]> Git Repo - linux.git/blame - mm/shmem.c
squashfs: fix divide error in calculate_skip()
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4 85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
0b5071dd
AV
110struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
ea3271f7 117 bool full_inums;
0b5071dd
AV
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
ea3271f7 123#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
124};
125
b76db735 126#ifdef CONFIG_TMPFS
680d794b
AM
127static unsigned long shmem_default_max_blocks(void)
128{
ca79b0c2 129 return totalram_pages() / 2;
680d794b
AM
130}
131
132static unsigned long shmem_default_max_inodes(void)
133{
ca79b0c2
AK
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 137}
b76db735 138#endif
680d794b 139
bde05d1c
HD
140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
68da9f05 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp,
cfda0526 149 gfp_t gfp, struct vm_area_struct *vma,
2b740303 150 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 151
f3f0e1d2 152int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 153 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
154{
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 157}
1da177e4 158
1da177e4
LT
159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160{
161 return sb->s_fs_info;
162}
163
164/*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170static inline int shmem_acct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 return (flags & VM_NORESERVE) ?
191c5424 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
174}
175
176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177{
0b0a0806 178 if (!(flags & VM_NORESERVE))
1da177e4
LT
179 vm_unacct_memory(VM_ACCT(size));
180}
181
77142517
KK
182static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184{
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193}
194
1da177e4
LT
195/*
196 * ... whereas tmpfs objects are accounted incrementally as
75edd345 197 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
800d8c63 201static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 202{
800d8c63
KS
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
0b0a0806 212 if (flags & VM_NORESERVE)
09cbfeaf 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
214}
215
0f079694
MR
216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217{
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236}
237
238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239{
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246}
247
759b9775 248static const struct super_operations shmem_ops;
30e6a51d 249const struct address_space_operations shmem_aops;
15ad7cdc 250static const struct file_operations shmem_file_operations;
92e1d5be
AV
251static const struct inode_operations shmem_inode_operations;
252static const struct inode_operations shmem_dir_inode_operations;
253static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 254static const struct vm_operations_struct shmem_vm_ops;
779750d2 255static struct file_system_type shmem_fs_type;
1da177e4 256
b0506e48
MR
257bool vma_is_shmem(struct vm_area_struct *vma)
258{
259 return vma->vm_ops == &shmem_vm_ops;
260}
261
1da177e4 262static LIST_HEAD(shmem_swaplist);
cb5f7b9a 263static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 264
e809d5f0
CD
265/*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274#define SHMEM_INO_BATCH 1024
275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
276{
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
5b04c689 281 spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
5b04c689 288 }
e809d5f0
CD
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
ea3271f7
CD
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
e809d5f0
CD
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
ea3271f7
CD
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
e809d5f0
CD
304 }
305 *inop = ino;
306 }
5b04c689 307 spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
ea3271f7
CD
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
e809d5f0
CD
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
5b04c689 335 }
e809d5f0 336
5b04c689
PE
337 return 0;
338}
339
340static void shmem_free_inode(struct super_block *sb)
341{
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348}
349
46711810 350/**
41ffe5d5 351 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362static void shmem_recalc_inode(struct inode *inode)
363{
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
54af6042 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 371 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
372 }
373}
374
800d8c63
KS
375bool shmem_charge(struct inode *inode, long pages)
376{
377 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 378 unsigned long flags;
800d8c63 379
0f079694 380 if (!shmem_inode_acct_block(inode, pages))
800d8c63 381 return false;
b1cc94ab 382
aaa52e34
HD
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
4595ef88 386 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
4595ef88 390 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 391
800d8c63
KS
392 return true;
393}
394
395void shmem_uncharge(struct inode *inode, long pages)
396{
397 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 398 unsigned long flags;
800d8c63 399
aaa52e34
HD
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
4595ef88 402 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
4595ef88 406 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 407
0f079694 408 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
409}
410
7a5d0fbb 411/*
62f945b6 412 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 413 */
62f945b6 414static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
415 pgoff_t index, void *expected, void *replacement)
416{
62f945b6 417 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 418 void *item;
7a5d0fbb
HD
419
420 VM_BUG_ON(!expected);
6dbaf22c 421 VM_BUG_ON(!replacement);
62f945b6 422 item = xas_load(&xas);
7a5d0fbb
HD
423 if (item != expected)
424 return -ENOENT;
62f945b6 425 xas_store(&xas, replacement);
7a5d0fbb
HD
426 return 0;
427}
428
d1899228
HD
429/*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438{
a12831bf 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
440}
441
5a6e75f8
KS
442/*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456#define SHMEM_HUGE_NEVER 0
457#define SHMEM_HUGE_ALWAYS 1
458#define SHMEM_HUGE_WITHIN_SIZE 2
459#define SHMEM_HUGE_ADVISE 3
460
461/*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471#define SHMEM_HUGE_DENY (-1)
472#define SHMEM_HUGE_FORCE (-2)
473
396bcc52 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
475/* ifdef here to avoid bloating shmem.o when not necessary */
476
5b9c98f3 477static int shmem_huge __read_mostly;
5a6e75f8 478
e5f2249a 479#if defined(CONFIG_SYSFS)
5a6e75f8
KS
480static int shmem_parse_huge(const char *str)
481{
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495}
e5f2249a 496#endif
5a6e75f8 497
e5f2249a 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
499static const char *shmem_format_huge(int huge)
500{
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518}
f1f5929c 519#endif
5a6e75f8 520
779750d2
KS
521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523{
524 LIST_HEAD(list), *pos, *next;
253fd0f0 525 LIST_HEAD(to_remove);
779750d2
KS
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 552 list_move(&info->shrinklist, &to_remove);
779750d2 553 removed++;
779750d2
KS
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
253fd0f0
KS
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
779750d2
KS
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
b3cd54b2
KS
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
779750d2 579
b3cd54b2 580 page = find_get_page(inode->i_mapping,
779750d2
KS
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
b3cd54b2 585 /* No huge page at the end of the file: nothing to split */
779750d2 586 if (!PageTransHuge(page)) {
779750d2
KS
587 put_page(page);
588 goto drop;
589 }
590
b3cd54b2
KS
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
779750d2
KS
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
b3cd54b2
KS
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
779750d2
KS
610
611 split++;
612drop:
613 list_del_init(&info->shrinklist);
614 removed++;
b3cd54b2 615leave:
779750d2
KS
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625}
626
627static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629{
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636}
637
638static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640{
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643}
396bcc52 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
645
646#define shmem_huge SHMEM_HUGE_DENY
647
779750d2
KS
648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650{
651 return 0;
652}
396bcc52 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 654
89fdcd26
YS
655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656{
396bcc52 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662}
663
46f65ec1
HD
664/*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
3fea5a49
JW
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
46f65ec1 671{
552446a4
MW
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
d8c6546b 674 unsigned long nr = compound_nr(page);
3fea5a49 675 int error;
46f65ec1 676
800d8c63
KS
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 681 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 682
800d8c63 683 page_ref_add(page, nr);
b065b432
HD
684 page->mapping = mapping;
685 page->index = index;
686
4c6355b2 687 if (!PageSwapCache(page)) {
d9eb1ea2 688 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
3fea5a49 695 }
3fea5a49
JW
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
552446a4
MW
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708next:
4101196b 709 xas_store(&xas, page);
552446a4
MW
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
800d8c63 713 }
552446a4 714 if (PageTransHuge(page)) {
800d8c63 715 count_vm_event(THP_FILE_ALLOC);
57b2847d 716 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 717 }
800d8c63 718 mapping->nrpages += nr;
0d1c2072
JW
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
721unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
3fea5a49
JW
726 error = xas_error(&xas);
727 goto error;
46f65ec1 728 }
552446a4
MW
729
730 return 0;
3fea5a49
JW
731error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
46f65ec1
HD
735}
736
6922c0c7
HD
737/*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741{
742 struct address_space *mapping = page->mapping;
743 int error;
744
800d8c63
KS
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
b93b0163 747 xa_lock_irq(&mapping->i_pages);
62f945b6 748 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
749 page->mapping = NULL;
750 mapping->nrpages--;
0d1c2072
JW
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 753 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 754 put_page(page);
6922c0c7
HD
755 BUG_ON(error);
756}
757
7a5d0fbb 758/*
c121d3bb 759 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
760 */
761static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763{
6dbaf22c 764 void *old;
7a5d0fbb 765
55f3f7ea 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
7a5d0fbb
HD
771}
772
6a15a370
VB
773/*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 775 * given offsets are swapped out.
6a15a370 776 *
b93b0163 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
48131e03
VB
780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
6a15a370 782{
7ae3424f 783 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 784 struct page *page;
48131e03 785 unsigned long swapped = 0;
6a15a370
VB
786
787 rcu_read_lock();
7ae3424f
MW
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
2cf938aa 790 continue;
3159f943 791 if (xa_is_value(page))
6a15a370
VB
792 swapped++;
793
794 if (need_resched()) {
7ae3424f 795 xas_pause(&xas);
6a15a370 796 cond_resched_rcu();
6a15a370
VB
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803}
804
48131e03
VB
805/*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
b93b0163 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813{
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837}
838
24513264
HD
839/*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842void shmem_unlock_mapping(struct address_space *mapping)
843{
844 struct pagevec pvec;
24513264
HD
845 pgoff_t index = 0;
846
86679820 847 pagevec_init(&pvec);
24513264
HD
848 /*
849 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850 */
851 while (!mapping_unevictable(mapping)) {
96888e0a 852 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 853 break;
64e3d12f 854 check_move_unevictable_pages(&pvec);
24513264
HD
855 pagevec_release(&pvec);
856 cond_resched();
857 }
7a5d0fbb
HD
858}
859
71725ed1
HD
860/*
861 * Check whether a hole-punch or truncation needs to split a huge page,
862 * returning true if no split was required, or the split has been successful.
863 *
864 * Eviction (or truncation to 0 size) should never need to split a huge page;
865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866 * head, and then succeeded to trylock on tail.
867 *
868 * A split can only succeed when there are no additional references on the
869 * huge page: so the split below relies upon find_get_entries() having stopped
870 * when it found a subpage of the huge page, without getting further references.
871 */
872static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873{
874 if (!PageTransCompound(page))
875 return true;
876
877 /* Just proceed to delete a huge page wholly within the range punched */
878 if (PageHead(page) &&
879 page->index >= start && page->index + HPAGE_PMD_NR <= end)
880 return true;
881
882 /* Try to split huge page, so we can truly punch the hole or truncate */
883 return split_huge_page(page) >= 0;
884}
885
7a5d0fbb 886/*
7f4446ee 887 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 889 */
1635f6a7
HD
890static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891 bool unfalloc)
1da177e4 892{
285b2c4f 893 struct address_space *mapping = inode->i_mapping;
1da177e4 894 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
895 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 899 struct pagevec pvec;
7a5d0fbb
HD
900 pgoff_t indices[PAGEVEC_SIZE];
901 long nr_swaps_freed = 0;
285b2c4f 902 pgoff_t index;
bda97eab
HD
903 int i;
904
83e4fa9c
HD
905 if (lend == -1)
906 end = -1; /* unsigned, so actually very big */
bda97eab 907
86679820 908 pagevec_init(&pvec);
bda97eab 909 index = start;
5c211ba2
MWO
910 while (index < end && find_lock_entries(mapping, index, end - 1,
911 &pvec, indices)) {
bda97eab
HD
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
7a5d0fbb 915 index = indices[i];
bda97eab 916
3159f943 917 if (xa_is_value(page)) {
1635f6a7
HD
918 if (unfalloc)
919 continue;
7a5d0fbb
HD
920 nr_swaps_freed += !shmem_free_swap(mapping,
921 index, page);
bda97eab 922 continue;
7a5d0fbb 923 }
5c211ba2 924 index += thp_nr_pages(page) - 1;
7a5d0fbb 925
5c211ba2
MWO
926 if (!unfalloc || !PageUptodate(page))
927 truncate_inode_page(mapping, page);
bda97eab
HD
928 unlock_page(page);
929 }
0cd6144a 930 pagevec_remove_exceptionals(&pvec);
24513264 931 pagevec_release(&pvec);
bda97eab
HD
932 cond_resched();
933 index++;
934 }
1da177e4 935
83e4fa9c 936 if (partial_start) {
bda97eab 937 struct page *page = NULL;
9e18eb29 938 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 939 if (page) {
09cbfeaf 940 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
941 if (start > end) {
942 top = partial_end;
943 partial_end = 0;
944 }
945 zero_user_segment(page, partial_start, top);
946 set_page_dirty(page);
947 unlock_page(page);
09cbfeaf 948 put_page(page);
83e4fa9c
HD
949 }
950 }
951 if (partial_end) {
952 struct page *page = NULL;
9e18eb29 953 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
954 if (page) {
955 zero_user_segment(page, 0, partial_end);
bda97eab
HD
956 set_page_dirty(page);
957 unlock_page(page);
09cbfeaf 958 put_page(page);
bda97eab
HD
959 }
960 }
83e4fa9c
HD
961 if (start >= end)
962 return;
bda97eab
HD
963
964 index = start;
b1a36650 965 while (index < end) {
bda97eab 966 cond_resched();
0cd6144a 967
cf2039af
MWO
968 if (!find_get_entries(mapping, index, end - 1, &pvec,
969 indices)) {
b1a36650
HD
970 /* If all gone or hole-punch or unfalloc, we're done */
971 if (index == start || end != -1)
bda97eab 972 break;
b1a36650 973 /* But if truncating, restart to make sure all gone */
bda97eab
HD
974 index = start;
975 continue;
976 }
bda97eab
HD
977 for (i = 0; i < pagevec_count(&pvec); i++) {
978 struct page *page = pvec.pages[i];
979
7a5d0fbb 980 index = indices[i];
3159f943 981 if (xa_is_value(page)) {
1635f6a7
HD
982 if (unfalloc)
983 continue;
b1a36650
HD
984 if (shmem_free_swap(mapping, index, page)) {
985 /* Swap was replaced by page: retry */
986 index--;
987 break;
988 }
989 nr_swaps_freed++;
7a5d0fbb
HD
990 continue;
991 }
992
bda97eab 993 lock_page(page);
800d8c63 994
1635f6a7 995 if (!unfalloc || !PageUptodate(page)) {
71725ed1 996 if (page_mapping(page) != mapping) {
b1a36650
HD
997 /* Page was replaced by swap: retry */
998 unlock_page(page);
999 index--;
1000 break;
1635f6a7 1001 }
71725ed1
HD
1002 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003 if (shmem_punch_compound(page, start, end))
1004 truncate_inode_page(mapping, page);
0783ac95 1005 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1006 /* Wipe the page and don't get stuck */
1007 clear_highpage(page);
1008 flush_dcache_page(page);
1009 set_page_dirty(page);
1010 if (index <
1011 round_up(start, HPAGE_PMD_NR))
1012 start = index + 1;
1013 }
7a5d0fbb 1014 }
bda97eab
HD
1015 unlock_page(page);
1016 }
0cd6144a 1017 pagevec_remove_exceptionals(&pvec);
24513264 1018 pagevec_release(&pvec);
bda97eab
HD
1019 index++;
1020 }
94c1e62d 1021
4595ef88 1022 spin_lock_irq(&info->lock);
7a5d0fbb 1023 info->swapped -= nr_swaps_freed;
1da177e4 1024 shmem_recalc_inode(inode);
4595ef88 1025 spin_unlock_irq(&info->lock);
1635f6a7 1026}
1da177e4 1027
1635f6a7
HD
1028void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029{
1030 shmem_undo_range(inode, lstart, lend, false);
078cd827 1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1032}
94c1e62d 1033EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1034
549c7297
CB
1035static int shmem_getattr(struct user_namespace *mnt_userns,
1036 const struct path *path, struct kstat *stat,
a528d35e 1037 u32 request_mask, unsigned int query_flags)
44a30220 1038{
a528d35e 1039 struct inode *inode = path->dentry->d_inode;
44a30220 1040 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1041 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1042
d0424c42 1043 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1044 spin_lock_irq(&info->lock);
d0424c42 1045 shmem_recalc_inode(inode);
4595ef88 1046 spin_unlock_irq(&info->lock);
d0424c42 1047 }
0d56a451 1048 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26
YS
1049
1050 if (is_huge_enabled(sb_info))
1051 stat->blksize = HPAGE_PMD_SIZE;
1052
44a30220
YZ
1053 return 0;
1054}
1055
549c7297
CB
1056static int shmem_setattr(struct user_namespace *mnt_userns,
1057 struct dentry *dentry, struct iattr *attr)
1da177e4 1058{
75c3cfa8 1059 struct inode *inode = d_inode(dentry);
40e041a2 1060 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1062 int error;
1063
2f221d6f 1064 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1065 if (error)
1066 return error;
1067
94c1e62d
HD
1068 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069 loff_t oldsize = inode->i_size;
1070 loff_t newsize = attr->ia_size;
3889e6e7 1071
40e041a2
DR
1072 /* protected by i_mutex */
1073 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075 return -EPERM;
1076
94c1e62d 1077 if (newsize != oldsize) {
77142517
KK
1078 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079 oldsize, newsize);
1080 if (error)
1081 return error;
94c1e62d 1082 i_size_write(inode, newsize);
078cd827 1083 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1084 }
afa2db2f 1085 if (newsize <= oldsize) {
94c1e62d 1086 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1087 if (oldsize > holebegin)
1088 unmap_mapping_range(inode->i_mapping,
1089 holebegin, 0, 1);
1090 if (info->alloced)
1091 shmem_truncate_range(inode,
1092 newsize, (loff_t)-1);
94c1e62d 1093 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1094 if (oldsize > holebegin)
1095 unmap_mapping_range(inode->i_mapping,
1096 holebegin, 0, 1);
779750d2
KS
1097
1098 /*
1099 * Part of the huge page can be beyond i_size: subject
1100 * to shrink under memory pressure.
1101 */
396bcc52 1102 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1103 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1104 /*
1105 * _careful to defend against unlocked access to
1106 * ->shrink_list in shmem_unused_huge_shrink()
1107 */
1108 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1109 list_add_tail(&info->shrinklist,
1110 &sbinfo->shrinklist);
1111 sbinfo->shrinklist_len++;
1112 }
1113 spin_unlock(&sbinfo->shrinklist_lock);
1114 }
94c1e62d 1115 }
1da177e4
LT
1116 }
1117
2f221d6f 1118 setattr_copy(&init_user_ns, inode, attr);
db78b877 1119 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1121 return error;
1122}
1123
1f895f75 1124static void shmem_evict_inode(struct inode *inode)
1da177e4 1125{
1da177e4 1126 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1128
30e6a51d 1129 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
3889e6e7 1132 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1133 if (!list_empty(&info->shrinklist)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 if (!list_empty(&info->shrinklist)) {
1136 list_del_init(&info->shrinklist);
1137 sbinfo->shrinklist_len--;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
af53d3e9
HD
1141 while (!list_empty(&info->swaplist)) {
1142 /* Wait while shmem_unuse() is scanning this inode... */
1143 wait_var_event(&info->stop_eviction,
1144 !atomic_read(&info->stop_eviction));
cb5f7b9a 1145 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1146 /* ...but beware of the race if we peeked too early */
1147 if (!atomic_read(&info->stop_eviction))
1148 list_del_init(&info->swaplist);
cb5f7b9a 1149 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1150 }
3ed47db3 1151 }
b09e0fa4 1152
38f38657 1153 simple_xattrs_free(&info->xattrs);
0f3c42f5 1154 WARN_ON(inode->i_blocks);
5b04c689 1155 shmem_free_inode(inode->i_sb);
dbd5768f 1156 clear_inode(inode);
1da177e4
LT
1157}
1158
b56a2d8a
VRP
1159extern struct swap_info_struct *swap_info[];
1160
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
87039546 1164 unsigned int type, bool frontswap)
478922e2 1165{
b56a2d8a
VRP
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
87039546 1168 swp_entry_t entry;
b56a2d8a
VRP
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
478922e2
MW
1173
1174 rcu_read_lock();
b56a2d8a
VRP
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
5b9c98f3 1177 continue;
b56a2d8a
VRP
1178
1179 if (!xa_is_value(page))
478922e2 1180 continue;
b56a2d8a 1181
87039546
HD
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
1185 if (frontswap &&
1186 !frontswap_test(swap_info[type], swp_offset(entry)))
1187 continue;
b56a2d8a
VRP
1188
1189 indices[ret] = xas.xa_index;
1190 entries[ret] = page;
1191
1192 if (need_resched()) {
1193 xas_pause(&xas);
1194 cond_resched_rcu();
1195 }
1196 if (++ret == nr_entries)
1197 break;
478922e2 1198 }
478922e2 1199 rcu_read_unlock();
e21a2955 1200
b56a2d8a 1201 return ret;
478922e2
MW
1202}
1203
46f65ec1 1204/*
b56a2d8a
VRP
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
46f65ec1 1207 */
b56a2d8a
VRP
1208static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209 pgoff_t *indices)
1da177e4 1210{
b56a2d8a
VRP
1211 int i = 0;
1212 int ret = 0;
bde05d1c 1213 int error = 0;
b56a2d8a 1214 struct address_space *mapping = inode->i_mapping;
1da177e4 1215
b56a2d8a
VRP
1216 for (i = 0; i < pvec.nr; i++) {
1217 struct page *page = pvec.pages[i];
2e0e26c7 1218
b56a2d8a
VRP
1219 if (!xa_is_value(page))
1220 continue;
1221 error = shmem_swapin_page(inode, indices[i],
1222 &page, SGP_CACHE,
1223 mapping_gfp_mask(mapping),
1224 NULL, NULL);
1225 if (error == 0) {
1226 unlock_page(page);
1227 put_page(page);
1228 ret++;
1229 }
1230 if (error == -ENOMEM)
1231 break;
1232 error = 0;
bde05d1c 1233 }
b56a2d8a
VRP
1234 return error ? error : ret;
1235}
bde05d1c 1236
b56a2d8a
VRP
1237/*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241 bool frontswap, unsigned long *fs_pages_to_unuse)
1242{
1243 struct address_space *mapping = inode->i_mapping;
1244 pgoff_t start = 0;
1245 struct pagevec pvec;
1246 pgoff_t indices[PAGEVEC_SIZE];
1247 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248 int ret = 0;
1249
1250 pagevec_init(&pvec);
1251 do {
1252 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255 nr_entries = *fs_pages_to_unuse;
1256
1257 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258 pvec.pages, indices,
87039546 1259 type, frontswap);
b56a2d8a
VRP
1260 if (pvec.nr == 0) {
1261 ret = 0;
1262 break;
46f65ec1 1263 }
b56a2d8a
VRP
1264
1265 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266 if (ret < 0)
1267 break;
1268
1269 if (frontswap_partial) {
1270 *fs_pages_to_unuse -= ret;
1271 if (*fs_pages_to_unuse == 0) {
1272 ret = FRONTSWAP_PAGES_UNUSED;
1273 break;
1274 }
1275 }
1276
1277 start = indices[pvec.nr - 1];
1278 } while (true);
1279
1280 return ret;
1da177e4
LT
1281}
1282
1283/*
b56a2d8a
VRP
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1da177e4 1287 */
b56a2d8a
VRP
1288int shmem_unuse(unsigned int type, bool frontswap,
1289 unsigned long *fs_pages_to_unuse)
1da177e4 1290{
b56a2d8a 1291 struct shmem_inode_info *info, *next;
bde05d1c
HD
1292 int error = 0;
1293
b56a2d8a
VRP
1294 if (list_empty(&shmem_swaplist))
1295 return 0;
1296
1297 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 if (!info->swapped) {
6922c0c7 1300 list_del_init(&info->swaplist);
b56a2d8a
VRP
1301 continue;
1302 }
af53d3e9
HD
1303 /*
1304 * Drop the swaplist mutex while searching the inode for swap;
1305 * but before doing so, make sure shmem_evict_inode() will not
1306 * remove placeholder inode from swaplist, nor let it be freed
1307 * (igrab() would protect from unlink, but not from unmount).
1308 */
1309 atomic_inc(&info->stop_eviction);
b56a2d8a 1310 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1311
af53d3e9 1312 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1313 fs_pages_to_unuse);
cb5f7b9a 1314 cond_resched();
b56a2d8a
VRP
1315
1316 mutex_lock(&shmem_swaplist_mutex);
1317 next = list_next_entry(info, swaplist);
1318 if (!info->swapped)
1319 list_del_init(&info->swaplist);
af53d3e9
HD
1320 if (atomic_dec_and_test(&info->stop_eviction))
1321 wake_up_var(&info->stop_eviction);
b56a2d8a 1322 if (error)
778dd893 1323 break;
1da177e4 1324 }
cb5f7b9a 1325 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1326
778dd893 1327 return error;
1da177e4
LT
1328}
1329
1330/*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334{
1335 struct shmem_inode_info *info;
1da177e4 1336 struct address_space *mapping;
1da177e4 1337 struct inode *inode;
6922c0c7
HD
1338 swp_entry_t swap;
1339 pgoff_t index;
1da177e4 1340
800d8c63 1341 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1342 BUG_ON(!PageLocked(page));
1da177e4
LT
1343 mapping = page->mapping;
1344 index = page->index;
1345 inode = mapping->host;
1346 info = SHMEM_I(inode);
1347 if (info->flags & VM_LOCKED)
1348 goto redirty;
d9fe526a 1349 if (!total_swap_pages)
1da177e4
LT
1350 goto redirty;
1351
d9fe526a 1352 /*
97b713ba
CH
1353 * Our capabilities prevent regular writeback or sync from ever calling
1354 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355 * its underlying filesystem, in which case tmpfs should write out to
1356 * swap only in response to memory pressure, and not for the writeback
1357 * threads or sync.
d9fe526a 1358 */
48f170fb
HD
1359 if (!wbc->for_reclaim) {
1360 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1361 goto redirty;
1362 }
1635f6a7
HD
1363
1364 /*
1365 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366 * value into swapfile.c, the only way we can correctly account for a
1367 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1368 *
1369 * That's okay for a page already fallocated earlier, but if we have
1370 * not yet completed the fallocation, then (a) we want to keep track
1371 * of this page in case we have to undo it, and (b) it may not be a
1372 * good idea to continue anyway, once we're pushing into swap. So
1373 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1374 */
1375 if (!PageUptodate(page)) {
1aac1400
HD
1376 if (inode->i_private) {
1377 struct shmem_falloc *shmem_falloc;
1378 spin_lock(&inode->i_lock);
1379 shmem_falloc = inode->i_private;
1380 if (shmem_falloc &&
8e205f77 1381 !shmem_falloc->waitq &&
1aac1400
HD
1382 index >= shmem_falloc->start &&
1383 index < shmem_falloc->next)
1384 shmem_falloc->nr_unswapped++;
1385 else
1386 shmem_falloc = NULL;
1387 spin_unlock(&inode->i_lock);
1388 if (shmem_falloc)
1389 goto redirty;
1390 }
1635f6a7
HD
1391 clear_highpage(page);
1392 flush_dcache_page(page);
1393 SetPageUptodate(page);
1394 }
1395
38d8b4e6 1396 swap = get_swap_page(page);
48f170fb
HD
1397 if (!swap.val)
1398 goto redirty;
d9fe526a 1399
b1dea800
HD
1400 /*
1401 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1402 * if it's not already there. Do it now before the page is
1403 * moved to swap cache, when its pagelock no longer protects
b1dea800 1404 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1405 * we've incremented swapped, because shmem_unuse_inode() will
1406 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1407 */
48f170fb
HD
1408 mutex_lock(&shmem_swaplist_mutex);
1409 if (list_empty(&info->swaplist))
b56a2d8a 1410 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1411
4afab1cd 1412 if (add_to_swap_cache(page, swap,
3852f676
JK
1413 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414 NULL) == 0) {
4595ef88 1415 spin_lock_irq(&info->lock);
6922c0c7 1416 shmem_recalc_inode(inode);
267a4c76 1417 info->swapped++;
4595ef88 1418 spin_unlock_irq(&info->lock);
6922c0c7 1419
267a4c76
HD
1420 swap_shmem_alloc(swap);
1421 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
6922c0c7 1423 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1424 BUG_ON(page_mapped(page));
9fab5619 1425 swap_writepage(page, wbc);
1da177e4
LT
1426 return 0;
1427 }
1428
6922c0c7 1429 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1430 put_swap_page(page, swap);
1da177e4
LT
1431redirty:
1432 set_page_dirty(page);
d9fe526a
HD
1433 if (wbc->for_reclaim)
1434 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1435 unlock_page(page);
1436 return 0;
1da177e4
LT
1437}
1438
75edd345 1439#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1440static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1441{
095f1fc4 1442 char buffer[64];
680d794b 1443
71fe804b 1444 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1445 return; /* show nothing */
680d794b 1446
a7a88b23 1447 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1448
1449 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1450}
71fe804b
LS
1451
1452static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453{
1454 struct mempolicy *mpol = NULL;
1455 if (sbinfo->mpol) {
1456 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1457 mpol = sbinfo->mpol;
1458 mpol_get(mpol);
1459 spin_unlock(&sbinfo->stat_lock);
1460 }
1461 return mpol;
1462}
75edd345
HD
1463#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465{
1466}
1467static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468{
1469 return NULL;
1470}
1471#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472#ifndef CONFIG_NUMA
1473#define vm_policy vm_private_data
1474#endif
680d794b 1475
800d8c63
KS
1476static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477 struct shmem_inode_info *info, pgoff_t index)
1478{
1479 /* Create a pseudo vma that just contains the policy */
2c4541e2 1480 vma_init(vma, NULL);
800d8c63
KS
1481 /* Bias interleave by inode number to distribute better across nodes */
1482 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1483 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484}
1485
1486static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487{
1488 /* Drop reference taken by mpol_shared_policy_lookup() */
1489 mpol_cond_put(vma->vm_policy);
1490}
1491
41ffe5d5
HD
1492static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1494{
1da177e4 1495 struct vm_area_struct pvma;
18a2f371 1496 struct page *page;
8c63ca5b
WD
1497 struct vm_fault vmf = {
1498 .vma = &pvma,
1499 };
52cd3b07 1500
800d8c63 1501 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1502 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1503 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1504
800d8c63
KS
1505 return page;
1506}
1507
78cc8cdc
RR
1508/*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513{
1514 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1516 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519 /* Allow allocations only from the originally specified zones. */
1520 result |= zoneflags;
78cc8cdc
RR
1521
1522 /*
1523 * Minimize the result gfp by taking the union with the deny flags,
1524 * and the intersection of the allow flags.
1525 */
1526 result |= (limit_gfp & denyflags);
1527 result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529 return result;
1530}
1531
800d8c63
KS
1532static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534{
1535 struct vm_area_struct pvma;
7b8d046f
MW
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
800d8c63
KS
1538 struct page *page;
1539
4620a06e 1540 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
800d8c63 1543 return NULL;
18a2f371 1544
800d8c63 1545 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1546 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547 true);
800d8c63
KS
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
dcdf11ee
DR
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1553 return page;
1da177e4
LT
1554}
1555
02098fea 1556static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1557 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1558{
1559 struct vm_area_struct pvma;
18a2f371 1560 struct page *page;
1da177e4 1561
800d8c63
KS
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567}
1568
1569static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1570 struct inode *inode,
800d8c63
KS
1571 pgoff_t index, bool huge)
1572{
0f079694 1573 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
52cd3b07 1577
396bcc52 1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
0f079694 1582 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1583 goto failed;
800d8c63
KS
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
800d8c63 1592 return page;
75edd345 1593 }
18a2f371 1594
800d8c63 1595 err = -ENOMEM;
0f079694 1596 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1597failed:
1598 return ERR_PTR(err);
1da177e4 1599}
71fe804b 1600
bde05d1c
HD
1601/*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614{
1615 return page_zonenum(page) > gfp_zone(gfp);
1616}
1617
1618static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620{
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
c1cb20d4 1623 swp_entry_t entry;
bde05d1c
HD
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
c1cb20d4
YZ
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
bde05d1c
HD
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
bde05d1c 1640
09cbfeaf 1641 get_page(newpage);
bde05d1c 1642 copy_highpage(newpage, oldpage);
0142ef6c 1643 flush_dcache_page(newpage);
bde05d1c 1644
9956edf3
HD
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
bde05d1c 1647 SetPageUptodate(newpage);
c1cb20d4 1648 set_page_private(newpage, entry.val);
bde05d1c
HD
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
b93b0163 1655 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1657 if (!error) {
0d1c2072
JW
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1661 }
b93b0163 1662 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1663
0142ef6c
HD
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
6058eaec 1672 lru_cache_add(newpage);
0142ef6c
HD
1673 *pagep = newpage;
1674 }
bde05d1c
HD
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
09cbfeaf
KS
1680 put_page(oldpage);
1681 put_page(oldpage);
0142ef6c 1682 return error;
bde05d1c
HD
1683}
1684
c5bf121e
VRP
1685/*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1689 * error code and NULL in *pagep.
c5bf121e
VRP
1690 */
1691static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695{
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
c5bf121e
VRP
1699 struct page *page;
1700 swp_entry_t swap;
1701 int error;
1702
1703 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704 swap = radix_to_swp_entry(*pagep);
1705 *pagep = NULL;
1706
1707 /* Look it up and read it in.. */
1708 page = lookup_swap_cache(swap, NULL, 0);
1709 if (!page) {
1710 /* Or update major stats only when swapin succeeds?? */
1711 if (fault_type) {
1712 *fault_type |= VM_FAULT_MAJOR;
1713 count_vm_event(PGMAJFAULT);
1714 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715 }
1716 /* Here we actually start the io */
1717 page = shmem_swapin(swap, gfp, info, index);
1718 if (!page) {
1719 error = -ENOMEM;
1720 goto failed;
1721 }
1722 }
1723
1724 /* We have to do this with page locked to prevent races */
1725 lock_page(page);
1726 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727 !shmem_confirm_swap(mapping, index, swap)) {
1728 error = -EEXIST;
1729 goto unlock;
1730 }
1731 if (!PageUptodate(page)) {
1732 error = -EIO;
1733 goto failed;
1734 }
1735 wait_on_page_writeback(page);
1736
8a84802e
SP
1737 /*
1738 * Some architectures may have to restore extra metadata to the
1739 * physical page after reading from swap.
1740 */
1741 arch_swap_restore(swap, page);
1742
c5bf121e
VRP
1743 if (shmem_should_replace_page(page, gfp)) {
1744 error = shmem_replace_page(&page, gfp, info, index);
1745 if (error)
1746 goto failed;
1747 }
1748
14235ab3 1749 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1750 swp_to_radix_entry(swap), gfp,
1751 charge_mm);
1752 if (error)
14235ab3 1753 goto failed;
c5bf121e
VRP
1754
1755 spin_lock_irq(&info->lock);
1756 info->swapped--;
1757 shmem_recalc_inode(inode);
1758 spin_unlock_irq(&info->lock);
1759
1760 if (sgp == SGP_WRITE)
1761 mark_page_accessed(page);
1762
1763 delete_from_swap_cache(page);
1764 set_page_dirty(page);
1765 swap_free(swap);
1766
1767 *pagep = page;
1768 return 0;
1769failed:
1770 if (!shmem_confirm_swap(mapping, index, swap))
1771 error = -EEXIST;
1772unlock:
1773 if (page) {
1774 unlock_page(page);
1775 put_page(page);
1776 }
1777
1778 return error;
1779}
1780
1da177e4 1781/*
68da9f05 1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1783 *
1784 * If we allocate a new one we do not mark it dirty. That's up to the
1785 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1786 * entry since a page cannot live in both the swap and page cache.
1787 *
28eb3c80 1788 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1789 * otherwise they are NULL.
1da177e4 1790 */
41ffe5d5 1791static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1792 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1793 struct vm_area_struct *vma, struct vm_fault *vmf,
1794 vm_fault_t *fault_type)
1da177e4
LT
1795{
1796 struct address_space *mapping = inode->i_mapping;
23f919d4 1797 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1798 struct shmem_sb_info *sbinfo;
9e18eb29 1799 struct mm_struct *charge_mm;
27ab7006 1800 struct page *page;
657e3038 1801 enum sgp_type sgp_huge = sgp;
800d8c63 1802 pgoff_t hindex = index;
164cc4fe 1803 gfp_t huge_gfp;
1da177e4 1804 int error;
54af6042 1805 int once = 0;
1635f6a7 1806 int alloced = 0;
1da177e4 1807
09cbfeaf 1808 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1809 return -EFBIG;
657e3038
KS
1810 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811 sgp = SGP_CACHE;
1da177e4 1812repeat:
c5bf121e
VRP
1813 if (sgp <= SGP_CACHE &&
1814 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815 return -EINVAL;
1816 }
1817
1818 sbinfo = SHMEM_SB(inode->i_sb);
1819 charge_mm = vma ? vma->vm_mm : current->mm;
1820
44835d20
MWO
1821 page = pagecache_get_page(mapping, index,
1822 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
3159f943 1823 if (xa_is_value(page)) {
c5bf121e
VRP
1824 error = shmem_swapin_page(inode, index, &page,
1825 sgp, gfp, vma, fault_type);
1826 if (error == -EEXIST)
1827 goto repeat;
54af6042 1828
c5bf121e
VRP
1829 *pagep = page;
1830 return error;
54af6042
HD
1831 }
1832
63ec1973
MWO
1833 if (page)
1834 hindex = page->index;
66d2f4d2
HD
1835 if (page && sgp == SGP_WRITE)
1836 mark_page_accessed(page);
1837
1635f6a7
HD
1838 /* fallocated page? */
1839 if (page && !PageUptodate(page)) {
1840 if (sgp != SGP_READ)
1841 goto clear;
1842 unlock_page(page);
09cbfeaf 1843 put_page(page);
1635f6a7 1844 page = NULL;
63ec1973 1845 hindex = index;
1635f6a7 1846 }
63ec1973
MWO
1847 if (page || sgp == SGP_READ)
1848 goto out;
27ab7006
HD
1849
1850 /*
54af6042
HD
1851 * Fast cache lookup did not find it:
1852 * bring it back from swap or allocate.
27ab7006 1853 */
54af6042 1854
c5bf121e
VRP
1855 if (vma && userfaultfd_missing(vma)) {
1856 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 return 0;
1858 }
cfda0526 1859
c5bf121e 1860 /* shmem_symlink() */
30e6a51d 1861 if (!shmem_mapping(mapping))
c5bf121e
VRP
1862 goto alloc_nohuge;
1863 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 goto alloc_nohuge;
1865 if (shmem_huge == SHMEM_HUGE_FORCE)
1866 goto alloc_huge;
1867 switch (sbinfo->huge) {
c5bf121e
VRP
1868 case SHMEM_HUGE_NEVER:
1869 goto alloc_nohuge;
27d80fa2
KC
1870 case SHMEM_HUGE_WITHIN_SIZE: {
1871 loff_t i_size;
1872 pgoff_t off;
1873
c5bf121e
VRP
1874 off = round_up(index, HPAGE_PMD_NR);
1875 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1876 if (i_size >= HPAGE_PMD_SIZE &&
1877 i_size >> PAGE_SHIFT >= off)
800d8c63 1878 goto alloc_huge;
27d80fa2
KC
1879
1880 fallthrough;
1881 }
c5bf121e
VRP
1882 case SHMEM_HUGE_ADVISE:
1883 if (sgp_huge == SGP_HUGE)
1884 goto alloc_huge;
1885 /* TODO: implement fadvise() hints */
1886 goto alloc_nohuge;
1887 }
1da177e4 1888
800d8c63 1889alloc_huge:
164cc4fe 1890 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1891 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1892 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1893 if (IS_ERR(page)) {
1894alloc_nohuge:
1895 page = shmem_alloc_and_acct_page(gfp, inode,
1896 index, false);
1897 }
1898 if (IS_ERR(page)) {
1899 int retry = 5;
800d8c63 1900
c5bf121e
VRP
1901 error = PTR_ERR(page);
1902 page = NULL;
1903 if (error != -ENOSPC)
1904 goto unlock;
1905 /*
1906 * Try to reclaim some space by splitting a huge page
1907 * beyond i_size on the filesystem.
1908 */
1909 while (retry--) {
1910 int ret;
66d2f4d2 1911
c5bf121e
VRP
1912 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1913 if (ret == SHRINK_STOP)
1914 break;
1915 if (ret)
1916 goto alloc_nohuge;
b065b432 1917 }
c5bf121e
VRP
1918 goto unlock;
1919 }
54af6042 1920
c5bf121e
VRP
1921 if (PageTransHuge(page))
1922 hindex = round_down(index, HPAGE_PMD_NR);
1923 else
1924 hindex = index;
54af6042 1925
c5bf121e
VRP
1926 if (sgp == SGP_WRITE)
1927 __SetPageReferenced(page);
1928
c5bf121e 1929 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1930 NULL, gfp & GFP_RECLAIM_MASK,
1931 charge_mm);
1932 if (error)
c5bf121e 1933 goto unacct;
6058eaec 1934 lru_cache_add(page);
779750d2 1935
c5bf121e 1936 spin_lock_irq(&info->lock);
d8c6546b 1937 info->alloced += compound_nr(page);
c5bf121e
VRP
1938 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1939 shmem_recalc_inode(inode);
1940 spin_unlock_irq(&info->lock);
1941 alloced = true;
1942
1943 if (PageTransHuge(page) &&
1944 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1945 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1946 /*
c5bf121e
VRP
1947 * Part of the huge page is beyond i_size: subject
1948 * to shrink under memory pressure.
1635f6a7 1949 */
c5bf121e 1950 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1951 /*
c5bf121e
VRP
1952 * _careful to defend against unlocked access to
1953 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1954 */
c5bf121e
VRP
1955 if (list_empty_careful(&info->shrinklist)) {
1956 list_add_tail(&info->shrinklist,
1957 &sbinfo->shrinklist);
1958 sbinfo->shrinklist_len++;
1959 }
1960 spin_unlock(&sbinfo->shrinklist_lock);
1961 }
800d8c63 1962
c5bf121e
VRP
1963 /*
1964 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1965 */
1966 if (sgp == SGP_FALLOC)
1967 sgp = SGP_WRITE;
1968clear:
1969 /*
1970 * Let SGP_WRITE caller clear ends if write does not fill page;
1971 * but SGP_FALLOC on a page fallocated earlier must initialize
1972 * it now, lest undo on failure cancel our earlier guarantee.
1973 */
1974 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1975 int i;
1976
63ec1973
MWO
1977 for (i = 0; i < compound_nr(page); i++) {
1978 clear_highpage(page + i);
1979 flush_dcache_page(page + i);
ec9516fb 1980 }
63ec1973 1981 SetPageUptodate(page);
1da177e4 1982 }
bde05d1c 1983
54af6042 1984 /* Perhaps the file has been truncated since we checked */
75edd345 1985 if (sgp <= SGP_CACHE &&
09cbfeaf 1986 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1987 if (alloced) {
1988 ClearPageDirty(page);
1989 delete_from_page_cache(page);
4595ef88 1990 spin_lock_irq(&info->lock);
267a4c76 1991 shmem_recalc_inode(inode);
4595ef88 1992 spin_unlock_irq(&info->lock);
267a4c76 1993 }
54af6042 1994 error = -EINVAL;
267a4c76 1995 goto unlock;
e83c32e8 1996 }
63ec1973 1997out:
800d8c63 1998 *pagep = page + index - hindex;
54af6042 1999 return 0;
1da177e4 2000
59a16ead 2001 /*
54af6042 2002 * Error recovery.
59a16ead 2003 */
54af6042 2004unacct:
d8c6546b 2005 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2006
2007 if (PageTransHuge(page)) {
2008 unlock_page(page);
2009 put_page(page);
2010 goto alloc_nohuge;
2011 }
d1899228 2012unlock:
27ab7006 2013 if (page) {
54af6042 2014 unlock_page(page);
09cbfeaf 2015 put_page(page);
54af6042
HD
2016 }
2017 if (error == -ENOSPC && !once++) {
4595ef88 2018 spin_lock_irq(&info->lock);
54af6042 2019 shmem_recalc_inode(inode);
4595ef88 2020 spin_unlock_irq(&info->lock);
27ab7006 2021 goto repeat;
ff36b801 2022 }
7f4446ee 2023 if (error == -EEXIST)
54af6042
HD
2024 goto repeat;
2025 return error;
1da177e4
LT
2026}
2027
10d20bd2
LT
2028/*
2029 * This is like autoremove_wake_function, but it removes the wait queue
2030 * entry unconditionally - even if something else had already woken the
2031 * target.
2032 */
ac6424b9 2033static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2034{
2035 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2036 list_del_init(&wait->entry);
10d20bd2
LT
2037 return ret;
2038}
2039
20acce67 2040static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2041{
11bac800 2042 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2043 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2044 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2045 enum sgp_type sgp;
20acce67
SJ
2046 int err;
2047 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2048
f00cdc6d
HD
2049 /*
2050 * Trinity finds that probing a hole which tmpfs is punching can
2051 * prevent the hole-punch from ever completing: which in turn
2052 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2053 * faulting pages into the hole while it's being punched. Although
2054 * shmem_undo_range() does remove the additions, it may be unable to
2055 * keep up, as each new page needs its own unmap_mapping_range() call,
2056 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2057 *
2058 * It does not matter if we sometimes reach this check just before the
2059 * hole-punch begins, so that one fault then races with the punch:
2060 * we just need to make racing faults a rare case.
2061 *
2062 * The implementation below would be much simpler if we just used a
2063 * standard mutex or completion: but we cannot take i_mutex in fault,
2064 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2065 */
2066 if (unlikely(inode->i_private)) {
2067 struct shmem_falloc *shmem_falloc;
2068
2069 spin_lock(&inode->i_lock);
2070 shmem_falloc = inode->i_private;
8e205f77
HD
2071 if (shmem_falloc &&
2072 shmem_falloc->waitq &&
2073 vmf->pgoff >= shmem_falloc->start &&
2074 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2075 struct file *fpin;
8e205f77 2076 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2077 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2078
2079 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2080 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2081 if (fpin)
8e205f77 2082 ret = VM_FAULT_RETRY;
8e205f77
HD
2083
2084 shmem_falloc_waitq = shmem_falloc->waitq;
2085 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2086 TASK_UNINTERRUPTIBLE);
2087 spin_unlock(&inode->i_lock);
2088 schedule();
2089
2090 /*
2091 * shmem_falloc_waitq points into the shmem_fallocate()
2092 * stack of the hole-punching task: shmem_falloc_waitq
2093 * is usually invalid by the time we reach here, but
2094 * finish_wait() does not dereference it in that case;
2095 * though i_lock needed lest racing with wake_up_all().
2096 */
2097 spin_lock(&inode->i_lock);
2098 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2099 spin_unlock(&inode->i_lock);
8897c1b1
KS
2100
2101 if (fpin)
2102 fput(fpin);
8e205f77 2103 return ret;
f00cdc6d 2104 }
8e205f77 2105 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2106 }
2107
657e3038 2108 sgp = SGP_CACHE;
18600332
MH
2109
2110 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2111 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2112 sgp = SGP_NOHUGE;
18600332
MH
2113 else if (vma->vm_flags & VM_HUGEPAGE)
2114 sgp = SGP_HUGE;
657e3038 2115
20acce67 2116 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2117 gfp, vma, vmf, &ret);
20acce67
SJ
2118 if (err)
2119 return vmf_error(err);
68da9f05 2120 return ret;
1da177e4
LT
2121}
2122
c01d5b30
HD
2123unsigned long shmem_get_unmapped_area(struct file *file,
2124 unsigned long uaddr, unsigned long len,
2125 unsigned long pgoff, unsigned long flags)
2126{
2127 unsigned long (*get_area)(struct file *,
2128 unsigned long, unsigned long, unsigned long, unsigned long);
2129 unsigned long addr;
2130 unsigned long offset;
2131 unsigned long inflated_len;
2132 unsigned long inflated_addr;
2133 unsigned long inflated_offset;
2134
2135 if (len > TASK_SIZE)
2136 return -ENOMEM;
2137
2138 get_area = current->mm->get_unmapped_area;
2139 addr = get_area(file, uaddr, len, pgoff, flags);
2140
396bcc52 2141 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2142 return addr;
2143 if (IS_ERR_VALUE(addr))
2144 return addr;
2145 if (addr & ~PAGE_MASK)
2146 return addr;
2147 if (addr > TASK_SIZE - len)
2148 return addr;
2149
2150 if (shmem_huge == SHMEM_HUGE_DENY)
2151 return addr;
2152 if (len < HPAGE_PMD_SIZE)
2153 return addr;
2154 if (flags & MAP_FIXED)
2155 return addr;
2156 /*
2157 * Our priority is to support MAP_SHARED mapped hugely;
2158 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2159 * But if caller specified an address hint and we allocated area there
2160 * successfully, respect that as before.
c01d5b30 2161 */
99158997 2162 if (uaddr == addr)
c01d5b30
HD
2163 return addr;
2164
2165 if (shmem_huge != SHMEM_HUGE_FORCE) {
2166 struct super_block *sb;
2167
2168 if (file) {
2169 VM_BUG_ON(file->f_op != &shmem_file_operations);
2170 sb = file_inode(file)->i_sb;
2171 } else {
2172 /*
2173 * Called directly from mm/mmap.c, or drivers/char/mem.c
2174 * for "/dev/zero", to create a shared anonymous object.
2175 */
2176 if (IS_ERR(shm_mnt))
2177 return addr;
2178 sb = shm_mnt->mnt_sb;
2179 }
3089bf61 2180 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2181 return addr;
2182 }
2183
2184 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2185 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2186 return addr;
2187 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2188 return addr;
2189
2190 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2191 if (inflated_len > TASK_SIZE)
2192 return addr;
2193 if (inflated_len < len)
2194 return addr;
2195
99158997 2196 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2197 if (IS_ERR_VALUE(inflated_addr))
2198 return addr;
2199 if (inflated_addr & ~PAGE_MASK)
2200 return addr;
2201
2202 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2203 inflated_addr += offset - inflated_offset;
2204 if (inflated_offset > offset)
2205 inflated_addr += HPAGE_PMD_SIZE;
2206
2207 if (inflated_addr > TASK_SIZE - len)
2208 return addr;
2209 return inflated_addr;
2210}
2211
1da177e4 2212#ifdef CONFIG_NUMA
41ffe5d5 2213static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2214{
496ad9aa 2215 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2216 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2217}
2218
d8dc74f2
AB
2219static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2220 unsigned long addr)
1da177e4 2221{
496ad9aa 2222 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2223 pgoff_t index;
1da177e4 2224
41ffe5d5
HD
2225 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2226 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2227}
2228#endif
2229
2230int shmem_lock(struct file *file, int lock, struct user_struct *user)
2231{
496ad9aa 2232 struct inode *inode = file_inode(file);
1da177e4
LT
2233 struct shmem_inode_info *info = SHMEM_I(inode);
2234 int retval = -ENOMEM;
2235
ea0dfeb4
HD
2236 /*
2237 * What serializes the accesses to info->flags?
2238 * ipc_lock_object() when called from shmctl_do_lock(),
2239 * no serialization needed when called from shm_destroy().
2240 */
1da177e4
LT
2241 if (lock && !(info->flags & VM_LOCKED)) {
2242 if (!user_shm_lock(inode->i_size, user))
2243 goto out_nomem;
2244 info->flags |= VM_LOCKED;
89e004ea 2245 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2246 }
2247 if (!lock && (info->flags & VM_LOCKED) && user) {
2248 user_shm_unlock(inode->i_size, user);
2249 info->flags &= ~VM_LOCKED;
89e004ea 2250 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2251 }
2252 retval = 0;
89e004ea 2253
1da177e4 2254out_nomem:
1da177e4
LT
2255 return retval;
2256}
2257
9b83a6a8 2258static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2259{
ab3948f5 2260 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2261 int ret;
ab3948f5 2262
22247efd
PX
2263 ret = seal_check_future_write(info->seals, vma);
2264 if (ret)
2265 return ret;
ab3948f5 2266
51b0bff2
CM
2267 /* arm64 - allow memory tagging on RAM-based files */
2268 vma->vm_flags |= VM_MTE_ALLOWED;
2269
1da177e4
LT
2270 file_accessed(file);
2271 vma->vm_ops = &shmem_vm_ops;
396bcc52 2272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2273 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2274 (vma->vm_end & HPAGE_PMD_MASK)) {
2275 khugepaged_enter(vma, vma->vm_flags);
2276 }
1da177e4
LT
2277 return 0;
2278}
2279
454abafe 2280static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2281 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2282{
2283 struct inode *inode;
2284 struct shmem_inode_info *info;
2285 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2286 ino_t ino;
1da177e4 2287
e809d5f0 2288 if (shmem_reserve_inode(sb, &ino))
5b04c689 2289 return NULL;
1da177e4
LT
2290
2291 inode = new_inode(sb);
2292 if (inode) {
e809d5f0 2293 inode->i_ino = ino;
21cb47be 2294 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2295 inode->i_blocks = 0;
078cd827 2296 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2297 inode->i_generation = prandom_u32();
1da177e4
LT
2298 info = SHMEM_I(inode);
2299 memset(info, 0, (char *)inode - (char *)info);
2300 spin_lock_init(&info->lock);
af53d3e9 2301 atomic_set(&info->stop_eviction, 0);
40e041a2 2302 info->seals = F_SEAL_SEAL;
0b0a0806 2303 info->flags = flags & VM_NORESERVE;
779750d2 2304 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2305 INIT_LIST_HEAD(&info->swaplist);
38f38657 2306 simple_xattrs_init(&info->xattrs);
72c04902 2307 cache_no_acl(inode);
1da177e4
LT
2308
2309 switch (mode & S_IFMT) {
2310 default:
39f0247d 2311 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2312 init_special_inode(inode, mode, dev);
2313 break;
2314 case S_IFREG:
14fcc23f 2315 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2316 inode->i_op = &shmem_inode_operations;
2317 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2318 mpol_shared_policy_init(&info->policy,
2319 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2320 break;
2321 case S_IFDIR:
d8c76e6f 2322 inc_nlink(inode);
1da177e4
LT
2323 /* Some things misbehave if size == 0 on a directory */
2324 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2325 inode->i_op = &shmem_dir_inode_operations;
2326 inode->i_fop = &simple_dir_operations;
2327 break;
2328 case S_IFLNK:
2329 /*
2330 * Must not load anything in the rbtree,
2331 * mpol_free_shared_policy will not be called.
2332 */
71fe804b 2333 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2334 break;
2335 }
b45d71fb
JFG
2336
2337 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2338 } else
2339 shmem_free_inode(sb);
1da177e4
LT
2340 return inode;
2341}
2342
8d103963
MR
2343static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr,
2347 unsigned long src_addr,
2348 bool zeropage,
2349 struct page **pagep)
4c27fe4c
MR
2350{
2351 struct inode *inode = file_inode(dst_vma->vm_file);
2352 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2353 struct address_space *mapping = inode->i_mapping;
2354 gfp_t gfp = mapping_gfp_mask(mapping);
2355 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2356 spinlock_t *ptl;
2357 void *page_kaddr;
2358 struct page *page;
2359 pte_t _dst_pte, *dst_pte;
2360 int ret;
e2a50c1f 2361 pgoff_t offset, max_off;
4c27fe4c 2362
cb658a45 2363 ret = -ENOMEM;
0f079694 2364 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2365 goto out;
4c27fe4c 2366
cb658a45 2367 if (!*pagep) {
4c27fe4c
MR
2368 page = shmem_alloc_page(gfp, info, pgoff);
2369 if (!page)
0f079694 2370 goto out_unacct_blocks;
4c27fe4c 2371
8d103963
MR
2372 if (!zeropage) { /* mcopy_atomic */
2373 page_kaddr = kmap_atomic(page);
2374 ret = copy_from_user(page_kaddr,
2375 (const void __user *)src_addr,
2376 PAGE_SIZE);
2377 kunmap_atomic(page_kaddr);
2378
c1e8d7c6 2379 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2380 if (unlikely(ret)) {
2381 *pagep = page;
2382 shmem_inode_unacct_blocks(inode, 1);
2383 /* don't free the page */
9e368259 2384 return -ENOENT;
8d103963
MR
2385 }
2386 } else { /* mfill_zeropage_atomic */
2387 clear_highpage(page);
4c27fe4c
MR
2388 }
2389 } else {
2390 page = *pagep;
2391 *pagep = NULL;
2392 }
2393
9cc90c66
AA
2394 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2395 __SetPageLocked(page);
2396 __SetPageSwapBacked(page);
a425d358 2397 __SetPageUptodate(page);
9cc90c66 2398
e2a50c1f
AA
2399 ret = -EFAULT;
2400 offset = linear_page_index(dst_vma, dst_addr);
2401 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2402 if (unlikely(offset >= max_off))
2403 goto out_release;
2404
552446a4 2405 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2406 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2407 if (ret)
3fea5a49 2408 goto out_release;
4c27fe4c
MR
2409
2410 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2411 if (dst_vma->vm_flags & VM_WRITE)
2412 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2413 else {
2414 /*
2415 * We don't set the pte dirty if the vma has no
2416 * VM_WRITE permission, so mark the page dirty or it
2417 * could be freed from under us. We could do it
2418 * unconditionally before unlock_page(), but doing it
2419 * only if VM_WRITE is not set is faster.
2420 */
2421 set_page_dirty(page);
2422 }
4c27fe4c 2423
4c27fe4c 2424 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2425
2426 ret = -EFAULT;
2427 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2428 if (unlikely(offset >= max_off))
3fea5a49 2429 goto out_release_unlock;
e2a50c1f
AA
2430
2431 ret = -EEXIST;
4c27fe4c 2432 if (!pte_none(*dst_pte))
3fea5a49 2433 goto out_release_unlock;
4c27fe4c 2434
6058eaec 2435 lru_cache_add(page);
4c27fe4c 2436
94b7cc01 2437 spin_lock_irq(&info->lock);
4c27fe4c
MR
2438 info->alloced++;
2439 inode->i_blocks += BLOCKS_PER_PAGE;
2440 shmem_recalc_inode(inode);
94b7cc01 2441 spin_unlock_irq(&info->lock);
4c27fe4c
MR
2442
2443 inc_mm_counter(dst_mm, mm_counter_file(page));
2444 page_add_file_rmap(page, false);
2445 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2446
2447 /* No need to invalidate - it was non-present before */
2448 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2449 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2450 unlock_page(page);
4c27fe4c
MR
2451 ret = 0;
2452out:
2453 return ret;
3fea5a49 2454out_release_unlock:
4c27fe4c 2455 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2456 ClearPageDirty(page);
e2a50c1f 2457 delete_from_page_cache(page);
4c27fe4c 2458out_release:
9cc90c66 2459 unlock_page(page);
4c27fe4c 2460 put_page(page);
4c27fe4c 2461out_unacct_blocks:
0f079694 2462 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2463 goto out;
2464}
2465
8d103963
MR
2466int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2467 pmd_t *dst_pmd,
2468 struct vm_area_struct *dst_vma,
2469 unsigned long dst_addr,
2470 unsigned long src_addr,
2471 struct page **pagep)
2472{
2473 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2474 dst_addr, src_addr, false, pagep);
2475}
2476
2477int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2478 pmd_t *dst_pmd,
2479 struct vm_area_struct *dst_vma,
2480 unsigned long dst_addr)
2481{
2482 struct page *page = NULL;
2483
2484 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2485 dst_addr, 0, true, &page);
2486}
2487
1da177e4 2488#ifdef CONFIG_TMPFS
92e1d5be 2489static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2490static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2491
6d9d88d0
JS
2492#ifdef CONFIG_TMPFS_XATTR
2493static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2494#else
2495#define shmem_initxattrs NULL
2496#endif
2497
1da177e4 2498static int
800d15a5
NP
2499shmem_write_begin(struct file *file, struct address_space *mapping,
2500 loff_t pos, unsigned len, unsigned flags,
2501 struct page **pagep, void **fsdata)
1da177e4 2502{
800d15a5 2503 struct inode *inode = mapping->host;
40e041a2 2504 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2505 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2506
2507 /* i_mutex is held by caller */
ab3948f5
JFG
2508 if (unlikely(info->seals & (F_SEAL_GROW |
2509 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2510 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2511 return -EPERM;
2512 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2513 return -EPERM;
2514 }
2515
9e18eb29 2516 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2517}
2518
2519static int
2520shmem_write_end(struct file *file, struct address_space *mapping,
2521 loff_t pos, unsigned len, unsigned copied,
2522 struct page *page, void *fsdata)
2523{
2524 struct inode *inode = mapping->host;
2525
d3602444
HD
2526 if (pos + copied > inode->i_size)
2527 i_size_write(inode, pos + copied);
2528
ec9516fb 2529 if (!PageUptodate(page)) {
800d8c63
KS
2530 struct page *head = compound_head(page);
2531 if (PageTransCompound(page)) {
2532 int i;
2533
2534 for (i = 0; i < HPAGE_PMD_NR; i++) {
2535 if (head + i == page)
2536 continue;
2537 clear_highpage(head + i);
2538 flush_dcache_page(head + i);
2539 }
2540 }
09cbfeaf
KS
2541 if (copied < PAGE_SIZE) {
2542 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2543 zero_user_segments(page, 0, from,
09cbfeaf 2544 from + copied, PAGE_SIZE);
ec9516fb 2545 }
800d8c63 2546 SetPageUptodate(head);
ec9516fb 2547 }
800d15a5 2548 set_page_dirty(page);
6746aff7 2549 unlock_page(page);
09cbfeaf 2550 put_page(page);
800d15a5 2551
800d15a5 2552 return copied;
1da177e4
LT
2553}
2554
2ba5bbed 2555static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2556{
6e58e79d
AV
2557 struct file *file = iocb->ki_filp;
2558 struct inode *inode = file_inode(file);
1da177e4 2559 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2560 pgoff_t index;
2561 unsigned long offset;
a0ee5ec5 2562 enum sgp_type sgp = SGP_READ;
f7c1d074 2563 int error = 0;
cb66a7a1 2564 ssize_t retval = 0;
6e58e79d 2565 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2566
2567 /*
2568 * Might this read be for a stacking filesystem? Then when reading
2569 * holes of a sparse file, we actually need to allocate those pages,
2570 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2571 */
777eda2c 2572 if (!iter_is_iovec(to))
75edd345 2573 sgp = SGP_CACHE;
1da177e4 2574
09cbfeaf
KS
2575 index = *ppos >> PAGE_SHIFT;
2576 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2577
2578 for (;;) {
2579 struct page *page = NULL;
41ffe5d5
HD
2580 pgoff_t end_index;
2581 unsigned long nr, ret;
1da177e4
LT
2582 loff_t i_size = i_size_read(inode);
2583
09cbfeaf 2584 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2585 if (index > end_index)
2586 break;
2587 if (index == end_index) {
09cbfeaf 2588 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2589 if (nr <= offset)
2590 break;
2591 }
2592
9e18eb29 2593 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2594 if (error) {
2595 if (error == -EINVAL)
2596 error = 0;
1da177e4
LT
2597 break;
2598 }
75edd345
HD
2599 if (page) {
2600 if (sgp == SGP_CACHE)
2601 set_page_dirty(page);
d3602444 2602 unlock_page(page);
75edd345 2603 }
1da177e4
LT
2604
2605 /*
2606 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2607 * are called without i_mutex protection against truncate
1da177e4 2608 */
09cbfeaf 2609 nr = PAGE_SIZE;
1da177e4 2610 i_size = i_size_read(inode);
09cbfeaf 2611 end_index = i_size >> PAGE_SHIFT;
1da177e4 2612 if (index == end_index) {
09cbfeaf 2613 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2614 if (nr <= offset) {
2615 if (page)
09cbfeaf 2616 put_page(page);
1da177e4
LT
2617 break;
2618 }
2619 }
2620 nr -= offset;
2621
2622 if (page) {
2623 /*
2624 * If users can be writing to this page using arbitrary
2625 * virtual addresses, take care about potential aliasing
2626 * before reading the page on the kernel side.
2627 */
2628 if (mapping_writably_mapped(mapping))
2629 flush_dcache_page(page);
2630 /*
2631 * Mark the page accessed if we read the beginning.
2632 */
2633 if (!offset)
2634 mark_page_accessed(page);
b5810039 2635 } else {
1da177e4 2636 page = ZERO_PAGE(0);
09cbfeaf 2637 get_page(page);
b5810039 2638 }
1da177e4
LT
2639
2640 /*
2641 * Ok, we have the page, and it's up-to-date, so
2642 * now we can copy it to user space...
1da177e4 2643 */
2ba5bbed 2644 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2645 retval += ret;
1da177e4 2646 offset += ret;
09cbfeaf
KS
2647 index += offset >> PAGE_SHIFT;
2648 offset &= ~PAGE_MASK;
1da177e4 2649
09cbfeaf 2650 put_page(page);
2ba5bbed 2651 if (!iov_iter_count(to))
1da177e4 2652 break;
6e58e79d
AV
2653 if (ret < nr) {
2654 error = -EFAULT;
2655 break;
2656 }
1da177e4
LT
2657 cond_resched();
2658 }
2659
09cbfeaf 2660 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2661 file_accessed(file);
2662 return retval ? retval : error;
1da177e4
LT
2663}
2664
965c8e59 2665static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2666{
2667 struct address_space *mapping = file->f_mapping;
2668 struct inode *inode = mapping->host;
220f2ac9 2669
965c8e59
AM
2670 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2671 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2672 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2673 if (offset < 0)
2674 return -ENXIO;
2675
5955102c 2676 inode_lock(inode);
220f2ac9 2677 /* We're holding i_mutex so we can access i_size directly */
41139aa4 2678 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2679 if (offset >= 0)
2680 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2681 inode_unlock(inode);
220f2ac9
HD
2682 return offset;
2683}
2684
83e4fa9c
HD
2685static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2686 loff_t len)
2687{
496ad9aa 2688 struct inode *inode = file_inode(file);
e2d12e22 2689 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2690 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2691 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2692 pgoff_t start, index, end;
2693 int error;
83e4fa9c 2694
13ace4d0
HD
2695 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2696 return -EOPNOTSUPP;
2697
5955102c 2698 inode_lock(inode);
83e4fa9c
HD
2699
2700 if (mode & FALLOC_FL_PUNCH_HOLE) {
2701 struct address_space *mapping = file->f_mapping;
2702 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2703 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2704 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2705
40e041a2 2706 /* protected by i_mutex */
ab3948f5 2707 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2708 error = -EPERM;
2709 goto out;
2710 }
2711
8e205f77 2712 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2713 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2714 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2715 spin_lock(&inode->i_lock);
2716 inode->i_private = &shmem_falloc;
2717 spin_unlock(&inode->i_lock);
2718
83e4fa9c
HD
2719 if ((u64)unmap_end > (u64)unmap_start)
2720 unmap_mapping_range(mapping, unmap_start,
2721 1 + unmap_end - unmap_start, 0);
2722 shmem_truncate_range(inode, offset, offset + len - 1);
2723 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2724
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = NULL;
2727 wake_up_all(&shmem_falloc_waitq);
2055da97 2728 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2729 spin_unlock(&inode->i_lock);
83e4fa9c 2730 error = 0;
8e205f77 2731 goto out;
e2d12e22
HD
2732 }
2733
2734 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2735 error = inode_newsize_ok(inode, offset + len);
2736 if (error)
2737 goto out;
2738
40e041a2
DR
2739 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2740 error = -EPERM;
2741 goto out;
2742 }
2743
09cbfeaf
KS
2744 start = offset >> PAGE_SHIFT;
2745 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2746 /* Try to avoid a swapstorm if len is impossible to satisfy */
2747 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2748 error = -ENOSPC;
2749 goto out;
83e4fa9c
HD
2750 }
2751
8e205f77 2752 shmem_falloc.waitq = NULL;
1aac1400
HD
2753 shmem_falloc.start = start;
2754 shmem_falloc.next = start;
2755 shmem_falloc.nr_falloced = 0;
2756 shmem_falloc.nr_unswapped = 0;
2757 spin_lock(&inode->i_lock);
2758 inode->i_private = &shmem_falloc;
2759 spin_unlock(&inode->i_lock);
2760
e2d12e22
HD
2761 for (index = start; index < end; index++) {
2762 struct page *page;
2763
2764 /*
2765 * Good, the fallocate(2) manpage permits EINTR: we may have
2766 * been interrupted because we are using up too much memory.
2767 */
2768 if (signal_pending(current))
2769 error = -EINTR;
1aac1400
HD
2770 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2771 error = -ENOMEM;
e2d12e22 2772 else
9e18eb29 2773 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2774 if (error) {
1635f6a7 2775 /* Remove the !PageUptodate pages we added */
7f556567
HD
2776 if (index > start) {
2777 shmem_undo_range(inode,
2778 (loff_t)start << PAGE_SHIFT,
2779 ((loff_t)index << PAGE_SHIFT) - 1, true);
2780 }
1aac1400 2781 goto undone;
e2d12e22
HD
2782 }
2783
1aac1400
HD
2784 /*
2785 * Inform shmem_writepage() how far we have reached.
2786 * No need for lock or barrier: we have the page lock.
2787 */
2788 shmem_falloc.next++;
2789 if (!PageUptodate(page))
2790 shmem_falloc.nr_falloced++;
2791
e2d12e22 2792 /*
1635f6a7
HD
2793 * If !PageUptodate, leave it that way so that freeable pages
2794 * can be recognized if we need to rollback on error later.
2795 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2796 * than free the pages we are allocating (and SGP_CACHE pages
2797 * might still be clean: we now need to mark those dirty too).
2798 */
2799 set_page_dirty(page);
2800 unlock_page(page);
09cbfeaf 2801 put_page(page);
e2d12e22
HD
2802 cond_resched();
2803 }
2804
2805 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2806 i_size_write(inode, offset + len);
078cd827 2807 inode->i_ctime = current_time(inode);
1aac1400
HD
2808undone:
2809 spin_lock(&inode->i_lock);
2810 inode->i_private = NULL;
2811 spin_unlock(&inode->i_lock);
e2d12e22 2812out:
5955102c 2813 inode_unlock(inode);
83e4fa9c
HD
2814 return error;
2815}
2816
726c3342 2817static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2818{
726c3342 2819 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2820
2821 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2822 buf->f_bsize = PAGE_SIZE;
1da177e4 2823 buf->f_namelen = NAME_MAX;
0edd73b3 2824 if (sbinfo->max_blocks) {
1da177e4 2825 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2826 buf->f_bavail =
2827 buf->f_bfree = sbinfo->max_blocks -
2828 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2829 }
2830 if (sbinfo->max_inodes) {
1da177e4
LT
2831 buf->f_files = sbinfo->max_inodes;
2832 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2833 }
2834 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2835
2836 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2837
1da177e4
LT
2838 return 0;
2839}
2840
2841/*
2842 * File creation. Allocate an inode, and we're done..
2843 */
2844static int
549c7297
CB
2845shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2846 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2847{
0b0a0806 2848 struct inode *inode;
1da177e4
LT
2849 int error = -ENOSPC;
2850
454abafe 2851 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2852 if (inode) {
feda821e
CH
2853 error = simple_acl_create(dir, inode);
2854 if (error)
2855 goto out_iput;
2a7dba39 2856 error = security_inode_init_security(inode, dir,
9d8f13ba 2857 &dentry->d_name,
6d9d88d0 2858 shmem_initxattrs, NULL);
feda821e
CH
2859 if (error && error != -EOPNOTSUPP)
2860 goto out_iput;
37ec43cd 2861
718deb6b 2862 error = 0;
1da177e4 2863 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2864 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2865 d_instantiate(dentry, inode);
2866 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2867 }
2868 return error;
feda821e
CH
2869out_iput:
2870 iput(inode);
2871 return error;
1da177e4
LT
2872}
2873
60545d0d 2874static int
549c7297
CB
2875shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2876 struct dentry *dentry, umode_t mode)
60545d0d
AV
2877{
2878 struct inode *inode;
2879 int error = -ENOSPC;
2880
2881 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2882 if (inode) {
2883 error = security_inode_init_security(inode, dir,
2884 NULL,
2885 shmem_initxattrs, NULL);
feda821e
CH
2886 if (error && error != -EOPNOTSUPP)
2887 goto out_iput;
2888 error = simple_acl_create(dir, inode);
2889 if (error)
2890 goto out_iput;
60545d0d
AV
2891 d_tmpfile(dentry, inode);
2892 }
2893 return error;
feda821e
CH
2894out_iput:
2895 iput(inode);
2896 return error;
60545d0d
AV
2897}
2898
549c7297
CB
2899static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2900 struct dentry *dentry, umode_t mode)
1da177e4
LT
2901{
2902 int error;
2903
549c7297
CB
2904 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2905 mode | S_IFDIR, 0)))
1da177e4 2906 return error;
d8c76e6f 2907 inc_nlink(dir);
1da177e4
LT
2908 return 0;
2909}
2910
549c7297
CB
2911static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2912 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2913{
549c7297 2914 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2915}
2916
2917/*
2918 * Link a file..
2919 */
2920static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2921{
75c3cfa8 2922 struct inode *inode = d_inode(old_dentry);
29b00e60 2923 int ret = 0;
1da177e4
LT
2924
2925 /*
2926 * No ordinary (disk based) filesystem counts links as inodes;
2927 * but each new link needs a new dentry, pinning lowmem, and
2928 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2929 * But if an O_TMPFILE file is linked into the tmpfs, the
2930 * first link must skip that, to get the accounting right.
1da177e4 2931 */
1062af92 2932 if (inode->i_nlink) {
e809d5f0 2933 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2934 if (ret)
2935 goto out;
2936 }
1da177e4
LT
2937
2938 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2939 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2940 inc_nlink(inode);
7de9c6ee 2941 ihold(inode); /* New dentry reference */
1da177e4
LT
2942 dget(dentry); /* Extra pinning count for the created dentry */
2943 d_instantiate(dentry, inode);
5b04c689
PE
2944out:
2945 return ret;
1da177e4
LT
2946}
2947
2948static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2949{
75c3cfa8 2950 struct inode *inode = d_inode(dentry);
1da177e4 2951
5b04c689
PE
2952 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2953 shmem_free_inode(inode->i_sb);
1da177e4
LT
2954
2955 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2956 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2957 drop_nlink(inode);
1da177e4
LT
2958 dput(dentry); /* Undo the count from "create" - this does all the work */
2959 return 0;
2960}
2961
2962static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2963{
2964 if (!simple_empty(dentry))
2965 return -ENOTEMPTY;
2966
75c3cfa8 2967 drop_nlink(d_inode(dentry));
9a53c3a7 2968 drop_nlink(dir);
1da177e4
LT
2969 return shmem_unlink(dir, dentry);
2970}
2971
37456771
MS
2972static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2973{
e36cb0b8
DH
2974 bool old_is_dir = d_is_dir(old_dentry);
2975 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2976
2977 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2978 if (old_is_dir) {
2979 drop_nlink(old_dir);
2980 inc_nlink(new_dir);
2981 } else {
2982 drop_nlink(new_dir);
2983 inc_nlink(old_dir);
2984 }
2985 }
2986 old_dir->i_ctime = old_dir->i_mtime =
2987 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2988 d_inode(old_dentry)->i_ctime =
078cd827 2989 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2990
2991 return 0;
2992}
2993
549c7297
CB
2994static int shmem_whiteout(struct user_namespace *mnt_userns,
2995 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2996{
2997 struct dentry *whiteout;
2998 int error;
2999
3000 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3001 if (!whiteout)
3002 return -ENOMEM;
3003
549c7297 3004 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
3005 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3006 dput(whiteout);
3007 if (error)
3008 return error;
3009
3010 /*
3011 * Cheat and hash the whiteout while the old dentry is still in
3012 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3013 *
3014 * d_lookup() will consistently find one of them at this point,
3015 * not sure which one, but that isn't even important.
3016 */
3017 d_rehash(whiteout);
3018 return 0;
3019}
3020
1da177e4
LT
3021/*
3022 * The VFS layer already does all the dentry stuff for rename,
3023 * we just have to decrement the usage count for the target if
3024 * it exists so that the VFS layer correctly free's it when it
3025 * gets overwritten.
3026 */
549c7297
CB
3027static int shmem_rename2(struct user_namespace *mnt_userns,
3028 struct inode *old_dir, struct dentry *old_dentry,
3029 struct inode *new_dir, struct dentry *new_dentry,
3030 unsigned int flags)
1da177e4 3031{
75c3cfa8 3032 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3033 int they_are_dirs = S_ISDIR(inode->i_mode);
3034
46fdb794 3035 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3036 return -EINVAL;
3037
37456771
MS
3038 if (flags & RENAME_EXCHANGE)
3039 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3040
1da177e4
LT
3041 if (!simple_empty(new_dentry))
3042 return -ENOTEMPTY;
3043
46fdb794
MS
3044 if (flags & RENAME_WHITEOUT) {
3045 int error;
3046
549c7297 3047 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3048 if (error)
3049 return error;
3050 }
3051
75c3cfa8 3052 if (d_really_is_positive(new_dentry)) {
1da177e4 3053 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3054 if (they_are_dirs) {
75c3cfa8 3055 drop_nlink(d_inode(new_dentry));
9a53c3a7 3056 drop_nlink(old_dir);
b928095b 3057 }
1da177e4 3058 } else if (they_are_dirs) {
9a53c3a7 3059 drop_nlink(old_dir);
d8c76e6f 3060 inc_nlink(new_dir);
1da177e4
LT
3061 }
3062
3063 old_dir->i_size -= BOGO_DIRENT_SIZE;
3064 new_dir->i_size += BOGO_DIRENT_SIZE;
3065 old_dir->i_ctime = old_dir->i_mtime =
3066 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3067 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3068 return 0;
3069}
3070
549c7297
CB
3071static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3072 struct dentry *dentry, const char *symname)
1da177e4
LT
3073{
3074 int error;
3075 int len;
3076 struct inode *inode;
9276aad6 3077 struct page *page;
1da177e4
LT
3078
3079 len = strlen(symname) + 1;
09cbfeaf 3080 if (len > PAGE_SIZE)
1da177e4
LT
3081 return -ENAMETOOLONG;
3082
0825a6f9
JP
3083 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3084 VM_NORESERVE);
1da177e4
LT
3085 if (!inode)
3086 return -ENOSPC;
3087
9d8f13ba 3088 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3089 shmem_initxattrs, NULL);
343c3d7f
MN
3090 if (error && error != -EOPNOTSUPP) {
3091 iput(inode);
3092 return error;
570bc1c2
SS
3093 }
3094
1da177e4 3095 inode->i_size = len-1;
69f07ec9 3096 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3097 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3098 if (!inode->i_link) {
69f07ec9
HD
3099 iput(inode);
3100 return -ENOMEM;
3101 }
3102 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3103 } else {
e8ecde25 3104 inode_nohighmem(inode);
9e18eb29 3105 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3106 if (error) {
3107 iput(inode);
3108 return error;
3109 }
14fcc23f 3110 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3111 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3112 memcpy(page_address(page), symname, len);
ec9516fb 3113 SetPageUptodate(page);
1da177e4 3114 set_page_dirty(page);
6746aff7 3115 unlock_page(page);
09cbfeaf 3116 put_page(page);
1da177e4 3117 }
1da177e4 3118 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3119 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3120 d_instantiate(dentry, inode);
3121 dget(dentry);
3122 return 0;
3123}
3124
fceef393 3125static void shmem_put_link(void *arg)
1da177e4 3126{
fceef393
AV
3127 mark_page_accessed(arg);
3128 put_page(arg);
1da177e4
LT
3129}
3130
6b255391 3131static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3132 struct inode *inode,
3133 struct delayed_call *done)
1da177e4 3134{
1da177e4 3135 struct page *page = NULL;
6b255391 3136 int error;
6a6c9904
AV
3137 if (!dentry) {
3138 page = find_get_page(inode->i_mapping, 0);
3139 if (!page)
3140 return ERR_PTR(-ECHILD);
3141 if (!PageUptodate(page)) {
3142 put_page(page);
3143 return ERR_PTR(-ECHILD);
3144 }
3145 } else {
9e18eb29 3146 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3147 if (error)
3148 return ERR_PTR(error);
3149 unlock_page(page);
3150 }
fceef393 3151 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3152 return page_address(page);
1da177e4
LT
3153}
3154
b09e0fa4 3155#ifdef CONFIG_TMPFS_XATTR
46711810 3156/*
b09e0fa4
EP
3157 * Superblocks without xattr inode operations may get some security.* xattr
3158 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3159 * like ACLs, we also need to implement the security.* handlers at
3160 * filesystem level, though.
3161 */
3162
6d9d88d0
JS
3163/*
3164 * Callback for security_inode_init_security() for acquiring xattrs.
3165 */
3166static int shmem_initxattrs(struct inode *inode,
3167 const struct xattr *xattr_array,
3168 void *fs_info)
3169{
3170 struct shmem_inode_info *info = SHMEM_I(inode);
3171 const struct xattr *xattr;
38f38657 3172 struct simple_xattr *new_xattr;
6d9d88d0
JS
3173 size_t len;
3174
3175 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3176 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3177 if (!new_xattr)
3178 return -ENOMEM;
3179
3180 len = strlen(xattr->name) + 1;
3181 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3182 GFP_KERNEL);
3183 if (!new_xattr->name) {
3bef735a 3184 kvfree(new_xattr);
6d9d88d0
JS
3185 return -ENOMEM;
3186 }
3187
3188 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3189 XATTR_SECURITY_PREFIX_LEN);
3190 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3191 xattr->name, len);
3192
38f38657 3193 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3194 }
3195
3196 return 0;
3197}
3198
aa7c5241 3199static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3200 struct dentry *unused, struct inode *inode,
3201 const char *name, void *buffer, size_t size)
b09e0fa4 3202{
b296821a 3203 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3204
aa7c5241 3205 name = xattr_full_name(handler, name);
38f38657 3206 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3207}
3208
aa7c5241 3209static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3210 struct user_namespace *mnt_userns,
59301226
AV
3211 struct dentry *unused, struct inode *inode,
3212 const char *name, const void *value,
3213 size_t size, int flags)
b09e0fa4 3214{
59301226 3215 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3216
aa7c5241 3217 name = xattr_full_name(handler, name);
a46a2295 3218 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3219}
3220
aa7c5241
AG
3221static const struct xattr_handler shmem_security_xattr_handler = {
3222 .prefix = XATTR_SECURITY_PREFIX,
3223 .get = shmem_xattr_handler_get,
3224 .set = shmem_xattr_handler_set,
3225};
b09e0fa4 3226
aa7c5241
AG
3227static const struct xattr_handler shmem_trusted_xattr_handler = {
3228 .prefix = XATTR_TRUSTED_PREFIX,
3229 .get = shmem_xattr_handler_get,
3230 .set = shmem_xattr_handler_set,
3231};
b09e0fa4 3232
aa7c5241
AG
3233static const struct xattr_handler *shmem_xattr_handlers[] = {
3234#ifdef CONFIG_TMPFS_POSIX_ACL
3235 &posix_acl_access_xattr_handler,
3236 &posix_acl_default_xattr_handler,
3237#endif
3238 &shmem_security_xattr_handler,
3239 &shmem_trusted_xattr_handler,
3240 NULL
3241};
b09e0fa4
EP
3242
3243static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3244{
75c3cfa8 3245 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3246 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3247}
3248#endif /* CONFIG_TMPFS_XATTR */
3249
69f07ec9 3250static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3251 .get_link = simple_get_link,
b09e0fa4 3252#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3253 .listxattr = shmem_listxattr,
b09e0fa4
EP
3254#endif
3255};
3256
3257static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3258 .get_link = shmem_get_link,
b09e0fa4 3259#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3260 .listxattr = shmem_listxattr,
39f0247d 3261#endif
b09e0fa4 3262};
39f0247d 3263
91828a40
DG
3264static struct dentry *shmem_get_parent(struct dentry *child)
3265{
3266 return ERR_PTR(-ESTALE);
3267}
3268
3269static int shmem_match(struct inode *ino, void *vfh)
3270{
3271 __u32 *fh = vfh;
3272 __u64 inum = fh[2];
3273 inum = (inum << 32) | fh[1];
3274 return ino->i_ino == inum && fh[0] == ino->i_generation;
3275}
3276
12ba780d
AG
3277/* Find any alias of inode, but prefer a hashed alias */
3278static struct dentry *shmem_find_alias(struct inode *inode)
3279{
3280 struct dentry *alias = d_find_alias(inode);
3281
3282 return alias ?: d_find_any_alias(inode);
3283}
3284
3285
480b116c
CH
3286static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3287 struct fid *fid, int fh_len, int fh_type)
91828a40 3288{
91828a40 3289 struct inode *inode;
480b116c 3290 struct dentry *dentry = NULL;
35c2a7f4 3291 u64 inum;
480b116c
CH
3292
3293 if (fh_len < 3)
3294 return NULL;
91828a40 3295
35c2a7f4
HD
3296 inum = fid->raw[2];
3297 inum = (inum << 32) | fid->raw[1];
3298
480b116c
CH
3299 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3300 shmem_match, fid->raw);
91828a40 3301 if (inode) {
12ba780d 3302 dentry = shmem_find_alias(inode);
91828a40
DG
3303 iput(inode);
3304 }
3305
480b116c 3306 return dentry;
91828a40
DG
3307}
3308
b0b0382b
AV
3309static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3310 struct inode *parent)
91828a40 3311{
5fe0c237
AK
3312 if (*len < 3) {
3313 *len = 3;
94e07a75 3314 return FILEID_INVALID;
5fe0c237 3315 }
91828a40 3316
1d3382cb 3317 if (inode_unhashed(inode)) {
91828a40
DG
3318 /* Unfortunately insert_inode_hash is not idempotent,
3319 * so as we hash inodes here rather than at creation
3320 * time, we need a lock to ensure we only try
3321 * to do it once
3322 */
3323 static DEFINE_SPINLOCK(lock);
3324 spin_lock(&lock);
1d3382cb 3325 if (inode_unhashed(inode))
91828a40
DG
3326 __insert_inode_hash(inode,
3327 inode->i_ino + inode->i_generation);
3328 spin_unlock(&lock);
3329 }
3330
3331 fh[0] = inode->i_generation;
3332 fh[1] = inode->i_ino;
3333 fh[2] = ((__u64)inode->i_ino) >> 32;
3334
3335 *len = 3;
3336 return 1;
3337}
3338
39655164 3339static const struct export_operations shmem_export_ops = {
91828a40 3340 .get_parent = shmem_get_parent,
91828a40 3341 .encode_fh = shmem_encode_fh,
480b116c 3342 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3343};
3344
626c3920
AV
3345enum shmem_param {
3346 Opt_gid,
3347 Opt_huge,
3348 Opt_mode,
3349 Opt_mpol,
3350 Opt_nr_blocks,
3351 Opt_nr_inodes,
3352 Opt_size,
3353 Opt_uid,
ea3271f7
CD
3354 Opt_inode32,
3355 Opt_inode64,
626c3920
AV
3356};
3357
5eede625 3358static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3359 {"never", SHMEM_HUGE_NEVER },
3360 {"always", SHMEM_HUGE_ALWAYS },
3361 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3362 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3363 {}
3364};
3365
d7167b14 3366const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3367 fsparam_u32 ("gid", Opt_gid),
2710c957 3368 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3369 fsparam_u32oct("mode", Opt_mode),
3370 fsparam_string("mpol", Opt_mpol),
3371 fsparam_string("nr_blocks", Opt_nr_blocks),
3372 fsparam_string("nr_inodes", Opt_nr_inodes),
3373 fsparam_string("size", Opt_size),
3374 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3375 fsparam_flag ("inode32", Opt_inode32),
3376 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3377 {}
3378};
3379
f3235626 3380static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3381{
f3235626 3382 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3383 struct fs_parse_result result;
3384 unsigned long long size;
e04dc423 3385 char *rest;
626c3920
AV
3386 int opt;
3387
d7167b14 3388 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3389 if (opt < 0)
626c3920 3390 return opt;
1da177e4 3391
626c3920
AV
3392 switch (opt) {
3393 case Opt_size:
3394 size = memparse(param->string, &rest);
e04dc423
AV
3395 if (*rest == '%') {
3396 size <<= PAGE_SHIFT;
3397 size *= totalram_pages();
3398 do_div(size, 100);
3399 rest++;
3400 }
3401 if (*rest)
626c3920 3402 goto bad_value;
e04dc423
AV
3403 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3404 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3405 break;
3406 case Opt_nr_blocks:
3407 ctx->blocks = memparse(param->string, &rest);
e04dc423 3408 if (*rest)
626c3920 3409 goto bad_value;
e04dc423 3410 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3411 break;
3412 case Opt_nr_inodes:
3413 ctx->inodes = memparse(param->string, &rest);
e04dc423 3414 if (*rest)
626c3920 3415 goto bad_value;
e04dc423 3416 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3417 break;
3418 case Opt_mode:
3419 ctx->mode = result.uint_32 & 07777;
3420 break;
3421 case Opt_uid:
3422 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3423 if (!uid_valid(ctx->uid))
626c3920
AV
3424 goto bad_value;
3425 break;
3426 case Opt_gid:
3427 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3428 if (!gid_valid(ctx->gid))
626c3920
AV
3429 goto bad_value;
3430 break;
3431 case Opt_huge:
3432 ctx->huge = result.uint_32;
3433 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3434 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3435 has_transparent_hugepage()))
3436 goto unsupported_parameter;
e04dc423 3437 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3438 break;
3439 case Opt_mpol:
3440 if (IS_ENABLED(CONFIG_NUMA)) {
3441 mpol_put(ctx->mpol);
3442 ctx->mpol = NULL;
3443 if (mpol_parse_str(param->string, &ctx->mpol))
3444 goto bad_value;
3445 break;
3446 }
3447 goto unsupported_parameter;
ea3271f7
CD
3448 case Opt_inode32:
3449 ctx->full_inums = false;
3450 ctx->seen |= SHMEM_SEEN_INUMS;
3451 break;
3452 case Opt_inode64:
3453 if (sizeof(ino_t) < 8) {
3454 return invalfc(fc,
3455 "Cannot use inode64 with <64bit inums in kernel\n");
3456 }
3457 ctx->full_inums = true;
3458 ctx->seen |= SHMEM_SEEN_INUMS;
3459 break;
e04dc423
AV
3460 }
3461 return 0;
3462
626c3920 3463unsupported_parameter:
f35aa2bc 3464 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3465bad_value:
f35aa2bc 3466 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3467}
3468
f3235626 3469static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3470{
f3235626
DH
3471 char *options = data;
3472
33f37c64
AV
3473 if (options) {
3474 int err = security_sb_eat_lsm_opts(options, &fc->security);
3475 if (err)
3476 return err;
3477 }
3478
b00dc3ad 3479 while (options != NULL) {
626c3920 3480 char *this_char = options;
b00dc3ad
HD
3481 for (;;) {
3482 /*
3483 * NUL-terminate this option: unfortunately,
3484 * mount options form a comma-separated list,
3485 * but mpol's nodelist may also contain commas.
3486 */
3487 options = strchr(options, ',');
3488 if (options == NULL)
3489 break;
3490 options++;
3491 if (!isdigit(*options)) {
3492 options[-1] = '\0';
3493 break;
3494 }
3495 }
626c3920 3496 if (*this_char) {
68d68ff6 3497 char *value = strchr(this_char, '=');
f3235626 3498 size_t len = 0;
626c3920
AV
3499 int err;
3500
3501 if (value) {
3502 *value++ = '\0';
f3235626 3503 len = strlen(value);
626c3920 3504 }
f3235626
DH
3505 err = vfs_parse_fs_string(fc, this_char, value, len);
3506 if (err < 0)
3507 return err;
1da177e4 3508 }
1da177e4
LT
3509 }
3510 return 0;
1da177e4
LT
3511}
3512
f3235626
DH
3513/*
3514 * Reconfigure a shmem filesystem.
3515 *
3516 * Note that we disallow change from limited->unlimited blocks/inodes while any
3517 * are in use; but we must separately disallow unlimited->limited, because in
3518 * that case we have no record of how much is already in use.
3519 */
3520static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3521{
f3235626
DH
3522 struct shmem_options *ctx = fc->fs_private;
3523 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3524 unsigned long inodes;
f3235626 3525 const char *err;
1da177e4 3526
0edd73b3 3527 spin_lock(&sbinfo->stat_lock);
0edd73b3 3528 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3529 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3530 if (!sbinfo->max_blocks) {
3531 err = "Cannot retroactively limit size";
0b5071dd 3532 goto out;
f3235626 3533 }
0b5071dd 3534 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3535 ctx->blocks) > 0) {
3536 err = "Too small a size for current use";
0b5071dd 3537 goto out;
f3235626 3538 }
0b5071dd 3539 }
f3235626
DH
3540 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3541 if (!sbinfo->max_inodes) {
3542 err = "Cannot retroactively limit inodes";
0b5071dd 3543 goto out;
f3235626
DH
3544 }
3545 if (ctx->inodes < inodes) {
3546 err = "Too few inodes for current use";
0b5071dd 3547 goto out;
f3235626 3548 }
0b5071dd 3549 }
0edd73b3 3550
ea3271f7
CD
3551 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3552 sbinfo->next_ino > UINT_MAX) {
3553 err = "Current inum too high to switch to 32-bit inums";
3554 goto out;
3555 }
3556
f3235626
DH
3557 if (ctx->seen & SHMEM_SEEN_HUGE)
3558 sbinfo->huge = ctx->huge;
ea3271f7
CD
3559 if (ctx->seen & SHMEM_SEEN_INUMS)
3560 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3561 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3562 sbinfo->max_blocks = ctx->blocks;
3563 if (ctx->seen & SHMEM_SEEN_INODES) {
3564 sbinfo->max_inodes = ctx->inodes;
3565 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3566 }
71fe804b 3567
5f00110f
GT
3568 /*
3569 * Preserve previous mempolicy unless mpol remount option was specified.
3570 */
f3235626 3571 if (ctx->mpol) {
5f00110f 3572 mpol_put(sbinfo->mpol);
f3235626
DH
3573 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3574 ctx->mpol = NULL;
5f00110f 3575 }
f3235626
DH
3576 spin_unlock(&sbinfo->stat_lock);
3577 return 0;
0edd73b3
HD
3578out:
3579 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3580 return invalfc(fc, "%s", err);
1da177e4 3581}
680d794b 3582
34c80b1d 3583static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3584{
34c80b1d 3585 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3586
3587 if (sbinfo->max_blocks != shmem_default_max_blocks())
3588 seq_printf(seq, ",size=%luk",
09cbfeaf 3589 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3590 if (sbinfo->max_inodes != shmem_default_max_inodes())
3591 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3592 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3593 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3594 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3595 seq_printf(seq, ",uid=%u",
3596 from_kuid_munged(&init_user_ns, sbinfo->uid));
3597 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3598 seq_printf(seq, ",gid=%u",
3599 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3600
3601 /*
3602 * Showing inode{64,32} might be useful even if it's the system default,
3603 * since then people don't have to resort to checking both here and
3604 * /proc/config.gz to confirm 64-bit inums were successfully applied
3605 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3606 *
3607 * We hide it when inode64 isn't the default and we are using 32-bit
3608 * inodes, since that probably just means the feature isn't even under
3609 * consideration.
3610 *
3611 * As such:
3612 *
3613 * +-----------------+-----------------+
3614 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3615 * +------------------+-----------------+-----------------+
3616 * | full_inums=true | show | show |
3617 * | full_inums=false | show | hide |
3618 * +------------------+-----------------+-----------------+
3619 *
3620 */
3621 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3622 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3623#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3624 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3625 if (sbinfo->huge)
3626 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3627#endif
71fe804b 3628 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3629 return 0;
3630}
9183df25 3631
680d794b 3632#endif /* CONFIG_TMPFS */
1da177e4
LT
3633
3634static void shmem_put_super(struct super_block *sb)
3635{
602586a8
HD
3636 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3637
e809d5f0 3638 free_percpu(sbinfo->ino_batch);
602586a8 3639 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3640 mpol_put(sbinfo->mpol);
602586a8 3641 kfree(sbinfo);
1da177e4
LT
3642 sb->s_fs_info = NULL;
3643}
3644
f3235626 3645static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3646{
f3235626 3647 struct shmem_options *ctx = fc->fs_private;
1da177e4 3648 struct inode *inode;
0edd73b3 3649 struct shmem_sb_info *sbinfo;
680d794b
AM
3650 int err = -ENOMEM;
3651
3652 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3653 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3654 L1_CACHE_BYTES), GFP_KERNEL);
3655 if (!sbinfo)
3656 return -ENOMEM;
3657
680d794b 3658 sb->s_fs_info = sbinfo;
1da177e4 3659
0edd73b3 3660#ifdef CONFIG_TMPFS
1da177e4
LT
3661 /*
3662 * Per default we only allow half of the physical ram per
3663 * tmpfs instance, limiting inodes to one per page of lowmem;
3664 * but the internal instance is left unlimited.
3665 */
1751e8a6 3666 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3667 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3668 ctx->blocks = shmem_default_max_blocks();
3669 if (!(ctx->seen & SHMEM_SEEN_INODES))
3670 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3671 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3672 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3673 } else {
1751e8a6 3674 sb->s_flags |= SB_NOUSER;
1da177e4 3675 }
91828a40 3676 sb->s_export_op = &shmem_export_ops;
1751e8a6 3677 sb->s_flags |= SB_NOSEC;
1da177e4 3678#else
1751e8a6 3679 sb->s_flags |= SB_NOUSER;
1da177e4 3680#endif
f3235626
DH
3681 sbinfo->max_blocks = ctx->blocks;
3682 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3683 if (sb->s_flags & SB_KERNMOUNT) {
3684 sbinfo->ino_batch = alloc_percpu(ino_t);
3685 if (!sbinfo->ino_batch)
3686 goto failed;
3687 }
f3235626
DH
3688 sbinfo->uid = ctx->uid;
3689 sbinfo->gid = ctx->gid;
ea3271f7 3690 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3691 sbinfo->mode = ctx->mode;
3692 sbinfo->huge = ctx->huge;
3693 sbinfo->mpol = ctx->mpol;
3694 ctx->mpol = NULL;
1da177e4 3695
0edd73b3 3696 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3697 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3698 goto failed;
779750d2
KS
3699 spin_lock_init(&sbinfo->shrinklist_lock);
3700 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3701
285b2c4f 3702 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3703 sb->s_blocksize = PAGE_SIZE;
3704 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3705 sb->s_magic = TMPFS_MAGIC;
3706 sb->s_op = &shmem_ops;
cfd95a9c 3707 sb->s_time_gran = 1;
b09e0fa4 3708#ifdef CONFIG_TMPFS_XATTR
39f0247d 3709 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3710#endif
3711#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3712 sb->s_flags |= SB_POSIXACL;
39f0247d 3713#endif
2b4db796 3714 uuid_gen(&sb->s_uuid);
0edd73b3 3715
454abafe 3716 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3717 if (!inode)
3718 goto failed;
680d794b
AM
3719 inode->i_uid = sbinfo->uid;
3720 inode->i_gid = sbinfo->gid;
318ceed0
AV
3721 sb->s_root = d_make_root(inode);
3722 if (!sb->s_root)
48fde701 3723 goto failed;
1da177e4
LT
3724 return 0;
3725
1da177e4
LT
3726failed:
3727 shmem_put_super(sb);
3728 return err;
3729}
3730
f3235626
DH
3731static int shmem_get_tree(struct fs_context *fc)
3732{
3733 return get_tree_nodev(fc, shmem_fill_super);
3734}
3735
3736static void shmem_free_fc(struct fs_context *fc)
3737{
3738 struct shmem_options *ctx = fc->fs_private;
3739
3740 if (ctx) {
3741 mpol_put(ctx->mpol);
3742 kfree(ctx);
3743 }
3744}
3745
3746static const struct fs_context_operations shmem_fs_context_ops = {
3747 .free = shmem_free_fc,
3748 .get_tree = shmem_get_tree,
3749#ifdef CONFIG_TMPFS
3750 .parse_monolithic = shmem_parse_options,
3751 .parse_param = shmem_parse_one,
3752 .reconfigure = shmem_reconfigure,
3753#endif
3754};
3755
fcc234f8 3756static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3757
3758static struct inode *shmem_alloc_inode(struct super_block *sb)
3759{
41ffe5d5
HD
3760 struct shmem_inode_info *info;
3761 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3762 if (!info)
1da177e4 3763 return NULL;
41ffe5d5 3764 return &info->vfs_inode;
1da177e4
LT
3765}
3766
74b1da56 3767static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3768{
84e710da
AV
3769 if (S_ISLNK(inode->i_mode))
3770 kfree(inode->i_link);
fa0d7e3d
NP
3771 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3772}
3773
1da177e4
LT
3774static void shmem_destroy_inode(struct inode *inode)
3775{
09208d15 3776 if (S_ISREG(inode->i_mode))
1da177e4 3777 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3778}
3779
41ffe5d5 3780static void shmem_init_inode(void *foo)
1da177e4 3781{
41ffe5d5
HD
3782 struct shmem_inode_info *info = foo;
3783 inode_init_once(&info->vfs_inode);
1da177e4
LT
3784}
3785
9a8ec03e 3786static void shmem_init_inodecache(void)
1da177e4
LT
3787{
3788 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3789 sizeof(struct shmem_inode_info),
5d097056 3790 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3791}
3792
41ffe5d5 3793static void shmem_destroy_inodecache(void)
1da177e4 3794{
1a1d92c1 3795 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3796}
3797
30e6a51d 3798const struct address_space_operations shmem_aops = {
1da177e4 3799 .writepage = shmem_writepage,
76719325 3800 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3801#ifdef CONFIG_TMPFS
800d15a5
NP
3802 .write_begin = shmem_write_begin,
3803 .write_end = shmem_write_end,
1da177e4 3804#endif
1c93923c 3805#ifdef CONFIG_MIGRATION
304dbdb7 3806 .migratepage = migrate_page,
1c93923c 3807#endif
aa261f54 3808 .error_remove_page = generic_error_remove_page,
1da177e4 3809};
30e6a51d 3810EXPORT_SYMBOL(shmem_aops);
1da177e4 3811
15ad7cdc 3812static const struct file_operations shmem_file_operations = {
1da177e4 3813 .mmap = shmem_mmap,
c01d5b30 3814 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3815#ifdef CONFIG_TMPFS
220f2ac9 3816 .llseek = shmem_file_llseek,
2ba5bbed 3817 .read_iter = shmem_file_read_iter,
8174202b 3818 .write_iter = generic_file_write_iter,
1b061d92 3819 .fsync = noop_fsync,
82c156f8 3820 .splice_read = generic_file_splice_read,
f6cb85d0 3821 .splice_write = iter_file_splice_write,
83e4fa9c 3822 .fallocate = shmem_fallocate,
1da177e4
LT
3823#endif
3824};
3825
92e1d5be 3826static const struct inode_operations shmem_inode_operations = {
44a30220 3827 .getattr = shmem_getattr,
94c1e62d 3828 .setattr = shmem_setattr,
b09e0fa4 3829#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3830 .listxattr = shmem_listxattr,
feda821e 3831 .set_acl = simple_set_acl,
b09e0fa4 3832#endif
1da177e4
LT
3833};
3834
92e1d5be 3835static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3836#ifdef CONFIG_TMPFS
3837 .create = shmem_create,
3838 .lookup = simple_lookup,
3839 .link = shmem_link,
3840 .unlink = shmem_unlink,
3841 .symlink = shmem_symlink,
3842 .mkdir = shmem_mkdir,
3843 .rmdir = shmem_rmdir,
3844 .mknod = shmem_mknod,
2773bf00 3845 .rename = shmem_rename2,
60545d0d 3846 .tmpfile = shmem_tmpfile,
1da177e4 3847#endif
b09e0fa4 3848#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3849 .listxattr = shmem_listxattr,
b09e0fa4 3850#endif
39f0247d 3851#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3852 .setattr = shmem_setattr,
feda821e 3853 .set_acl = simple_set_acl,
39f0247d
AG
3854#endif
3855};
3856
92e1d5be 3857static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3858#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3859 .listxattr = shmem_listxattr,
b09e0fa4 3860#endif
39f0247d 3861#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3862 .setattr = shmem_setattr,
feda821e 3863 .set_acl = simple_set_acl,
39f0247d 3864#endif
1da177e4
LT
3865};
3866
759b9775 3867static const struct super_operations shmem_ops = {
1da177e4 3868 .alloc_inode = shmem_alloc_inode,
74b1da56 3869 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3870 .destroy_inode = shmem_destroy_inode,
3871#ifdef CONFIG_TMPFS
3872 .statfs = shmem_statfs,
680d794b 3873 .show_options = shmem_show_options,
1da177e4 3874#endif
1f895f75 3875 .evict_inode = shmem_evict_inode,
1da177e4
LT
3876 .drop_inode = generic_delete_inode,
3877 .put_super = shmem_put_super,
396bcc52 3878#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3879 .nr_cached_objects = shmem_unused_huge_count,
3880 .free_cached_objects = shmem_unused_huge_scan,
3881#endif
1da177e4
LT
3882};
3883
f0f37e2f 3884static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3885 .fault = shmem_fault,
d7c17551 3886 .map_pages = filemap_map_pages,
1da177e4
LT
3887#ifdef CONFIG_NUMA
3888 .set_policy = shmem_set_policy,
3889 .get_policy = shmem_get_policy,
3890#endif
3891};
3892
f3235626 3893int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3894{
f3235626
DH
3895 struct shmem_options *ctx;
3896
3897 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3898 if (!ctx)
3899 return -ENOMEM;
3900
3901 ctx->mode = 0777 | S_ISVTX;
3902 ctx->uid = current_fsuid();
3903 ctx->gid = current_fsgid();
3904
3905 fc->fs_private = ctx;
3906 fc->ops = &shmem_fs_context_ops;
3907 return 0;
1da177e4
LT
3908}
3909
41ffe5d5 3910static struct file_system_type shmem_fs_type = {
1da177e4
LT
3911 .owner = THIS_MODULE,
3912 .name = "tmpfs",
f3235626
DH
3913 .init_fs_context = shmem_init_fs_context,
3914#ifdef CONFIG_TMPFS
d7167b14 3915 .parameters = shmem_fs_parameters,
f3235626 3916#endif
1da177e4 3917 .kill_sb = kill_litter_super,
01c70267 3918 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3919};
1da177e4 3920
41ffe5d5 3921int __init shmem_init(void)
1da177e4
LT
3922{
3923 int error;
3924
9a8ec03e 3925 shmem_init_inodecache();
1da177e4 3926
41ffe5d5 3927 error = register_filesystem(&shmem_fs_type);
1da177e4 3928 if (error) {
1170532b 3929 pr_err("Could not register tmpfs\n");
1da177e4
LT
3930 goto out2;
3931 }
95dc112a 3932
ca4e0519 3933 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3934 if (IS_ERR(shm_mnt)) {
3935 error = PTR_ERR(shm_mnt);
1170532b 3936 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3937 goto out1;
3938 }
5a6e75f8 3939
396bcc52 3940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3941 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3942 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3943 else
3944 shmem_huge = 0; /* just in case it was patched */
3945#endif
1da177e4
LT
3946 return 0;
3947
3948out1:
41ffe5d5 3949 unregister_filesystem(&shmem_fs_type);
1da177e4 3950out2:
41ffe5d5 3951 shmem_destroy_inodecache();
1da177e4
LT
3952 shm_mnt = ERR_PTR(error);
3953 return error;
3954}
853ac43a 3955
396bcc52 3956#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3957static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3958 struct kobj_attribute *attr, char *buf)
5a6e75f8 3959{
26083eb6 3960 static const int values[] = {
5a6e75f8
KS
3961 SHMEM_HUGE_ALWAYS,
3962 SHMEM_HUGE_WITHIN_SIZE,
3963 SHMEM_HUGE_ADVISE,
3964 SHMEM_HUGE_NEVER,
3965 SHMEM_HUGE_DENY,
3966 SHMEM_HUGE_FORCE,
3967 };
79d4d38a
JP
3968 int len = 0;
3969 int i;
5a6e75f8 3970
79d4d38a
JP
3971 for (i = 0; i < ARRAY_SIZE(values); i++) {
3972 len += sysfs_emit_at(buf, len,
3973 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3974 i ? " " : "",
3975 shmem_format_huge(values[i]));
5a6e75f8 3976 }
79d4d38a
JP
3977
3978 len += sysfs_emit_at(buf, len, "\n");
3979
3980 return len;
5a6e75f8
KS
3981}
3982
3983static ssize_t shmem_enabled_store(struct kobject *kobj,
3984 struct kobj_attribute *attr, const char *buf, size_t count)
3985{
3986 char tmp[16];
3987 int huge;
3988
3989 if (count + 1 > sizeof(tmp))
3990 return -EINVAL;
3991 memcpy(tmp, buf, count);
3992 tmp[count] = '\0';
3993 if (count && tmp[count - 1] == '\n')
3994 tmp[count - 1] = '\0';
3995
3996 huge = shmem_parse_huge(tmp);
3997 if (huge == -EINVAL)
3998 return -EINVAL;
3999 if (!has_transparent_hugepage() &&
4000 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4001 return -EINVAL;
4002
4003 shmem_huge = huge;
435c0b87 4004 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4005 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4006 return count;
4007}
4008
4009struct kobj_attribute shmem_enabled_attr =
4010 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4011#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4012
396bcc52 4013#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
4014bool shmem_huge_enabled(struct vm_area_struct *vma)
4015{
4016 struct inode *inode = file_inode(vma->vm_file);
4017 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4018 loff_t i_size;
4019 pgoff_t off;
4020
c0630669
YS
4021 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4022 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4023 return false;
f3f0e1d2
KS
4024 if (shmem_huge == SHMEM_HUGE_FORCE)
4025 return true;
4026 if (shmem_huge == SHMEM_HUGE_DENY)
4027 return false;
4028 switch (sbinfo->huge) {
4029 case SHMEM_HUGE_NEVER:
4030 return false;
4031 case SHMEM_HUGE_ALWAYS:
4032 return true;
4033 case SHMEM_HUGE_WITHIN_SIZE:
4034 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4035 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4036 if (i_size >= HPAGE_PMD_SIZE &&
4037 i_size >> PAGE_SHIFT >= off)
4038 return true;
e4a9bc58 4039 fallthrough;
f3f0e1d2
KS
4040 case SHMEM_HUGE_ADVISE:
4041 /* TODO: implement fadvise() hints */
4042 return (vma->vm_flags & VM_HUGEPAGE);
4043 default:
4044 VM_BUG_ON(1);
4045 return false;
4046 }
4047}
396bcc52 4048#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4049
853ac43a
MM
4050#else /* !CONFIG_SHMEM */
4051
4052/*
4053 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4054 *
4055 * This is intended for small system where the benefits of the full
4056 * shmem code (swap-backed and resource-limited) are outweighed by
4057 * their complexity. On systems without swap this code should be
4058 * effectively equivalent, but much lighter weight.
4059 */
4060
41ffe5d5 4061static struct file_system_type shmem_fs_type = {
853ac43a 4062 .name = "tmpfs",
f3235626 4063 .init_fs_context = ramfs_init_fs_context,
d7167b14 4064 .parameters = ramfs_fs_parameters,
853ac43a 4065 .kill_sb = kill_litter_super,
2b8576cb 4066 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4067};
4068
41ffe5d5 4069int __init shmem_init(void)
853ac43a 4070{
41ffe5d5 4071 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4072
41ffe5d5 4073 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4074 BUG_ON(IS_ERR(shm_mnt));
4075
4076 return 0;
4077}
4078
b56a2d8a
VRP
4079int shmem_unuse(unsigned int type, bool frontswap,
4080 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4081{
4082 return 0;
4083}
4084
3f96b79a
HD
4085int shmem_lock(struct file *file, int lock, struct user_struct *user)
4086{
4087 return 0;
4088}
4089
24513264
HD
4090void shmem_unlock_mapping(struct address_space *mapping)
4091{
4092}
4093
c01d5b30
HD
4094#ifdef CONFIG_MMU
4095unsigned long shmem_get_unmapped_area(struct file *file,
4096 unsigned long addr, unsigned long len,
4097 unsigned long pgoff, unsigned long flags)
4098{
4099 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4100}
4101#endif
4102
41ffe5d5 4103void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4104{
41ffe5d5 4105 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4106}
4107EXPORT_SYMBOL_GPL(shmem_truncate_range);
4108
0b0a0806
HD
4109#define shmem_vm_ops generic_file_vm_ops
4110#define shmem_file_operations ramfs_file_operations
454abafe 4111#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4112#define shmem_acct_size(flags, size) 0
4113#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4114
4115#endif /* CONFIG_SHMEM */
4116
4117/* common code */
1da177e4 4118
703321b6 4119static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4120 unsigned long flags, unsigned int i_flags)
1da177e4 4121{
1da177e4 4122 struct inode *inode;
93dec2da 4123 struct file *res;
1da177e4 4124
703321b6
MA
4125 if (IS_ERR(mnt))
4126 return ERR_CAST(mnt);
1da177e4 4127
285b2c4f 4128 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4129 return ERR_PTR(-EINVAL);
4130
4131 if (shmem_acct_size(flags, size))
4132 return ERR_PTR(-ENOMEM);
4133
93dec2da
AV
4134 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4135 flags);
dac2d1f6
AV
4136 if (unlikely(!inode)) {
4137 shmem_unacct_size(flags, size);
4138 return ERR_PTR(-ENOSPC);
4139 }
c7277090 4140 inode->i_flags |= i_flags;
1da177e4 4141 inode->i_size = size;
6d6b77f1 4142 clear_nlink(inode); /* It is unlinked */
26567cdb 4143 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4144 if (!IS_ERR(res))
4145 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4146 &shmem_file_operations);
26567cdb 4147 if (IS_ERR(res))
93dec2da 4148 iput(inode);
6b4d0b27 4149 return res;
1da177e4 4150}
c7277090
EP
4151
4152/**
4153 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4154 * kernel internal. There will be NO LSM permission checks against the
4155 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4156 * higher layer. The users are the big_key and shm implementations. LSM
4157 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4158 * @name: name for dentry (to be seen in /proc/<pid>/maps
4159 * @size: size to be set for the file
4160 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4161 */
4162struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4163{
703321b6 4164 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4165}
4166
4167/**
4168 * shmem_file_setup - get an unlinked file living in tmpfs
4169 * @name: name for dentry (to be seen in /proc/<pid>/maps
4170 * @size: size to be set for the file
4171 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4172 */
4173struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4174{
703321b6 4175 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4176}
395e0ddc 4177EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4178
703321b6
MA
4179/**
4180 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4181 * @mnt: the tmpfs mount where the file will be created
4182 * @name: name for dentry (to be seen in /proc/<pid>/maps
4183 * @size: size to be set for the file
4184 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4185 */
4186struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4187 loff_t size, unsigned long flags)
4188{
4189 return __shmem_file_setup(mnt, name, size, flags, 0);
4190}
4191EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4192
46711810 4193/**
1da177e4 4194 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4195 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4196 */
4197int shmem_zero_setup(struct vm_area_struct *vma)
4198{
4199 struct file *file;
4200 loff_t size = vma->vm_end - vma->vm_start;
4201
66fc1303 4202 /*
c1e8d7c6 4203 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4204 * between XFS directory reading and selinux: since this file is only
4205 * accessible to the user through its mapping, use S_PRIVATE flag to
4206 * bypass file security, in the same way as shmem_kernel_file_setup().
4207 */
703321b6 4208 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4209 if (IS_ERR(file))
4210 return PTR_ERR(file);
4211
4212 if (vma->vm_file)
4213 fput(vma->vm_file);
4214 vma->vm_file = file;
4215 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4216
396bcc52 4217 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4218 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4219 (vma->vm_end & HPAGE_PMD_MASK)) {
4220 khugepaged_enter(vma, vma->vm_flags);
4221 }
4222
1da177e4
LT
4223 return 0;
4224}
d9d90e5e
HD
4225
4226/**
4227 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4228 * @mapping: the page's address_space
4229 * @index: the page index
4230 * @gfp: the page allocator flags to use if allocating
4231 *
4232 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4233 * with any new page allocations done using the specified allocation flags.
4234 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4235 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4236 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4237 *
68da9f05
HD
4238 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4239 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4240 */
4241struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4242 pgoff_t index, gfp_t gfp)
4243{
68da9f05
HD
4244#ifdef CONFIG_SHMEM
4245 struct inode *inode = mapping->host;
9276aad6 4246 struct page *page;
68da9f05
HD
4247 int error;
4248
30e6a51d 4249 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4250 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4251 gfp, NULL, NULL, NULL);
68da9f05
HD
4252 if (error)
4253 page = ERR_PTR(error);
4254 else
4255 unlock_page(page);
4256 return page;
4257#else
4258 /*
4259 * The tiny !SHMEM case uses ramfs without swap
4260 */
d9d90e5e 4261 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4262#endif
d9d90e5e
HD
4263}
4264EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.169711 seconds and 4 git commands to generate.