]> Git Repo - linux.git/blame - mm/shmem.c
mm/shmem: unconditionally set pte dirty in mfill_atomic_install_pte
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
86a2f3f2 41#include <linux/swapfile.h>
95cc09d6 42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
1da177e4 62#include <linux/blkdev.h>
bda97eab 63#include <linux/pagevec.h>
41ffe5d5 64#include <linux/percpu_counter.h>
83e4fa9c 65#include <linux/falloc.h>
708e3508 66#include <linux/splice.h>
1da177e4
LT
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
b00dc3ad 71#include <linux/ctype.h>
304dbdb7 72#include <linux/migrate.h>
c1f60a5a 73#include <linux/highmem.h>
680d794b 74#include <linux/seq_file.h>
92562927 75#include <linux/magic.h>
9183df25 76#include <linux/syscalls.h>
40e041a2 77#include <linux/fcntl.h>
9183df25 78#include <uapi/linux/memfd.h>
cfda0526 79#include <linux/userfaultfd_k.h>
4c27fe4c 80#include <linux/rmap.h>
2b4db796 81#include <linux/uuid.h>
304dbdb7 82
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4 84
dd56b046
MG
85#include "internal.h"
86
09cbfeaf
KS
87#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 89
1da177e4
LT
90/* Pretend that each entry is of this size in directory's i_size */
91#define BOGO_DIRENT_SIZE 20
92
69f07ec9
HD
93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94#define SHORT_SYMLINK_LEN 128
95
1aac1400 96/*
f00cdc6d 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 98 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 99 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
100 */
101struct shmem_falloc {
8e205f77 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107};
108
0b5071dd
AV
109struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
113 kuid_t uid;
114 kgid_t gid;
115 umode_t mode;
ea3271f7 116 bool full_inums;
0b5071dd
AV
117 int huge;
118 int seen;
119#define SHMEM_SEEN_BLOCKS 1
120#define SHMEM_SEEN_INODES 2
121#define SHMEM_SEEN_HUGE 4
ea3271f7 122#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
123};
124
b76db735 125#ifdef CONFIG_TMPFS
680d794b
AM
126static unsigned long shmem_default_max_blocks(void)
127{
ca79b0c2 128 return totalram_pages() / 2;
680d794b
AM
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
ca79b0c2
AK
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 136}
b76db735 137#endif
680d794b 138
c5bf121e
VRP
139static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140 struct page **pagep, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
68da9f05 143static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 144 struct page **pagep, enum sgp_type sgp,
cfda0526 145 gfp_t gfp, struct vm_area_struct *vma,
2b740303 146 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 147
f3f0e1d2 148int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 149 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
150{
151 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 152 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 153}
1da177e4 154
1da177e4
LT
155static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156{
157 return sb->s_fs_info;
158}
159
160/*
161 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162 * for shared memory and for shared anonymous (/dev/zero) mappings
163 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164 * consistent with the pre-accounting of private mappings ...
165 */
166static inline int shmem_acct_size(unsigned long flags, loff_t size)
167{
0b0a0806 168 return (flags & VM_NORESERVE) ?
191c5424 169 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
170}
171
172static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173{
0b0a0806 174 if (!(flags & VM_NORESERVE))
1da177e4
LT
175 vm_unacct_memory(VM_ACCT(size));
176}
177
77142517
KK
178static inline int shmem_reacct_size(unsigned long flags,
179 loff_t oldsize, loff_t newsize)
180{
181 if (!(flags & VM_NORESERVE)) {
182 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183 return security_vm_enough_memory_mm(current->mm,
184 VM_ACCT(newsize) - VM_ACCT(oldsize));
185 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187 }
188 return 0;
189}
190
1da177e4
LT
191/*
192 * ... whereas tmpfs objects are accounted incrementally as
75edd345 193 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
194 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196 */
800d8c63 197static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 198{
800d8c63
KS
199 if (!(flags & VM_NORESERVE))
200 return 0;
201
202 return security_vm_enough_memory_mm(current->mm,
203 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
204}
205
206static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207{
0b0a0806 208 if (flags & VM_NORESERVE)
09cbfeaf 209 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
210}
211
0f079694
MR
212static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213{
214 struct shmem_inode_info *info = SHMEM_I(inode);
215 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217 if (shmem_acct_block(info->flags, pages))
218 return false;
219
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224 percpu_counter_add(&sbinfo->used_blocks, pages);
225 }
226
227 return true;
228
229unacct:
230 shmem_unacct_blocks(info->flags, pages);
231 return false;
232}
233
234static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235{
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239 if (sbinfo->max_blocks)
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 shmem_unacct_blocks(info->flags, pages);
242}
243
759b9775 244static const struct super_operations shmem_ops;
30e6a51d 245const struct address_space_operations shmem_aops;
15ad7cdc 246static const struct file_operations shmem_file_operations;
92e1d5be
AV
247static const struct inode_operations shmem_inode_operations;
248static const struct inode_operations shmem_dir_inode_operations;
249static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 250static const struct vm_operations_struct shmem_vm_ops;
779750d2 251static struct file_system_type shmem_fs_type;
1da177e4 252
b0506e48
MR
253bool vma_is_shmem(struct vm_area_struct *vma)
254{
255 return vma->vm_ops == &shmem_vm_ops;
256}
257
1da177e4 258static LIST_HEAD(shmem_swaplist);
cb5f7b9a 259static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 260
e809d5f0
CD
261/*
262 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263 * produces a novel ino for the newly allocated inode.
264 *
265 * It may also be called when making a hard link to permit the space needed by
266 * each dentry. However, in that case, no new inode number is needed since that
267 * internally draws from another pool of inode numbers (currently global
268 * get_next_ino()). This case is indicated by passing NULL as inop.
269 */
270#define SHMEM_INO_BATCH 1024
271static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
272{
273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
274 ino_t ino;
275
276 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 277 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
278 if (sbinfo->max_inodes) {
279 if (!sbinfo->free_inodes) {
bf11b9a8 280 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
281 return -ENOSPC;
282 }
283 sbinfo->free_inodes--;
5b04c689 284 }
e809d5f0
CD
285 if (inop) {
286 ino = sbinfo->next_ino++;
287 if (unlikely(is_zero_ino(ino)))
288 ino = sbinfo->next_ino++;
ea3271f7
CD
289 if (unlikely(!sbinfo->full_inums &&
290 ino > UINT_MAX)) {
e809d5f0
CD
291 /*
292 * Emulate get_next_ino uint wraparound for
293 * compatibility
294 */
ea3271f7
CD
295 if (IS_ENABLED(CONFIG_64BIT))
296 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297 __func__, MINOR(sb->s_dev));
298 sbinfo->next_ino = 1;
299 ino = sbinfo->next_ino++;
e809d5f0
CD
300 }
301 *inop = ino;
302 }
bf11b9a8 303 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
304 } else if (inop) {
305 /*
306 * __shmem_file_setup, one of our callers, is lock-free: it
307 * doesn't hold stat_lock in shmem_reserve_inode since
308 * max_inodes is always 0, and is called from potentially
309 * unknown contexts. As such, use a per-cpu batched allocator
310 * which doesn't require the per-sb stat_lock unless we are at
311 * the batch boundary.
ea3271f7
CD
312 *
313 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314 * shmem mounts are not exposed to userspace, so we don't need
315 * to worry about things like glibc compatibility.
e809d5f0
CD
316 */
317 ino_t *next_ino;
bf11b9a8 318
e809d5f0
CD
319 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 ino = *next_ino;
321 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 322 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
323 ino = sbinfo->next_ino;
324 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 325 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
326 if (unlikely(is_zero_ino(ino)))
327 ino++;
328 }
329 *inop = ino;
330 *next_ino = ++ino;
331 put_cpu();
5b04c689 332 }
e809d5f0 333
5b04c689
PE
334 return 0;
335}
336
337static void shmem_free_inode(struct super_block *sb)
338{
339 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340 if (sbinfo->max_inodes) {
bf11b9a8 341 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 342 sbinfo->free_inodes++;
bf11b9a8 343 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
344 }
345}
346
46711810 347/**
41ffe5d5 348 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
349 * @inode: inode to recalc
350 *
351 * We have to calculate the free blocks since the mm can drop
352 * undirtied hole pages behind our back.
353 *
354 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
355 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356 *
357 * It has to be called with the spinlock held.
358 */
359static void shmem_recalc_inode(struct inode *inode)
360{
361 struct shmem_inode_info *info = SHMEM_I(inode);
362 long freed;
363
364 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 if (freed > 0) {
366 info->alloced -= freed;
54af6042 367 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 368 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
369 }
370}
371
800d8c63
KS
372bool shmem_charge(struct inode *inode, long pages)
373{
374 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 375 unsigned long flags;
800d8c63 376
0f079694 377 if (!shmem_inode_acct_block(inode, pages))
800d8c63 378 return false;
b1cc94ab 379
aaa52e34
HD
380 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381 inode->i_mapping->nrpages += pages;
382
4595ef88 383 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
384 info->alloced += pages;
385 inode->i_blocks += pages * BLOCKS_PER_PAGE;
386 shmem_recalc_inode(inode);
4595ef88 387 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 388
800d8c63
KS
389 return true;
390}
391
392void shmem_uncharge(struct inode *inode, long pages)
393{
394 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 395 unsigned long flags;
800d8c63 396
aaa52e34
HD
397 /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
4595ef88 399 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
400 info->alloced -= pages;
401 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402 shmem_recalc_inode(inode);
4595ef88 403 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 404
0f079694 405 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
406}
407
7a5d0fbb 408/*
62f945b6 409 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 410 */
62f945b6 411static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
412 pgoff_t index, void *expected, void *replacement)
413{
62f945b6 414 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 415 void *item;
7a5d0fbb
HD
416
417 VM_BUG_ON(!expected);
6dbaf22c 418 VM_BUG_ON(!replacement);
62f945b6 419 item = xas_load(&xas);
7a5d0fbb
HD
420 if (item != expected)
421 return -ENOENT;
62f945b6 422 xas_store(&xas, replacement);
7a5d0fbb
HD
423 return 0;
424}
425
d1899228
HD
426/*
427 * Sometimes, before we decide whether to proceed or to fail, we must check
428 * that an entry was not already brought back from swap by a racing thread.
429 *
430 * Checking page is not enough: by the time a SwapCache page is locked, it
431 * might be reused, and again be SwapCache, using the same swap as before.
432 */
433static bool shmem_confirm_swap(struct address_space *mapping,
434 pgoff_t index, swp_entry_t swap)
435{
a12831bf 436 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
437}
438
5a6e75f8
KS
439/*
440 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441 *
442 * SHMEM_HUGE_NEVER:
443 * disables huge pages for the mount;
444 * SHMEM_HUGE_ALWAYS:
445 * enables huge pages for the mount;
446 * SHMEM_HUGE_WITHIN_SIZE:
447 * only allocate huge pages if the page will be fully within i_size,
448 * also respect fadvise()/madvise() hints;
449 * SHMEM_HUGE_ADVISE:
450 * only allocate huge pages if requested with fadvise()/madvise();
451 */
452
453#define SHMEM_HUGE_NEVER 0
454#define SHMEM_HUGE_ALWAYS 1
455#define SHMEM_HUGE_WITHIN_SIZE 2
456#define SHMEM_HUGE_ADVISE 3
457
458/*
459 * Special values.
460 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461 *
462 * SHMEM_HUGE_DENY:
463 * disables huge on shm_mnt and all mounts, for emergency use;
464 * SHMEM_HUGE_FORCE:
465 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466 *
467 */
468#define SHMEM_HUGE_DENY (-1)
469#define SHMEM_HUGE_FORCE (-2)
470
396bcc52 471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
472/* ifdef here to avoid bloating shmem.o when not necessary */
473
5e6e5a12 474static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 475
5e6e5a12
HD
476bool shmem_is_huge(struct vm_area_struct *vma,
477 struct inode *inode, pgoff_t index)
c852023e 478{
c852023e 479 loff_t i_size;
c852023e 480
c852023e
HD
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
5e6e5a12
HD
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 485 return false;
5e6e5a12
HD
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 493 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 495 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
c852023e 502 default:
c852023e
HD
503 return false;
504 }
505}
5a6e75f8 506
e5f2249a 507#if defined(CONFIG_SYSFS)
5a6e75f8
KS
508static int shmem_parse_huge(const char *str)
509{
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523}
e5f2249a 524#endif
5a6e75f8 525
e5f2249a 526#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
527static const char *shmem_format_huge(int huge)
528{
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546}
f1f5929c 547#endif
5a6e75f8 548
779750d2
KS
549static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551{
552 LIST_HEAD(list), *pos, *next;
253fd0f0 553 LIST_HEAD(to_remove);
779750d2
KS
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct page *page;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
558 int removed = 0, split = 0;
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
573 removed++;
574 goto next;
575 }
576
577 /* Check if there's anything to gain */
578 if (round_up(inode->i_size, PAGE_SIZE) ==
579 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 580 list_move(&info->shrinklist, &to_remove);
779750d2 581 removed++;
779750d2
KS
582 goto next;
583 }
584
585 list_move(&info->shrinklist, &list);
586next:
587 if (!--batch)
588 break;
589 }
590 spin_unlock(&sbinfo->shrinklist_lock);
591
253fd0f0
KS
592 list_for_each_safe(pos, next, &to_remove) {
593 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 inode = &info->vfs_inode;
595 list_del_init(&info->shrinklist);
596 iput(inode);
597 }
598
779750d2
KS
599 list_for_each_safe(pos, next, &list) {
600 int ret;
601
602 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 inode = &info->vfs_inode;
604
b3cd54b2
KS
605 if (nr_to_split && split >= nr_to_split)
606 goto leave;
779750d2 607
b3cd54b2 608 page = find_get_page(inode->i_mapping,
779750d2
KS
609 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610 if (!page)
611 goto drop;
612
b3cd54b2 613 /* No huge page at the end of the file: nothing to split */
779750d2 614 if (!PageTransHuge(page)) {
779750d2
KS
615 put_page(page);
616 goto drop;
617 }
618
b3cd54b2
KS
619 /*
620 * Leave the inode on the list if we failed to lock
621 * the page at this time.
622 *
623 * Waiting for the lock may lead to deadlock in the
624 * reclaim path.
625 */
626 if (!trylock_page(page)) {
627 put_page(page);
628 goto leave;
629 }
630
779750d2
KS
631 ret = split_huge_page(page);
632 unlock_page(page);
633 put_page(page);
634
b3cd54b2
KS
635 /* If split failed leave the inode on the list */
636 if (ret)
637 goto leave;
779750d2
KS
638
639 split++;
640drop:
641 list_del_init(&info->shrinklist);
642 removed++;
b3cd54b2 643leave:
779750d2
KS
644 iput(inode);
645 }
646
647 spin_lock(&sbinfo->shrinklist_lock);
648 list_splice_tail(&list, &sbinfo->shrinklist);
649 sbinfo->shrinklist_len -= removed;
650 spin_unlock(&sbinfo->shrinklist_lock);
651
652 return split;
653}
654
655static long shmem_unused_huge_scan(struct super_block *sb,
656 struct shrink_control *sc)
657{
658 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
659
660 if (!READ_ONCE(sbinfo->shrinklist_len))
661 return SHRINK_STOP;
662
663 return shmem_unused_huge_shrink(sbinfo, sc, 0);
664}
665
666static long shmem_unused_huge_count(struct super_block *sb,
667 struct shrink_control *sc)
668{
669 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
670 return READ_ONCE(sbinfo->shrinklist_len);
671}
396bcc52 672#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
673
674#define shmem_huge SHMEM_HUGE_DENY
675
5e6e5a12
HD
676bool shmem_is_huge(struct vm_area_struct *vma,
677 struct inode *inode, pgoff_t index)
678{
679 return false;
680}
681
779750d2
KS
682static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
683 struct shrink_control *sc, unsigned long nr_to_split)
684{
685 return 0;
686}
396bcc52 687#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 688
46f65ec1
HD
689/*
690 * Like add_to_page_cache_locked, but error if expected item has gone.
691 */
692static int shmem_add_to_page_cache(struct page *page,
693 struct address_space *mapping,
3fea5a49
JW
694 pgoff_t index, void *expected, gfp_t gfp,
695 struct mm_struct *charge_mm)
46f65ec1 696{
552446a4
MW
697 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
698 unsigned long i = 0;
d8c6546b 699 unsigned long nr = compound_nr(page);
3fea5a49 700 int error;
46f65ec1 701
800d8c63
KS
702 VM_BUG_ON_PAGE(PageTail(page), page);
703 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
704 VM_BUG_ON_PAGE(!PageLocked(page), page);
705 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 706 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 707
800d8c63 708 page_ref_add(page, nr);
b065b432
HD
709 page->mapping = mapping;
710 page->index = index;
711
4c6355b2 712 if (!PageSwapCache(page)) {
d9eb1ea2 713 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
714 if (error) {
715 if (PageTransHuge(page)) {
716 count_vm_event(THP_FILE_FALLBACK);
717 count_vm_event(THP_FILE_FALLBACK_CHARGE);
718 }
719 goto error;
3fea5a49 720 }
3fea5a49
JW
721 }
722 cgroup_throttle_swaprate(page, gfp);
723
552446a4
MW
724 do {
725 void *entry;
726 xas_lock_irq(&xas);
727 entry = xas_find_conflict(&xas);
728 if (entry != expected)
729 xas_set_err(&xas, -EEXIST);
730 xas_create_range(&xas);
731 if (xas_error(&xas))
732 goto unlock;
733next:
4101196b 734 xas_store(&xas, page);
552446a4
MW
735 if (++i < nr) {
736 xas_next(&xas);
737 goto next;
800d8c63 738 }
552446a4 739 if (PageTransHuge(page)) {
800d8c63 740 count_vm_event(THP_FILE_ALLOC);
57b2847d 741 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 742 }
800d8c63 743 mapping->nrpages += nr;
0d1c2072
JW
744 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
746unlock:
747 xas_unlock_irq(&xas);
748 } while (xas_nomem(&xas, gfp));
749
750 if (xas_error(&xas)) {
3fea5a49
JW
751 error = xas_error(&xas);
752 goto error;
46f65ec1 753 }
552446a4
MW
754
755 return 0;
3fea5a49
JW
756error:
757 page->mapping = NULL;
758 page_ref_sub(page, nr);
759 return error;
46f65ec1
HD
760}
761
6922c0c7
HD
762/*
763 * Like delete_from_page_cache, but substitutes swap for page.
764 */
765static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766{
767 struct address_space *mapping = page->mapping;
768 int error;
769
800d8c63
KS
770 VM_BUG_ON_PAGE(PageCompound(page), page);
771
b93b0163 772 xa_lock_irq(&mapping->i_pages);
62f945b6 773 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
774 page->mapping = NULL;
775 mapping->nrpages--;
0d1c2072
JW
776 __dec_lruvec_page_state(page, NR_FILE_PAGES);
777 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 778 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 779 put_page(page);
6922c0c7
HD
780 BUG_ON(error);
781}
782
7a5d0fbb 783/*
c121d3bb 784 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
785 */
786static int shmem_free_swap(struct address_space *mapping,
787 pgoff_t index, void *radswap)
788{
6dbaf22c 789 void *old;
7a5d0fbb 790
55f3f7ea 791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
792 if (old != radswap)
793 return -ENOENT;
794 free_swap_and_cache(radix_to_swp_entry(radswap));
795 return 0;
7a5d0fbb
HD
796}
797
6a15a370
VB
798/*
799 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 800 * given offsets are swapped out.
6a15a370 801 *
9608703e 802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
803 * as long as the inode doesn't go away and racy results are not a problem.
804 */
48131e03
VB
805unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 pgoff_t start, pgoff_t end)
6a15a370 807{
7ae3424f 808 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 809 struct page *page;
48131e03 810 unsigned long swapped = 0;
6a15a370
VB
811
812 rcu_read_lock();
7ae3424f
MW
813 xas_for_each(&xas, page, end - 1) {
814 if (xas_retry(&xas, page))
2cf938aa 815 continue;
3159f943 816 if (xa_is_value(page))
6a15a370
VB
817 swapped++;
818
819 if (need_resched()) {
7ae3424f 820 xas_pause(&xas);
6a15a370 821 cond_resched_rcu();
6a15a370
VB
822 }
823 }
824
825 rcu_read_unlock();
826
827 return swapped << PAGE_SHIFT;
828}
829
48131e03
VB
830/*
831 * Determine (in bytes) how many of the shmem object's pages mapped by the
832 * given vma is swapped out.
833 *
9608703e 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
835 * as long as the inode doesn't go away and racy results are not a problem.
836 */
837unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838{
839 struct inode *inode = file_inode(vma->vm_file);
840 struct shmem_inode_info *info = SHMEM_I(inode);
841 struct address_space *mapping = inode->i_mapping;
842 unsigned long swapped;
843
844 /* Be careful as we don't hold info->lock */
845 swapped = READ_ONCE(info->swapped);
846
847 /*
848 * The easier cases are when the shmem object has nothing in swap, or
849 * the vma maps it whole. Then we can simply use the stats that we
850 * already track.
851 */
852 if (!swapped)
853 return 0;
854
855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 return swapped << PAGE_SHIFT;
857
858 /* Here comes the more involved part */
02399c88
PX
859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
861}
862
24513264
HD
863/*
864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865 */
866void shmem_unlock_mapping(struct address_space *mapping)
867{
868 struct pagevec pvec;
24513264
HD
869 pgoff_t index = 0;
870
86679820 871 pagevec_init(&pvec);
24513264
HD
872 /*
873 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 */
875 while (!mapping_unevictable(mapping)) {
96888e0a 876 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 877 break;
64e3d12f 878 check_move_unevictable_pages(&pvec);
24513264
HD
879 pagevec_release(&pvec);
880 cond_resched();
881 }
7a5d0fbb
HD
882}
883
71725ed1
HD
884/*
885 * Check whether a hole-punch or truncation needs to split a huge page,
886 * returning true if no split was required, or the split has been successful.
887 *
888 * Eviction (or truncation to 0 size) should never need to split a huge page;
889 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890 * head, and then succeeded to trylock on tail.
891 *
892 * A split can only succeed when there are no additional references on the
893 * huge page: so the split below relies upon find_get_entries() having stopped
894 * when it found a subpage of the huge page, without getting further references.
895 */
896static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897{
898 if (!PageTransCompound(page))
899 return true;
900
901 /* Just proceed to delete a huge page wholly within the range punched */
902 if (PageHead(page) &&
903 page->index >= start && page->index + HPAGE_PMD_NR <= end)
904 return true;
905
906 /* Try to split huge page, so we can truly punch the hole or truncate */
907 return split_huge_page(page) >= 0;
908}
909
7a5d0fbb 910/*
7f4446ee 911 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 912 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 913 */
1635f6a7
HD
914static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 bool unfalloc)
1da177e4 916{
285b2c4f 917 struct address_space *mapping = inode->i_mapping;
1da177e4 918 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
919 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 923 struct pagevec pvec;
7a5d0fbb
HD
924 pgoff_t indices[PAGEVEC_SIZE];
925 long nr_swaps_freed = 0;
285b2c4f 926 pgoff_t index;
bda97eab
HD
927 int i;
928
83e4fa9c
HD
929 if (lend == -1)
930 end = -1; /* unsigned, so actually very big */
bda97eab 931
d144bf62
HD
932 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933 info->fallocend = start;
934
86679820 935 pagevec_init(&pvec);
bda97eab 936 index = start;
5c211ba2
MWO
937 while (index < end && find_lock_entries(mapping, index, end - 1,
938 &pvec, indices)) {
bda97eab
HD
939 for (i = 0; i < pagevec_count(&pvec); i++) {
940 struct page *page = pvec.pages[i];
941
7a5d0fbb 942 index = indices[i];
bda97eab 943
3159f943 944 if (xa_is_value(page)) {
1635f6a7
HD
945 if (unfalloc)
946 continue;
7a5d0fbb
HD
947 nr_swaps_freed += !shmem_free_swap(mapping,
948 index, page);
bda97eab 949 continue;
7a5d0fbb 950 }
5c211ba2 951 index += thp_nr_pages(page) - 1;
7a5d0fbb 952
5c211ba2
MWO
953 if (!unfalloc || !PageUptodate(page))
954 truncate_inode_page(mapping, page);
bda97eab
HD
955 unlock_page(page);
956 }
0cd6144a 957 pagevec_remove_exceptionals(&pvec);
24513264 958 pagevec_release(&pvec);
bda97eab
HD
959 cond_resched();
960 index++;
961 }
1da177e4 962
83e4fa9c 963 if (partial_start) {
bda97eab 964 struct page *page = NULL;
9e18eb29 965 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 966 if (page) {
09cbfeaf 967 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
968 if (start > end) {
969 top = partial_end;
970 partial_end = 0;
971 }
972 zero_user_segment(page, partial_start, top);
973 set_page_dirty(page);
974 unlock_page(page);
09cbfeaf 975 put_page(page);
83e4fa9c
HD
976 }
977 }
978 if (partial_end) {
979 struct page *page = NULL;
9e18eb29 980 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
981 if (page) {
982 zero_user_segment(page, 0, partial_end);
bda97eab
HD
983 set_page_dirty(page);
984 unlock_page(page);
09cbfeaf 985 put_page(page);
bda97eab
HD
986 }
987 }
83e4fa9c
HD
988 if (start >= end)
989 return;
bda97eab
HD
990
991 index = start;
b1a36650 992 while (index < end) {
bda97eab 993 cond_resched();
0cd6144a 994
cf2039af
MWO
995 if (!find_get_entries(mapping, index, end - 1, &pvec,
996 indices)) {
b1a36650
HD
997 /* If all gone or hole-punch or unfalloc, we're done */
998 if (index == start || end != -1)
bda97eab 999 break;
b1a36650 1000 /* But if truncating, restart to make sure all gone */
bda97eab
HD
1001 index = start;
1002 continue;
1003 }
bda97eab
HD
1004 for (i = 0; i < pagevec_count(&pvec); i++) {
1005 struct page *page = pvec.pages[i];
1006
7a5d0fbb 1007 index = indices[i];
3159f943 1008 if (xa_is_value(page)) {
1635f6a7
HD
1009 if (unfalloc)
1010 continue;
b1a36650
HD
1011 if (shmem_free_swap(mapping, index, page)) {
1012 /* Swap was replaced by page: retry */
1013 index--;
1014 break;
1015 }
1016 nr_swaps_freed++;
7a5d0fbb
HD
1017 continue;
1018 }
1019
bda97eab 1020 lock_page(page);
800d8c63 1021
1635f6a7 1022 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1023 if (page_mapping(page) != mapping) {
b1a36650
HD
1024 /* Page was replaced by swap: retry */
1025 unlock_page(page);
1026 index--;
1027 break;
1635f6a7 1028 }
71725ed1
HD
1029 VM_BUG_ON_PAGE(PageWriteback(page), page);
1030 if (shmem_punch_compound(page, start, end))
1031 truncate_inode_page(mapping, page);
0783ac95 1032 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1033 /* Wipe the page and don't get stuck */
1034 clear_highpage(page);
1035 flush_dcache_page(page);
1036 set_page_dirty(page);
1037 if (index <
1038 round_up(start, HPAGE_PMD_NR))
1039 start = index + 1;
1040 }
7a5d0fbb 1041 }
bda97eab
HD
1042 unlock_page(page);
1043 }
0cd6144a 1044 pagevec_remove_exceptionals(&pvec);
24513264 1045 pagevec_release(&pvec);
bda97eab
HD
1046 index++;
1047 }
94c1e62d 1048
4595ef88 1049 spin_lock_irq(&info->lock);
7a5d0fbb 1050 info->swapped -= nr_swaps_freed;
1da177e4 1051 shmem_recalc_inode(inode);
4595ef88 1052 spin_unlock_irq(&info->lock);
1635f6a7 1053}
1da177e4 1054
1635f6a7
HD
1055void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056{
1057 shmem_undo_range(inode, lstart, lend, false);
078cd827 1058 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1059}
94c1e62d 1060EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1061
549c7297
CB
1062static int shmem_getattr(struct user_namespace *mnt_userns,
1063 const struct path *path, struct kstat *stat,
a528d35e 1064 u32 request_mask, unsigned int query_flags)
44a30220 1065{
a528d35e 1066 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1067 struct shmem_inode_info *info = SHMEM_I(inode);
1068
d0424c42 1069 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1070 spin_lock_irq(&info->lock);
d0424c42 1071 shmem_recalc_inode(inode);
4595ef88 1072 spin_unlock_irq(&info->lock);
d0424c42 1073 }
0d56a451 1074 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1075
a7fddc36 1076 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1077 stat->blksize = HPAGE_PMD_SIZE;
1078
44a30220
YZ
1079 return 0;
1080}
1081
549c7297
CB
1082static int shmem_setattr(struct user_namespace *mnt_userns,
1083 struct dentry *dentry, struct iattr *attr)
1da177e4 1084{
75c3cfa8 1085 struct inode *inode = d_inode(dentry);
40e041a2 1086 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1087 int error;
1088
2f221d6f 1089 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1090 if (error)
1091 return error;
1092
94c1e62d
HD
1093 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094 loff_t oldsize = inode->i_size;
1095 loff_t newsize = attr->ia_size;
3889e6e7 1096
9608703e 1097 /* protected by i_rwsem */
40e041a2
DR
1098 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100 return -EPERM;
1101
94c1e62d 1102 if (newsize != oldsize) {
77142517
KK
1103 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104 oldsize, newsize);
1105 if (error)
1106 return error;
94c1e62d 1107 i_size_write(inode, newsize);
078cd827 1108 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1109 }
afa2db2f 1110 if (newsize <= oldsize) {
94c1e62d 1111 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
1115 if (info->alloced)
1116 shmem_truncate_range(inode,
1117 newsize, (loff_t)-1);
94c1e62d 1118 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1119 if (oldsize > holebegin)
1120 unmap_mapping_range(inode->i_mapping,
1121 holebegin, 0, 1);
94c1e62d 1122 }
1da177e4
LT
1123 }
1124
2f221d6f 1125 setattr_copy(&init_user_ns, inode, attr);
db78b877 1126 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1127 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1128 return error;
1129}
1130
1f895f75 1131static void shmem_evict_inode(struct inode *inode)
1da177e4 1132{
1da177e4 1133 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1134 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1135
30e6a51d 1136 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1137 shmem_unacct_size(info->flags, inode->i_size);
1138 inode->i_size = 0;
3889e6e7 1139 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1140 if (!list_empty(&info->shrinklist)) {
1141 spin_lock(&sbinfo->shrinklist_lock);
1142 if (!list_empty(&info->shrinklist)) {
1143 list_del_init(&info->shrinklist);
1144 sbinfo->shrinklist_len--;
1145 }
1146 spin_unlock(&sbinfo->shrinklist_lock);
1147 }
af53d3e9
HD
1148 while (!list_empty(&info->swaplist)) {
1149 /* Wait while shmem_unuse() is scanning this inode... */
1150 wait_var_event(&info->stop_eviction,
1151 !atomic_read(&info->stop_eviction));
cb5f7b9a 1152 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1153 /* ...but beware of the race if we peeked too early */
1154 if (!atomic_read(&info->stop_eviction))
1155 list_del_init(&info->swaplist);
cb5f7b9a 1156 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1157 }
3ed47db3 1158 }
b09e0fa4 1159
38f38657 1160 simple_xattrs_free(&info->xattrs);
0f3c42f5 1161 WARN_ON(inode->i_blocks);
5b04c689 1162 shmem_free_inode(inode->i_sb);
dbd5768f 1163 clear_inode(inode);
1da177e4
LT
1164}
1165
b56a2d8a
VRP
1166static int shmem_find_swap_entries(struct address_space *mapping,
1167 pgoff_t start, unsigned int nr_entries,
1168 struct page **entries, pgoff_t *indices,
87039546 1169 unsigned int type, bool frontswap)
478922e2 1170{
b56a2d8a
VRP
1171 XA_STATE(xas, &mapping->i_pages, start);
1172 struct page *page;
87039546 1173 swp_entry_t entry;
b56a2d8a
VRP
1174 unsigned int ret = 0;
1175
1176 if (!nr_entries)
1177 return 0;
478922e2
MW
1178
1179 rcu_read_lock();
b56a2d8a
VRP
1180 xas_for_each(&xas, page, ULONG_MAX) {
1181 if (xas_retry(&xas, page))
5b9c98f3 1182 continue;
b56a2d8a
VRP
1183
1184 if (!xa_is_value(page))
478922e2 1185 continue;
b56a2d8a 1186
87039546
HD
1187 entry = radix_to_swp_entry(page);
1188 if (swp_type(entry) != type)
1189 continue;
1190 if (frontswap &&
1191 !frontswap_test(swap_info[type], swp_offset(entry)))
1192 continue;
b56a2d8a
VRP
1193
1194 indices[ret] = xas.xa_index;
1195 entries[ret] = page;
1196
1197 if (need_resched()) {
1198 xas_pause(&xas);
1199 cond_resched_rcu();
1200 }
1201 if (++ret == nr_entries)
1202 break;
478922e2 1203 }
478922e2 1204 rcu_read_unlock();
e21a2955 1205
b56a2d8a 1206 return ret;
478922e2
MW
1207}
1208
46f65ec1 1209/*
b56a2d8a
VRP
1210 * Move the swapped pages for an inode to page cache. Returns the count
1211 * of pages swapped in, or the error in case of failure.
46f65ec1 1212 */
b56a2d8a
VRP
1213static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214 pgoff_t *indices)
1da177e4 1215{
b56a2d8a
VRP
1216 int i = 0;
1217 int ret = 0;
bde05d1c 1218 int error = 0;
b56a2d8a 1219 struct address_space *mapping = inode->i_mapping;
1da177e4 1220
b56a2d8a
VRP
1221 for (i = 0; i < pvec.nr; i++) {
1222 struct page *page = pvec.pages[i];
2e0e26c7 1223
b56a2d8a
VRP
1224 if (!xa_is_value(page))
1225 continue;
1226 error = shmem_swapin_page(inode, indices[i],
1227 &page, SGP_CACHE,
1228 mapping_gfp_mask(mapping),
1229 NULL, NULL);
1230 if (error == 0) {
1231 unlock_page(page);
1232 put_page(page);
1233 ret++;
1234 }
1235 if (error == -ENOMEM)
1236 break;
1237 error = 0;
bde05d1c 1238 }
b56a2d8a
VRP
1239 return error ? error : ret;
1240}
bde05d1c 1241
b56a2d8a
VRP
1242/*
1243 * If swap found in inode, free it and move page from swapcache to filecache.
1244 */
1245static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246 bool frontswap, unsigned long *fs_pages_to_unuse)
1247{
1248 struct address_space *mapping = inode->i_mapping;
1249 pgoff_t start = 0;
1250 struct pagevec pvec;
1251 pgoff_t indices[PAGEVEC_SIZE];
1252 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253 int ret = 0;
1254
1255 pagevec_init(&pvec);
1256 do {
1257 unsigned int nr_entries = PAGEVEC_SIZE;
1258
1259 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260 nr_entries = *fs_pages_to_unuse;
1261
1262 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263 pvec.pages, indices,
87039546 1264 type, frontswap);
b56a2d8a
VRP
1265 if (pvec.nr == 0) {
1266 ret = 0;
1267 break;
46f65ec1 1268 }
b56a2d8a
VRP
1269
1270 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271 if (ret < 0)
1272 break;
1273
1274 if (frontswap_partial) {
1275 *fs_pages_to_unuse -= ret;
1276 if (*fs_pages_to_unuse == 0) {
1277 ret = FRONTSWAP_PAGES_UNUSED;
1278 break;
1279 }
1280 }
1281
1282 start = indices[pvec.nr - 1];
1283 } while (true);
1284
1285 return ret;
1da177e4
LT
1286}
1287
1288/*
b56a2d8a
VRP
1289 * Read all the shared memory data that resides in the swap
1290 * device 'type' back into memory, so the swap device can be
1291 * unused.
1da177e4 1292 */
b56a2d8a
VRP
1293int shmem_unuse(unsigned int type, bool frontswap,
1294 unsigned long *fs_pages_to_unuse)
1da177e4 1295{
b56a2d8a 1296 struct shmem_inode_info *info, *next;
bde05d1c
HD
1297 int error = 0;
1298
b56a2d8a
VRP
1299 if (list_empty(&shmem_swaplist))
1300 return 0;
1301
1302 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1303 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304 if (!info->swapped) {
6922c0c7 1305 list_del_init(&info->swaplist);
b56a2d8a
VRP
1306 continue;
1307 }
af53d3e9
HD
1308 /*
1309 * Drop the swaplist mutex while searching the inode for swap;
1310 * but before doing so, make sure shmem_evict_inode() will not
1311 * remove placeholder inode from swaplist, nor let it be freed
1312 * (igrab() would protect from unlink, but not from unmount).
1313 */
1314 atomic_inc(&info->stop_eviction);
b56a2d8a 1315 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1316
af53d3e9 1317 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1318 fs_pages_to_unuse);
cb5f7b9a 1319 cond_resched();
b56a2d8a
VRP
1320
1321 mutex_lock(&shmem_swaplist_mutex);
1322 next = list_next_entry(info, swaplist);
1323 if (!info->swapped)
1324 list_del_init(&info->swaplist);
af53d3e9
HD
1325 if (atomic_dec_and_test(&info->stop_eviction))
1326 wake_up_var(&info->stop_eviction);
b56a2d8a 1327 if (error)
778dd893 1328 break;
1da177e4 1329 }
cb5f7b9a 1330 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1331
778dd893 1332 return error;
1da177e4
LT
1333}
1334
1335/*
1336 * Move the page from the page cache to the swap cache.
1337 */
1338static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339{
1340 struct shmem_inode_info *info;
1da177e4 1341 struct address_space *mapping;
1da177e4 1342 struct inode *inode;
6922c0c7
HD
1343 swp_entry_t swap;
1344 pgoff_t index;
1da177e4 1345
1e6decf3
HD
1346 /*
1347 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349 * and its shmem_writeback() needs them to be split when swapping.
1350 */
1351 if (PageTransCompound(page)) {
1352 /* Ensure the subpages are still dirty */
1353 SetPageDirty(page);
1354 if (split_huge_page(page) < 0)
1355 goto redirty;
1356 ClearPageDirty(page);
1357 }
1358
1da177e4 1359 BUG_ON(!PageLocked(page));
1da177e4
LT
1360 mapping = page->mapping;
1361 index = page->index;
1362 inode = mapping->host;
1363 info = SHMEM_I(inode);
1364 if (info->flags & VM_LOCKED)
1365 goto redirty;
d9fe526a 1366 if (!total_swap_pages)
1da177e4
LT
1367 goto redirty;
1368
d9fe526a 1369 /*
97b713ba
CH
1370 * Our capabilities prevent regular writeback or sync from ever calling
1371 * shmem_writepage; but a stacking filesystem might use ->writepage of
1372 * its underlying filesystem, in which case tmpfs should write out to
1373 * swap only in response to memory pressure, and not for the writeback
1374 * threads or sync.
d9fe526a 1375 */
48f170fb
HD
1376 if (!wbc->for_reclaim) {
1377 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1378 goto redirty;
1379 }
1635f6a7
HD
1380
1381 /*
1382 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 * value into swapfile.c, the only way we can correctly account for a
1384 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1385 *
1386 * That's okay for a page already fallocated earlier, but if we have
1387 * not yet completed the fallocation, then (a) we want to keep track
1388 * of this page in case we have to undo it, and (b) it may not be a
1389 * good idea to continue anyway, once we're pushing into swap. So
1390 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1391 */
1392 if (!PageUptodate(page)) {
1aac1400
HD
1393 if (inode->i_private) {
1394 struct shmem_falloc *shmem_falloc;
1395 spin_lock(&inode->i_lock);
1396 shmem_falloc = inode->i_private;
1397 if (shmem_falloc &&
8e205f77 1398 !shmem_falloc->waitq &&
1aac1400
HD
1399 index >= shmem_falloc->start &&
1400 index < shmem_falloc->next)
1401 shmem_falloc->nr_unswapped++;
1402 else
1403 shmem_falloc = NULL;
1404 spin_unlock(&inode->i_lock);
1405 if (shmem_falloc)
1406 goto redirty;
1407 }
1635f6a7
HD
1408 clear_highpage(page);
1409 flush_dcache_page(page);
1410 SetPageUptodate(page);
1411 }
1412
38d8b4e6 1413 swap = get_swap_page(page);
48f170fb
HD
1414 if (!swap.val)
1415 goto redirty;
d9fe526a 1416
b1dea800
HD
1417 /*
1418 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1419 * if it's not already there. Do it now before the page is
1420 * moved to swap cache, when its pagelock no longer protects
b1dea800 1421 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1422 * we've incremented swapped, because shmem_unuse_inode() will
1423 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1424 */
48f170fb
HD
1425 mutex_lock(&shmem_swaplist_mutex);
1426 if (list_empty(&info->swaplist))
b56a2d8a 1427 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1428
4afab1cd 1429 if (add_to_swap_cache(page, swap,
3852f676
JK
1430 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 NULL) == 0) {
4595ef88 1432 spin_lock_irq(&info->lock);
6922c0c7 1433 shmem_recalc_inode(inode);
267a4c76 1434 info->swapped++;
4595ef88 1435 spin_unlock_irq(&info->lock);
6922c0c7 1436
267a4c76
HD
1437 swap_shmem_alloc(swap);
1438 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439
6922c0c7 1440 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1441 BUG_ON(page_mapped(page));
9fab5619 1442 swap_writepage(page, wbc);
1da177e4
LT
1443 return 0;
1444 }
1445
6922c0c7 1446 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1447 put_swap_page(page, swap);
1da177e4
LT
1448redirty:
1449 set_page_dirty(page);
d9fe526a
HD
1450 if (wbc->for_reclaim)
1451 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1452 unlock_page(page);
1453 return 0;
1da177e4
LT
1454}
1455
75edd345 1456#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1457static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1458{
095f1fc4 1459 char buffer[64];
680d794b 1460
71fe804b 1461 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1462 return; /* show nothing */
680d794b 1463
a7a88b23 1464 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1465
1466 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1467}
71fe804b
LS
1468
1469static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470{
1471 struct mempolicy *mpol = NULL;
1472 if (sbinfo->mpol) {
bf11b9a8 1473 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1474 mpol = sbinfo->mpol;
1475 mpol_get(mpol);
bf11b9a8 1476 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1477 }
1478 return mpol;
1479}
75edd345
HD
1480#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482{
1483}
1484static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485{
1486 return NULL;
1487}
1488#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489#ifndef CONFIG_NUMA
1490#define vm_policy vm_private_data
1491#endif
680d794b 1492
800d8c63
KS
1493static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 struct shmem_inode_info *info, pgoff_t index)
1495{
1496 /* Create a pseudo vma that just contains the policy */
2c4541e2 1497 vma_init(vma, NULL);
800d8c63
KS
1498 /* Bias interleave by inode number to distribute better across nodes */
1499 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1500 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501}
1502
1503static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504{
1505 /* Drop reference taken by mpol_shared_policy_lookup() */
1506 mpol_cond_put(vma->vm_policy);
1507}
1508
41ffe5d5
HD
1509static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1511{
1da177e4 1512 struct vm_area_struct pvma;
18a2f371 1513 struct page *page;
8c63ca5b
WD
1514 struct vm_fault vmf = {
1515 .vma = &pvma,
1516 };
52cd3b07 1517
800d8c63 1518 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1519 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1520 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1521
800d8c63
KS
1522 return page;
1523}
1524
78cc8cdc
RR
1525/*
1526 * Make sure huge_gfp is always more limited than limit_gfp.
1527 * Some of the flags set permissions, while others set limitations.
1528 */
1529static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530{
1531 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1533 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535
1536 /* Allow allocations only from the originally specified zones. */
1537 result |= zoneflags;
78cc8cdc
RR
1538
1539 /*
1540 * Minimize the result gfp by taking the union with the deny flags,
1541 * and the intersection of the allow flags.
1542 */
1543 result |= (limit_gfp & denyflags);
1544 result |= (huge_gfp & limit_gfp) & allowflags;
1545
1546 return result;
1547}
1548
800d8c63
KS
1549static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550 struct shmem_inode_info *info, pgoff_t index)
1551{
1552 struct vm_area_struct pvma;
7b8d046f
MW
1553 struct address_space *mapping = info->vfs_inode.i_mapping;
1554 pgoff_t hindex;
800d8c63
KS
1555 struct page *page;
1556
4620a06e 1557 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1558 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559 XA_PRESENT))
800d8c63 1560 return NULL;
18a2f371 1561
800d8c63 1562 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1563 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564 true);
800d8c63
KS
1565 shmem_pseudo_vma_destroy(&pvma);
1566 if (page)
1567 prep_transhuge_page(page);
dcdf11ee
DR
1568 else
1569 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1570 return page;
1da177e4
LT
1571}
1572
02098fea 1573static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1574 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1575{
1576 struct vm_area_struct pvma;
18a2f371 1577 struct page *page;
1da177e4 1578
800d8c63
KS
1579 shmem_pseudo_vma_init(&pvma, info, index);
1580 page = alloc_page_vma(gfp, &pvma, 0);
1581 shmem_pseudo_vma_destroy(&pvma);
1582
1583 return page;
1584}
1585
1586static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1587 struct inode *inode,
800d8c63
KS
1588 pgoff_t index, bool huge)
1589{
0f079694 1590 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1591 struct page *page;
1592 int nr;
1593 int err = -ENOSPC;
52cd3b07 1594
396bcc52 1595 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1596 huge = false;
1597 nr = huge ? HPAGE_PMD_NR : 1;
1598
0f079694 1599 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1600 goto failed;
800d8c63
KS
1601
1602 if (huge)
1603 page = shmem_alloc_hugepage(gfp, info, index);
1604 else
1605 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1606 if (page) {
1607 __SetPageLocked(page);
1608 __SetPageSwapBacked(page);
800d8c63 1609 return page;
75edd345 1610 }
18a2f371 1611
800d8c63 1612 err = -ENOMEM;
0f079694 1613 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1614failed:
1615 return ERR_PTR(err);
1da177e4 1616}
71fe804b 1617
bde05d1c
HD
1618/*
1619 * When a page is moved from swapcache to shmem filecache (either by the
1620 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622 * ignorance of the mapping it belongs to. If that mapping has special
1623 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624 * we may need to copy to a suitable page before moving to filecache.
1625 *
1626 * In a future release, this may well be extended to respect cpuset and
1627 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628 * but for now it is a simple matter of zone.
1629 */
1630static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631{
1632 return page_zonenum(page) > gfp_zone(gfp);
1633}
1634
1635static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636 struct shmem_inode_info *info, pgoff_t index)
1637{
1638 struct page *oldpage, *newpage;
1639 struct address_space *swap_mapping;
c1cb20d4 1640 swp_entry_t entry;
bde05d1c
HD
1641 pgoff_t swap_index;
1642 int error;
1643
1644 oldpage = *pagep;
c1cb20d4
YZ
1645 entry.val = page_private(oldpage);
1646 swap_index = swp_offset(entry);
bde05d1c
HD
1647 swap_mapping = page_mapping(oldpage);
1648
1649 /*
1650 * We have arrived here because our zones are constrained, so don't
1651 * limit chance of success by further cpuset and node constraints.
1652 */
1653 gfp &= ~GFP_CONSTRAINT_MASK;
1654 newpage = shmem_alloc_page(gfp, info, index);
1655 if (!newpage)
1656 return -ENOMEM;
bde05d1c 1657
09cbfeaf 1658 get_page(newpage);
bde05d1c 1659 copy_highpage(newpage, oldpage);
0142ef6c 1660 flush_dcache_page(newpage);
bde05d1c 1661
9956edf3
HD
1662 __SetPageLocked(newpage);
1663 __SetPageSwapBacked(newpage);
bde05d1c 1664 SetPageUptodate(newpage);
c1cb20d4 1665 set_page_private(newpage, entry.val);
bde05d1c
HD
1666 SetPageSwapCache(newpage);
1667
1668 /*
1669 * Our caller will very soon move newpage out of swapcache, but it's
1670 * a nice clean interface for us to replace oldpage by newpage there.
1671 */
b93b0163 1672 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1673 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1674 if (!error) {
0d1c2072
JW
1675 mem_cgroup_migrate(oldpage, newpage);
1676 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1677 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1678 }
b93b0163 1679 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1680
0142ef6c
HD
1681 if (unlikely(error)) {
1682 /*
1683 * Is this possible? I think not, now that our callers check
1684 * both PageSwapCache and page_private after getting page lock;
1685 * but be defensive. Reverse old to newpage for clear and free.
1686 */
1687 oldpage = newpage;
1688 } else {
6058eaec 1689 lru_cache_add(newpage);
0142ef6c
HD
1690 *pagep = newpage;
1691 }
bde05d1c
HD
1692
1693 ClearPageSwapCache(oldpage);
1694 set_page_private(oldpage, 0);
1695
1696 unlock_page(oldpage);
09cbfeaf
KS
1697 put_page(oldpage);
1698 put_page(oldpage);
0142ef6c 1699 return error;
bde05d1c
HD
1700}
1701
c5bf121e
VRP
1702/*
1703 * Swap in the page pointed to by *pagep.
1704 * Caller has to make sure that *pagep contains a valid swapped page.
1705 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1706 * error code and NULL in *pagep.
c5bf121e
VRP
1707 */
1708static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1709 struct page **pagep, enum sgp_type sgp,
1710 gfp_t gfp, struct vm_area_struct *vma,
1711 vm_fault_t *fault_type)
1712{
1713 struct address_space *mapping = inode->i_mapping;
1714 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1715 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1716 struct page *page;
c5bf121e
VRP
1717 swp_entry_t swap;
1718 int error;
1719
1720 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1721 swap = radix_to_swp_entry(*pagep);
1722 *pagep = NULL;
1723
1724 /* Look it up and read it in.. */
1725 page = lookup_swap_cache(swap, NULL, 0);
1726 if (!page) {
1727 /* Or update major stats only when swapin succeeds?? */
1728 if (fault_type) {
1729 *fault_type |= VM_FAULT_MAJOR;
1730 count_vm_event(PGMAJFAULT);
1731 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1732 }
1733 /* Here we actually start the io */
1734 page = shmem_swapin(swap, gfp, info, index);
1735 if (!page) {
1736 error = -ENOMEM;
1737 goto failed;
1738 }
1739 }
1740
1741 /* We have to do this with page locked to prevent races */
1742 lock_page(page);
1743 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1744 !shmem_confirm_swap(mapping, index, swap)) {
1745 error = -EEXIST;
1746 goto unlock;
1747 }
1748 if (!PageUptodate(page)) {
1749 error = -EIO;
1750 goto failed;
1751 }
1752 wait_on_page_writeback(page);
1753
8a84802e
SP
1754 /*
1755 * Some architectures may have to restore extra metadata to the
1756 * physical page after reading from swap.
1757 */
1758 arch_swap_restore(swap, page);
1759
c5bf121e
VRP
1760 if (shmem_should_replace_page(page, gfp)) {
1761 error = shmem_replace_page(&page, gfp, info, index);
1762 if (error)
1763 goto failed;
1764 }
1765
14235ab3 1766 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1767 swp_to_radix_entry(swap), gfp,
1768 charge_mm);
1769 if (error)
14235ab3 1770 goto failed;
c5bf121e
VRP
1771
1772 spin_lock_irq(&info->lock);
1773 info->swapped--;
1774 shmem_recalc_inode(inode);
1775 spin_unlock_irq(&info->lock);
1776
1777 if (sgp == SGP_WRITE)
1778 mark_page_accessed(page);
1779
1780 delete_from_swap_cache(page);
1781 set_page_dirty(page);
1782 swap_free(swap);
1783
1784 *pagep = page;
1785 return 0;
1786failed:
1787 if (!shmem_confirm_swap(mapping, index, swap))
1788 error = -EEXIST;
1789unlock:
1790 if (page) {
1791 unlock_page(page);
1792 put_page(page);
1793 }
1794
1795 return error;
1796}
1797
1da177e4 1798/*
68da9f05 1799 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1800 *
1801 * If we allocate a new one we do not mark it dirty. That's up to the
1802 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1803 * entry since a page cannot live in both the swap and page cache.
1804 *
c949b097 1805 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1806 * otherwise they are NULL.
1da177e4 1807 */
41ffe5d5 1808static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1809 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1810 struct vm_area_struct *vma, struct vm_fault *vmf,
1811 vm_fault_t *fault_type)
1da177e4
LT
1812{
1813 struct address_space *mapping = inode->i_mapping;
23f919d4 1814 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1815 struct shmem_sb_info *sbinfo;
9e18eb29 1816 struct mm_struct *charge_mm;
27ab7006 1817 struct page *page;
800d8c63 1818 pgoff_t hindex = index;
164cc4fe 1819 gfp_t huge_gfp;
1da177e4 1820 int error;
54af6042 1821 int once = 0;
1635f6a7 1822 int alloced = 0;
1da177e4 1823
09cbfeaf 1824 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1825 return -EFBIG;
1da177e4 1826repeat:
c5bf121e
VRP
1827 if (sgp <= SGP_CACHE &&
1828 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829 return -EINVAL;
1830 }
1831
1832 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1833 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1834
44835d20
MWO
1835 page = pagecache_get_page(mapping, index,
1836 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1837
1838 if (page && vma && userfaultfd_minor(vma)) {
1839 if (!xa_is_value(page)) {
1840 unlock_page(page);
1841 put_page(page);
1842 }
1843 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844 return 0;
1845 }
1846
3159f943 1847 if (xa_is_value(page)) {
c5bf121e
VRP
1848 error = shmem_swapin_page(inode, index, &page,
1849 sgp, gfp, vma, fault_type);
1850 if (error == -EEXIST)
1851 goto repeat;
54af6042 1852
c5bf121e
VRP
1853 *pagep = page;
1854 return error;
54af6042
HD
1855 }
1856
acdd9f8e 1857 if (page) {
63ec1973 1858 hindex = page->index;
acdd9f8e
HD
1859 if (sgp == SGP_WRITE)
1860 mark_page_accessed(page);
1861 if (PageUptodate(page))
1862 goto out;
1863 /* fallocated page */
1635f6a7
HD
1864 if (sgp != SGP_READ)
1865 goto clear;
1866 unlock_page(page);
09cbfeaf 1867 put_page(page);
1635f6a7 1868 }
27ab7006
HD
1869
1870 /*
acdd9f8e
HD
1871 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1872 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1873 */
1874 *pagep = NULL;
1875 if (sgp == SGP_READ)
1876 return 0;
1877 if (sgp == SGP_NOALLOC)
1878 return -ENOENT;
1879
1880 /*
1881 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1882 */
54af6042 1883
c5bf121e
VRP
1884 if (vma && userfaultfd_missing(vma)) {
1885 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1886 return 0;
1887 }
cfda0526 1888
5e6e5a12
HD
1889 /* Never use a huge page for shmem_symlink() */
1890 if (S_ISLNK(inode->i_mode))
c5bf121e 1891 goto alloc_nohuge;
5e6e5a12 1892 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1893 goto alloc_nohuge;
1da177e4 1894
164cc4fe 1895 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1896 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1897 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1898 if (IS_ERR(page)) {
1899alloc_nohuge:
1900 page = shmem_alloc_and_acct_page(gfp, inode,
1901 index, false);
1902 }
1903 if (IS_ERR(page)) {
1904 int retry = 5;
800d8c63 1905
c5bf121e
VRP
1906 error = PTR_ERR(page);
1907 page = NULL;
1908 if (error != -ENOSPC)
1909 goto unlock;
1910 /*
1911 * Try to reclaim some space by splitting a huge page
1912 * beyond i_size on the filesystem.
1913 */
1914 while (retry--) {
1915 int ret;
66d2f4d2 1916
c5bf121e
VRP
1917 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1918 if (ret == SHRINK_STOP)
1919 break;
1920 if (ret)
1921 goto alloc_nohuge;
b065b432 1922 }
c5bf121e
VRP
1923 goto unlock;
1924 }
54af6042 1925
c5bf121e
VRP
1926 if (PageTransHuge(page))
1927 hindex = round_down(index, HPAGE_PMD_NR);
1928 else
1929 hindex = index;
54af6042 1930
c5bf121e
VRP
1931 if (sgp == SGP_WRITE)
1932 __SetPageReferenced(page);
1933
c5bf121e 1934 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1935 NULL, gfp & GFP_RECLAIM_MASK,
1936 charge_mm);
1937 if (error)
c5bf121e 1938 goto unacct;
6058eaec 1939 lru_cache_add(page);
779750d2 1940
c5bf121e 1941 spin_lock_irq(&info->lock);
d8c6546b 1942 info->alloced += compound_nr(page);
c5bf121e
VRP
1943 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1944 shmem_recalc_inode(inode);
1945 spin_unlock_irq(&info->lock);
1946 alloced = true;
1947
1948 if (PageTransHuge(page) &&
1949 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1950 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1951 /*
c5bf121e
VRP
1952 * Part of the huge page is beyond i_size: subject
1953 * to shrink under memory pressure.
1635f6a7 1954 */
c5bf121e 1955 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1956 /*
c5bf121e
VRP
1957 * _careful to defend against unlocked access to
1958 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1959 */
c5bf121e
VRP
1960 if (list_empty_careful(&info->shrinklist)) {
1961 list_add_tail(&info->shrinklist,
1962 &sbinfo->shrinklist);
1963 sbinfo->shrinklist_len++;
1964 }
1965 spin_unlock(&sbinfo->shrinklist_lock);
1966 }
800d8c63 1967
c5bf121e
VRP
1968 /*
1969 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1970 */
1971 if (sgp == SGP_FALLOC)
1972 sgp = SGP_WRITE;
1973clear:
1974 /*
1975 * Let SGP_WRITE caller clear ends if write does not fill page;
1976 * but SGP_FALLOC on a page fallocated earlier must initialize
1977 * it now, lest undo on failure cancel our earlier guarantee.
1978 */
1979 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1980 int i;
1981
63ec1973
MWO
1982 for (i = 0; i < compound_nr(page); i++) {
1983 clear_highpage(page + i);
1984 flush_dcache_page(page + i);
ec9516fb 1985 }
63ec1973 1986 SetPageUptodate(page);
1da177e4 1987 }
bde05d1c 1988
54af6042 1989 /* Perhaps the file has been truncated since we checked */
75edd345 1990 if (sgp <= SGP_CACHE &&
09cbfeaf 1991 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1992 if (alloced) {
1993 ClearPageDirty(page);
1994 delete_from_page_cache(page);
4595ef88 1995 spin_lock_irq(&info->lock);
267a4c76 1996 shmem_recalc_inode(inode);
4595ef88 1997 spin_unlock_irq(&info->lock);
267a4c76 1998 }
54af6042 1999 error = -EINVAL;
267a4c76 2000 goto unlock;
e83c32e8 2001 }
63ec1973 2002out:
800d8c63 2003 *pagep = page + index - hindex;
54af6042 2004 return 0;
1da177e4 2005
59a16ead 2006 /*
54af6042 2007 * Error recovery.
59a16ead 2008 */
54af6042 2009unacct:
d8c6546b 2010 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2011
2012 if (PageTransHuge(page)) {
2013 unlock_page(page);
2014 put_page(page);
2015 goto alloc_nohuge;
2016 }
d1899228 2017unlock:
27ab7006 2018 if (page) {
54af6042 2019 unlock_page(page);
09cbfeaf 2020 put_page(page);
54af6042
HD
2021 }
2022 if (error == -ENOSPC && !once++) {
4595ef88 2023 spin_lock_irq(&info->lock);
54af6042 2024 shmem_recalc_inode(inode);
4595ef88 2025 spin_unlock_irq(&info->lock);
27ab7006 2026 goto repeat;
ff36b801 2027 }
7f4446ee 2028 if (error == -EEXIST)
54af6042
HD
2029 goto repeat;
2030 return error;
1da177e4
LT
2031}
2032
10d20bd2
LT
2033/*
2034 * This is like autoremove_wake_function, but it removes the wait queue
2035 * entry unconditionally - even if something else had already woken the
2036 * target.
2037 */
ac6424b9 2038static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2039{
2040 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2041 list_del_init(&wait->entry);
10d20bd2
LT
2042 return ret;
2043}
2044
20acce67 2045static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2046{
11bac800 2047 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2048 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2049 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2050 int err;
2051 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2052
f00cdc6d
HD
2053 /*
2054 * Trinity finds that probing a hole which tmpfs is punching can
2055 * prevent the hole-punch from ever completing: which in turn
9608703e 2056 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2057 * faulting pages into the hole while it's being punched. Although
2058 * shmem_undo_range() does remove the additions, it may be unable to
2059 * keep up, as each new page needs its own unmap_mapping_range() call,
2060 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2061 *
2062 * It does not matter if we sometimes reach this check just before the
2063 * hole-punch begins, so that one fault then races with the punch:
2064 * we just need to make racing faults a rare case.
2065 *
2066 * The implementation below would be much simpler if we just used a
9608703e 2067 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2068 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2069 */
2070 if (unlikely(inode->i_private)) {
2071 struct shmem_falloc *shmem_falloc;
2072
2073 spin_lock(&inode->i_lock);
2074 shmem_falloc = inode->i_private;
8e205f77
HD
2075 if (shmem_falloc &&
2076 shmem_falloc->waitq &&
2077 vmf->pgoff >= shmem_falloc->start &&
2078 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2079 struct file *fpin;
8e205f77 2080 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2081 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2082
2083 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2084 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2085 if (fpin)
8e205f77 2086 ret = VM_FAULT_RETRY;
8e205f77
HD
2087
2088 shmem_falloc_waitq = shmem_falloc->waitq;
2089 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2090 TASK_UNINTERRUPTIBLE);
2091 spin_unlock(&inode->i_lock);
2092 schedule();
2093
2094 /*
2095 * shmem_falloc_waitq points into the shmem_fallocate()
2096 * stack of the hole-punching task: shmem_falloc_waitq
2097 * is usually invalid by the time we reach here, but
2098 * finish_wait() does not dereference it in that case;
2099 * though i_lock needed lest racing with wake_up_all().
2100 */
2101 spin_lock(&inode->i_lock);
2102 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2103 spin_unlock(&inode->i_lock);
8897c1b1
KS
2104
2105 if (fpin)
2106 fput(fpin);
8e205f77 2107 return ret;
f00cdc6d 2108 }
8e205f77 2109 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2110 }
2111
5e6e5a12 2112 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2113 gfp, vma, vmf, &ret);
20acce67
SJ
2114 if (err)
2115 return vmf_error(err);
68da9f05 2116 return ret;
1da177e4
LT
2117}
2118
c01d5b30
HD
2119unsigned long shmem_get_unmapped_area(struct file *file,
2120 unsigned long uaddr, unsigned long len,
2121 unsigned long pgoff, unsigned long flags)
2122{
2123 unsigned long (*get_area)(struct file *,
2124 unsigned long, unsigned long, unsigned long, unsigned long);
2125 unsigned long addr;
2126 unsigned long offset;
2127 unsigned long inflated_len;
2128 unsigned long inflated_addr;
2129 unsigned long inflated_offset;
2130
2131 if (len > TASK_SIZE)
2132 return -ENOMEM;
2133
2134 get_area = current->mm->get_unmapped_area;
2135 addr = get_area(file, uaddr, len, pgoff, flags);
2136
396bcc52 2137 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2138 return addr;
2139 if (IS_ERR_VALUE(addr))
2140 return addr;
2141 if (addr & ~PAGE_MASK)
2142 return addr;
2143 if (addr > TASK_SIZE - len)
2144 return addr;
2145
2146 if (shmem_huge == SHMEM_HUGE_DENY)
2147 return addr;
2148 if (len < HPAGE_PMD_SIZE)
2149 return addr;
2150 if (flags & MAP_FIXED)
2151 return addr;
2152 /*
2153 * Our priority is to support MAP_SHARED mapped hugely;
2154 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2155 * But if caller specified an address hint and we allocated area there
2156 * successfully, respect that as before.
c01d5b30 2157 */
99158997 2158 if (uaddr == addr)
c01d5b30
HD
2159 return addr;
2160
2161 if (shmem_huge != SHMEM_HUGE_FORCE) {
2162 struct super_block *sb;
2163
2164 if (file) {
2165 VM_BUG_ON(file->f_op != &shmem_file_operations);
2166 sb = file_inode(file)->i_sb;
2167 } else {
2168 /*
2169 * Called directly from mm/mmap.c, or drivers/char/mem.c
2170 * for "/dev/zero", to create a shared anonymous object.
2171 */
2172 if (IS_ERR(shm_mnt))
2173 return addr;
2174 sb = shm_mnt->mnt_sb;
2175 }
3089bf61 2176 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2177 return addr;
2178 }
2179
2180 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2181 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2182 return addr;
2183 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2184 return addr;
2185
2186 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2187 if (inflated_len > TASK_SIZE)
2188 return addr;
2189 if (inflated_len < len)
2190 return addr;
2191
99158997 2192 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2193 if (IS_ERR_VALUE(inflated_addr))
2194 return addr;
2195 if (inflated_addr & ~PAGE_MASK)
2196 return addr;
2197
2198 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2199 inflated_addr += offset - inflated_offset;
2200 if (inflated_offset > offset)
2201 inflated_addr += HPAGE_PMD_SIZE;
2202
2203 if (inflated_addr > TASK_SIZE - len)
2204 return addr;
2205 return inflated_addr;
2206}
2207
1da177e4 2208#ifdef CONFIG_NUMA
41ffe5d5 2209static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2210{
496ad9aa 2211 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2212 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2213}
2214
d8dc74f2
AB
2215static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2216 unsigned long addr)
1da177e4 2217{
496ad9aa 2218 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2219 pgoff_t index;
1da177e4 2220
41ffe5d5
HD
2221 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2222 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2223}
2224#endif
2225
d7c9e99a 2226int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2227{
496ad9aa 2228 struct inode *inode = file_inode(file);
1da177e4
LT
2229 struct shmem_inode_info *info = SHMEM_I(inode);
2230 int retval = -ENOMEM;
2231
ea0dfeb4
HD
2232 /*
2233 * What serializes the accesses to info->flags?
2234 * ipc_lock_object() when called from shmctl_do_lock(),
2235 * no serialization needed when called from shm_destroy().
2236 */
1da177e4 2237 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2238 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2239 goto out_nomem;
2240 info->flags |= VM_LOCKED;
89e004ea 2241 mapping_set_unevictable(file->f_mapping);
1da177e4 2242 }
d7c9e99a
AG
2243 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2244 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2245 info->flags &= ~VM_LOCKED;
89e004ea 2246 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2247 }
2248 retval = 0;
89e004ea 2249
1da177e4 2250out_nomem:
1da177e4
LT
2251 return retval;
2252}
2253
9b83a6a8 2254static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2255{
ab3948f5 2256 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2257 int ret;
ab3948f5 2258
22247efd
PX
2259 ret = seal_check_future_write(info->seals, vma);
2260 if (ret)
2261 return ret;
ab3948f5 2262
51b0bff2
CM
2263 /* arm64 - allow memory tagging on RAM-based files */
2264 vma->vm_flags |= VM_MTE_ALLOWED;
2265
1da177e4
LT
2266 file_accessed(file);
2267 vma->vm_ops = &shmem_vm_ops;
396bcc52 2268 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2269 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2270 (vma->vm_end & HPAGE_PMD_MASK)) {
2271 khugepaged_enter(vma, vma->vm_flags);
2272 }
1da177e4
LT
2273 return 0;
2274}
2275
454abafe 2276static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2277 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2278{
2279 struct inode *inode;
2280 struct shmem_inode_info *info;
2281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2282 ino_t ino;
1da177e4 2283
e809d5f0 2284 if (shmem_reserve_inode(sb, &ino))
5b04c689 2285 return NULL;
1da177e4
LT
2286
2287 inode = new_inode(sb);
2288 if (inode) {
e809d5f0 2289 inode->i_ino = ino;
21cb47be 2290 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2291 inode->i_blocks = 0;
078cd827 2292 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2293 inode->i_generation = prandom_u32();
1da177e4
LT
2294 info = SHMEM_I(inode);
2295 memset(info, 0, (char *)inode - (char *)info);
2296 spin_lock_init(&info->lock);
af53d3e9 2297 atomic_set(&info->stop_eviction, 0);
40e041a2 2298 info->seals = F_SEAL_SEAL;
0b0a0806 2299 info->flags = flags & VM_NORESERVE;
779750d2 2300 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2301 INIT_LIST_HEAD(&info->swaplist);
38f38657 2302 simple_xattrs_init(&info->xattrs);
72c04902 2303 cache_no_acl(inode);
1da177e4
LT
2304
2305 switch (mode & S_IFMT) {
2306 default:
39f0247d 2307 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2308 init_special_inode(inode, mode, dev);
2309 break;
2310 case S_IFREG:
14fcc23f 2311 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2312 inode->i_op = &shmem_inode_operations;
2313 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2314 mpol_shared_policy_init(&info->policy,
2315 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2316 break;
2317 case S_IFDIR:
d8c76e6f 2318 inc_nlink(inode);
1da177e4
LT
2319 /* Some things misbehave if size == 0 on a directory */
2320 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2321 inode->i_op = &shmem_dir_inode_operations;
2322 inode->i_fop = &simple_dir_operations;
2323 break;
2324 case S_IFLNK:
2325 /*
2326 * Must not load anything in the rbtree,
2327 * mpol_free_shared_policy will not be called.
2328 */
71fe804b 2329 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2330 break;
2331 }
b45d71fb
JFG
2332
2333 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2334 } else
2335 shmem_free_inode(sb);
1da177e4
LT
2336 return inode;
2337}
2338
3460f6e5
AR
2339#ifdef CONFIG_USERFAULTFD
2340int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2341 pmd_t *dst_pmd,
2342 struct vm_area_struct *dst_vma,
2343 unsigned long dst_addr,
2344 unsigned long src_addr,
2345 bool zeropage,
2346 struct page **pagep)
4c27fe4c
MR
2347{
2348 struct inode *inode = file_inode(dst_vma->vm_file);
2349 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2350 struct address_space *mapping = inode->i_mapping;
2351 gfp_t gfp = mapping_gfp_mask(mapping);
2352 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2353 void *page_kaddr;
2354 struct page *page;
4c27fe4c 2355 int ret;
3460f6e5 2356 pgoff_t max_off;
4c27fe4c 2357
7ed9d238
AR
2358 if (!shmem_inode_acct_block(inode, 1)) {
2359 /*
2360 * We may have got a page, returned -ENOENT triggering a retry,
2361 * and now we find ourselves with -ENOMEM. Release the page, to
2362 * avoid a BUG_ON in our caller.
2363 */
2364 if (unlikely(*pagep)) {
2365 put_page(*pagep);
2366 *pagep = NULL;
2367 }
7d64ae3a 2368 return -ENOMEM;
7ed9d238 2369 }
4c27fe4c 2370
cb658a45 2371 if (!*pagep) {
7d64ae3a 2372 ret = -ENOMEM;
4c27fe4c
MR
2373 page = shmem_alloc_page(gfp, info, pgoff);
2374 if (!page)
0f079694 2375 goto out_unacct_blocks;
4c27fe4c 2376
3460f6e5 2377 if (!zeropage) { /* COPY */
8d103963
MR
2378 page_kaddr = kmap_atomic(page);
2379 ret = copy_from_user(page_kaddr,
2380 (const void __user *)src_addr,
2381 PAGE_SIZE);
2382 kunmap_atomic(page_kaddr);
2383
c1e8d7c6 2384 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2385 if (unlikely(ret)) {
2386 *pagep = page;
7d64ae3a 2387 ret = -ENOENT;
8d103963 2388 /* don't free the page */
7d64ae3a 2389 goto out_unacct_blocks;
8d103963 2390 }
3460f6e5 2391 } else { /* ZEROPAGE */
8d103963 2392 clear_highpage(page);
4c27fe4c
MR
2393 }
2394 } else {
2395 page = *pagep;
2396 *pagep = NULL;
2397 }
2398
3460f6e5
AR
2399 VM_BUG_ON(PageLocked(page));
2400 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2401 __SetPageLocked(page);
2402 __SetPageSwapBacked(page);
a425d358 2403 __SetPageUptodate(page);
9cc90c66 2404
e2a50c1f 2405 ret = -EFAULT;
e2a50c1f 2406 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2407 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2408 goto out_release;
2409
552446a4 2410 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2411 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2412 if (ret)
3fea5a49 2413 goto out_release;
4c27fe4c 2414
7d64ae3a
AR
2415 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2416 page, true, false);
2417 if (ret)
2418 goto out_delete_from_cache;
4c27fe4c 2419
94b7cc01 2420 spin_lock_irq(&info->lock);
4c27fe4c
MR
2421 info->alloced++;
2422 inode->i_blocks += BLOCKS_PER_PAGE;
2423 shmem_recalc_inode(inode);
94b7cc01 2424 spin_unlock_irq(&info->lock);
4c27fe4c 2425
e2a50c1f 2426 unlock_page(page);
7d64ae3a
AR
2427 return 0;
2428out_delete_from_cache:
e2a50c1f 2429 delete_from_page_cache(page);
4c27fe4c 2430out_release:
9cc90c66 2431 unlock_page(page);
4c27fe4c 2432 put_page(page);
4c27fe4c 2433out_unacct_blocks:
0f079694 2434 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2435 return ret;
8d103963 2436}
3460f6e5 2437#endif /* CONFIG_USERFAULTFD */
8d103963 2438
1da177e4 2439#ifdef CONFIG_TMPFS
92e1d5be 2440static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2441static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2442
6d9d88d0
JS
2443#ifdef CONFIG_TMPFS_XATTR
2444static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2445#else
2446#define shmem_initxattrs NULL
2447#endif
2448
1da177e4 2449static int
800d15a5
NP
2450shmem_write_begin(struct file *file, struct address_space *mapping,
2451 loff_t pos, unsigned len, unsigned flags,
2452 struct page **pagep, void **fsdata)
1da177e4 2453{
800d15a5 2454 struct inode *inode = mapping->host;
40e041a2 2455 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2456 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2 2457
9608703e 2458 /* i_rwsem is held by caller */
ab3948f5
JFG
2459 if (unlikely(info->seals & (F_SEAL_GROW |
2460 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2461 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2462 return -EPERM;
2463 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2464 return -EPERM;
2465 }
2466
9e18eb29 2467 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2468}
2469
2470static int
2471shmem_write_end(struct file *file, struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned copied,
2473 struct page *page, void *fsdata)
2474{
2475 struct inode *inode = mapping->host;
2476
d3602444
HD
2477 if (pos + copied > inode->i_size)
2478 i_size_write(inode, pos + copied);
2479
ec9516fb 2480 if (!PageUptodate(page)) {
800d8c63
KS
2481 struct page *head = compound_head(page);
2482 if (PageTransCompound(page)) {
2483 int i;
2484
2485 for (i = 0; i < HPAGE_PMD_NR; i++) {
2486 if (head + i == page)
2487 continue;
2488 clear_highpage(head + i);
2489 flush_dcache_page(head + i);
2490 }
2491 }
09cbfeaf
KS
2492 if (copied < PAGE_SIZE) {
2493 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2494 zero_user_segments(page, 0, from,
09cbfeaf 2495 from + copied, PAGE_SIZE);
ec9516fb 2496 }
800d8c63 2497 SetPageUptodate(head);
ec9516fb 2498 }
800d15a5 2499 set_page_dirty(page);
6746aff7 2500 unlock_page(page);
09cbfeaf 2501 put_page(page);
800d15a5 2502
800d15a5 2503 return copied;
1da177e4
LT
2504}
2505
2ba5bbed 2506static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2507{
6e58e79d
AV
2508 struct file *file = iocb->ki_filp;
2509 struct inode *inode = file_inode(file);
1da177e4 2510 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2511 pgoff_t index;
2512 unsigned long offset;
a0ee5ec5 2513 enum sgp_type sgp = SGP_READ;
f7c1d074 2514 int error = 0;
cb66a7a1 2515 ssize_t retval = 0;
6e58e79d 2516 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2517
2518 /*
2519 * Might this read be for a stacking filesystem? Then when reading
2520 * holes of a sparse file, we actually need to allocate those pages,
2521 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2522 */
777eda2c 2523 if (!iter_is_iovec(to))
75edd345 2524 sgp = SGP_CACHE;
1da177e4 2525
09cbfeaf
KS
2526 index = *ppos >> PAGE_SHIFT;
2527 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2528
2529 for (;;) {
2530 struct page *page = NULL;
41ffe5d5
HD
2531 pgoff_t end_index;
2532 unsigned long nr, ret;
1da177e4
LT
2533 loff_t i_size = i_size_read(inode);
2534
09cbfeaf 2535 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2536 if (index > end_index)
2537 break;
2538 if (index == end_index) {
09cbfeaf 2539 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2540 if (nr <= offset)
2541 break;
2542 }
2543
9e18eb29 2544 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2545 if (error) {
2546 if (error == -EINVAL)
2547 error = 0;
1da177e4
LT
2548 break;
2549 }
75edd345
HD
2550 if (page) {
2551 if (sgp == SGP_CACHE)
2552 set_page_dirty(page);
d3602444 2553 unlock_page(page);
75edd345 2554 }
1da177e4
LT
2555
2556 /*
2557 * We must evaluate after, since reads (unlike writes)
9608703e 2558 * are called without i_rwsem protection against truncate
1da177e4 2559 */
09cbfeaf 2560 nr = PAGE_SIZE;
1da177e4 2561 i_size = i_size_read(inode);
09cbfeaf 2562 end_index = i_size >> PAGE_SHIFT;
1da177e4 2563 if (index == end_index) {
09cbfeaf 2564 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2565 if (nr <= offset) {
2566 if (page)
09cbfeaf 2567 put_page(page);
1da177e4
LT
2568 break;
2569 }
2570 }
2571 nr -= offset;
2572
2573 if (page) {
2574 /*
2575 * If users can be writing to this page using arbitrary
2576 * virtual addresses, take care about potential aliasing
2577 * before reading the page on the kernel side.
2578 */
2579 if (mapping_writably_mapped(mapping))
2580 flush_dcache_page(page);
2581 /*
2582 * Mark the page accessed if we read the beginning.
2583 */
2584 if (!offset)
2585 mark_page_accessed(page);
b5810039 2586 } else {
1da177e4 2587 page = ZERO_PAGE(0);
09cbfeaf 2588 get_page(page);
b5810039 2589 }
1da177e4
LT
2590
2591 /*
2592 * Ok, we have the page, and it's up-to-date, so
2593 * now we can copy it to user space...
1da177e4 2594 */
2ba5bbed 2595 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2596 retval += ret;
1da177e4 2597 offset += ret;
09cbfeaf
KS
2598 index += offset >> PAGE_SHIFT;
2599 offset &= ~PAGE_MASK;
1da177e4 2600
09cbfeaf 2601 put_page(page);
2ba5bbed 2602 if (!iov_iter_count(to))
1da177e4 2603 break;
6e58e79d
AV
2604 if (ret < nr) {
2605 error = -EFAULT;
2606 break;
2607 }
1da177e4
LT
2608 cond_resched();
2609 }
2610
09cbfeaf 2611 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2612 file_accessed(file);
2613 return retval ? retval : error;
1da177e4
LT
2614}
2615
965c8e59 2616static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2617{
2618 struct address_space *mapping = file->f_mapping;
2619 struct inode *inode = mapping->host;
220f2ac9 2620
965c8e59
AM
2621 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2622 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2623 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2624 if (offset < 0)
2625 return -ENXIO;
2626
5955102c 2627 inode_lock(inode);
9608703e 2628 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2629 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2630 if (offset >= 0)
2631 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2632 inode_unlock(inode);
220f2ac9
HD
2633 return offset;
2634}
2635
83e4fa9c
HD
2636static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2637 loff_t len)
2638{
496ad9aa 2639 struct inode *inode = file_inode(file);
e2d12e22 2640 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2641 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2642 struct shmem_falloc shmem_falloc;
d144bf62 2643 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2644 int error;
83e4fa9c 2645
13ace4d0
HD
2646 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2647 return -EOPNOTSUPP;
2648
5955102c 2649 inode_lock(inode);
83e4fa9c
HD
2650
2651 if (mode & FALLOC_FL_PUNCH_HOLE) {
2652 struct address_space *mapping = file->f_mapping;
2653 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2654 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2655 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2656
9608703e 2657 /* protected by i_rwsem */
ab3948f5 2658 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2659 error = -EPERM;
2660 goto out;
2661 }
2662
8e205f77 2663 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2664 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2665 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2666 spin_lock(&inode->i_lock);
2667 inode->i_private = &shmem_falloc;
2668 spin_unlock(&inode->i_lock);
2669
83e4fa9c
HD
2670 if ((u64)unmap_end > (u64)unmap_start)
2671 unmap_mapping_range(mapping, unmap_start,
2672 1 + unmap_end - unmap_start, 0);
2673 shmem_truncate_range(inode, offset, offset + len - 1);
2674 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2675
2676 spin_lock(&inode->i_lock);
2677 inode->i_private = NULL;
2678 wake_up_all(&shmem_falloc_waitq);
2055da97 2679 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2680 spin_unlock(&inode->i_lock);
83e4fa9c 2681 error = 0;
8e205f77 2682 goto out;
e2d12e22
HD
2683 }
2684
2685 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2686 error = inode_newsize_ok(inode, offset + len);
2687 if (error)
2688 goto out;
2689
40e041a2
DR
2690 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2691 error = -EPERM;
2692 goto out;
2693 }
2694
09cbfeaf
KS
2695 start = offset >> PAGE_SHIFT;
2696 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2697 /* Try to avoid a swapstorm if len is impossible to satisfy */
2698 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2699 error = -ENOSPC;
2700 goto out;
83e4fa9c
HD
2701 }
2702
8e205f77 2703 shmem_falloc.waitq = NULL;
1aac1400
HD
2704 shmem_falloc.start = start;
2705 shmem_falloc.next = start;
2706 shmem_falloc.nr_falloced = 0;
2707 shmem_falloc.nr_unswapped = 0;
2708 spin_lock(&inode->i_lock);
2709 inode->i_private = &shmem_falloc;
2710 spin_unlock(&inode->i_lock);
2711
d144bf62
HD
2712 /*
2713 * info->fallocend is only relevant when huge pages might be
2714 * involved: to prevent split_huge_page() freeing fallocated
2715 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2716 */
2717 undo_fallocend = info->fallocend;
2718 if (info->fallocend < end)
2719 info->fallocend = end;
2720
050dcb5c 2721 for (index = start; index < end; ) {
e2d12e22
HD
2722 struct page *page;
2723
2724 /*
2725 * Good, the fallocate(2) manpage permits EINTR: we may have
2726 * been interrupted because we are using up too much memory.
2727 */
2728 if (signal_pending(current))
2729 error = -EINTR;
1aac1400
HD
2730 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2731 error = -ENOMEM;
e2d12e22 2732 else
9e18eb29 2733 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2734 if (error) {
d144bf62 2735 info->fallocend = undo_fallocend;
1635f6a7 2736 /* Remove the !PageUptodate pages we added */
7f556567
HD
2737 if (index > start) {
2738 shmem_undo_range(inode,
2739 (loff_t)start << PAGE_SHIFT,
2740 ((loff_t)index << PAGE_SHIFT) - 1, true);
2741 }
1aac1400 2742 goto undone;
e2d12e22
HD
2743 }
2744
050dcb5c
HD
2745 index++;
2746 /*
2747 * Here is a more important optimization than it appears:
2748 * a second SGP_FALLOC on the same huge page will clear it,
2749 * making it PageUptodate and un-undoable if we fail later.
2750 */
2751 if (PageTransCompound(page)) {
2752 index = round_up(index, HPAGE_PMD_NR);
2753 /* Beware 32-bit wraparound */
2754 if (!index)
2755 index--;
2756 }
2757
1aac1400
HD
2758 /*
2759 * Inform shmem_writepage() how far we have reached.
2760 * No need for lock or barrier: we have the page lock.
2761 */
1aac1400 2762 if (!PageUptodate(page))
050dcb5c
HD
2763 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2764 shmem_falloc.next = index;
1aac1400 2765
e2d12e22 2766 /*
1635f6a7
HD
2767 * If !PageUptodate, leave it that way so that freeable pages
2768 * can be recognized if we need to rollback on error later.
2769 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2770 * than free the pages we are allocating (and SGP_CACHE pages
2771 * might still be clean: we now need to mark those dirty too).
2772 */
2773 set_page_dirty(page);
2774 unlock_page(page);
09cbfeaf 2775 put_page(page);
e2d12e22
HD
2776 cond_resched();
2777 }
2778
2779 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2780 i_size_write(inode, offset + len);
078cd827 2781 inode->i_ctime = current_time(inode);
1aac1400
HD
2782undone:
2783 spin_lock(&inode->i_lock);
2784 inode->i_private = NULL;
2785 spin_unlock(&inode->i_lock);
e2d12e22 2786out:
5955102c 2787 inode_unlock(inode);
83e4fa9c
HD
2788 return error;
2789}
2790
726c3342 2791static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2792{
726c3342 2793 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2794
2795 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2796 buf->f_bsize = PAGE_SIZE;
1da177e4 2797 buf->f_namelen = NAME_MAX;
0edd73b3 2798 if (sbinfo->max_blocks) {
1da177e4 2799 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2800 buf->f_bavail =
2801 buf->f_bfree = sbinfo->max_blocks -
2802 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2803 }
2804 if (sbinfo->max_inodes) {
1da177e4
LT
2805 buf->f_files = sbinfo->max_inodes;
2806 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2807 }
2808 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2809
2810 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2811
1da177e4
LT
2812 return 0;
2813}
2814
2815/*
2816 * File creation. Allocate an inode, and we're done..
2817 */
2818static int
549c7297
CB
2819shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2820 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2821{
0b0a0806 2822 struct inode *inode;
1da177e4
LT
2823 int error = -ENOSPC;
2824
454abafe 2825 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2826 if (inode) {
feda821e
CH
2827 error = simple_acl_create(dir, inode);
2828 if (error)
2829 goto out_iput;
2a7dba39 2830 error = security_inode_init_security(inode, dir,
9d8f13ba 2831 &dentry->d_name,
6d9d88d0 2832 shmem_initxattrs, NULL);
feda821e
CH
2833 if (error && error != -EOPNOTSUPP)
2834 goto out_iput;
37ec43cd 2835
718deb6b 2836 error = 0;
1da177e4 2837 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2838 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2839 d_instantiate(dentry, inode);
2840 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2841 }
2842 return error;
feda821e
CH
2843out_iput:
2844 iput(inode);
2845 return error;
1da177e4
LT
2846}
2847
60545d0d 2848static int
549c7297
CB
2849shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2850 struct dentry *dentry, umode_t mode)
60545d0d
AV
2851{
2852 struct inode *inode;
2853 int error = -ENOSPC;
2854
2855 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2856 if (inode) {
2857 error = security_inode_init_security(inode, dir,
2858 NULL,
2859 shmem_initxattrs, NULL);
feda821e
CH
2860 if (error && error != -EOPNOTSUPP)
2861 goto out_iput;
2862 error = simple_acl_create(dir, inode);
2863 if (error)
2864 goto out_iput;
60545d0d
AV
2865 d_tmpfile(dentry, inode);
2866 }
2867 return error;
feda821e
CH
2868out_iput:
2869 iput(inode);
2870 return error;
60545d0d
AV
2871}
2872
549c7297
CB
2873static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2874 struct dentry *dentry, umode_t mode)
1da177e4
LT
2875{
2876 int error;
2877
549c7297
CB
2878 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2879 mode | S_IFDIR, 0)))
1da177e4 2880 return error;
d8c76e6f 2881 inc_nlink(dir);
1da177e4
LT
2882 return 0;
2883}
2884
549c7297
CB
2885static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2886 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2887{
549c7297 2888 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2889}
2890
2891/*
2892 * Link a file..
2893 */
2894static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2895{
75c3cfa8 2896 struct inode *inode = d_inode(old_dentry);
29b00e60 2897 int ret = 0;
1da177e4
LT
2898
2899 /*
2900 * No ordinary (disk based) filesystem counts links as inodes;
2901 * but each new link needs a new dentry, pinning lowmem, and
2902 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2903 * But if an O_TMPFILE file is linked into the tmpfs, the
2904 * first link must skip that, to get the accounting right.
1da177e4 2905 */
1062af92 2906 if (inode->i_nlink) {
e809d5f0 2907 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2908 if (ret)
2909 goto out;
2910 }
1da177e4
LT
2911
2912 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2913 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2914 inc_nlink(inode);
7de9c6ee 2915 ihold(inode); /* New dentry reference */
1da177e4
LT
2916 dget(dentry); /* Extra pinning count for the created dentry */
2917 d_instantiate(dentry, inode);
5b04c689
PE
2918out:
2919 return ret;
1da177e4
LT
2920}
2921
2922static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2923{
75c3cfa8 2924 struct inode *inode = d_inode(dentry);
1da177e4 2925
5b04c689
PE
2926 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2927 shmem_free_inode(inode->i_sb);
1da177e4
LT
2928
2929 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2930 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2931 drop_nlink(inode);
1da177e4
LT
2932 dput(dentry); /* Undo the count from "create" - this does all the work */
2933 return 0;
2934}
2935
2936static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2937{
2938 if (!simple_empty(dentry))
2939 return -ENOTEMPTY;
2940
75c3cfa8 2941 drop_nlink(d_inode(dentry));
9a53c3a7 2942 drop_nlink(dir);
1da177e4
LT
2943 return shmem_unlink(dir, dentry);
2944}
2945
37456771
MS
2946static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2947{
e36cb0b8
DH
2948 bool old_is_dir = d_is_dir(old_dentry);
2949 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2950
2951 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2952 if (old_is_dir) {
2953 drop_nlink(old_dir);
2954 inc_nlink(new_dir);
2955 } else {
2956 drop_nlink(new_dir);
2957 inc_nlink(old_dir);
2958 }
2959 }
2960 old_dir->i_ctime = old_dir->i_mtime =
2961 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2962 d_inode(old_dentry)->i_ctime =
078cd827 2963 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2964
2965 return 0;
2966}
2967
549c7297
CB
2968static int shmem_whiteout(struct user_namespace *mnt_userns,
2969 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2970{
2971 struct dentry *whiteout;
2972 int error;
2973
2974 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2975 if (!whiteout)
2976 return -ENOMEM;
2977
549c7297 2978 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2979 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2980 dput(whiteout);
2981 if (error)
2982 return error;
2983
2984 /*
2985 * Cheat and hash the whiteout while the old dentry is still in
2986 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2987 *
2988 * d_lookup() will consistently find one of them at this point,
2989 * not sure which one, but that isn't even important.
2990 */
2991 d_rehash(whiteout);
2992 return 0;
2993}
2994
1da177e4
LT
2995/*
2996 * The VFS layer already does all the dentry stuff for rename,
2997 * we just have to decrement the usage count for the target if
2998 * it exists so that the VFS layer correctly free's it when it
2999 * gets overwritten.
3000 */
549c7297
CB
3001static int shmem_rename2(struct user_namespace *mnt_userns,
3002 struct inode *old_dir, struct dentry *old_dentry,
3003 struct inode *new_dir, struct dentry *new_dentry,
3004 unsigned int flags)
1da177e4 3005{
75c3cfa8 3006 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3007 int they_are_dirs = S_ISDIR(inode->i_mode);
3008
46fdb794 3009 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3010 return -EINVAL;
3011
37456771
MS
3012 if (flags & RENAME_EXCHANGE)
3013 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3014
1da177e4
LT
3015 if (!simple_empty(new_dentry))
3016 return -ENOTEMPTY;
3017
46fdb794
MS
3018 if (flags & RENAME_WHITEOUT) {
3019 int error;
3020
549c7297 3021 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3022 if (error)
3023 return error;
3024 }
3025
75c3cfa8 3026 if (d_really_is_positive(new_dentry)) {
1da177e4 3027 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3028 if (they_are_dirs) {
75c3cfa8 3029 drop_nlink(d_inode(new_dentry));
9a53c3a7 3030 drop_nlink(old_dir);
b928095b 3031 }
1da177e4 3032 } else if (they_are_dirs) {
9a53c3a7 3033 drop_nlink(old_dir);
d8c76e6f 3034 inc_nlink(new_dir);
1da177e4
LT
3035 }
3036
3037 old_dir->i_size -= BOGO_DIRENT_SIZE;
3038 new_dir->i_size += BOGO_DIRENT_SIZE;
3039 old_dir->i_ctime = old_dir->i_mtime =
3040 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3041 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3042 return 0;
3043}
3044
549c7297
CB
3045static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3046 struct dentry *dentry, const char *symname)
1da177e4
LT
3047{
3048 int error;
3049 int len;
3050 struct inode *inode;
9276aad6 3051 struct page *page;
1da177e4
LT
3052
3053 len = strlen(symname) + 1;
09cbfeaf 3054 if (len > PAGE_SIZE)
1da177e4
LT
3055 return -ENAMETOOLONG;
3056
0825a6f9
JP
3057 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3058 VM_NORESERVE);
1da177e4
LT
3059 if (!inode)
3060 return -ENOSPC;
3061
9d8f13ba 3062 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3063 shmem_initxattrs, NULL);
343c3d7f
MN
3064 if (error && error != -EOPNOTSUPP) {
3065 iput(inode);
3066 return error;
570bc1c2
SS
3067 }
3068
1da177e4 3069 inode->i_size = len-1;
69f07ec9 3070 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3071 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3072 if (!inode->i_link) {
69f07ec9
HD
3073 iput(inode);
3074 return -ENOMEM;
3075 }
3076 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3077 } else {
e8ecde25 3078 inode_nohighmem(inode);
9e18eb29 3079 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3080 if (error) {
3081 iput(inode);
3082 return error;
3083 }
14fcc23f 3084 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3085 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3086 memcpy(page_address(page), symname, len);
ec9516fb 3087 SetPageUptodate(page);
1da177e4 3088 set_page_dirty(page);
6746aff7 3089 unlock_page(page);
09cbfeaf 3090 put_page(page);
1da177e4 3091 }
1da177e4 3092 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3093 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3094 d_instantiate(dentry, inode);
3095 dget(dentry);
3096 return 0;
3097}
3098
fceef393 3099static void shmem_put_link(void *arg)
1da177e4 3100{
fceef393
AV
3101 mark_page_accessed(arg);
3102 put_page(arg);
1da177e4
LT
3103}
3104
6b255391 3105static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3106 struct inode *inode,
3107 struct delayed_call *done)
1da177e4 3108{
1da177e4 3109 struct page *page = NULL;
6b255391 3110 int error;
6a6c9904
AV
3111 if (!dentry) {
3112 page = find_get_page(inode->i_mapping, 0);
3113 if (!page)
3114 return ERR_PTR(-ECHILD);
3115 if (!PageUptodate(page)) {
3116 put_page(page);
3117 return ERR_PTR(-ECHILD);
3118 }
3119 } else {
9e18eb29 3120 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3121 if (error)
3122 return ERR_PTR(error);
3123 unlock_page(page);
3124 }
fceef393 3125 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3126 return page_address(page);
1da177e4
LT
3127}
3128
b09e0fa4 3129#ifdef CONFIG_TMPFS_XATTR
46711810 3130/*
b09e0fa4
EP
3131 * Superblocks without xattr inode operations may get some security.* xattr
3132 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3133 * like ACLs, we also need to implement the security.* handlers at
3134 * filesystem level, though.
3135 */
3136
6d9d88d0
JS
3137/*
3138 * Callback for security_inode_init_security() for acquiring xattrs.
3139 */
3140static int shmem_initxattrs(struct inode *inode,
3141 const struct xattr *xattr_array,
3142 void *fs_info)
3143{
3144 struct shmem_inode_info *info = SHMEM_I(inode);
3145 const struct xattr *xattr;
38f38657 3146 struct simple_xattr *new_xattr;
6d9d88d0
JS
3147 size_t len;
3148
3149 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3150 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3151 if (!new_xattr)
3152 return -ENOMEM;
3153
3154 len = strlen(xattr->name) + 1;
3155 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3156 GFP_KERNEL);
3157 if (!new_xattr->name) {
3bef735a 3158 kvfree(new_xattr);
6d9d88d0
JS
3159 return -ENOMEM;
3160 }
3161
3162 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3163 XATTR_SECURITY_PREFIX_LEN);
3164 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3165 xattr->name, len);
3166
38f38657 3167 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3168 }
3169
3170 return 0;
3171}
3172
aa7c5241 3173static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3174 struct dentry *unused, struct inode *inode,
3175 const char *name, void *buffer, size_t size)
b09e0fa4 3176{
b296821a 3177 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3178
aa7c5241 3179 name = xattr_full_name(handler, name);
38f38657 3180 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3181}
3182
aa7c5241 3183static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3184 struct user_namespace *mnt_userns,
59301226
AV
3185 struct dentry *unused, struct inode *inode,
3186 const char *name, const void *value,
3187 size_t size, int flags)
b09e0fa4 3188{
59301226 3189 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3190
aa7c5241 3191 name = xattr_full_name(handler, name);
a46a2295 3192 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3193}
3194
aa7c5241
AG
3195static const struct xattr_handler shmem_security_xattr_handler = {
3196 .prefix = XATTR_SECURITY_PREFIX,
3197 .get = shmem_xattr_handler_get,
3198 .set = shmem_xattr_handler_set,
3199};
b09e0fa4 3200
aa7c5241
AG
3201static const struct xattr_handler shmem_trusted_xattr_handler = {
3202 .prefix = XATTR_TRUSTED_PREFIX,
3203 .get = shmem_xattr_handler_get,
3204 .set = shmem_xattr_handler_set,
3205};
b09e0fa4 3206
aa7c5241
AG
3207static const struct xattr_handler *shmem_xattr_handlers[] = {
3208#ifdef CONFIG_TMPFS_POSIX_ACL
3209 &posix_acl_access_xattr_handler,
3210 &posix_acl_default_xattr_handler,
3211#endif
3212 &shmem_security_xattr_handler,
3213 &shmem_trusted_xattr_handler,
3214 NULL
3215};
b09e0fa4
EP
3216
3217static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3218{
75c3cfa8 3219 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3220 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3221}
3222#endif /* CONFIG_TMPFS_XATTR */
3223
69f07ec9 3224static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3225 .get_link = simple_get_link,
b09e0fa4 3226#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3227 .listxattr = shmem_listxattr,
b09e0fa4
EP
3228#endif
3229};
3230
3231static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3232 .get_link = shmem_get_link,
b09e0fa4 3233#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3234 .listxattr = shmem_listxattr,
39f0247d 3235#endif
b09e0fa4 3236};
39f0247d 3237
91828a40
DG
3238static struct dentry *shmem_get_parent(struct dentry *child)
3239{
3240 return ERR_PTR(-ESTALE);
3241}
3242
3243static int shmem_match(struct inode *ino, void *vfh)
3244{
3245 __u32 *fh = vfh;
3246 __u64 inum = fh[2];
3247 inum = (inum << 32) | fh[1];
3248 return ino->i_ino == inum && fh[0] == ino->i_generation;
3249}
3250
12ba780d
AG
3251/* Find any alias of inode, but prefer a hashed alias */
3252static struct dentry *shmem_find_alias(struct inode *inode)
3253{
3254 struct dentry *alias = d_find_alias(inode);
3255
3256 return alias ?: d_find_any_alias(inode);
3257}
3258
3259
480b116c
CH
3260static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3261 struct fid *fid, int fh_len, int fh_type)
91828a40 3262{
91828a40 3263 struct inode *inode;
480b116c 3264 struct dentry *dentry = NULL;
35c2a7f4 3265 u64 inum;
480b116c
CH
3266
3267 if (fh_len < 3)
3268 return NULL;
91828a40 3269
35c2a7f4
HD
3270 inum = fid->raw[2];
3271 inum = (inum << 32) | fid->raw[1];
3272
480b116c
CH
3273 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3274 shmem_match, fid->raw);
91828a40 3275 if (inode) {
12ba780d 3276 dentry = shmem_find_alias(inode);
91828a40
DG
3277 iput(inode);
3278 }
3279
480b116c 3280 return dentry;
91828a40
DG
3281}
3282
b0b0382b
AV
3283static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3284 struct inode *parent)
91828a40 3285{
5fe0c237
AK
3286 if (*len < 3) {
3287 *len = 3;
94e07a75 3288 return FILEID_INVALID;
5fe0c237 3289 }
91828a40 3290
1d3382cb 3291 if (inode_unhashed(inode)) {
91828a40
DG
3292 /* Unfortunately insert_inode_hash is not idempotent,
3293 * so as we hash inodes here rather than at creation
3294 * time, we need a lock to ensure we only try
3295 * to do it once
3296 */
3297 static DEFINE_SPINLOCK(lock);
3298 spin_lock(&lock);
1d3382cb 3299 if (inode_unhashed(inode))
91828a40
DG
3300 __insert_inode_hash(inode,
3301 inode->i_ino + inode->i_generation);
3302 spin_unlock(&lock);
3303 }
3304
3305 fh[0] = inode->i_generation;
3306 fh[1] = inode->i_ino;
3307 fh[2] = ((__u64)inode->i_ino) >> 32;
3308
3309 *len = 3;
3310 return 1;
3311}
3312
39655164 3313static const struct export_operations shmem_export_ops = {
91828a40 3314 .get_parent = shmem_get_parent,
91828a40 3315 .encode_fh = shmem_encode_fh,
480b116c 3316 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3317};
3318
626c3920
AV
3319enum shmem_param {
3320 Opt_gid,
3321 Opt_huge,
3322 Opt_mode,
3323 Opt_mpol,
3324 Opt_nr_blocks,
3325 Opt_nr_inodes,
3326 Opt_size,
3327 Opt_uid,
ea3271f7
CD
3328 Opt_inode32,
3329 Opt_inode64,
626c3920
AV
3330};
3331
5eede625 3332static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3333 {"never", SHMEM_HUGE_NEVER },
3334 {"always", SHMEM_HUGE_ALWAYS },
3335 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3336 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3337 {}
3338};
3339
d7167b14 3340const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3341 fsparam_u32 ("gid", Opt_gid),
2710c957 3342 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3343 fsparam_u32oct("mode", Opt_mode),
3344 fsparam_string("mpol", Opt_mpol),
3345 fsparam_string("nr_blocks", Opt_nr_blocks),
3346 fsparam_string("nr_inodes", Opt_nr_inodes),
3347 fsparam_string("size", Opt_size),
3348 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3349 fsparam_flag ("inode32", Opt_inode32),
3350 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3351 {}
3352};
3353
f3235626 3354static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3355{
f3235626 3356 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3357 struct fs_parse_result result;
3358 unsigned long long size;
e04dc423 3359 char *rest;
626c3920
AV
3360 int opt;
3361
d7167b14 3362 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3363 if (opt < 0)
626c3920 3364 return opt;
1da177e4 3365
626c3920
AV
3366 switch (opt) {
3367 case Opt_size:
3368 size = memparse(param->string, &rest);
e04dc423
AV
3369 if (*rest == '%') {
3370 size <<= PAGE_SHIFT;
3371 size *= totalram_pages();
3372 do_div(size, 100);
3373 rest++;
3374 }
3375 if (*rest)
626c3920 3376 goto bad_value;
e04dc423
AV
3377 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3378 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3379 break;
3380 case Opt_nr_blocks:
3381 ctx->blocks = memparse(param->string, &rest);
e04dc423 3382 if (*rest)
626c3920 3383 goto bad_value;
e04dc423 3384 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3385 break;
3386 case Opt_nr_inodes:
3387 ctx->inodes = memparse(param->string, &rest);
e04dc423 3388 if (*rest)
626c3920 3389 goto bad_value;
e04dc423 3390 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3391 break;
3392 case Opt_mode:
3393 ctx->mode = result.uint_32 & 07777;
3394 break;
3395 case Opt_uid:
3396 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3397 if (!uid_valid(ctx->uid))
626c3920
AV
3398 goto bad_value;
3399 break;
3400 case Opt_gid:
3401 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3402 if (!gid_valid(ctx->gid))
626c3920
AV
3403 goto bad_value;
3404 break;
3405 case Opt_huge:
3406 ctx->huge = result.uint_32;
3407 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3408 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3409 has_transparent_hugepage()))
3410 goto unsupported_parameter;
e04dc423 3411 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3412 break;
3413 case Opt_mpol:
3414 if (IS_ENABLED(CONFIG_NUMA)) {
3415 mpol_put(ctx->mpol);
3416 ctx->mpol = NULL;
3417 if (mpol_parse_str(param->string, &ctx->mpol))
3418 goto bad_value;
3419 break;
3420 }
3421 goto unsupported_parameter;
ea3271f7
CD
3422 case Opt_inode32:
3423 ctx->full_inums = false;
3424 ctx->seen |= SHMEM_SEEN_INUMS;
3425 break;
3426 case Opt_inode64:
3427 if (sizeof(ino_t) < 8) {
3428 return invalfc(fc,
3429 "Cannot use inode64 with <64bit inums in kernel\n");
3430 }
3431 ctx->full_inums = true;
3432 ctx->seen |= SHMEM_SEEN_INUMS;
3433 break;
e04dc423
AV
3434 }
3435 return 0;
3436
626c3920 3437unsupported_parameter:
f35aa2bc 3438 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3439bad_value:
f35aa2bc 3440 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3441}
3442
f3235626 3443static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3444{
f3235626
DH
3445 char *options = data;
3446
33f37c64
AV
3447 if (options) {
3448 int err = security_sb_eat_lsm_opts(options, &fc->security);
3449 if (err)
3450 return err;
3451 }
3452
b00dc3ad 3453 while (options != NULL) {
626c3920 3454 char *this_char = options;
b00dc3ad
HD
3455 for (;;) {
3456 /*
3457 * NUL-terminate this option: unfortunately,
3458 * mount options form a comma-separated list,
3459 * but mpol's nodelist may also contain commas.
3460 */
3461 options = strchr(options, ',');
3462 if (options == NULL)
3463 break;
3464 options++;
3465 if (!isdigit(*options)) {
3466 options[-1] = '\0';
3467 break;
3468 }
3469 }
626c3920 3470 if (*this_char) {
68d68ff6 3471 char *value = strchr(this_char, '=');
f3235626 3472 size_t len = 0;
626c3920
AV
3473 int err;
3474
3475 if (value) {
3476 *value++ = '\0';
f3235626 3477 len = strlen(value);
626c3920 3478 }
f3235626
DH
3479 err = vfs_parse_fs_string(fc, this_char, value, len);
3480 if (err < 0)
3481 return err;
1da177e4 3482 }
1da177e4
LT
3483 }
3484 return 0;
1da177e4
LT
3485}
3486
f3235626
DH
3487/*
3488 * Reconfigure a shmem filesystem.
3489 *
3490 * Note that we disallow change from limited->unlimited blocks/inodes while any
3491 * are in use; but we must separately disallow unlimited->limited, because in
3492 * that case we have no record of how much is already in use.
3493 */
3494static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3495{
f3235626
DH
3496 struct shmem_options *ctx = fc->fs_private;
3497 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3498 unsigned long inodes;
bf11b9a8 3499 struct mempolicy *mpol = NULL;
f3235626 3500 const char *err;
1da177e4 3501
bf11b9a8 3502 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3503 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3504 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3505 if (!sbinfo->max_blocks) {
3506 err = "Cannot retroactively limit size";
0b5071dd 3507 goto out;
f3235626 3508 }
0b5071dd 3509 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3510 ctx->blocks) > 0) {
3511 err = "Too small a size for current use";
0b5071dd 3512 goto out;
f3235626 3513 }
0b5071dd 3514 }
f3235626
DH
3515 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3516 if (!sbinfo->max_inodes) {
3517 err = "Cannot retroactively limit inodes";
0b5071dd 3518 goto out;
f3235626
DH
3519 }
3520 if (ctx->inodes < inodes) {
3521 err = "Too few inodes for current use";
0b5071dd 3522 goto out;
f3235626 3523 }
0b5071dd 3524 }
0edd73b3 3525
ea3271f7
CD
3526 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3527 sbinfo->next_ino > UINT_MAX) {
3528 err = "Current inum too high to switch to 32-bit inums";
3529 goto out;
3530 }
3531
f3235626
DH
3532 if (ctx->seen & SHMEM_SEEN_HUGE)
3533 sbinfo->huge = ctx->huge;
ea3271f7
CD
3534 if (ctx->seen & SHMEM_SEEN_INUMS)
3535 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3536 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3537 sbinfo->max_blocks = ctx->blocks;
3538 if (ctx->seen & SHMEM_SEEN_INODES) {
3539 sbinfo->max_inodes = ctx->inodes;
3540 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3541 }
71fe804b 3542
5f00110f
GT
3543 /*
3544 * Preserve previous mempolicy unless mpol remount option was specified.
3545 */
f3235626 3546 if (ctx->mpol) {
bf11b9a8 3547 mpol = sbinfo->mpol;
f3235626
DH
3548 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3549 ctx->mpol = NULL;
5f00110f 3550 }
bf11b9a8
SAS
3551 raw_spin_unlock(&sbinfo->stat_lock);
3552 mpol_put(mpol);
f3235626 3553 return 0;
0edd73b3 3554out:
bf11b9a8 3555 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3556 return invalfc(fc, "%s", err);
1da177e4 3557}
680d794b 3558
34c80b1d 3559static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3560{
34c80b1d 3561 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3562
3563 if (sbinfo->max_blocks != shmem_default_max_blocks())
3564 seq_printf(seq, ",size=%luk",
09cbfeaf 3565 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3566 if (sbinfo->max_inodes != shmem_default_max_inodes())
3567 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3568 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3569 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3570 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3571 seq_printf(seq, ",uid=%u",
3572 from_kuid_munged(&init_user_ns, sbinfo->uid));
3573 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3574 seq_printf(seq, ",gid=%u",
3575 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3576
3577 /*
3578 * Showing inode{64,32} might be useful even if it's the system default,
3579 * since then people don't have to resort to checking both here and
3580 * /proc/config.gz to confirm 64-bit inums were successfully applied
3581 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3582 *
3583 * We hide it when inode64 isn't the default and we are using 32-bit
3584 * inodes, since that probably just means the feature isn't even under
3585 * consideration.
3586 *
3587 * As such:
3588 *
3589 * +-----------------+-----------------+
3590 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3591 * +------------------+-----------------+-----------------+
3592 * | full_inums=true | show | show |
3593 * | full_inums=false | show | hide |
3594 * +------------------+-----------------+-----------------+
3595 *
3596 */
3597 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3598 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3599#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3600 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3601 if (sbinfo->huge)
3602 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3603#endif
71fe804b 3604 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3605 return 0;
3606}
9183df25 3607
680d794b 3608#endif /* CONFIG_TMPFS */
1da177e4
LT
3609
3610static void shmem_put_super(struct super_block *sb)
3611{
602586a8
HD
3612 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3613
e809d5f0 3614 free_percpu(sbinfo->ino_batch);
602586a8 3615 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3616 mpol_put(sbinfo->mpol);
602586a8 3617 kfree(sbinfo);
1da177e4
LT
3618 sb->s_fs_info = NULL;
3619}
3620
f3235626 3621static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3622{
f3235626 3623 struct shmem_options *ctx = fc->fs_private;
1da177e4 3624 struct inode *inode;
0edd73b3 3625 struct shmem_sb_info *sbinfo;
680d794b
AM
3626
3627 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3628 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3629 L1_CACHE_BYTES), GFP_KERNEL);
3630 if (!sbinfo)
3631 return -ENOMEM;
3632
680d794b 3633 sb->s_fs_info = sbinfo;
1da177e4 3634
0edd73b3 3635#ifdef CONFIG_TMPFS
1da177e4
LT
3636 /*
3637 * Per default we only allow half of the physical ram per
3638 * tmpfs instance, limiting inodes to one per page of lowmem;
3639 * but the internal instance is left unlimited.
3640 */
1751e8a6 3641 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3642 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3643 ctx->blocks = shmem_default_max_blocks();
3644 if (!(ctx->seen & SHMEM_SEEN_INODES))
3645 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3646 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3647 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3648 } else {
1751e8a6 3649 sb->s_flags |= SB_NOUSER;
1da177e4 3650 }
91828a40 3651 sb->s_export_op = &shmem_export_ops;
1751e8a6 3652 sb->s_flags |= SB_NOSEC;
1da177e4 3653#else
1751e8a6 3654 sb->s_flags |= SB_NOUSER;
1da177e4 3655#endif
f3235626
DH
3656 sbinfo->max_blocks = ctx->blocks;
3657 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3658 if (sb->s_flags & SB_KERNMOUNT) {
3659 sbinfo->ino_batch = alloc_percpu(ino_t);
3660 if (!sbinfo->ino_batch)
3661 goto failed;
3662 }
f3235626
DH
3663 sbinfo->uid = ctx->uid;
3664 sbinfo->gid = ctx->gid;
ea3271f7 3665 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3666 sbinfo->mode = ctx->mode;
3667 sbinfo->huge = ctx->huge;
3668 sbinfo->mpol = ctx->mpol;
3669 ctx->mpol = NULL;
1da177e4 3670
bf11b9a8 3671 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3672 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3673 goto failed;
779750d2
KS
3674 spin_lock_init(&sbinfo->shrinklist_lock);
3675 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3676
285b2c4f 3677 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3678 sb->s_blocksize = PAGE_SIZE;
3679 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3680 sb->s_magic = TMPFS_MAGIC;
3681 sb->s_op = &shmem_ops;
cfd95a9c 3682 sb->s_time_gran = 1;
b09e0fa4 3683#ifdef CONFIG_TMPFS_XATTR
39f0247d 3684 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3685#endif
3686#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3687 sb->s_flags |= SB_POSIXACL;
39f0247d 3688#endif
2b4db796 3689 uuid_gen(&sb->s_uuid);
0edd73b3 3690
454abafe 3691 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3692 if (!inode)
3693 goto failed;
680d794b
AM
3694 inode->i_uid = sbinfo->uid;
3695 inode->i_gid = sbinfo->gid;
318ceed0
AV
3696 sb->s_root = d_make_root(inode);
3697 if (!sb->s_root)
48fde701 3698 goto failed;
1da177e4
LT
3699 return 0;
3700
1da177e4
LT
3701failed:
3702 shmem_put_super(sb);
f2b346e4 3703 return -ENOMEM;
1da177e4
LT
3704}
3705
f3235626
DH
3706static int shmem_get_tree(struct fs_context *fc)
3707{
3708 return get_tree_nodev(fc, shmem_fill_super);
3709}
3710
3711static void shmem_free_fc(struct fs_context *fc)
3712{
3713 struct shmem_options *ctx = fc->fs_private;
3714
3715 if (ctx) {
3716 mpol_put(ctx->mpol);
3717 kfree(ctx);
3718 }
3719}
3720
3721static const struct fs_context_operations shmem_fs_context_ops = {
3722 .free = shmem_free_fc,
3723 .get_tree = shmem_get_tree,
3724#ifdef CONFIG_TMPFS
3725 .parse_monolithic = shmem_parse_options,
3726 .parse_param = shmem_parse_one,
3727 .reconfigure = shmem_reconfigure,
3728#endif
3729};
3730
fcc234f8 3731static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3732
3733static struct inode *shmem_alloc_inode(struct super_block *sb)
3734{
41ffe5d5
HD
3735 struct shmem_inode_info *info;
3736 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3737 if (!info)
1da177e4 3738 return NULL;
41ffe5d5 3739 return &info->vfs_inode;
1da177e4
LT
3740}
3741
74b1da56 3742static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3743{
84e710da
AV
3744 if (S_ISLNK(inode->i_mode))
3745 kfree(inode->i_link);
fa0d7e3d
NP
3746 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3747}
3748
1da177e4
LT
3749static void shmem_destroy_inode(struct inode *inode)
3750{
09208d15 3751 if (S_ISREG(inode->i_mode))
1da177e4 3752 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3753}
3754
41ffe5d5 3755static void shmem_init_inode(void *foo)
1da177e4 3756{
41ffe5d5
HD
3757 struct shmem_inode_info *info = foo;
3758 inode_init_once(&info->vfs_inode);
1da177e4
LT
3759}
3760
9a8ec03e 3761static void shmem_init_inodecache(void)
1da177e4
LT
3762{
3763 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3764 sizeof(struct shmem_inode_info),
5d097056 3765 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3766}
3767
41ffe5d5 3768static void shmem_destroy_inodecache(void)
1da177e4 3769{
1a1d92c1 3770 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3771}
3772
30e6a51d 3773const struct address_space_operations shmem_aops = {
1da177e4 3774 .writepage = shmem_writepage,
76719325 3775 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3776#ifdef CONFIG_TMPFS
800d15a5
NP
3777 .write_begin = shmem_write_begin,
3778 .write_end = shmem_write_end,
1da177e4 3779#endif
1c93923c 3780#ifdef CONFIG_MIGRATION
304dbdb7 3781 .migratepage = migrate_page,
1c93923c 3782#endif
aa261f54 3783 .error_remove_page = generic_error_remove_page,
1da177e4 3784};
30e6a51d 3785EXPORT_SYMBOL(shmem_aops);
1da177e4 3786
15ad7cdc 3787static const struct file_operations shmem_file_operations = {
1da177e4 3788 .mmap = shmem_mmap,
c01d5b30 3789 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3790#ifdef CONFIG_TMPFS
220f2ac9 3791 .llseek = shmem_file_llseek,
2ba5bbed 3792 .read_iter = shmem_file_read_iter,
8174202b 3793 .write_iter = generic_file_write_iter,
1b061d92 3794 .fsync = noop_fsync,
82c156f8 3795 .splice_read = generic_file_splice_read,
f6cb85d0 3796 .splice_write = iter_file_splice_write,
83e4fa9c 3797 .fallocate = shmem_fallocate,
1da177e4
LT
3798#endif
3799};
3800
92e1d5be 3801static const struct inode_operations shmem_inode_operations = {
44a30220 3802 .getattr = shmem_getattr,
94c1e62d 3803 .setattr = shmem_setattr,
b09e0fa4 3804#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3805 .listxattr = shmem_listxattr,
feda821e 3806 .set_acl = simple_set_acl,
b09e0fa4 3807#endif
1da177e4
LT
3808};
3809
92e1d5be 3810static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3811#ifdef CONFIG_TMPFS
3812 .create = shmem_create,
3813 .lookup = simple_lookup,
3814 .link = shmem_link,
3815 .unlink = shmem_unlink,
3816 .symlink = shmem_symlink,
3817 .mkdir = shmem_mkdir,
3818 .rmdir = shmem_rmdir,
3819 .mknod = shmem_mknod,
2773bf00 3820 .rename = shmem_rename2,
60545d0d 3821 .tmpfile = shmem_tmpfile,
1da177e4 3822#endif
b09e0fa4 3823#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3824 .listxattr = shmem_listxattr,
b09e0fa4 3825#endif
39f0247d 3826#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3827 .setattr = shmem_setattr,
feda821e 3828 .set_acl = simple_set_acl,
39f0247d
AG
3829#endif
3830};
3831
92e1d5be 3832static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3833#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3834 .listxattr = shmem_listxattr,
b09e0fa4 3835#endif
39f0247d 3836#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3837 .setattr = shmem_setattr,
feda821e 3838 .set_acl = simple_set_acl,
39f0247d 3839#endif
1da177e4
LT
3840};
3841
759b9775 3842static const struct super_operations shmem_ops = {
1da177e4 3843 .alloc_inode = shmem_alloc_inode,
74b1da56 3844 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3845 .destroy_inode = shmem_destroy_inode,
3846#ifdef CONFIG_TMPFS
3847 .statfs = shmem_statfs,
680d794b 3848 .show_options = shmem_show_options,
1da177e4 3849#endif
1f895f75 3850 .evict_inode = shmem_evict_inode,
1da177e4
LT
3851 .drop_inode = generic_delete_inode,
3852 .put_super = shmem_put_super,
396bcc52 3853#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3854 .nr_cached_objects = shmem_unused_huge_count,
3855 .free_cached_objects = shmem_unused_huge_scan,
3856#endif
1da177e4
LT
3857};
3858
f0f37e2f 3859static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3860 .fault = shmem_fault,
d7c17551 3861 .map_pages = filemap_map_pages,
1da177e4
LT
3862#ifdef CONFIG_NUMA
3863 .set_policy = shmem_set_policy,
3864 .get_policy = shmem_get_policy,
3865#endif
3866};
3867
f3235626 3868int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3869{
f3235626
DH
3870 struct shmem_options *ctx;
3871
3872 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3873 if (!ctx)
3874 return -ENOMEM;
3875
3876 ctx->mode = 0777 | S_ISVTX;
3877 ctx->uid = current_fsuid();
3878 ctx->gid = current_fsgid();
3879
3880 fc->fs_private = ctx;
3881 fc->ops = &shmem_fs_context_ops;
3882 return 0;
1da177e4
LT
3883}
3884
41ffe5d5 3885static struct file_system_type shmem_fs_type = {
1da177e4
LT
3886 .owner = THIS_MODULE,
3887 .name = "tmpfs",
f3235626
DH
3888 .init_fs_context = shmem_init_fs_context,
3889#ifdef CONFIG_TMPFS
d7167b14 3890 .parameters = shmem_fs_parameters,
f3235626 3891#endif
1da177e4 3892 .kill_sb = kill_litter_super,
01c70267 3893 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3894};
1da177e4 3895
41ffe5d5 3896int __init shmem_init(void)
1da177e4
LT
3897{
3898 int error;
3899
9a8ec03e 3900 shmem_init_inodecache();
1da177e4 3901
41ffe5d5 3902 error = register_filesystem(&shmem_fs_type);
1da177e4 3903 if (error) {
1170532b 3904 pr_err("Could not register tmpfs\n");
1da177e4
LT
3905 goto out2;
3906 }
95dc112a 3907
ca4e0519 3908 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3909 if (IS_ERR(shm_mnt)) {
3910 error = PTR_ERR(shm_mnt);
1170532b 3911 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3912 goto out1;
3913 }
5a6e75f8 3914
396bcc52 3915#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3916 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3917 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3918 else
5e6e5a12 3919 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3920#endif
1da177e4
LT
3921 return 0;
3922
3923out1:
41ffe5d5 3924 unregister_filesystem(&shmem_fs_type);
1da177e4 3925out2:
41ffe5d5 3926 shmem_destroy_inodecache();
1da177e4
LT
3927 shm_mnt = ERR_PTR(error);
3928 return error;
3929}
853ac43a 3930
396bcc52 3931#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3932static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3933 struct kobj_attribute *attr, char *buf)
5a6e75f8 3934{
26083eb6 3935 static const int values[] = {
5a6e75f8
KS
3936 SHMEM_HUGE_ALWAYS,
3937 SHMEM_HUGE_WITHIN_SIZE,
3938 SHMEM_HUGE_ADVISE,
3939 SHMEM_HUGE_NEVER,
3940 SHMEM_HUGE_DENY,
3941 SHMEM_HUGE_FORCE,
3942 };
79d4d38a
JP
3943 int len = 0;
3944 int i;
5a6e75f8 3945
79d4d38a
JP
3946 for (i = 0; i < ARRAY_SIZE(values); i++) {
3947 len += sysfs_emit_at(buf, len,
3948 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3949 i ? " " : "",
3950 shmem_format_huge(values[i]));
5a6e75f8 3951 }
79d4d38a
JP
3952
3953 len += sysfs_emit_at(buf, len, "\n");
3954
3955 return len;
5a6e75f8
KS
3956}
3957
3958static ssize_t shmem_enabled_store(struct kobject *kobj,
3959 struct kobj_attribute *attr, const char *buf, size_t count)
3960{
3961 char tmp[16];
3962 int huge;
3963
3964 if (count + 1 > sizeof(tmp))
3965 return -EINVAL;
3966 memcpy(tmp, buf, count);
3967 tmp[count] = '\0';
3968 if (count && tmp[count - 1] == '\n')
3969 tmp[count - 1] = '\0';
3970
3971 huge = shmem_parse_huge(tmp);
3972 if (huge == -EINVAL)
3973 return -EINVAL;
3974 if (!has_transparent_hugepage() &&
3975 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3976 return -EINVAL;
3977
3978 shmem_huge = huge;
435c0b87 3979 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3980 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3981 return count;
3982}
3983
3984struct kobj_attribute shmem_enabled_attr =
3985 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3986#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3987
853ac43a
MM
3988#else /* !CONFIG_SHMEM */
3989
3990/*
3991 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3992 *
3993 * This is intended for small system where the benefits of the full
3994 * shmem code (swap-backed and resource-limited) are outweighed by
3995 * their complexity. On systems without swap this code should be
3996 * effectively equivalent, but much lighter weight.
3997 */
3998
41ffe5d5 3999static struct file_system_type shmem_fs_type = {
853ac43a 4000 .name = "tmpfs",
f3235626 4001 .init_fs_context = ramfs_init_fs_context,
d7167b14 4002 .parameters = ramfs_fs_parameters,
853ac43a 4003 .kill_sb = kill_litter_super,
2b8576cb 4004 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4005};
4006
41ffe5d5 4007int __init shmem_init(void)
853ac43a 4008{
41ffe5d5 4009 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4010
41ffe5d5 4011 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4012 BUG_ON(IS_ERR(shm_mnt));
4013
4014 return 0;
4015}
4016
b56a2d8a
VRP
4017int shmem_unuse(unsigned int type, bool frontswap,
4018 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4019{
4020 return 0;
4021}
4022
d7c9e99a 4023int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4024{
4025 return 0;
4026}
4027
24513264
HD
4028void shmem_unlock_mapping(struct address_space *mapping)
4029{
4030}
4031
c01d5b30
HD
4032#ifdef CONFIG_MMU
4033unsigned long shmem_get_unmapped_area(struct file *file,
4034 unsigned long addr, unsigned long len,
4035 unsigned long pgoff, unsigned long flags)
4036{
4037 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4038}
4039#endif
4040
41ffe5d5 4041void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4042{
41ffe5d5 4043 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4044}
4045EXPORT_SYMBOL_GPL(shmem_truncate_range);
4046
0b0a0806
HD
4047#define shmem_vm_ops generic_file_vm_ops
4048#define shmem_file_operations ramfs_file_operations
454abafe 4049#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4050#define shmem_acct_size(flags, size) 0
4051#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4052
4053#endif /* CONFIG_SHMEM */
4054
4055/* common code */
1da177e4 4056
703321b6 4057static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4058 unsigned long flags, unsigned int i_flags)
1da177e4 4059{
1da177e4 4060 struct inode *inode;
93dec2da 4061 struct file *res;
1da177e4 4062
703321b6
MA
4063 if (IS_ERR(mnt))
4064 return ERR_CAST(mnt);
1da177e4 4065
285b2c4f 4066 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4067 return ERR_PTR(-EINVAL);
4068
4069 if (shmem_acct_size(flags, size))
4070 return ERR_PTR(-ENOMEM);
4071
93dec2da
AV
4072 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4073 flags);
dac2d1f6
AV
4074 if (unlikely(!inode)) {
4075 shmem_unacct_size(flags, size);
4076 return ERR_PTR(-ENOSPC);
4077 }
c7277090 4078 inode->i_flags |= i_flags;
1da177e4 4079 inode->i_size = size;
6d6b77f1 4080 clear_nlink(inode); /* It is unlinked */
26567cdb 4081 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4082 if (!IS_ERR(res))
4083 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4084 &shmem_file_operations);
26567cdb 4085 if (IS_ERR(res))
93dec2da 4086 iput(inode);
6b4d0b27 4087 return res;
1da177e4 4088}
c7277090
EP
4089
4090/**
4091 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4092 * kernel internal. There will be NO LSM permission checks against the
4093 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4094 * higher layer. The users are the big_key and shm implementations. LSM
4095 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4096 * @name: name for dentry (to be seen in /proc/<pid>/maps
4097 * @size: size to be set for the file
4098 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4099 */
4100struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4101{
703321b6 4102 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4103}
4104
4105/**
4106 * shmem_file_setup - get an unlinked file living in tmpfs
4107 * @name: name for dentry (to be seen in /proc/<pid>/maps
4108 * @size: size to be set for the file
4109 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4110 */
4111struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4112{
703321b6 4113 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4114}
395e0ddc 4115EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4116
703321b6
MA
4117/**
4118 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4119 * @mnt: the tmpfs mount where the file will be created
4120 * @name: name for dentry (to be seen in /proc/<pid>/maps
4121 * @size: size to be set for the file
4122 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4123 */
4124struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4125 loff_t size, unsigned long flags)
4126{
4127 return __shmem_file_setup(mnt, name, size, flags, 0);
4128}
4129EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4130
46711810 4131/**
1da177e4 4132 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4133 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4134 */
4135int shmem_zero_setup(struct vm_area_struct *vma)
4136{
4137 struct file *file;
4138 loff_t size = vma->vm_end - vma->vm_start;
4139
66fc1303 4140 /*
c1e8d7c6 4141 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4142 * between XFS directory reading and selinux: since this file is only
4143 * accessible to the user through its mapping, use S_PRIVATE flag to
4144 * bypass file security, in the same way as shmem_kernel_file_setup().
4145 */
703321b6 4146 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4147 if (IS_ERR(file))
4148 return PTR_ERR(file);
4149
4150 if (vma->vm_file)
4151 fput(vma->vm_file);
4152 vma->vm_file = file;
4153 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4154
396bcc52 4155 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4156 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4157 (vma->vm_end & HPAGE_PMD_MASK)) {
4158 khugepaged_enter(vma, vma->vm_flags);
4159 }
4160
1da177e4
LT
4161 return 0;
4162}
d9d90e5e
HD
4163
4164/**
4165 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4166 * @mapping: the page's address_space
4167 * @index: the page index
4168 * @gfp: the page allocator flags to use if allocating
4169 *
4170 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4171 * with any new page allocations done using the specified allocation flags.
4172 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4173 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4174 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4175 *
68da9f05
HD
4176 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4177 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4178 */
4179struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4180 pgoff_t index, gfp_t gfp)
4181{
68da9f05
HD
4182#ifdef CONFIG_SHMEM
4183 struct inode *inode = mapping->host;
9276aad6 4184 struct page *page;
68da9f05
HD
4185 int error;
4186
30e6a51d 4187 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4188 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4189 gfp, NULL, NULL, NULL);
68da9f05
HD
4190 if (error)
4191 page = ERR_PTR(error);
4192 else
4193 unlock_page(page);
4194 return page;
4195#else
4196 /*
4197 * The tiny !SHMEM case uses ramfs without swap
4198 */
d9d90e5e 4199 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4200#endif
d9d90e5e
HD
4201}
4202EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.254584 seconds and 4 git commands to generate.