]> Git Repo - linux.git/blame - mm/shmem.c
huge tmpfs: SGP_NOALLOC to stop collapse_file() on race
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
86a2f3f2 41#include <linux/swapfile.h>
853ac43a
MM
42
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
1da177e4 62#include <linux/blkdev.h>
bda97eab 63#include <linux/pagevec.h>
41ffe5d5 64#include <linux/percpu_counter.h>
83e4fa9c 65#include <linux/falloc.h>
708e3508 66#include <linux/splice.h>
1da177e4
LT
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
b00dc3ad 71#include <linux/ctype.h>
304dbdb7 72#include <linux/migrate.h>
c1f60a5a 73#include <linux/highmem.h>
680d794b 74#include <linux/seq_file.h>
92562927 75#include <linux/magic.h>
9183df25 76#include <linux/syscalls.h>
40e041a2 77#include <linux/fcntl.h>
9183df25 78#include <uapi/linux/memfd.h>
cfda0526 79#include <linux/userfaultfd_k.h>
4c27fe4c 80#include <linux/rmap.h>
2b4db796 81#include <linux/uuid.h>
304dbdb7 82
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4 84
dd56b046
MG
85#include "internal.h"
86
09cbfeaf
KS
87#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 89
1da177e4
LT
90/* Pretend that each entry is of this size in directory's i_size */
91#define BOGO_DIRENT_SIZE 20
92
69f07ec9
HD
93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94#define SHORT_SYMLINK_LEN 128
95
1aac1400 96/*
f00cdc6d
HD
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
100 */
101struct shmem_falloc {
8e205f77 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107};
108
0b5071dd
AV
109struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
113 kuid_t uid;
114 kgid_t gid;
115 umode_t mode;
ea3271f7 116 bool full_inums;
0b5071dd
AV
117 int huge;
118 int seen;
119#define SHMEM_SEEN_BLOCKS 1
120#define SHMEM_SEEN_INODES 2
121#define SHMEM_SEEN_HUGE 4
ea3271f7 122#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
123};
124
b76db735 125#ifdef CONFIG_TMPFS
680d794b
AM
126static unsigned long shmem_default_max_blocks(void)
127{
ca79b0c2 128 return totalram_pages() / 2;
680d794b
AM
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
ca79b0c2
AK
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 136}
b76db735 137#endif
680d794b 138
c5bf121e
VRP
139static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140 struct page **pagep, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
68da9f05 143static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 144 struct page **pagep, enum sgp_type sgp,
cfda0526 145 gfp_t gfp, struct vm_area_struct *vma,
2b740303 146 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 147
f3f0e1d2 148int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 149 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
150{
151 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 152 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 153}
1da177e4 154
1da177e4
LT
155static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156{
157 return sb->s_fs_info;
158}
159
160/*
161 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162 * for shared memory and for shared anonymous (/dev/zero) mappings
163 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164 * consistent with the pre-accounting of private mappings ...
165 */
166static inline int shmem_acct_size(unsigned long flags, loff_t size)
167{
0b0a0806 168 return (flags & VM_NORESERVE) ?
191c5424 169 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
170}
171
172static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173{
0b0a0806 174 if (!(flags & VM_NORESERVE))
1da177e4
LT
175 vm_unacct_memory(VM_ACCT(size));
176}
177
77142517
KK
178static inline int shmem_reacct_size(unsigned long flags,
179 loff_t oldsize, loff_t newsize)
180{
181 if (!(flags & VM_NORESERVE)) {
182 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183 return security_vm_enough_memory_mm(current->mm,
184 VM_ACCT(newsize) - VM_ACCT(oldsize));
185 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187 }
188 return 0;
189}
190
1da177e4
LT
191/*
192 * ... whereas tmpfs objects are accounted incrementally as
75edd345 193 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
194 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196 */
800d8c63 197static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 198{
800d8c63
KS
199 if (!(flags & VM_NORESERVE))
200 return 0;
201
202 return security_vm_enough_memory_mm(current->mm,
203 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
204}
205
206static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207{
0b0a0806 208 if (flags & VM_NORESERVE)
09cbfeaf 209 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
210}
211
0f079694
MR
212static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213{
214 struct shmem_inode_info *info = SHMEM_I(inode);
215 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217 if (shmem_acct_block(info->flags, pages))
218 return false;
219
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224 percpu_counter_add(&sbinfo->used_blocks, pages);
225 }
226
227 return true;
228
229unacct:
230 shmem_unacct_blocks(info->flags, pages);
231 return false;
232}
233
234static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235{
236 struct shmem_inode_info *info = SHMEM_I(inode);
237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239 if (sbinfo->max_blocks)
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 shmem_unacct_blocks(info->flags, pages);
242}
243
759b9775 244static const struct super_operations shmem_ops;
30e6a51d 245const struct address_space_operations shmem_aops;
15ad7cdc 246static const struct file_operations shmem_file_operations;
92e1d5be
AV
247static const struct inode_operations shmem_inode_operations;
248static const struct inode_operations shmem_dir_inode_operations;
249static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 250static const struct vm_operations_struct shmem_vm_ops;
779750d2 251static struct file_system_type shmem_fs_type;
1da177e4 252
b0506e48
MR
253bool vma_is_shmem(struct vm_area_struct *vma)
254{
255 return vma->vm_ops == &shmem_vm_ops;
256}
257
1da177e4 258static LIST_HEAD(shmem_swaplist);
cb5f7b9a 259static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 260
e809d5f0
CD
261/*
262 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263 * produces a novel ino for the newly allocated inode.
264 *
265 * It may also be called when making a hard link to permit the space needed by
266 * each dentry. However, in that case, no new inode number is needed since that
267 * internally draws from another pool of inode numbers (currently global
268 * get_next_ino()). This case is indicated by passing NULL as inop.
269 */
270#define SHMEM_INO_BATCH 1024
271static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
272{
273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
274 ino_t ino;
275
276 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 277 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
278 if (sbinfo->max_inodes) {
279 if (!sbinfo->free_inodes) {
bf11b9a8 280 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
281 return -ENOSPC;
282 }
283 sbinfo->free_inodes--;
5b04c689 284 }
e809d5f0
CD
285 if (inop) {
286 ino = sbinfo->next_ino++;
287 if (unlikely(is_zero_ino(ino)))
288 ino = sbinfo->next_ino++;
ea3271f7
CD
289 if (unlikely(!sbinfo->full_inums &&
290 ino > UINT_MAX)) {
e809d5f0
CD
291 /*
292 * Emulate get_next_ino uint wraparound for
293 * compatibility
294 */
ea3271f7
CD
295 if (IS_ENABLED(CONFIG_64BIT))
296 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297 __func__, MINOR(sb->s_dev));
298 sbinfo->next_ino = 1;
299 ino = sbinfo->next_ino++;
e809d5f0
CD
300 }
301 *inop = ino;
302 }
bf11b9a8 303 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
304 } else if (inop) {
305 /*
306 * __shmem_file_setup, one of our callers, is lock-free: it
307 * doesn't hold stat_lock in shmem_reserve_inode since
308 * max_inodes is always 0, and is called from potentially
309 * unknown contexts. As such, use a per-cpu batched allocator
310 * which doesn't require the per-sb stat_lock unless we are at
311 * the batch boundary.
ea3271f7
CD
312 *
313 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314 * shmem mounts are not exposed to userspace, so we don't need
315 * to worry about things like glibc compatibility.
e809d5f0
CD
316 */
317 ino_t *next_ino;
bf11b9a8 318
e809d5f0
CD
319 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 ino = *next_ino;
321 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 322 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
323 ino = sbinfo->next_ino;
324 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 325 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
326 if (unlikely(is_zero_ino(ino)))
327 ino++;
328 }
329 *inop = ino;
330 *next_ino = ++ino;
331 put_cpu();
5b04c689 332 }
e809d5f0 333
5b04c689
PE
334 return 0;
335}
336
337static void shmem_free_inode(struct super_block *sb)
338{
339 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340 if (sbinfo->max_inodes) {
bf11b9a8 341 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 342 sbinfo->free_inodes++;
bf11b9a8 343 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
344 }
345}
346
46711810 347/**
41ffe5d5 348 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
349 * @inode: inode to recalc
350 *
351 * We have to calculate the free blocks since the mm can drop
352 * undirtied hole pages behind our back.
353 *
354 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
355 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356 *
357 * It has to be called with the spinlock held.
358 */
359static void shmem_recalc_inode(struct inode *inode)
360{
361 struct shmem_inode_info *info = SHMEM_I(inode);
362 long freed;
363
364 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 if (freed > 0) {
366 info->alloced -= freed;
54af6042 367 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 368 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
369 }
370}
371
800d8c63
KS
372bool shmem_charge(struct inode *inode, long pages)
373{
374 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 375 unsigned long flags;
800d8c63 376
0f079694 377 if (!shmem_inode_acct_block(inode, pages))
800d8c63 378 return false;
b1cc94ab 379
aaa52e34
HD
380 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381 inode->i_mapping->nrpages += pages;
382
4595ef88 383 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
384 info->alloced += pages;
385 inode->i_blocks += pages * BLOCKS_PER_PAGE;
386 shmem_recalc_inode(inode);
4595ef88 387 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 388
800d8c63
KS
389 return true;
390}
391
392void shmem_uncharge(struct inode *inode, long pages)
393{
394 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 395 unsigned long flags;
800d8c63 396
aaa52e34
HD
397 /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
4595ef88 399 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
400 info->alloced -= pages;
401 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402 shmem_recalc_inode(inode);
4595ef88 403 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 404
0f079694 405 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
406}
407
7a5d0fbb 408/*
62f945b6 409 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 410 */
62f945b6 411static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
412 pgoff_t index, void *expected, void *replacement)
413{
62f945b6 414 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 415 void *item;
7a5d0fbb
HD
416
417 VM_BUG_ON(!expected);
6dbaf22c 418 VM_BUG_ON(!replacement);
62f945b6 419 item = xas_load(&xas);
7a5d0fbb
HD
420 if (item != expected)
421 return -ENOENT;
62f945b6 422 xas_store(&xas, replacement);
7a5d0fbb
HD
423 return 0;
424}
425
d1899228
HD
426/*
427 * Sometimes, before we decide whether to proceed or to fail, we must check
428 * that an entry was not already brought back from swap by a racing thread.
429 *
430 * Checking page is not enough: by the time a SwapCache page is locked, it
431 * might be reused, and again be SwapCache, using the same swap as before.
432 */
433static bool shmem_confirm_swap(struct address_space *mapping,
434 pgoff_t index, swp_entry_t swap)
435{
a12831bf 436 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
437}
438
5a6e75f8
KS
439/*
440 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441 *
442 * SHMEM_HUGE_NEVER:
443 * disables huge pages for the mount;
444 * SHMEM_HUGE_ALWAYS:
445 * enables huge pages for the mount;
446 * SHMEM_HUGE_WITHIN_SIZE:
447 * only allocate huge pages if the page will be fully within i_size,
448 * also respect fadvise()/madvise() hints;
449 * SHMEM_HUGE_ADVISE:
450 * only allocate huge pages if requested with fadvise()/madvise();
451 */
452
453#define SHMEM_HUGE_NEVER 0
454#define SHMEM_HUGE_ALWAYS 1
455#define SHMEM_HUGE_WITHIN_SIZE 2
456#define SHMEM_HUGE_ADVISE 3
457
458/*
459 * Special values.
460 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461 *
462 * SHMEM_HUGE_DENY:
463 * disables huge on shm_mnt and all mounts, for emergency use;
464 * SHMEM_HUGE_FORCE:
465 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466 *
467 */
468#define SHMEM_HUGE_DENY (-1)
469#define SHMEM_HUGE_FORCE (-2)
470
396bcc52 471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
472/* ifdef here to avoid bloating shmem.o when not necessary */
473
5b9c98f3 474static int shmem_huge __read_mostly;
5a6e75f8 475
c852023e
HD
476bool shmem_huge_enabled(struct vm_area_struct *vma)
477{
478 struct inode *inode = file_inode(vma->vm_file);
479 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
480 loff_t i_size;
481 pgoff_t off;
482
483 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
485 return false;
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488 if (shmem_huge == SHMEM_HUGE_DENY)
489 return false;
490 switch (sbinfo->huge) {
491 case SHMEM_HUGE_NEVER:
492 return false;
493 case SHMEM_HUGE_ALWAYS:
494 return true;
495 case SHMEM_HUGE_WITHIN_SIZE:
496 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
497 i_size = round_up(i_size_read(inode), PAGE_SIZE);
498 if (i_size >= HPAGE_PMD_SIZE &&
499 i_size >> PAGE_SHIFT >= off)
500 return true;
501 fallthrough;
502 case SHMEM_HUGE_ADVISE:
503 /* TODO: implement fadvise() hints */
504 return (vma->vm_flags & VM_HUGEPAGE);
505 default:
506 VM_BUG_ON(1);
507 return false;
508 }
509}
510
e5f2249a 511#if defined(CONFIG_SYSFS)
5a6e75f8
KS
512static int shmem_parse_huge(const char *str)
513{
514 if (!strcmp(str, "never"))
515 return SHMEM_HUGE_NEVER;
516 if (!strcmp(str, "always"))
517 return SHMEM_HUGE_ALWAYS;
518 if (!strcmp(str, "within_size"))
519 return SHMEM_HUGE_WITHIN_SIZE;
520 if (!strcmp(str, "advise"))
521 return SHMEM_HUGE_ADVISE;
522 if (!strcmp(str, "deny"))
523 return SHMEM_HUGE_DENY;
524 if (!strcmp(str, "force"))
525 return SHMEM_HUGE_FORCE;
526 return -EINVAL;
527}
e5f2249a 528#endif
5a6e75f8 529
e5f2249a 530#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
531static const char *shmem_format_huge(int huge)
532{
533 switch (huge) {
534 case SHMEM_HUGE_NEVER:
535 return "never";
536 case SHMEM_HUGE_ALWAYS:
537 return "always";
538 case SHMEM_HUGE_WITHIN_SIZE:
539 return "within_size";
540 case SHMEM_HUGE_ADVISE:
541 return "advise";
542 case SHMEM_HUGE_DENY:
543 return "deny";
544 case SHMEM_HUGE_FORCE:
545 return "force";
546 default:
547 VM_BUG_ON(1);
548 return "bad_val";
549 }
550}
f1f5929c 551#endif
5a6e75f8 552
779750d2
KS
553static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
554 struct shrink_control *sc, unsigned long nr_to_split)
555{
556 LIST_HEAD(list), *pos, *next;
253fd0f0 557 LIST_HEAD(to_remove);
779750d2
KS
558 struct inode *inode;
559 struct shmem_inode_info *info;
560 struct page *page;
561 unsigned long batch = sc ? sc->nr_to_scan : 128;
562 int removed = 0, split = 0;
563
564 if (list_empty(&sbinfo->shrinklist))
565 return SHRINK_STOP;
566
567 spin_lock(&sbinfo->shrinklist_lock);
568 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
569 info = list_entry(pos, struct shmem_inode_info, shrinklist);
570
571 /* pin the inode */
572 inode = igrab(&info->vfs_inode);
573
574 /* inode is about to be evicted */
575 if (!inode) {
576 list_del_init(&info->shrinklist);
577 removed++;
578 goto next;
579 }
580
581 /* Check if there's anything to gain */
582 if (round_up(inode->i_size, PAGE_SIZE) ==
583 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 584 list_move(&info->shrinklist, &to_remove);
779750d2 585 removed++;
779750d2
KS
586 goto next;
587 }
588
589 list_move(&info->shrinklist, &list);
590next:
591 if (!--batch)
592 break;
593 }
594 spin_unlock(&sbinfo->shrinklist_lock);
595
253fd0f0
KS
596 list_for_each_safe(pos, next, &to_remove) {
597 info = list_entry(pos, struct shmem_inode_info, shrinklist);
598 inode = &info->vfs_inode;
599 list_del_init(&info->shrinklist);
600 iput(inode);
601 }
602
779750d2
KS
603 list_for_each_safe(pos, next, &list) {
604 int ret;
605
606 info = list_entry(pos, struct shmem_inode_info, shrinklist);
607 inode = &info->vfs_inode;
608
b3cd54b2
KS
609 if (nr_to_split && split >= nr_to_split)
610 goto leave;
779750d2 611
b3cd54b2 612 page = find_get_page(inode->i_mapping,
779750d2
KS
613 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
614 if (!page)
615 goto drop;
616
b3cd54b2 617 /* No huge page at the end of the file: nothing to split */
779750d2 618 if (!PageTransHuge(page)) {
779750d2
KS
619 put_page(page);
620 goto drop;
621 }
622
b3cd54b2
KS
623 /*
624 * Leave the inode on the list if we failed to lock
625 * the page at this time.
626 *
627 * Waiting for the lock may lead to deadlock in the
628 * reclaim path.
629 */
630 if (!trylock_page(page)) {
631 put_page(page);
632 goto leave;
633 }
634
779750d2
KS
635 ret = split_huge_page(page);
636 unlock_page(page);
637 put_page(page);
638
b3cd54b2
KS
639 /* If split failed leave the inode on the list */
640 if (ret)
641 goto leave;
779750d2
KS
642
643 split++;
644drop:
645 list_del_init(&info->shrinklist);
646 removed++;
b3cd54b2 647leave:
779750d2
KS
648 iput(inode);
649 }
650
651 spin_lock(&sbinfo->shrinklist_lock);
652 list_splice_tail(&list, &sbinfo->shrinklist);
653 sbinfo->shrinklist_len -= removed;
654 spin_unlock(&sbinfo->shrinklist_lock);
655
656 return split;
657}
658
659static long shmem_unused_huge_scan(struct super_block *sb,
660 struct shrink_control *sc)
661{
662 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
663
664 if (!READ_ONCE(sbinfo->shrinklist_len))
665 return SHRINK_STOP;
666
667 return shmem_unused_huge_shrink(sbinfo, sc, 0);
668}
669
670static long shmem_unused_huge_count(struct super_block *sb,
671 struct shrink_control *sc)
672{
673 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
674 return READ_ONCE(sbinfo->shrinklist_len);
675}
396bcc52 676#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
677
678#define shmem_huge SHMEM_HUGE_DENY
679
779750d2
KS
680static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
681 struct shrink_control *sc, unsigned long nr_to_split)
682{
683 return 0;
684}
396bcc52 685#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 686
89fdcd26
YS
687static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
688{
396bcc52 689 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
690 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
691 shmem_huge != SHMEM_HUGE_DENY)
692 return true;
693 return false;
694}
695
46f65ec1
HD
696/*
697 * Like add_to_page_cache_locked, but error if expected item has gone.
698 */
699static int shmem_add_to_page_cache(struct page *page,
700 struct address_space *mapping,
3fea5a49
JW
701 pgoff_t index, void *expected, gfp_t gfp,
702 struct mm_struct *charge_mm)
46f65ec1 703{
552446a4
MW
704 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
705 unsigned long i = 0;
d8c6546b 706 unsigned long nr = compound_nr(page);
3fea5a49 707 int error;
46f65ec1 708
800d8c63
KS
709 VM_BUG_ON_PAGE(PageTail(page), page);
710 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
711 VM_BUG_ON_PAGE(!PageLocked(page), page);
712 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 713 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 714
800d8c63 715 page_ref_add(page, nr);
b065b432
HD
716 page->mapping = mapping;
717 page->index = index;
718
4c6355b2 719 if (!PageSwapCache(page)) {
d9eb1ea2 720 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
721 if (error) {
722 if (PageTransHuge(page)) {
723 count_vm_event(THP_FILE_FALLBACK);
724 count_vm_event(THP_FILE_FALLBACK_CHARGE);
725 }
726 goto error;
3fea5a49 727 }
3fea5a49
JW
728 }
729 cgroup_throttle_swaprate(page, gfp);
730
552446a4
MW
731 do {
732 void *entry;
733 xas_lock_irq(&xas);
734 entry = xas_find_conflict(&xas);
735 if (entry != expected)
736 xas_set_err(&xas, -EEXIST);
737 xas_create_range(&xas);
738 if (xas_error(&xas))
739 goto unlock;
740next:
4101196b 741 xas_store(&xas, page);
552446a4
MW
742 if (++i < nr) {
743 xas_next(&xas);
744 goto next;
800d8c63 745 }
552446a4 746 if (PageTransHuge(page)) {
800d8c63 747 count_vm_event(THP_FILE_ALLOC);
57b2847d 748 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 749 }
800d8c63 750 mapping->nrpages += nr;
0d1c2072
JW
751 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
752 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
753unlock:
754 xas_unlock_irq(&xas);
755 } while (xas_nomem(&xas, gfp));
756
757 if (xas_error(&xas)) {
3fea5a49
JW
758 error = xas_error(&xas);
759 goto error;
46f65ec1 760 }
552446a4
MW
761
762 return 0;
3fea5a49
JW
763error:
764 page->mapping = NULL;
765 page_ref_sub(page, nr);
766 return error;
46f65ec1
HD
767}
768
6922c0c7
HD
769/*
770 * Like delete_from_page_cache, but substitutes swap for page.
771 */
772static void shmem_delete_from_page_cache(struct page *page, void *radswap)
773{
774 struct address_space *mapping = page->mapping;
775 int error;
776
800d8c63
KS
777 VM_BUG_ON_PAGE(PageCompound(page), page);
778
b93b0163 779 xa_lock_irq(&mapping->i_pages);
62f945b6 780 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
781 page->mapping = NULL;
782 mapping->nrpages--;
0d1c2072
JW
783 __dec_lruvec_page_state(page, NR_FILE_PAGES);
784 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 785 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 786 put_page(page);
6922c0c7
HD
787 BUG_ON(error);
788}
789
7a5d0fbb 790/*
c121d3bb 791 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
792 */
793static int shmem_free_swap(struct address_space *mapping,
794 pgoff_t index, void *radswap)
795{
6dbaf22c 796 void *old;
7a5d0fbb 797
55f3f7ea 798 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
799 if (old != radswap)
800 return -ENOENT;
801 free_swap_and_cache(radix_to_swp_entry(radswap));
802 return 0;
7a5d0fbb
HD
803}
804
6a15a370
VB
805/*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 807 * given offsets are swapped out.
6a15a370 808 *
b93b0163 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
48131e03
VB
812unsigned long shmem_partial_swap_usage(struct address_space *mapping,
813 pgoff_t start, pgoff_t end)
6a15a370 814{
7ae3424f 815 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 816 struct page *page;
48131e03 817 unsigned long swapped = 0;
6a15a370
VB
818
819 rcu_read_lock();
7ae3424f
MW
820 xas_for_each(&xas, page, end - 1) {
821 if (xas_retry(&xas, page))
2cf938aa 822 continue;
3159f943 823 if (xa_is_value(page))
6a15a370
VB
824 swapped++;
825
826 if (need_resched()) {
7ae3424f 827 xas_pause(&xas);
6a15a370 828 cond_resched_rcu();
6a15a370
VB
829 }
830 }
831
832 rcu_read_unlock();
833
834 return swapped << PAGE_SHIFT;
835}
836
48131e03
VB
837/*
838 * Determine (in bytes) how many of the shmem object's pages mapped by the
839 * given vma is swapped out.
840 *
b93b0163 841 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
842 * as long as the inode doesn't go away and racy results are not a problem.
843 */
844unsigned long shmem_swap_usage(struct vm_area_struct *vma)
845{
846 struct inode *inode = file_inode(vma->vm_file);
847 struct shmem_inode_info *info = SHMEM_I(inode);
848 struct address_space *mapping = inode->i_mapping;
849 unsigned long swapped;
850
851 /* Be careful as we don't hold info->lock */
852 swapped = READ_ONCE(info->swapped);
853
854 /*
855 * The easier cases are when the shmem object has nothing in swap, or
856 * the vma maps it whole. Then we can simply use the stats that we
857 * already track.
858 */
859 if (!swapped)
860 return 0;
861
862 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
863 return swapped << PAGE_SHIFT;
864
865 /* Here comes the more involved part */
866 return shmem_partial_swap_usage(mapping,
867 linear_page_index(vma, vma->vm_start),
868 linear_page_index(vma, vma->vm_end));
869}
870
24513264
HD
871/*
872 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
873 */
874void shmem_unlock_mapping(struct address_space *mapping)
875{
876 struct pagevec pvec;
24513264
HD
877 pgoff_t index = 0;
878
86679820 879 pagevec_init(&pvec);
24513264
HD
880 /*
881 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
882 */
883 while (!mapping_unevictable(mapping)) {
96888e0a 884 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 885 break;
64e3d12f 886 check_move_unevictable_pages(&pvec);
24513264
HD
887 pagevec_release(&pvec);
888 cond_resched();
889 }
7a5d0fbb
HD
890}
891
71725ed1
HD
892/*
893 * Check whether a hole-punch or truncation needs to split a huge page,
894 * returning true if no split was required, or the split has been successful.
895 *
896 * Eviction (or truncation to 0 size) should never need to split a huge page;
897 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
898 * head, and then succeeded to trylock on tail.
899 *
900 * A split can only succeed when there are no additional references on the
901 * huge page: so the split below relies upon find_get_entries() having stopped
902 * when it found a subpage of the huge page, without getting further references.
903 */
904static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
905{
906 if (!PageTransCompound(page))
907 return true;
908
909 /* Just proceed to delete a huge page wholly within the range punched */
910 if (PageHead(page) &&
911 page->index >= start && page->index + HPAGE_PMD_NR <= end)
912 return true;
913
914 /* Try to split huge page, so we can truly punch the hole or truncate */
915 return split_huge_page(page) >= 0;
916}
917
7a5d0fbb 918/*
7f4446ee 919 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 920 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 921 */
1635f6a7
HD
922static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
923 bool unfalloc)
1da177e4 924{
285b2c4f 925 struct address_space *mapping = inode->i_mapping;
1da177e4 926 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
927 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
928 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
929 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
930 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 931 struct pagevec pvec;
7a5d0fbb
HD
932 pgoff_t indices[PAGEVEC_SIZE];
933 long nr_swaps_freed = 0;
285b2c4f 934 pgoff_t index;
bda97eab
HD
935 int i;
936
83e4fa9c
HD
937 if (lend == -1)
938 end = -1; /* unsigned, so actually very big */
bda97eab 939
d144bf62
HD
940 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
941 info->fallocend = start;
942
86679820 943 pagevec_init(&pvec);
bda97eab 944 index = start;
5c211ba2
MWO
945 while (index < end && find_lock_entries(mapping, index, end - 1,
946 &pvec, indices)) {
bda97eab
HD
947 for (i = 0; i < pagevec_count(&pvec); i++) {
948 struct page *page = pvec.pages[i];
949
7a5d0fbb 950 index = indices[i];
bda97eab 951
3159f943 952 if (xa_is_value(page)) {
1635f6a7
HD
953 if (unfalloc)
954 continue;
7a5d0fbb
HD
955 nr_swaps_freed += !shmem_free_swap(mapping,
956 index, page);
bda97eab 957 continue;
7a5d0fbb 958 }
5c211ba2 959 index += thp_nr_pages(page) - 1;
7a5d0fbb 960
5c211ba2
MWO
961 if (!unfalloc || !PageUptodate(page))
962 truncate_inode_page(mapping, page);
bda97eab
HD
963 unlock_page(page);
964 }
0cd6144a 965 pagevec_remove_exceptionals(&pvec);
24513264 966 pagevec_release(&pvec);
bda97eab
HD
967 cond_resched();
968 index++;
969 }
1da177e4 970
83e4fa9c 971 if (partial_start) {
bda97eab 972 struct page *page = NULL;
9e18eb29 973 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 974 if (page) {
09cbfeaf 975 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
976 if (start > end) {
977 top = partial_end;
978 partial_end = 0;
979 }
980 zero_user_segment(page, partial_start, top);
981 set_page_dirty(page);
982 unlock_page(page);
09cbfeaf 983 put_page(page);
83e4fa9c
HD
984 }
985 }
986 if (partial_end) {
987 struct page *page = NULL;
9e18eb29 988 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
989 if (page) {
990 zero_user_segment(page, 0, partial_end);
bda97eab
HD
991 set_page_dirty(page);
992 unlock_page(page);
09cbfeaf 993 put_page(page);
bda97eab
HD
994 }
995 }
83e4fa9c
HD
996 if (start >= end)
997 return;
bda97eab
HD
998
999 index = start;
b1a36650 1000 while (index < end) {
bda97eab 1001 cond_resched();
0cd6144a 1002
cf2039af
MWO
1003 if (!find_get_entries(mapping, index, end - 1, &pvec,
1004 indices)) {
b1a36650
HD
1005 /* If all gone or hole-punch or unfalloc, we're done */
1006 if (index == start || end != -1)
bda97eab 1007 break;
b1a36650 1008 /* But if truncating, restart to make sure all gone */
bda97eab
HD
1009 index = start;
1010 continue;
1011 }
bda97eab
HD
1012 for (i = 0; i < pagevec_count(&pvec); i++) {
1013 struct page *page = pvec.pages[i];
1014
7a5d0fbb 1015 index = indices[i];
3159f943 1016 if (xa_is_value(page)) {
1635f6a7
HD
1017 if (unfalloc)
1018 continue;
b1a36650
HD
1019 if (shmem_free_swap(mapping, index, page)) {
1020 /* Swap was replaced by page: retry */
1021 index--;
1022 break;
1023 }
1024 nr_swaps_freed++;
7a5d0fbb
HD
1025 continue;
1026 }
1027
bda97eab 1028 lock_page(page);
800d8c63 1029
1635f6a7 1030 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1031 if (page_mapping(page) != mapping) {
b1a36650
HD
1032 /* Page was replaced by swap: retry */
1033 unlock_page(page);
1034 index--;
1035 break;
1635f6a7 1036 }
71725ed1
HD
1037 VM_BUG_ON_PAGE(PageWriteback(page), page);
1038 if (shmem_punch_compound(page, start, end))
1039 truncate_inode_page(mapping, page);
0783ac95 1040 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1041 /* Wipe the page and don't get stuck */
1042 clear_highpage(page);
1043 flush_dcache_page(page);
1044 set_page_dirty(page);
1045 if (index <
1046 round_up(start, HPAGE_PMD_NR))
1047 start = index + 1;
1048 }
7a5d0fbb 1049 }
bda97eab
HD
1050 unlock_page(page);
1051 }
0cd6144a 1052 pagevec_remove_exceptionals(&pvec);
24513264 1053 pagevec_release(&pvec);
bda97eab
HD
1054 index++;
1055 }
94c1e62d 1056
4595ef88 1057 spin_lock_irq(&info->lock);
7a5d0fbb 1058 info->swapped -= nr_swaps_freed;
1da177e4 1059 shmem_recalc_inode(inode);
4595ef88 1060 spin_unlock_irq(&info->lock);
1635f6a7 1061}
1da177e4 1062
1635f6a7
HD
1063void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1064{
1065 shmem_undo_range(inode, lstart, lend, false);
078cd827 1066 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1067}
94c1e62d 1068EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1069
549c7297
CB
1070static int shmem_getattr(struct user_namespace *mnt_userns,
1071 const struct path *path, struct kstat *stat,
a528d35e 1072 u32 request_mask, unsigned int query_flags)
44a30220 1073{
a528d35e 1074 struct inode *inode = path->dentry->d_inode;
44a30220 1075 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1076 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1077
d0424c42 1078 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1079 spin_lock_irq(&info->lock);
d0424c42 1080 shmem_recalc_inode(inode);
4595ef88 1081 spin_unlock_irq(&info->lock);
d0424c42 1082 }
0d56a451 1083 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26
YS
1084
1085 if (is_huge_enabled(sb_info))
1086 stat->blksize = HPAGE_PMD_SIZE;
1087
44a30220
YZ
1088 return 0;
1089}
1090
549c7297
CB
1091static int shmem_setattr(struct user_namespace *mnt_userns,
1092 struct dentry *dentry, struct iattr *attr)
1da177e4 1093{
75c3cfa8 1094 struct inode *inode = d_inode(dentry);
40e041a2 1095 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1096 int error;
1097
2f221d6f 1098 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1099 if (error)
1100 return error;
1101
94c1e62d
HD
1102 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1103 loff_t oldsize = inode->i_size;
1104 loff_t newsize = attr->ia_size;
3889e6e7 1105
40e041a2
DR
1106 /* protected by i_mutex */
1107 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1108 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1109 return -EPERM;
1110
94c1e62d 1111 if (newsize != oldsize) {
77142517
KK
1112 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1113 oldsize, newsize);
1114 if (error)
1115 return error;
94c1e62d 1116 i_size_write(inode, newsize);
078cd827 1117 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1118 }
afa2db2f 1119 if (newsize <= oldsize) {
94c1e62d 1120 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1121 if (oldsize > holebegin)
1122 unmap_mapping_range(inode->i_mapping,
1123 holebegin, 0, 1);
1124 if (info->alloced)
1125 shmem_truncate_range(inode,
1126 newsize, (loff_t)-1);
94c1e62d 1127 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1128 if (oldsize > holebegin)
1129 unmap_mapping_range(inode->i_mapping,
1130 holebegin, 0, 1);
94c1e62d 1131 }
1da177e4
LT
1132 }
1133
2f221d6f 1134 setattr_copy(&init_user_ns, inode, attr);
db78b877 1135 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1136 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1137 return error;
1138}
1139
1f895f75 1140static void shmem_evict_inode(struct inode *inode)
1da177e4 1141{
1da177e4 1142 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1143 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1144
30e6a51d 1145 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1146 shmem_unacct_size(info->flags, inode->i_size);
1147 inode->i_size = 0;
3889e6e7 1148 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1149 if (!list_empty(&info->shrinklist)) {
1150 spin_lock(&sbinfo->shrinklist_lock);
1151 if (!list_empty(&info->shrinklist)) {
1152 list_del_init(&info->shrinklist);
1153 sbinfo->shrinklist_len--;
1154 }
1155 spin_unlock(&sbinfo->shrinklist_lock);
1156 }
af53d3e9
HD
1157 while (!list_empty(&info->swaplist)) {
1158 /* Wait while shmem_unuse() is scanning this inode... */
1159 wait_var_event(&info->stop_eviction,
1160 !atomic_read(&info->stop_eviction));
cb5f7b9a 1161 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1162 /* ...but beware of the race if we peeked too early */
1163 if (!atomic_read(&info->stop_eviction))
1164 list_del_init(&info->swaplist);
cb5f7b9a 1165 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1166 }
3ed47db3 1167 }
b09e0fa4 1168
38f38657 1169 simple_xattrs_free(&info->xattrs);
0f3c42f5 1170 WARN_ON(inode->i_blocks);
5b04c689 1171 shmem_free_inode(inode->i_sb);
dbd5768f 1172 clear_inode(inode);
1da177e4
LT
1173}
1174
b56a2d8a
VRP
1175static int shmem_find_swap_entries(struct address_space *mapping,
1176 pgoff_t start, unsigned int nr_entries,
1177 struct page **entries, pgoff_t *indices,
87039546 1178 unsigned int type, bool frontswap)
478922e2 1179{
b56a2d8a
VRP
1180 XA_STATE(xas, &mapping->i_pages, start);
1181 struct page *page;
87039546 1182 swp_entry_t entry;
b56a2d8a
VRP
1183 unsigned int ret = 0;
1184
1185 if (!nr_entries)
1186 return 0;
478922e2
MW
1187
1188 rcu_read_lock();
b56a2d8a
VRP
1189 xas_for_each(&xas, page, ULONG_MAX) {
1190 if (xas_retry(&xas, page))
5b9c98f3 1191 continue;
b56a2d8a
VRP
1192
1193 if (!xa_is_value(page))
478922e2 1194 continue;
b56a2d8a 1195
87039546
HD
1196 entry = radix_to_swp_entry(page);
1197 if (swp_type(entry) != type)
1198 continue;
1199 if (frontswap &&
1200 !frontswap_test(swap_info[type], swp_offset(entry)))
1201 continue;
b56a2d8a
VRP
1202
1203 indices[ret] = xas.xa_index;
1204 entries[ret] = page;
1205
1206 if (need_resched()) {
1207 xas_pause(&xas);
1208 cond_resched_rcu();
1209 }
1210 if (++ret == nr_entries)
1211 break;
478922e2 1212 }
478922e2 1213 rcu_read_unlock();
e21a2955 1214
b56a2d8a 1215 return ret;
478922e2
MW
1216}
1217
46f65ec1 1218/*
b56a2d8a
VRP
1219 * Move the swapped pages for an inode to page cache. Returns the count
1220 * of pages swapped in, or the error in case of failure.
46f65ec1 1221 */
b56a2d8a
VRP
1222static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1223 pgoff_t *indices)
1da177e4 1224{
b56a2d8a
VRP
1225 int i = 0;
1226 int ret = 0;
bde05d1c 1227 int error = 0;
b56a2d8a 1228 struct address_space *mapping = inode->i_mapping;
1da177e4 1229
b56a2d8a
VRP
1230 for (i = 0; i < pvec.nr; i++) {
1231 struct page *page = pvec.pages[i];
2e0e26c7 1232
b56a2d8a
VRP
1233 if (!xa_is_value(page))
1234 continue;
1235 error = shmem_swapin_page(inode, indices[i],
1236 &page, SGP_CACHE,
1237 mapping_gfp_mask(mapping),
1238 NULL, NULL);
1239 if (error == 0) {
1240 unlock_page(page);
1241 put_page(page);
1242 ret++;
1243 }
1244 if (error == -ENOMEM)
1245 break;
1246 error = 0;
bde05d1c 1247 }
b56a2d8a
VRP
1248 return error ? error : ret;
1249}
bde05d1c 1250
b56a2d8a
VRP
1251/*
1252 * If swap found in inode, free it and move page from swapcache to filecache.
1253 */
1254static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1255 bool frontswap, unsigned long *fs_pages_to_unuse)
1256{
1257 struct address_space *mapping = inode->i_mapping;
1258 pgoff_t start = 0;
1259 struct pagevec pvec;
1260 pgoff_t indices[PAGEVEC_SIZE];
1261 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1262 int ret = 0;
1263
1264 pagevec_init(&pvec);
1265 do {
1266 unsigned int nr_entries = PAGEVEC_SIZE;
1267
1268 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1269 nr_entries = *fs_pages_to_unuse;
1270
1271 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1272 pvec.pages, indices,
87039546 1273 type, frontswap);
b56a2d8a
VRP
1274 if (pvec.nr == 0) {
1275 ret = 0;
1276 break;
46f65ec1 1277 }
b56a2d8a
VRP
1278
1279 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1280 if (ret < 0)
1281 break;
1282
1283 if (frontswap_partial) {
1284 *fs_pages_to_unuse -= ret;
1285 if (*fs_pages_to_unuse == 0) {
1286 ret = FRONTSWAP_PAGES_UNUSED;
1287 break;
1288 }
1289 }
1290
1291 start = indices[pvec.nr - 1];
1292 } while (true);
1293
1294 return ret;
1da177e4
LT
1295}
1296
1297/*
b56a2d8a
VRP
1298 * Read all the shared memory data that resides in the swap
1299 * device 'type' back into memory, so the swap device can be
1300 * unused.
1da177e4 1301 */
b56a2d8a
VRP
1302int shmem_unuse(unsigned int type, bool frontswap,
1303 unsigned long *fs_pages_to_unuse)
1da177e4 1304{
b56a2d8a 1305 struct shmem_inode_info *info, *next;
bde05d1c
HD
1306 int error = 0;
1307
b56a2d8a
VRP
1308 if (list_empty(&shmem_swaplist))
1309 return 0;
1310
1311 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1312 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1313 if (!info->swapped) {
6922c0c7 1314 list_del_init(&info->swaplist);
b56a2d8a
VRP
1315 continue;
1316 }
af53d3e9
HD
1317 /*
1318 * Drop the swaplist mutex while searching the inode for swap;
1319 * but before doing so, make sure shmem_evict_inode() will not
1320 * remove placeholder inode from swaplist, nor let it be freed
1321 * (igrab() would protect from unlink, but not from unmount).
1322 */
1323 atomic_inc(&info->stop_eviction);
b56a2d8a 1324 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1325
af53d3e9 1326 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1327 fs_pages_to_unuse);
cb5f7b9a 1328 cond_resched();
b56a2d8a
VRP
1329
1330 mutex_lock(&shmem_swaplist_mutex);
1331 next = list_next_entry(info, swaplist);
1332 if (!info->swapped)
1333 list_del_init(&info->swaplist);
af53d3e9
HD
1334 if (atomic_dec_and_test(&info->stop_eviction))
1335 wake_up_var(&info->stop_eviction);
b56a2d8a 1336 if (error)
778dd893 1337 break;
1da177e4 1338 }
cb5f7b9a 1339 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1340
778dd893 1341 return error;
1da177e4
LT
1342}
1343
1344/*
1345 * Move the page from the page cache to the swap cache.
1346 */
1347static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1348{
1349 struct shmem_inode_info *info;
1da177e4 1350 struct address_space *mapping;
1da177e4 1351 struct inode *inode;
6922c0c7
HD
1352 swp_entry_t swap;
1353 pgoff_t index;
1da177e4 1354
800d8c63 1355 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1356 BUG_ON(!PageLocked(page));
1da177e4
LT
1357 mapping = page->mapping;
1358 index = page->index;
1359 inode = mapping->host;
1360 info = SHMEM_I(inode);
1361 if (info->flags & VM_LOCKED)
1362 goto redirty;
d9fe526a 1363 if (!total_swap_pages)
1da177e4
LT
1364 goto redirty;
1365
d9fe526a 1366 /*
97b713ba
CH
1367 * Our capabilities prevent regular writeback or sync from ever calling
1368 * shmem_writepage; but a stacking filesystem might use ->writepage of
1369 * its underlying filesystem, in which case tmpfs should write out to
1370 * swap only in response to memory pressure, and not for the writeback
1371 * threads or sync.
d9fe526a 1372 */
48f170fb
HD
1373 if (!wbc->for_reclaim) {
1374 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1375 goto redirty;
1376 }
1635f6a7
HD
1377
1378 /*
1379 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1380 * value into swapfile.c, the only way we can correctly account for a
1381 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1382 *
1383 * That's okay for a page already fallocated earlier, but if we have
1384 * not yet completed the fallocation, then (a) we want to keep track
1385 * of this page in case we have to undo it, and (b) it may not be a
1386 * good idea to continue anyway, once we're pushing into swap. So
1387 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1388 */
1389 if (!PageUptodate(page)) {
1aac1400
HD
1390 if (inode->i_private) {
1391 struct shmem_falloc *shmem_falloc;
1392 spin_lock(&inode->i_lock);
1393 shmem_falloc = inode->i_private;
1394 if (shmem_falloc &&
8e205f77 1395 !shmem_falloc->waitq &&
1aac1400
HD
1396 index >= shmem_falloc->start &&
1397 index < shmem_falloc->next)
1398 shmem_falloc->nr_unswapped++;
1399 else
1400 shmem_falloc = NULL;
1401 spin_unlock(&inode->i_lock);
1402 if (shmem_falloc)
1403 goto redirty;
1404 }
1635f6a7
HD
1405 clear_highpage(page);
1406 flush_dcache_page(page);
1407 SetPageUptodate(page);
1408 }
1409
38d8b4e6 1410 swap = get_swap_page(page);
48f170fb
HD
1411 if (!swap.val)
1412 goto redirty;
d9fe526a 1413
b1dea800
HD
1414 /*
1415 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1416 * if it's not already there. Do it now before the page is
1417 * moved to swap cache, when its pagelock no longer protects
b1dea800 1418 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1419 * we've incremented swapped, because shmem_unuse_inode() will
1420 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1421 */
48f170fb
HD
1422 mutex_lock(&shmem_swaplist_mutex);
1423 if (list_empty(&info->swaplist))
b56a2d8a 1424 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1425
4afab1cd 1426 if (add_to_swap_cache(page, swap,
3852f676
JK
1427 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1428 NULL) == 0) {
4595ef88 1429 spin_lock_irq(&info->lock);
6922c0c7 1430 shmem_recalc_inode(inode);
267a4c76 1431 info->swapped++;
4595ef88 1432 spin_unlock_irq(&info->lock);
6922c0c7 1433
267a4c76
HD
1434 swap_shmem_alloc(swap);
1435 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1436
6922c0c7 1437 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1438 BUG_ON(page_mapped(page));
9fab5619 1439 swap_writepage(page, wbc);
1da177e4
LT
1440 return 0;
1441 }
1442
6922c0c7 1443 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1444 put_swap_page(page, swap);
1da177e4
LT
1445redirty:
1446 set_page_dirty(page);
d9fe526a
HD
1447 if (wbc->for_reclaim)
1448 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1449 unlock_page(page);
1450 return 0;
1da177e4
LT
1451}
1452
75edd345 1453#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1454static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1455{
095f1fc4 1456 char buffer[64];
680d794b 1457
71fe804b 1458 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1459 return; /* show nothing */
680d794b 1460
a7a88b23 1461 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1462
1463 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1464}
71fe804b
LS
1465
1466static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1467{
1468 struct mempolicy *mpol = NULL;
1469 if (sbinfo->mpol) {
bf11b9a8 1470 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1471 mpol = sbinfo->mpol;
1472 mpol_get(mpol);
bf11b9a8 1473 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1474 }
1475 return mpol;
1476}
75edd345
HD
1477#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1478static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1479{
1480}
1481static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1482{
1483 return NULL;
1484}
1485#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1486#ifndef CONFIG_NUMA
1487#define vm_policy vm_private_data
1488#endif
680d794b 1489
800d8c63
KS
1490static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1491 struct shmem_inode_info *info, pgoff_t index)
1492{
1493 /* Create a pseudo vma that just contains the policy */
2c4541e2 1494 vma_init(vma, NULL);
800d8c63
KS
1495 /* Bias interleave by inode number to distribute better across nodes */
1496 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1497 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1498}
1499
1500static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1501{
1502 /* Drop reference taken by mpol_shared_policy_lookup() */
1503 mpol_cond_put(vma->vm_policy);
1504}
1505
41ffe5d5
HD
1506static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1507 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1508{
1da177e4 1509 struct vm_area_struct pvma;
18a2f371 1510 struct page *page;
8c63ca5b
WD
1511 struct vm_fault vmf = {
1512 .vma = &pvma,
1513 };
52cd3b07 1514
800d8c63 1515 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1516 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1517 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1518
800d8c63
KS
1519 return page;
1520}
1521
78cc8cdc
RR
1522/*
1523 * Make sure huge_gfp is always more limited than limit_gfp.
1524 * Some of the flags set permissions, while others set limitations.
1525 */
1526static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1527{
1528 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1529 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1530 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1531 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1532
1533 /* Allow allocations only from the originally specified zones. */
1534 result |= zoneflags;
78cc8cdc
RR
1535
1536 /*
1537 * Minimize the result gfp by taking the union with the deny flags,
1538 * and the intersection of the allow flags.
1539 */
1540 result |= (limit_gfp & denyflags);
1541 result |= (huge_gfp & limit_gfp) & allowflags;
1542
1543 return result;
1544}
1545
800d8c63
KS
1546static struct page *shmem_alloc_hugepage(gfp_t gfp,
1547 struct shmem_inode_info *info, pgoff_t index)
1548{
1549 struct vm_area_struct pvma;
7b8d046f
MW
1550 struct address_space *mapping = info->vfs_inode.i_mapping;
1551 pgoff_t hindex;
800d8c63
KS
1552 struct page *page;
1553
4620a06e 1554 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1555 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1556 XA_PRESENT))
800d8c63 1557 return NULL;
18a2f371 1558
800d8c63 1559 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1560 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1561 true);
800d8c63
KS
1562 shmem_pseudo_vma_destroy(&pvma);
1563 if (page)
1564 prep_transhuge_page(page);
dcdf11ee
DR
1565 else
1566 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1567 return page;
1da177e4
LT
1568}
1569
02098fea 1570static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1571 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1572{
1573 struct vm_area_struct pvma;
18a2f371 1574 struct page *page;
1da177e4 1575
800d8c63
KS
1576 shmem_pseudo_vma_init(&pvma, info, index);
1577 page = alloc_page_vma(gfp, &pvma, 0);
1578 shmem_pseudo_vma_destroy(&pvma);
1579
1580 return page;
1581}
1582
1583static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1584 struct inode *inode,
800d8c63
KS
1585 pgoff_t index, bool huge)
1586{
0f079694 1587 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1588 struct page *page;
1589 int nr;
1590 int err = -ENOSPC;
52cd3b07 1591
396bcc52 1592 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1593 huge = false;
1594 nr = huge ? HPAGE_PMD_NR : 1;
1595
0f079694 1596 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1597 goto failed;
800d8c63
KS
1598
1599 if (huge)
1600 page = shmem_alloc_hugepage(gfp, info, index);
1601 else
1602 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1603 if (page) {
1604 __SetPageLocked(page);
1605 __SetPageSwapBacked(page);
800d8c63 1606 return page;
75edd345 1607 }
18a2f371 1608
800d8c63 1609 err = -ENOMEM;
0f079694 1610 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1611failed:
1612 return ERR_PTR(err);
1da177e4 1613}
71fe804b 1614
bde05d1c
HD
1615/*
1616 * When a page is moved from swapcache to shmem filecache (either by the
1617 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1618 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1619 * ignorance of the mapping it belongs to. If that mapping has special
1620 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1621 * we may need to copy to a suitable page before moving to filecache.
1622 *
1623 * In a future release, this may well be extended to respect cpuset and
1624 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1625 * but for now it is a simple matter of zone.
1626 */
1627static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1628{
1629 return page_zonenum(page) > gfp_zone(gfp);
1630}
1631
1632static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1633 struct shmem_inode_info *info, pgoff_t index)
1634{
1635 struct page *oldpage, *newpage;
1636 struct address_space *swap_mapping;
c1cb20d4 1637 swp_entry_t entry;
bde05d1c
HD
1638 pgoff_t swap_index;
1639 int error;
1640
1641 oldpage = *pagep;
c1cb20d4
YZ
1642 entry.val = page_private(oldpage);
1643 swap_index = swp_offset(entry);
bde05d1c
HD
1644 swap_mapping = page_mapping(oldpage);
1645
1646 /*
1647 * We have arrived here because our zones are constrained, so don't
1648 * limit chance of success by further cpuset and node constraints.
1649 */
1650 gfp &= ~GFP_CONSTRAINT_MASK;
1651 newpage = shmem_alloc_page(gfp, info, index);
1652 if (!newpage)
1653 return -ENOMEM;
bde05d1c 1654
09cbfeaf 1655 get_page(newpage);
bde05d1c 1656 copy_highpage(newpage, oldpage);
0142ef6c 1657 flush_dcache_page(newpage);
bde05d1c 1658
9956edf3
HD
1659 __SetPageLocked(newpage);
1660 __SetPageSwapBacked(newpage);
bde05d1c 1661 SetPageUptodate(newpage);
c1cb20d4 1662 set_page_private(newpage, entry.val);
bde05d1c
HD
1663 SetPageSwapCache(newpage);
1664
1665 /*
1666 * Our caller will very soon move newpage out of swapcache, but it's
1667 * a nice clean interface for us to replace oldpage by newpage there.
1668 */
b93b0163 1669 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1670 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1671 if (!error) {
0d1c2072
JW
1672 mem_cgroup_migrate(oldpage, newpage);
1673 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1674 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1675 }
b93b0163 1676 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1677
0142ef6c
HD
1678 if (unlikely(error)) {
1679 /*
1680 * Is this possible? I think not, now that our callers check
1681 * both PageSwapCache and page_private after getting page lock;
1682 * but be defensive. Reverse old to newpage for clear and free.
1683 */
1684 oldpage = newpage;
1685 } else {
6058eaec 1686 lru_cache_add(newpage);
0142ef6c
HD
1687 *pagep = newpage;
1688 }
bde05d1c
HD
1689
1690 ClearPageSwapCache(oldpage);
1691 set_page_private(oldpage, 0);
1692
1693 unlock_page(oldpage);
09cbfeaf
KS
1694 put_page(oldpage);
1695 put_page(oldpage);
0142ef6c 1696 return error;
bde05d1c
HD
1697}
1698
c5bf121e
VRP
1699/*
1700 * Swap in the page pointed to by *pagep.
1701 * Caller has to make sure that *pagep contains a valid swapped page.
1702 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1703 * error code and NULL in *pagep.
c5bf121e
VRP
1704 */
1705static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1706 struct page **pagep, enum sgp_type sgp,
1707 gfp_t gfp, struct vm_area_struct *vma,
1708 vm_fault_t *fault_type)
1709{
1710 struct address_space *mapping = inode->i_mapping;
1711 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1712 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1713 struct page *page;
c5bf121e
VRP
1714 swp_entry_t swap;
1715 int error;
1716
1717 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1718 swap = radix_to_swp_entry(*pagep);
1719 *pagep = NULL;
1720
1721 /* Look it up and read it in.. */
1722 page = lookup_swap_cache(swap, NULL, 0);
1723 if (!page) {
1724 /* Or update major stats only when swapin succeeds?? */
1725 if (fault_type) {
1726 *fault_type |= VM_FAULT_MAJOR;
1727 count_vm_event(PGMAJFAULT);
1728 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1729 }
1730 /* Here we actually start the io */
1731 page = shmem_swapin(swap, gfp, info, index);
1732 if (!page) {
1733 error = -ENOMEM;
1734 goto failed;
1735 }
1736 }
1737
1738 /* We have to do this with page locked to prevent races */
1739 lock_page(page);
1740 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1741 !shmem_confirm_swap(mapping, index, swap)) {
1742 error = -EEXIST;
1743 goto unlock;
1744 }
1745 if (!PageUptodate(page)) {
1746 error = -EIO;
1747 goto failed;
1748 }
1749 wait_on_page_writeback(page);
1750
8a84802e
SP
1751 /*
1752 * Some architectures may have to restore extra metadata to the
1753 * physical page after reading from swap.
1754 */
1755 arch_swap_restore(swap, page);
1756
c5bf121e
VRP
1757 if (shmem_should_replace_page(page, gfp)) {
1758 error = shmem_replace_page(&page, gfp, info, index);
1759 if (error)
1760 goto failed;
1761 }
1762
14235ab3 1763 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1764 swp_to_radix_entry(swap), gfp,
1765 charge_mm);
1766 if (error)
14235ab3 1767 goto failed;
c5bf121e
VRP
1768
1769 spin_lock_irq(&info->lock);
1770 info->swapped--;
1771 shmem_recalc_inode(inode);
1772 spin_unlock_irq(&info->lock);
1773
1774 if (sgp == SGP_WRITE)
1775 mark_page_accessed(page);
1776
1777 delete_from_swap_cache(page);
1778 set_page_dirty(page);
1779 swap_free(swap);
1780
1781 *pagep = page;
1782 return 0;
1783failed:
1784 if (!shmem_confirm_swap(mapping, index, swap))
1785 error = -EEXIST;
1786unlock:
1787 if (page) {
1788 unlock_page(page);
1789 put_page(page);
1790 }
1791
1792 return error;
1793}
1794
1da177e4 1795/*
68da9f05 1796 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1797 *
1798 * If we allocate a new one we do not mark it dirty. That's up to the
1799 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1800 * entry since a page cannot live in both the swap and page cache.
1801 *
c949b097 1802 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1803 * otherwise they are NULL.
1da177e4 1804 */
41ffe5d5 1805static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1806 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1807 struct vm_area_struct *vma, struct vm_fault *vmf,
1808 vm_fault_t *fault_type)
1da177e4
LT
1809{
1810 struct address_space *mapping = inode->i_mapping;
23f919d4 1811 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1812 struct shmem_sb_info *sbinfo;
9e18eb29 1813 struct mm_struct *charge_mm;
27ab7006 1814 struct page *page;
657e3038 1815 enum sgp_type sgp_huge = sgp;
800d8c63 1816 pgoff_t hindex = index;
164cc4fe 1817 gfp_t huge_gfp;
1da177e4 1818 int error;
54af6042 1819 int once = 0;
1635f6a7 1820 int alloced = 0;
1da177e4 1821
09cbfeaf 1822 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1823 return -EFBIG;
657e3038
KS
1824 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1825 sgp = SGP_CACHE;
1da177e4 1826repeat:
c5bf121e
VRP
1827 if (sgp <= SGP_CACHE &&
1828 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829 return -EINVAL;
1830 }
1831
1832 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1833 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1834
44835d20
MWO
1835 page = pagecache_get_page(mapping, index,
1836 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1837
1838 if (page && vma && userfaultfd_minor(vma)) {
1839 if (!xa_is_value(page)) {
1840 unlock_page(page);
1841 put_page(page);
1842 }
1843 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844 return 0;
1845 }
1846
3159f943 1847 if (xa_is_value(page)) {
c5bf121e
VRP
1848 error = shmem_swapin_page(inode, index, &page,
1849 sgp, gfp, vma, fault_type);
1850 if (error == -EEXIST)
1851 goto repeat;
54af6042 1852
c5bf121e
VRP
1853 *pagep = page;
1854 return error;
54af6042
HD
1855 }
1856
acdd9f8e 1857 if (page) {
63ec1973 1858 hindex = page->index;
acdd9f8e
HD
1859 if (sgp == SGP_WRITE)
1860 mark_page_accessed(page);
1861 if (PageUptodate(page))
1862 goto out;
1863 /* fallocated page */
1635f6a7
HD
1864 if (sgp != SGP_READ)
1865 goto clear;
1866 unlock_page(page);
09cbfeaf 1867 put_page(page);
1635f6a7 1868 }
27ab7006
HD
1869
1870 /*
acdd9f8e
HD
1871 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1872 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1873 */
1874 *pagep = NULL;
1875 if (sgp == SGP_READ)
1876 return 0;
1877 if (sgp == SGP_NOALLOC)
1878 return -ENOENT;
1879
1880 /*
1881 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1882 */
54af6042 1883
c5bf121e
VRP
1884 if (vma && userfaultfd_missing(vma)) {
1885 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1886 return 0;
1887 }
cfda0526 1888
c5bf121e 1889 /* shmem_symlink() */
30e6a51d 1890 if (!shmem_mapping(mapping))
c5bf121e
VRP
1891 goto alloc_nohuge;
1892 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1893 goto alloc_nohuge;
1894 if (shmem_huge == SHMEM_HUGE_FORCE)
1895 goto alloc_huge;
1896 switch (sbinfo->huge) {
c5bf121e
VRP
1897 case SHMEM_HUGE_NEVER:
1898 goto alloc_nohuge;
27d80fa2
KC
1899 case SHMEM_HUGE_WITHIN_SIZE: {
1900 loff_t i_size;
1901 pgoff_t off;
1902
c5bf121e
VRP
1903 off = round_up(index, HPAGE_PMD_NR);
1904 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1905 if (i_size >= HPAGE_PMD_SIZE &&
1906 i_size >> PAGE_SHIFT >= off)
800d8c63 1907 goto alloc_huge;
27d80fa2
KC
1908
1909 fallthrough;
1910 }
c5bf121e
VRP
1911 case SHMEM_HUGE_ADVISE:
1912 if (sgp_huge == SGP_HUGE)
1913 goto alloc_huge;
1914 /* TODO: implement fadvise() hints */
1915 goto alloc_nohuge;
1916 }
1da177e4 1917
800d8c63 1918alloc_huge:
164cc4fe 1919 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1920 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1921 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1922 if (IS_ERR(page)) {
1923alloc_nohuge:
1924 page = shmem_alloc_and_acct_page(gfp, inode,
1925 index, false);
1926 }
1927 if (IS_ERR(page)) {
1928 int retry = 5;
800d8c63 1929
c5bf121e
VRP
1930 error = PTR_ERR(page);
1931 page = NULL;
1932 if (error != -ENOSPC)
1933 goto unlock;
1934 /*
1935 * Try to reclaim some space by splitting a huge page
1936 * beyond i_size on the filesystem.
1937 */
1938 while (retry--) {
1939 int ret;
66d2f4d2 1940
c5bf121e
VRP
1941 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1942 if (ret == SHRINK_STOP)
1943 break;
1944 if (ret)
1945 goto alloc_nohuge;
b065b432 1946 }
c5bf121e
VRP
1947 goto unlock;
1948 }
54af6042 1949
c5bf121e
VRP
1950 if (PageTransHuge(page))
1951 hindex = round_down(index, HPAGE_PMD_NR);
1952 else
1953 hindex = index;
54af6042 1954
c5bf121e
VRP
1955 if (sgp == SGP_WRITE)
1956 __SetPageReferenced(page);
1957
c5bf121e 1958 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1959 NULL, gfp & GFP_RECLAIM_MASK,
1960 charge_mm);
1961 if (error)
c5bf121e 1962 goto unacct;
6058eaec 1963 lru_cache_add(page);
779750d2 1964
c5bf121e 1965 spin_lock_irq(&info->lock);
d8c6546b 1966 info->alloced += compound_nr(page);
c5bf121e
VRP
1967 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1968 shmem_recalc_inode(inode);
1969 spin_unlock_irq(&info->lock);
1970 alloced = true;
1971
1972 if (PageTransHuge(page) &&
1973 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1974 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1975 /*
c5bf121e
VRP
1976 * Part of the huge page is beyond i_size: subject
1977 * to shrink under memory pressure.
1635f6a7 1978 */
c5bf121e 1979 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1980 /*
c5bf121e
VRP
1981 * _careful to defend against unlocked access to
1982 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1983 */
c5bf121e
VRP
1984 if (list_empty_careful(&info->shrinklist)) {
1985 list_add_tail(&info->shrinklist,
1986 &sbinfo->shrinklist);
1987 sbinfo->shrinklist_len++;
1988 }
1989 spin_unlock(&sbinfo->shrinklist_lock);
1990 }
800d8c63 1991
c5bf121e
VRP
1992 /*
1993 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1994 */
1995 if (sgp == SGP_FALLOC)
1996 sgp = SGP_WRITE;
1997clear:
1998 /*
1999 * Let SGP_WRITE caller clear ends if write does not fill page;
2000 * but SGP_FALLOC on a page fallocated earlier must initialize
2001 * it now, lest undo on failure cancel our earlier guarantee.
2002 */
2003 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
2004 int i;
2005
63ec1973
MWO
2006 for (i = 0; i < compound_nr(page); i++) {
2007 clear_highpage(page + i);
2008 flush_dcache_page(page + i);
ec9516fb 2009 }
63ec1973 2010 SetPageUptodate(page);
1da177e4 2011 }
bde05d1c 2012
54af6042 2013 /* Perhaps the file has been truncated since we checked */
75edd345 2014 if (sgp <= SGP_CACHE &&
09cbfeaf 2015 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
2016 if (alloced) {
2017 ClearPageDirty(page);
2018 delete_from_page_cache(page);
4595ef88 2019 spin_lock_irq(&info->lock);
267a4c76 2020 shmem_recalc_inode(inode);
4595ef88 2021 spin_unlock_irq(&info->lock);
267a4c76 2022 }
54af6042 2023 error = -EINVAL;
267a4c76 2024 goto unlock;
e83c32e8 2025 }
63ec1973 2026out:
800d8c63 2027 *pagep = page + index - hindex;
54af6042 2028 return 0;
1da177e4 2029
59a16ead 2030 /*
54af6042 2031 * Error recovery.
59a16ead 2032 */
54af6042 2033unacct:
d8c6546b 2034 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2035
2036 if (PageTransHuge(page)) {
2037 unlock_page(page);
2038 put_page(page);
2039 goto alloc_nohuge;
2040 }
d1899228 2041unlock:
27ab7006 2042 if (page) {
54af6042 2043 unlock_page(page);
09cbfeaf 2044 put_page(page);
54af6042
HD
2045 }
2046 if (error == -ENOSPC && !once++) {
4595ef88 2047 spin_lock_irq(&info->lock);
54af6042 2048 shmem_recalc_inode(inode);
4595ef88 2049 spin_unlock_irq(&info->lock);
27ab7006 2050 goto repeat;
ff36b801 2051 }
7f4446ee 2052 if (error == -EEXIST)
54af6042
HD
2053 goto repeat;
2054 return error;
1da177e4
LT
2055}
2056
10d20bd2
LT
2057/*
2058 * This is like autoremove_wake_function, but it removes the wait queue
2059 * entry unconditionally - even if something else had already woken the
2060 * target.
2061 */
ac6424b9 2062static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2063{
2064 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2065 list_del_init(&wait->entry);
10d20bd2
LT
2066 return ret;
2067}
2068
20acce67 2069static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2070{
11bac800 2071 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2072 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2073 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2074 enum sgp_type sgp;
20acce67
SJ
2075 int err;
2076 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2077
f00cdc6d
HD
2078 /*
2079 * Trinity finds that probing a hole which tmpfs is punching can
2080 * prevent the hole-punch from ever completing: which in turn
2081 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2082 * faulting pages into the hole while it's being punched. Although
2083 * shmem_undo_range() does remove the additions, it may be unable to
2084 * keep up, as each new page needs its own unmap_mapping_range() call,
2085 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2086 *
2087 * It does not matter if we sometimes reach this check just before the
2088 * hole-punch begins, so that one fault then races with the punch:
2089 * we just need to make racing faults a rare case.
2090 *
2091 * The implementation below would be much simpler if we just used a
2092 * standard mutex or completion: but we cannot take i_mutex in fault,
2093 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2094 */
2095 if (unlikely(inode->i_private)) {
2096 struct shmem_falloc *shmem_falloc;
2097
2098 spin_lock(&inode->i_lock);
2099 shmem_falloc = inode->i_private;
8e205f77
HD
2100 if (shmem_falloc &&
2101 shmem_falloc->waitq &&
2102 vmf->pgoff >= shmem_falloc->start &&
2103 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2104 struct file *fpin;
8e205f77 2105 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2106 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2107
2108 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2109 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2110 if (fpin)
8e205f77 2111 ret = VM_FAULT_RETRY;
8e205f77
HD
2112
2113 shmem_falloc_waitq = shmem_falloc->waitq;
2114 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2115 TASK_UNINTERRUPTIBLE);
2116 spin_unlock(&inode->i_lock);
2117 schedule();
2118
2119 /*
2120 * shmem_falloc_waitq points into the shmem_fallocate()
2121 * stack of the hole-punching task: shmem_falloc_waitq
2122 * is usually invalid by the time we reach here, but
2123 * finish_wait() does not dereference it in that case;
2124 * though i_lock needed lest racing with wake_up_all().
2125 */
2126 spin_lock(&inode->i_lock);
2127 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2128 spin_unlock(&inode->i_lock);
8897c1b1
KS
2129
2130 if (fpin)
2131 fput(fpin);
8e205f77 2132 return ret;
f00cdc6d 2133 }
8e205f77 2134 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2135 }
2136
657e3038 2137 sgp = SGP_CACHE;
18600332
MH
2138
2139 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2140 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2141 sgp = SGP_NOHUGE;
18600332
MH
2142 else if (vma->vm_flags & VM_HUGEPAGE)
2143 sgp = SGP_HUGE;
657e3038 2144
20acce67 2145 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2146 gfp, vma, vmf, &ret);
20acce67
SJ
2147 if (err)
2148 return vmf_error(err);
68da9f05 2149 return ret;
1da177e4
LT
2150}
2151
c01d5b30
HD
2152unsigned long shmem_get_unmapped_area(struct file *file,
2153 unsigned long uaddr, unsigned long len,
2154 unsigned long pgoff, unsigned long flags)
2155{
2156 unsigned long (*get_area)(struct file *,
2157 unsigned long, unsigned long, unsigned long, unsigned long);
2158 unsigned long addr;
2159 unsigned long offset;
2160 unsigned long inflated_len;
2161 unsigned long inflated_addr;
2162 unsigned long inflated_offset;
2163
2164 if (len > TASK_SIZE)
2165 return -ENOMEM;
2166
2167 get_area = current->mm->get_unmapped_area;
2168 addr = get_area(file, uaddr, len, pgoff, flags);
2169
396bcc52 2170 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2171 return addr;
2172 if (IS_ERR_VALUE(addr))
2173 return addr;
2174 if (addr & ~PAGE_MASK)
2175 return addr;
2176 if (addr > TASK_SIZE - len)
2177 return addr;
2178
2179 if (shmem_huge == SHMEM_HUGE_DENY)
2180 return addr;
2181 if (len < HPAGE_PMD_SIZE)
2182 return addr;
2183 if (flags & MAP_FIXED)
2184 return addr;
2185 /*
2186 * Our priority is to support MAP_SHARED mapped hugely;
2187 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2188 * But if caller specified an address hint and we allocated area there
2189 * successfully, respect that as before.
c01d5b30 2190 */
99158997 2191 if (uaddr == addr)
c01d5b30
HD
2192 return addr;
2193
2194 if (shmem_huge != SHMEM_HUGE_FORCE) {
2195 struct super_block *sb;
2196
2197 if (file) {
2198 VM_BUG_ON(file->f_op != &shmem_file_operations);
2199 sb = file_inode(file)->i_sb;
2200 } else {
2201 /*
2202 * Called directly from mm/mmap.c, or drivers/char/mem.c
2203 * for "/dev/zero", to create a shared anonymous object.
2204 */
2205 if (IS_ERR(shm_mnt))
2206 return addr;
2207 sb = shm_mnt->mnt_sb;
2208 }
3089bf61 2209 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2210 return addr;
2211 }
2212
2213 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2214 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2215 return addr;
2216 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2217 return addr;
2218
2219 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2220 if (inflated_len > TASK_SIZE)
2221 return addr;
2222 if (inflated_len < len)
2223 return addr;
2224
99158997 2225 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2226 if (IS_ERR_VALUE(inflated_addr))
2227 return addr;
2228 if (inflated_addr & ~PAGE_MASK)
2229 return addr;
2230
2231 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2232 inflated_addr += offset - inflated_offset;
2233 if (inflated_offset > offset)
2234 inflated_addr += HPAGE_PMD_SIZE;
2235
2236 if (inflated_addr > TASK_SIZE - len)
2237 return addr;
2238 return inflated_addr;
2239}
2240
1da177e4 2241#ifdef CONFIG_NUMA
41ffe5d5 2242static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2243{
496ad9aa 2244 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2245 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2246}
2247
d8dc74f2
AB
2248static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2249 unsigned long addr)
1da177e4 2250{
496ad9aa 2251 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2252 pgoff_t index;
1da177e4 2253
41ffe5d5
HD
2254 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2255 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2256}
2257#endif
2258
d7c9e99a 2259int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2260{
496ad9aa 2261 struct inode *inode = file_inode(file);
1da177e4
LT
2262 struct shmem_inode_info *info = SHMEM_I(inode);
2263 int retval = -ENOMEM;
2264
ea0dfeb4
HD
2265 /*
2266 * What serializes the accesses to info->flags?
2267 * ipc_lock_object() when called from shmctl_do_lock(),
2268 * no serialization needed when called from shm_destroy().
2269 */
1da177e4 2270 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2271 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2272 goto out_nomem;
2273 info->flags |= VM_LOCKED;
89e004ea 2274 mapping_set_unevictable(file->f_mapping);
1da177e4 2275 }
d7c9e99a
AG
2276 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2277 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2278 info->flags &= ~VM_LOCKED;
89e004ea 2279 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2280 }
2281 retval = 0;
89e004ea 2282
1da177e4 2283out_nomem:
1da177e4
LT
2284 return retval;
2285}
2286
9b83a6a8 2287static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2288{
ab3948f5 2289 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2290 int ret;
ab3948f5 2291
22247efd
PX
2292 ret = seal_check_future_write(info->seals, vma);
2293 if (ret)
2294 return ret;
ab3948f5 2295
51b0bff2
CM
2296 /* arm64 - allow memory tagging on RAM-based files */
2297 vma->vm_flags |= VM_MTE_ALLOWED;
2298
1da177e4
LT
2299 file_accessed(file);
2300 vma->vm_ops = &shmem_vm_ops;
396bcc52 2301 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2302 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2303 (vma->vm_end & HPAGE_PMD_MASK)) {
2304 khugepaged_enter(vma, vma->vm_flags);
2305 }
1da177e4
LT
2306 return 0;
2307}
2308
454abafe 2309static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2310 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2311{
2312 struct inode *inode;
2313 struct shmem_inode_info *info;
2314 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2315 ino_t ino;
1da177e4 2316
e809d5f0 2317 if (shmem_reserve_inode(sb, &ino))
5b04c689 2318 return NULL;
1da177e4
LT
2319
2320 inode = new_inode(sb);
2321 if (inode) {
e809d5f0 2322 inode->i_ino = ino;
21cb47be 2323 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2324 inode->i_blocks = 0;
078cd827 2325 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2326 inode->i_generation = prandom_u32();
1da177e4
LT
2327 info = SHMEM_I(inode);
2328 memset(info, 0, (char *)inode - (char *)info);
2329 spin_lock_init(&info->lock);
af53d3e9 2330 atomic_set(&info->stop_eviction, 0);
40e041a2 2331 info->seals = F_SEAL_SEAL;
0b0a0806 2332 info->flags = flags & VM_NORESERVE;
779750d2 2333 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2334 INIT_LIST_HEAD(&info->swaplist);
38f38657 2335 simple_xattrs_init(&info->xattrs);
72c04902 2336 cache_no_acl(inode);
1da177e4
LT
2337
2338 switch (mode & S_IFMT) {
2339 default:
39f0247d 2340 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2341 init_special_inode(inode, mode, dev);
2342 break;
2343 case S_IFREG:
14fcc23f 2344 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2345 inode->i_op = &shmem_inode_operations;
2346 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2347 mpol_shared_policy_init(&info->policy,
2348 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2349 break;
2350 case S_IFDIR:
d8c76e6f 2351 inc_nlink(inode);
1da177e4
LT
2352 /* Some things misbehave if size == 0 on a directory */
2353 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2354 inode->i_op = &shmem_dir_inode_operations;
2355 inode->i_fop = &simple_dir_operations;
2356 break;
2357 case S_IFLNK:
2358 /*
2359 * Must not load anything in the rbtree,
2360 * mpol_free_shared_policy will not be called.
2361 */
71fe804b 2362 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2363 break;
2364 }
b45d71fb
JFG
2365
2366 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2367 } else
2368 shmem_free_inode(sb);
1da177e4
LT
2369 return inode;
2370}
2371
3460f6e5
AR
2372#ifdef CONFIG_USERFAULTFD
2373int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2374 pmd_t *dst_pmd,
2375 struct vm_area_struct *dst_vma,
2376 unsigned long dst_addr,
2377 unsigned long src_addr,
2378 bool zeropage,
2379 struct page **pagep)
4c27fe4c
MR
2380{
2381 struct inode *inode = file_inode(dst_vma->vm_file);
2382 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2383 struct address_space *mapping = inode->i_mapping;
2384 gfp_t gfp = mapping_gfp_mask(mapping);
2385 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2386 void *page_kaddr;
2387 struct page *page;
4c27fe4c 2388 int ret;
3460f6e5 2389 pgoff_t max_off;
4c27fe4c 2390
7ed9d238
AR
2391 if (!shmem_inode_acct_block(inode, 1)) {
2392 /*
2393 * We may have got a page, returned -ENOENT triggering a retry,
2394 * and now we find ourselves with -ENOMEM. Release the page, to
2395 * avoid a BUG_ON in our caller.
2396 */
2397 if (unlikely(*pagep)) {
2398 put_page(*pagep);
2399 *pagep = NULL;
2400 }
7d64ae3a 2401 return -ENOMEM;
7ed9d238 2402 }
4c27fe4c 2403
cb658a45 2404 if (!*pagep) {
7d64ae3a 2405 ret = -ENOMEM;
4c27fe4c
MR
2406 page = shmem_alloc_page(gfp, info, pgoff);
2407 if (!page)
0f079694 2408 goto out_unacct_blocks;
4c27fe4c 2409
3460f6e5 2410 if (!zeropage) { /* COPY */
8d103963
MR
2411 page_kaddr = kmap_atomic(page);
2412 ret = copy_from_user(page_kaddr,
2413 (const void __user *)src_addr,
2414 PAGE_SIZE);
2415 kunmap_atomic(page_kaddr);
2416
c1e8d7c6 2417 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2418 if (unlikely(ret)) {
2419 *pagep = page;
7d64ae3a 2420 ret = -ENOENT;
8d103963 2421 /* don't free the page */
7d64ae3a 2422 goto out_unacct_blocks;
8d103963 2423 }
3460f6e5 2424 } else { /* ZEROPAGE */
8d103963 2425 clear_highpage(page);
4c27fe4c
MR
2426 }
2427 } else {
2428 page = *pagep;
2429 *pagep = NULL;
2430 }
2431
3460f6e5
AR
2432 VM_BUG_ON(PageLocked(page));
2433 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2434 __SetPageLocked(page);
2435 __SetPageSwapBacked(page);
a425d358 2436 __SetPageUptodate(page);
9cc90c66 2437
e2a50c1f 2438 ret = -EFAULT;
e2a50c1f 2439 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2440 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2441 goto out_release;
2442
552446a4 2443 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2444 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2445 if (ret)
3fea5a49 2446 goto out_release;
4c27fe4c 2447
7d64ae3a
AR
2448 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2449 page, true, false);
2450 if (ret)
2451 goto out_delete_from_cache;
4c27fe4c 2452
94b7cc01 2453 spin_lock_irq(&info->lock);
4c27fe4c
MR
2454 info->alloced++;
2455 inode->i_blocks += BLOCKS_PER_PAGE;
2456 shmem_recalc_inode(inode);
94b7cc01 2457 spin_unlock_irq(&info->lock);
4c27fe4c 2458
7d64ae3a 2459 SetPageDirty(page);
e2a50c1f 2460 unlock_page(page);
7d64ae3a
AR
2461 return 0;
2462out_delete_from_cache:
e2a50c1f 2463 delete_from_page_cache(page);
4c27fe4c 2464out_release:
9cc90c66 2465 unlock_page(page);
4c27fe4c 2466 put_page(page);
4c27fe4c 2467out_unacct_blocks:
0f079694 2468 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2469 return ret;
8d103963 2470}
3460f6e5 2471#endif /* CONFIG_USERFAULTFD */
8d103963 2472
1da177e4 2473#ifdef CONFIG_TMPFS
92e1d5be 2474static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2475static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2476
6d9d88d0
JS
2477#ifdef CONFIG_TMPFS_XATTR
2478static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2479#else
2480#define shmem_initxattrs NULL
2481#endif
2482
1da177e4 2483static int
800d15a5
NP
2484shmem_write_begin(struct file *file, struct address_space *mapping,
2485 loff_t pos, unsigned len, unsigned flags,
2486 struct page **pagep, void **fsdata)
1da177e4 2487{
800d15a5 2488 struct inode *inode = mapping->host;
40e041a2 2489 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2490 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2491
2492 /* i_mutex is held by caller */
ab3948f5
JFG
2493 if (unlikely(info->seals & (F_SEAL_GROW |
2494 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2495 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2496 return -EPERM;
2497 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2498 return -EPERM;
2499 }
2500
9e18eb29 2501 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2502}
2503
2504static int
2505shmem_write_end(struct file *file, struct address_space *mapping,
2506 loff_t pos, unsigned len, unsigned copied,
2507 struct page *page, void *fsdata)
2508{
2509 struct inode *inode = mapping->host;
2510
d3602444
HD
2511 if (pos + copied > inode->i_size)
2512 i_size_write(inode, pos + copied);
2513
ec9516fb 2514 if (!PageUptodate(page)) {
800d8c63
KS
2515 struct page *head = compound_head(page);
2516 if (PageTransCompound(page)) {
2517 int i;
2518
2519 for (i = 0; i < HPAGE_PMD_NR; i++) {
2520 if (head + i == page)
2521 continue;
2522 clear_highpage(head + i);
2523 flush_dcache_page(head + i);
2524 }
2525 }
09cbfeaf
KS
2526 if (copied < PAGE_SIZE) {
2527 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2528 zero_user_segments(page, 0, from,
09cbfeaf 2529 from + copied, PAGE_SIZE);
ec9516fb 2530 }
800d8c63 2531 SetPageUptodate(head);
ec9516fb 2532 }
800d15a5 2533 set_page_dirty(page);
6746aff7 2534 unlock_page(page);
09cbfeaf 2535 put_page(page);
800d15a5 2536
800d15a5 2537 return copied;
1da177e4
LT
2538}
2539
2ba5bbed 2540static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2541{
6e58e79d
AV
2542 struct file *file = iocb->ki_filp;
2543 struct inode *inode = file_inode(file);
1da177e4 2544 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2545 pgoff_t index;
2546 unsigned long offset;
a0ee5ec5 2547 enum sgp_type sgp = SGP_READ;
f7c1d074 2548 int error = 0;
cb66a7a1 2549 ssize_t retval = 0;
6e58e79d 2550 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2551
2552 /*
2553 * Might this read be for a stacking filesystem? Then when reading
2554 * holes of a sparse file, we actually need to allocate those pages,
2555 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2556 */
777eda2c 2557 if (!iter_is_iovec(to))
75edd345 2558 sgp = SGP_CACHE;
1da177e4 2559
09cbfeaf
KS
2560 index = *ppos >> PAGE_SHIFT;
2561 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2562
2563 for (;;) {
2564 struct page *page = NULL;
41ffe5d5
HD
2565 pgoff_t end_index;
2566 unsigned long nr, ret;
1da177e4
LT
2567 loff_t i_size = i_size_read(inode);
2568
09cbfeaf 2569 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2570 if (index > end_index)
2571 break;
2572 if (index == end_index) {
09cbfeaf 2573 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2574 if (nr <= offset)
2575 break;
2576 }
2577
9e18eb29 2578 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2579 if (error) {
2580 if (error == -EINVAL)
2581 error = 0;
1da177e4
LT
2582 break;
2583 }
75edd345
HD
2584 if (page) {
2585 if (sgp == SGP_CACHE)
2586 set_page_dirty(page);
d3602444 2587 unlock_page(page);
75edd345 2588 }
1da177e4
LT
2589
2590 /*
2591 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2592 * are called without i_mutex protection against truncate
1da177e4 2593 */
09cbfeaf 2594 nr = PAGE_SIZE;
1da177e4 2595 i_size = i_size_read(inode);
09cbfeaf 2596 end_index = i_size >> PAGE_SHIFT;
1da177e4 2597 if (index == end_index) {
09cbfeaf 2598 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2599 if (nr <= offset) {
2600 if (page)
09cbfeaf 2601 put_page(page);
1da177e4
LT
2602 break;
2603 }
2604 }
2605 nr -= offset;
2606
2607 if (page) {
2608 /*
2609 * If users can be writing to this page using arbitrary
2610 * virtual addresses, take care about potential aliasing
2611 * before reading the page on the kernel side.
2612 */
2613 if (mapping_writably_mapped(mapping))
2614 flush_dcache_page(page);
2615 /*
2616 * Mark the page accessed if we read the beginning.
2617 */
2618 if (!offset)
2619 mark_page_accessed(page);
b5810039 2620 } else {
1da177e4 2621 page = ZERO_PAGE(0);
09cbfeaf 2622 get_page(page);
b5810039 2623 }
1da177e4
LT
2624
2625 /*
2626 * Ok, we have the page, and it's up-to-date, so
2627 * now we can copy it to user space...
1da177e4 2628 */
2ba5bbed 2629 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2630 retval += ret;
1da177e4 2631 offset += ret;
09cbfeaf
KS
2632 index += offset >> PAGE_SHIFT;
2633 offset &= ~PAGE_MASK;
1da177e4 2634
09cbfeaf 2635 put_page(page);
2ba5bbed 2636 if (!iov_iter_count(to))
1da177e4 2637 break;
6e58e79d
AV
2638 if (ret < nr) {
2639 error = -EFAULT;
2640 break;
2641 }
1da177e4
LT
2642 cond_resched();
2643 }
2644
09cbfeaf 2645 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2646 file_accessed(file);
2647 return retval ? retval : error;
1da177e4
LT
2648}
2649
965c8e59 2650static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2651{
2652 struct address_space *mapping = file->f_mapping;
2653 struct inode *inode = mapping->host;
220f2ac9 2654
965c8e59
AM
2655 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2656 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2657 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2658 if (offset < 0)
2659 return -ENXIO;
2660
5955102c 2661 inode_lock(inode);
220f2ac9 2662 /* We're holding i_mutex so we can access i_size directly */
41139aa4 2663 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2664 if (offset >= 0)
2665 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2666 inode_unlock(inode);
220f2ac9
HD
2667 return offset;
2668}
2669
83e4fa9c
HD
2670static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2671 loff_t len)
2672{
496ad9aa 2673 struct inode *inode = file_inode(file);
e2d12e22 2674 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2675 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2676 struct shmem_falloc shmem_falloc;
d144bf62 2677 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2678 int error;
83e4fa9c 2679
13ace4d0
HD
2680 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2681 return -EOPNOTSUPP;
2682
5955102c 2683 inode_lock(inode);
83e4fa9c
HD
2684
2685 if (mode & FALLOC_FL_PUNCH_HOLE) {
2686 struct address_space *mapping = file->f_mapping;
2687 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2688 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2689 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2690
40e041a2 2691 /* protected by i_mutex */
ab3948f5 2692 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2693 error = -EPERM;
2694 goto out;
2695 }
2696
8e205f77 2697 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2698 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2699 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2700 spin_lock(&inode->i_lock);
2701 inode->i_private = &shmem_falloc;
2702 spin_unlock(&inode->i_lock);
2703
83e4fa9c
HD
2704 if ((u64)unmap_end > (u64)unmap_start)
2705 unmap_mapping_range(mapping, unmap_start,
2706 1 + unmap_end - unmap_start, 0);
2707 shmem_truncate_range(inode, offset, offset + len - 1);
2708 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2709
2710 spin_lock(&inode->i_lock);
2711 inode->i_private = NULL;
2712 wake_up_all(&shmem_falloc_waitq);
2055da97 2713 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2714 spin_unlock(&inode->i_lock);
83e4fa9c 2715 error = 0;
8e205f77 2716 goto out;
e2d12e22
HD
2717 }
2718
2719 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2720 error = inode_newsize_ok(inode, offset + len);
2721 if (error)
2722 goto out;
2723
40e041a2
DR
2724 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2725 error = -EPERM;
2726 goto out;
2727 }
2728
09cbfeaf
KS
2729 start = offset >> PAGE_SHIFT;
2730 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2731 /* Try to avoid a swapstorm if len is impossible to satisfy */
2732 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2733 error = -ENOSPC;
2734 goto out;
83e4fa9c
HD
2735 }
2736
8e205f77 2737 shmem_falloc.waitq = NULL;
1aac1400
HD
2738 shmem_falloc.start = start;
2739 shmem_falloc.next = start;
2740 shmem_falloc.nr_falloced = 0;
2741 shmem_falloc.nr_unswapped = 0;
2742 spin_lock(&inode->i_lock);
2743 inode->i_private = &shmem_falloc;
2744 spin_unlock(&inode->i_lock);
2745
d144bf62
HD
2746 /*
2747 * info->fallocend is only relevant when huge pages might be
2748 * involved: to prevent split_huge_page() freeing fallocated
2749 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2750 */
2751 undo_fallocend = info->fallocend;
2752 if (info->fallocend < end)
2753 info->fallocend = end;
2754
050dcb5c 2755 for (index = start; index < end; ) {
e2d12e22
HD
2756 struct page *page;
2757
2758 /*
2759 * Good, the fallocate(2) manpage permits EINTR: we may have
2760 * been interrupted because we are using up too much memory.
2761 */
2762 if (signal_pending(current))
2763 error = -EINTR;
1aac1400
HD
2764 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2765 error = -ENOMEM;
e2d12e22 2766 else
9e18eb29 2767 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2768 if (error) {
d144bf62 2769 info->fallocend = undo_fallocend;
1635f6a7 2770 /* Remove the !PageUptodate pages we added */
7f556567
HD
2771 if (index > start) {
2772 shmem_undo_range(inode,
2773 (loff_t)start << PAGE_SHIFT,
2774 ((loff_t)index << PAGE_SHIFT) - 1, true);
2775 }
1aac1400 2776 goto undone;
e2d12e22
HD
2777 }
2778
050dcb5c
HD
2779 index++;
2780 /*
2781 * Here is a more important optimization than it appears:
2782 * a second SGP_FALLOC on the same huge page will clear it,
2783 * making it PageUptodate and un-undoable if we fail later.
2784 */
2785 if (PageTransCompound(page)) {
2786 index = round_up(index, HPAGE_PMD_NR);
2787 /* Beware 32-bit wraparound */
2788 if (!index)
2789 index--;
2790 }
2791
1aac1400
HD
2792 /*
2793 * Inform shmem_writepage() how far we have reached.
2794 * No need for lock or barrier: we have the page lock.
2795 */
1aac1400 2796 if (!PageUptodate(page))
050dcb5c
HD
2797 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2798 shmem_falloc.next = index;
1aac1400 2799
e2d12e22 2800 /*
1635f6a7
HD
2801 * If !PageUptodate, leave it that way so that freeable pages
2802 * can be recognized if we need to rollback on error later.
2803 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2804 * than free the pages we are allocating (and SGP_CACHE pages
2805 * might still be clean: we now need to mark those dirty too).
2806 */
2807 set_page_dirty(page);
2808 unlock_page(page);
09cbfeaf 2809 put_page(page);
e2d12e22
HD
2810 cond_resched();
2811 }
2812
2813 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2814 i_size_write(inode, offset + len);
078cd827 2815 inode->i_ctime = current_time(inode);
1aac1400
HD
2816undone:
2817 spin_lock(&inode->i_lock);
2818 inode->i_private = NULL;
2819 spin_unlock(&inode->i_lock);
e2d12e22 2820out:
5955102c 2821 inode_unlock(inode);
83e4fa9c
HD
2822 return error;
2823}
2824
726c3342 2825static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2826{
726c3342 2827 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2828
2829 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2830 buf->f_bsize = PAGE_SIZE;
1da177e4 2831 buf->f_namelen = NAME_MAX;
0edd73b3 2832 if (sbinfo->max_blocks) {
1da177e4 2833 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2834 buf->f_bavail =
2835 buf->f_bfree = sbinfo->max_blocks -
2836 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2837 }
2838 if (sbinfo->max_inodes) {
1da177e4
LT
2839 buf->f_files = sbinfo->max_inodes;
2840 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2841 }
2842 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2843
2844 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2845
1da177e4
LT
2846 return 0;
2847}
2848
2849/*
2850 * File creation. Allocate an inode, and we're done..
2851 */
2852static int
549c7297
CB
2853shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2854 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2855{
0b0a0806 2856 struct inode *inode;
1da177e4
LT
2857 int error = -ENOSPC;
2858
454abafe 2859 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2860 if (inode) {
feda821e
CH
2861 error = simple_acl_create(dir, inode);
2862 if (error)
2863 goto out_iput;
2a7dba39 2864 error = security_inode_init_security(inode, dir,
9d8f13ba 2865 &dentry->d_name,
6d9d88d0 2866 shmem_initxattrs, NULL);
feda821e
CH
2867 if (error && error != -EOPNOTSUPP)
2868 goto out_iput;
37ec43cd 2869
718deb6b 2870 error = 0;
1da177e4 2871 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2872 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2873 d_instantiate(dentry, inode);
2874 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2875 }
2876 return error;
feda821e
CH
2877out_iput:
2878 iput(inode);
2879 return error;
1da177e4
LT
2880}
2881
60545d0d 2882static int
549c7297
CB
2883shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2884 struct dentry *dentry, umode_t mode)
60545d0d
AV
2885{
2886 struct inode *inode;
2887 int error = -ENOSPC;
2888
2889 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2890 if (inode) {
2891 error = security_inode_init_security(inode, dir,
2892 NULL,
2893 shmem_initxattrs, NULL);
feda821e
CH
2894 if (error && error != -EOPNOTSUPP)
2895 goto out_iput;
2896 error = simple_acl_create(dir, inode);
2897 if (error)
2898 goto out_iput;
60545d0d
AV
2899 d_tmpfile(dentry, inode);
2900 }
2901 return error;
feda821e
CH
2902out_iput:
2903 iput(inode);
2904 return error;
60545d0d
AV
2905}
2906
549c7297
CB
2907static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2908 struct dentry *dentry, umode_t mode)
1da177e4
LT
2909{
2910 int error;
2911
549c7297
CB
2912 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2913 mode | S_IFDIR, 0)))
1da177e4 2914 return error;
d8c76e6f 2915 inc_nlink(dir);
1da177e4
LT
2916 return 0;
2917}
2918
549c7297
CB
2919static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2920 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2921{
549c7297 2922 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2923}
2924
2925/*
2926 * Link a file..
2927 */
2928static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2929{
75c3cfa8 2930 struct inode *inode = d_inode(old_dentry);
29b00e60 2931 int ret = 0;
1da177e4
LT
2932
2933 /*
2934 * No ordinary (disk based) filesystem counts links as inodes;
2935 * but each new link needs a new dentry, pinning lowmem, and
2936 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2937 * But if an O_TMPFILE file is linked into the tmpfs, the
2938 * first link must skip that, to get the accounting right.
1da177e4 2939 */
1062af92 2940 if (inode->i_nlink) {
e809d5f0 2941 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2942 if (ret)
2943 goto out;
2944 }
1da177e4
LT
2945
2946 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2947 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2948 inc_nlink(inode);
7de9c6ee 2949 ihold(inode); /* New dentry reference */
1da177e4
LT
2950 dget(dentry); /* Extra pinning count for the created dentry */
2951 d_instantiate(dentry, inode);
5b04c689
PE
2952out:
2953 return ret;
1da177e4
LT
2954}
2955
2956static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2957{
75c3cfa8 2958 struct inode *inode = d_inode(dentry);
1da177e4 2959
5b04c689
PE
2960 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2961 shmem_free_inode(inode->i_sb);
1da177e4
LT
2962
2963 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2964 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2965 drop_nlink(inode);
1da177e4
LT
2966 dput(dentry); /* Undo the count from "create" - this does all the work */
2967 return 0;
2968}
2969
2970static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2971{
2972 if (!simple_empty(dentry))
2973 return -ENOTEMPTY;
2974
75c3cfa8 2975 drop_nlink(d_inode(dentry));
9a53c3a7 2976 drop_nlink(dir);
1da177e4
LT
2977 return shmem_unlink(dir, dentry);
2978}
2979
37456771
MS
2980static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2981{
e36cb0b8
DH
2982 bool old_is_dir = d_is_dir(old_dentry);
2983 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2984
2985 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2986 if (old_is_dir) {
2987 drop_nlink(old_dir);
2988 inc_nlink(new_dir);
2989 } else {
2990 drop_nlink(new_dir);
2991 inc_nlink(old_dir);
2992 }
2993 }
2994 old_dir->i_ctime = old_dir->i_mtime =
2995 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2996 d_inode(old_dentry)->i_ctime =
078cd827 2997 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2998
2999 return 0;
3000}
3001
549c7297
CB
3002static int shmem_whiteout(struct user_namespace *mnt_userns,
3003 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
3004{
3005 struct dentry *whiteout;
3006 int error;
3007
3008 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3009 if (!whiteout)
3010 return -ENOMEM;
3011
549c7297 3012 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
3013 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3014 dput(whiteout);
3015 if (error)
3016 return error;
3017
3018 /*
3019 * Cheat and hash the whiteout while the old dentry is still in
3020 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3021 *
3022 * d_lookup() will consistently find one of them at this point,
3023 * not sure which one, but that isn't even important.
3024 */
3025 d_rehash(whiteout);
3026 return 0;
3027}
3028
1da177e4
LT
3029/*
3030 * The VFS layer already does all the dentry stuff for rename,
3031 * we just have to decrement the usage count for the target if
3032 * it exists so that the VFS layer correctly free's it when it
3033 * gets overwritten.
3034 */
549c7297
CB
3035static int shmem_rename2(struct user_namespace *mnt_userns,
3036 struct inode *old_dir, struct dentry *old_dentry,
3037 struct inode *new_dir, struct dentry *new_dentry,
3038 unsigned int flags)
1da177e4 3039{
75c3cfa8 3040 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3041 int they_are_dirs = S_ISDIR(inode->i_mode);
3042
46fdb794 3043 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3044 return -EINVAL;
3045
37456771
MS
3046 if (flags & RENAME_EXCHANGE)
3047 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3048
1da177e4
LT
3049 if (!simple_empty(new_dentry))
3050 return -ENOTEMPTY;
3051
46fdb794
MS
3052 if (flags & RENAME_WHITEOUT) {
3053 int error;
3054
549c7297 3055 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3056 if (error)
3057 return error;
3058 }
3059
75c3cfa8 3060 if (d_really_is_positive(new_dentry)) {
1da177e4 3061 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3062 if (they_are_dirs) {
75c3cfa8 3063 drop_nlink(d_inode(new_dentry));
9a53c3a7 3064 drop_nlink(old_dir);
b928095b 3065 }
1da177e4 3066 } else if (they_are_dirs) {
9a53c3a7 3067 drop_nlink(old_dir);
d8c76e6f 3068 inc_nlink(new_dir);
1da177e4
LT
3069 }
3070
3071 old_dir->i_size -= BOGO_DIRENT_SIZE;
3072 new_dir->i_size += BOGO_DIRENT_SIZE;
3073 old_dir->i_ctime = old_dir->i_mtime =
3074 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3075 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3076 return 0;
3077}
3078
549c7297
CB
3079static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3080 struct dentry *dentry, const char *symname)
1da177e4
LT
3081{
3082 int error;
3083 int len;
3084 struct inode *inode;
9276aad6 3085 struct page *page;
1da177e4
LT
3086
3087 len = strlen(symname) + 1;
09cbfeaf 3088 if (len > PAGE_SIZE)
1da177e4
LT
3089 return -ENAMETOOLONG;
3090
0825a6f9
JP
3091 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3092 VM_NORESERVE);
1da177e4
LT
3093 if (!inode)
3094 return -ENOSPC;
3095
9d8f13ba 3096 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3097 shmem_initxattrs, NULL);
343c3d7f
MN
3098 if (error && error != -EOPNOTSUPP) {
3099 iput(inode);
3100 return error;
570bc1c2
SS
3101 }
3102
1da177e4 3103 inode->i_size = len-1;
69f07ec9 3104 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3105 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3106 if (!inode->i_link) {
69f07ec9
HD
3107 iput(inode);
3108 return -ENOMEM;
3109 }
3110 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3111 } else {
e8ecde25 3112 inode_nohighmem(inode);
9e18eb29 3113 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3114 if (error) {
3115 iput(inode);
3116 return error;
3117 }
14fcc23f 3118 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3119 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3120 memcpy(page_address(page), symname, len);
ec9516fb 3121 SetPageUptodate(page);
1da177e4 3122 set_page_dirty(page);
6746aff7 3123 unlock_page(page);
09cbfeaf 3124 put_page(page);
1da177e4 3125 }
1da177e4 3126 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3127 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3128 d_instantiate(dentry, inode);
3129 dget(dentry);
3130 return 0;
3131}
3132
fceef393 3133static void shmem_put_link(void *arg)
1da177e4 3134{
fceef393
AV
3135 mark_page_accessed(arg);
3136 put_page(arg);
1da177e4
LT
3137}
3138
6b255391 3139static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3140 struct inode *inode,
3141 struct delayed_call *done)
1da177e4 3142{
1da177e4 3143 struct page *page = NULL;
6b255391 3144 int error;
6a6c9904
AV
3145 if (!dentry) {
3146 page = find_get_page(inode->i_mapping, 0);
3147 if (!page)
3148 return ERR_PTR(-ECHILD);
3149 if (!PageUptodate(page)) {
3150 put_page(page);
3151 return ERR_PTR(-ECHILD);
3152 }
3153 } else {
9e18eb29 3154 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3155 if (error)
3156 return ERR_PTR(error);
3157 unlock_page(page);
3158 }
fceef393 3159 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3160 return page_address(page);
1da177e4
LT
3161}
3162
b09e0fa4 3163#ifdef CONFIG_TMPFS_XATTR
46711810 3164/*
b09e0fa4
EP
3165 * Superblocks without xattr inode operations may get some security.* xattr
3166 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3167 * like ACLs, we also need to implement the security.* handlers at
3168 * filesystem level, though.
3169 */
3170
6d9d88d0
JS
3171/*
3172 * Callback for security_inode_init_security() for acquiring xattrs.
3173 */
3174static int shmem_initxattrs(struct inode *inode,
3175 const struct xattr *xattr_array,
3176 void *fs_info)
3177{
3178 struct shmem_inode_info *info = SHMEM_I(inode);
3179 const struct xattr *xattr;
38f38657 3180 struct simple_xattr *new_xattr;
6d9d88d0
JS
3181 size_t len;
3182
3183 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3184 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3185 if (!new_xattr)
3186 return -ENOMEM;
3187
3188 len = strlen(xattr->name) + 1;
3189 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3190 GFP_KERNEL);
3191 if (!new_xattr->name) {
3bef735a 3192 kvfree(new_xattr);
6d9d88d0
JS
3193 return -ENOMEM;
3194 }
3195
3196 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3197 XATTR_SECURITY_PREFIX_LEN);
3198 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3199 xattr->name, len);
3200
38f38657 3201 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3202 }
3203
3204 return 0;
3205}
3206
aa7c5241 3207static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, void *buffer, size_t size)
b09e0fa4 3210{
b296821a 3211 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3212
aa7c5241 3213 name = xattr_full_name(handler, name);
38f38657 3214 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3215}
3216
aa7c5241 3217static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3218 struct user_namespace *mnt_userns,
59301226
AV
3219 struct dentry *unused, struct inode *inode,
3220 const char *name, const void *value,
3221 size_t size, int flags)
b09e0fa4 3222{
59301226 3223 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3224
aa7c5241 3225 name = xattr_full_name(handler, name);
a46a2295 3226 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3227}
3228
aa7c5241
AG
3229static const struct xattr_handler shmem_security_xattr_handler = {
3230 .prefix = XATTR_SECURITY_PREFIX,
3231 .get = shmem_xattr_handler_get,
3232 .set = shmem_xattr_handler_set,
3233};
b09e0fa4 3234
aa7c5241
AG
3235static const struct xattr_handler shmem_trusted_xattr_handler = {
3236 .prefix = XATTR_TRUSTED_PREFIX,
3237 .get = shmem_xattr_handler_get,
3238 .set = shmem_xattr_handler_set,
3239};
b09e0fa4 3240
aa7c5241
AG
3241static const struct xattr_handler *shmem_xattr_handlers[] = {
3242#ifdef CONFIG_TMPFS_POSIX_ACL
3243 &posix_acl_access_xattr_handler,
3244 &posix_acl_default_xattr_handler,
3245#endif
3246 &shmem_security_xattr_handler,
3247 &shmem_trusted_xattr_handler,
3248 NULL
3249};
b09e0fa4
EP
3250
3251static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3252{
75c3cfa8 3253 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3254 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3255}
3256#endif /* CONFIG_TMPFS_XATTR */
3257
69f07ec9 3258static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3259 .get_link = simple_get_link,
b09e0fa4 3260#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3261 .listxattr = shmem_listxattr,
b09e0fa4
EP
3262#endif
3263};
3264
3265static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3266 .get_link = shmem_get_link,
b09e0fa4 3267#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3268 .listxattr = shmem_listxattr,
39f0247d 3269#endif
b09e0fa4 3270};
39f0247d 3271
91828a40
DG
3272static struct dentry *shmem_get_parent(struct dentry *child)
3273{
3274 return ERR_PTR(-ESTALE);
3275}
3276
3277static int shmem_match(struct inode *ino, void *vfh)
3278{
3279 __u32 *fh = vfh;
3280 __u64 inum = fh[2];
3281 inum = (inum << 32) | fh[1];
3282 return ino->i_ino == inum && fh[0] == ino->i_generation;
3283}
3284
12ba780d
AG
3285/* Find any alias of inode, but prefer a hashed alias */
3286static struct dentry *shmem_find_alias(struct inode *inode)
3287{
3288 struct dentry *alias = d_find_alias(inode);
3289
3290 return alias ?: d_find_any_alias(inode);
3291}
3292
3293
480b116c
CH
3294static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3295 struct fid *fid, int fh_len, int fh_type)
91828a40 3296{
91828a40 3297 struct inode *inode;
480b116c 3298 struct dentry *dentry = NULL;
35c2a7f4 3299 u64 inum;
480b116c
CH
3300
3301 if (fh_len < 3)
3302 return NULL;
91828a40 3303
35c2a7f4
HD
3304 inum = fid->raw[2];
3305 inum = (inum << 32) | fid->raw[1];
3306
480b116c
CH
3307 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3308 shmem_match, fid->raw);
91828a40 3309 if (inode) {
12ba780d 3310 dentry = shmem_find_alias(inode);
91828a40
DG
3311 iput(inode);
3312 }
3313
480b116c 3314 return dentry;
91828a40
DG
3315}
3316
b0b0382b
AV
3317static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3318 struct inode *parent)
91828a40 3319{
5fe0c237
AK
3320 if (*len < 3) {
3321 *len = 3;
94e07a75 3322 return FILEID_INVALID;
5fe0c237 3323 }
91828a40 3324
1d3382cb 3325 if (inode_unhashed(inode)) {
91828a40
DG
3326 /* Unfortunately insert_inode_hash is not idempotent,
3327 * so as we hash inodes here rather than at creation
3328 * time, we need a lock to ensure we only try
3329 * to do it once
3330 */
3331 static DEFINE_SPINLOCK(lock);
3332 spin_lock(&lock);
1d3382cb 3333 if (inode_unhashed(inode))
91828a40
DG
3334 __insert_inode_hash(inode,
3335 inode->i_ino + inode->i_generation);
3336 spin_unlock(&lock);
3337 }
3338
3339 fh[0] = inode->i_generation;
3340 fh[1] = inode->i_ino;
3341 fh[2] = ((__u64)inode->i_ino) >> 32;
3342
3343 *len = 3;
3344 return 1;
3345}
3346
39655164 3347static const struct export_operations shmem_export_ops = {
91828a40 3348 .get_parent = shmem_get_parent,
91828a40 3349 .encode_fh = shmem_encode_fh,
480b116c 3350 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3351};
3352
626c3920
AV
3353enum shmem_param {
3354 Opt_gid,
3355 Opt_huge,
3356 Opt_mode,
3357 Opt_mpol,
3358 Opt_nr_blocks,
3359 Opt_nr_inodes,
3360 Opt_size,
3361 Opt_uid,
ea3271f7
CD
3362 Opt_inode32,
3363 Opt_inode64,
626c3920
AV
3364};
3365
5eede625 3366static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3367 {"never", SHMEM_HUGE_NEVER },
3368 {"always", SHMEM_HUGE_ALWAYS },
3369 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3370 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3371 {}
3372};
3373
d7167b14 3374const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3375 fsparam_u32 ("gid", Opt_gid),
2710c957 3376 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3377 fsparam_u32oct("mode", Opt_mode),
3378 fsparam_string("mpol", Opt_mpol),
3379 fsparam_string("nr_blocks", Opt_nr_blocks),
3380 fsparam_string("nr_inodes", Opt_nr_inodes),
3381 fsparam_string("size", Opt_size),
3382 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3383 fsparam_flag ("inode32", Opt_inode32),
3384 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3385 {}
3386};
3387
f3235626 3388static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3389{
f3235626 3390 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3391 struct fs_parse_result result;
3392 unsigned long long size;
e04dc423 3393 char *rest;
626c3920
AV
3394 int opt;
3395
d7167b14 3396 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3397 if (opt < 0)
626c3920 3398 return opt;
1da177e4 3399
626c3920
AV
3400 switch (opt) {
3401 case Opt_size:
3402 size = memparse(param->string, &rest);
e04dc423
AV
3403 if (*rest == '%') {
3404 size <<= PAGE_SHIFT;
3405 size *= totalram_pages();
3406 do_div(size, 100);
3407 rest++;
3408 }
3409 if (*rest)
626c3920 3410 goto bad_value;
e04dc423
AV
3411 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3412 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3413 break;
3414 case Opt_nr_blocks:
3415 ctx->blocks = memparse(param->string, &rest);
e04dc423 3416 if (*rest)
626c3920 3417 goto bad_value;
e04dc423 3418 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3419 break;
3420 case Opt_nr_inodes:
3421 ctx->inodes = memparse(param->string, &rest);
e04dc423 3422 if (*rest)
626c3920 3423 goto bad_value;
e04dc423 3424 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3425 break;
3426 case Opt_mode:
3427 ctx->mode = result.uint_32 & 07777;
3428 break;
3429 case Opt_uid:
3430 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3431 if (!uid_valid(ctx->uid))
626c3920
AV
3432 goto bad_value;
3433 break;
3434 case Opt_gid:
3435 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3436 if (!gid_valid(ctx->gid))
626c3920
AV
3437 goto bad_value;
3438 break;
3439 case Opt_huge:
3440 ctx->huge = result.uint_32;
3441 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3442 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3443 has_transparent_hugepage()))
3444 goto unsupported_parameter;
e04dc423 3445 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3446 break;
3447 case Opt_mpol:
3448 if (IS_ENABLED(CONFIG_NUMA)) {
3449 mpol_put(ctx->mpol);
3450 ctx->mpol = NULL;
3451 if (mpol_parse_str(param->string, &ctx->mpol))
3452 goto bad_value;
3453 break;
3454 }
3455 goto unsupported_parameter;
ea3271f7
CD
3456 case Opt_inode32:
3457 ctx->full_inums = false;
3458 ctx->seen |= SHMEM_SEEN_INUMS;
3459 break;
3460 case Opt_inode64:
3461 if (sizeof(ino_t) < 8) {
3462 return invalfc(fc,
3463 "Cannot use inode64 with <64bit inums in kernel\n");
3464 }
3465 ctx->full_inums = true;
3466 ctx->seen |= SHMEM_SEEN_INUMS;
3467 break;
e04dc423
AV
3468 }
3469 return 0;
3470
626c3920 3471unsupported_parameter:
f35aa2bc 3472 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3473bad_value:
f35aa2bc 3474 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3475}
3476
f3235626 3477static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3478{
f3235626
DH
3479 char *options = data;
3480
33f37c64
AV
3481 if (options) {
3482 int err = security_sb_eat_lsm_opts(options, &fc->security);
3483 if (err)
3484 return err;
3485 }
3486
b00dc3ad 3487 while (options != NULL) {
626c3920 3488 char *this_char = options;
b00dc3ad
HD
3489 for (;;) {
3490 /*
3491 * NUL-terminate this option: unfortunately,
3492 * mount options form a comma-separated list,
3493 * but mpol's nodelist may also contain commas.
3494 */
3495 options = strchr(options, ',');
3496 if (options == NULL)
3497 break;
3498 options++;
3499 if (!isdigit(*options)) {
3500 options[-1] = '\0';
3501 break;
3502 }
3503 }
626c3920 3504 if (*this_char) {
68d68ff6 3505 char *value = strchr(this_char, '=');
f3235626 3506 size_t len = 0;
626c3920
AV
3507 int err;
3508
3509 if (value) {
3510 *value++ = '\0';
f3235626 3511 len = strlen(value);
626c3920 3512 }
f3235626
DH
3513 err = vfs_parse_fs_string(fc, this_char, value, len);
3514 if (err < 0)
3515 return err;
1da177e4 3516 }
1da177e4
LT
3517 }
3518 return 0;
1da177e4
LT
3519}
3520
f3235626
DH
3521/*
3522 * Reconfigure a shmem filesystem.
3523 *
3524 * Note that we disallow change from limited->unlimited blocks/inodes while any
3525 * are in use; but we must separately disallow unlimited->limited, because in
3526 * that case we have no record of how much is already in use.
3527 */
3528static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3529{
f3235626
DH
3530 struct shmem_options *ctx = fc->fs_private;
3531 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3532 unsigned long inodes;
bf11b9a8 3533 struct mempolicy *mpol = NULL;
f3235626 3534 const char *err;
1da177e4 3535
bf11b9a8 3536 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3537 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3538 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3539 if (!sbinfo->max_blocks) {
3540 err = "Cannot retroactively limit size";
0b5071dd 3541 goto out;
f3235626 3542 }
0b5071dd 3543 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3544 ctx->blocks) > 0) {
3545 err = "Too small a size for current use";
0b5071dd 3546 goto out;
f3235626 3547 }
0b5071dd 3548 }
f3235626
DH
3549 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3550 if (!sbinfo->max_inodes) {
3551 err = "Cannot retroactively limit inodes";
0b5071dd 3552 goto out;
f3235626
DH
3553 }
3554 if (ctx->inodes < inodes) {
3555 err = "Too few inodes for current use";
0b5071dd 3556 goto out;
f3235626 3557 }
0b5071dd 3558 }
0edd73b3 3559
ea3271f7
CD
3560 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3561 sbinfo->next_ino > UINT_MAX) {
3562 err = "Current inum too high to switch to 32-bit inums";
3563 goto out;
3564 }
3565
f3235626
DH
3566 if (ctx->seen & SHMEM_SEEN_HUGE)
3567 sbinfo->huge = ctx->huge;
ea3271f7
CD
3568 if (ctx->seen & SHMEM_SEEN_INUMS)
3569 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3570 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3571 sbinfo->max_blocks = ctx->blocks;
3572 if (ctx->seen & SHMEM_SEEN_INODES) {
3573 sbinfo->max_inodes = ctx->inodes;
3574 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3575 }
71fe804b 3576
5f00110f
GT
3577 /*
3578 * Preserve previous mempolicy unless mpol remount option was specified.
3579 */
f3235626 3580 if (ctx->mpol) {
bf11b9a8 3581 mpol = sbinfo->mpol;
f3235626
DH
3582 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3583 ctx->mpol = NULL;
5f00110f 3584 }
bf11b9a8
SAS
3585 raw_spin_unlock(&sbinfo->stat_lock);
3586 mpol_put(mpol);
f3235626 3587 return 0;
0edd73b3 3588out:
bf11b9a8 3589 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3590 return invalfc(fc, "%s", err);
1da177e4 3591}
680d794b 3592
34c80b1d 3593static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3594{
34c80b1d 3595 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3596
3597 if (sbinfo->max_blocks != shmem_default_max_blocks())
3598 seq_printf(seq, ",size=%luk",
09cbfeaf 3599 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3600 if (sbinfo->max_inodes != shmem_default_max_inodes())
3601 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3602 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3603 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3604 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3605 seq_printf(seq, ",uid=%u",
3606 from_kuid_munged(&init_user_ns, sbinfo->uid));
3607 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3608 seq_printf(seq, ",gid=%u",
3609 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3610
3611 /*
3612 * Showing inode{64,32} might be useful even if it's the system default,
3613 * since then people don't have to resort to checking both here and
3614 * /proc/config.gz to confirm 64-bit inums were successfully applied
3615 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3616 *
3617 * We hide it when inode64 isn't the default and we are using 32-bit
3618 * inodes, since that probably just means the feature isn't even under
3619 * consideration.
3620 *
3621 * As such:
3622 *
3623 * +-----------------+-----------------+
3624 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3625 * +------------------+-----------------+-----------------+
3626 * | full_inums=true | show | show |
3627 * | full_inums=false | show | hide |
3628 * +------------------+-----------------+-----------------+
3629 *
3630 */
3631 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3632 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3633#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3634 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3635 if (sbinfo->huge)
3636 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3637#endif
71fe804b 3638 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3639 return 0;
3640}
9183df25 3641
680d794b 3642#endif /* CONFIG_TMPFS */
1da177e4
LT
3643
3644static void shmem_put_super(struct super_block *sb)
3645{
602586a8
HD
3646 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3647
e809d5f0 3648 free_percpu(sbinfo->ino_batch);
602586a8 3649 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3650 mpol_put(sbinfo->mpol);
602586a8 3651 kfree(sbinfo);
1da177e4
LT
3652 sb->s_fs_info = NULL;
3653}
3654
f3235626 3655static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3656{
f3235626 3657 struct shmem_options *ctx = fc->fs_private;
1da177e4 3658 struct inode *inode;
0edd73b3 3659 struct shmem_sb_info *sbinfo;
680d794b
AM
3660
3661 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3662 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3663 L1_CACHE_BYTES), GFP_KERNEL);
3664 if (!sbinfo)
3665 return -ENOMEM;
3666
680d794b 3667 sb->s_fs_info = sbinfo;
1da177e4 3668
0edd73b3 3669#ifdef CONFIG_TMPFS
1da177e4
LT
3670 /*
3671 * Per default we only allow half of the physical ram per
3672 * tmpfs instance, limiting inodes to one per page of lowmem;
3673 * but the internal instance is left unlimited.
3674 */
1751e8a6 3675 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3676 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3677 ctx->blocks = shmem_default_max_blocks();
3678 if (!(ctx->seen & SHMEM_SEEN_INODES))
3679 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3680 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3681 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3682 } else {
1751e8a6 3683 sb->s_flags |= SB_NOUSER;
1da177e4 3684 }
91828a40 3685 sb->s_export_op = &shmem_export_ops;
1751e8a6 3686 sb->s_flags |= SB_NOSEC;
1da177e4 3687#else
1751e8a6 3688 sb->s_flags |= SB_NOUSER;
1da177e4 3689#endif
f3235626
DH
3690 sbinfo->max_blocks = ctx->blocks;
3691 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3692 if (sb->s_flags & SB_KERNMOUNT) {
3693 sbinfo->ino_batch = alloc_percpu(ino_t);
3694 if (!sbinfo->ino_batch)
3695 goto failed;
3696 }
f3235626
DH
3697 sbinfo->uid = ctx->uid;
3698 sbinfo->gid = ctx->gid;
ea3271f7 3699 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3700 sbinfo->mode = ctx->mode;
3701 sbinfo->huge = ctx->huge;
3702 sbinfo->mpol = ctx->mpol;
3703 ctx->mpol = NULL;
1da177e4 3704
bf11b9a8 3705 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3706 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3707 goto failed;
779750d2
KS
3708 spin_lock_init(&sbinfo->shrinklist_lock);
3709 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3710
285b2c4f 3711 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3712 sb->s_blocksize = PAGE_SIZE;
3713 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3714 sb->s_magic = TMPFS_MAGIC;
3715 sb->s_op = &shmem_ops;
cfd95a9c 3716 sb->s_time_gran = 1;
b09e0fa4 3717#ifdef CONFIG_TMPFS_XATTR
39f0247d 3718 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3719#endif
3720#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3721 sb->s_flags |= SB_POSIXACL;
39f0247d 3722#endif
2b4db796 3723 uuid_gen(&sb->s_uuid);
0edd73b3 3724
454abafe 3725 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3726 if (!inode)
3727 goto failed;
680d794b
AM
3728 inode->i_uid = sbinfo->uid;
3729 inode->i_gid = sbinfo->gid;
318ceed0
AV
3730 sb->s_root = d_make_root(inode);
3731 if (!sb->s_root)
48fde701 3732 goto failed;
1da177e4
LT
3733 return 0;
3734
1da177e4
LT
3735failed:
3736 shmem_put_super(sb);
f2b346e4 3737 return -ENOMEM;
1da177e4
LT
3738}
3739
f3235626
DH
3740static int shmem_get_tree(struct fs_context *fc)
3741{
3742 return get_tree_nodev(fc, shmem_fill_super);
3743}
3744
3745static void shmem_free_fc(struct fs_context *fc)
3746{
3747 struct shmem_options *ctx = fc->fs_private;
3748
3749 if (ctx) {
3750 mpol_put(ctx->mpol);
3751 kfree(ctx);
3752 }
3753}
3754
3755static const struct fs_context_operations shmem_fs_context_ops = {
3756 .free = shmem_free_fc,
3757 .get_tree = shmem_get_tree,
3758#ifdef CONFIG_TMPFS
3759 .parse_monolithic = shmem_parse_options,
3760 .parse_param = shmem_parse_one,
3761 .reconfigure = shmem_reconfigure,
3762#endif
3763};
3764
fcc234f8 3765static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3766
3767static struct inode *shmem_alloc_inode(struct super_block *sb)
3768{
41ffe5d5
HD
3769 struct shmem_inode_info *info;
3770 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3771 if (!info)
1da177e4 3772 return NULL;
41ffe5d5 3773 return &info->vfs_inode;
1da177e4
LT
3774}
3775
74b1da56 3776static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3777{
84e710da
AV
3778 if (S_ISLNK(inode->i_mode))
3779 kfree(inode->i_link);
fa0d7e3d
NP
3780 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3781}
3782
1da177e4
LT
3783static void shmem_destroy_inode(struct inode *inode)
3784{
09208d15 3785 if (S_ISREG(inode->i_mode))
1da177e4 3786 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3787}
3788
41ffe5d5 3789static void shmem_init_inode(void *foo)
1da177e4 3790{
41ffe5d5
HD
3791 struct shmem_inode_info *info = foo;
3792 inode_init_once(&info->vfs_inode);
1da177e4
LT
3793}
3794
9a8ec03e 3795static void shmem_init_inodecache(void)
1da177e4
LT
3796{
3797 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3798 sizeof(struct shmem_inode_info),
5d097056 3799 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3800}
3801
41ffe5d5 3802static void shmem_destroy_inodecache(void)
1da177e4 3803{
1a1d92c1 3804 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3805}
3806
30e6a51d 3807const struct address_space_operations shmem_aops = {
1da177e4 3808 .writepage = shmem_writepage,
76719325 3809 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3810#ifdef CONFIG_TMPFS
800d15a5
NP
3811 .write_begin = shmem_write_begin,
3812 .write_end = shmem_write_end,
1da177e4 3813#endif
1c93923c 3814#ifdef CONFIG_MIGRATION
304dbdb7 3815 .migratepage = migrate_page,
1c93923c 3816#endif
aa261f54 3817 .error_remove_page = generic_error_remove_page,
1da177e4 3818};
30e6a51d 3819EXPORT_SYMBOL(shmem_aops);
1da177e4 3820
15ad7cdc 3821static const struct file_operations shmem_file_operations = {
1da177e4 3822 .mmap = shmem_mmap,
c01d5b30 3823 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3824#ifdef CONFIG_TMPFS
220f2ac9 3825 .llseek = shmem_file_llseek,
2ba5bbed 3826 .read_iter = shmem_file_read_iter,
8174202b 3827 .write_iter = generic_file_write_iter,
1b061d92 3828 .fsync = noop_fsync,
82c156f8 3829 .splice_read = generic_file_splice_read,
f6cb85d0 3830 .splice_write = iter_file_splice_write,
83e4fa9c 3831 .fallocate = shmem_fallocate,
1da177e4
LT
3832#endif
3833};
3834
92e1d5be 3835static const struct inode_operations shmem_inode_operations = {
44a30220 3836 .getattr = shmem_getattr,
94c1e62d 3837 .setattr = shmem_setattr,
b09e0fa4 3838#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3839 .listxattr = shmem_listxattr,
feda821e 3840 .set_acl = simple_set_acl,
b09e0fa4 3841#endif
1da177e4
LT
3842};
3843
92e1d5be 3844static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3845#ifdef CONFIG_TMPFS
3846 .create = shmem_create,
3847 .lookup = simple_lookup,
3848 .link = shmem_link,
3849 .unlink = shmem_unlink,
3850 .symlink = shmem_symlink,
3851 .mkdir = shmem_mkdir,
3852 .rmdir = shmem_rmdir,
3853 .mknod = shmem_mknod,
2773bf00 3854 .rename = shmem_rename2,
60545d0d 3855 .tmpfile = shmem_tmpfile,
1da177e4 3856#endif
b09e0fa4 3857#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3858 .listxattr = shmem_listxattr,
b09e0fa4 3859#endif
39f0247d 3860#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3861 .setattr = shmem_setattr,
feda821e 3862 .set_acl = simple_set_acl,
39f0247d
AG
3863#endif
3864};
3865
92e1d5be 3866static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3867#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3868 .listxattr = shmem_listxattr,
b09e0fa4 3869#endif
39f0247d 3870#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3871 .setattr = shmem_setattr,
feda821e 3872 .set_acl = simple_set_acl,
39f0247d 3873#endif
1da177e4
LT
3874};
3875
759b9775 3876static const struct super_operations shmem_ops = {
1da177e4 3877 .alloc_inode = shmem_alloc_inode,
74b1da56 3878 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3879 .destroy_inode = shmem_destroy_inode,
3880#ifdef CONFIG_TMPFS
3881 .statfs = shmem_statfs,
680d794b 3882 .show_options = shmem_show_options,
1da177e4 3883#endif
1f895f75 3884 .evict_inode = shmem_evict_inode,
1da177e4
LT
3885 .drop_inode = generic_delete_inode,
3886 .put_super = shmem_put_super,
396bcc52 3887#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3888 .nr_cached_objects = shmem_unused_huge_count,
3889 .free_cached_objects = shmem_unused_huge_scan,
3890#endif
1da177e4
LT
3891};
3892
f0f37e2f 3893static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3894 .fault = shmem_fault,
d7c17551 3895 .map_pages = filemap_map_pages,
1da177e4
LT
3896#ifdef CONFIG_NUMA
3897 .set_policy = shmem_set_policy,
3898 .get_policy = shmem_get_policy,
3899#endif
3900};
3901
f3235626 3902int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3903{
f3235626
DH
3904 struct shmem_options *ctx;
3905
3906 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3907 if (!ctx)
3908 return -ENOMEM;
3909
3910 ctx->mode = 0777 | S_ISVTX;
3911 ctx->uid = current_fsuid();
3912 ctx->gid = current_fsgid();
3913
3914 fc->fs_private = ctx;
3915 fc->ops = &shmem_fs_context_ops;
3916 return 0;
1da177e4
LT
3917}
3918
41ffe5d5 3919static struct file_system_type shmem_fs_type = {
1da177e4
LT
3920 .owner = THIS_MODULE,
3921 .name = "tmpfs",
f3235626
DH
3922 .init_fs_context = shmem_init_fs_context,
3923#ifdef CONFIG_TMPFS
d7167b14 3924 .parameters = shmem_fs_parameters,
f3235626 3925#endif
1da177e4 3926 .kill_sb = kill_litter_super,
01c70267 3927 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3928};
1da177e4 3929
41ffe5d5 3930int __init shmem_init(void)
1da177e4
LT
3931{
3932 int error;
3933
9a8ec03e 3934 shmem_init_inodecache();
1da177e4 3935
41ffe5d5 3936 error = register_filesystem(&shmem_fs_type);
1da177e4 3937 if (error) {
1170532b 3938 pr_err("Could not register tmpfs\n");
1da177e4
LT
3939 goto out2;
3940 }
95dc112a 3941
ca4e0519 3942 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3943 if (IS_ERR(shm_mnt)) {
3944 error = PTR_ERR(shm_mnt);
1170532b 3945 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3946 goto out1;
3947 }
5a6e75f8 3948
396bcc52 3949#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3950 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3951 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3952 else
3953 shmem_huge = 0; /* just in case it was patched */
3954#endif
1da177e4
LT
3955 return 0;
3956
3957out1:
41ffe5d5 3958 unregister_filesystem(&shmem_fs_type);
1da177e4 3959out2:
41ffe5d5 3960 shmem_destroy_inodecache();
1da177e4
LT
3961 shm_mnt = ERR_PTR(error);
3962 return error;
3963}
853ac43a 3964
396bcc52 3965#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3966static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3967 struct kobj_attribute *attr, char *buf)
5a6e75f8 3968{
26083eb6 3969 static const int values[] = {
5a6e75f8
KS
3970 SHMEM_HUGE_ALWAYS,
3971 SHMEM_HUGE_WITHIN_SIZE,
3972 SHMEM_HUGE_ADVISE,
3973 SHMEM_HUGE_NEVER,
3974 SHMEM_HUGE_DENY,
3975 SHMEM_HUGE_FORCE,
3976 };
79d4d38a
JP
3977 int len = 0;
3978 int i;
5a6e75f8 3979
79d4d38a
JP
3980 for (i = 0; i < ARRAY_SIZE(values); i++) {
3981 len += sysfs_emit_at(buf, len,
3982 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3983 i ? " " : "",
3984 shmem_format_huge(values[i]));
5a6e75f8 3985 }
79d4d38a
JP
3986
3987 len += sysfs_emit_at(buf, len, "\n");
3988
3989 return len;
5a6e75f8
KS
3990}
3991
3992static ssize_t shmem_enabled_store(struct kobject *kobj,
3993 struct kobj_attribute *attr, const char *buf, size_t count)
3994{
3995 char tmp[16];
3996 int huge;
3997
3998 if (count + 1 > sizeof(tmp))
3999 return -EINVAL;
4000 memcpy(tmp, buf, count);
4001 tmp[count] = '\0';
4002 if (count && tmp[count - 1] == '\n')
4003 tmp[count - 1] = '\0';
4004
4005 huge = shmem_parse_huge(tmp);
4006 if (huge == -EINVAL)
4007 return -EINVAL;
4008 if (!has_transparent_hugepage() &&
4009 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4010 return -EINVAL;
4011
4012 shmem_huge = huge;
435c0b87 4013 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4014 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4015 return count;
4016}
4017
4018struct kobj_attribute shmem_enabled_attr =
4019 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4020#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4021
853ac43a
MM
4022#else /* !CONFIG_SHMEM */
4023
4024/*
4025 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4026 *
4027 * This is intended for small system where the benefits of the full
4028 * shmem code (swap-backed and resource-limited) are outweighed by
4029 * their complexity. On systems without swap this code should be
4030 * effectively equivalent, but much lighter weight.
4031 */
4032
41ffe5d5 4033static struct file_system_type shmem_fs_type = {
853ac43a 4034 .name = "tmpfs",
f3235626 4035 .init_fs_context = ramfs_init_fs_context,
d7167b14 4036 .parameters = ramfs_fs_parameters,
853ac43a 4037 .kill_sb = kill_litter_super,
2b8576cb 4038 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4039};
4040
41ffe5d5 4041int __init shmem_init(void)
853ac43a 4042{
41ffe5d5 4043 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4044
41ffe5d5 4045 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4046 BUG_ON(IS_ERR(shm_mnt));
4047
4048 return 0;
4049}
4050
b56a2d8a
VRP
4051int shmem_unuse(unsigned int type, bool frontswap,
4052 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4053{
4054 return 0;
4055}
4056
d7c9e99a 4057int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4058{
4059 return 0;
4060}
4061
24513264
HD
4062void shmem_unlock_mapping(struct address_space *mapping)
4063{
4064}
4065
c01d5b30
HD
4066#ifdef CONFIG_MMU
4067unsigned long shmem_get_unmapped_area(struct file *file,
4068 unsigned long addr, unsigned long len,
4069 unsigned long pgoff, unsigned long flags)
4070{
4071 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4072}
4073#endif
4074
41ffe5d5 4075void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4076{
41ffe5d5 4077 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4078}
4079EXPORT_SYMBOL_GPL(shmem_truncate_range);
4080
0b0a0806
HD
4081#define shmem_vm_ops generic_file_vm_ops
4082#define shmem_file_operations ramfs_file_operations
454abafe 4083#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4084#define shmem_acct_size(flags, size) 0
4085#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4086
4087#endif /* CONFIG_SHMEM */
4088
4089/* common code */
1da177e4 4090
703321b6 4091static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4092 unsigned long flags, unsigned int i_flags)
1da177e4 4093{
1da177e4 4094 struct inode *inode;
93dec2da 4095 struct file *res;
1da177e4 4096
703321b6
MA
4097 if (IS_ERR(mnt))
4098 return ERR_CAST(mnt);
1da177e4 4099
285b2c4f 4100 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4101 return ERR_PTR(-EINVAL);
4102
4103 if (shmem_acct_size(flags, size))
4104 return ERR_PTR(-ENOMEM);
4105
93dec2da
AV
4106 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4107 flags);
dac2d1f6
AV
4108 if (unlikely(!inode)) {
4109 shmem_unacct_size(flags, size);
4110 return ERR_PTR(-ENOSPC);
4111 }
c7277090 4112 inode->i_flags |= i_flags;
1da177e4 4113 inode->i_size = size;
6d6b77f1 4114 clear_nlink(inode); /* It is unlinked */
26567cdb 4115 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4116 if (!IS_ERR(res))
4117 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4118 &shmem_file_operations);
26567cdb 4119 if (IS_ERR(res))
93dec2da 4120 iput(inode);
6b4d0b27 4121 return res;
1da177e4 4122}
c7277090
EP
4123
4124/**
4125 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4126 * kernel internal. There will be NO LSM permission checks against the
4127 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4128 * higher layer. The users are the big_key and shm implementations. LSM
4129 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4130 * @name: name for dentry (to be seen in /proc/<pid>/maps
4131 * @size: size to be set for the file
4132 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4133 */
4134struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4135{
703321b6 4136 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4137}
4138
4139/**
4140 * shmem_file_setup - get an unlinked file living in tmpfs
4141 * @name: name for dentry (to be seen in /proc/<pid>/maps
4142 * @size: size to be set for the file
4143 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4144 */
4145struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4146{
703321b6 4147 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4148}
395e0ddc 4149EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4150
703321b6
MA
4151/**
4152 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4153 * @mnt: the tmpfs mount where the file will be created
4154 * @name: name for dentry (to be seen in /proc/<pid>/maps
4155 * @size: size to be set for the file
4156 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157 */
4158struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4159 loff_t size, unsigned long flags)
4160{
4161 return __shmem_file_setup(mnt, name, size, flags, 0);
4162}
4163EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4164
46711810 4165/**
1da177e4 4166 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4167 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4168 */
4169int shmem_zero_setup(struct vm_area_struct *vma)
4170{
4171 struct file *file;
4172 loff_t size = vma->vm_end - vma->vm_start;
4173
66fc1303 4174 /*
c1e8d7c6 4175 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4176 * between XFS directory reading and selinux: since this file is only
4177 * accessible to the user through its mapping, use S_PRIVATE flag to
4178 * bypass file security, in the same way as shmem_kernel_file_setup().
4179 */
703321b6 4180 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4181 if (IS_ERR(file))
4182 return PTR_ERR(file);
4183
4184 if (vma->vm_file)
4185 fput(vma->vm_file);
4186 vma->vm_file = file;
4187 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4188
396bcc52 4189 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4190 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4191 (vma->vm_end & HPAGE_PMD_MASK)) {
4192 khugepaged_enter(vma, vma->vm_flags);
4193 }
4194
1da177e4
LT
4195 return 0;
4196}
d9d90e5e
HD
4197
4198/**
4199 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4200 * @mapping: the page's address_space
4201 * @index: the page index
4202 * @gfp: the page allocator flags to use if allocating
4203 *
4204 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4205 * with any new page allocations done using the specified allocation flags.
4206 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4207 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4208 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4209 *
68da9f05
HD
4210 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4211 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4212 */
4213struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4214 pgoff_t index, gfp_t gfp)
4215{
68da9f05
HD
4216#ifdef CONFIG_SHMEM
4217 struct inode *inode = mapping->host;
9276aad6 4218 struct page *page;
68da9f05
HD
4219 int error;
4220
30e6a51d 4221 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4222 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4223 gfp, NULL, NULL, NULL);
68da9f05
HD
4224 if (error)
4225 page = ERR_PTR(error);
4226 else
4227 unlock_page(page);
4228 return page;
4229#else
4230 /*
4231 * The tiny !SHMEM case uses ramfs without swap
4232 */
d9d90e5e 4233 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4234#endif
d9d90e5e
HD
4235}
4236EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.090566 seconds and 4 git commands to generate.