]> Git Repo - linux.git/blame - mm/shmem.c
tmpfs: per-superblock i_ino support
[linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4 85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
0b5071dd
AV
110struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 int huge;
118 int seen;
119#define SHMEM_SEEN_BLOCKS 1
120#define SHMEM_SEEN_INODES 2
121#define SHMEM_SEEN_HUGE 4
122};
123
b76db735 124#ifdef CONFIG_TMPFS
680d794b
AM
125static unsigned long shmem_default_max_blocks(void)
126{
ca79b0c2 127 return totalram_pages() / 2;
680d794b
AM
128}
129
130static unsigned long shmem_default_max_inodes(void)
131{
ca79b0c2
AK
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 135}
b76db735 136#endif
680d794b 137
bde05d1c
HD
138static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
139static int shmem_replace_page(struct page **pagep, gfp_t gfp,
140 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
141static int shmem_swapin_page(struct inode *inode, pgoff_t index,
142 struct page **pagep, enum sgp_type sgp,
143 gfp_t gfp, struct vm_area_struct *vma,
144 vm_fault_t *fault_type);
68da9f05 145static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 146 struct page **pagep, enum sgp_type sgp,
cfda0526 147 gfp_t gfp, struct vm_area_struct *vma,
2b740303 148 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 149
f3f0e1d2 150int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 151 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
152{
153 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 154 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 155}
1da177e4 156
1da177e4
LT
157static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
158{
159 return sb->s_fs_info;
160}
161
162/*
163 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
164 * for shared memory and for shared anonymous (/dev/zero) mappings
165 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
166 * consistent with the pre-accounting of private mappings ...
167 */
168static inline int shmem_acct_size(unsigned long flags, loff_t size)
169{
0b0a0806 170 return (flags & VM_NORESERVE) ?
191c5424 171 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
172}
173
174static inline void shmem_unacct_size(unsigned long flags, loff_t size)
175{
0b0a0806 176 if (!(flags & VM_NORESERVE))
1da177e4
LT
177 vm_unacct_memory(VM_ACCT(size));
178}
179
77142517
KK
180static inline int shmem_reacct_size(unsigned long flags,
181 loff_t oldsize, loff_t newsize)
182{
183 if (!(flags & VM_NORESERVE)) {
184 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
185 return security_vm_enough_memory_mm(current->mm,
186 VM_ACCT(newsize) - VM_ACCT(oldsize));
187 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
188 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
189 }
190 return 0;
191}
192
1da177e4
LT
193/*
194 * ... whereas tmpfs objects are accounted incrementally as
75edd345 195 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
196 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
197 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
198 */
800d8c63 199static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 200{
800d8c63
KS
201 if (!(flags & VM_NORESERVE))
202 return 0;
203
204 return security_vm_enough_memory_mm(current->mm,
205 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
206}
207
208static inline void shmem_unacct_blocks(unsigned long flags, long pages)
209{
0b0a0806 210 if (flags & VM_NORESERVE)
09cbfeaf 211 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
212}
213
0f079694
MR
214static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (shmem_acct_block(info->flags, pages))
220 return false;
221
222 if (sbinfo->max_blocks) {
223 if (percpu_counter_compare(&sbinfo->used_blocks,
224 sbinfo->max_blocks - pages) > 0)
225 goto unacct;
226 percpu_counter_add(&sbinfo->used_blocks, pages);
227 }
228
229 return true;
230
231unacct:
232 shmem_unacct_blocks(info->flags, pages);
233 return false;
234}
235
236static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
240
241 if (sbinfo->max_blocks)
242 percpu_counter_sub(&sbinfo->used_blocks, pages);
243 shmem_unacct_blocks(info->flags, pages);
244}
245
759b9775 246static const struct super_operations shmem_ops;
f5e54d6e 247static const struct address_space_operations shmem_aops;
15ad7cdc 248static const struct file_operations shmem_file_operations;
92e1d5be
AV
249static const struct inode_operations shmem_inode_operations;
250static const struct inode_operations shmem_dir_inode_operations;
251static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 252static const struct vm_operations_struct shmem_vm_ops;
779750d2 253static struct file_system_type shmem_fs_type;
1da177e4 254
b0506e48
MR
255bool vma_is_shmem(struct vm_area_struct *vma)
256{
257 return vma->vm_ops == &shmem_vm_ops;
258}
259
1da177e4 260static LIST_HEAD(shmem_swaplist);
cb5f7b9a 261static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 262
e809d5f0
CD
263/*
264 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
265 * produces a novel ino for the newly allocated inode.
266 *
267 * It may also be called when making a hard link to permit the space needed by
268 * each dentry. However, in that case, no new inode number is needed since that
269 * internally draws from another pool of inode numbers (currently global
270 * get_next_ino()). This case is indicated by passing NULL as inop.
271 */
272#define SHMEM_INO_BATCH 1024
273static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
274{
275 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
276 ino_t ino;
277
278 if (!(sb->s_flags & SB_KERNMOUNT)) {
5b04c689
PE
279 spin_lock(&sbinfo->stat_lock);
280 if (!sbinfo->free_inodes) {
281 spin_unlock(&sbinfo->stat_lock);
282 return -ENOSPC;
283 }
284 sbinfo->free_inodes--;
e809d5f0
CD
285 if (inop) {
286 ino = sbinfo->next_ino++;
287 if (unlikely(is_zero_ino(ino)))
288 ino = sbinfo->next_ino++;
289 if (unlikely(ino > UINT_MAX)) {
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
294 ino = 1;
295 }
296 *inop = ino;
297 }
5b04c689 298 spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
299 } else if (inop) {
300 /*
301 * __shmem_file_setup, one of our callers, is lock-free: it
302 * doesn't hold stat_lock in shmem_reserve_inode since
303 * max_inodes is always 0, and is called from potentially
304 * unknown contexts. As such, use a per-cpu batched allocator
305 * which doesn't require the per-sb stat_lock unless we are at
306 * the batch boundary.
307 */
308 ino_t *next_ino;
309 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
310 ino = *next_ino;
311 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
312 spin_lock(&sbinfo->stat_lock);
313 ino = sbinfo->next_ino;
314 sbinfo->next_ino += SHMEM_INO_BATCH;
315 spin_unlock(&sbinfo->stat_lock);
316 if (unlikely(is_zero_ino(ino)))
317 ino++;
318 }
319 *inop = ino;
320 *next_ino = ++ino;
321 put_cpu();
5b04c689 322 }
e809d5f0 323
5b04c689
PE
324 return 0;
325}
326
327static void shmem_free_inode(struct super_block *sb)
328{
329 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
330 if (sbinfo->max_inodes) {
331 spin_lock(&sbinfo->stat_lock);
332 sbinfo->free_inodes++;
333 spin_unlock(&sbinfo->stat_lock);
334 }
335}
336
46711810 337/**
41ffe5d5 338 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
339 * @inode: inode to recalc
340 *
341 * We have to calculate the free blocks since the mm can drop
342 * undirtied hole pages behind our back.
343 *
344 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
345 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
346 *
347 * It has to be called with the spinlock held.
348 */
349static void shmem_recalc_inode(struct inode *inode)
350{
351 struct shmem_inode_info *info = SHMEM_I(inode);
352 long freed;
353
354 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
355 if (freed > 0) {
356 info->alloced -= freed;
54af6042 357 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 358 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
359 }
360}
361
800d8c63
KS
362bool shmem_charge(struct inode *inode, long pages)
363{
364 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 365 unsigned long flags;
800d8c63 366
0f079694 367 if (!shmem_inode_acct_block(inode, pages))
800d8c63 368 return false;
b1cc94ab 369
aaa52e34
HD
370 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
371 inode->i_mapping->nrpages += pages;
372
4595ef88 373 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
374 info->alloced += pages;
375 inode->i_blocks += pages * BLOCKS_PER_PAGE;
376 shmem_recalc_inode(inode);
4595ef88 377 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 378
800d8c63
KS
379 return true;
380}
381
382void shmem_uncharge(struct inode *inode, long pages)
383{
384 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 385 unsigned long flags;
800d8c63 386
aaa52e34
HD
387 /* nrpages adjustment done by __delete_from_page_cache() or caller */
388
4595ef88 389 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
390 info->alloced -= pages;
391 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
392 shmem_recalc_inode(inode);
4595ef88 393 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 394
0f079694 395 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
396}
397
7a5d0fbb 398/*
62f945b6 399 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 400 */
62f945b6 401static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
402 pgoff_t index, void *expected, void *replacement)
403{
62f945b6 404 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 405 void *item;
7a5d0fbb
HD
406
407 VM_BUG_ON(!expected);
6dbaf22c 408 VM_BUG_ON(!replacement);
62f945b6 409 item = xas_load(&xas);
7a5d0fbb
HD
410 if (item != expected)
411 return -ENOENT;
62f945b6 412 xas_store(&xas, replacement);
7a5d0fbb
HD
413 return 0;
414}
415
d1899228
HD
416/*
417 * Sometimes, before we decide whether to proceed or to fail, we must check
418 * that an entry was not already brought back from swap by a racing thread.
419 *
420 * Checking page is not enough: by the time a SwapCache page is locked, it
421 * might be reused, and again be SwapCache, using the same swap as before.
422 */
423static bool shmem_confirm_swap(struct address_space *mapping,
424 pgoff_t index, swp_entry_t swap)
425{
a12831bf 426 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
427}
428
5a6e75f8
KS
429/*
430 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
431 *
432 * SHMEM_HUGE_NEVER:
433 * disables huge pages for the mount;
434 * SHMEM_HUGE_ALWAYS:
435 * enables huge pages for the mount;
436 * SHMEM_HUGE_WITHIN_SIZE:
437 * only allocate huge pages if the page will be fully within i_size,
438 * also respect fadvise()/madvise() hints;
439 * SHMEM_HUGE_ADVISE:
440 * only allocate huge pages if requested with fadvise()/madvise();
441 */
442
443#define SHMEM_HUGE_NEVER 0
444#define SHMEM_HUGE_ALWAYS 1
445#define SHMEM_HUGE_WITHIN_SIZE 2
446#define SHMEM_HUGE_ADVISE 3
447
448/*
449 * Special values.
450 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
451 *
452 * SHMEM_HUGE_DENY:
453 * disables huge on shm_mnt and all mounts, for emergency use;
454 * SHMEM_HUGE_FORCE:
455 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
456 *
457 */
458#define SHMEM_HUGE_DENY (-1)
459#define SHMEM_HUGE_FORCE (-2)
460
396bcc52 461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
462/* ifdef here to avoid bloating shmem.o when not necessary */
463
5b9c98f3 464static int shmem_huge __read_mostly;
5a6e75f8 465
e5f2249a 466#if defined(CONFIG_SYSFS)
5a6e75f8
KS
467static int shmem_parse_huge(const char *str)
468{
469 if (!strcmp(str, "never"))
470 return SHMEM_HUGE_NEVER;
471 if (!strcmp(str, "always"))
472 return SHMEM_HUGE_ALWAYS;
473 if (!strcmp(str, "within_size"))
474 return SHMEM_HUGE_WITHIN_SIZE;
475 if (!strcmp(str, "advise"))
476 return SHMEM_HUGE_ADVISE;
477 if (!strcmp(str, "deny"))
478 return SHMEM_HUGE_DENY;
479 if (!strcmp(str, "force"))
480 return SHMEM_HUGE_FORCE;
481 return -EINVAL;
482}
e5f2249a 483#endif
5a6e75f8 484
e5f2249a 485#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
486static const char *shmem_format_huge(int huge)
487{
488 switch (huge) {
489 case SHMEM_HUGE_NEVER:
490 return "never";
491 case SHMEM_HUGE_ALWAYS:
492 return "always";
493 case SHMEM_HUGE_WITHIN_SIZE:
494 return "within_size";
495 case SHMEM_HUGE_ADVISE:
496 return "advise";
497 case SHMEM_HUGE_DENY:
498 return "deny";
499 case SHMEM_HUGE_FORCE:
500 return "force";
501 default:
502 VM_BUG_ON(1);
503 return "bad_val";
504 }
505}
f1f5929c 506#endif
5a6e75f8 507
779750d2
KS
508static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
509 struct shrink_control *sc, unsigned long nr_to_split)
510{
511 LIST_HEAD(list), *pos, *next;
253fd0f0 512 LIST_HEAD(to_remove);
779750d2
KS
513 struct inode *inode;
514 struct shmem_inode_info *info;
515 struct page *page;
516 unsigned long batch = sc ? sc->nr_to_scan : 128;
517 int removed = 0, split = 0;
518
519 if (list_empty(&sbinfo->shrinklist))
520 return SHRINK_STOP;
521
522 spin_lock(&sbinfo->shrinklist_lock);
523 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
524 info = list_entry(pos, struct shmem_inode_info, shrinklist);
525
526 /* pin the inode */
527 inode = igrab(&info->vfs_inode);
528
529 /* inode is about to be evicted */
530 if (!inode) {
531 list_del_init(&info->shrinklist);
532 removed++;
533 goto next;
534 }
535
536 /* Check if there's anything to gain */
537 if (round_up(inode->i_size, PAGE_SIZE) ==
538 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 539 list_move(&info->shrinklist, &to_remove);
779750d2 540 removed++;
779750d2
KS
541 goto next;
542 }
543
544 list_move(&info->shrinklist, &list);
545next:
546 if (!--batch)
547 break;
548 }
549 spin_unlock(&sbinfo->shrinklist_lock);
550
253fd0f0
KS
551 list_for_each_safe(pos, next, &to_remove) {
552 info = list_entry(pos, struct shmem_inode_info, shrinklist);
553 inode = &info->vfs_inode;
554 list_del_init(&info->shrinklist);
555 iput(inode);
556 }
557
779750d2
KS
558 list_for_each_safe(pos, next, &list) {
559 int ret;
560
561 info = list_entry(pos, struct shmem_inode_info, shrinklist);
562 inode = &info->vfs_inode;
563
b3cd54b2
KS
564 if (nr_to_split && split >= nr_to_split)
565 goto leave;
779750d2 566
b3cd54b2 567 page = find_get_page(inode->i_mapping,
779750d2
KS
568 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
569 if (!page)
570 goto drop;
571
b3cd54b2 572 /* No huge page at the end of the file: nothing to split */
779750d2 573 if (!PageTransHuge(page)) {
779750d2
KS
574 put_page(page);
575 goto drop;
576 }
577
b3cd54b2
KS
578 /*
579 * Leave the inode on the list if we failed to lock
580 * the page at this time.
581 *
582 * Waiting for the lock may lead to deadlock in the
583 * reclaim path.
584 */
585 if (!trylock_page(page)) {
586 put_page(page);
587 goto leave;
588 }
589
779750d2
KS
590 ret = split_huge_page(page);
591 unlock_page(page);
592 put_page(page);
593
b3cd54b2
KS
594 /* If split failed leave the inode on the list */
595 if (ret)
596 goto leave;
779750d2
KS
597
598 split++;
599drop:
600 list_del_init(&info->shrinklist);
601 removed++;
b3cd54b2 602leave:
779750d2
KS
603 iput(inode);
604 }
605
606 spin_lock(&sbinfo->shrinklist_lock);
607 list_splice_tail(&list, &sbinfo->shrinklist);
608 sbinfo->shrinklist_len -= removed;
609 spin_unlock(&sbinfo->shrinklist_lock);
610
611 return split;
612}
613
614static long shmem_unused_huge_scan(struct super_block *sb,
615 struct shrink_control *sc)
616{
617 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
618
619 if (!READ_ONCE(sbinfo->shrinklist_len))
620 return SHRINK_STOP;
621
622 return shmem_unused_huge_shrink(sbinfo, sc, 0);
623}
624
625static long shmem_unused_huge_count(struct super_block *sb,
626 struct shrink_control *sc)
627{
628 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629 return READ_ONCE(sbinfo->shrinklist_len);
630}
396bcc52 631#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
632
633#define shmem_huge SHMEM_HUGE_DENY
634
779750d2
KS
635static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
636 struct shrink_control *sc, unsigned long nr_to_split)
637{
638 return 0;
639}
396bcc52 640#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 641
89fdcd26
YS
642static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
643{
396bcc52 644 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
645 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
646 shmem_huge != SHMEM_HUGE_DENY)
647 return true;
648 return false;
649}
650
46f65ec1
HD
651/*
652 * Like add_to_page_cache_locked, but error if expected item has gone.
653 */
654static int shmem_add_to_page_cache(struct page *page,
655 struct address_space *mapping,
3fea5a49
JW
656 pgoff_t index, void *expected, gfp_t gfp,
657 struct mm_struct *charge_mm)
46f65ec1 658{
552446a4
MW
659 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
660 unsigned long i = 0;
d8c6546b 661 unsigned long nr = compound_nr(page);
3fea5a49 662 int error;
46f65ec1 663
800d8c63
KS
664 VM_BUG_ON_PAGE(PageTail(page), page);
665 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
666 VM_BUG_ON_PAGE(!PageLocked(page), page);
667 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 668 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 669
800d8c63 670 page_ref_add(page, nr);
b065b432
HD
671 page->mapping = mapping;
672 page->index = index;
673
4c6355b2 674 if (!PageSwapCache(page)) {
d9eb1ea2 675 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
676 if (error) {
677 if (PageTransHuge(page)) {
678 count_vm_event(THP_FILE_FALLBACK);
679 count_vm_event(THP_FILE_FALLBACK_CHARGE);
680 }
681 goto error;
3fea5a49 682 }
3fea5a49
JW
683 }
684 cgroup_throttle_swaprate(page, gfp);
685
552446a4
MW
686 do {
687 void *entry;
688 xas_lock_irq(&xas);
689 entry = xas_find_conflict(&xas);
690 if (entry != expected)
691 xas_set_err(&xas, -EEXIST);
692 xas_create_range(&xas);
693 if (xas_error(&xas))
694 goto unlock;
695next:
4101196b 696 xas_store(&xas, page);
552446a4
MW
697 if (++i < nr) {
698 xas_next(&xas);
699 goto next;
800d8c63 700 }
552446a4 701 if (PageTransHuge(page)) {
800d8c63 702 count_vm_event(THP_FILE_ALLOC);
552446a4 703 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 704 }
800d8c63 705 mapping->nrpages += nr;
0d1c2072
JW
706 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
707 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
708unlock:
709 xas_unlock_irq(&xas);
710 } while (xas_nomem(&xas, gfp));
711
712 if (xas_error(&xas)) {
3fea5a49
JW
713 error = xas_error(&xas);
714 goto error;
46f65ec1 715 }
552446a4
MW
716
717 return 0;
3fea5a49
JW
718error:
719 page->mapping = NULL;
720 page_ref_sub(page, nr);
721 return error;
46f65ec1
HD
722}
723
6922c0c7
HD
724/*
725 * Like delete_from_page_cache, but substitutes swap for page.
726 */
727static void shmem_delete_from_page_cache(struct page *page, void *radswap)
728{
729 struct address_space *mapping = page->mapping;
730 int error;
731
800d8c63
KS
732 VM_BUG_ON_PAGE(PageCompound(page), page);
733
b93b0163 734 xa_lock_irq(&mapping->i_pages);
62f945b6 735 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
736 page->mapping = NULL;
737 mapping->nrpages--;
0d1c2072
JW
738 __dec_lruvec_page_state(page, NR_FILE_PAGES);
739 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 740 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 741 put_page(page);
6922c0c7
HD
742 BUG_ON(error);
743}
744
7a5d0fbb 745/*
c121d3bb 746 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
747 */
748static int shmem_free_swap(struct address_space *mapping,
749 pgoff_t index, void *radswap)
750{
6dbaf22c 751 void *old;
7a5d0fbb 752
55f3f7ea 753 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
754 if (old != radswap)
755 return -ENOENT;
756 free_swap_and_cache(radix_to_swp_entry(radswap));
757 return 0;
7a5d0fbb
HD
758}
759
6a15a370
VB
760/*
761 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 762 * given offsets are swapped out.
6a15a370 763 *
b93b0163 764 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
765 * as long as the inode doesn't go away and racy results are not a problem.
766 */
48131e03
VB
767unsigned long shmem_partial_swap_usage(struct address_space *mapping,
768 pgoff_t start, pgoff_t end)
6a15a370 769{
7ae3424f 770 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 771 struct page *page;
48131e03 772 unsigned long swapped = 0;
6a15a370
VB
773
774 rcu_read_lock();
7ae3424f
MW
775 xas_for_each(&xas, page, end - 1) {
776 if (xas_retry(&xas, page))
2cf938aa 777 continue;
3159f943 778 if (xa_is_value(page))
6a15a370
VB
779 swapped++;
780
781 if (need_resched()) {
7ae3424f 782 xas_pause(&xas);
6a15a370 783 cond_resched_rcu();
6a15a370
VB
784 }
785 }
786
787 rcu_read_unlock();
788
789 return swapped << PAGE_SHIFT;
790}
791
48131e03
VB
792/*
793 * Determine (in bytes) how many of the shmem object's pages mapped by the
794 * given vma is swapped out.
795 *
b93b0163 796 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
797 * as long as the inode doesn't go away and racy results are not a problem.
798 */
799unsigned long shmem_swap_usage(struct vm_area_struct *vma)
800{
801 struct inode *inode = file_inode(vma->vm_file);
802 struct shmem_inode_info *info = SHMEM_I(inode);
803 struct address_space *mapping = inode->i_mapping;
804 unsigned long swapped;
805
806 /* Be careful as we don't hold info->lock */
807 swapped = READ_ONCE(info->swapped);
808
809 /*
810 * The easier cases are when the shmem object has nothing in swap, or
811 * the vma maps it whole. Then we can simply use the stats that we
812 * already track.
813 */
814 if (!swapped)
815 return 0;
816
817 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
818 return swapped << PAGE_SHIFT;
819
820 /* Here comes the more involved part */
821 return shmem_partial_swap_usage(mapping,
822 linear_page_index(vma, vma->vm_start),
823 linear_page_index(vma, vma->vm_end));
824}
825
24513264
HD
826/*
827 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
828 */
829void shmem_unlock_mapping(struct address_space *mapping)
830{
831 struct pagevec pvec;
832 pgoff_t indices[PAGEVEC_SIZE];
833 pgoff_t index = 0;
834
86679820 835 pagevec_init(&pvec);
24513264
HD
836 /*
837 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
838 */
839 while (!mapping_unevictable(mapping)) {
840 /*
841 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
842 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
843 */
0cd6144a
JW
844 pvec.nr = find_get_entries(mapping, index,
845 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
846 if (!pvec.nr)
847 break;
848 index = indices[pvec.nr - 1] + 1;
0cd6144a 849 pagevec_remove_exceptionals(&pvec);
64e3d12f 850 check_move_unevictable_pages(&pvec);
24513264
HD
851 pagevec_release(&pvec);
852 cond_resched();
853 }
7a5d0fbb
HD
854}
855
71725ed1
HD
856/*
857 * Check whether a hole-punch or truncation needs to split a huge page,
858 * returning true if no split was required, or the split has been successful.
859 *
860 * Eviction (or truncation to 0 size) should never need to split a huge page;
861 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
862 * head, and then succeeded to trylock on tail.
863 *
864 * A split can only succeed when there are no additional references on the
865 * huge page: so the split below relies upon find_get_entries() having stopped
866 * when it found a subpage of the huge page, without getting further references.
867 */
868static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
869{
870 if (!PageTransCompound(page))
871 return true;
872
873 /* Just proceed to delete a huge page wholly within the range punched */
874 if (PageHead(page) &&
875 page->index >= start && page->index + HPAGE_PMD_NR <= end)
876 return true;
877
878 /* Try to split huge page, so we can truly punch the hole or truncate */
879 return split_huge_page(page) >= 0;
880}
881
7a5d0fbb 882/*
7f4446ee 883 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 884 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 885 */
1635f6a7
HD
886static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
887 bool unfalloc)
1da177e4 888{
285b2c4f 889 struct address_space *mapping = inode->i_mapping;
1da177e4 890 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
891 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
892 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
893 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
894 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 895 struct pagevec pvec;
7a5d0fbb
HD
896 pgoff_t indices[PAGEVEC_SIZE];
897 long nr_swaps_freed = 0;
285b2c4f 898 pgoff_t index;
bda97eab
HD
899 int i;
900
83e4fa9c
HD
901 if (lend == -1)
902 end = -1; /* unsigned, so actually very big */
bda97eab 903
86679820 904 pagevec_init(&pvec);
bda97eab 905 index = start;
83e4fa9c 906 while (index < end) {
0cd6144a
JW
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
7a5d0fbb
HD
910 if (!pvec.nr)
911 break;
bda97eab
HD
912 for (i = 0; i < pagevec_count(&pvec); i++) {
913 struct page *page = pvec.pages[i];
914
7a5d0fbb 915 index = indices[i];
83e4fa9c 916 if (index >= end)
bda97eab
HD
917 break;
918
3159f943 919 if (xa_is_value(page)) {
1635f6a7
HD
920 if (unfalloc)
921 continue;
7a5d0fbb
HD
922 nr_swaps_freed += !shmem_free_swap(mapping,
923 index, page);
bda97eab 924 continue;
7a5d0fbb
HD
925 }
926
800d8c63
KS
927 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
928
7a5d0fbb 929 if (!trylock_page(page))
bda97eab 930 continue;
800d8c63 931
71725ed1
HD
932 if ((!unfalloc || !PageUptodate(page)) &&
933 page_mapping(page) == mapping) {
934 VM_BUG_ON_PAGE(PageWriteback(page), page);
935 if (shmem_punch_compound(page, start, end))
1635f6a7 936 truncate_inode_page(mapping, page);
bda97eab 937 }
bda97eab
HD
938 unlock_page(page);
939 }
0cd6144a 940 pagevec_remove_exceptionals(&pvec);
24513264 941 pagevec_release(&pvec);
bda97eab
HD
942 cond_resched();
943 index++;
944 }
1da177e4 945
83e4fa9c 946 if (partial_start) {
bda97eab 947 struct page *page = NULL;
9e18eb29 948 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 949 if (page) {
09cbfeaf 950 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
951 if (start > end) {
952 top = partial_end;
953 partial_end = 0;
954 }
955 zero_user_segment(page, partial_start, top);
956 set_page_dirty(page);
957 unlock_page(page);
09cbfeaf 958 put_page(page);
83e4fa9c
HD
959 }
960 }
961 if (partial_end) {
962 struct page *page = NULL;
9e18eb29 963 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
964 if (page) {
965 zero_user_segment(page, 0, partial_end);
bda97eab
HD
966 set_page_dirty(page);
967 unlock_page(page);
09cbfeaf 968 put_page(page);
bda97eab
HD
969 }
970 }
83e4fa9c
HD
971 if (start >= end)
972 return;
bda97eab
HD
973
974 index = start;
b1a36650 975 while (index < end) {
bda97eab 976 cond_resched();
0cd6144a
JW
977
978 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 979 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 980 pvec.pages, indices);
7a5d0fbb 981 if (!pvec.nr) {
b1a36650
HD
982 /* If all gone or hole-punch or unfalloc, we're done */
983 if (index == start || end != -1)
bda97eab 984 break;
b1a36650 985 /* But if truncating, restart to make sure all gone */
bda97eab
HD
986 index = start;
987 continue;
988 }
bda97eab
HD
989 for (i = 0; i < pagevec_count(&pvec); i++) {
990 struct page *page = pvec.pages[i];
991
7a5d0fbb 992 index = indices[i];
83e4fa9c 993 if (index >= end)
bda97eab
HD
994 break;
995
3159f943 996 if (xa_is_value(page)) {
1635f6a7
HD
997 if (unfalloc)
998 continue;
b1a36650
HD
999 if (shmem_free_swap(mapping, index, page)) {
1000 /* Swap was replaced by page: retry */
1001 index--;
1002 break;
1003 }
1004 nr_swaps_freed++;
7a5d0fbb
HD
1005 continue;
1006 }
1007
bda97eab 1008 lock_page(page);
800d8c63 1009
1635f6a7 1010 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1011 if (page_mapping(page) != mapping) {
b1a36650
HD
1012 /* Page was replaced by swap: retry */
1013 unlock_page(page);
1014 index--;
1015 break;
1635f6a7 1016 }
71725ed1
HD
1017 VM_BUG_ON_PAGE(PageWriteback(page), page);
1018 if (shmem_punch_compound(page, start, end))
1019 truncate_inode_page(mapping, page);
0783ac95 1020 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1021 /* Wipe the page and don't get stuck */
1022 clear_highpage(page);
1023 flush_dcache_page(page);
1024 set_page_dirty(page);
1025 if (index <
1026 round_up(start, HPAGE_PMD_NR))
1027 start = index + 1;
1028 }
7a5d0fbb 1029 }
bda97eab
HD
1030 unlock_page(page);
1031 }
0cd6144a 1032 pagevec_remove_exceptionals(&pvec);
24513264 1033 pagevec_release(&pvec);
bda97eab
HD
1034 index++;
1035 }
94c1e62d 1036
4595ef88 1037 spin_lock_irq(&info->lock);
7a5d0fbb 1038 info->swapped -= nr_swaps_freed;
1da177e4 1039 shmem_recalc_inode(inode);
4595ef88 1040 spin_unlock_irq(&info->lock);
1635f6a7 1041}
1da177e4 1042
1635f6a7
HD
1043void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1044{
1045 shmem_undo_range(inode, lstart, lend, false);
078cd827 1046 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1047}
94c1e62d 1048EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1049
a528d35e
DH
1050static int shmem_getattr(const struct path *path, struct kstat *stat,
1051 u32 request_mask, unsigned int query_flags)
44a30220 1052{
a528d35e 1053 struct inode *inode = path->dentry->d_inode;
44a30220 1054 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1055 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1056
d0424c42 1057 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1058 spin_lock_irq(&info->lock);
d0424c42 1059 shmem_recalc_inode(inode);
4595ef88 1060 spin_unlock_irq(&info->lock);
d0424c42 1061 }
44a30220 1062 generic_fillattr(inode, stat);
89fdcd26
YS
1063
1064 if (is_huge_enabled(sb_info))
1065 stat->blksize = HPAGE_PMD_SIZE;
1066
44a30220
YZ
1067 return 0;
1068}
1069
94c1e62d 1070static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1071{
75c3cfa8 1072 struct inode *inode = d_inode(dentry);
40e041a2 1073 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1074 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1075 int error;
1076
31051c85 1077 error = setattr_prepare(dentry, attr);
db78b877
CH
1078 if (error)
1079 return error;
1080
94c1e62d
HD
1081 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1082 loff_t oldsize = inode->i_size;
1083 loff_t newsize = attr->ia_size;
3889e6e7 1084
40e041a2
DR
1085 /* protected by i_mutex */
1086 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1087 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1088 return -EPERM;
1089
94c1e62d 1090 if (newsize != oldsize) {
77142517
KK
1091 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1092 oldsize, newsize);
1093 if (error)
1094 return error;
94c1e62d 1095 i_size_write(inode, newsize);
078cd827 1096 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1097 }
afa2db2f 1098 if (newsize <= oldsize) {
94c1e62d 1099 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1100 if (oldsize > holebegin)
1101 unmap_mapping_range(inode->i_mapping,
1102 holebegin, 0, 1);
1103 if (info->alloced)
1104 shmem_truncate_range(inode,
1105 newsize, (loff_t)-1);
94c1e62d 1106 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1107 if (oldsize > holebegin)
1108 unmap_mapping_range(inode->i_mapping,
1109 holebegin, 0, 1);
779750d2
KS
1110
1111 /*
1112 * Part of the huge page can be beyond i_size: subject
1113 * to shrink under memory pressure.
1114 */
396bcc52 1115 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1116 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1117 /*
1118 * _careful to defend against unlocked access to
1119 * ->shrink_list in shmem_unused_huge_shrink()
1120 */
1121 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1122 list_add_tail(&info->shrinklist,
1123 &sbinfo->shrinklist);
1124 sbinfo->shrinklist_len++;
1125 }
1126 spin_unlock(&sbinfo->shrinklist_lock);
1127 }
94c1e62d 1128 }
1da177e4
LT
1129 }
1130
db78b877 1131 setattr_copy(inode, attr);
db78b877 1132 if (attr->ia_valid & ATTR_MODE)
feda821e 1133 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1134 return error;
1135}
1136
1f895f75 1137static void shmem_evict_inode(struct inode *inode)
1da177e4 1138{
1da177e4 1139 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1140 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1141
3889e6e7 1142 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1143 shmem_unacct_size(info->flags, inode->i_size);
1144 inode->i_size = 0;
3889e6e7 1145 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1146 if (!list_empty(&info->shrinklist)) {
1147 spin_lock(&sbinfo->shrinklist_lock);
1148 if (!list_empty(&info->shrinklist)) {
1149 list_del_init(&info->shrinklist);
1150 sbinfo->shrinklist_len--;
1151 }
1152 spin_unlock(&sbinfo->shrinklist_lock);
1153 }
af53d3e9
HD
1154 while (!list_empty(&info->swaplist)) {
1155 /* Wait while shmem_unuse() is scanning this inode... */
1156 wait_var_event(&info->stop_eviction,
1157 !atomic_read(&info->stop_eviction));
cb5f7b9a 1158 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1159 /* ...but beware of the race if we peeked too early */
1160 if (!atomic_read(&info->stop_eviction))
1161 list_del_init(&info->swaplist);
cb5f7b9a 1162 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1163 }
3ed47db3 1164 }
b09e0fa4 1165
38f38657 1166 simple_xattrs_free(&info->xattrs);
0f3c42f5 1167 WARN_ON(inode->i_blocks);
5b04c689 1168 shmem_free_inode(inode->i_sb);
dbd5768f 1169 clear_inode(inode);
1da177e4
LT
1170}
1171
b56a2d8a
VRP
1172extern struct swap_info_struct *swap_info[];
1173
1174static int shmem_find_swap_entries(struct address_space *mapping,
1175 pgoff_t start, unsigned int nr_entries,
1176 struct page **entries, pgoff_t *indices,
87039546 1177 unsigned int type, bool frontswap)
478922e2 1178{
b56a2d8a
VRP
1179 XA_STATE(xas, &mapping->i_pages, start);
1180 struct page *page;
87039546 1181 swp_entry_t entry;
b56a2d8a
VRP
1182 unsigned int ret = 0;
1183
1184 if (!nr_entries)
1185 return 0;
478922e2
MW
1186
1187 rcu_read_lock();
b56a2d8a
VRP
1188 xas_for_each(&xas, page, ULONG_MAX) {
1189 if (xas_retry(&xas, page))
5b9c98f3 1190 continue;
b56a2d8a
VRP
1191
1192 if (!xa_is_value(page))
478922e2 1193 continue;
b56a2d8a 1194
87039546
HD
1195 entry = radix_to_swp_entry(page);
1196 if (swp_type(entry) != type)
1197 continue;
1198 if (frontswap &&
1199 !frontswap_test(swap_info[type], swp_offset(entry)))
1200 continue;
b56a2d8a
VRP
1201
1202 indices[ret] = xas.xa_index;
1203 entries[ret] = page;
1204
1205 if (need_resched()) {
1206 xas_pause(&xas);
1207 cond_resched_rcu();
1208 }
1209 if (++ret == nr_entries)
1210 break;
478922e2 1211 }
478922e2 1212 rcu_read_unlock();
e21a2955 1213
b56a2d8a 1214 return ret;
478922e2
MW
1215}
1216
46f65ec1 1217/*
b56a2d8a
VRP
1218 * Move the swapped pages for an inode to page cache. Returns the count
1219 * of pages swapped in, or the error in case of failure.
46f65ec1 1220 */
b56a2d8a
VRP
1221static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1222 pgoff_t *indices)
1da177e4 1223{
b56a2d8a
VRP
1224 int i = 0;
1225 int ret = 0;
bde05d1c 1226 int error = 0;
b56a2d8a 1227 struct address_space *mapping = inode->i_mapping;
1da177e4 1228
b56a2d8a
VRP
1229 for (i = 0; i < pvec.nr; i++) {
1230 struct page *page = pvec.pages[i];
2e0e26c7 1231
b56a2d8a
VRP
1232 if (!xa_is_value(page))
1233 continue;
1234 error = shmem_swapin_page(inode, indices[i],
1235 &page, SGP_CACHE,
1236 mapping_gfp_mask(mapping),
1237 NULL, NULL);
1238 if (error == 0) {
1239 unlock_page(page);
1240 put_page(page);
1241 ret++;
1242 }
1243 if (error == -ENOMEM)
1244 break;
1245 error = 0;
bde05d1c 1246 }
b56a2d8a
VRP
1247 return error ? error : ret;
1248}
bde05d1c 1249
b56a2d8a
VRP
1250/*
1251 * If swap found in inode, free it and move page from swapcache to filecache.
1252 */
1253static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1254 bool frontswap, unsigned long *fs_pages_to_unuse)
1255{
1256 struct address_space *mapping = inode->i_mapping;
1257 pgoff_t start = 0;
1258 struct pagevec pvec;
1259 pgoff_t indices[PAGEVEC_SIZE];
1260 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1261 int ret = 0;
1262
1263 pagevec_init(&pvec);
1264 do {
1265 unsigned int nr_entries = PAGEVEC_SIZE;
1266
1267 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1268 nr_entries = *fs_pages_to_unuse;
1269
1270 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1271 pvec.pages, indices,
87039546 1272 type, frontswap);
b56a2d8a
VRP
1273 if (pvec.nr == 0) {
1274 ret = 0;
1275 break;
46f65ec1 1276 }
b56a2d8a
VRP
1277
1278 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1279 if (ret < 0)
1280 break;
1281
1282 if (frontswap_partial) {
1283 *fs_pages_to_unuse -= ret;
1284 if (*fs_pages_to_unuse == 0) {
1285 ret = FRONTSWAP_PAGES_UNUSED;
1286 break;
1287 }
1288 }
1289
1290 start = indices[pvec.nr - 1];
1291 } while (true);
1292
1293 return ret;
1da177e4
LT
1294}
1295
1296/*
b56a2d8a
VRP
1297 * Read all the shared memory data that resides in the swap
1298 * device 'type' back into memory, so the swap device can be
1299 * unused.
1da177e4 1300 */
b56a2d8a
VRP
1301int shmem_unuse(unsigned int type, bool frontswap,
1302 unsigned long *fs_pages_to_unuse)
1da177e4 1303{
b56a2d8a 1304 struct shmem_inode_info *info, *next;
bde05d1c
HD
1305 int error = 0;
1306
b56a2d8a
VRP
1307 if (list_empty(&shmem_swaplist))
1308 return 0;
1309
1310 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1311 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1312 if (!info->swapped) {
6922c0c7 1313 list_del_init(&info->swaplist);
b56a2d8a
VRP
1314 continue;
1315 }
af53d3e9
HD
1316 /*
1317 * Drop the swaplist mutex while searching the inode for swap;
1318 * but before doing so, make sure shmem_evict_inode() will not
1319 * remove placeholder inode from swaplist, nor let it be freed
1320 * (igrab() would protect from unlink, but not from unmount).
1321 */
1322 atomic_inc(&info->stop_eviction);
b56a2d8a 1323 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1324
af53d3e9 1325 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1326 fs_pages_to_unuse);
cb5f7b9a 1327 cond_resched();
b56a2d8a
VRP
1328
1329 mutex_lock(&shmem_swaplist_mutex);
1330 next = list_next_entry(info, swaplist);
1331 if (!info->swapped)
1332 list_del_init(&info->swaplist);
af53d3e9
HD
1333 if (atomic_dec_and_test(&info->stop_eviction))
1334 wake_up_var(&info->stop_eviction);
b56a2d8a 1335 if (error)
778dd893 1336 break;
1da177e4 1337 }
cb5f7b9a 1338 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1339
778dd893 1340 return error;
1da177e4
LT
1341}
1342
1343/*
1344 * Move the page from the page cache to the swap cache.
1345 */
1346static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1347{
1348 struct shmem_inode_info *info;
1da177e4 1349 struct address_space *mapping;
1da177e4 1350 struct inode *inode;
6922c0c7
HD
1351 swp_entry_t swap;
1352 pgoff_t index;
1da177e4 1353
800d8c63 1354 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1355 BUG_ON(!PageLocked(page));
1da177e4
LT
1356 mapping = page->mapping;
1357 index = page->index;
1358 inode = mapping->host;
1359 info = SHMEM_I(inode);
1360 if (info->flags & VM_LOCKED)
1361 goto redirty;
d9fe526a 1362 if (!total_swap_pages)
1da177e4
LT
1363 goto redirty;
1364
d9fe526a 1365 /*
97b713ba
CH
1366 * Our capabilities prevent regular writeback or sync from ever calling
1367 * shmem_writepage; but a stacking filesystem might use ->writepage of
1368 * its underlying filesystem, in which case tmpfs should write out to
1369 * swap only in response to memory pressure, and not for the writeback
1370 * threads or sync.
d9fe526a 1371 */
48f170fb
HD
1372 if (!wbc->for_reclaim) {
1373 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1374 goto redirty;
1375 }
1635f6a7
HD
1376
1377 /*
1378 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1379 * value into swapfile.c, the only way we can correctly account for a
1380 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1381 *
1382 * That's okay for a page already fallocated earlier, but if we have
1383 * not yet completed the fallocation, then (a) we want to keep track
1384 * of this page in case we have to undo it, and (b) it may not be a
1385 * good idea to continue anyway, once we're pushing into swap. So
1386 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1387 */
1388 if (!PageUptodate(page)) {
1aac1400
HD
1389 if (inode->i_private) {
1390 struct shmem_falloc *shmem_falloc;
1391 spin_lock(&inode->i_lock);
1392 shmem_falloc = inode->i_private;
1393 if (shmem_falloc &&
8e205f77 1394 !shmem_falloc->waitq &&
1aac1400
HD
1395 index >= shmem_falloc->start &&
1396 index < shmem_falloc->next)
1397 shmem_falloc->nr_unswapped++;
1398 else
1399 shmem_falloc = NULL;
1400 spin_unlock(&inode->i_lock);
1401 if (shmem_falloc)
1402 goto redirty;
1403 }
1635f6a7
HD
1404 clear_highpage(page);
1405 flush_dcache_page(page);
1406 SetPageUptodate(page);
1407 }
1408
38d8b4e6 1409 swap = get_swap_page(page);
48f170fb
HD
1410 if (!swap.val)
1411 goto redirty;
d9fe526a 1412
b1dea800
HD
1413 /*
1414 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1415 * if it's not already there. Do it now before the page is
1416 * moved to swap cache, when its pagelock no longer protects
b1dea800 1417 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1418 * we've incremented swapped, because shmem_unuse_inode() will
1419 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1420 */
48f170fb
HD
1421 mutex_lock(&shmem_swaplist_mutex);
1422 if (list_empty(&info->swaplist))
b56a2d8a 1423 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1424
4afab1cd
YS
1425 if (add_to_swap_cache(page, swap,
1426 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
4595ef88 1427 spin_lock_irq(&info->lock);
6922c0c7 1428 shmem_recalc_inode(inode);
267a4c76 1429 info->swapped++;
4595ef88 1430 spin_unlock_irq(&info->lock);
6922c0c7 1431
267a4c76
HD
1432 swap_shmem_alloc(swap);
1433 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1434
6922c0c7 1435 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1436 BUG_ON(page_mapped(page));
9fab5619 1437 swap_writepage(page, wbc);
1da177e4
LT
1438 return 0;
1439 }
1440
6922c0c7 1441 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1442 put_swap_page(page, swap);
1da177e4
LT
1443redirty:
1444 set_page_dirty(page);
d9fe526a
HD
1445 if (wbc->for_reclaim)
1446 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1447 unlock_page(page);
1448 return 0;
1da177e4
LT
1449}
1450
75edd345 1451#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1452static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1453{
095f1fc4 1454 char buffer[64];
680d794b 1455
71fe804b 1456 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1457 return; /* show nothing */
680d794b 1458
a7a88b23 1459 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1460
1461 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1462}
71fe804b
LS
1463
1464static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465{
1466 struct mempolicy *mpol = NULL;
1467 if (sbinfo->mpol) {
1468 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1469 mpol = sbinfo->mpol;
1470 mpol_get(mpol);
1471 spin_unlock(&sbinfo->stat_lock);
1472 }
1473 return mpol;
1474}
75edd345
HD
1475#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1476static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1477{
1478}
1479static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1480{
1481 return NULL;
1482}
1483#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1484#ifndef CONFIG_NUMA
1485#define vm_policy vm_private_data
1486#endif
680d794b 1487
800d8c63
KS
1488static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1489 struct shmem_inode_info *info, pgoff_t index)
1490{
1491 /* Create a pseudo vma that just contains the policy */
2c4541e2 1492 vma_init(vma, NULL);
800d8c63
KS
1493 /* Bias interleave by inode number to distribute better across nodes */
1494 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1495 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1496}
1497
1498static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1499{
1500 /* Drop reference taken by mpol_shared_policy_lookup() */
1501 mpol_cond_put(vma->vm_policy);
1502}
1503
41ffe5d5
HD
1504static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1505 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1506{
1da177e4 1507 struct vm_area_struct pvma;
18a2f371 1508 struct page *page;
e9e9b7ec 1509 struct vm_fault vmf;
52cd3b07 1510
800d8c63 1511 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1512 vmf.vma = &pvma;
1513 vmf.address = 0;
1514 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1515 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1516
800d8c63
KS
1517 return page;
1518}
1519
1520static struct page *shmem_alloc_hugepage(gfp_t gfp,
1521 struct shmem_inode_info *info, pgoff_t index)
1522{
1523 struct vm_area_struct pvma;
7b8d046f
MW
1524 struct address_space *mapping = info->vfs_inode.i_mapping;
1525 pgoff_t hindex;
800d8c63
KS
1526 struct page *page;
1527
4620a06e 1528 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1529 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1530 XA_PRESENT))
800d8c63 1531 return NULL;
18a2f371 1532
800d8c63
KS
1533 shmem_pseudo_vma_init(&pvma, info, hindex);
1534 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
19deb769 1535 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1536 shmem_pseudo_vma_destroy(&pvma);
1537 if (page)
1538 prep_transhuge_page(page);
dcdf11ee
DR
1539 else
1540 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1541 return page;
1da177e4
LT
1542}
1543
02098fea 1544static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1545 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1546{
1547 struct vm_area_struct pvma;
18a2f371 1548 struct page *page;
1da177e4 1549
800d8c63
KS
1550 shmem_pseudo_vma_init(&pvma, info, index);
1551 page = alloc_page_vma(gfp, &pvma, 0);
1552 shmem_pseudo_vma_destroy(&pvma);
1553
1554 return page;
1555}
1556
1557static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1558 struct inode *inode,
800d8c63
KS
1559 pgoff_t index, bool huge)
1560{
0f079694 1561 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1562 struct page *page;
1563 int nr;
1564 int err = -ENOSPC;
52cd3b07 1565
396bcc52 1566 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1567 huge = false;
1568 nr = huge ? HPAGE_PMD_NR : 1;
1569
0f079694 1570 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1571 goto failed;
800d8c63
KS
1572
1573 if (huge)
1574 page = shmem_alloc_hugepage(gfp, info, index);
1575 else
1576 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1577 if (page) {
1578 __SetPageLocked(page);
1579 __SetPageSwapBacked(page);
800d8c63 1580 return page;
75edd345 1581 }
18a2f371 1582
800d8c63 1583 err = -ENOMEM;
0f079694 1584 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1585failed:
1586 return ERR_PTR(err);
1da177e4 1587}
71fe804b 1588
bde05d1c
HD
1589/*
1590 * When a page is moved from swapcache to shmem filecache (either by the
1591 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1592 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1593 * ignorance of the mapping it belongs to. If that mapping has special
1594 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1595 * we may need to copy to a suitable page before moving to filecache.
1596 *
1597 * In a future release, this may well be extended to respect cpuset and
1598 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1599 * but for now it is a simple matter of zone.
1600 */
1601static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1602{
1603 return page_zonenum(page) > gfp_zone(gfp);
1604}
1605
1606static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1607 struct shmem_inode_info *info, pgoff_t index)
1608{
1609 struct page *oldpage, *newpage;
1610 struct address_space *swap_mapping;
c1cb20d4 1611 swp_entry_t entry;
bde05d1c
HD
1612 pgoff_t swap_index;
1613 int error;
1614
1615 oldpage = *pagep;
c1cb20d4
YZ
1616 entry.val = page_private(oldpage);
1617 swap_index = swp_offset(entry);
bde05d1c
HD
1618 swap_mapping = page_mapping(oldpage);
1619
1620 /*
1621 * We have arrived here because our zones are constrained, so don't
1622 * limit chance of success by further cpuset and node constraints.
1623 */
1624 gfp &= ~GFP_CONSTRAINT_MASK;
1625 newpage = shmem_alloc_page(gfp, info, index);
1626 if (!newpage)
1627 return -ENOMEM;
bde05d1c 1628
09cbfeaf 1629 get_page(newpage);
bde05d1c 1630 copy_highpage(newpage, oldpage);
0142ef6c 1631 flush_dcache_page(newpage);
bde05d1c 1632
9956edf3
HD
1633 __SetPageLocked(newpage);
1634 __SetPageSwapBacked(newpage);
bde05d1c 1635 SetPageUptodate(newpage);
c1cb20d4 1636 set_page_private(newpage, entry.val);
bde05d1c
HD
1637 SetPageSwapCache(newpage);
1638
1639 /*
1640 * Our caller will very soon move newpage out of swapcache, but it's
1641 * a nice clean interface for us to replace oldpage by newpage there.
1642 */
b93b0163 1643 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1644 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1645 if (!error) {
0d1c2072
JW
1646 mem_cgroup_migrate(oldpage, newpage);
1647 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1648 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1649 }
b93b0163 1650 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1651
0142ef6c
HD
1652 if (unlikely(error)) {
1653 /*
1654 * Is this possible? I think not, now that our callers check
1655 * both PageSwapCache and page_private after getting page lock;
1656 * but be defensive. Reverse old to newpage for clear and free.
1657 */
1658 oldpage = newpage;
1659 } else {
6058eaec 1660 lru_cache_add(newpage);
0142ef6c
HD
1661 *pagep = newpage;
1662 }
bde05d1c
HD
1663
1664 ClearPageSwapCache(oldpage);
1665 set_page_private(oldpage, 0);
1666
1667 unlock_page(oldpage);
09cbfeaf
KS
1668 put_page(oldpage);
1669 put_page(oldpage);
0142ef6c 1670 return error;
bde05d1c
HD
1671}
1672
c5bf121e
VRP
1673/*
1674 * Swap in the page pointed to by *pagep.
1675 * Caller has to make sure that *pagep contains a valid swapped page.
1676 * Returns 0 and the page in pagep if success. On failure, returns the
1677 * the error code and NULL in *pagep.
1678 */
1679static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1680 struct page **pagep, enum sgp_type sgp,
1681 gfp_t gfp, struct vm_area_struct *vma,
1682 vm_fault_t *fault_type)
1683{
1684 struct address_space *mapping = inode->i_mapping;
1685 struct shmem_inode_info *info = SHMEM_I(inode);
1686 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
c5bf121e
VRP
1687 struct page *page;
1688 swp_entry_t swap;
1689 int error;
1690
1691 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1692 swap = radix_to_swp_entry(*pagep);
1693 *pagep = NULL;
1694
1695 /* Look it up and read it in.. */
1696 page = lookup_swap_cache(swap, NULL, 0);
1697 if (!page) {
1698 /* Or update major stats only when swapin succeeds?? */
1699 if (fault_type) {
1700 *fault_type |= VM_FAULT_MAJOR;
1701 count_vm_event(PGMAJFAULT);
1702 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1703 }
1704 /* Here we actually start the io */
1705 page = shmem_swapin(swap, gfp, info, index);
1706 if (!page) {
1707 error = -ENOMEM;
1708 goto failed;
1709 }
1710 }
1711
1712 /* We have to do this with page locked to prevent races */
1713 lock_page(page);
1714 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1715 !shmem_confirm_swap(mapping, index, swap)) {
1716 error = -EEXIST;
1717 goto unlock;
1718 }
1719 if (!PageUptodate(page)) {
1720 error = -EIO;
1721 goto failed;
1722 }
1723 wait_on_page_writeback(page);
1724
1725 if (shmem_should_replace_page(page, gfp)) {
1726 error = shmem_replace_page(&page, gfp, info, index);
1727 if (error)
1728 goto failed;
1729 }
1730
14235ab3 1731 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1732 swp_to_radix_entry(swap), gfp,
1733 charge_mm);
1734 if (error)
14235ab3 1735 goto failed;
c5bf121e
VRP
1736
1737 spin_lock_irq(&info->lock);
1738 info->swapped--;
1739 shmem_recalc_inode(inode);
1740 spin_unlock_irq(&info->lock);
1741
1742 if (sgp == SGP_WRITE)
1743 mark_page_accessed(page);
1744
1745 delete_from_swap_cache(page);
1746 set_page_dirty(page);
1747 swap_free(swap);
1748
1749 *pagep = page;
1750 return 0;
1751failed:
1752 if (!shmem_confirm_swap(mapping, index, swap))
1753 error = -EEXIST;
1754unlock:
1755 if (page) {
1756 unlock_page(page);
1757 put_page(page);
1758 }
1759
1760 return error;
1761}
1762
1da177e4 1763/*
68da9f05 1764 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1765 *
1766 * If we allocate a new one we do not mark it dirty. That's up to the
1767 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1768 * entry since a page cannot live in both the swap and page cache.
1769 *
28eb3c80 1770 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1771 * otherwise they are NULL.
1da177e4 1772 */
41ffe5d5 1773static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1774 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1775 struct vm_area_struct *vma, struct vm_fault *vmf,
1776 vm_fault_t *fault_type)
1da177e4
LT
1777{
1778 struct address_space *mapping = inode->i_mapping;
23f919d4 1779 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1780 struct shmem_sb_info *sbinfo;
9e18eb29 1781 struct mm_struct *charge_mm;
27ab7006 1782 struct page *page;
657e3038 1783 enum sgp_type sgp_huge = sgp;
800d8c63 1784 pgoff_t hindex = index;
1da177e4 1785 int error;
54af6042 1786 int once = 0;
1635f6a7 1787 int alloced = 0;
1da177e4 1788
09cbfeaf 1789 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1790 return -EFBIG;
657e3038
KS
1791 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1792 sgp = SGP_CACHE;
1da177e4 1793repeat:
c5bf121e
VRP
1794 if (sgp <= SGP_CACHE &&
1795 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1796 return -EINVAL;
1797 }
1798
1799 sbinfo = SHMEM_SB(inode->i_sb);
1800 charge_mm = vma ? vma->vm_mm : current->mm;
1801
0cd6144a 1802 page = find_lock_entry(mapping, index);
3159f943 1803 if (xa_is_value(page)) {
c5bf121e
VRP
1804 error = shmem_swapin_page(inode, index, &page,
1805 sgp, gfp, vma, fault_type);
1806 if (error == -EEXIST)
1807 goto repeat;
54af6042 1808
c5bf121e
VRP
1809 *pagep = page;
1810 return error;
54af6042
HD
1811 }
1812
66d2f4d2
HD
1813 if (page && sgp == SGP_WRITE)
1814 mark_page_accessed(page);
1815
1635f6a7
HD
1816 /* fallocated page? */
1817 if (page && !PageUptodate(page)) {
1818 if (sgp != SGP_READ)
1819 goto clear;
1820 unlock_page(page);
09cbfeaf 1821 put_page(page);
1635f6a7
HD
1822 page = NULL;
1823 }
c5bf121e 1824 if (page || sgp == SGP_READ) {
54af6042
HD
1825 *pagep = page;
1826 return 0;
27ab7006
HD
1827 }
1828
1829 /*
54af6042
HD
1830 * Fast cache lookup did not find it:
1831 * bring it back from swap or allocate.
27ab7006 1832 */
54af6042 1833
c5bf121e
VRP
1834 if (vma && userfaultfd_missing(vma)) {
1835 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1836 return 0;
1837 }
cfda0526 1838
c5bf121e
VRP
1839 /* shmem_symlink() */
1840 if (mapping->a_ops != &shmem_aops)
1841 goto alloc_nohuge;
1842 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1843 goto alloc_nohuge;
1844 if (shmem_huge == SHMEM_HUGE_FORCE)
1845 goto alloc_huge;
1846 switch (sbinfo->huge) {
c5bf121e
VRP
1847 case SHMEM_HUGE_NEVER:
1848 goto alloc_nohuge;
27d80fa2
KC
1849 case SHMEM_HUGE_WITHIN_SIZE: {
1850 loff_t i_size;
1851 pgoff_t off;
1852
c5bf121e
VRP
1853 off = round_up(index, HPAGE_PMD_NR);
1854 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1855 if (i_size >= HPAGE_PMD_SIZE &&
1856 i_size >> PAGE_SHIFT >= off)
800d8c63 1857 goto alloc_huge;
27d80fa2
KC
1858
1859 fallthrough;
1860 }
c5bf121e
VRP
1861 case SHMEM_HUGE_ADVISE:
1862 if (sgp_huge == SGP_HUGE)
1863 goto alloc_huge;
1864 /* TODO: implement fadvise() hints */
1865 goto alloc_nohuge;
1866 }
1da177e4 1867
800d8c63 1868alloc_huge:
c5bf121e
VRP
1869 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1870 if (IS_ERR(page)) {
1871alloc_nohuge:
1872 page = shmem_alloc_and_acct_page(gfp, inode,
1873 index, false);
1874 }
1875 if (IS_ERR(page)) {
1876 int retry = 5;
800d8c63 1877
c5bf121e
VRP
1878 error = PTR_ERR(page);
1879 page = NULL;
1880 if (error != -ENOSPC)
1881 goto unlock;
1882 /*
1883 * Try to reclaim some space by splitting a huge page
1884 * beyond i_size on the filesystem.
1885 */
1886 while (retry--) {
1887 int ret;
66d2f4d2 1888
c5bf121e
VRP
1889 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1890 if (ret == SHRINK_STOP)
1891 break;
1892 if (ret)
1893 goto alloc_nohuge;
b065b432 1894 }
c5bf121e
VRP
1895 goto unlock;
1896 }
54af6042 1897
c5bf121e
VRP
1898 if (PageTransHuge(page))
1899 hindex = round_down(index, HPAGE_PMD_NR);
1900 else
1901 hindex = index;
54af6042 1902
c5bf121e
VRP
1903 if (sgp == SGP_WRITE)
1904 __SetPageReferenced(page);
1905
c5bf121e 1906 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1907 NULL, gfp & GFP_RECLAIM_MASK,
1908 charge_mm);
1909 if (error)
c5bf121e 1910 goto unacct;
6058eaec 1911 lru_cache_add(page);
779750d2 1912
c5bf121e 1913 spin_lock_irq(&info->lock);
d8c6546b 1914 info->alloced += compound_nr(page);
c5bf121e
VRP
1915 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1916 shmem_recalc_inode(inode);
1917 spin_unlock_irq(&info->lock);
1918 alloced = true;
1919
1920 if (PageTransHuge(page) &&
1921 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1922 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1923 /*
c5bf121e
VRP
1924 * Part of the huge page is beyond i_size: subject
1925 * to shrink under memory pressure.
1635f6a7 1926 */
c5bf121e 1927 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1928 /*
c5bf121e
VRP
1929 * _careful to defend against unlocked access to
1930 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1931 */
c5bf121e
VRP
1932 if (list_empty_careful(&info->shrinklist)) {
1933 list_add_tail(&info->shrinklist,
1934 &sbinfo->shrinklist);
1935 sbinfo->shrinklist_len++;
1936 }
1937 spin_unlock(&sbinfo->shrinklist_lock);
1938 }
800d8c63 1939
c5bf121e
VRP
1940 /*
1941 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1942 */
1943 if (sgp == SGP_FALLOC)
1944 sgp = SGP_WRITE;
1945clear:
1946 /*
1947 * Let SGP_WRITE caller clear ends if write does not fill page;
1948 * but SGP_FALLOC on a page fallocated earlier must initialize
1949 * it now, lest undo on failure cancel our earlier guarantee.
1950 */
1951 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1952 struct page *head = compound_head(page);
1953 int i;
1954
d8c6546b 1955 for (i = 0; i < compound_nr(head); i++) {
c5bf121e
VRP
1956 clear_highpage(head + i);
1957 flush_dcache_page(head + i);
ec9516fb 1958 }
c5bf121e 1959 SetPageUptodate(head);
1da177e4 1960 }
bde05d1c 1961
54af6042 1962 /* Perhaps the file has been truncated since we checked */
75edd345 1963 if (sgp <= SGP_CACHE &&
09cbfeaf 1964 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1965 if (alloced) {
1966 ClearPageDirty(page);
1967 delete_from_page_cache(page);
4595ef88 1968 spin_lock_irq(&info->lock);
267a4c76 1969 shmem_recalc_inode(inode);
4595ef88 1970 spin_unlock_irq(&info->lock);
267a4c76 1971 }
54af6042 1972 error = -EINVAL;
267a4c76 1973 goto unlock;
e83c32e8 1974 }
800d8c63 1975 *pagep = page + index - hindex;
54af6042 1976 return 0;
1da177e4 1977
59a16ead 1978 /*
54af6042 1979 * Error recovery.
59a16ead 1980 */
54af6042 1981unacct:
d8c6546b 1982 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1983
1984 if (PageTransHuge(page)) {
1985 unlock_page(page);
1986 put_page(page);
1987 goto alloc_nohuge;
1988 }
d1899228 1989unlock:
27ab7006 1990 if (page) {
54af6042 1991 unlock_page(page);
09cbfeaf 1992 put_page(page);
54af6042
HD
1993 }
1994 if (error == -ENOSPC && !once++) {
4595ef88 1995 spin_lock_irq(&info->lock);
54af6042 1996 shmem_recalc_inode(inode);
4595ef88 1997 spin_unlock_irq(&info->lock);
27ab7006 1998 goto repeat;
ff36b801 1999 }
7f4446ee 2000 if (error == -EEXIST)
54af6042
HD
2001 goto repeat;
2002 return error;
1da177e4
LT
2003}
2004
10d20bd2
LT
2005/*
2006 * This is like autoremove_wake_function, but it removes the wait queue
2007 * entry unconditionally - even if something else had already woken the
2008 * target.
2009 */
ac6424b9 2010static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2011{
2012 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2013 list_del_init(&wait->entry);
10d20bd2
LT
2014 return ret;
2015}
2016
20acce67 2017static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2018{
11bac800 2019 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2020 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2021 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2022 enum sgp_type sgp;
20acce67
SJ
2023 int err;
2024 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2025
f00cdc6d
HD
2026 /*
2027 * Trinity finds that probing a hole which tmpfs is punching can
2028 * prevent the hole-punch from ever completing: which in turn
2029 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2030 * faulting pages into the hole while it's being punched. Although
2031 * shmem_undo_range() does remove the additions, it may be unable to
2032 * keep up, as each new page needs its own unmap_mapping_range() call,
2033 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2034 *
2035 * It does not matter if we sometimes reach this check just before the
2036 * hole-punch begins, so that one fault then races with the punch:
2037 * we just need to make racing faults a rare case.
2038 *
2039 * The implementation below would be much simpler if we just used a
2040 * standard mutex or completion: but we cannot take i_mutex in fault,
2041 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2042 */
2043 if (unlikely(inode->i_private)) {
2044 struct shmem_falloc *shmem_falloc;
2045
2046 spin_lock(&inode->i_lock);
2047 shmem_falloc = inode->i_private;
8e205f77
HD
2048 if (shmem_falloc &&
2049 shmem_falloc->waitq &&
2050 vmf->pgoff >= shmem_falloc->start &&
2051 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2052 struct file *fpin;
8e205f77 2053 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2054 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2055
2056 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2057 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2058 if (fpin)
8e205f77 2059 ret = VM_FAULT_RETRY;
8e205f77
HD
2060
2061 shmem_falloc_waitq = shmem_falloc->waitq;
2062 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2063 TASK_UNINTERRUPTIBLE);
2064 spin_unlock(&inode->i_lock);
2065 schedule();
2066
2067 /*
2068 * shmem_falloc_waitq points into the shmem_fallocate()
2069 * stack of the hole-punching task: shmem_falloc_waitq
2070 * is usually invalid by the time we reach here, but
2071 * finish_wait() does not dereference it in that case;
2072 * though i_lock needed lest racing with wake_up_all().
2073 */
2074 spin_lock(&inode->i_lock);
2075 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2076 spin_unlock(&inode->i_lock);
8897c1b1
KS
2077
2078 if (fpin)
2079 fput(fpin);
8e205f77 2080 return ret;
f00cdc6d 2081 }
8e205f77 2082 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2083 }
2084
657e3038 2085 sgp = SGP_CACHE;
18600332
MH
2086
2087 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2088 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2089 sgp = SGP_NOHUGE;
18600332
MH
2090 else if (vma->vm_flags & VM_HUGEPAGE)
2091 sgp = SGP_HUGE;
657e3038 2092
20acce67 2093 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2094 gfp, vma, vmf, &ret);
20acce67
SJ
2095 if (err)
2096 return vmf_error(err);
68da9f05 2097 return ret;
1da177e4
LT
2098}
2099
c01d5b30
HD
2100unsigned long shmem_get_unmapped_area(struct file *file,
2101 unsigned long uaddr, unsigned long len,
2102 unsigned long pgoff, unsigned long flags)
2103{
2104 unsigned long (*get_area)(struct file *,
2105 unsigned long, unsigned long, unsigned long, unsigned long);
2106 unsigned long addr;
2107 unsigned long offset;
2108 unsigned long inflated_len;
2109 unsigned long inflated_addr;
2110 unsigned long inflated_offset;
2111
2112 if (len > TASK_SIZE)
2113 return -ENOMEM;
2114
2115 get_area = current->mm->get_unmapped_area;
2116 addr = get_area(file, uaddr, len, pgoff, flags);
2117
396bcc52 2118 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2119 return addr;
2120 if (IS_ERR_VALUE(addr))
2121 return addr;
2122 if (addr & ~PAGE_MASK)
2123 return addr;
2124 if (addr > TASK_SIZE - len)
2125 return addr;
2126
2127 if (shmem_huge == SHMEM_HUGE_DENY)
2128 return addr;
2129 if (len < HPAGE_PMD_SIZE)
2130 return addr;
2131 if (flags & MAP_FIXED)
2132 return addr;
2133 /*
2134 * Our priority is to support MAP_SHARED mapped hugely;
2135 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2136 * But if caller specified an address hint and we allocated area there
2137 * successfully, respect that as before.
c01d5b30 2138 */
99158997 2139 if (uaddr == addr)
c01d5b30
HD
2140 return addr;
2141
2142 if (shmem_huge != SHMEM_HUGE_FORCE) {
2143 struct super_block *sb;
2144
2145 if (file) {
2146 VM_BUG_ON(file->f_op != &shmem_file_operations);
2147 sb = file_inode(file)->i_sb;
2148 } else {
2149 /*
2150 * Called directly from mm/mmap.c, or drivers/char/mem.c
2151 * for "/dev/zero", to create a shared anonymous object.
2152 */
2153 if (IS_ERR(shm_mnt))
2154 return addr;
2155 sb = shm_mnt->mnt_sb;
2156 }
3089bf61 2157 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2158 return addr;
2159 }
2160
2161 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2162 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2163 return addr;
2164 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2165 return addr;
2166
2167 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2168 if (inflated_len > TASK_SIZE)
2169 return addr;
2170 if (inflated_len < len)
2171 return addr;
2172
99158997 2173 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2174 if (IS_ERR_VALUE(inflated_addr))
2175 return addr;
2176 if (inflated_addr & ~PAGE_MASK)
2177 return addr;
2178
2179 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2180 inflated_addr += offset - inflated_offset;
2181 if (inflated_offset > offset)
2182 inflated_addr += HPAGE_PMD_SIZE;
2183
2184 if (inflated_addr > TASK_SIZE - len)
2185 return addr;
2186 return inflated_addr;
2187}
2188
1da177e4 2189#ifdef CONFIG_NUMA
41ffe5d5 2190static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2191{
496ad9aa 2192 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2193 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2194}
2195
d8dc74f2
AB
2196static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2197 unsigned long addr)
1da177e4 2198{
496ad9aa 2199 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2200 pgoff_t index;
1da177e4 2201
41ffe5d5
HD
2202 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2203 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2204}
2205#endif
2206
2207int shmem_lock(struct file *file, int lock, struct user_struct *user)
2208{
496ad9aa 2209 struct inode *inode = file_inode(file);
1da177e4
LT
2210 struct shmem_inode_info *info = SHMEM_I(inode);
2211 int retval = -ENOMEM;
2212
ea0dfeb4
HD
2213 /*
2214 * What serializes the accesses to info->flags?
2215 * ipc_lock_object() when called from shmctl_do_lock(),
2216 * no serialization needed when called from shm_destroy().
2217 */
1da177e4
LT
2218 if (lock && !(info->flags & VM_LOCKED)) {
2219 if (!user_shm_lock(inode->i_size, user))
2220 goto out_nomem;
2221 info->flags |= VM_LOCKED;
89e004ea 2222 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2223 }
2224 if (!lock && (info->flags & VM_LOCKED) && user) {
2225 user_shm_unlock(inode->i_size, user);
2226 info->flags &= ~VM_LOCKED;
89e004ea 2227 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2228 }
2229 retval = 0;
89e004ea 2230
1da177e4 2231out_nomem:
1da177e4
LT
2232 return retval;
2233}
2234
9b83a6a8 2235static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2236{
ab3948f5
JFG
2237 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2238
2239 if (info->seals & F_SEAL_FUTURE_WRITE) {
2240 /*
2241 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2242 * "future write" seal active.
2243 */
2244 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2245 return -EPERM;
2246
2247 /*
05d35110
NG
2248 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2249 * MAP_SHARED and read-only, take care to not allow mprotect to
2250 * revert protections on such mappings. Do this only for shared
2251 * mappings. For private mappings, don't need to mask
2252 * VM_MAYWRITE as we still want them to be COW-writable.
ab3948f5 2253 */
05d35110
NG
2254 if (vma->vm_flags & VM_SHARED)
2255 vma->vm_flags &= ~(VM_MAYWRITE);
ab3948f5
JFG
2256 }
2257
1da177e4
LT
2258 file_accessed(file);
2259 vma->vm_ops = &shmem_vm_ops;
396bcc52 2260 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2261 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2262 (vma->vm_end & HPAGE_PMD_MASK)) {
2263 khugepaged_enter(vma, vma->vm_flags);
2264 }
1da177e4
LT
2265 return 0;
2266}
2267
454abafe 2268static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2269 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2270{
2271 struct inode *inode;
2272 struct shmem_inode_info *info;
2273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2274 ino_t ino;
1da177e4 2275
e809d5f0 2276 if (shmem_reserve_inode(sb, &ino))
5b04c689 2277 return NULL;
1da177e4
LT
2278
2279 inode = new_inode(sb);
2280 if (inode) {
e809d5f0 2281 inode->i_ino = ino;
454abafe 2282 inode_init_owner(inode, dir, mode);
1da177e4 2283 inode->i_blocks = 0;
078cd827 2284 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2285 inode->i_generation = prandom_u32();
1da177e4
LT
2286 info = SHMEM_I(inode);
2287 memset(info, 0, (char *)inode - (char *)info);
2288 spin_lock_init(&info->lock);
af53d3e9 2289 atomic_set(&info->stop_eviction, 0);
40e041a2 2290 info->seals = F_SEAL_SEAL;
0b0a0806 2291 info->flags = flags & VM_NORESERVE;
779750d2 2292 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2293 INIT_LIST_HEAD(&info->swaplist);
38f38657 2294 simple_xattrs_init(&info->xattrs);
72c04902 2295 cache_no_acl(inode);
1da177e4
LT
2296
2297 switch (mode & S_IFMT) {
2298 default:
39f0247d 2299 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2300 init_special_inode(inode, mode, dev);
2301 break;
2302 case S_IFREG:
14fcc23f 2303 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2304 inode->i_op = &shmem_inode_operations;
2305 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2306 mpol_shared_policy_init(&info->policy,
2307 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2308 break;
2309 case S_IFDIR:
d8c76e6f 2310 inc_nlink(inode);
1da177e4
LT
2311 /* Some things misbehave if size == 0 on a directory */
2312 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2313 inode->i_op = &shmem_dir_inode_operations;
2314 inode->i_fop = &simple_dir_operations;
2315 break;
2316 case S_IFLNK:
2317 /*
2318 * Must not load anything in the rbtree,
2319 * mpol_free_shared_policy will not be called.
2320 */
71fe804b 2321 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2322 break;
2323 }
b45d71fb
JFG
2324
2325 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2326 } else
2327 shmem_free_inode(sb);
1da177e4
LT
2328 return inode;
2329}
2330
0cd6144a
JW
2331bool shmem_mapping(struct address_space *mapping)
2332{
f8005451 2333 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2334}
2335
8d103963
MR
2336static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2337 pmd_t *dst_pmd,
2338 struct vm_area_struct *dst_vma,
2339 unsigned long dst_addr,
2340 unsigned long src_addr,
2341 bool zeropage,
2342 struct page **pagep)
4c27fe4c
MR
2343{
2344 struct inode *inode = file_inode(dst_vma->vm_file);
2345 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2346 struct address_space *mapping = inode->i_mapping;
2347 gfp_t gfp = mapping_gfp_mask(mapping);
2348 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2349 spinlock_t *ptl;
2350 void *page_kaddr;
2351 struct page *page;
2352 pte_t _dst_pte, *dst_pte;
2353 int ret;
e2a50c1f 2354 pgoff_t offset, max_off;
4c27fe4c 2355
cb658a45 2356 ret = -ENOMEM;
0f079694 2357 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2358 goto out;
4c27fe4c 2359
cb658a45 2360 if (!*pagep) {
4c27fe4c
MR
2361 page = shmem_alloc_page(gfp, info, pgoff);
2362 if (!page)
0f079694 2363 goto out_unacct_blocks;
4c27fe4c 2364
8d103963
MR
2365 if (!zeropage) { /* mcopy_atomic */
2366 page_kaddr = kmap_atomic(page);
2367 ret = copy_from_user(page_kaddr,
2368 (const void __user *)src_addr,
2369 PAGE_SIZE);
2370 kunmap_atomic(page_kaddr);
2371
c1e8d7c6 2372 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2373 if (unlikely(ret)) {
2374 *pagep = page;
2375 shmem_inode_unacct_blocks(inode, 1);
2376 /* don't free the page */
9e368259 2377 return -ENOENT;
8d103963
MR
2378 }
2379 } else { /* mfill_zeropage_atomic */
2380 clear_highpage(page);
4c27fe4c
MR
2381 }
2382 } else {
2383 page = *pagep;
2384 *pagep = NULL;
2385 }
2386
9cc90c66
AA
2387 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2388 __SetPageLocked(page);
2389 __SetPageSwapBacked(page);
a425d358 2390 __SetPageUptodate(page);
9cc90c66 2391
e2a50c1f
AA
2392 ret = -EFAULT;
2393 offset = linear_page_index(dst_vma, dst_addr);
2394 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2395 if (unlikely(offset >= max_off))
2396 goto out_release;
2397
552446a4 2398 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2399 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2400 if (ret)
3fea5a49 2401 goto out_release;
4c27fe4c
MR
2402
2403 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2404 if (dst_vma->vm_flags & VM_WRITE)
2405 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2406 else {
2407 /*
2408 * We don't set the pte dirty if the vma has no
2409 * VM_WRITE permission, so mark the page dirty or it
2410 * could be freed from under us. We could do it
2411 * unconditionally before unlock_page(), but doing it
2412 * only if VM_WRITE is not set is faster.
2413 */
2414 set_page_dirty(page);
2415 }
4c27fe4c 2416
4c27fe4c 2417 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2418
2419 ret = -EFAULT;
2420 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421 if (unlikely(offset >= max_off))
3fea5a49 2422 goto out_release_unlock;
e2a50c1f
AA
2423
2424 ret = -EEXIST;
4c27fe4c 2425 if (!pte_none(*dst_pte))
3fea5a49 2426 goto out_release_unlock;
4c27fe4c 2427
6058eaec 2428 lru_cache_add(page);
4c27fe4c 2429
94b7cc01 2430 spin_lock_irq(&info->lock);
4c27fe4c
MR
2431 info->alloced++;
2432 inode->i_blocks += BLOCKS_PER_PAGE;
2433 shmem_recalc_inode(inode);
94b7cc01 2434 spin_unlock_irq(&info->lock);
4c27fe4c
MR
2435
2436 inc_mm_counter(dst_mm, mm_counter_file(page));
2437 page_add_file_rmap(page, false);
2438 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2439
2440 /* No need to invalidate - it was non-present before */
2441 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2442 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2443 unlock_page(page);
4c27fe4c
MR
2444 ret = 0;
2445out:
2446 return ret;
3fea5a49 2447out_release_unlock:
4c27fe4c 2448 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2449 ClearPageDirty(page);
e2a50c1f 2450 delete_from_page_cache(page);
4c27fe4c 2451out_release:
9cc90c66 2452 unlock_page(page);
4c27fe4c 2453 put_page(page);
4c27fe4c 2454out_unacct_blocks:
0f079694 2455 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2456 goto out;
2457}
2458
8d103963
MR
2459int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2460 pmd_t *dst_pmd,
2461 struct vm_area_struct *dst_vma,
2462 unsigned long dst_addr,
2463 unsigned long src_addr,
2464 struct page **pagep)
2465{
2466 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2467 dst_addr, src_addr, false, pagep);
2468}
2469
2470int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2471 pmd_t *dst_pmd,
2472 struct vm_area_struct *dst_vma,
2473 unsigned long dst_addr)
2474{
2475 struct page *page = NULL;
2476
2477 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2478 dst_addr, 0, true, &page);
2479}
2480
1da177e4 2481#ifdef CONFIG_TMPFS
92e1d5be 2482static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2483static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2484
6d9d88d0
JS
2485#ifdef CONFIG_TMPFS_XATTR
2486static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2487#else
2488#define shmem_initxattrs NULL
2489#endif
2490
1da177e4 2491static int
800d15a5
NP
2492shmem_write_begin(struct file *file, struct address_space *mapping,
2493 loff_t pos, unsigned len, unsigned flags,
2494 struct page **pagep, void **fsdata)
1da177e4 2495{
800d15a5 2496 struct inode *inode = mapping->host;
40e041a2 2497 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2498 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DR
2499
2500 /* i_mutex is held by caller */
ab3948f5
JFG
2501 if (unlikely(info->seals & (F_SEAL_GROW |
2502 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2503 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DR
2504 return -EPERM;
2505 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2506 return -EPERM;
2507 }
2508
9e18eb29 2509 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2510}
2511
2512static int
2513shmem_write_end(struct file *file, struct address_space *mapping,
2514 loff_t pos, unsigned len, unsigned copied,
2515 struct page *page, void *fsdata)
2516{
2517 struct inode *inode = mapping->host;
2518
d3602444
HD
2519 if (pos + copied > inode->i_size)
2520 i_size_write(inode, pos + copied);
2521
ec9516fb 2522 if (!PageUptodate(page)) {
800d8c63
KS
2523 struct page *head = compound_head(page);
2524 if (PageTransCompound(page)) {
2525 int i;
2526
2527 for (i = 0; i < HPAGE_PMD_NR; i++) {
2528 if (head + i == page)
2529 continue;
2530 clear_highpage(head + i);
2531 flush_dcache_page(head + i);
2532 }
2533 }
09cbfeaf
KS
2534 if (copied < PAGE_SIZE) {
2535 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2536 zero_user_segments(page, 0, from,
09cbfeaf 2537 from + copied, PAGE_SIZE);
ec9516fb 2538 }
800d8c63 2539 SetPageUptodate(head);
ec9516fb 2540 }
800d15a5 2541 set_page_dirty(page);
6746aff7 2542 unlock_page(page);
09cbfeaf 2543 put_page(page);
800d15a5 2544
800d15a5 2545 return copied;
1da177e4
LT
2546}
2547
2ba5bbed 2548static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2549{
6e58e79d
AV
2550 struct file *file = iocb->ki_filp;
2551 struct inode *inode = file_inode(file);
1da177e4 2552 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2553 pgoff_t index;
2554 unsigned long offset;
a0ee5ec5 2555 enum sgp_type sgp = SGP_READ;
f7c1d074 2556 int error = 0;
cb66a7a1 2557 ssize_t retval = 0;
6e58e79d 2558 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2559
2560 /*
2561 * Might this read be for a stacking filesystem? Then when reading
2562 * holes of a sparse file, we actually need to allocate those pages,
2563 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2564 */
777eda2c 2565 if (!iter_is_iovec(to))
75edd345 2566 sgp = SGP_CACHE;
1da177e4 2567
09cbfeaf
KS
2568 index = *ppos >> PAGE_SHIFT;
2569 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2570
2571 for (;;) {
2572 struct page *page = NULL;
41ffe5d5
HD
2573 pgoff_t end_index;
2574 unsigned long nr, ret;
1da177e4
LT
2575 loff_t i_size = i_size_read(inode);
2576
09cbfeaf 2577 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2578 if (index > end_index)
2579 break;
2580 if (index == end_index) {
09cbfeaf 2581 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2582 if (nr <= offset)
2583 break;
2584 }
2585
9e18eb29 2586 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2587 if (error) {
2588 if (error == -EINVAL)
2589 error = 0;
1da177e4
LT
2590 break;
2591 }
75edd345
HD
2592 if (page) {
2593 if (sgp == SGP_CACHE)
2594 set_page_dirty(page);
d3602444 2595 unlock_page(page);
75edd345 2596 }
1da177e4
LT
2597
2598 /*
2599 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2600 * are called without i_mutex protection against truncate
1da177e4 2601 */
09cbfeaf 2602 nr = PAGE_SIZE;
1da177e4 2603 i_size = i_size_read(inode);
09cbfeaf 2604 end_index = i_size >> PAGE_SHIFT;
1da177e4 2605 if (index == end_index) {
09cbfeaf 2606 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2607 if (nr <= offset) {
2608 if (page)
09cbfeaf 2609 put_page(page);
1da177e4
LT
2610 break;
2611 }
2612 }
2613 nr -= offset;
2614
2615 if (page) {
2616 /*
2617 * If users can be writing to this page using arbitrary
2618 * virtual addresses, take care about potential aliasing
2619 * before reading the page on the kernel side.
2620 */
2621 if (mapping_writably_mapped(mapping))
2622 flush_dcache_page(page);
2623 /*
2624 * Mark the page accessed if we read the beginning.
2625 */
2626 if (!offset)
2627 mark_page_accessed(page);
b5810039 2628 } else {
1da177e4 2629 page = ZERO_PAGE(0);
09cbfeaf 2630 get_page(page);
b5810039 2631 }
1da177e4
LT
2632
2633 /*
2634 * Ok, we have the page, and it's up-to-date, so
2635 * now we can copy it to user space...
1da177e4 2636 */
2ba5bbed 2637 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2638 retval += ret;
1da177e4 2639 offset += ret;
09cbfeaf
KS
2640 index += offset >> PAGE_SHIFT;
2641 offset &= ~PAGE_MASK;
1da177e4 2642
09cbfeaf 2643 put_page(page);
2ba5bbed 2644 if (!iov_iter_count(to))
1da177e4 2645 break;
6e58e79d
AV
2646 if (ret < nr) {
2647 error = -EFAULT;
2648 break;
2649 }
1da177e4
LT
2650 cond_resched();
2651 }
2652
09cbfeaf 2653 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2654 file_accessed(file);
2655 return retval ? retval : error;
1da177e4
LT
2656}
2657
220f2ac9 2658/*
7f4446ee 2659 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2660 */
2661static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2662 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2663{
2664 struct page *page;
2665 struct pagevec pvec;
2666 pgoff_t indices[PAGEVEC_SIZE];
2667 bool done = false;
2668 int i;
2669
86679820 2670 pagevec_init(&pvec);
220f2ac9
HD
2671 pvec.nr = 1; /* start small: we may be there already */
2672 while (!done) {
0cd6144a 2673 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2674 pvec.nr, pvec.pages, indices);
2675 if (!pvec.nr) {
965c8e59 2676 if (whence == SEEK_DATA)
220f2ac9
HD
2677 index = end;
2678 break;
2679 }
2680 for (i = 0; i < pvec.nr; i++, index++) {
2681 if (index < indices[i]) {
965c8e59 2682 if (whence == SEEK_HOLE) {
220f2ac9
HD
2683 done = true;
2684 break;
2685 }
2686 index = indices[i];
2687 }
2688 page = pvec.pages[i];
3159f943 2689 if (page && !xa_is_value(page)) {
220f2ac9
HD
2690 if (!PageUptodate(page))
2691 page = NULL;
2692 }
2693 if (index >= end ||
965c8e59
AM
2694 (page && whence == SEEK_DATA) ||
2695 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2696 done = true;
2697 break;
2698 }
2699 }
0cd6144a 2700 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2701 pagevec_release(&pvec);
2702 pvec.nr = PAGEVEC_SIZE;
2703 cond_resched();
2704 }
2705 return index;
2706}
2707
965c8e59 2708static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2709{
2710 struct address_space *mapping = file->f_mapping;
2711 struct inode *inode = mapping->host;
2712 pgoff_t start, end;
2713 loff_t new_offset;
2714
965c8e59
AM
2715 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2716 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2717 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2718 inode_lock(inode);
220f2ac9
HD
2719 /* We're holding i_mutex so we can access i_size directly */
2720
1a413646 2721 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2722 offset = -ENXIO;
2723 else {
09cbfeaf
KS
2724 start = offset >> PAGE_SHIFT;
2725 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2726 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2727 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2728 if (new_offset > offset) {
2729 if (new_offset < inode->i_size)
2730 offset = new_offset;
965c8e59 2731 else if (whence == SEEK_DATA)
220f2ac9
HD
2732 offset = -ENXIO;
2733 else
2734 offset = inode->i_size;
2735 }
2736 }
2737
387aae6f
HD
2738 if (offset >= 0)
2739 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2740 inode_unlock(inode);
220f2ac9
HD
2741 return offset;
2742}
2743
83e4fa9c
HD
2744static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2745 loff_t len)
2746{
496ad9aa 2747 struct inode *inode = file_inode(file);
e2d12e22 2748 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2749 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2750 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2751 pgoff_t start, index, end;
2752 int error;
83e4fa9c 2753
13ace4d0
HD
2754 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2755 return -EOPNOTSUPP;
2756
5955102c 2757 inode_lock(inode);
83e4fa9c
HD
2758
2759 if (mode & FALLOC_FL_PUNCH_HOLE) {
2760 struct address_space *mapping = file->f_mapping;
2761 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2762 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2763 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2764
40e041a2 2765 /* protected by i_mutex */
ab3948f5 2766 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DR
2767 error = -EPERM;
2768 goto out;
2769 }
2770
8e205f77 2771 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2772 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2773 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2774 spin_lock(&inode->i_lock);
2775 inode->i_private = &shmem_falloc;
2776 spin_unlock(&inode->i_lock);
2777
83e4fa9c
HD
2778 if ((u64)unmap_end > (u64)unmap_start)
2779 unmap_mapping_range(mapping, unmap_start,
2780 1 + unmap_end - unmap_start, 0);
2781 shmem_truncate_range(inode, offset, offset + len - 1);
2782 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2783
2784 spin_lock(&inode->i_lock);
2785 inode->i_private = NULL;
2786 wake_up_all(&shmem_falloc_waitq);
2055da97 2787 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2788 spin_unlock(&inode->i_lock);
83e4fa9c 2789 error = 0;
8e205f77 2790 goto out;
e2d12e22
HD
2791 }
2792
2793 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2794 error = inode_newsize_ok(inode, offset + len);
2795 if (error)
2796 goto out;
2797
40e041a2
DR
2798 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2799 error = -EPERM;
2800 goto out;
2801 }
2802
09cbfeaf
KS
2803 start = offset >> PAGE_SHIFT;
2804 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2805 /* Try to avoid a swapstorm if len is impossible to satisfy */
2806 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2807 error = -ENOSPC;
2808 goto out;
83e4fa9c
HD
2809 }
2810
8e205f77 2811 shmem_falloc.waitq = NULL;
1aac1400
HD
2812 shmem_falloc.start = start;
2813 shmem_falloc.next = start;
2814 shmem_falloc.nr_falloced = 0;
2815 shmem_falloc.nr_unswapped = 0;
2816 spin_lock(&inode->i_lock);
2817 inode->i_private = &shmem_falloc;
2818 spin_unlock(&inode->i_lock);
2819
e2d12e22
HD
2820 for (index = start; index < end; index++) {
2821 struct page *page;
2822
2823 /*
2824 * Good, the fallocate(2) manpage permits EINTR: we may have
2825 * been interrupted because we are using up too much memory.
2826 */
2827 if (signal_pending(current))
2828 error = -EINTR;
1aac1400
HD
2829 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2830 error = -ENOMEM;
e2d12e22 2831 else
9e18eb29 2832 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2833 if (error) {
1635f6a7 2834 /* Remove the !PageUptodate pages we added */
7f556567
HD
2835 if (index > start) {
2836 shmem_undo_range(inode,
2837 (loff_t)start << PAGE_SHIFT,
2838 ((loff_t)index << PAGE_SHIFT) - 1, true);
2839 }
1aac1400 2840 goto undone;
e2d12e22
HD
2841 }
2842
1aac1400
HD
2843 /*
2844 * Inform shmem_writepage() how far we have reached.
2845 * No need for lock or barrier: we have the page lock.
2846 */
2847 shmem_falloc.next++;
2848 if (!PageUptodate(page))
2849 shmem_falloc.nr_falloced++;
2850
e2d12e22 2851 /*
1635f6a7
HD
2852 * If !PageUptodate, leave it that way so that freeable pages
2853 * can be recognized if we need to rollback on error later.
2854 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2855 * than free the pages we are allocating (and SGP_CACHE pages
2856 * might still be clean: we now need to mark those dirty too).
2857 */
2858 set_page_dirty(page);
2859 unlock_page(page);
09cbfeaf 2860 put_page(page);
e2d12e22
HD
2861 cond_resched();
2862 }
2863
2864 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2865 i_size_write(inode, offset + len);
078cd827 2866 inode->i_ctime = current_time(inode);
1aac1400
HD
2867undone:
2868 spin_lock(&inode->i_lock);
2869 inode->i_private = NULL;
2870 spin_unlock(&inode->i_lock);
e2d12e22 2871out:
5955102c 2872 inode_unlock(inode);
83e4fa9c
HD
2873 return error;
2874}
2875
726c3342 2876static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2877{
726c3342 2878 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2879
2880 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2881 buf->f_bsize = PAGE_SIZE;
1da177e4 2882 buf->f_namelen = NAME_MAX;
0edd73b3 2883 if (sbinfo->max_blocks) {
1da177e4 2884 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2885 buf->f_bavail =
2886 buf->f_bfree = sbinfo->max_blocks -
2887 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2888 }
2889 if (sbinfo->max_inodes) {
1da177e4
LT
2890 buf->f_files = sbinfo->max_inodes;
2891 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2892 }
2893 /* else leave those fields 0 like simple_statfs */
2894 return 0;
2895}
2896
2897/*
2898 * File creation. Allocate an inode, and we're done..
2899 */
2900static int
1a67aafb 2901shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2902{
0b0a0806 2903 struct inode *inode;
1da177e4
LT
2904 int error = -ENOSPC;
2905
454abafe 2906 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2907 if (inode) {
feda821e
CH
2908 error = simple_acl_create(dir, inode);
2909 if (error)
2910 goto out_iput;
2a7dba39 2911 error = security_inode_init_security(inode, dir,
9d8f13ba 2912 &dentry->d_name,
6d9d88d0 2913 shmem_initxattrs, NULL);
feda821e
CH
2914 if (error && error != -EOPNOTSUPP)
2915 goto out_iput;
37ec43cd 2916
718deb6b 2917 error = 0;
1da177e4 2918 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2919 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2920 d_instantiate(dentry, inode);
2921 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2922 }
2923 return error;
feda821e
CH
2924out_iput:
2925 iput(inode);
2926 return error;
1da177e4
LT
2927}
2928
60545d0d
AV
2929static int
2930shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2931{
2932 struct inode *inode;
2933 int error = -ENOSPC;
2934
2935 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2936 if (inode) {
2937 error = security_inode_init_security(inode, dir,
2938 NULL,
2939 shmem_initxattrs, NULL);
feda821e
CH
2940 if (error && error != -EOPNOTSUPP)
2941 goto out_iput;
2942 error = simple_acl_create(dir, inode);
2943 if (error)
2944 goto out_iput;
60545d0d
AV
2945 d_tmpfile(dentry, inode);
2946 }
2947 return error;
feda821e
CH
2948out_iput:
2949 iput(inode);
2950 return error;
60545d0d
AV
2951}
2952
18bb1db3 2953static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2954{
2955 int error;
2956
2957 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2958 return error;
d8c76e6f 2959 inc_nlink(dir);
1da177e4
LT
2960 return 0;
2961}
2962
4acdaf27 2963static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2964 bool excl)
1da177e4
LT
2965{
2966 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2967}
2968
2969/*
2970 * Link a file..
2971 */
2972static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2973{
75c3cfa8 2974 struct inode *inode = d_inode(old_dentry);
29b00e60 2975 int ret = 0;
1da177e4
LT
2976
2977 /*
2978 * No ordinary (disk based) filesystem counts links as inodes;
2979 * but each new link needs a new dentry, pinning lowmem, and
2980 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2981 * But if an O_TMPFILE file is linked into the tmpfs, the
2982 * first link must skip that, to get the accounting right.
1da177e4 2983 */
1062af92 2984 if (inode->i_nlink) {
e809d5f0 2985 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2986 if (ret)
2987 goto out;
2988 }
1da177e4
LT
2989
2990 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2991 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2992 inc_nlink(inode);
7de9c6ee 2993 ihold(inode); /* New dentry reference */
1da177e4
LT
2994 dget(dentry); /* Extra pinning count for the created dentry */
2995 d_instantiate(dentry, inode);
5b04c689
PE
2996out:
2997 return ret;
1da177e4
LT
2998}
2999
3000static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3001{
75c3cfa8 3002 struct inode *inode = d_inode(dentry);
1da177e4 3003
5b04c689
PE
3004 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3005 shmem_free_inode(inode->i_sb);
1da177e4
LT
3006
3007 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3008 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3009 drop_nlink(inode);
1da177e4
LT
3010 dput(dentry); /* Undo the count from "create" - this does all the work */
3011 return 0;
3012}
3013
3014static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3015{
3016 if (!simple_empty(dentry))
3017 return -ENOTEMPTY;
3018
75c3cfa8 3019 drop_nlink(d_inode(dentry));
9a53c3a7 3020 drop_nlink(dir);
1da177e4
LT
3021 return shmem_unlink(dir, dentry);
3022}
3023
37456771
MS
3024static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3025{
e36cb0b8
DH
3026 bool old_is_dir = d_is_dir(old_dentry);
3027 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3028
3029 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3030 if (old_is_dir) {
3031 drop_nlink(old_dir);
3032 inc_nlink(new_dir);
3033 } else {
3034 drop_nlink(new_dir);
3035 inc_nlink(old_dir);
3036 }
3037 }
3038 old_dir->i_ctime = old_dir->i_mtime =
3039 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3040 d_inode(old_dentry)->i_ctime =
078cd827 3041 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3042
3043 return 0;
3044}
3045
46fdb794
MS
3046static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3047{
3048 struct dentry *whiteout;
3049 int error;
3050
3051 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3052 if (!whiteout)
3053 return -ENOMEM;
3054
3055 error = shmem_mknod(old_dir, whiteout,
3056 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3057 dput(whiteout);
3058 if (error)
3059 return error;
3060
3061 /*
3062 * Cheat and hash the whiteout while the old dentry is still in
3063 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3064 *
3065 * d_lookup() will consistently find one of them at this point,
3066 * not sure which one, but that isn't even important.
3067 */
3068 d_rehash(whiteout);
3069 return 0;
3070}
3071
1da177e4
LT
3072/*
3073 * The VFS layer already does all the dentry stuff for rename,
3074 * we just have to decrement the usage count for the target if
3075 * it exists so that the VFS layer correctly free's it when it
3076 * gets overwritten.
3077 */
3b69ff51 3078static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3079{
75c3cfa8 3080 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3081 int they_are_dirs = S_ISDIR(inode->i_mode);
3082
46fdb794 3083 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3084 return -EINVAL;
3085
37456771
MS
3086 if (flags & RENAME_EXCHANGE)
3087 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3088
1da177e4
LT
3089 if (!simple_empty(new_dentry))
3090 return -ENOTEMPTY;
3091
46fdb794
MS
3092 if (flags & RENAME_WHITEOUT) {
3093 int error;
3094
3095 error = shmem_whiteout(old_dir, old_dentry);
3096 if (error)
3097 return error;
3098 }
3099
75c3cfa8 3100 if (d_really_is_positive(new_dentry)) {
1da177e4 3101 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3102 if (they_are_dirs) {
75c3cfa8 3103 drop_nlink(d_inode(new_dentry));
9a53c3a7 3104 drop_nlink(old_dir);
b928095b 3105 }
1da177e4 3106 } else if (they_are_dirs) {
9a53c3a7 3107 drop_nlink(old_dir);
d8c76e6f 3108 inc_nlink(new_dir);
1da177e4
LT
3109 }
3110
3111 old_dir->i_size -= BOGO_DIRENT_SIZE;
3112 new_dir->i_size += BOGO_DIRENT_SIZE;
3113 old_dir->i_ctime = old_dir->i_mtime =
3114 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3115 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3116 return 0;
3117}
3118
3119static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3120{
3121 int error;
3122 int len;
3123 struct inode *inode;
9276aad6 3124 struct page *page;
1da177e4
LT
3125
3126 len = strlen(symname) + 1;
09cbfeaf 3127 if (len > PAGE_SIZE)
1da177e4
LT
3128 return -ENAMETOOLONG;
3129
0825a6f9
JP
3130 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3131 VM_NORESERVE);
1da177e4
LT
3132 if (!inode)
3133 return -ENOSPC;
3134
9d8f13ba 3135 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3136 shmem_initxattrs, NULL);
343c3d7f
MN
3137 if (error && error != -EOPNOTSUPP) {
3138 iput(inode);
3139 return error;
570bc1c2
SS
3140 }
3141
1da177e4 3142 inode->i_size = len-1;
69f07ec9 3143 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3144 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3145 if (!inode->i_link) {
69f07ec9
HD
3146 iput(inode);
3147 return -ENOMEM;
3148 }
3149 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3150 } else {
e8ecde25 3151 inode_nohighmem(inode);
9e18eb29 3152 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3153 if (error) {
3154 iput(inode);
3155 return error;
3156 }
14fcc23f 3157 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3158 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3159 memcpy(page_address(page), symname, len);
ec9516fb 3160 SetPageUptodate(page);
1da177e4 3161 set_page_dirty(page);
6746aff7 3162 unlock_page(page);
09cbfeaf 3163 put_page(page);
1da177e4 3164 }
1da177e4 3165 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3166 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3167 d_instantiate(dentry, inode);
3168 dget(dentry);
3169 return 0;
3170}
3171
fceef393 3172static void shmem_put_link(void *arg)
1da177e4 3173{
fceef393
AV
3174 mark_page_accessed(arg);
3175 put_page(arg);
1da177e4
LT
3176}
3177
6b255391 3178static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3179 struct inode *inode,
3180 struct delayed_call *done)
1da177e4 3181{
1da177e4 3182 struct page *page = NULL;
6b255391 3183 int error;
6a6c9904
AV
3184 if (!dentry) {
3185 page = find_get_page(inode->i_mapping, 0);
3186 if (!page)
3187 return ERR_PTR(-ECHILD);
3188 if (!PageUptodate(page)) {
3189 put_page(page);
3190 return ERR_PTR(-ECHILD);
3191 }
3192 } else {
9e18eb29 3193 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3194 if (error)
3195 return ERR_PTR(error);
3196 unlock_page(page);
3197 }
fceef393 3198 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3199 return page_address(page);
1da177e4
LT
3200}
3201
b09e0fa4 3202#ifdef CONFIG_TMPFS_XATTR
46711810 3203/*
b09e0fa4
EP
3204 * Superblocks without xattr inode operations may get some security.* xattr
3205 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3206 * like ACLs, we also need to implement the security.* handlers at
3207 * filesystem level, though.
3208 */
3209
6d9d88d0
JS
3210/*
3211 * Callback for security_inode_init_security() for acquiring xattrs.
3212 */
3213static int shmem_initxattrs(struct inode *inode,
3214 const struct xattr *xattr_array,
3215 void *fs_info)
3216{
3217 struct shmem_inode_info *info = SHMEM_I(inode);
3218 const struct xattr *xattr;
38f38657 3219 struct simple_xattr *new_xattr;
6d9d88d0
JS
3220 size_t len;
3221
3222 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3223 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3224 if (!new_xattr)
3225 return -ENOMEM;
3226
3227 len = strlen(xattr->name) + 1;
3228 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3229 GFP_KERNEL);
3230 if (!new_xattr->name) {
3bef735a 3231 kvfree(new_xattr);
6d9d88d0
JS
3232 return -ENOMEM;
3233 }
3234
3235 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3236 XATTR_SECURITY_PREFIX_LEN);
3237 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3238 xattr->name, len);
3239
38f38657 3240 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3241 }
3242
3243 return 0;
3244}
3245
aa7c5241 3246static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3247 struct dentry *unused, struct inode *inode,
3248 const char *name, void *buffer, size_t size)
b09e0fa4 3249{
b296821a 3250 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3251
aa7c5241 3252 name = xattr_full_name(handler, name);
38f38657 3253 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3254}
3255
aa7c5241 3256static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3257 struct dentry *unused, struct inode *inode,
3258 const char *name, const void *value,
3259 size_t size, int flags)
b09e0fa4 3260{
59301226 3261 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3262
aa7c5241 3263 name = xattr_full_name(handler, name);
a46a2295 3264 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3265}
3266
aa7c5241
AG
3267static const struct xattr_handler shmem_security_xattr_handler = {
3268 .prefix = XATTR_SECURITY_PREFIX,
3269 .get = shmem_xattr_handler_get,
3270 .set = shmem_xattr_handler_set,
3271};
b09e0fa4 3272
aa7c5241
AG
3273static const struct xattr_handler shmem_trusted_xattr_handler = {
3274 .prefix = XATTR_TRUSTED_PREFIX,
3275 .get = shmem_xattr_handler_get,
3276 .set = shmem_xattr_handler_set,
3277};
b09e0fa4 3278
aa7c5241
AG
3279static const struct xattr_handler *shmem_xattr_handlers[] = {
3280#ifdef CONFIG_TMPFS_POSIX_ACL
3281 &posix_acl_access_xattr_handler,
3282 &posix_acl_default_xattr_handler,
3283#endif
3284 &shmem_security_xattr_handler,
3285 &shmem_trusted_xattr_handler,
3286 NULL
3287};
b09e0fa4
EP
3288
3289static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3290{
75c3cfa8 3291 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3292 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3293}
3294#endif /* CONFIG_TMPFS_XATTR */
3295
69f07ec9 3296static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3297 .get_link = simple_get_link,
b09e0fa4 3298#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3299 .listxattr = shmem_listxattr,
b09e0fa4
EP
3300#endif
3301};
3302
3303static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3304 .get_link = shmem_get_link,
b09e0fa4 3305#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3306 .listxattr = shmem_listxattr,
39f0247d 3307#endif
b09e0fa4 3308};
39f0247d 3309
91828a40
DG
3310static struct dentry *shmem_get_parent(struct dentry *child)
3311{
3312 return ERR_PTR(-ESTALE);
3313}
3314
3315static int shmem_match(struct inode *ino, void *vfh)
3316{
3317 __u32 *fh = vfh;
3318 __u64 inum = fh[2];
3319 inum = (inum << 32) | fh[1];
3320 return ino->i_ino == inum && fh[0] == ino->i_generation;
3321}
3322
12ba780d
AG
3323/* Find any alias of inode, but prefer a hashed alias */
3324static struct dentry *shmem_find_alias(struct inode *inode)
3325{
3326 struct dentry *alias = d_find_alias(inode);
3327
3328 return alias ?: d_find_any_alias(inode);
3329}
3330
3331
480b116c
CH
3332static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3333 struct fid *fid, int fh_len, int fh_type)
91828a40 3334{
91828a40 3335 struct inode *inode;
480b116c 3336 struct dentry *dentry = NULL;
35c2a7f4 3337 u64 inum;
480b116c
CH
3338
3339 if (fh_len < 3)
3340 return NULL;
91828a40 3341
35c2a7f4
HD
3342 inum = fid->raw[2];
3343 inum = (inum << 32) | fid->raw[1];
3344
480b116c
CH
3345 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3346 shmem_match, fid->raw);
91828a40 3347 if (inode) {
12ba780d 3348 dentry = shmem_find_alias(inode);
91828a40
DG
3349 iput(inode);
3350 }
3351
480b116c 3352 return dentry;
91828a40
DG
3353}
3354
b0b0382b
AV
3355static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3356 struct inode *parent)
91828a40 3357{
5fe0c237
AK
3358 if (*len < 3) {
3359 *len = 3;
94e07a75 3360 return FILEID_INVALID;
5fe0c237 3361 }
91828a40 3362
1d3382cb 3363 if (inode_unhashed(inode)) {
91828a40
DG
3364 /* Unfortunately insert_inode_hash is not idempotent,
3365 * so as we hash inodes here rather than at creation
3366 * time, we need a lock to ensure we only try
3367 * to do it once
3368 */
3369 static DEFINE_SPINLOCK(lock);
3370 spin_lock(&lock);
1d3382cb 3371 if (inode_unhashed(inode))
91828a40
DG
3372 __insert_inode_hash(inode,
3373 inode->i_ino + inode->i_generation);
3374 spin_unlock(&lock);
3375 }
3376
3377 fh[0] = inode->i_generation;
3378 fh[1] = inode->i_ino;
3379 fh[2] = ((__u64)inode->i_ino) >> 32;
3380
3381 *len = 3;
3382 return 1;
3383}
3384
39655164 3385static const struct export_operations shmem_export_ops = {
91828a40 3386 .get_parent = shmem_get_parent,
91828a40 3387 .encode_fh = shmem_encode_fh,
480b116c 3388 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3389};
3390
626c3920
AV
3391enum shmem_param {
3392 Opt_gid,
3393 Opt_huge,
3394 Opt_mode,
3395 Opt_mpol,
3396 Opt_nr_blocks,
3397 Opt_nr_inodes,
3398 Opt_size,
3399 Opt_uid,
3400};
3401
5eede625 3402static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3403 {"never", SHMEM_HUGE_NEVER },
3404 {"always", SHMEM_HUGE_ALWAYS },
3405 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3406 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3407 {}
3408};
3409
d7167b14 3410const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3411 fsparam_u32 ("gid", Opt_gid),
2710c957 3412 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3413 fsparam_u32oct("mode", Opt_mode),
3414 fsparam_string("mpol", Opt_mpol),
3415 fsparam_string("nr_blocks", Opt_nr_blocks),
3416 fsparam_string("nr_inodes", Opt_nr_inodes),
3417 fsparam_string("size", Opt_size),
3418 fsparam_u32 ("uid", Opt_uid),
3419 {}
3420};
3421
f3235626 3422static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3423{
f3235626 3424 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3425 struct fs_parse_result result;
3426 unsigned long long size;
e04dc423 3427 char *rest;
626c3920
AV
3428 int opt;
3429
d7167b14 3430 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3431 if (opt < 0)
626c3920 3432 return opt;
1da177e4 3433
626c3920
AV
3434 switch (opt) {
3435 case Opt_size:
3436 size = memparse(param->string, &rest);
e04dc423
AV
3437 if (*rest == '%') {
3438 size <<= PAGE_SHIFT;
3439 size *= totalram_pages();
3440 do_div(size, 100);
3441 rest++;
3442 }
3443 if (*rest)
626c3920 3444 goto bad_value;
e04dc423
AV
3445 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3446 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3447 break;
3448 case Opt_nr_blocks:
3449 ctx->blocks = memparse(param->string, &rest);
e04dc423 3450 if (*rest)
626c3920 3451 goto bad_value;
e04dc423 3452 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3453 break;
3454 case Opt_nr_inodes:
3455 ctx->inodes = memparse(param->string, &rest);
e04dc423 3456 if (*rest)
626c3920 3457 goto bad_value;
e04dc423 3458 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3459 break;
3460 case Opt_mode:
3461 ctx->mode = result.uint_32 & 07777;
3462 break;
3463 case Opt_uid:
3464 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3465 if (!uid_valid(ctx->uid))
626c3920
AV
3466 goto bad_value;
3467 break;
3468 case Opt_gid:
3469 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3470 if (!gid_valid(ctx->gid))
626c3920
AV
3471 goto bad_value;
3472 break;
3473 case Opt_huge:
3474 ctx->huge = result.uint_32;
3475 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3476 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3477 has_transparent_hugepage()))
3478 goto unsupported_parameter;
e04dc423 3479 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3480 break;
3481 case Opt_mpol:
3482 if (IS_ENABLED(CONFIG_NUMA)) {
3483 mpol_put(ctx->mpol);
3484 ctx->mpol = NULL;
3485 if (mpol_parse_str(param->string, &ctx->mpol))
3486 goto bad_value;
3487 break;
3488 }
3489 goto unsupported_parameter;
e04dc423
AV
3490 }
3491 return 0;
3492
626c3920 3493unsupported_parameter:
f35aa2bc 3494 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3495bad_value:
f35aa2bc 3496 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3497}
3498
f3235626 3499static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3500{
f3235626
DH
3501 char *options = data;
3502
33f37c64
AV
3503 if (options) {
3504 int err = security_sb_eat_lsm_opts(options, &fc->security);
3505 if (err)
3506 return err;
3507 }
3508
b00dc3ad 3509 while (options != NULL) {
626c3920 3510 char *this_char = options;
b00dc3ad
HD
3511 for (;;) {
3512 /*
3513 * NUL-terminate this option: unfortunately,
3514 * mount options form a comma-separated list,
3515 * but mpol's nodelist may also contain commas.
3516 */
3517 options = strchr(options, ',');
3518 if (options == NULL)
3519 break;
3520 options++;
3521 if (!isdigit(*options)) {
3522 options[-1] = '\0';
3523 break;
3524 }
3525 }
626c3920
AV
3526 if (*this_char) {
3527 char *value = strchr(this_char,'=');
f3235626 3528 size_t len = 0;
626c3920
AV
3529 int err;
3530
3531 if (value) {
3532 *value++ = '\0';
f3235626 3533 len = strlen(value);
626c3920 3534 }
f3235626
DH
3535 err = vfs_parse_fs_string(fc, this_char, value, len);
3536 if (err < 0)
3537 return err;
1da177e4 3538 }
1da177e4
LT
3539 }
3540 return 0;
1da177e4
LT
3541}
3542
f3235626
DH
3543/*
3544 * Reconfigure a shmem filesystem.
3545 *
3546 * Note that we disallow change from limited->unlimited blocks/inodes while any
3547 * are in use; but we must separately disallow unlimited->limited, because in
3548 * that case we have no record of how much is already in use.
3549 */
3550static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3551{
f3235626
DH
3552 struct shmem_options *ctx = fc->fs_private;
3553 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3554 unsigned long inodes;
f3235626 3555 const char *err;
1da177e4 3556
0edd73b3 3557 spin_lock(&sbinfo->stat_lock);
0edd73b3 3558 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3559 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3560 if (!sbinfo->max_blocks) {
3561 err = "Cannot retroactively limit size";
0b5071dd 3562 goto out;
f3235626 3563 }
0b5071dd 3564 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3565 ctx->blocks) > 0) {
3566 err = "Too small a size for current use";
0b5071dd 3567 goto out;
f3235626 3568 }
0b5071dd 3569 }
f3235626
DH
3570 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3571 if (!sbinfo->max_inodes) {
3572 err = "Cannot retroactively limit inodes";
0b5071dd 3573 goto out;
f3235626
DH
3574 }
3575 if (ctx->inodes < inodes) {
3576 err = "Too few inodes for current use";
0b5071dd 3577 goto out;
f3235626 3578 }
0b5071dd 3579 }
0edd73b3 3580
f3235626
DH
3581 if (ctx->seen & SHMEM_SEEN_HUGE)
3582 sbinfo->huge = ctx->huge;
3583 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3584 sbinfo->max_blocks = ctx->blocks;
3585 if (ctx->seen & SHMEM_SEEN_INODES) {
3586 sbinfo->max_inodes = ctx->inodes;
3587 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3588 }
71fe804b 3589
5f00110f
GT
3590 /*
3591 * Preserve previous mempolicy unless mpol remount option was specified.
3592 */
f3235626 3593 if (ctx->mpol) {
5f00110f 3594 mpol_put(sbinfo->mpol);
f3235626
DH
3595 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3596 ctx->mpol = NULL;
5f00110f 3597 }
f3235626
DH
3598 spin_unlock(&sbinfo->stat_lock);
3599 return 0;
0edd73b3
HD
3600out:
3601 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3602 return invalfc(fc, "%s", err);
1da177e4 3603}
680d794b 3604
34c80b1d 3605static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3606{
34c80b1d 3607 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
3608
3609 if (sbinfo->max_blocks != shmem_default_max_blocks())
3610 seq_printf(seq, ",size=%luk",
09cbfeaf 3611 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b
AM
3612 if (sbinfo->max_inodes != shmem_default_max_inodes())
3613 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3614 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3615 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3616 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3617 seq_printf(seq, ",uid=%u",
3618 from_kuid_munged(&init_user_ns, sbinfo->uid));
3619 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3620 seq_printf(seq, ",gid=%u",
3621 from_kgid_munged(&init_user_ns, sbinfo->gid));
396bcc52 3622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3623 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3624 if (sbinfo->huge)
3625 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3626#endif
71fe804b 3627 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
3628 return 0;
3629}
9183df25 3630
680d794b 3631#endif /* CONFIG_TMPFS */
1da177e4
LT
3632
3633static void shmem_put_super(struct super_block *sb)
3634{
602586a8
HD
3635 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3636
e809d5f0 3637 free_percpu(sbinfo->ino_batch);
602586a8 3638 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3639 mpol_put(sbinfo->mpol);
602586a8 3640 kfree(sbinfo);
1da177e4
LT
3641 sb->s_fs_info = NULL;
3642}
3643
f3235626 3644static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3645{
f3235626 3646 struct shmem_options *ctx = fc->fs_private;
1da177e4 3647 struct inode *inode;
0edd73b3 3648 struct shmem_sb_info *sbinfo;
680d794b
AM
3649 int err = -ENOMEM;
3650
3651 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3652 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
3653 L1_CACHE_BYTES), GFP_KERNEL);
3654 if (!sbinfo)
3655 return -ENOMEM;
3656
680d794b 3657 sb->s_fs_info = sbinfo;
1da177e4 3658
0edd73b3 3659#ifdef CONFIG_TMPFS
1da177e4
LT
3660 /*
3661 * Per default we only allow half of the physical ram per
3662 * tmpfs instance, limiting inodes to one per page of lowmem;
3663 * but the internal instance is left unlimited.
3664 */
1751e8a6 3665 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3666 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3667 ctx->blocks = shmem_default_max_blocks();
3668 if (!(ctx->seen & SHMEM_SEEN_INODES))
3669 ctx->inodes = shmem_default_max_inodes();
ca4e0519 3670 } else {
1751e8a6 3671 sb->s_flags |= SB_NOUSER;
1da177e4 3672 }
91828a40 3673 sb->s_export_op = &shmem_export_ops;
1751e8a6 3674 sb->s_flags |= SB_NOSEC;
1da177e4 3675#else
1751e8a6 3676 sb->s_flags |= SB_NOUSER;
1da177e4 3677#endif
f3235626
DH
3678 sbinfo->max_blocks = ctx->blocks;
3679 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3680 if (sb->s_flags & SB_KERNMOUNT) {
3681 sbinfo->ino_batch = alloc_percpu(ino_t);
3682 if (!sbinfo->ino_batch)
3683 goto failed;
3684 }
f3235626
DH
3685 sbinfo->uid = ctx->uid;
3686 sbinfo->gid = ctx->gid;
3687 sbinfo->mode = ctx->mode;
3688 sbinfo->huge = ctx->huge;
3689 sbinfo->mpol = ctx->mpol;
3690 ctx->mpol = NULL;
1da177e4 3691
0edd73b3 3692 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3693 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3694 goto failed;
779750d2
KS
3695 spin_lock_init(&sbinfo->shrinklist_lock);
3696 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3697
285b2c4f 3698 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3699 sb->s_blocksize = PAGE_SIZE;
3700 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3701 sb->s_magic = TMPFS_MAGIC;
3702 sb->s_op = &shmem_ops;
cfd95a9c 3703 sb->s_time_gran = 1;
b09e0fa4 3704#ifdef CONFIG_TMPFS_XATTR
39f0247d 3705 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3706#endif
3707#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3708 sb->s_flags |= SB_POSIXACL;
39f0247d 3709#endif
2b4db796 3710 uuid_gen(&sb->s_uuid);
0edd73b3 3711
454abafe 3712 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3713 if (!inode)
3714 goto failed;
680d794b
AM
3715 inode->i_uid = sbinfo->uid;
3716 inode->i_gid = sbinfo->gid;
318ceed0
AV
3717 sb->s_root = d_make_root(inode);
3718 if (!sb->s_root)
48fde701 3719 goto failed;
1da177e4
LT
3720 return 0;
3721
1da177e4
LT
3722failed:
3723 shmem_put_super(sb);
3724 return err;
3725}
3726
f3235626
DH
3727static int shmem_get_tree(struct fs_context *fc)
3728{
3729 return get_tree_nodev(fc, shmem_fill_super);
3730}
3731
3732static void shmem_free_fc(struct fs_context *fc)
3733{
3734 struct shmem_options *ctx = fc->fs_private;
3735
3736 if (ctx) {
3737 mpol_put(ctx->mpol);
3738 kfree(ctx);
3739 }
3740}
3741
3742static const struct fs_context_operations shmem_fs_context_ops = {
3743 .free = shmem_free_fc,
3744 .get_tree = shmem_get_tree,
3745#ifdef CONFIG_TMPFS
3746 .parse_monolithic = shmem_parse_options,
3747 .parse_param = shmem_parse_one,
3748 .reconfigure = shmem_reconfigure,
3749#endif
3750};
3751
fcc234f8 3752static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3753
3754static struct inode *shmem_alloc_inode(struct super_block *sb)
3755{
41ffe5d5
HD
3756 struct shmem_inode_info *info;
3757 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3758 if (!info)
1da177e4 3759 return NULL;
41ffe5d5 3760 return &info->vfs_inode;
1da177e4
LT
3761}
3762
74b1da56 3763static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3764{
84e710da
AV
3765 if (S_ISLNK(inode->i_mode))
3766 kfree(inode->i_link);
fa0d7e3d
NP
3767 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3768}
3769
1da177e4
LT
3770static void shmem_destroy_inode(struct inode *inode)
3771{
09208d15 3772 if (S_ISREG(inode->i_mode))
1da177e4 3773 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3774}
3775
41ffe5d5 3776static void shmem_init_inode(void *foo)
1da177e4 3777{
41ffe5d5
HD
3778 struct shmem_inode_info *info = foo;
3779 inode_init_once(&info->vfs_inode);
1da177e4
LT
3780}
3781
9a8ec03e 3782static void shmem_init_inodecache(void)
1da177e4
LT
3783{
3784 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3785 sizeof(struct shmem_inode_info),
5d097056 3786 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3787}
3788
41ffe5d5 3789static void shmem_destroy_inodecache(void)
1da177e4 3790{
1a1d92c1 3791 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3792}
3793
f5e54d6e 3794static const struct address_space_operations shmem_aops = {
1da177e4 3795 .writepage = shmem_writepage,
76719325 3796 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3797#ifdef CONFIG_TMPFS
800d15a5
NP
3798 .write_begin = shmem_write_begin,
3799 .write_end = shmem_write_end,
1da177e4 3800#endif
1c93923c 3801#ifdef CONFIG_MIGRATION
304dbdb7 3802 .migratepage = migrate_page,
1c93923c 3803#endif
aa261f54 3804 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3805};
3806
15ad7cdc 3807static const struct file_operations shmem_file_operations = {
1da177e4 3808 .mmap = shmem_mmap,
c01d5b30 3809 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3810#ifdef CONFIG_TMPFS
220f2ac9 3811 .llseek = shmem_file_llseek,
2ba5bbed 3812 .read_iter = shmem_file_read_iter,
8174202b 3813 .write_iter = generic_file_write_iter,
1b061d92 3814 .fsync = noop_fsync,
82c156f8 3815 .splice_read = generic_file_splice_read,
f6cb85d0 3816 .splice_write = iter_file_splice_write,
83e4fa9c 3817 .fallocate = shmem_fallocate,
1da177e4
LT
3818#endif
3819};
3820
92e1d5be 3821static const struct inode_operations shmem_inode_operations = {
44a30220 3822 .getattr = shmem_getattr,
94c1e62d 3823 .setattr = shmem_setattr,
b09e0fa4 3824#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3825 .listxattr = shmem_listxattr,
feda821e 3826 .set_acl = simple_set_acl,
b09e0fa4 3827#endif
1da177e4
LT
3828};
3829
92e1d5be 3830static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3831#ifdef CONFIG_TMPFS
3832 .create = shmem_create,
3833 .lookup = simple_lookup,
3834 .link = shmem_link,
3835 .unlink = shmem_unlink,
3836 .symlink = shmem_symlink,
3837 .mkdir = shmem_mkdir,
3838 .rmdir = shmem_rmdir,
3839 .mknod = shmem_mknod,
2773bf00 3840 .rename = shmem_rename2,
60545d0d 3841 .tmpfile = shmem_tmpfile,
1da177e4 3842#endif
b09e0fa4 3843#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3844 .listxattr = shmem_listxattr,
b09e0fa4 3845#endif
39f0247d 3846#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3847 .setattr = shmem_setattr,
feda821e 3848 .set_acl = simple_set_acl,
39f0247d
AG
3849#endif
3850};
3851
92e1d5be 3852static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3853#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3854 .listxattr = shmem_listxattr,
b09e0fa4 3855#endif
39f0247d 3856#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3857 .setattr = shmem_setattr,
feda821e 3858 .set_acl = simple_set_acl,
39f0247d 3859#endif
1da177e4
LT
3860};
3861
759b9775 3862static const struct super_operations shmem_ops = {
1da177e4 3863 .alloc_inode = shmem_alloc_inode,
74b1da56 3864 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3865 .destroy_inode = shmem_destroy_inode,
3866#ifdef CONFIG_TMPFS
3867 .statfs = shmem_statfs,
680d794b 3868 .show_options = shmem_show_options,
1da177e4 3869#endif
1f895f75 3870 .evict_inode = shmem_evict_inode,
1da177e4
LT
3871 .drop_inode = generic_delete_inode,
3872 .put_super = shmem_put_super,
396bcc52 3873#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3874 .nr_cached_objects = shmem_unused_huge_count,
3875 .free_cached_objects = shmem_unused_huge_scan,
3876#endif
1da177e4
LT
3877};
3878
f0f37e2f 3879static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3880 .fault = shmem_fault,
d7c17551 3881 .map_pages = filemap_map_pages,
1da177e4
LT
3882#ifdef CONFIG_NUMA
3883 .set_policy = shmem_set_policy,
3884 .get_policy = shmem_get_policy,
3885#endif
3886};
3887
f3235626 3888int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3889{
f3235626
DH
3890 struct shmem_options *ctx;
3891
3892 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3893 if (!ctx)
3894 return -ENOMEM;
3895
3896 ctx->mode = 0777 | S_ISVTX;
3897 ctx->uid = current_fsuid();
3898 ctx->gid = current_fsgid();
3899
3900 fc->fs_private = ctx;
3901 fc->ops = &shmem_fs_context_ops;
3902 return 0;
1da177e4
LT
3903}
3904
41ffe5d5 3905static struct file_system_type shmem_fs_type = {
1da177e4
LT
3906 .owner = THIS_MODULE,
3907 .name = "tmpfs",
f3235626
DH
3908 .init_fs_context = shmem_init_fs_context,
3909#ifdef CONFIG_TMPFS
d7167b14 3910 .parameters = shmem_fs_parameters,
f3235626 3911#endif
1da177e4 3912 .kill_sb = kill_litter_super,
2b8576cb 3913 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3914};
1da177e4 3915
41ffe5d5 3916int __init shmem_init(void)
1da177e4
LT
3917{
3918 int error;
3919
9a8ec03e 3920 shmem_init_inodecache();
1da177e4 3921
41ffe5d5 3922 error = register_filesystem(&shmem_fs_type);
1da177e4 3923 if (error) {
1170532b 3924 pr_err("Could not register tmpfs\n");
1da177e4
LT
3925 goto out2;
3926 }
95dc112a 3927
ca4e0519 3928 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3929 if (IS_ERR(shm_mnt)) {
3930 error = PTR_ERR(shm_mnt);
1170532b 3931 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3932 goto out1;
3933 }
5a6e75f8 3934
396bcc52 3935#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3936 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3937 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3938 else
3939 shmem_huge = 0; /* just in case it was patched */
3940#endif
1da177e4
LT
3941 return 0;
3942
3943out1:
41ffe5d5 3944 unregister_filesystem(&shmem_fs_type);
1da177e4 3945out2:
41ffe5d5 3946 shmem_destroy_inodecache();
1da177e4
LT
3947 shm_mnt = ERR_PTR(error);
3948 return error;
3949}
853ac43a 3950
396bcc52 3951#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3952static ssize_t shmem_enabled_show(struct kobject *kobj,
3953 struct kobj_attribute *attr, char *buf)
3954{
26083eb6 3955 static const int values[] = {
5a6e75f8
KS
3956 SHMEM_HUGE_ALWAYS,
3957 SHMEM_HUGE_WITHIN_SIZE,
3958 SHMEM_HUGE_ADVISE,
3959 SHMEM_HUGE_NEVER,
3960 SHMEM_HUGE_DENY,
3961 SHMEM_HUGE_FORCE,
3962 };
3963 int i, count;
3964
3965 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3966 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3967
3968 count += sprintf(buf + count, fmt,
3969 shmem_format_huge(values[i]));
3970 }
3971 buf[count - 1] = '\n';
3972 return count;
3973}
3974
3975static ssize_t shmem_enabled_store(struct kobject *kobj,
3976 struct kobj_attribute *attr, const char *buf, size_t count)
3977{
3978 char tmp[16];
3979 int huge;
3980
3981 if (count + 1 > sizeof(tmp))
3982 return -EINVAL;
3983 memcpy(tmp, buf, count);
3984 tmp[count] = '\0';
3985 if (count && tmp[count - 1] == '\n')
3986 tmp[count - 1] = '\0';
3987
3988 huge = shmem_parse_huge(tmp);
3989 if (huge == -EINVAL)
3990 return -EINVAL;
3991 if (!has_transparent_hugepage() &&
3992 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3993 return -EINVAL;
3994
3995 shmem_huge = huge;
435c0b87 3996 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3997 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3998 return count;
3999}
4000
4001struct kobj_attribute shmem_enabled_attr =
4002 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4003#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4004
396bcc52 4005#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
4006bool shmem_huge_enabled(struct vm_area_struct *vma)
4007{
4008 struct inode *inode = file_inode(vma->vm_file);
4009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4010 loff_t i_size;
4011 pgoff_t off;
4012
c0630669
YS
4013 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4014 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4015 return false;
f3f0e1d2
KS
4016 if (shmem_huge == SHMEM_HUGE_FORCE)
4017 return true;
4018 if (shmem_huge == SHMEM_HUGE_DENY)
4019 return false;
4020 switch (sbinfo->huge) {
4021 case SHMEM_HUGE_NEVER:
4022 return false;
4023 case SHMEM_HUGE_ALWAYS:
4024 return true;
4025 case SHMEM_HUGE_WITHIN_SIZE:
4026 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4027 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4028 if (i_size >= HPAGE_PMD_SIZE &&
4029 i_size >> PAGE_SHIFT >= off)
4030 return true;
e4a9bc58 4031 fallthrough;
f3f0e1d2
KS
4032 case SHMEM_HUGE_ADVISE:
4033 /* TODO: implement fadvise() hints */
4034 return (vma->vm_flags & VM_HUGEPAGE);
4035 default:
4036 VM_BUG_ON(1);
4037 return false;
4038 }
4039}
396bcc52 4040#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4041
853ac43a
MM
4042#else /* !CONFIG_SHMEM */
4043
4044/*
4045 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4046 *
4047 * This is intended for small system where the benefits of the full
4048 * shmem code (swap-backed and resource-limited) are outweighed by
4049 * their complexity. On systems without swap this code should be
4050 * effectively equivalent, but much lighter weight.
4051 */
4052
41ffe5d5 4053static struct file_system_type shmem_fs_type = {
853ac43a 4054 .name = "tmpfs",
f3235626 4055 .init_fs_context = ramfs_init_fs_context,
d7167b14 4056 .parameters = ramfs_fs_parameters,
853ac43a 4057 .kill_sb = kill_litter_super,
2b8576cb 4058 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4059};
4060
41ffe5d5 4061int __init shmem_init(void)
853ac43a 4062{
41ffe5d5 4063 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4064
41ffe5d5 4065 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4066 BUG_ON(IS_ERR(shm_mnt));
4067
4068 return 0;
4069}
4070
b56a2d8a
VRP
4071int shmem_unuse(unsigned int type, bool frontswap,
4072 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4073{
4074 return 0;
4075}
4076
3f96b79a
HD
4077int shmem_lock(struct file *file, int lock, struct user_struct *user)
4078{
4079 return 0;
4080}
4081
24513264
HD
4082void shmem_unlock_mapping(struct address_space *mapping)
4083{
4084}
4085
c01d5b30
HD
4086#ifdef CONFIG_MMU
4087unsigned long shmem_get_unmapped_area(struct file *file,
4088 unsigned long addr, unsigned long len,
4089 unsigned long pgoff, unsigned long flags)
4090{
4091 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4092}
4093#endif
4094
41ffe5d5 4095void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4096{
41ffe5d5 4097 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4098}
4099EXPORT_SYMBOL_GPL(shmem_truncate_range);
4100
0b0a0806
HD
4101#define shmem_vm_ops generic_file_vm_ops
4102#define shmem_file_operations ramfs_file_operations
454abafe 4103#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4104#define shmem_acct_size(flags, size) 0
4105#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4106
4107#endif /* CONFIG_SHMEM */
4108
4109/* common code */
1da177e4 4110
703321b6 4111static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4112 unsigned long flags, unsigned int i_flags)
1da177e4 4113{
1da177e4 4114 struct inode *inode;
93dec2da 4115 struct file *res;
1da177e4 4116
703321b6
MA
4117 if (IS_ERR(mnt))
4118 return ERR_CAST(mnt);
1da177e4 4119
285b2c4f 4120 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4121 return ERR_PTR(-EINVAL);
4122
4123 if (shmem_acct_size(flags, size))
4124 return ERR_PTR(-ENOMEM);
4125
93dec2da
AV
4126 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4127 flags);
dac2d1f6
AV
4128 if (unlikely(!inode)) {
4129 shmem_unacct_size(flags, size);
4130 return ERR_PTR(-ENOSPC);
4131 }
c7277090 4132 inode->i_flags |= i_flags;
1da177e4 4133 inode->i_size = size;
6d6b77f1 4134 clear_nlink(inode); /* It is unlinked */
26567cdb 4135 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4136 if (!IS_ERR(res))
4137 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4138 &shmem_file_operations);
26567cdb 4139 if (IS_ERR(res))
93dec2da 4140 iput(inode);
6b4d0b27 4141 return res;
1da177e4 4142}
c7277090
EP
4143
4144/**
4145 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4146 * kernel internal. There will be NO LSM permission checks against the
4147 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4148 * higher layer. The users are the big_key and shm implementations. LSM
4149 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153 */
4154struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4155{
703321b6 4156 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4157}
4158
4159/**
4160 * shmem_file_setup - get an unlinked file living in tmpfs
4161 * @name: name for dentry (to be seen in /proc/<pid>/maps
4162 * @size: size to be set for the file
4163 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4164 */
4165struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4166{
703321b6 4167 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4168}
395e0ddc 4169EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4170
703321b6
MA
4171/**
4172 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4173 * @mnt: the tmpfs mount where the file will be created
4174 * @name: name for dentry (to be seen in /proc/<pid>/maps
4175 * @size: size to be set for the file
4176 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4177 */
4178struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4179 loff_t size, unsigned long flags)
4180{
4181 return __shmem_file_setup(mnt, name, size, flags, 0);
4182}
4183EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4184
46711810 4185/**
1da177e4 4186 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4187 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4188 */
4189int shmem_zero_setup(struct vm_area_struct *vma)
4190{
4191 struct file *file;
4192 loff_t size = vma->vm_end - vma->vm_start;
4193
66fc1303 4194 /*
c1e8d7c6 4195 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4196 * between XFS directory reading and selinux: since this file is only
4197 * accessible to the user through its mapping, use S_PRIVATE flag to
4198 * bypass file security, in the same way as shmem_kernel_file_setup().
4199 */
703321b6 4200 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4201 if (IS_ERR(file))
4202 return PTR_ERR(file);
4203
4204 if (vma->vm_file)
4205 fput(vma->vm_file);
4206 vma->vm_file = file;
4207 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4208
396bcc52 4209 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4210 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4211 (vma->vm_end & HPAGE_PMD_MASK)) {
4212 khugepaged_enter(vma, vma->vm_flags);
4213 }
4214
1da177e4
LT
4215 return 0;
4216}
d9d90e5e
HD
4217
4218/**
4219 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4220 * @mapping: the page's address_space
4221 * @index: the page index
4222 * @gfp: the page allocator flags to use if allocating
4223 *
4224 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4225 * with any new page allocations done using the specified allocation flags.
4226 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4227 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4228 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4229 *
68da9f05
HD
4230 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4231 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4232 */
4233struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4234 pgoff_t index, gfp_t gfp)
4235{
68da9f05
HD
4236#ifdef CONFIG_SHMEM
4237 struct inode *inode = mapping->host;
9276aad6 4238 struct page *page;
68da9f05
HD
4239 int error;
4240
4241 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4242 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4243 gfp, NULL, NULL, NULL);
68da9f05
HD
4244 if (error)
4245 page = ERR_PTR(error);
4246 else
4247 unlock_page(page);
4248 return page;
4249#else
4250 /*
4251 * The tiny !SHMEM case uses ramfs without swap
4252 */
d9d90e5e 4253 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4254#endif
d9d90e5e
HD
4255}
4256EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 2.01123 seconds and 4 git commands to generate.