the page. | |
2268 | */ | |
2269 | if (mapping && unlikely(sequence != mapping->truncate_count)) { | |
8f4e2101 | 2270 | pte_unmap_unlock(page_table, ptl); |
1da177e4 | 2271 | page_cache_release(new_page); |
65500d23 HD |
2272 | cond_resched(); |
2273 | sequence = mapping->truncate_count; | |
2274 | smp_rmb(); | |
1da177e4 LT |
2275 | goto retry; |
2276 | } | |
1da177e4 LT |
2277 | |
2278 | /* | |
2279 | * This silly early PAGE_DIRTY setting removes a race | |
2280 | * due to the bad i386 page protection. But it's valid | |
2281 | * for other architectures too. | |
2282 | * | |
2283 | * Note that if write_access is true, we either now have | |
2284 | * an exclusive copy of the page, or this is a shared mapping, | |
2285 | * so we can make it writable and dirty to avoid having to | |
2286 | * handle that later. | |
2287 | */ | |
2288 | /* Only go through if we didn't race with anybody else... */ | |
2289 | if (pte_none(*page_table)) { | |
1da177e4 LT |
2290 | flush_icache_page(vma, new_page); |
2291 | entry = mk_pte(new_page, vma->vm_page_prot); | |
2292 | if (write_access) | |
2293 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2294 | set_pte_at(mm, address, page_table, entry); | |
2295 | if (anon) { | |
4294621f | 2296 | inc_mm_counter(mm, anon_rss); |
1da177e4 | 2297 | lru_cache_add_active(new_page); |
9617d95e | 2298 | page_add_new_anon_rmap(new_page, vma, address); |
f57e88a8 | 2299 | } else { |
4294621f | 2300 | inc_mm_counter(mm, file_rss); |
1da177e4 | 2301 | page_add_file_rmap(new_page); |
d08b3851 PZ |
2302 | if (write_access) { |
2303 | dirty_page = new_page; | |
2304 | get_page(dirty_page); | |
2305 | } | |
4294621f | 2306 | } |
1da177e4 LT |
2307 | } else { |
2308 | /* One of our sibling threads was faster, back out. */ | |
1da177e4 | 2309 | page_cache_release(new_page); |
65500d23 | 2310 | goto unlock; |
1da177e4 LT |
2311 | } |
2312 | ||
2313 | /* no need to invalidate: a not-present page shouldn't be cached */ | |
2314 | update_mmu_cache(vma, address, entry); | |
2315 | lazy_mmu_prot_update(entry); | |
65500d23 | 2316 | unlock: |
8f4e2101 | 2317 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 2318 | if (dirty_page) { |
edc79b2a | 2319 | set_page_dirty_balance(dirty_page); |
d08b3851 PZ |
2320 | put_page(dirty_page); |
2321 | } | |
1da177e4 LT |
2322 | return ret; |
2323 | oom: | |
2324 | page_cache_release(new_page); | |
65500d23 | 2325 | return VM_FAULT_OOM; |
1da177e4 LT |
2326 | } |
2327 | ||
f4b81804 JS |
2328 | /* |
2329 | * do_no_pfn() tries to create a new page mapping for a page without | |
2330 | * a struct_page backing it | |
2331 | * | |
2332 | * As this is called only for pages that do not currently exist, we | |
2333 | * do not need to flush old virtual caches or the TLB. | |
2334 | * | |
2335 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2336 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2337 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
2338 | * | |
2339 | * It is expected that the ->nopfn handler always returns the same pfn | |
2340 | * for a given virtual mapping. | |
2341 | * | |
2342 | * Mark this `noinline' to prevent it from bloating the main pagefault code. | |
2343 | */ | |
2344 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | |
2345 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2346 | int write_access) | |
2347 | { | |
2348 | spinlock_t *ptl; | |
2349 | pte_t entry; | |
2350 | unsigned long pfn; | |
2351 | int ret = VM_FAULT_MINOR; | |
2352 | ||
2353 | pte_unmap(page_table); | |
2354 | BUG_ON(!(vma->vm_flags & VM_PFNMAP)); | |
2355 | BUG_ON(is_cow_mapping(vma->vm_flags)); | |
2356 | ||
2357 | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | |
2358 | if (pfn == NOPFN_OOM) | |
2359 | return VM_FAULT_OOM; | |
2360 | if (pfn == NOPFN_SIGBUS) | |
2361 | return VM_FAULT_SIGBUS; | |
2362 | ||
2363 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2364 | ||
2365 | /* Only go through if we didn't race with anybody else... */ | |
2366 | if (pte_none(*page_table)) { | |
2367 | entry = pfn_pte(pfn, vma->vm_page_prot); | |
2368 | if (write_access) | |
2369 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2370 | set_pte_at(mm, address, page_table, entry); | |
2371 | } | |
2372 | pte_unmap_unlock(page_table, ptl); | |
2373 | return ret; | |
2374 | } | |
2375 | ||
1da177e4 LT |
2376 | /* |
2377 | * Fault of a previously existing named mapping. Repopulate the pte | |
2378 | * from the encoded file_pte if possible. This enables swappable | |
2379 | * nonlinear vmas. | |
8f4e2101 HD |
2380 | * |
2381 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2382 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2383 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2384 | */ |
65500d23 HD |
2385 | static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2386 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2387 | int write_access, pte_t orig_pte) | |
1da177e4 | 2388 | { |
65500d23 | 2389 | pgoff_t pgoff; |
1da177e4 LT |
2390 | int err; |
2391 | ||
4c21e2f2 | 2392 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2393 | return VM_FAULT_MINOR; |
1da177e4 | 2394 | |
65500d23 HD |
2395 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { |
2396 | /* | |
2397 | * Page table corrupted: show pte and kill process. | |
2398 | */ | |
b5810039 | 2399 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
2400 | return VM_FAULT_OOM; |
2401 | } | |
2402 | /* We can then assume vm->vm_ops && vma->vm_ops->populate */ | |
2403 | ||
2404 | pgoff = pte_to_pgoff(orig_pte); | |
2405 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, | |
2406 | vma->vm_page_prot, pgoff, 0); | |
1da177e4 LT |
2407 | if (err == -ENOMEM) |
2408 | return VM_FAULT_OOM; | |
2409 | if (err) | |
2410 | return VM_FAULT_SIGBUS; | |
2411 | return VM_FAULT_MAJOR; | |
2412 | } | |
2413 | ||
2414 | /* | |
2415 | * These routines also need to handle stuff like marking pages dirty | |
2416 | * and/or accessed for architectures that don't do it in hardware (most | |
2417 | * RISC architectures). The early dirtying is also good on the i386. | |
2418 | * | |
2419 | * There is also a hook called "update_mmu_cache()" that architectures | |
2420 | * with external mmu caches can use to update those (ie the Sparc or | |
2421 | * PowerPC hashed page tables that act as extended TLBs). | |
2422 | * | |
c74df32c HD |
2423 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2424 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2425 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2426 | */ |
2427 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 HD |
2428 | struct vm_area_struct *vma, unsigned long address, |
2429 | pte_t *pte, pmd_t *pmd, int write_access) | |
1da177e4 LT |
2430 | { |
2431 | pte_t entry; | |
1a44e149 | 2432 | pte_t old_entry; |
8f4e2101 | 2433 | spinlock_t *ptl; |
1da177e4 | 2434 | |
1a44e149 | 2435 | old_entry = entry = *pte; |
1da177e4 | 2436 | if (!pte_present(entry)) { |
65500d23 | 2437 | if (pte_none(entry)) { |
f4b81804 JS |
2438 | if (vma->vm_ops) { |
2439 | if (vma->vm_ops->nopage) | |
2440 | return do_no_page(mm, vma, address, | |
2441 | pte, pmd, | |
2442 | write_access); | |
2443 | if (unlikely(vma->vm_ops->nopfn)) | |
2444 | return do_no_pfn(mm, vma, address, pte, | |
2445 | pmd, write_access); | |
2446 | } | |
2447 | return do_anonymous_page(mm, vma, address, | |
2448 | pte, pmd, write_access); | |
65500d23 | 2449 | } |
1da177e4 | 2450 | if (pte_file(entry)) |
65500d23 HD |
2451 | return do_file_page(mm, vma, address, |
2452 | pte, pmd, write_access, entry); | |
2453 | return do_swap_page(mm, vma, address, | |
2454 | pte, pmd, write_access, entry); | |
1da177e4 LT |
2455 | } |
2456 | ||
4c21e2f2 | 2457 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2458 | spin_lock(ptl); |
2459 | if (unlikely(!pte_same(*pte, entry))) | |
2460 | goto unlock; | |
1da177e4 LT |
2461 | if (write_access) { |
2462 | if (!pte_write(entry)) | |
8f4e2101 HD |
2463 | return do_wp_page(mm, vma, address, |
2464 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2465 | entry = pte_mkdirty(entry); |
2466 | } | |
2467 | entry = pte_mkyoung(entry); | |
1a44e149 AA |
2468 | if (!pte_same(old_entry, entry)) { |
2469 | ptep_set_access_flags(vma, address, pte, entry, write_access); | |
2470 | update_mmu_cache(vma, address, entry); | |
2471 | lazy_mmu_prot_update(entry); | |
2472 | } else { | |
2473 | /* | |
2474 | * This is needed only for protection faults but the arch code | |
2475 | * is not yet telling us if this is a protection fault or not. | |
2476 | * This still avoids useless tlb flushes for .text page faults | |
2477 | * with threads. | |
2478 | */ | |
2479 | if (write_access) | |
2480 | flush_tlb_page(vma, address); | |
2481 | } | |
8f4e2101 HD |
2482 | unlock: |
2483 | pte_unmap_unlock(pte, ptl); | |
1da177e4 LT |
2484 | return VM_FAULT_MINOR; |
2485 | } | |
2486 | ||
2487 | /* | |
2488 | * By the time we get here, we already hold the mm semaphore | |
2489 | */ | |
65500d23 | 2490 | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2491 | unsigned long address, int write_access) |
2492 | { | |
2493 | pgd_t *pgd; | |
2494 | pud_t *pud; | |
2495 | pmd_t *pmd; | |
2496 | pte_t *pte; | |
2497 | ||
2498 | __set_current_state(TASK_RUNNING); | |
2499 | ||
f8891e5e | 2500 | count_vm_event(PGFAULT); |
1da177e4 | 2501 | |
ac9b9c66 HD |
2502 | if (unlikely(is_vm_hugetlb_page(vma))) |
2503 | return hugetlb_fault(mm, vma, address, write_access); | |
1da177e4 | 2504 | |
1da177e4 | 2505 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2506 | pud = pud_alloc(mm, pgd, address); |
2507 | if (!pud) | |
c74df32c | 2508 | return VM_FAULT_OOM; |
1da177e4 LT |
2509 | pmd = pmd_alloc(mm, pud, address); |
2510 | if (!pmd) | |
c74df32c | 2511 | return VM_FAULT_OOM; |
1da177e4 LT |
2512 | pte = pte_alloc_map(mm, pmd, address); |
2513 | if (!pte) | |
c74df32c | 2514 | return VM_FAULT_OOM; |
1da177e4 | 2515 | |
c74df32c | 2516 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
1da177e4 LT |
2517 | } |
2518 | ||
67207b96 AB |
2519 | EXPORT_SYMBOL_GPL(__handle_mm_fault); |
2520 | ||
1da177e4 LT |
2521 | #ifndef __PAGETABLE_PUD_FOLDED |
2522 | /* | |
2523 | * Allocate page upper directory. | |
872fec16 | 2524 | * We've already handled the fast-path in-line. |
1da177e4 | 2525 | */ |
1bb3630e | 2526 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2527 | { |
c74df32c HD |
2528 | pud_t *new = pud_alloc_one(mm, address); |
2529 | if (!new) | |
1bb3630e | 2530 | return -ENOMEM; |
1da177e4 | 2531 | |
872fec16 | 2532 | spin_lock(&mm->page_table_lock); |
1bb3630e | 2533 | if (pgd_present(*pgd)) /* Another has populated it */ |
1da177e4 | 2534 | pud_free(new); |
1bb3630e HD |
2535 | else |
2536 | pgd_populate(mm, pgd, new); | |
c74df32c | 2537 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2538 | return 0; |
1da177e4 | 2539 | } |
e0f39591 AS |
2540 | #else |
2541 | /* Workaround for gcc 2.96 */ | |
2542 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
2543 | { | |
2544 | return 0; | |
2545 | } | |
1da177e4 LT |
2546 | #endif /* __PAGETABLE_PUD_FOLDED */ |
2547 | ||
2548 | #ifndef __PAGETABLE_PMD_FOLDED | |
2549 | /* | |
2550 | * Allocate page middle directory. | |
872fec16 | 2551 | * We've already handled the fast-path in-line. |
1da177e4 | 2552 | */ |
1bb3630e | 2553 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 2554 | { |
c74df32c HD |
2555 | pmd_t *new = pmd_alloc_one(mm, address); |
2556 | if (!new) | |
1bb3630e | 2557 | return -ENOMEM; |
1da177e4 | 2558 | |
872fec16 | 2559 | spin_lock(&mm->page_table_lock); |
1da177e4 | 2560 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 2561 | if (pud_present(*pud)) /* Another has populated it */ |
1da177e4 | 2562 | pmd_free(new); |
1bb3630e HD |
2563 | else |
2564 | pud_populate(mm, pud, new); | |
1da177e4 | 2565 | #else |
1bb3630e | 2566 | if (pgd_present(*pud)) /* Another has populated it */ |
1da177e4 | 2567 | pmd_free(new); |
1bb3630e HD |
2568 | else |
2569 | pgd_populate(mm, pud, new); | |
1da177e4 | 2570 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 2571 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2572 | return 0; |
e0f39591 AS |
2573 | } |
2574 | #else | |
2575 | /* Workaround for gcc 2.96 */ | |
2576 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | |
2577 | { | |
2578 | return 0; | |
1da177e4 LT |
2579 | } |
2580 | #endif /* __PAGETABLE_PMD_FOLDED */ | |
2581 | ||
2582 | int make_pages_present(unsigned long addr, unsigned long end) | |
2583 | { | |
2584 | int ret, len, write; | |
2585 | struct vm_area_struct * vma; | |
2586 | ||
2587 | vma = find_vma(current->mm, addr); | |
2588 | if (!vma) | |
2589 | return -1; | |
2590 | write = (vma->vm_flags & VM_WRITE) != 0; | |
5bcb28b1 ES |
2591 | BUG_ON(addr >= end); |
2592 | BUG_ON(end > vma->vm_end); | |
1da177e4 LT |
2593 | len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; |
2594 | ret = get_user_pages(current, current->mm, addr, | |
2595 | len, write, 0, NULL, NULL); | |
2596 | if (ret < 0) | |
2597 | return ret; | |
2598 | return ret == len ? 0 : -1; | |
2599 | } | |
2600 | ||
2601 | /* | |
2602 | * Map a vmalloc()-space virtual address to the physical page. | |
2603 | */ | |
2604 | struct page * vmalloc_to_page(void * vmalloc_addr) | |
2605 | { | |
2606 | unsigned long addr = (unsigned long) vmalloc_addr; | |
2607 | struct page *page = NULL; | |
2608 | pgd_t *pgd = pgd_offset_k(addr); | |
2609 | pud_t *pud; | |
2610 | pmd_t *pmd; | |
2611 | pte_t *ptep, pte; | |
2612 | ||
2613 | if (!pgd_none(*pgd)) { | |
2614 | pud = pud_offset(pgd, addr); | |
2615 | if (!pud_none(*pud)) { | |
2616 | pmd = pmd_offset(pud, addr); | |
2617 | if (!pmd_none(*pmd)) { | |
2618 | ptep = pte_offset_map(pmd, addr); | |
2619 | pte = *ptep; | |
2620 | if (pte_present(pte)) | |
2621 | page = pte_page(pte); | |
2622 | pte_unmap(ptep); | |
2623 | } | |
2624 | } | |
2625 | } | |
2626 | return page; | |
2627 | } | |
2628 | ||
2629 | EXPORT_SYMBOL(vmalloc_to_page); | |
2630 | ||
2631 | /* | |
2632 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
2633 | */ | |
2634 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | |
2635 | { | |
2636 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
2637 | } | |
2638 | ||
2639 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
2640 | ||
1da177e4 LT |
2641 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2642 | ||
2643 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 2644 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
2645 | |
2646 | static int __init gate_vma_init(void) | |
2647 | { | |
2648 | gate_vma.vm_mm = NULL; | |
2649 | gate_vma.vm_start = FIXADDR_USER_START; | |
2650 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
2651 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
2652 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
2653 | /* |
2654 | * Make sure the vDSO gets into every core dump. | |
2655 | * Dumping its contents makes post-mortem fully interpretable later | |
2656 | * without matching up the same kernel and hardware config to see | |
2657 | * what PC values meant. | |
2658 | */ | |
2659 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
2660 | return 0; |
2661 | } | |
2662 | __initcall(gate_vma_init); | |
2663 | #endif | |
2664 | ||
2665 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2666 | { | |
2667 | #ifdef AT_SYSINFO_EHDR | |
2668 | return &gate_vma; | |
2669 | #else | |
2670 | return NULL; | |
2671 | #endif | |
2672 | } | |
2673 | ||
2674 | int in_gate_area_no_task(unsigned long addr) | |
2675 | { | |
2676 | #ifdef AT_SYSINFO_EHDR | |
2677 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2678 | return 1; | |
2679 | #endif | |
2680 | return 0; | |
2681 | } | |
2682 | ||
2683 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 DH |
2684 | |
2685 | /* | |
2686 | * Access another process' address space. | |
2687 | * Source/target buffer must be kernel space, | |
2688 | * Do not walk the page table directly, use get_user_pages | |
2689 | */ | |
2690 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
2691 | { | |
2692 | struct mm_struct *mm; | |
2693 | struct vm_area_struct *vma; | |
2694 | struct page *page; | |
2695 | void *old_buf = buf; | |
2696 | ||
2697 | mm = get_task_mm(tsk); | |
2698 | if (!mm) | |
2699 | return 0; | |
2700 | ||
2701 | down_read(&mm->mmap_sem); | |
2702 | /* ignore errors, just check how much was sucessfully transfered */ | |
2703 | while (len) { | |
2704 | int bytes, ret, offset; | |
2705 | void *maddr; | |
2706 | ||
2707 | ret = get_user_pages(tsk, mm, addr, 1, | |
2708 | write, 1, &page, &vma); | |
2709 | if (ret <= 0) | |
2710 | break; | |
2711 | ||
2712 | bytes = len; | |
2713 | offset = addr & (PAGE_SIZE-1); | |
2714 | if (bytes > PAGE_SIZE-offset) | |
2715 | bytes = PAGE_SIZE-offset; | |
2716 | ||
2717 | maddr = kmap(page); | |
2718 | if (write) { | |
2719 | copy_to_user_page(vma, page, addr, | |
2720 | maddr + offset, buf, bytes); | |
2721 | set_page_dirty_lock(page); | |
2722 | } else { | |
2723 | copy_from_user_page(vma, page, addr, | |
2724 | buf, maddr + offset, bytes); | |
2725 | } | |
2726 | kunmap(page); | |
2727 | page_cache_release(page); | |
2728 | len -= bytes; | |
2729 | buf += bytes; | |
2730 | addr += bytes; | |
2731 | } | |
2732 | up_read(&mm->mmap_sem); | |
2733 | mmput(mm); | |
2734 | ||
2735 | return buf - old_buf; | |
2736 | } |