]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
1507f512 | 13 | #include <linux/secretmem.h> |
4bbd4c77 | 14 | |
174cd4b1 | 15 | #include <linux/sched/signal.h> |
2667f50e | 16 | #include <linux/rwsem.h> |
f30c59e9 | 17 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
18 | #include <linux/migrate.h> |
19 | #include <linux/mm_inline.h> | |
20 | #include <linux/sched/mm.h> | |
1027e443 | 21 | |
33a709b2 | 22 | #include <asm/mmu_context.h> |
1027e443 | 23 | #include <asm/tlbflush.h> |
2667f50e | 24 | |
4bbd4c77 KS |
25 | #include "internal.h" |
26 | ||
df06b37f KB |
27 | struct follow_page_context { |
28 | struct dev_pagemap *pgmap; | |
29 | unsigned int page_mask; | |
30 | }; | |
31 | ||
47e29d32 JH |
32 | static void hpage_pincount_add(struct page *page, int refs) |
33 | { | |
34 | VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); | |
35 | VM_BUG_ON_PAGE(page != compound_head(page), page); | |
36 | ||
37 | atomic_add(refs, compound_pincount_ptr(page)); | |
38 | } | |
39 | ||
40 | static void hpage_pincount_sub(struct page *page, int refs) | |
41 | { | |
42 | VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); | |
43 | VM_BUG_ON_PAGE(page != compound_head(page), page); | |
44 | ||
45 | atomic_sub(refs, compound_pincount_ptr(page)); | |
46 | } | |
47 | ||
c24d3732 JH |
48 | /* Equivalent to calling put_page() @refs times. */ |
49 | static void put_page_refs(struct page *page, int refs) | |
50 | { | |
51 | #ifdef CONFIG_DEBUG_VM | |
52 | if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) | |
53 | return; | |
54 | #endif | |
55 | ||
56 | /* | |
57 | * Calling put_page() for each ref is unnecessarily slow. Only the last | |
58 | * ref needs a put_page(). | |
59 | */ | |
60 | if (refs > 1) | |
61 | page_ref_sub(page, refs - 1); | |
62 | put_page(page); | |
63 | } | |
64 | ||
cd1adf1b LT |
65 | /* |
66 | * Return the compound head page with ref appropriately incremented, | |
67 | * or NULL if that failed. | |
a707cdd5 | 68 | */ |
cd1adf1b | 69 | static inline struct page *try_get_compound_head(struct page *page, int refs) |
a707cdd5 JH |
70 | { |
71 | struct page *head = compound_head(page); | |
72 | ||
73 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
74 | return NULL; | |
75 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
76 | return NULL; | |
c24d3732 JH |
77 | |
78 | /* | |
79 | * At this point we have a stable reference to the head page; but it | |
80 | * could be that between the compound_head() lookup and the refcount | |
81 | * increment, the compound page was split, in which case we'd end up | |
82 | * holding a reference on a page that has nothing to do with the page | |
83 | * we were given anymore. | |
84 | * So now that the head page is stable, recheck that the pages still | |
85 | * belong together. | |
86 | */ | |
87 | if (unlikely(compound_head(page) != head)) { | |
88 | put_page_refs(head, refs); | |
89 | return NULL; | |
90 | } | |
91 | ||
a707cdd5 JH |
92 | return head; |
93 | } | |
94 | ||
3967db22 | 95 | /** |
3faa52c0 JH |
96 | * try_grab_compound_head() - attempt to elevate a page's refcount, by a |
97 | * flags-dependent amount. | |
98 | * | |
3967db22 JH |
99 | * Even though the name includes "compound_head", this function is still |
100 | * appropriate for callers that have a non-compound @page to get. | |
101 | * | |
102 | * @page: pointer to page to be grabbed | |
103 | * @refs: the value to (effectively) add to the page's refcount | |
104 | * @flags: gup flags: these are the FOLL_* flag values. | |
105 | * | |
3faa52c0 JH |
106 | * "grab" names in this file mean, "look at flags to decide whether to use |
107 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
108 | * | |
109 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | |
110 | * same time. (That's true throughout the get_user_pages*() and | |
111 | * pin_user_pages*() APIs.) Cases: | |
112 | * | |
3967db22 JH |
113 | * FOLL_GET: page's refcount will be incremented by @refs. |
114 | * | |
115 | * FOLL_PIN on compound pages that are > two pages long: page's refcount will | |
116 | * be incremented by @refs, and page[2].hpage_pinned_refcount will be | |
117 | * incremented by @refs * GUP_PIN_COUNTING_BIAS. | |
118 | * | |
119 | * FOLL_PIN on normal pages, or compound pages that are two pages long: | |
120 | * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS. | |
3faa52c0 JH |
121 | * |
122 | * Return: head page (with refcount appropriately incremented) for success, or | |
123 | * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's | |
124 | * considered failure, and furthermore, a likely bug in the caller, so a warning | |
125 | * is also emitted. | |
126 | */ | |
54d516b1 JH |
127 | struct page *try_grab_compound_head(struct page *page, |
128 | int refs, unsigned int flags) | |
3faa52c0 JH |
129 | { |
130 | if (flags & FOLL_GET) | |
131 | return try_get_compound_head(page, refs); | |
132 | else if (flags & FOLL_PIN) { | |
df3a0a21 | 133 | /* |
d1e153fe PT |
134 | * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a |
135 | * right zone, so fail and let the caller fall back to the slow | |
136 | * path. | |
df3a0a21 | 137 | */ |
d1e153fe PT |
138 | if (unlikely((flags & FOLL_LONGTERM) && |
139 | !is_pinnable_page(page))) | |
df3a0a21 PL |
140 | return NULL; |
141 | ||
c24d3732 JH |
142 | /* |
143 | * CAUTION: Don't use compound_head() on the page before this | |
144 | * point, the result won't be stable. | |
145 | */ | |
146 | page = try_get_compound_head(page, refs); | |
147 | if (!page) | |
148 | return NULL; | |
149 | ||
47e29d32 JH |
150 | /* |
151 | * When pinning a compound page of order > 1 (which is what | |
152 | * hpage_pincount_available() checks for), use an exact count to | |
153 | * track it, via hpage_pincount_add/_sub(). | |
154 | * | |
155 | * However, be sure to *also* increment the normal page refcount | |
156 | * field at least once, so that the page really is pinned. | |
3967db22 JH |
157 | * That's why the refcount from the earlier |
158 | * try_get_compound_head() is left intact. | |
47e29d32 | 159 | */ |
47e29d32 JH |
160 | if (hpage_pincount_available(page)) |
161 | hpage_pincount_add(page, refs); | |
c24d3732 JH |
162 | else |
163 | page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); | |
47e29d32 | 164 | |
1970dc6f | 165 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, |
0fef147b | 166 | refs); |
1970dc6f | 167 | |
47e29d32 | 168 | return page; |
3faa52c0 JH |
169 | } |
170 | ||
171 | WARN_ON_ONCE(1); | |
172 | return NULL; | |
173 | } | |
174 | ||
4509b42c JG |
175 | static void put_compound_head(struct page *page, int refs, unsigned int flags) |
176 | { | |
177 | if (flags & FOLL_PIN) { | |
178 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, | |
179 | refs); | |
180 | ||
181 | if (hpage_pincount_available(page)) | |
182 | hpage_pincount_sub(page, refs); | |
183 | else | |
184 | refs *= GUP_PIN_COUNTING_BIAS; | |
185 | } | |
186 | ||
c24d3732 | 187 | put_page_refs(page, refs); |
4509b42c JG |
188 | } |
189 | ||
3faa52c0 JH |
190 | /** |
191 | * try_grab_page() - elevate a page's refcount by a flag-dependent amount | |
192 | * | |
193 | * This might not do anything at all, depending on the flags argument. | |
194 | * | |
195 | * "grab" names in this file mean, "look at flags to decide whether to use | |
196 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
197 | * | |
198 | * @page: pointer to page to be grabbed | |
199 | * @flags: gup flags: these are the FOLL_* flag values. | |
200 | * | |
201 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same | |
3967db22 JH |
202 | * time. Cases: please see the try_grab_compound_head() documentation, with |
203 | * "refs=1". | |
3faa52c0 JH |
204 | * |
205 | * Return: true for success, or if no action was required (if neither FOLL_PIN | |
206 | * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or | |
207 | * FOLL_PIN was set, but the page could not be grabbed. | |
208 | */ | |
209 | bool __must_check try_grab_page(struct page *page, unsigned int flags) | |
210 | { | |
54d516b1 JH |
211 | if (!(flags & (FOLL_GET | FOLL_PIN))) |
212 | return true; | |
3faa52c0 | 213 | |
54d516b1 | 214 | return try_grab_compound_head(page, 1, flags); |
3faa52c0 JH |
215 | } |
216 | ||
3faa52c0 JH |
217 | /** |
218 | * unpin_user_page() - release a dma-pinned page | |
219 | * @page: pointer to page to be released | |
220 | * | |
221 | * Pages that were pinned via pin_user_pages*() must be released via either | |
222 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | |
223 | * that such pages can be separately tracked and uniquely handled. In | |
224 | * particular, interactions with RDMA and filesystems need special handling. | |
225 | */ | |
226 | void unpin_user_page(struct page *page) | |
227 | { | |
4509b42c | 228 | put_compound_head(compound_head(page), 1, FOLL_PIN); |
3faa52c0 JH |
229 | } |
230 | EXPORT_SYMBOL(unpin_user_page); | |
231 | ||
458a4f78 JM |
232 | static inline void compound_range_next(unsigned long i, unsigned long npages, |
233 | struct page **list, struct page **head, | |
234 | unsigned int *ntails) | |
235 | { | |
236 | struct page *next, *page; | |
237 | unsigned int nr = 1; | |
238 | ||
239 | if (i >= npages) | |
240 | return; | |
241 | ||
242 | next = *list + i; | |
243 | page = compound_head(next); | |
244 | if (PageCompound(page) && compound_order(page) >= 1) | |
245 | nr = min_t(unsigned int, | |
246 | page + compound_nr(page) - next, npages - i); | |
247 | ||
248 | *head = page; | |
249 | *ntails = nr; | |
250 | } | |
251 | ||
252 | #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ | |
253 | for (__i = 0, \ | |
254 | compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ | |
255 | __i < __npages; __i += __ntails, \ | |
256 | compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) | |
257 | ||
8745d7f6 JM |
258 | static inline void compound_next(unsigned long i, unsigned long npages, |
259 | struct page **list, struct page **head, | |
260 | unsigned int *ntails) | |
261 | { | |
262 | struct page *page; | |
263 | unsigned int nr; | |
264 | ||
265 | if (i >= npages) | |
266 | return; | |
267 | ||
268 | page = compound_head(list[i]); | |
269 | for (nr = i + 1; nr < npages; nr++) { | |
270 | if (compound_head(list[nr]) != page) | |
271 | break; | |
272 | } | |
273 | ||
274 | *head = page; | |
275 | *ntails = nr - i; | |
276 | } | |
277 | ||
278 | #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ | |
279 | for (__i = 0, \ | |
280 | compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ | |
281 | __i < __npages; __i += __ntails, \ | |
282 | compound_next(__i, __npages, __list, &(__head), &(__ntails))) | |
283 | ||
fc1d8e7c | 284 | /** |
f1f6a7dd | 285 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
2d15eb31 | 286 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
fc1d8e7c | 287 | * @npages: number of pages in the @pages array. |
2d15eb31 | 288 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
289 | * |
290 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
291 | * variants called on that page. | |
292 | * | |
293 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 | 294 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
f1f6a7dd JH |
295 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
296 | * possibly via unpin_user_pages(), for the non-dirty case. | |
fc1d8e7c | 297 | * |
f1f6a7dd | 298 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 299 | * |
2d15eb31 AM |
300 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
301 | * required, then the caller should a) verify that this is really correct, | |
302 | * because _lock() is usually required, and b) hand code it: | |
f1f6a7dd | 303 | * set_page_dirty_lock(), unpin_user_page(). |
fc1d8e7c JH |
304 | * |
305 | */ | |
f1f6a7dd JH |
306 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
307 | bool make_dirty) | |
fc1d8e7c | 308 | { |
2d15eb31 | 309 | unsigned long index; |
31b912de JM |
310 | struct page *head; |
311 | unsigned int ntails; | |
2d15eb31 AM |
312 | |
313 | if (!make_dirty) { | |
f1f6a7dd | 314 | unpin_user_pages(pages, npages); |
2d15eb31 AM |
315 | return; |
316 | } | |
317 | ||
31b912de | 318 | for_each_compound_head(index, pages, npages, head, ntails) { |
2d15eb31 AM |
319 | /* |
320 | * Checking PageDirty at this point may race with | |
321 | * clear_page_dirty_for_io(), but that's OK. Two key | |
322 | * cases: | |
323 | * | |
324 | * 1) This code sees the page as already dirty, so it | |
325 | * skips the call to set_page_dirty(). That could happen | |
326 | * because clear_page_dirty_for_io() called | |
327 | * page_mkclean(), followed by set_page_dirty(). | |
328 | * However, now the page is going to get written back, | |
329 | * which meets the original intention of setting it | |
330 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
331 | * on to call TestClearPageDirty(), and write the page | |
332 | * back. | |
333 | * | |
334 | * 2) This code sees the page as clean, so it calls | |
335 | * set_page_dirty(). The page stays dirty, despite being | |
336 | * written back, so it gets written back again in the | |
337 | * next writeback cycle. This is harmless. | |
338 | */ | |
31b912de JM |
339 | if (!PageDirty(head)) |
340 | set_page_dirty_lock(head); | |
341 | put_compound_head(head, ntails, FOLL_PIN); | |
2d15eb31 | 342 | } |
fc1d8e7c | 343 | } |
f1f6a7dd | 344 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
fc1d8e7c | 345 | |
458a4f78 JM |
346 | /** |
347 | * unpin_user_page_range_dirty_lock() - release and optionally dirty | |
348 | * gup-pinned page range | |
349 | * | |
350 | * @page: the starting page of a range maybe marked dirty, and definitely released. | |
351 | * @npages: number of consecutive pages to release. | |
352 | * @make_dirty: whether to mark the pages dirty | |
353 | * | |
354 | * "gup-pinned page range" refers to a range of pages that has had one of the | |
355 | * pin_user_pages() variants called on that page. | |
356 | * | |
357 | * For the page ranges defined by [page .. page+npages], make that range (or | |
358 | * its head pages, if a compound page) dirty, if @make_dirty is true, and if the | |
359 | * page range was previously listed as clean. | |
360 | * | |
361 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | |
362 | * required, then the caller should a) verify that this is really correct, | |
363 | * because _lock() is usually required, and b) hand code it: | |
364 | * set_page_dirty_lock(), unpin_user_page(). | |
365 | * | |
366 | */ | |
367 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, | |
368 | bool make_dirty) | |
369 | { | |
370 | unsigned long index; | |
371 | struct page *head; | |
372 | unsigned int ntails; | |
373 | ||
374 | for_each_compound_range(index, &page, npages, head, ntails) { | |
375 | if (make_dirty && !PageDirty(head)) | |
376 | set_page_dirty_lock(head); | |
377 | put_compound_head(head, ntails, FOLL_PIN); | |
378 | } | |
379 | } | |
380 | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); | |
381 | ||
fc1d8e7c | 382 | /** |
f1f6a7dd | 383 | * unpin_user_pages() - release an array of gup-pinned pages. |
fc1d8e7c JH |
384 | * @pages: array of pages to be marked dirty and released. |
385 | * @npages: number of pages in the @pages array. | |
386 | * | |
f1f6a7dd | 387 | * For each page in the @pages array, release the page using unpin_user_page(). |
fc1d8e7c | 388 | * |
f1f6a7dd | 389 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 390 | */ |
f1f6a7dd | 391 | void unpin_user_pages(struct page **pages, unsigned long npages) |
fc1d8e7c JH |
392 | { |
393 | unsigned long index; | |
31b912de JM |
394 | struct page *head; |
395 | unsigned int ntails; | |
fc1d8e7c | 396 | |
146608bb JH |
397 | /* |
398 | * If this WARN_ON() fires, then the system *might* be leaking pages (by | |
399 | * leaving them pinned), but probably not. More likely, gup/pup returned | |
400 | * a hard -ERRNO error to the caller, who erroneously passed it here. | |
401 | */ | |
402 | if (WARN_ON(IS_ERR_VALUE(npages))) | |
403 | return; | |
31b912de JM |
404 | |
405 | for_each_compound_head(index, pages, npages, head, ntails) | |
406 | put_compound_head(head, ntails, FOLL_PIN); | |
fc1d8e7c | 407 | } |
f1f6a7dd | 408 | EXPORT_SYMBOL(unpin_user_pages); |
fc1d8e7c | 409 | |
a458b76a AA |
410 | /* |
411 | * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's | |
412 | * lifecycle. Avoid setting the bit unless necessary, or it might cause write | |
413 | * cache bouncing on large SMP machines for concurrent pinned gups. | |
414 | */ | |
415 | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) | |
416 | { | |
417 | if (!test_bit(MMF_HAS_PINNED, mm_flags)) | |
418 | set_bit(MMF_HAS_PINNED, mm_flags); | |
419 | } | |
420 | ||
050a9adc | 421 | #ifdef CONFIG_MMU |
69e68b4f KS |
422 | static struct page *no_page_table(struct vm_area_struct *vma, |
423 | unsigned int flags) | |
4bbd4c77 | 424 | { |
69e68b4f KS |
425 | /* |
426 | * When core dumping an enormous anonymous area that nobody | |
427 | * has touched so far, we don't want to allocate unnecessary pages or | |
428 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
429 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
430 | * But we can only make this optimization where a hole would surely | |
431 | * be zero-filled if handle_mm_fault() actually did handle it. | |
432 | */ | |
a0137f16 AK |
433 | if ((flags & FOLL_DUMP) && |
434 | (vma_is_anonymous(vma) || !vma->vm_ops->fault)) | |
69e68b4f KS |
435 | return ERR_PTR(-EFAULT); |
436 | return NULL; | |
437 | } | |
4bbd4c77 | 438 | |
1027e443 KS |
439 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
440 | pte_t *pte, unsigned int flags) | |
441 | { | |
442 | /* No page to get reference */ | |
443 | if (flags & FOLL_GET) | |
444 | return -EFAULT; | |
445 | ||
446 | if (flags & FOLL_TOUCH) { | |
447 | pte_t entry = *pte; | |
448 | ||
449 | if (flags & FOLL_WRITE) | |
450 | entry = pte_mkdirty(entry); | |
451 | entry = pte_mkyoung(entry); | |
452 | ||
453 | if (!pte_same(*pte, entry)) { | |
454 | set_pte_at(vma->vm_mm, address, pte, entry); | |
455 | update_mmu_cache(vma, address, pte); | |
456 | } | |
457 | } | |
458 | ||
459 | /* Proper page table entry exists, but no corresponding struct page */ | |
460 | return -EEXIST; | |
461 | } | |
462 | ||
19be0eaf | 463 | /* |
a308c71b PX |
464 | * FOLL_FORCE can write to even unwritable pte's, but only |
465 | * after we've gone through a COW cycle and they are dirty. | |
19be0eaf LT |
466 | */ |
467 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
468 | { | |
a308c71b PX |
469 | return pte_write(pte) || |
470 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); | |
19be0eaf LT |
471 | } |
472 | ||
69e68b4f | 473 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
474 | unsigned long address, pmd_t *pmd, unsigned int flags, |
475 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
476 | { |
477 | struct mm_struct *mm = vma->vm_mm; | |
478 | struct page *page; | |
479 | spinlock_t *ptl; | |
480 | pte_t *ptep, pte; | |
f28d4363 | 481 | int ret; |
4bbd4c77 | 482 | |
eddb1c22 JH |
483 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
484 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | |
485 | (FOLL_PIN | FOLL_GET))) | |
486 | return ERR_PTR(-EINVAL); | |
69e68b4f | 487 | retry: |
4bbd4c77 | 488 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 489 | return no_page_table(vma, flags); |
4bbd4c77 KS |
490 | |
491 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
492 | pte = *ptep; |
493 | if (!pte_present(pte)) { | |
494 | swp_entry_t entry; | |
495 | /* | |
496 | * KSM's break_ksm() relies upon recognizing a ksm page | |
497 | * even while it is being migrated, so for that case we | |
498 | * need migration_entry_wait(). | |
499 | */ | |
500 | if (likely(!(flags & FOLL_MIGRATION))) | |
501 | goto no_page; | |
0661a336 | 502 | if (pte_none(pte)) |
4bbd4c77 KS |
503 | goto no_page; |
504 | entry = pte_to_swp_entry(pte); | |
505 | if (!is_migration_entry(entry)) | |
506 | goto no_page; | |
507 | pte_unmap_unlock(ptep, ptl); | |
508 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 509 | goto retry; |
4bbd4c77 | 510 | } |
8a0516ed | 511 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 512 | goto no_page; |
19be0eaf | 513 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
514 | pte_unmap_unlock(ptep, ptl); |
515 | return NULL; | |
516 | } | |
4bbd4c77 KS |
517 | |
518 | page = vm_normal_page(vma, address, pte); | |
3faa52c0 | 519 | if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { |
3565fce3 | 520 | /* |
3faa52c0 JH |
521 | * Only return device mapping pages in the FOLL_GET or FOLL_PIN |
522 | * case since they are only valid while holding the pgmap | |
523 | * reference. | |
3565fce3 | 524 | */ |
df06b37f KB |
525 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
526 | if (*pgmap) | |
3565fce3 DW |
527 | page = pte_page(pte); |
528 | else | |
529 | goto no_page; | |
530 | } else if (unlikely(!page)) { | |
1027e443 KS |
531 | if (flags & FOLL_DUMP) { |
532 | /* Avoid special (like zero) pages in core dumps */ | |
533 | page = ERR_PTR(-EFAULT); | |
534 | goto out; | |
535 | } | |
536 | ||
537 | if (is_zero_pfn(pte_pfn(pte))) { | |
538 | page = pte_page(pte); | |
539 | } else { | |
1027e443 KS |
540 | ret = follow_pfn_pte(vma, address, ptep, flags); |
541 | page = ERR_PTR(ret); | |
542 | goto out; | |
543 | } | |
4bbd4c77 KS |
544 | } |
545 | ||
3faa52c0 JH |
546 | /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
547 | if (unlikely(!try_grab_page(page, flags))) { | |
548 | page = ERR_PTR(-ENOMEM); | |
549 | goto out; | |
8fde12ca | 550 | } |
f28d4363 CI |
551 | /* |
552 | * We need to make the page accessible if and only if we are going | |
553 | * to access its content (the FOLL_PIN case). Please see | |
554 | * Documentation/core-api/pin_user_pages.rst for details. | |
555 | */ | |
556 | if (flags & FOLL_PIN) { | |
557 | ret = arch_make_page_accessible(page); | |
558 | if (ret) { | |
559 | unpin_user_page(page); | |
560 | page = ERR_PTR(ret); | |
561 | goto out; | |
562 | } | |
563 | } | |
4bbd4c77 KS |
564 | if (flags & FOLL_TOUCH) { |
565 | if ((flags & FOLL_WRITE) && | |
566 | !pte_dirty(pte) && !PageDirty(page)) | |
567 | set_page_dirty(page); | |
568 | /* | |
569 | * pte_mkyoung() would be more correct here, but atomic care | |
570 | * is needed to avoid losing the dirty bit: it is easier to use | |
571 | * mark_page_accessed(). | |
572 | */ | |
573 | mark_page_accessed(page); | |
574 | } | |
de60f5f1 | 575 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
576 | /* Do not mlock pte-mapped THP */ |
577 | if (PageTransCompound(page)) | |
578 | goto out; | |
579 | ||
4bbd4c77 KS |
580 | /* |
581 | * The preliminary mapping check is mainly to avoid the | |
582 | * pointless overhead of lock_page on the ZERO_PAGE | |
583 | * which might bounce very badly if there is contention. | |
584 | * | |
585 | * If the page is already locked, we don't need to | |
586 | * handle it now - vmscan will handle it later if and | |
587 | * when it attempts to reclaim the page. | |
588 | */ | |
589 | if (page->mapping && trylock_page(page)) { | |
590 | lru_add_drain(); /* push cached pages to LRU */ | |
591 | /* | |
592 | * Because we lock page here, and migration is | |
593 | * blocked by the pte's page reference, and we | |
594 | * know the page is still mapped, we don't even | |
595 | * need to check for file-cache page truncation. | |
596 | */ | |
597 | mlock_vma_page(page); | |
598 | unlock_page(page); | |
599 | } | |
600 | } | |
1027e443 | 601 | out: |
4bbd4c77 | 602 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 603 | return page; |
4bbd4c77 KS |
604 | no_page: |
605 | pte_unmap_unlock(ptep, ptl); | |
606 | if (!pte_none(pte)) | |
69e68b4f KS |
607 | return NULL; |
608 | return no_page_table(vma, flags); | |
609 | } | |
610 | ||
080dbb61 AK |
611 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
612 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
613 | unsigned int flags, |
614 | struct follow_page_context *ctx) | |
69e68b4f | 615 | { |
68827280 | 616 | pmd_t *pmd, pmdval; |
69e68b4f KS |
617 | spinlock_t *ptl; |
618 | struct page *page; | |
619 | struct mm_struct *mm = vma->vm_mm; | |
620 | ||
080dbb61 | 621 | pmd = pmd_offset(pudp, address); |
68827280 YH |
622 | /* |
623 | * The READ_ONCE() will stabilize the pmdval in a register or | |
624 | * on the stack so that it will stop changing under the code. | |
625 | */ | |
626 | pmdval = READ_ONCE(*pmd); | |
627 | if (pmd_none(pmdval)) | |
69e68b4f | 628 | return no_page_table(vma, flags); |
be9d3045 | 629 | if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { |
e66f17ff NH |
630 | page = follow_huge_pmd(mm, address, pmd, flags); |
631 | if (page) | |
632 | return page; | |
633 | return no_page_table(vma, flags); | |
69e68b4f | 634 | } |
68827280 | 635 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 636 | page = follow_huge_pd(vma, address, |
68827280 | 637 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
638 | PMD_SHIFT); |
639 | if (page) | |
640 | return page; | |
641 | return no_page_table(vma, flags); | |
642 | } | |
84c3fc4e | 643 | retry: |
68827280 | 644 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
645 | if (likely(!(flags & FOLL_MIGRATION))) |
646 | return no_page_table(vma, flags); | |
647 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
648 | !is_pmd_migration_entry(pmdval)); |
649 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 650 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
651 | pmdval = READ_ONCE(*pmd); |
652 | /* | |
653 | * MADV_DONTNEED may convert the pmd to null because | |
c1e8d7c6 | 654 | * mmap_lock is held in read mode |
68827280 YH |
655 | */ |
656 | if (pmd_none(pmdval)) | |
657 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
658 | goto retry; |
659 | } | |
68827280 | 660 | if (pmd_devmap(pmdval)) { |
3565fce3 | 661 | ptl = pmd_lock(mm, pmd); |
df06b37f | 662 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
663 | spin_unlock(ptl); |
664 | if (page) | |
665 | return page; | |
666 | } | |
68827280 | 667 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 668 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 669 | |
68827280 | 670 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
671 | return no_page_table(vma, flags); |
672 | ||
84c3fc4e | 673 | retry_locked: |
6742d293 | 674 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
675 | if (unlikely(pmd_none(*pmd))) { |
676 | spin_unlock(ptl); | |
677 | return no_page_table(vma, flags); | |
678 | } | |
84c3fc4e ZY |
679 | if (unlikely(!pmd_present(*pmd))) { |
680 | spin_unlock(ptl); | |
681 | if (likely(!(flags & FOLL_MIGRATION))) | |
682 | return no_page_table(vma, flags); | |
683 | pmd_migration_entry_wait(mm, pmd); | |
684 | goto retry_locked; | |
685 | } | |
6742d293 KS |
686 | if (unlikely(!pmd_trans_huge(*pmd))) { |
687 | spin_unlock(ptl); | |
df06b37f | 688 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 689 | } |
4066c119 | 690 | if (flags & FOLL_SPLIT_PMD) { |
6742d293 KS |
691 | int ret; |
692 | page = pmd_page(*pmd); | |
693 | if (is_huge_zero_page(page)) { | |
694 | spin_unlock(ptl); | |
695 | ret = 0; | |
78ddc534 | 696 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
697 | if (pmd_trans_unstable(pmd)) |
698 | ret = -EBUSY; | |
4066c119 | 699 | } else { |
bfe7b00d SL |
700 | spin_unlock(ptl); |
701 | split_huge_pmd(vma, pmd, address); | |
702 | ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | |
6742d293 KS |
703 | } |
704 | ||
705 | return ret ? ERR_PTR(ret) : | |
df06b37f | 706 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 707 | } |
6742d293 KS |
708 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
709 | spin_unlock(ptl); | |
df06b37f | 710 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 711 | return page; |
4bbd4c77 KS |
712 | } |
713 | ||
080dbb61 AK |
714 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
715 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
716 | unsigned int flags, |
717 | struct follow_page_context *ctx) | |
080dbb61 AK |
718 | { |
719 | pud_t *pud; | |
720 | spinlock_t *ptl; | |
721 | struct page *page; | |
722 | struct mm_struct *mm = vma->vm_mm; | |
723 | ||
724 | pud = pud_offset(p4dp, address); | |
725 | if (pud_none(*pud)) | |
726 | return no_page_table(vma, flags); | |
be9d3045 | 727 | if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { |
080dbb61 AK |
728 | page = follow_huge_pud(mm, address, pud, flags); |
729 | if (page) | |
730 | return page; | |
731 | return no_page_table(vma, flags); | |
732 | } | |
4dc71451 AK |
733 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
734 | page = follow_huge_pd(vma, address, | |
735 | __hugepd(pud_val(*pud)), flags, | |
736 | PUD_SHIFT); | |
737 | if (page) | |
738 | return page; | |
739 | return no_page_table(vma, flags); | |
740 | } | |
080dbb61 AK |
741 | if (pud_devmap(*pud)) { |
742 | ptl = pud_lock(mm, pud); | |
df06b37f | 743 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
744 | spin_unlock(ptl); |
745 | if (page) | |
746 | return page; | |
747 | } | |
748 | if (unlikely(pud_bad(*pud))) | |
749 | return no_page_table(vma, flags); | |
750 | ||
df06b37f | 751 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
752 | } |
753 | ||
080dbb61 AK |
754 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
755 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
756 | unsigned int flags, |
757 | struct follow_page_context *ctx) | |
080dbb61 AK |
758 | { |
759 | p4d_t *p4d; | |
4dc71451 | 760 | struct page *page; |
080dbb61 AK |
761 | |
762 | p4d = p4d_offset(pgdp, address); | |
763 | if (p4d_none(*p4d)) | |
764 | return no_page_table(vma, flags); | |
765 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
766 | if (unlikely(p4d_bad(*p4d))) | |
767 | return no_page_table(vma, flags); | |
768 | ||
4dc71451 AK |
769 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
770 | page = follow_huge_pd(vma, address, | |
771 | __hugepd(p4d_val(*p4d)), flags, | |
772 | P4D_SHIFT); | |
773 | if (page) | |
774 | return page; | |
775 | return no_page_table(vma, flags); | |
776 | } | |
df06b37f | 777 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
778 | } |
779 | ||
780 | /** | |
781 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
782 | * @vma: vm_area_struct mapping @address | |
783 | * @address: virtual address to look up | |
784 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
785 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
786 | * pointer to output page_mask | |
080dbb61 AK |
787 | * |
788 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
789 | * | |
78179556 MR |
790 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
791 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
792 | * | |
793 | * On output, the @ctx->page_mask is set according to the size of the page. | |
794 | * | |
795 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
796 | * an error pointer if there is a mapping to something not represented |
797 | * by a page descriptor (see also vm_normal_page()). | |
798 | */ | |
a7030aea | 799 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 800 | unsigned long address, unsigned int flags, |
df06b37f | 801 | struct follow_page_context *ctx) |
080dbb61 AK |
802 | { |
803 | pgd_t *pgd; | |
804 | struct page *page; | |
805 | struct mm_struct *mm = vma->vm_mm; | |
806 | ||
df06b37f | 807 | ctx->page_mask = 0; |
080dbb61 AK |
808 | |
809 | /* make this handle hugepd */ | |
810 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
811 | if (!IS_ERR(page)) { | |
3faa52c0 | 812 | WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); |
080dbb61 AK |
813 | return page; |
814 | } | |
815 | ||
816 | pgd = pgd_offset(mm, address); | |
817 | ||
818 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
819 | return no_page_table(vma, flags); | |
820 | ||
faaa5b62 AK |
821 | if (pgd_huge(*pgd)) { |
822 | page = follow_huge_pgd(mm, address, pgd, flags); | |
823 | if (page) | |
824 | return page; | |
825 | return no_page_table(vma, flags); | |
826 | } | |
4dc71451 AK |
827 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
828 | page = follow_huge_pd(vma, address, | |
829 | __hugepd(pgd_val(*pgd)), flags, | |
830 | PGDIR_SHIFT); | |
831 | if (page) | |
832 | return page; | |
833 | return no_page_table(vma, flags); | |
834 | } | |
faaa5b62 | 835 | |
df06b37f KB |
836 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
837 | } | |
838 | ||
839 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
840 | unsigned int foll_flags) | |
841 | { | |
842 | struct follow_page_context ctx = { NULL }; | |
843 | struct page *page; | |
844 | ||
1507f512 MR |
845 | if (vma_is_secretmem(vma)) |
846 | return NULL; | |
847 | ||
df06b37f KB |
848 | page = follow_page_mask(vma, address, foll_flags, &ctx); |
849 | if (ctx.pgmap) | |
850 | put_dev_pagemap(ctx.pgmap); | |
851 | return page; | |
080dbb61 AK |
852 | } |
853 | ||
f2b495ca KS |
854 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
855 | unsigned int gup_flags, struct vm_area_struct **vma, | |
856 | struct page **page) | |
857 | { | |
858 | pgd_t *pgd; | |
c2febafc | 859 | p4d_t *p4d; |
f2b495ca KS |
860 | pud_t *pud; |
861 | pmd_t *pmd; | |
862 | pte_t *pte; | |
863 | int ret = -EFAULT; | |
864 | ||
865 | /* user gate pages are read-only */ | |
866 | if (gup_flags & FOLL_WRITE) | |
867 | return -EFAULT; | |
868 | if (address > TASK_SIZE) | |
869 | pgd = pgd_offset_k(address); | |
870 | else | |
871 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
872 | if (pgd_none(*pgd)) |
873 | return -EFAULT; | |
c2febafc | 874 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
875 | if (p4d_none(*p4d)) |
876 | return -EFAULT; | |
c2febafc | 877 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
878 | if (pud_none(*pud)) |
879 | return -EFAULT; | |
f2b495ca | 880 | pmd = pmd_offset(pud, address); |
84c3fc4e | 881 | if (!pmd_present(*pmd)) |
f2b495ca KS |
882 | return -EFAULT; |
883 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
884 | pte = pte_offset_map(pmd, address); | |
885 | if (pte_none(*pte)) | |
886 | goto unmap; | |
887 | *vma = get_gate_vma(mm); | |
888 | if (!page) | |
889 | goto out; | |
890 | *page = vm_normal_page(*vma, address, *pte); | |
891 | if (!*page) { | |
892 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
893 | goto unmap; | |
894 | *page = pte_page(*pte); | |
895 | } | |
9fa2dd94 | 896 | if (unlikely(!try_grab_page(*page, gup_flags))) { |
8fde12ca LT |
897 | ret = -ENOMEM; |
898 | goto unmap; | |
899 | } | |
f2b495ca KS |
900 | out: |
901 | ret = 0; | |
902 | unmap: | |
903 | pte_unmap(pte); | |
904 | return ret; | |
905 | } | |
906 | ||
9a95f3cf | 907 | /* |
c1e8d7c6 ML |
908 | * mmap_lock must be held on entry. If @locked != NULL and *@flags |
909 | * does not include FOLL_NOWAIT, the mmap_lock may be released. If it | |
4f6da934 | 910 | * is, *@locked will be set to 0 and -EBUSY returned. |
9a95f3cf | 911 | */ |
64019a2e | 912 | static int faultin_page(struct vm_area_struct *vma, |
4f6da934 | 913 | unsigned long address, unsigned int *flags, int *locked) |
16744483 | 914 | { |
16744483 | 915 | unsigned int fault_flags = 0; |
2b740303 | 916 | vm_fault_t ret; |
16744483 | 917 | |
de60f5f1 EM |
918 | /* mlock all present pages, but do not fault in new pages */ |
919 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
920 | return -ENOENT; | |
55b8fe70 AG |
921 | if (*flags & FOLL_NOFAULT) |
922 | return -EFAULT; | |
16744483 KS |
923 | if (*flags & FOLL_WRITE) |
924 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
925 | if (*flags & FOLL_REMOTE) |
926 | fault_flags |= FAULT_FLAG_REMOTE; | |
4f6da934 | 927 | if (locked) |
71335f37 | 928 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
16744483 KS |
929 | if (*flags & FOLL_NOWAIT) |
930 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b | 931 | if (*flags & FOLL_TRIED) { |
4426e945 PX |
932 | /* |
933 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | |
934 | * can co-exist | |
935 | */ | |
234b239b ALC |
936 | fault_flags |= FAULT_FLAG_TRIED; |
937 | } | |
16744483 | 938 | |
bce617ed | 939 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
16744483 | 940 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
941 | int err = vm_fault_to_errno(ret, *flags); |
942 | ||
943 | if (err) | |
944 | return err; | |
16744483 KS |
945 | BUG(); |
946 | } | |
947 | ||
16744483 | 948 | if (ret & VM_FAULT_RETRY) { |
4f6da934 PX |
949 | if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
950 | *locked = 0; | |
16744483 KS |
951 | return -EBUSY; |
952 | } | |
953 | ||
954 | /* | |
955 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
956 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
957 | * can thus safely do subsequent page lookups as if they were reads. | |
958 | * But only do so when looping for pte_write is futile: in some cases | |
959 | * userspace may also be wanting to write to the gotten user page, | |
960 | * which a read fault here might prevent (a readonly page might get | |
961 | * reCOWed by userspace write). | |
962 | */ | |
963 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 964 | *flags |= FOLL_COW; |
16744483 KS |
965 | return 0; |
966 | } | |
967 | ||
fa5bb209 KS |
968 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
969 | { | |
970 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
971 | int write = (gup_flags & FOLL_WRITE); |
972 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
973 | |
974 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
975 | return -EFAULT; | |
976 | ||
7f7ccc2c WT |
977 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
978 | return -EFAULT; | |
979 | ||
52650c8b JG |
980 | if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) |
981 | return -EOPNOTSUPP; | |
982 | ||
1507f512 MR |
983 | if (vma_is_secretmem(vma)) |
984 | return -EFAULT; | |
985 | ||
1b2ee126 | 986 | if (write) { |
fa5bb209 KS |
987 | if (!(vm_flags & VM_WRITE)) { |
988 | if (!(gup_flags & FOLL_FORCE)) | |
989 | return -EFAULT; | |
990 | /* | |
991 | * We used to let the write,force case do COW in a | |
992 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
993 | * set a breakpoint in a read-only mapping of an | |
994 | * executable, without corrupting the file (yet only | |
995 | * when that file had been opened for writing!). | |
996 | * Anon pages in shared mappings are surprising: now | |
997 | * just reject it. | |
998 | */ | |
46435364 | 999 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 1000 | return -EFAULT; |
fa5bb209 KS |
1001 | } |
1002 | } else if (!(vm_flags & VM_READ)) { | |
1003 | if (!(gup_flags & FOLL_FORCE)) | |
1004 | return -EFAULT; | |
1005 | /* | |
1006 | * Is there actually any vma we can reach here which does not | |
1007 | * have VM_MAYREAD set? | |
1008 | */ | |
1009 | if (!(vm_flags & VM_MAYREAD)) | |
1010 | return -EFAULT; | |
1011 | } | |
d61172b4 DH |
1012 | /* |
1013 | * gups are always data accesses, not instruction | |
1014 | * fetches, so execute=false here | |
1015 | */ | |
1016 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 1017 | return -EFAULT; |
fa5bb209 KS |
1018 | return 0; |
1019 | } | |
1020 | ||
4bbd4c77 KS |
1021 | /** |
1022 | * __get_user_pages() - pin user pages in memory | |
4bbd4c77 KS |
1023 | * @mm: mm_struct of target mm |
1024 | * @start: starting user address | |
1025 | * @nr_pages: number of pages from start to pin | |
1026 | * @gup_flags: flags modifying pin behaviour | |
1027 | * @pages: array that receives pointers to the pages pinned. | |
1028 | * Should be at least nr_pages long. Or NULL, if caller | |
1029 | * only intends to ensure the pages are faulted in. | |
1030 | * @vmas: array of pointers to vmas corresponding to each page. | |
1031 | * Or NULL if the caller does not require them. | |
c1e8d7c6 | 1032 | * @locked: whether we're still with the mmap_lock held |
4bbd4c77 | 1033 | * |
d2dfbe47 LX |
1034 | * Returns either number of pages pinned (which may be less than the |
1035 | * number requested), or an error. Details about the return value: | |
1036 | * | |
1037 | * -- If nr_pages is 0, returns 0. | |
1038 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
1039 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
1040 | * pages pinned. Again, this may be less than nr_pages. | |
2d3a36a4 | 1041 | * -- 0 return value is possible when the fault would need to be retried. |
d2dfbe47 LX |
1042 | * |
1043 | * The caller is responsible for releasing returned @pages, via put_page(). | |
1044 | * | |
c1e8d7c6 | 1045 | * @vmas are valid only as long as mmap_lock is held. |
4bbd4c77 | 1046 | * |
c1e8d7c6 | 1047 | * Must be called with mmap_lock held. It may be released. See below. |
4bbd4c77 KS |
1048 | * |
1049 | * __get_user_pages walks a process's page tables and takes a reference to | |
1050 | * each struct page that each user address corresponds to at a given | |
1051 | * instant. That is, it takes the page that would be accessed if a user | |
1052 | * thread accesses the given user virtual address at that instant. | |
1053 | * | |
1054 | * This does not guarantee that the page exists in the user mappings when | |
1055 | * __get_user_pages returns, and there may even be a completely different | |
1056 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1057 | * and subsequently re faulted). However it does guarantee that the page | |
1058 | * won't be freed completely. And mostly callers simply care that the page | |
1059 | * contains data that was valid *at some point in time*. Typically, an IO | |
1060 | * or similar operation cannot guarantee anything stronger anyway because | |
1061 | * locks can't be held over the syscall boundary. | |
1062 | * | |
1063 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
1064 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
1065 | * appropriate) must be called after the page is finished with, and | |
1066 | * before put_page is called. | |
1067 | * | |
c1e8d7c6 | 1068 | * If @locked != NULL, *@locked will be set to 0 when mmap_lock is |
4f6da934 PX |
1069 | * released by an up_read(). That can happen if @gup_flags does not |
1070 | * have FOLL_NOWAIT. | |
9a95f3cf | 1071 | * |
4f6da934 | 1072 | * A caller using such a combination of @locked and @gup_flags |
c1e8d7c6 | 1073 | * must therefore hold the mmap_lock for reading only, and recognize |
9a95f3cf PC |
1074 | * when it's been released. Otherwise, it must be held for either |
1075 | * reading or writing and will not be released. | |
4bbd4c77 KS |
1076 | * |
1077 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
1078 | * instead of __get_user_pages. __get_user_pages should be used only if | |
1079 | * you need some special @gup_flags. | |
1080 | */ | |
64019a2e | 1081 | static long __get_user_pages(struct mm_struct *mm, |
4bbd4c77 KS |
1082 | unsigned long start, unsigned long nr_pages, |
1083 | unsigned int gup_flags, struct page **pages, | |
4f6da934 | 1084 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1085 | { |
df06b37f | 1086 | long ret = 0, i = 0; |
fa5bb209 | 1087 | struct vm_area_struct *vma = NULL; |
df06b37f | 1088 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
1089 | |
1090 | if (!nr_pages) | |
1091 | return 0; | |
1092 | ||
f9652594 AK |
1093 | start = untagged_addr(start); |
1094 | ||
eddb1c22 | 1095 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
4bbd4c77 KS |
1096 | |
1097 | /* | |
1098 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
1099 | * fault information is unrelated to the reference behaviour of a task | |
1100 | * using the address space | |
1101 | */ | |
1102 | if (!(gup_flags & FOLL_FORCE)) | |
1103 | gup_flags |= FOLL_NUMA; | |
1104 | ||
4bbd4c77 | 1105 | do { |
fa5bb209 KS |
1106 | struct page *page; |
1107 | unsigned int foll_flags = gup_flags; | |
1108 | unsigned int page_increm; | |
1109 | ||
1110 | /* first iteration or cross vma bound */ | |
1111 | if (!vma || start >= vma->vm_end) { | |
1112 | vma = find_extend_vma(mm, start); | |
1113 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
1114 | ret = get_gate_page(mm, start & PAGE_MASK, |
1115 | gup_flags, &vma, | |
1116 | pages ? &pages[i] : NULL); | |
1117 | if (ret) | |
08be37b7 | 1118 | goto out; |
df06b37f | 1119 | ctx.page_mask = 0; |
fa5bb209 KS |
1120 | goto next_page; |
1121 | } | |
4bbd4c77 | 1122 | |
52650c8b | 1123 | if (!vma) { |
df06b37f KB |
1124 | ret = -EFAULT; |
1125 | goto out; | |
1126 | } | |
52650c8b JG |
1127 | ret = check_vma_flags(vma, gup_flags); |
1128 | if (ret) | |
1129 | goto out; | |
1130 | ||
fa5bb209 KS |
1131 | if (is_vm_hugetlb_page(vma)) { |
1132 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
1133 | &start, &nr_pages, i, | |
a308c71b | 1134 | gup_flags, locked); |
ad415db8 PX |
1135 | if (locked && *locked == 0) { |
1136 | /* | |
1137 | * We've got a VM_FAULT_RETRY | |
c1e8d7c6 | 1138 | * and we've lost mmap_lock. |
ad415db8 PX |
1139 | * We must stop here. |
1140 | */ | |
1141 | BUG_ON(gup_flags & FOLL_NOWAIT); | |
ad415db8 PX |
1142 | goto out; |
1143 | } | |
fa5bb209 | 1144 | continue; |
4bbd4c77 | 1145 | } |
fa5bb209 KS |
1146 | } |
1147 | retry: | |
1148 | /* | |
1149 | * If we have a pending SIGKILL, don't keep faulting pages and | |
1150 | * potentially allocating memory. | |
1151 | */ | |
fa45f116 | 1152 | if (fatal_signal_pending(current)) { |
d180870d | 1153 | ret = -EINTR; |
df06b37f KB |
1154 | goto out; |
1155 | } | |
fa5bb209 | 1156 | cond_resched(); |
df06b37f KB |
1157 | |
1158 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 1159 | if (!page) { |
64019a2e | 1160 | ret = faultin_page(vma, start, &foll_flags, locked); |
fa5bb209 KS |
1161 | switch (ret) { |
1162 | case 0: | |
1163 | goto retry; | |
df06b37f KB |
1164 | case -EBUSY: |
1165 | ret = 0; | |
e4a9bc58 | 1166 | fallthrough; |
fa5bb209 KS |
1167 | case -EFAULT: |
1168 | case -ENOMEM: | |
1169 | case -EHWPOISON: | |
df06b37f | 1170 | goto out; |
fa5bb209 KS |
1171 | case -ENOENT: |
1172 | goto next_page; | |
4bbd4c77 | 1173 | } |
fa5bb209 | 1174 | BUG(); |
1027e443 KS |
1175 | } else if (PTR_ERR(page) == -EEXIST) { |
1176 | /* | |
1177 | * Proper page table entry exists, but no corresponding | |
1178 | * struct page. | |
1179 | */ | |
1180 | goto next_page; | |
1181 | } else if (IS_ERR(page)) { | |
df06b37f KB |
1182 | ret = PTR_ERR(page); |
1183 | goto out; | |
1027e443 | 1184 | } |
fa5bb209 KS |
1185 | if (pages) { |
1186 | pages[i] = page; | |
1187 | flush_anon_page(vma, page, start); | |
1188 | flush_dcache_page(page); | |
df06b37f | 1189 | ctx.page_mask = 0; |
4bbd4c77 | 1190 | } |
4bbd4c77 | 1191 | next_page: |
fa5bb209 KS |
1192 | if (vmas) { |
1193 | vmas[i] = vma; | |
df06b37f | 1194 | ctx.page_mask = 0; |
fa5bb209 | 1195 | } |
df06b37f | 1196 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
1197 | if (page_increm > nr_pages) |
1198 | page_increm = nr_pages; | |
1199 | i += page_increm; | |
1200 | start += page_increm * PAGE_SIZE; | |
1201 | nr_pages -= page_increm; | |
4bbd4c77 | 1202 | } while (nr_pages); |
df06b37f KB |
1203 | out: |
1204 | if (ctx.pgmap) | |
1205 | put_dev_pagemap(ctx.pgmap); | |
1206 | return i ? i : ret; | |
4bbd4c77 | 1207 | } |
4bbd4c77 | 1208 | |
771ab430 TK |
1209 | static bool vma_permits_fault(struct vm_area_struct *vma, |
1210 | unsigned int fault_flags) | |
d4925e00 | 1211 | { |
1b2ee126 DH |
1212 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
1213 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 1214 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
1215 | |
1216 | if (!(vm_flags & vma->vm_flags)) | |
1217 | return false; | |
1218 | ||
33a709b2 DH |
1219 | /* |
1220 | * The architecture might have a hardware protection | |
1b2ee126 | 1221 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
1222 | * |
1223 | * gup always represents data access, not instruction | |
1224 | * fetches, so execute=false here: | |
33a709b2 | 1225 | */ |
d61172b4 | 1226 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
1227 | return false; |
1228 | ||
d4925e00 DH |
1229 | return true; |
1230 | } | |
1231 | ||
adc8cb40 | 1232 | /** |
4bbd4c77 | 1233 | * fixup_user_fault() - manually resolve a user page fault |
4bbd4c77 KS |
1234 | * @mm: mm_struct of target mm |
1235 | * @address: user address | |
1236 | * @fault_flags:flags to pass down to handle_mm_fault() | |
c1e8d7c6 | 1237 | * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller |
548b6a1e MC |
1238 | * does not allow retry. If NULL, the caller must guarantee |
1239 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | |
4bbd4c77 KS |
1240 | * |
1241 | * This is meant to be called in the specific scenario where for locking reasons | |
1242 | * we try to access user memory in atomic context (within a pagefault_disable() | |
1243 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
1244 | * trying again. | |
1245 | * | |
1246 | * Typically this is meant to be used by the futex code. | |
1247 | * | |
1248 | * The main difference with get_user_pages() is that this function will | |
1249 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
1250 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 1251 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
1252 | * |
1253 | * This is important for some architectures where those bits also gate the | |
1254 | * access permission to the page because they are maintained in software. On | |
1255 | * such architectures, gup() will not be enough to make a subsequent access | |
1256 | * succeed. | |
1257 | * | |
c1e8d7c6 ML |
1258 | * This function will not return with an unlocked mmap_lock. So it has not the |
1259 | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). | |
4bbd4c77 | 1260 | */ |
64019a2e | 1261 | int fixup_user_fault(struct mm_struct *mm, |
4a9e1cda DD |
1262 | unsigned long address, unsigned int fault_flags, |
1263 | bool *unlocked) | |
4bbd4c77 KS |
1264 | { |
1265 | struct vm_area_struct *vma; | |
8fed2f3c | 1266 | vm_fault_t ret; |
4a9e1cda | 1267 | |
f9652594 AK |
1268 | address = untagged_addr(address); |
1269 | ||
4a9e1cda | 1270 | if (unlocked) |
71335f37 | 1271 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
4bbd4c77 | 1272 | |
4a9e1cda | 1273 | retry: |
4bbd4c77 KS |
1274 | vma = find_extend_vma(mm, address); |
1275 | if (!vma || address < vma->vm_start) | |
1276 | return -EFAULT; | |
1277 | ||
d4925e00 | 1278 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
1279 | return -EFAULT; |
1280 | ||
475f4dfc PX |
1281 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
1282 | fatal_signal_pending(current)) | |
1283 | return -EINTR; | |
1284 | ||
bce617ed | 1285 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
4bbd4c77 | 1286 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1287 | int err = vm_fault_to_errno(ret, 0); |
1288 | ||
1289 | if (err) | |
1290 | return err; | |
4bbd4c77 KS |
1291 | BUG(); |
1292 | } | |
4a9e1cda DD |
1293 | |
1294 | if (ret & VM_FAULT_RETRY) { | |
d8ed45c5 | 1295 | mmap_read_lock(mm); |
475f4dfc PX |
1296 | *unlocked = true; |
1297 | fault_flags |= FAULT_FLAG_TRIED; | |
1298 | goto retry; | |
4a9e1cda DD |
1299 | } |
1300 | ||
4bbd4c77 KS |
1301 | return 0; |
1302 | } | |
add6a0cd | 1303 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1304 | |
2d3a36a4 MH |
1305 | /* |
1306 | * Please note that this function, unlike __get_user_pages will not | |
1307 | * return 0 for nr_pages > 0 without FOLL_NOWAIT | |
1308 | */ | |
64019a2e | 1309 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, |
f0818f47 AA |
1310 | unsigned long start, |
1311 | unsigned long nr_pages, | |
f0818f47 AA |
1312 | struct page **pages, |
1313 | struct vm_area_struct **vmas, | |
e716712f | 1314 | int *locked, |
0fd71a56 | 1315 | unsigned int flags) |
f0818f47 | 1316 | { |
f0818f47 AA |
1317 | long ret, pages_done; |
1318 | bool lock_dropped; | |
1319 | ||
1320 | if (locked) { | |
1321 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1322 | BUG_ON(vmas); | |
1323 | /* check caller initialized locked */ | |
1324 | BUG_ON(*locked != 1); | |
1325 | } | |
1326 | ||
a458b76a AA |
1327 | if (flags & FOLL_PIN) |
1328 | mm_set_has_pinned_flag(&mm->flags); | |
008cfe44 | 1329 | |
eddb1c22 JH |
1330 | /* |
1331 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | |
1332 | * is to set FOLL_GET if the caller wants pages[] filled in (but has | |
1333 | * carelessly failed to specify FOLL_GET), so keep doing that, but only | |
1334 | * for FOLL_GET, not for the newer FOLL_PIN. | |
1335 | * | |
1336 | * FOLL_PIN always expects pages to be non-null, but no need to assert | |
1337 | * that here, as any failures will be obvious enough. | |
1338 | */ | |
1339 | if (pages && !(flags & FOLL_PIN)) | |
f0818f47 | 1340 | flags |= FOLL_GET; |
f0818f47 AA |
1341 | |
1342 | pages_done = 0; | |
1343 | lock_dropped = false; | |
1344 | for (;;) { | |
64019a2e | 1345 | ret = __get_user_pages(mm, start, nr_pages, flags, pages, |
f0818f47 AA |
1346 | vmas, locked); |
1347 | if (!locked) | |
1348 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1349 | return ret; | |
1350 | ||
1351 | /* VM_FAULT_RETRY cannot return errors */ | |
1352 | if (!*locked) { | |
1353 | BUG_ON(ret < 0); | |
1354 | BUG_ON(ret >= nr_pages); | |
1355 | } | |
1356 | ||
f0818f47 AA |
1357 | if (ret > 0) { |
1358 | nr_pages -= ret; | |
1359 | pages_done += ret; | |
1360 | if (!nr_pages) | |
1361 | break; | |
1362 | } | |
1363 | if (*locked) { | |
96312e61 AA |
1364 | /* |
1365 | * VM_FAULT_RETRY didn't trigger or it was a | |
1366 | * FOLL_NOWAIT. | |
1367 | */ | |
f0818f47 AA |
1368 | if (!pages_done) |
1369 | pages_done = ret; | |
1370 | break; | |
1371 | } | |
df17277b MR |
1372 | /* |
1373 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1374 | * For the prefault case (!pages) we only update counts. | |
1375 | */ | |
1376 | if (likely(pages)) | |
1377 | pages += ret; | |
f0818f47 | 1378 | start += ret << PAGE_SHIFT; |
4426e945 | 1379 | lock_dropped = true; |
f0818f47 | 1380 | |
4426e945 | 1381 | retry: |
f0818f47 AA |
1382 | /* |
1383 | * Repeat on the address that fired VM_FAULT_RETRY | |
4426e945 PX |
1384 | * with both FAULT_FLAG_ALLOW_RETRY and |
1385 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted | |
1386 | * by fatal signals, so we need to check it before we | |
1387 | * start trying again otherwise it can loop forever. | |
f0818f47 | 1388 | */ |
4426e945 | 1389 | |
ae46d2aa HD |
1390 | if (fatal_signal_pending(current)) { |
1391 | if (!pages_done) | |
1392 | pages_done = -EINTR; | |
4426e945 | 1393 | break; |
ae46d2aa | 1394 | } |
4426e945 | 1395 | |
d8ed45c5 | 1396 | ret = mmap_read_lock_killable(mm); |
71335f37 PX |
1397 | if (ret) { |
1398 | BUG_ON(ret > 0); | |
1399 | if (!pages_done) | |
1400 | pages_done = ret; | |
1401 | break; | |
1402 | } | |
4426e945 | 1403 | |
c7b6a566 | 1404 | *locked = 1; |
64019a2e | 1405 | ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, |
4426e945 PX |
1406 | pages, NULL, locked); |
1407 | if (!*locked) { | |
1408 | /* Continue to retry until we succeeded */ | |
1409 | BUG_ON(ret != 0); | |
1410 | goto retry; | |
1411 | } | |
f0818f47 AA |
1412 | if (ret != 1) { |
1413 | BUG_ON(ret > 1); | |
1414 | if (!pages_done) | |
1415 | pages_done = ret; | |
1416 | break; | |
1417 | } | |
1418 | nr_pages--; | |
1419 | pages_done++; | |
1420 | if (!nr_pages) | |
1421 | break; | |
df17277b MR |
1422 | if (likely(pages)) |
1423 | pages++; | |
f0818f47 AA |
1424 | start += PAGE_SIZE; |
1425 | } | |
e716712f | 1426 | if (lock_dropped && *locked) { |
f0818f47 AA |
1427 | /* |
1428 | * We must let the caller know we temporarily dropped the lock | |
1429 | * and so the critical section protected by it was lost. | |
1430 | */ | |
d8ed45c5 | 1431 | mmap_read_unlock(mm); |
f0818f47 AA |
1432 | *locked = 0; |
1433 | } | |
1434 | return pages_done; | |
1435 | } | |
1436 | ||
d3649f68 CH |
1437 | /** |
1438 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1439 | * @vma: target vma | |
1440 | * @start: start address | |
1441 | * @end: end address | |
c1e8d7c6 | 1442 | * @locked: whether the mmap_lock is still held |
d3649f68 CH |
1443 | * |
1444 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1445 | * | |
0a36f7f8 TY |
1446 | * Return either number of pages pinned in the vma, or a negative error |
1447 | * code on error. | |
d3649f68 | 1448 | * |
c1e8d7c6 | 1449 | * vma->vm_mm->mmap_lock must be held. |
d3649f68 | 1450 | * |
4f6da934 | 1451 | * If @locked is NULL, it may be held for read or write and will |
d3649f68 CH |
1452 | * be unperturbed. |
1453 | * | |
4f6da934 PX |
1454 | * If @locked is non-NULL, it must held for read only and may be |
1455 | * released. If it's released, *@locked will be set to 0. | |
d3649f68 CH |
1456 | */ |
1457 | long populate_vma_page_range(struct vm_area_struct *vma, | |
4f6da934 | 1458 | unsigned long start, unsigned long end, int *locked) |
d3649f68 CH |
1459 | { |
1460 | struct mm_struct *mm = vma->vm_mm; | |
1461 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1462 | int gup_flags; | |
1463 | ||
be51eb18 ML |
1464 | VM_BUG_ON(!PAGE_ALIGNED(start)); |
1465 | VM_BUG_ON(!PAGE_ALIGNED(end)); | |
d3649f68 CH |
1466 | VM_BUG_ON_VMA(start < vma->vm_start, vma); |
1467 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
42fc5414 | 1468 | mmap_assert_locked(mm); |
d3649f68 CH |
1469 | |
1470 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | |
1471 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1472 | gup_flags &= ~FOLL_POPULATE; | |
1473 | /* | |
1474 | * We want to touch writable mappings with a write fault in order | |
1475 | * to break COW, except for shared mappings because these don't COW | |
1476 | * and we would not want to dirty them for nothing. | |
1477 | */ | |
1478 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1479 | gup_flags |= FOLL_WRITE; | |
1480 | ||
1481 | /* | |
1482 | * We want mlock to succeed for regions that have any permissions | |
1483 | * other than PROT_NONE. | |
1484 | */ | |
3122e80e | 1485 | if (vma_is_accessible(vma)) |
d3649f68 CH |
1486 | gup_flags |= FOLL_FORCE; |
1487 | ||
1488 | /* | |
1489 | * We made sure addr is within a VMA, so the following will | |
1490 | * not result in a stack expansion that recurses back here. | |
1491 | */ | |
64019a2e | 1492 | return __get_user_pages(mm, start, nr_pages, gup_flags, |
4f6da934 | 1493 | NULL, NULL, locked); |
d3649f68 CH |
1494 | } |
1495 | ||
4ca9b385 DH |
1496 | /* |
1497 | * faultin_vma_page_range() - populate (prefault) page tables inside the | |
1498 | * given VMA range readable/writable | |
1499 | * | |
1500 | * This takes care of mlocking the pages, too, if VM_LOCKED is set. | |
1501 | * | |
1502 | * @vma: target vma | |
1503 | * @start: start address | |
1504 | * @end: end address | |
1505 | * @write: whether to prefault readable or writable | |
1506 | * @locked: whether the mmap_lock is still held | |
1507 | * | |
1508 | * Returns either number of processed pages in the vma, or a negative error | |
1509 | * code on error (see __get_user_pages()). | |
1510 | * | |
1511 | * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and | |
1512 | * covered by the VMA. | |
1513 | * | |
1514 | * If @locked is NULL, it may be held for read or write and will be unperturbed. | |
1515 | * | |
1516 | * If @locked is non-NULL, it must held for read only and may be released. If | |
1517 | * it's released, *@locked will be set to 0. | |
1518 | */ | |
1519 | long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, | |
1520 | unsigned long end, bool write, int *locked) | |
1521 | { | |
1522 | struct mm_struct *mm = vma->vm_mm; | |
1523 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1524 | int gup_flags; | |
1525 | ||
1526 | VM_BUG_ON(!PAGE_ALIGNED(start)); | |
1527 | VM_BUG_ON(!PAGE_ALIGNED(end)); | |
1528 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1529 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1530 | mmap_assert_locked(mm); | |
1531 | ||
1532 | /* | |
1533 | * FOLL_TOUCH: Mark page accessed and thereby young; will also mark | |
1534 | * the page dirty with FOLL_WRITE -- which doesn't make a | |
1535 | * difference with !FOLL_FORCE, because the page is writable | |
1536 | * in the page table. | |
1537 | * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit | |
1538 | * a poisoned page. | |
1539 | * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. | |
1540 | * !FOLL_FORCE: Require proper access permissions. | |
1541 | */ | |
1542 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; | |
1543 | if (write) | |
1544 | gup_flags |= FOLL_WRITE; | |
1545 | ||
1546 | /* | |
eb2faa51 DH |
1547 | * We want to report -EINVAL instead of -EFAULT for any permission |
1548 | * problems or incompatible mappings. | |
4ca9b385 | 1549 | */ |
eb2faa51 DH |
1550 | if (check_vma_flags(vma, gup_flags)) |
1551 | return -EINVAL; | |
1552 | ||
4ca9b385 DH |
1553 | return __get_user_pages(mm, start, nr_pages, gup_flags, |
1554 | NULL, NULL, locked); | |
1555 | } | |
1556 | ||
d3649f68 CH |
1557 | /* |
1558 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1559 | * | |
1560 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1561 | * flags. VMAs must be already marked with the desired vm_flags, and | |
c1e8d7c6 | 1562 | * mmap_lock must not be held. |
d3649f68 CH |
1563 | */ |
1564 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1565 | { | |
1566 | struct mm_struct *mm = current->mm; | |
1567 | unsigned long end, nstart, nend; | |
1568 | struct vm_area_struct *vma = NULL; | |
1569 | int locked = 0; | |
1570 | long ret = 0; | |
1571 | ||
1572 | end = start + len; | |
1573 | ||
1574 | for (nstart = start; nstart < end; nstart = nend) { | |
1575 | /* | |
1576 | * We want to fault in pages for [nstart; end) address range. | |
1577 | * Find first corresponding VMA. | |
1578 | */ | |
1579 | if (!locked) { | |
1580 | locked = 1; | |
d8ed45c5 | 1581 | mmap_read_lock(mm); |
d3649f68 CH |
1582 | vma = find_vma(mm, nstart); |
1583 | } else if (nstart >= vma->vm_end) | |
1584 | vma = vma->vm_next; | |
1585 | if (!vma || vma->vm_start >= end) | |
1586 | break; | |
1587 | /* | |
1588 | * Set [nstart; nend) to intersection of desired address | |
1589 | * range with the first VMA. Also, skip undesirable VMA types. | |
1590 | */ | |
1591 | nend = min(end, vma->vm_end); | |
1592 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1593 | continue; | |
1594 | if (nstart < vma->vm_start) | |
1595 | nstart = vma->vm_start; | |
1596 | /* | |
1597 | * Now fault in a range of pages. populate_vma_page_range() | |
1598 | * double checks the vma flags, so that it won't mlock pages | |
1599 | * if the vma was already munlocked. | |
1600 | */ | |
1601 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1602 | if (ret < 0) { | |
1603 | if (ignore_errors) { | |
1604 | ret = 0; | |
1605 | continue; /* continue at next VMA */ | |
1606 | } | |
1607 | break; | |
1608 | } | |
1609 | nend = nstart + ret * PAGE_SIZE; | |
1610 | ret = 0; | |
1611 | } | |
1612 | if (locked) | |
d8ed45c5 | 1613 | mmap_read_unlock(mm); |
d3649f68 CH |
1614 | return ret; /* 0 or negative error code */ |
1615 | } | |
050a9adc | 1616 | #else /* CONFIG_MMU */ |
64019a2e | 1617 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, |
050a9adc CH |
1618 | unsigned long nr_pages, struct page **pages, |
1619 | struct vm_area_struct **vmas, int *locked, | |
1620 | unsigned int foll_flags) | |
1621 | { | |
1622 | struct vm_area_struct *vma; | |
1623 | unsigned long vm_flags; | |
24dc20c7 | 1624 | long i; |
050a9adc CH |
1625 | |
1626 | /* calculate required read or write permissions. | |
1627 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1628 | */ | |
1629 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1630 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1631 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1632 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1633 | ||
1634 | for (i = 0; i < nr_pages; i++) { | |
1635 | vma = find_vma(mm, start); | |
1636 | if (!vma) | |
1637 | goto finish_or_fault; | |
1638 | ||
1639 | /* protect what we can, including chardevs */ | |
1640 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1641 | !(vm_flags & vma->vm_flags)) | |
1642 | goto finish_or_fault; | |
1643 | ||
1644 | if (pages) { | |
1645 | pages[i] = virt_to_page(start); | |
1646 | if (pages[i]) | |
1647 | get_page(pages[i]); | |
1648 | } | |
1649 | if (vmas) | |
1650 | vmas[i] = vma; | |
1651 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1652 | } | |
1653 | ||
1654 | return i; | |
1655 | ||
1656 | finish_or_fault: | |
1657 | return i ? : -EFAULT; | |
1658 | } | |
1659 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1660 | |
bb523b40 AG |
1661 | /** |
1662 | * fault_in_writeable - fault in userspace address range for writing | |
1663 | * @uaddr: start of address range | |
1664 | * @size: size of address range | |
1665 | * | |
1666 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
1667 | * copy_from_user()). | |
1668 | */ | |
1669 | size_t fault_in_writeable(char __user *uaddr, size_t size) | |
1670 | { | |
1671 | char __user *start = uaddr, *end; | |
1672 | ||
1673 | if (unlikely(size == 0)) | |
1674 | return 0; | |
1675 | if (!PAGE_ALIGNED(uaddr)) { | |
1676 | if (unlikely(__put_user(0, uaddr) != 0)) | |
1677 | return size; | |
1678 | uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); | |
1679 | } | |
1680 | end = (char __user *)PAGE_ALIGN((unsigned long)start + size); | |
1681 | if (unlikely(end < start)) | |
1682 | end = NULL; | |
1683 | while (uaddr != end) { | |
1684 | if (unlikely(__put_user(0, uaddr) != 0)) | |
1685 | goto out; | |
1686 | uaddr += PAGE_SIZE; | |
1687 | } | |
1688 | ||
1689 | out: | |
1690 | if (size > uaddr - start) | |
1691 | return size - (uaddr - start); | |
1692 | return 0; | |
1693 | } | |
1694 | EXPORT_SYMBOL(fault_in_writeable); | |
1695 | ||
cdd591fc AG |
1696 | /* |
1697 | * fault_in_safe_writeable - fault in an address range for writing | |
1698 | * @uaddr: start of address range | |
1699 | * @size: length of address range | |
1700 | * | |
1701 | * Faults in an address range using get_user_pages, i.e., without triggering | |
1702 | * hardware page faults. This is primarily useful when we already know that | |
1703 | * some or all of the pages in the address range aren't in memory. | |
1704 | * | |
1705 | * Other than fault_in_writeable(), this function is non-destructive. | |
1706 | * | |
1707 | * Note that we don't pin or otherwise hold the pages referenced that we fault | |
1708 | * in. There's no guarantee that they'll stay in memory for any duration of | |
1709 | * time. | |
1710 | * | |
1711 | * Returns the number of bytes not faulted in, like copy_to_user() and | |
1712 | * copy_from_user(). | |
1713 | */ | |
1714 | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) | |
1715 | { | |
1716 | unsigned long start = (unsigned long)untagged_addr(uaddr); | |
1717 | unsigned long end, nstart, nend; | |
1718 | struct mm_struct *mm = current->mm; | |
1719 | struct vm_area_struct *vma = NULL; | |
1720 | int locked = 0; | |
1721 | ||
1722 | nstart = start & PAGE_MASK; | |
1723 | end = PAGE_ALIGN(start + size); | |
1724 | if (end < nstart) | |
1725 | end = 0; | |
1726 | for (; nstart != end; nstart = nend) { | |
1727 | unsigned long nr_pages; | |
1728 | long ret; | |
1729 | ||
1730 | if (!locked) { | |
1731 | locked = 1; | |
1732 | mmap_read_lock(mm); | |
1733 | vma = find_vma(mm, nstart); | |
1734 | } else if (nstart >= vma->vm_end) | |
1735 | vma = vma->vm_next; | |
1736 | if (!vma || vma->vm_start >= end) | |
1737 | break; | |
1738 | nend = end ? min(end, vma->vm_end) : vma->vm_end; | |
1739 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1740 | continue; | |
1741 | if (nstart < vma->vm_start) | |
1742 | nstart = vma->vm_start; | |
1743 | nr_pages = (nend - nstart) / PAGE_SIZE; | |
1744 | ret = __get_user_pages_locked(mm, nstart, nr_pages, | |
1745 | NULL, NULL, &locked, | |
1746 | FOLL_TOUCH | FOLL_WRITE); | |
1747 | if (ret <= 0) | |
1748 | break; | |
1749 | nend = nstart + ret * PAGE_SIZE; | |
1750 | } | |
1751 | if (locked) | |
1752 | mmap_read_unlock(mm); | |
1753 | if (nstart == end) | |
1754 | return 0; | |
1755 | return size - min_t(size_t, nstart - start, size); | |
1756 | } | |
1757 | EXPORT_SYMBOL(fault_in_safe_writeable); | |
1758 | ||
bb523b40 AG |
1759 | /** |
1760 | * fault_in_readable - fault in userspace address range for reading | |
1761 | * @uaddr: start of user address range | |
1762 | * @size: size of user address range | |
1763 | * | |
1764 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
1765 | * copy_from_user()). | |
1766 | */ | |
1767 | size_t fault_in_readable(const char __user *uaddr, size_t size) | |
1768 | { | |
1769 | const char __user *start = uaddr, *end; | |
1770 | volatile char c; | |
1771 | ||
1772 | if (unlikely(size == 0)) | |
1773 | return 0; | |
1774 | if (!PAGE_ALIGNED(uaddr)) { | |
1775 | if (unlikely(__get_user(c, uaddr) != 0)) | |
1776 | return size; | |
1777 | uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); | |
1778 | } | |
1779 | end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); | |
1780 | if (unlikely(end < start)) | |
1781 | end = NULL; | |
1782 | while (uaddr != end) { | |
1783 | if (unlikely(__get_user(c, uaddr) != 0)) | |
1784 | goto out; | |
1785 | uaddr += PAGE_SIZE; | |
1786 | } | |
1787 | ||
1788 | out: | |
1789 | (void)c; | |
1790 | if (size > uaddr - start) | |
1791 | return size - (uaddr - start); | |
1792 | return 0; | |
1793 | } | |
1794 | EXPORT_SYMBOL(fault_in_readable); | |
1795 | ||
8f942eea JH |
1796 | /** |
1797 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1798 | * @addr: user address | |
1799 | * | |
1800 | * Returns struct page pointer of user page pinned for dump, | |
1801 | * to be freed afterwards by put_page(). | |
1802 | * | |
1803 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1804 | * the corefile, to preserve alignment with its headers; and also returns | |
1805 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
f0953a1b | 1806 | * allowing a hole to be left in the corefile to save disk space. |
8f942eea | 1807 | * |
7f3bfab5 | 1808 | * Called without mmap_lock (takes and releases the mmap_lock by itself). |
8f942eea JH |
1809 | */ |
1810 | #ifdef CONFIG_ELF_CORE | |
1811 | struct page *get_dump_page(unsigned long addr) | |
1812 | { | |
7f3bfab5 | 1813 | struct mm_struct *mm = current->mm; |
8f942eea | 1814 | struct page *page; |
7f3bfab5 JH |
1815 | int locked = 1; |
1816 | int ret; | |
8f942eea | 1817 | |
7f3bfab5 | 1818 | if (mmap_read_lock_killable(mm)) |
8f942eea | 1819 | return NULL; |
7f3bfab5 JH |
1820 | ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, |
1821 | FOLL_FORCE | FOLL_DUMP | FOLL_GET); | |
1822 | if (locked) | |
1823 | mmap_read_unlock(mm); | |
1824 | return (ret == 1) ? page : NULL; | |
8f942eea JH |
1825 | } |
1826 | #endif /* CONFIG_ELF_CORE */ | |
1827 | ||
d1e153fe | 1828 | #ifdef CONFIG_MIGRATION |
f68749ec PT |
1829 | /* |
1830 | * Check whether all pages are pinnable, if so return number of pages. If some | |
1831 | * pages are not pinnable, migrate them, and unpin all pages. Return zero if | |
1832 | * pages were migrated, or if some pages were not successfully isolated. | |
1833 | * Return negative error if migration fails. | |
1834 | */ | |
1835 | static long check_and_migrate_movable_pages(unsigned long nr_pages, | |
d1e153fe | 1836 | struct page **pages, |
d1e153fe | 1837 | unsigned int gup_flags) |
9a4e9f3b | 1838 | { |
f68749ec PT |
1839 | unsigned long i; |
1840 | unsigned long isolation_error_count = 0; | |
1841 | bool drain_allow = true; | |
d1e153fe | 1842 | LIST_HEAD(movable_page_list); |
f68749ec PT |
1843 | long ret = 0; |
1844 | struct page *prev_head = NULL; | |
1845 | struct page *head; | |
ed03d924 JK |
1846 | struct migration_target_control mtc = { |
1847 | .nid = NUMA_NO_NODE, | |
c991ffef | 1848 | .gfp_mask = GFP_USER | __GFP_NOWARN, |
ed03d924 | 1849 | }; |
9a4e9f3b | 1850 | |
83c02c23 PT |
1851 | for (i = 0; i < nr_pages; i++) { |
1852 | head = compound_head(pages[i]); | |
1853 | if (head == prev_head) | |
1854 | continue; | |
1855 | prev_head = head; | |
9a4e9f3b | 1856 | /* |
d1e153fe PT |
1857 | * If we get a movable page, since we are going to be pinning |
1858 | * these entries, try to move them out if possible. | |
9a4e9f3b | 1859 | */ |
d1e153fe | 1860 | if (!is_pinnable_page(head)) { |
6e7f34eb | 1861 | if (PageHuge(head)) { |
d1e153fe | 1862 | if (!isolate_huge_page(head, &movable_page_list)) |
6e7f34eb PT |
1863 | isolation_error_count++; |
1864 | } else { | |
9a4e9f3b AK |
1865 | if (!PageLRU(head) && drain_allow) { |
1866 | lru_add_drain_all(); | |
1867 | drain_allow = false; | |
1868 | } | |
1869 | ||
6e7f34eb PT |
1870 | if (isolate_lru_page(head)) { |
1871 | isolation_error_count++; | |
1872 | continue; | |
9a4e9f3b | 1873 | } |
d1e153fe | 1874 | list_add_tail(&head->lru, &movable_page_list); |
6e7f34eb PT |
1875 | mod_node_page_state(page_pgdat(head), |
1876 | NR_ISOLATED_ANON + | |
1877 | page_is_file_lru(head), | |
1878 | thp_nr_pages(head)); | |
9a4e9f3b AK |
1879 | } |
1880 | } | |
1881 | } | |
1882 | ||
6e7f34eb PT |
1883 | /* |
1884 | * If list is empty, and no isolation errors, means that all pages are | |
1885 | * in the correct zone. | |
1886 | */ | |
d1e153fe | 1887 | if (list_empty(&movable_page_list) && !isolation_error_count) |
f68749ec | 1888 | return nr_pages; |
6e7f34eb | 1889 | |
f68749ec PT |
1890 | if (gup_flags & FOLL_PIN) { |
1891 | unpin_user_pages(pages, nr_pages); | |
1892 | } else { | |
1893 | for (i = 0; i < nr_pages; i++) | |
1894 | put_page(pages[i]); | |
1895 | } | |
d1e153fe | 1896 | if (!list_empty(&movable_page_list)) { |
d1e153fe | 1897 | ret = migrate_pages(&movable_page_list, alloc_migration_target, |
f0f44638 | 1898 | NULL, (unsigned long)&mtc, MIGRATE_SYNC, |
5ac95884 | 1899 | MR_LONGTERM_PIN, NULL); |
f68749ec PT |
1900 | if (ret && !list_empty(&movable_page_list)) |
1901 | putback_movable_pages(&movable_page_list); | |
9a4e9f3b AK |
1902 | } |
1903 | ||
f68749ec | 1904 | return ret > 0 ? -ENOMEM : ret; |
9a4e9f3b AK |
1905 | } |
1906 | #else | |
f68749ec | 1907 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
d1e153fe | 1908 | struct page **pages, |
d1e153fe | 1909 | unsigned int gup_flags) |
9a4e9f3b AK |
1910 | { |
1911 | return nr_pages; | |
1912 | } | |
d1e153fe | 1913 | #endif /* CONFIG_MIGRATION */ |
9a4e9f3b | 1914 | |
2bb6d283 | 1915 | /* |
932f4a63 IW |
1916 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1917 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1918 | */ |
64019a2e | 1919 | static long __gup_longterm_locked(struct mm_struct *mm, |
932f4a63 IW |
1920 | unsigned long start, |
1921 | unsigned long nr_pages, | |
1922 | struct page **pages, | |
1923 | struct vm_area_struct **vmas, | |
1924 | unsigned int gup_flags) | |
2bb6d283 | 1925 | { |
f68749ec | 1926 | unsigned int flags; |
52650c8b | 1927 | long rc; |
2bb6d283 | 1928 | |
f68749ec PT |
1929 | if (!(gup_flags & FOLL_LONGTERM)) |
1930 | return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, | |
1931 | NULL, gup_flags); | |
1932 | flags = memalloc_pin_save(); | |
1933 | do { | |
1934 | rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, | |
1935 | NULL, gup_flags); | |
1936 | if (rc <= 0) | |
1937 | break; | |
1938 | rc = check_and_migrate_movable_pages(rc, pages, gup_flags); | |
1939 | } while (!rc); | |
1940 | memalloc_pin_restore(flags); | |
2bb6d283 | 1941 | |
2bb6d283 DW |
1942 | return rc; |
1943 | } | |
932f4a63 | 1944 | |
447f3e45 BS |
1945 | static bool is_valid_gup_flags(unsigned int gup_flags) |
1946 | { | |
1947 | /* | |
1948 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1949 | * never directly by the caller, so enforce that with an assertion: | |
1950 | */ | |
1951 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1952 | return false; | |
1953 | /* | |
1954 | * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying | |
1955 | * that is, FOLL_LONGTERM is a specific case, more restrictive case of | |
1956 | * FOLL_PIN. | |
1957 | */ | |
1958 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1959 | return false; | |
1960 | ||
1961 | return true; | |
1962 | } | |
1963 | ||
22bf29b6 | 1964 | #ifdef CONFIG_MMU |
64019a2e | 1965 | static long __get_user_pages_remote(struct mm_struct *mm, |
22bf29b6 JH |
1966 | unsigned long start, unsigned long nr_pages, |
1967 | unsigned int gup_flags, struct page **pages, | |
1968 | struct vm_area_struct **vmas, int *locked) | |
1969 | { | |
1970 | /* | |
1971 | * Parts of FOLL_LONGTERM behavior are incompatible with | |
1972 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1973 | * vmas. However, this only comes up if locked is set, and there are | |
1974 | * callers that do request FOLL_LONGTERM, but do not set locked. So, | |
1975 | * allow what we can. | |
1976 | */ | |
1977 | if (gup_flags & FOLL_LONGTERM) { | |
1978 | if (WARN_ON_ONCE(locked)) | |
1979 | return -EINVAL; | |
1980 | /* | |
1981 | * This will check the vmas (even if our vmas arg is NULL) | |
1982 | * and return -ENOTSUPP if DAX isn't allowed in this case: | |
1983 | */ | |
64019a2e | 1984 | return __gup_longterm_locked(mm, start, nr_pages, pages, |
22bf29b6 JH |
1985 | vmas, gup_flags | FOLL_TOUCH | |
1986 | FOLL_REMOTE); | |
1987 | } | |
1988 | ||
64019a2e | 1989 | return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, |
22bf29b6 JH |
1990 | locked, |
1991 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); | |
1992 | } | |
1993 | ||
adc8cb40 | 1994 | /** |
c4237f8b | 1995 | * get_user_pages_remote() - pin user pages in memory |
c4237f8b JH |
1996 | * @mm: mm_struct of target mm |
1997 | * @start: starting user address | |
1998 | * @nr_pages: number of pages from start to pin | |
1999 | * @gup_flags: flags modifying lookup behaviour | |
2000 | * @pages: array that receives pointers to the pages pinned. | |
2001 | * Should be at least nr_pages long. Or NULL, if caller | |
2002 | * only intends to ensure the pages are faulted in. | |
2003 | * @vmas: array of pointers to vmas corresponding to each page. | |
2004 | * Or NULL if the caller does not require them. | |
2005 | * @locked: pointer to lock flag indicating whether lock is held and | |
2006 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2007 | * utilised. Lock must initially be held. | |
2008 | * | |
2009 | * Returns either number of pages pinned (which may be less than the | |
2010 | * number requested), or an error. Details about the return value: | |
2011 | * | |
2012 | * -- If nr_pages is 0, returns 0. | |
2013 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
2014 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
2015 | * pages pinned. Again, this may be less than nr_pages. | |
2016 | * | |
2017 | * The caller is responsible for releasing returned @pages, via put_page(). | |
2018 | * | |
c1e8d7c6 | 2019 | * @vmas are valid only as long as mmap_lock is held. |
c4237f8b | 2020 | * |
c1e8d7c6 | 2021 | * Must be called with mmap_lock held for read or write. |
c4237f8b | 2022 | * |
adc8cb40 SJ |
2023 | * get_user_pages_remote walks a process's page tables and takes a reference |
2024 | * to each struct page that each user address corresponds to at a given | |
c4237f8b JH |
2025 | * instant. That is, it takes the page that would be accessed if a user |
2026 | * thread accesses the given user virtual address at that instant. | |
2027 | * | |
2028 | * This does not guarantee that the page exists in the user mappings when | |
adc8cb40 | 2029 | * get_user_pages_remote returns, and there may even be a completely different |
c4237f8b JH |
2030 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
2031 | * and subsequently re faulted). However it does guarantee that the page | |
2032 | * won't be freed completely. And mostly callers simply care that the page | |
2033 | * contains data that was valid *at some point in time*. Typically, an IO | |
2034 | * or similar operation cannot guarantee anything stronger anyway because | |
2035 | * locks can't be held over the syscall boundary. | |
2036 | * | |
2037 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | |
2038 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
2039 | * be called after the page is finished with, and before put_page is called. | |
2040 | * | |
adc8cb40 SJ |
2041 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
2042 | * to get a handle on the memory by some means other than accesses | |
2043 | * via the user virtual addresses. The pages may be submitted for | |
2044 | * DMA to devices or accessed via their kernel linear mapping (via the | |
2045 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. | |
c4237f8b JH |
2046 | * |
2047 | * See also get_user_pages_fast, for performance critical applications. | |
2048 | * | |
adc8cb40 | 2049 | * get_user_pages_remote should be phased out in favor of |
c4237f8b | 2050 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
adc8cb40 | 2051 | * should use get_user_pages_remote because it cannot pass |
c4237f8b JH |
2052 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
2053 | */ | |
64019a2e | 2054 | long get_user_pages_remote(struct mm_struct *mm, |
c4237f8b JH |
2055 | unsigned long start, unsigned long nr_pages, |
2056 | unsigned int gup_flags, struct page **pages, | |
2057 | struct vm_area_struct **vmas, int *locked) | |
2058 | { | |
447f3e45 | 2059 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
2060 | return -EINVAL; |
2061 | ||
64019a2e | 2062 | return __get_user_pages_remote(mm, start, nr_pages, gup_flags, |
22bf29b6 | 2063 | pages, vmas, locked); |
c4237f8b JH |
2064 | } |
2065 | EXPORT_SYMBOL(get_user_pages_remote); | |
2066 | ||
eddb1c22 | 2067 | #else /* CONFIG_MMU */ |
64019a2e | 2068 | long get_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
2069 | unsigned long start, unsigned long nr_pages, |
2070 | unsigned int gup_flags, struct page **pages, | |
2071 | struct vm_area_struct **vmas, int *locked) | |
2072 | { | |
2073 | return 0; | |
2074 | } | |
3faa52c0 | 2075 | |
64019a2e | 2076 | static long __get_user_pages_remote(struct mm_struct *mm, |
3faa52c0 JH |
2077 | unsigned long start, unsigned long nr_pages, |
2078 | unsigned int gup_flags, struct page **pages, | |
2079 | struct vm_area_struct **vmas, int *locked) | |
2080 | { | |
2081 | return 0; | |
2082 | } | |
eddb1c22 JH |
2083 | #endif /* !CONFIG_MMU */ |
2084 | ||
adc8cb40 SJ |
2085 | /** |
2086 | * get_user_pages() - pin user pages in memory | |
2087 | * @start: starting user address | |
2088 | * @nr_pages: number of pages from start to pin | |
2089 | * @gup_flags: flags modifying lookup behaviour | |
2090 | * @pages: array that receives pointers to the pages pinned. | |
2091 | * Should be at least nr_pages long. Or NULL, if caller | |
2092 | * only intends to ensure the pages are faulted in. | |
2093 | * @vmas: array of pointers to vmas corresponding to each page. | |
2094 | * Or NULL if the caller does not require them. | |
2095 | * | |
64019a2e PX |
2096 | * This is the same as get_user_pages_remote(), just with a less-flexible |
2097 | * calling convention where we assume that the mm being operated on belongs to | |
2098 | * the current task, and doesn't allow passing of a locked parameter. We also | |
2099 | * obviously don't pass FOLL_REMOTE in here. | |
932f4a63 IW |
2100 | */ |
2101 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
2102 | unsigned int gup_flags, struct page **pages, | |
2103 | struct vm_area_struct **vmas) | |
2104 | { | |
447f3e45 | 2105 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
2106 | return -EINVAL; |
2107 | ||
64019a2e | 2108 | return __gup_longterm_locked(current->mm, start, nr_pages, |
932f4a63 IW |
2109 | pages, vmas, gup_flags | FOLL_TOUCH); |
2110 | } | |
2111 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 2112 | |
adc8cb40 | 2113 | /** |
a00cda3f MCC |
2114 | * get_user_pages_locked() - variant of get_user_pages() |
2115 | * | |
2116 | * @start: starting user address | |
2117 | * @nr_pages: number of pages from start to pin | |
2118 | * @gup_flags: flags modifying lookup behaviour | |
2119 | * @pages: array that receives pointers to the pages pinned. | |
2120 | * Should be at least nr_pages long. Or NULL, if caller | |
2121 | * only intends to ensure the pages are faulted in. | |
2122 | * @locked: pointer to lock flag indicating whether lock is held and | |
2123 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2124 | * utilised. Lock must initially be held. | |
2125 | * | |
2126 | * It is suitable to replace the form: | |
acc3c8d1 | 2127 | * |
3e4e28c5 | 2128 | * mmap_read_lock(mm); |
d3649f68 | 2129 | * do_something() |
64019a2e | 2130 | * get_user_pages(mm, ..., pages, NULL); |
3e4e28c5 | 2131 | * mmap_read_unlock(mm); |
acc3c8d1 | 2132 | * |
d3649f68 | 2133 | * to: |
acc3c8d1 | 2134 | * |
d3649f68 | 2135 | * int locked = 1; |
3e4e28c5 | 2136 | * mmap_read_lock(mm); |
d3649f68 | 2137 | * do_something() |
64019a2e | 2138 | * get_user_pages_locked(mm, ..., pages, &locked); |
d3649f68 | 2139 | * if (locked) |
3e4e28c5 | 2140 | * mmap_read_unlock(mm); |
adc8cb40 | 2141 | * |
adc8cb40 SJ |
2142 | * We can leverage the VM_FAULT_RETRY functionality in the page fault |
2143 | * paths better by using either get_user_pages_locked() or | |
2144 | * get_user_pages_unlocked(). | |
2145 | * | |
acc3c8d1 | 2146 | */ |
d3649f68 CH |
2147 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
2148 | unsigned int gup_flags, struct page **pages, | |
2149 | int *locked) | |
acc3c8d1 | 2150 | { |
acc3c8d1 | 2151 | /* |
d3649f68 CH |
2152 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with |
2153 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2154 | * vmas. As there are no users of this flag in this call we simply | |
2155 | * disallow this option for now. | |
acc3c8d1 | 2156 | */ |
d3649f68 CH |
2157 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) |
2158 | return -EINVAL; | |
420c2091 JH |
2159 | /* |
2160 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
2161 | * never directly by the caller, so enforce that: | |
2162 | */ | |
2163 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
2164 | return -EINVAL; | |
acc3c8d1 | 2165 | |
64019a2e | 2166 | return __get_user_pages_locked(current->mm, start, nr_pages, |
d3649f68 CH |
2167 | pages, NULL, locked, |
2168 | gup_flags | FOLL_TOUCH); | |
acc3c8d1 | 2169 | } |
d3649f68 | 2170 | EXPORT_SYMBOL(get_user_pages_locked); |
acc3c8d1 KS |
2171 | |
2172 | /* | |
d3649f68 | 2173 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 2174 | * |
3e4e28c5 | 2175 | * mmap_read_lock(mm); |
64019a2e | 2176 | * get_user_pages(mm, ..., pages, NULL); |
3e4e28c5 | 2177 | * mmap_read_unlock(mm); |
d3649f68 CH |
2178 | * |
2179 | * with: | |
2180 | * | |
64019a2e | 2181 | * get_user_pages_unlocked(mm, ..., pages); |
d3649f68 CH |
2182 | * |
2183 | * It is functionally equivalent to get_user_pages_fast so | |
2184 | * get_user_pages_fast should be used instead if specific gup_flags | |
2185 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 2186 | */ |
d3649f68 CH |
2187 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
2188 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
2189 | { |
2190 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
2191 | int locked = 1; |
2192 | long ret; | |
acc3c8d1 | 2193 | |
d3649f68 CH |
2194 | /* |
2195 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
2196 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2197 | * vmas. As there are no users of this flag in this call we simply | |
2198 | * disallow this option for now. | |
2199 | */ | |
2200 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
2201 | return -EINVAL; | |
acc3c8d1 | 2202 | |
d8ed45c5 | 2203 | mmap_read_lock(mm); |
64019a2e | 2204 | ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, |
d3649f68 | 2205 | &locked, gup_flags | FOLL_TOUCH); |
acc3c8d1 | 2206 | if (locked) |
d8ed45c5 | 2207 | mmap_read_unlock(mm); |
d3649f68 | 2208 | return ret; |
4bbd4c77 | 2209 | } |
d3649f68 | 2210 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
2211 | |
2212 | /* | |
67a929e0 | 2213 | * Fast GUP |
2667f50e SC |
2214 | * |
2215 | * get_user_pages_fast attempts to pin user pages by walking the page | |
2216 | * tables directly and avoids taking locks. Thus the walker needs to be | |
2217 | * protected from page table pages being freed from under it, and should | |
2218 | * block any THP splits. | |
2219 | * | |
2220 | * One way to achieve this is to have the walker disable interrupts, and | |
2221 | * rely on IPIs from the TLB flushing code blocking before the page table | |
2222 | * pages are freed. This is unsuitable for architectures that do not need | |
2223 | * to broadcast an IPI when invalidating TLBs. | |
2224 | * | |
2225 | * Another way to achieve this is to batch up page table containing pages | |
2226 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
2227 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
2228 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
2229 | * (which is a relatively rare event). The code below adopts this strategy. | |
2230 | * | |
2231 | * Before activating this code, please be aware that the following assumptions | |
2232 | * are currently made: | |
2233 | * | |
ff2e6d72 | 2234 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
e585513b | 2235 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2667f50e | 2236 | * |
2667f50e SC |
2237 | * *) ptes can be read atomically by the architecture. |
2238 | * | |
2239 | * *) access_ok is sufficient to validate userspace address ranges. | |
2240 | * | |
2241 | * The last two assumptions can be relaxed by the addition of helper functions. | |
2242 | * | |
2243 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
2244 | */ | |
67a929e0 | 2245 | #ifdef CONFIG_HAVE_FAST_GUP |
3faa52c0 | 2246 | |
790c7369 | 2247 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
3b78d834 | 2248 | unsigned int flags, |
790c7369 | 2249 | struct page **pages) |
b59f65fa KS |
2250 | { |
2251 | while ((*nr) - nr_start) { | |
2252 | struct page *page = pages[--(*nr)]; | |
2253 | ||
2254 | ClearPageReferenced(page); | |
3faa52c0 JH |
2255 | if (flags & FOLL_PIN) |
2256 | unpin_user_page(page); | |
2257 | else | |
2258 | put_page(page); | |
b59f65fa KS |
2259 | } |
2260 | } | |
2261 | ||
3010a5ea | 2262 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 2263 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 2264 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2265 | { |
b59f65fa KS |
2266 | struct dev_pagemap *pgmap = NULL; |
2267 | int nr_start = *nr, ret = 0; | |
2667f50e | 2268 | pte_t *ptep, *ptem; |
2667f50e SC |
2269 | |
2270 | ptem = ptep = pte_offset_map(&pmd, addr); | |
2271 | do { | |
2a4a06da | 2272 | pte_t pte = ptep_get_lockless(ptep); |
7aef4172 | 2273 | struct page *head, *page; |
2667f50e SC |
2274 | |
2275 | /* | |
2276 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 2277 | * path using the pte_protnone check. |
2667f50e | 2278 | */ |
e7884f8e KS |
2279 | if (pte_protnone(pte)) |
2280 | goto pte_unmap; | |
2281 | ||
b798bec4 | 2282 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
2283 | goto pte_unmap; |
2284 | ||
b59f65fa | 2285 | if (pte_devmap(pte)) { |
7af75561 IW |
2286 | if (unlikely(flags & FOLL_LONGTERM)) |
2287 | goto pte_unmap; | |
2288 | ||
b59f65fa KS |
2289 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
2290 | if (unlikely(!pgmap)) { | |
3b78d834 | 2291 | undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2292 | goto pte_unmap; |
2293 | } | |
2294 | } else if (pte_special(pte)) | |
2667f50e SC |
2295 | goto pte_unmap; |
2296 | ||
2297 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2298 | page = pte_page(pte); | |
2299 | ||
3faa52c0 | 2300 | head = try_grab_compound_head(page, 1, flags); |
8fde12ca | 2301 | if (!head) |
2667f50e SC |
2302 | goto pte_unmap; |
2303 | ||
1507f512 MR |
2304 | if (unlikely(page_is_secretmem(page))) { |
2305 | put_compound_head(head, 1, flags); | |
2306 | goto pte_unmap; | |
2307 | } | |
2308 | ||
2667f50e | 2309 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { |
3faa52c0 | 2310 | put_compound_head(head, 1, flags); |
2667f50e SC |
2311 | goto pte_unmap; |
2312 | } | |
2313 | ||
7aef4172 | 2314 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 | 2315 | |
f28d4363 CI |
2316 | /* |
2317 | * We need to make the page accessible if and only if we are | |
2318 | * going to access its content (the FOLL_PIN case). Please | |
2319 | * see Documentation/core-api/pin_user_pages.rst for | |
2320 | * details. | |
2321 | */ | |
2322 | if (flags & FOLL_PIN) { | |
2323 | ret = arch_make_page_accessible(page); | |
2324 | if (ret) { | |
2325 | unpin_user_page(page); | |
2326 | goto pte_unmap; | |
2327 | } | |
2328 | } | |
e9348053 | 2329 | SetPageReferenced(page); |
2667f50e SC |
2330 | pages[*nr] = page; |
2331 | (*nr)++; | |
2332 | ||
2333 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
2334 | ||
2335 | ret = 1; | |
2336 | ||
2337 | pte_unmap: | |
832d7aa0 CH |
2338 | if (pgmap) |
2339 | put_dev_pagemap(pgmap); | |
2667f50e SC |
2340 | pte_unmap(ptem); |
2341 | return ret; | |
2342 | } | |
2343 | #else | |
2344 | ||
2345 | /* | |
2346 | * If we can't determine whether or not a pte is special, then fail immediately | |
2347 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
2348 | * to be special. | |
2349 | * | |
2350 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
dadbb612 | 2351 | * get_user_pages_fast_only implementation that can pin pages. Thus it's still |
2667f50e SC |
2352 | * useful to have gup_huge_pmd even if we can't operate on ptes. |
2353 | */ | |
2354 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 2355 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2356 | { |
2357 | return 0; | |
2358 | } | |
3010a5ea | 2359 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 2360 | |
17596731 | 2361 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa | 2362 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
86dfbed4 JH |
2363 | unsigned long end, unsigned int flags, |
2364 | struct page **pages, int *nr) | |
b59f65fa KS |
2365 | { |
2366 | int nr_start = *nr; | |
2367 | struct dev_pagemap *pgmap = NULL; | |
2368 | ||
2369 | do { | |
2370 | struct page *page = pfn_to_page(pfn); | |
2371 | ||
2372 | pgmap = get_dev_pagemap(pfn, pgmap); | |
2373 | if (unlikely(!pgmap)) { | |
3b78d834 | 2374 | undo_dev_pagemap(nr, nr_start, flags, pages); |
6401c4eb | 2375 | break; |
b59f65fa KS |
2376 | } |
2377 | SetPageReferenced(page); | |
2378 | pages[*nr] = page; | |
3faa52c0 JH |
2379 | if (unlikely(!try_grab_page(page, flags))) { |
2380 | undo_dev_pagemap(nr, nr_start, flags, pages); | |
6401c4eb | 2381 | break; |
3faa52c0 | 2382 | } |
b59f65fa KS |
2383 | (*nr)++; |
2384 | pfn++; | |
2385 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 | 2386 | |
6401c4eb | 2387 | put_dev_pagemap(pgmap); |
20b7fee7 | 2388 | return addr == end; |
b59f65fa KS |
2389 | } |
2390 | ||
a9b6de77 | 2391 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2392 | unsigned long end, unsigned int flags, |
2393 | struct page **pages, int *nr) | |
b59f65fa KS |
2394 | { |
2395 | unsigned long fault_pfn; | |
a9b6de77 DW |
2396 | int nr_start = *nr; |
2397 | ||
2398 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2399 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2400 | return 0; |
b59f65fa | 2401 | |
a9b6de77 | 2402 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
3b78d834 | 2403 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2404 | return 0; |
2405 | } | |
2406 | return 1; | |
b59f65fa KS |
2407 | } |
2408 | ||
a9b6de77 | 2409 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2410 | unsigned long end, unsigned int flags, |
2411 | struct page **pages, int *nr) | |
b59f65fa KS |
2412 | { |
2413 | unsigned long fault_pfn; | |
a9b6de77 DW |
2414 | int nr_start = *nr; |
2415 | ||
2416 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2417 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2418 | return 0; |
b59f65fa | 2419 | |
a9b6de77 | 2420 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
3b78d834 | 2421 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2422 | return 0; |
2423 | } | |
2424 | return 1; | |
b59f65fa KS |
2425 | } |
2426 | #else | |
a9b6de77 | 2427 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2428 | unsigned long end, unsigned int flags, |
2429 | struct page **pages, int *nr) | |
b59f65fa KS |
2430 | { |
2431 | BUILD_BUG(); | |
2432 | return 0; | |
2433 | } | |
2434 | ||
a9b6de77 | 2435 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2436 | unsigned long end, unsigned int flags, |
2437 | struct page **pages, int *nr) | |
b59f65fa KS |
2438 | { |
2439 | BUILD_BUG(); | |
2440 | return 0; | |
2441 | } | |
2442 | #endif | |
2443 | ||
a43e9820 JH |
2444 | static int record_subpages(struct page *page, unsigned long addr, |
2445 | unsigned long end, struct page **pages) | |
2446 | { | |
2447 | int nr; | |
2448 | ||
2449 | for (nr = 0; addr != end; addr += PAGE_SIZE) | |
2450 | pages[nr++] = page++; | |
2451 | ||
2452 | return nr; | |
2453 | } | |
2454 | ||
cbd34da7 CH |
2455 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
2456 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
2457 | unsigned long sz) | |
2458 | { | |
2459 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
2460 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
2461 | } | |
2462 | ||
2463 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
0cd22afd JH |
2464 | unsigned long end, unsigned int flags, |
2465 | struct page **pages, int *nr) | |
cbd34da7 CH |
2466 | { |
2467 | unsigned long pte_end; | |
2468 | struct page *head, *page; | |
2469 | pte_t pte; | |
2470 | int refs; | |
2471 | ||
2472 | pte_end = (addr + sz) & ~(sz-1); | |
2473 | if (pte_end < end) | |
2474 | end = pte_end; | |
2475 | ||
55ca2263 | 2476 | pte = huge_ptep_get(ptep); |
cbd34da7 | 2477 | |
0cd22afd | 2478 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
cbd34da7 CH |
2479 | return 0; |
2480 | ||
2481 | /* hugepages are never "special" */ | |
2482 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2483 | ||
cbd34da7 | 2484 | head = pte_page(pte); |
cbd34da7 | 2485 | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); |
a43e9820 | 2486 | refs = record_subpages(page, addr, end, pages + *nr); |
cbd34da7 | 2487 | |
3faa52c0 | 2488 | head = try_grab_compound_head(head, refs, flags); |
a43e9820 | 2489 | if (!head) |
cbd34da7 | 2490 | return 0; |
cbd34da7 CH |
2491 | |
2492 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
3b78d834 | 2493 | put_compound_head(head, refs, flags); |
cbd34da7 CH |
2494 | return 0; |
2495 | } | |
2496 | ||
a43e9820 | 2497 | *nr += refs; |
520b4a44 | 2498 | SetPageReferenced(head); |
cbd34da7 CH |
2499 | return 1; |
2500 | } | |
2501 | ||
2502 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2503 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2504 | struct page **pages, int *nr) |
2505 | { | |
2506 | pte_t *ptep; | |
2507 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2508 | unsigned long next; | |
2509 | ||
2510 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2511 | do { | |
2512 | next = hugepte_addr_end(addr, end, sz); | |
0cd22afd | 2513 | if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) |
cbd34da7 CH |
2514 | return 0; |
2515 | } while (ptep++, addr = next, addr != end); | |
2516 | ||
2517 | return 1; | |
2518 | } | |
2519 | #else | |
2520 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2521 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2522 | struct page **pages, int *nr) |
2523 | { | |
2524 | return 0; | |
2525 | } | |
2526 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2527 | ||
2667f50e | 2528 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
0cd22afd JH |
2529 | unsigned long end, unsigned int flags, |
2530 | struct page **pages, int *nr) | |
2667f50e | 2531 | { |
ddc58f27 | 2532 | struct page *head, *page; |
2667f50e SC |
2533 | int refs; |
2534 | ||
b798bec4 | 2535 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2536 | return 0; |
2537 | ||
7af75561 IW |
2538 | if (pmd_devmap(orig)) { |
2539 | if (unlikely(flags & FOLL_LONGTERM)) | |
2540 | return 0; | |
86dfbed4 JH |
2541 | return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, |
2542 | pages, nr); | |
7af75561 | 2543 | } |
b59f65fa | 2544 | |
d63206ee | 2545 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2546 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2547 | |
3faa52c0 | 2548 | head = try_grab_compound_head(pmd_page(orig), refs, flags); |
a43e9820 | 2549 | if (!head) |
2667f50e | 2550 | return 0; |
2667f50e SC |
2551 | |
2552 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
3b78d834 | 2553 | put_compound_head(head, refs, flags); |
2667f50e SC |
2554 | return 0; |
2555 | } | |
2556 | ||
a43e9820 | 2557 | *nr += refs; |
e9348053 | 2558 | SetPageReferenced(head); |
2667f50e SC |
2559 | return 1; |
2560 | } | |
2561 | ||
2562 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
86dfbed4 JH |
2563 | unsigned long end, unsigned int flags, |
2564 | struct page **pages, int *nr) | |
2667f50e | 2565 | { |
ddc58f27 | 2566 | struct page *head, *page; |
2667f50e SC |
2567 | int refs; |
2568 | ||
b798bec4 | 2569 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2570 | return 0; |
2571 | ||
7af75561 IW |
2572 | if (pud_devmap(orig)) { |
2573 | if (unlikely(flags & FOLL_LONGTERM)) | |
2574 | return 0; | |
86dfbed4 JH |
2575 | return __gup_device_huge_pud(orig, pudp, addr, end, flags, |
2576 | pages, nr); | |
7af75561 | 2577 | } |
b59f65fa | 2578 | |
d63206ee | 2579 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2580 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2581 | |
3faa52c0 | 2582 | head = try_grab_compound_head(pud_page(orig), refs, flags); |
a43e9820 | 2583 | if (!head) |
2667f50e | 2584 | return 0; |
2667f50e SC |
2585 | |
2586 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
3b78d834 | 2587 | put_compound_head(head, refs, flags); |
2667f50e SC |
2588 | return 0; |
2589 | } | |
2590 | ||
a43e9820 | 2591 | *nr += refs; |
e9348053 | 2592 | SetPageReferenced(head); |
2667f50e SC |
2593 | return 1; |
2594 | } | |
2595 | ||
f30c59e9 | 2596 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2597 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2598 | struct page **pages, int *nr) |
2599 | { | |
2600 | int refs; | |
ddc58f27 | 2601 | struct page *head, *page; |
f30c59e9 | 2602 | |
b798bec4 | 2603 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2604 | return 0; |
2605 | ||
b59f65fa | 2606 | BUILD_BUG_ON(pgd_devmap(orig)); |
a43e9820 | 2607 | |
d63206ee | 2608 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
a43e9820 | 2609 | refs = record_subpages(page, addr, end, pages + *nr); |
f30c59e9 | 2610 | |
3faa52c0 | 2611 | head = try_grab_compound_head(pgd_page(orig), refs, flags); |
a43e9820 | 2612 | if (!head) |
f30c59e9 | 2613 | return 0; |
f30c59e9 AK |
2614 | |
2615 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
3b78d834 | 2616 | put_compound_head(head, refs, flags); |
f30c59e9 AK |
2617 | return 0; |
2618 | } | |
2619 | ||
a43e9820 | 2620 | *nr += refs; |
e9348053 | 2621 | SetPageReferenced(head); |
f30c59e9 AK |
2622 | return 1; |
2623 | } | |
2624 | ||
d3f7b1bb | 2625 | static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2626 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2627 | { |
2628 | unsigned long next; | |
2629 | pmd_t *pmdp; | |
2630 | ||
d3f7b1bb | 2631 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
2667f50e | 2632 | do { |
38c5ce93 | 2633 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2634 | |
2635 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2636 | if (!pmd_present(pmd)) |
2667f50e SC |
2637 | return 0; |
2638 | ||
414fd080 YZ |
2639 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2640 | pmd_devmap(pmd))) { | |
2667f50e SC |
2641 | /* |
2642 | * NUMA hinting faults need to be handled in the GUP | |
2643 | * slowpath for accounting purposes and so that they | |
2644 | * can be serialised against THP migration. | |
2645 | */ | |
8a0516ed | 2646 | if (pmd_protnone(pmd)) |
2667f50e SC |
2647 | return 0; |
2648 | ||
b798bec4 | 2649 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2650 | pages, nr)) |
2651 | return 0; | |
2652 | ||
f30c59e9 AK |
2653 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2654 | /* | |
2655 | * architecture have different format for hugetlbfs | |
2656 | * pmd format and THP pmd format | |
2657 | */ | |
2658 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2659 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2660 | return 0; |
b798bec4 | 2661 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2662 | return 0; |
2667f50e SC |
2663 | } while (pmdp++, addr = next, addr != end); |
2664 | ||
2665 | return 1; | |
2666 | } | |
2667 | ||
d3f7b1bb | 2668 | static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2669 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2670 | { |
2671 | unsigned long next; | |
2672 | pud_t *pudp; | |
2673 | ||
d3f7b1bb | 2674 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
2667f50e | 2675 | do { |
e37c6982 | 2676 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2677 | |
2678 | next = pud_addr_end(addr, end); | |
15494520 | 2679 | if (unlikely(!pud_present(pud))) |
2667f50e | 2680 | return 0; |
f30c59e9 | 2681 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2682 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2683 | pages, nr)) |
2684 | return 0; | |
2685 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2686 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2687 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2688 | return 0; |
d3f7b1bb | 2689 | } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2690 | return 0; |
2691 | } while (pudp++, addr = next, addr != end); | |
2692 | ||
2693 | return 1; | |
2694 | } | |
2695 | ||
d3f7b1bb | 2696 | static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2697 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2698 | { |
2699 | unsigned long next; | |
2700 | p4d_t *p4dp; | |
2701 | ||
d3f7b1bb | 2702 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
c2febafc KS |
2703 | do { |
2704 | p4d_t p4d = READ_ONCE(*p4dp); | |
2705 | ||
2706 | next = p4d_addr_end(addr, end); | |
2707 | if (p4d_none(p4d)) | |
2708 | return 0; | |
2709 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2710 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2711 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2712 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2713 | return 0; |
d3f7b1bb | 2714 | } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2715 | return 0; |
2716 | } while (p4dp++, addr = next, addr != end); | |
2717 | ||
2718 | return 1; | |
2719 | } | |
2720 | ||
5b65c467 | 2721 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2722 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2723 | { |
2724 | unsigned long next; | |
2725 | pgd_t *pgdp; | |
2726 | ||
2727 | pgdp = pgd_offset(current->mm, addr); | |
2728 | do { | |
2729 | pgd_t pgd = READ_ONCE(*pgdp); | |
2730 | ||
2731 | next = pgd_addr_end(addr, end); | |
2732 | if (pgd_none(pgd)) | |
2733 | return; | |
2734 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2735 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2736 | pages, nr)) |
2737 | return; | |
2738 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2739 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2740 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2741 | return; |
d3f7b1bb | 2742 | } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2743 | return; |
2744 | } while (pgdp++, addr = next, addr != end); | |
2745 | } | |
050a9adc CH |
2746 | #else |
2747 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2748 | unsigned int flags, struct page **pages, int *nr) | |
2749 | { | |
2750 | } | |
2751 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2752 | |
2753 | #ifndef gup_fast_permitted | |
2754 | /* | |
dadbb612 | 2755 | * Check if it's allowed to use get_user_pages_fast_only() for the range, or |
5b65c467 KS |
2756 | * we need to fall back to the slow version: |
2757 | */ | |
26f4c328 | 2758 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2759 | { |
26f4c328 | 2760 | return true; |
5b65c467 KS |
2761 | } |
2762 | #endif | |
2763 | ||
7af75561 IW |
2764 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2765 | unsigned int gup_flags, struct page **pages) | |
2766 | { | |
2767 | int ret; | |
2768 | ||
2769 | /* | |
2770 | * FIXME: FOLL_LONGTERM does not work with | |
2771 | * get_user_pages_unlocked() (see comments in that function) | |
2772 | */ | |
2773 | if (gup_flags & FOLL_LONGTERM) { | |
d8ed45c5 | 2774 | mmap_read_lock(current->mm); |
64019a2e | 2775 | ret = __gup_longterm_locked(current->mm, |
7af75561 IW |
2776 | start, nr_pages, |
2777 | pages, NULL, gup_flags); | |
d8ed45c5 | 2778 | mmap_read_unlock(current->mm); |
7af75561 IW |
2779 | } else { |
2780 | ret = get_user_pages_unlocked(start, nr_pages, | |
2781 | pages, gup_flags); | |
2782 | } | |
2783 | ||
2784 | return ret; | |
2785 | } | |
2786 | ||
c28b1fc7 JG |
2787 | static unsigned long lockless_pages_from_mm(unsigned long start, |
2788 | unsigned long end, | |
2789 | unsigned int gup_flags, | |
2790 | struct page **pages) | |
2791 | { | |
2792 | unsigned long flags; | |
2793 | int nr_pinned = 0; | |
57efa1fe | 2794 | unsigned seq; |
c28b1fc7 JG |
2795 | |
2796 | if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || | |
2797 | !gup_fast_permitted(start, end)) | |
2798 | return 0; | |
2799 | ||
57efa1fe JG |
2800 | if (gup_flags & FOLL_PIN) { |
2801 | seq = raw_read_seqcount(¤t->mm->write_protect_seq); | |
2802 | if (seq & 1) | |
2803 | return 0; | |
2804 | } | |
2805 | ||
c28b1fc7 JG |
2806 | /* |
2807 | * Disable interrupts. The nested form is used, in order to allow full, | |
2808 | * general purpose use of this routine. | |
2809 | * | |
2810 | * With interrupts disabled, we block page table pages from being freed | |
2811 | * from under us. See struct mmu_table_batch comments in | |
2812 | * include/asm-generic/tlb.h for more details. | |
2813 | * | |
2814 | * We do not adopt an rcu_read_lock() here as we also want to block IPIs | |
2815 | * that come from THPs splitting. | |
2816 | */ | |
2817 | local_irq_save(flags); | |
2818 | gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); | |
2819 | local_irq_restore(flags); | |
57efa1fe JG |
2820 | |
2821 | /* | |
2822 | * When pinning pages for DMA there could be a concurrent write protect | |
2823 | * from fork() via copy_page_range(), in this case always fail fast GUP. | |
2824 | */ | |
2825 | if (gup_flags & FOLL_PIN) { | |
2826 | if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { | |
2827 | unpin_user_pages(pages, nr_pinned); | |
2828 | return 0; | |
2829 | } | |
2830 | } | |
c28b1fc7 JG |
2831 | return nr_pinned; |
2832 | } | |
2833 | ||
2834 | static int internal_get_user_pages_fast(unsigned long start, | |
2835 | unsigned long nr_pages, | |
eddb1c22 JH |
2836 | unsigned int gup_flags, |
2837 | struct page **pages) | |
2667f50e | 2838 | { |
c28b1fc7 JG |
2839 | unsigned long len, end; |
2840 | unsigned long nr_pinned; | |
2841 | int ret; | |
2667f50e | 2842 | |
f4000fdf | 2843 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
376a34ef | 2844 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
55b8fe70 | 2845 | FOLL_FAST_ONLY | FOLL_NOFAULT))) |
817be129 CH |
2846 | return -EINVAL; |
2847 | ||
a458b76a AA |
2848 | if (gup_flags & FOLL_PIN) |
2849 | mm_set_has_pinned_flag(¤t->mm->flags); | |
008cfe44 | 2850 | |
f81cd178 | 2851 | if (!(gup_flags & FOLL_FAST_ONLY)) |
da1c55f1 | 2852 | might_lock_read(¤t->mm->mmap_lock); |
f81cd178 | 2853 | |
f455c854 | 2854 | start = untagged_addr(start) & PAGE_MASK; |
c28b1fc7 JG |
2855 | len = nr_pages << PAGE_SHIFT; |
2856 | if (check_add_overflow(start, len, &end)) | |
c61611f7 | 2857 | return 0; |
96d4f267 | 2858 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2859 | return -EFAULT; |
73e10a61 | 2860 | |
c28b1fc7 JG |
2861 | nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); |
2862 | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) | |
2863 | return nr_pinned; | |
2667f50e | 2864 | |
c28b1fc7 JG |
2865 | /* Slow path: try to get the remaining pages with get_user_pages */ |
2866 | start += nr_pinned << PAGE_SHIFT; | |
2867 | pages += nr_pinned; | |
2868 | ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, | |
2869 | pages); | |
2870 | if (ret < 0) { | |
2871 | /* | |
2872 | * The caller has to unpin the pages we already pinned so | |
2873 | * returning -errno is not an option | |
2874 | */ | |
2875 | if (nr_pinned) | |
2876 | return nr_pinned; | |
2877 | return ret; | |
2667f50e | 2878 | } |
c28b1fc7 | 2879 | return ret + nr_pinned; |
2667f50e | 2880 | } |
c28b1fc7 | 2881 | |
dadbb612 SJ |
2882 | /** |
2883 | * get_user_pages_fast_only() - pin user pages in memory | |
2884 | * @start: starting user address | |
2885 | * @nr_pages: number of pages from start to pin | |
2886 | * @gup_flags: flags modifying pin behaviour | |
2887 | * @pages: array that receives pointers to the pages pinned. | |
2888 | * Should be at least nr_pages long. | |
2889 | * | |
9e1f0580 JH |
2890 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
2891 | * the regular GUP. | |
2892 | * Note a difference with get_user_pages_fast: this always returns the | |
2893 | * number of pages pinned, 0 if no pages were pinned. | |
2894 | * | |
2895 | * If the architecture does not support this function, simply return with no | |
2896 | * pages pinned. | |
2897 | * | |
2898 | * Careful, careful! COW breaking can go either way, so a non-write | |
2899 | * access can get ambiguous page results. If you call this function without | |
2900 | * 'write' set, you'd better be sure that you're ok with that ambiguity. | |
2901 | */ | |
dadbb612 SJ |
2902 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
2903 | unsigned int gup_flags, struct page **pages) | |
9e1f0580 | 2904 | { |
376a34ef | 2905 | int nr_pinned; |
9e1f0580 JH |
2906 | /* |
2907 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | |
2908 | * because gup fast is always a "pin with a +1 page refcount" request. | |
376a34ef JH |
2909 | * |
2910 | * FOLL_FAST_ONLY is required in order to match the API description of | |
2911 | * this routine: no fall back to regular ("slow") GUP. | |
9e1f0580 | 2912 | */ |
dadbb612 | 2913 | gup_flags |= FOLL_GET | FOLL_FAST_ONLY; |
9e1f0580 | 2914 | |
376a34ef JH |
2915 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, |
2916 | pages); | |
9e1f0580 JH |
2917 | |
2918 | /* | |
376a34ef JH |
2919 | * As specified in the API description above, this routine is not |
2920 | * allowed to return negative values. However, the common core | |
2921 | * routine internal_get_user_pages_fast() *can* return -errno. | |
2922 | * Therefore, correct for that here: | |
9e1f0580 | 2923 | */ |
376a34ef JH |
2924 | if (nr_pinned < 0) |
2925 | nr_pinned = 0; | |
9e1f0580 JH |
2926 | |
2927 | return nr_pinned; | |
2928 | } | |
dadbb612 | 2929 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); |
9e1f0580 | 2930 | |
eddb1c22 JH |
2931 | /** |
2932 | * get_user_pages_fast() - pin user pages in memory | |
3faa52c0 JH |
2933 | * @start: starting user address |
2934 | * @nr_pages: number of pages from start to pin | |
2935 | * @gup_flags: flags modifying pin behaviour | |
2936 | * @pages: array that receives pointers to the pages pinned. | |
2937 | * Should be at least nr_pages long. | |
eddb1c22 | 2938 | * |
c1e8d7c6 | 2939 | * Attempt to pin user pages in memory without taking mm->mmap_lock. |
eddb1c22 JH |
2940 | * If not successful, it will fall back to taking the lock and |
2941 | * calling get_user_pages(). | |
2942 | * | |
2943 | * Returns number of pages pinned. This may be fewer than the number requested. | |
2944 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | |
2945 | * -errno. | |
2946 | */ | |
2947 | int get_user_pages_fast(unsigned long start, int nr_pages, | |
2948 | unsigned int gup_flags, struct page **pages) | |
2949 | { | |
447f3e45 | 2950 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
2951 | return -EINVAL; |
2952 | ||
94202f12 JH |
2953 | /* |
2954 | * The caller may or may not have explicitly set FOLL_GET; either way is | |
2955 | * OK. However, internally (within mm/gup.c), gup fast variants must set | |
2956 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | |
2957 | * request. | |
2958 | */ | |
2959 | gup_flags |= FOLL_GET; | |
eddb1c22 JH |
2960 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
2961 | } | |
050a9adc | 2962 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
eddb1c22 JH |
2963 | |
2964 | /** | |
2965 | * pin_user_pages_fast() - pin user pages in memory without taking locks | |
2966 | * | |
3faa52c0 JH |
2967 | * @start: starting user address |
2968 | * @nr_pages: number of pages from start to pin | |
2969 | * @gup_flags: flags modifying pin behaviour | |
2970 | * @pages: array that receives pointers to the pages pinned. | |
2971 | * Should be at least nr_pages long. | |
2972 | * | |
2973 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | |
2974 | * get_user_pages_fast() for documentation on the function arguments, because | |
2975 | * the arguments here are identical. | |
2976 | * | |
2977 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 2978 | * see Documentation/core-api/pin_user_pages.rst for further details. |
eddb1c22 JH |
2979 | */ |
2980 | int pin_user_pages_fast(unsigned long start, int nr_pages, | |
2981 | unsigned int gup_flags, struct page **pages) | |
2982 | { | |
3faa52c0 JH |
2983 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2984 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2985 | return -EINVAL; | |
2986 | ||
2987 | gup_flags |= FOLL_PIN; | |
2988 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | |
eddb1c22 JH |
2989 | } |
2990 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | |
2991 | ||
104acc32 | 2992 | /* |
dadbb612 SJ |
2993 | * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior |
2994 | * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. | |
104acc32 JH |
2995 | * |
2996 | * The API rules are the same, too: no negative values may be returned. | |
2997 | */ | |
2998 | int pin_user_pages_fast_only(unsigned long start, int nr_pages, | |
2999 | unsigned int gup_flags, struct page **pages) | |
3000 | { | |
3001 | int nr_pinned; | |
3002 | ||
3003 | /* | |
3004 | * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API | |
3005 | * rules require returning 0, rather than -errno: | |
3006 | */ | |
3007 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3008 | return 0; | |
3009 | /* | |
3010 | * FOLL_FAST_ONLY is required in order to match the API description of | |
3011 | * this routine: no fall back to regular ("slow") GUP. | |
3012 | */ | |
3013 | gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); | |
3014 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, | |
3015 | pages); | |
3016 | /* | |
3017 | * This routine is not allowed to return negative values. However, | |
3018 | * internal_get_user_pages_fast() *can* return -errno. Therefore, | |
3019 | * correct for that here: | |
3020 | */ | |
3021 | if (nr_pinned < 0) | |
3022 | nr_pinned = 0; | |
3023 | ||
3024 | return nr_pinned; | |
3025 | } | |
3026 | EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); | |
3027 | ||
eddb1c22 | 3028 | /** |
64019a2e | 3029 | * pin_user_pages_remote() - pin pages of a remote process |
eddb1c22 | 3030 | * |
3faa52c0 JH |
3031 | * @mm: mm_struct of target mm |
3032 | * @start: starting user address | |
3033 | * @nr_pages: number of pages from start to pin | |
3034 | * @gup_flags: flags modifying lookup behaviour | |
3035 | * @pages: array that receives pointers to the pages pinned. | |
3036 | * Should be at least nr_pages long. Or NULL, if caller | |
3037 | * only intends to ensure the pages are faulted in. | |
3038 | * @vmas: array of pointers to vmas corresponding to each page. | |
3039 | * Or NULL if the caller does not require them. | |
3040 | * @locked: pointer to lock flag indicating whether lock is held and | |
3041 | * subsequently whether VM_FAULT_RETRY functionality can be | |
3042 | * utilised. Lock must initially be held. | |
3043 | * | |
3044 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | |
3045 | * get_user_pages_remote() for documentation on the function arguments, because | |
3046 | * the arguments here are identical. | |
3047 | * | |
3048 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3049 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 | 3050 | */ |
64019a2e | 3051 | long pin_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
3052 | unsigned long start, unsigned long nr_pages, |
3053 | unsigned int gup_flags, struct page **pages, | |
3054 | struct vm_area_struct **vmas, int *locked) | |
3055 | { | |
3faa52c0 JH |
3056 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
3057 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3058 | return -EINVAL; | |
3059 | ||
3060 | gup_flags |= FOLL_PIN; | |
64019a2e | 3061 | return __get_user_pages_remote(mm, start, nr_pages, gup_flags, |
3faa52c0 | 3062 | pages, vmas, locked); |
eddb1c22 JH |
3063 | } |
3064 | EXPORT_SYMBOL(pin_user_pages_remote); | |
3065 | ||
3066 | /** | |
3067 | * pin_user_pages() - pin user pages in memory for use by other devices | |
3068 | * | |
3faa52c0 JH |
3069 | * @start: starting user address |
3070 | * @nr_pages: number of pages from start to pin | |
3071 | * @gup_flags: flags modifying lookup behaviour | |
3072 | * @pages: array that receives pointers to the pages pinned. | |
3073 | * Should be at least nr_pages long. Or NULL, if caller | |
3074 | * only intends to ensure the pages are faulted in. | |
3075 | * @vmas: array of pointers to vmas corresponding to each page. | |
3076 | * Or NULL if the caller does not require them. | |
3077 | * | |
3078 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | |
3079 | * FOLL_PIN is set. | |
3080 | * | |
3081 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3082 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 JH |
3083 | */ |
3084 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | |
3085 | unsigned int gup_flags, struct page **pages, | |
3086 | struct vm_area_struct **vmas) | |
3087 | { | |
3faa52c0 JH |
3088 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
3089 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3090 | return -EINVAL; | |
3091 | ||
3092 | gup_flags |= FOLL_PIN; | |
64019a2e | 3093 | return __gup_longterm_locked(current->mm, start, nr_pages, |
3faa52c0 | 3094 | pages, vmas, gup_flags); |
eddb1c22 JH |
3095 | } |
3096 | EXPORT_SYMBOL(pin_user_pages); | |
91429023 JH |
3097 | |
3098 | /* | |
3099 | * pin_user_pages_unlocked() is the FOLL_PIN variant of | |
3100 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets | |
3101 | * FOLL_PIN and rejects FOLL_GET. | |
3102 | */ | |
3103 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | |
3104 | struct page **pages, unsigned int gup_flags) | |
3105 | { | |
3106 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
3107 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3108 | return -EINVAL; | |
3109 | ||
3110 | gup_flags |= FOLL_PIN; | |
3111 | return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); | |
3112 | } | |
3113 | EXPORT_SYMBOL(pin_user_pages_unlocked); | |
420c2091 JH |
3114 | |
3115 | /* | |
3116 | * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). | |
3117 | * Behavior is the same, except that this one sets FOLL_PIN and rejects | |
3118 | * FOLL_GET. | |
3119 | */ | |
3120 | long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, | |
3121 | unsigned int gup_flags, struct page **pages, | |
3122 | int *locked) | |
3123 | { | |
3124 | /* | |
3125 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
3126 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
3127 | * vmas. As there are no users of this flag in this call we simply | |
3128 | * disallow this option for now. | |
3129 | */ | |
3130 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
3131 | return -EINVAL; | |
3132 | ||
3133 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
3134 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3135 | return -EINVAL; | |
3136 | ||
3137 | gup_flags |= FOLL_PIN; | |
64019a2e | 3138 | return __get_user_pages_locked(current->mm, start, nr_pages, |
420c2091 JH |
3139 | pages, NULL, locked, |
3140 | gup_flags | FOLL_TOUCH); | |
3141 | } | |
3142 | EXPORT_SYMBOL(pin_user_pages_locked); |