]> Git Repo - linux.git/blame - mm/gup.c
RDMA/umem: batch page unpin in __ib_umem_release()
[linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
0fa5bc40
JM
81__maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs, unsigned int flags)
3faa52c0
JH
83{
84 if (flags & FOLL_GET)
85 return try_get_compound_head(page, refs);
86 else if (flags & FOLL_PIN) {
1970dc6f
JH
87 int orig_refs = refs;
88
df3a0a21
PL
89 /*
90 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
91 * path, so fail and let the caller fall back to the slow path.
92 */
93 if (unlikely(flags & FOLL_LONGTERM) &&
94 is_migrate_cma_page(page))
95 return NULL;
96
47e29d32
JH
97 /*
98 * When pinning a compound page of order > 1 (which is what
99 * hpage_pincount_available() checks for), use an exact count to
100 * track it, via hpage_pincount_add/_sub().
101 *
102 * However, be sure to *also* increment the normal page refcount
103 * field at least once, so that the page really is pinned.
104 */
105 if (!hpage_pincount_available(page))
106 refs *= GUP_PIN_COUNTING_BIAS;
107
108 page = try_get_compound_head(page, refs);
109 if (!page)
110 return NULL;
111
112 if (hpage_pincount_available(page))
113 hpage_pincount_add(page, refs);
114
1970dc6f
JH
115 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
116 orig_refs);
117
47e29d32 118 return page;
3faa52c0
JH
119 }
120
121 WARN_ON_ONCE(1);
122 return NULL;
123}
124
4509b42c
JG
125static void put_compound_head(struct page *page, int refs, unsigned int flags)
126{
127 if (flags & FOLL_PIN) {
128 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
129 refs);
130
131 if (hpage_pincount_available(page))
132 hpage_pincount_sub(page, refs);
133 else
134 refs *= GUP_PIN_COUNTING_BIAS;
135 }
136
137 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
138 /*
139 * Calling put_page() for each ref is unnecessarily slow. Only the last
140 * ref needs a put_page().
141 */
142 if (refs > 1)
143 page_ref_sub(page, refs - 1);
144 put_page(page);
145}
146
3faa52c0
JH
147/**
148 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
149 *
150 * This might not do anything at all, depending on the flags argument.
151 *
152 * "grab" names in this file mean, "look at flags to decide whether to use
153 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
154 *
155 * @page: pointer to page to be grabbed
156 * @flags: gup flags: these are the FOLL_* flag values.
157 *
158 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
159 * time. Cases:
160 *
161 * FOLL_GET: page's refcount will be incremented by 1.
162 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
163 *
164 * Return: true for success, or if no action was required (if neither FOLL_PIN
165 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
166 * FOLL_PIN was set, but the page could not be grabbed.
167 */
168bool __must_check try_grab_page(struct page *page, unsigned int flags)
169{
170 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
171
172 if (flags & FOLL_GET)
173 return try_get_page(page);
174 else if (flags & FOLL_PIN) {
47e29d32
JH
175 int refs = 1;
176
3faa52c0
JH
177 page = compound_head(page);
178
179 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
180 return false;
181
47e29d32
JH
182 if (hpage_pincount_available(page))
183 hpage_pincount_add(page, 1);
184 else
185 refs = GUP_PIN_COUNTING_BIAS;
186
187 /*
188 * Similar to try_grab_compound_head(): even if using the
189 * hpage_pincount_add/_sub() routines, be sure to
190 * *also* increment the normal page refcount field at least
191 * once, so that the page really is pinned.
192 */
193 page_ref_add(page, refs);
1970dc6f
JH
194
195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
196 }
197
198 return true;
199}
200
3faa52c0
JH
201/**
202 * unpin_user_page() - release a dma-pinned page
203 * @page: pointer to page to be released
204 *
205 * Pages that were pinned via pin_user_pages*() must be released via either
206 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
207 * that such pages can be separately tracked and uniquely handled. In
208 * particular, interactions with RDMA and filesystems need special handling.
209 */
210void unpin_user_page(struct page *page)
211{
4509b42c 212 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
213}
214EXPORT_SYMBOL(unpin_user_page);
215
458a4f78
JM
216static inline void compound_range_next(unsigned long i, unsigned long npages,
217 struct page **list, struct page **head,
218 unsigned int *ntails)
219{
220 struct page *next, *page;
221 unsigned int nr = 1;
222
223 if (i >= npages)
224 return;
225
226 next = *list + i;
227 page = compound_head(next);
228 if (PageCompound(page) && compound_order(page) >= 1)
229 nr = min_t(unsigned int,
230 page + compound_nr(page) - next, npages - i);
231
232 *head = page;
233 *ntails = nr;
234}
235
236#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
237 for (__i = 0, \
238 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
239 __i < __npages; __i += __ntails, \
240 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
241
8745d7f6
JM
242static inline void compound_next(unsigned long i, unsigned long npages,
243 struct page **list, struct page **head,
244 unsigned int *ntails)
245{
246 struct page *page;
247 unsigned int nr;
248
249 if (i >= npages)
250 return;
251
252 page = compound_head(list[i]);
253 for (nr = i + 1; nr < npages; nr++) {
254 if (compound_head(list[nr]) != page)
255 break;
256 }
257
258 *head = page;
259 *ntails = nr - i;
260}
261
262#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
263 for (__i = 0, \
264 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
265 __i < __npages; __i += __ntails, \
266 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
267
fc1d8e7c 268/**
f1f6a7dd 269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 270 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 271 * @npages: number of pages in the @pages array.
2d15eb31 272 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
273 *
274 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275 * variants called on that page.
276 *
277 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 278 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
279 * listed as clean. In any case, releases all pages using unpin_user_page(),
280 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 281 *
f1f6a7dd 282 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 283 *
2d15eb31
AM
284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285 * required, then the caller should a) verify that this is really correct,
286 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 287 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
288 *
289 */
f1f6a7dd
JH
290void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
291 bool make_dirty)
fc1d8e7c 292{
2d15eb31 293 unsigned long index;
31b912de
JM
294 struct page *head;
295 unsigned int ntails;
2d15eb31
AM
296
297 if (!make_dirty) {
f1f6a7dd 298 unpin_user_pages(pages, npages);
2d15eb31
AM
299 return;
300 }
301
31b912de 302 for_each_compound_head(index, pages, npages, head, ntails) {
2d15eb31
AM
303 /*
304 * Checking PageDirty at this point may race with
305 * clear_page_dirty_for_io(), but that's OK. Two key
306 * cases:
307 *
308 * 1) This code sees the page as already dirty, so it
309 * skips the call to set_page_dirty(). That could happen
310 * because clear_page_dirty_for_io() called
311 * page_mkclean(), followed by set_page_dirty().
312 * However, now the page is going to get written back,
313 * which meets the original intention of setting it
314 * dirty, so all is well: clear_page_dirty_for_io() goes
315 * on to call TestClearPageDirty(), and write the page
316 * back.
317 *
318 * 2) This code sees the page as clean, so it calls
319 * set_page_dirty(). The page stays dirty, despite being
320 * written back, so it gets written back again in the
321 * next writeback cycle. This is harmless.
322 */
31b912de
JM
323 if (!PageDirty(head))
324 set_page_dirty_lock(head);
325 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 326 }
fc1d8e7c 327}
f1f6a7dd 328EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 329
458a4f78
JM
330/**
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
333 *
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
337 *
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
340 *
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
344 *
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
349 *
350 */
351void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 bool make_dirty)
353{
354 unsigned long index;
355 struct page *head;
356 unsigned int ntails;
357
358 for_each_compound_range(index, &page, npages, head, ntails) {
359 if (make_dirty && !PageDirty(head))
360 set_page_dirty_lock(head);
361 put_compound_head(head, ntails, FOLL_PIN);
362 }
363}
364EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
365
fc1d8e7c 366/**
f1f6a7dd 367 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
368 * @pages: array of pages to be marked dirty and released.
369 * @npages: number of pages in the @pages array.
370 *
f1f6a7dd 371 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 372 *
f1f6a7dd 373 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 374 */
f1f6a7dd 375void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
376{
377 unsigned long index;
31b912de
JM
378 struct page *head;
379 unsigned int ntails;
fc1d8e7c 380
146608bb
JH
381 /*
382 * If this WARN_ON() fires, then the system *might* be leaking pages (by
383 * leaving them pinned), but probably not. More likely, gup/pup returned
384 * a hard -ERRNO error to the caller, who erroneously passed it here.
385 */
386 if (WARN_ON(IS_ERR_VALUE(npages)))
387 return;
31b912de
JM
388
389 for_each_compound_head(index, pages, npages, head, ntails)
390 put_compound_head(head, ntails, FOLL_PIN);
fc1d8e7c 391}
f1f6a7dd 392EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 393
050a9adc 394#ifdef CONFIG_MMU
69e68b4f
KS
395static struct page *no_page_table(struct vm_area_struct *vma,
396 unsigned int flags)
4bbd4c77 397{
69e68b4f
KS
398 /*
399 * When core dumping an enormous anonymous area that nobody
400 * has touched so far, we don't want to allocate unnecessary pages or
401 * page tables. Return error instead of NULL to skip handle_mm_fault,
402 * then get_dump_page() will return NULL to leave a hole in the dump.
403 * But we can only make this optimization where a hole would surely
404 * be zero-filled if handle_mm_fault() actually did handle it.
405 */
a0137f16
AK
406 if ((flags & FOLL_DUMP) &&
407 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
408 return ERR_PTR(-EFAULT);
409 return NULL;
410}
4bbd4c77 411
1027e443
KS
412static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
413 pte_t *pte, unsigned int flags)
414{
415 /* No page to get reference */
416 if (flags & FOLL_GET)
417 return -EFAULT;
418
419 if (flags & FOLL_TOUCH) {
420 pte_t entry = *pte;
421
422 if (flags & FOLL_WRITE)
423 entry = pte_mkdirty(entry);
424 entry = pte_mkyoung(entry);
425
426 if (!pte_same(*pte, entry)) {
427 set_pte_at(vma->vm_mm, address, pte, entry);
428 update_mmu_cache(vma, address, pte);
429 }
430 }
431
432 /* Proper page table entry exists, but no corresponding struct page */
433 return -EEXIST;
434}
435
19be0eaf 436/*
a308c71b
PX
437 * FOLL_FORCE can write to even unwritable pte's, but only
438 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
439 */
440static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
441{
a308c71b
PX
442 return pte_write(pte) ||
443 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
444}
445
69e68b4f 446static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
447 unsigned long address, pmd_t *pmd, unsigned int flags,
448 struct dev_pagemap **pgmap)
69e68b4f
KS
449{
450 struct mm_struct *mm = vma->vm_mm;
451 struct page *page;
452 spinlock_t *ptl;
453 pte_t *ptep, pte;
f28d4363 454 int ret;
4bbd4c77 455
eddb1c22
JH
456 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
457 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
458 (FOLL_PIN | FOLL_GET)))
459 return ERR_PTR(-EINVAL);
69e68b4f 460retry:
4bbd4c77 461 if (unlikely(pmd_bad(*pmd)))
69e68b4f 462 return no_page_table(vma, flags);
4bbd4c77
KS
463
464 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
465 pte = *ptep;
466 if (!pte_present(pte)) {
467 swp_entry_t entry;
468 /*
469 * KSM's break_ksm() relies upon recognizing a ksm page
470 * even while it is being migrated, so for that case we
471 * need migration_entry_wait().
472 */
473 if (likely(!(flags & FOLL_MIGRATION)))
474 goto no_page;
0661a336 475 if (pte_none(pte))
4bbd4c77
KS
476 goto no_page;
477 entry = pte_to_swp_entry(pte);
478 if (!is_migration_entry(entry))
479 goto no_page;
480 pte_unmap_unlock(ptep, ptl);
481 migration_entry_wait(mm, pmd, address);
69e68b4f 482 goto retry;
4bbd4c77 483 }
8a0516ed 484 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 485 goto no_page;
19be0eaf 486 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
487 pte_unmap_unlock(ptep, ptl);
488 return NULL;
489 }
4bbd4c77
KS
490
491 page = vm_normal_page(vma, address, pte);
3faa52c0 492 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 493 /*
3faa52c0
JH
494 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
495 * case since they are only valid while holding the pgmap
496 * reference.
3565fce3 497 */
df06b37f
KB
498 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
499 if (*pgmap)
3565fce3
DW
500 page = pte_page(pte);
501 else
502 goto no_page;
503 } else if (unlikely(!page)) {
1027e443
KS
504 if (flags & FOLL_DUMP) {
505 /* Avoid special (like zero) pages in core dumps */
506 page = ERR_PTR(-EFAULT);
507 goto out;
508 }
509
510 if (is_zero_pfn(pte_pfn(pte))) {
511 page = pte_page(pte);
512 } else {
1027e443
KS
513 ret = follow_pfn_pte(vma, address, ptep, flags);
514 page = ERR_PTR(ret);
515 goto out;
516 }
4bbd4c77
KS
517 }
518
6742d293 519 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
520 get_page(page);
521 pte_unmap_unlock(ptep, ptl);
522 lock_page(page);
523 ret = split_huge_page(page);
524 unlock_page(page);
525 put_page(page);
526 if (ret)
527 return ERR_PTR(ret);
528 goto retry;
529 }
530
3faa52c0
JH
531 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
532 if (unlikely(!try_grab_page(page, flags))) {
533 page = ERR_PTR(-ENOMEM);
534 goto out;
8fde12ca 535 }
f28d4363
CI
536 /*
537 * We need to make the page accessible if and only if we are going
538 * to access its content (the FOLL_PIN case). Please see
539 * Documentation/core-api/pin_user_pages.rst for details.
540 */
541 if (flags & FOLL_PIN) {
542 ret = arch_make_page_accessible(page);
543 if (ret) {
544 unpin_user_page(page);
545 page = ERR_PTR(ret);
546 goto out;
547 }
548 }
4bbd4c77
KS
549 if (flags & FOLL_TOUCH) {
550 if ((flags & FOLL_WRITE) &&
551 !pte_dirty(pte) && !PageDirty(page))
552 set_page_dirty(page);
553 /*
554 * pte_mkyoung() would be more correct here, but atomic care
555 * is needed to avoid losing the dirty bit: it is easier to use
556 * mark_page_accessed().
557 */
558 mark_page_accessed(page);
559 }
de60f5f1 560 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
561 /* Do not mlock pte-mapped THP */
562 if (PageTransCompound(page))
563 goto out;
564
4bbd4c77
KS
565 /*
566 * The preliminary mapping check is mainly to avoid the
567 * pointless overhead of lock_page on the ZERO_PAGE
568 * which might bounce very badly if there is contention.
569 *
570 * If the page is already locked, we don't need to
571 * handle it now - vmscan will handle it later if and
572 * when it attempts to reclaim the page.
573 */
574 if (page->mapping && trylock_page(page)) {
575 lru_add_drain(); /* push cached pages to LRU */
576 /*
577 * Because we lock page here, and migration is
578 * blocked by the pte's page reference, and we
579 * know the page is still mapped, we don't even
580 * need to check for file-cache page truncation.
581 */
582 mlock_vma_page(page);
583 unlock_page(page);
584 }
585 }
1027e443 586out:
4bbd4c77 587 pte_unmap_unlock(ptep, ptl);
4bbd4c77 588 return page;
4bbd4c77
KS
589no_page:
590 pte_unmap_unlock(ptep, ptl);
591 if (!pte_none(pte))
69e68b4f
KS
592 return NULL;
593 return no_page_table(vma, flags);
594}
595
080dbb61
AK
596static struct page *follow_pmd_mask(struct vm_area_struct *vma,
597 unsigned long address, pud_t *pudp,
df06b37f
KB
598 unsigned int flags,
599 struct follow_page_context *ctx)
69e68b4f 600{
68827280 601 pmd_t *pmd, pmdval;
69e68b4f
KS
602 spinlock_t *ptl;
603 struct page *page;
604 struct mm_struct *mm = vma->vm_mm;
605
080dbb61 606 pmd = pmd_offset(pudp, address);
68827280
YH
607 /*
608 * The READ_ONCE() will stabilize the pmdval in a register or
609 * on the stack so that it will stop changing under the code.
610 */
611 pmdval = READ_ONCE(*pmd);
612 if (pmd_none(pmdval))
69e68b4f 613 return no_page_table(vma, flags);
be9d3045 614 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
615 page = follow_huge_pmd(mm, address, pmd, flags);
616 if (page)
617 return page;
618 return no_page_table(vma, flags);
69e68b4f 619 }
68827280 620 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 621 page = follow_huge_pd(vma, address,
68827280 622 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
623 PMD_SHIFT);
624 if (page)
625 return page;
626 return no_page_table(vma, flags);
627 }
84c3fc4e 628retry:
68827280 629 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
630 if (likely(!(flags & FOLL_MIGRATION)))
631 return no_page_table(vma, flags);
632 VM_BUG_ON(thp_migration_supported() &&
68827280
YH
633 !is_pmd_migration_entry(pmdval));
634 if (is_pmd_migration_entry(pmdval))
84c3fc4e 635 pmd_migration_entry_wait(mm, pmd);
68827280
YH
636 pmdval = READ_ONCE(*pmd);
637 /*
638 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 639 * mmap_lock is held in read mode
68827280
YH
640 */
641 if (pmd_none(pmdval))
642 return no_page_table(vma, flags);
84c3fc4e
ZY
643 goto retry;
644 }
68827280 645 if (pmd_devmap(pmdval)) {
3565fce3 646 ptl = pmd_lock(mm, pmd);
df06b37f 647 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
648 spin_unlock(ptl);
649 if (page)
650 return page;
651 }
68827280 652 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 653 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 654
68827280 655 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
656 return no_page_table(vma, flags);
657
84c3fc4e 658retry_locked:
6742d293 659 ptl = pmd_lock(mm, pmd);
68827280
YH
660 if (unlikely(pmd_none(*pmd))) {
661 spin_unlock(ptl);
662 return no_page_table(vma, flags);
663 }
84c3fc4e
ZY
664 if (unlikely(!pmd_present(*pmd))) {
665 spin_unlock(ptl);
666 if (likely(!(flags & FOLL_MIGRATION)))
667 return no_page_table(vma, flags);
668 pmd_migration_entry_wait(mm, pmd);
669 goto retry_locked;
670 }
6742d293
KS
671 if (unlikely(!pmd_trans_huge(*pmd))) {
672 spin_unlock(ptl);
df06b37f 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 674 }
bfe7b00d 675 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
676 int ret;
677 page = pmd_page(*pmd);
678 if (is_huge_zero_page(page)) {
679 spin_unlock(ptl);
680 ret = 0;
78ddc534 681 split_huge_pmd(vma, pmd, address);
337d9abf
NH
682 if (pmd_trans_unstable(pmd))
683 ret = -EBUSY;
bfe7b00d 684 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
685 if (unlikely(!try_get_page(page))) {
686 spin_unlock(ptl);
687 return ERR_PTR(-ENOMEM);
688 }
69e68b4f 689 spin_unlock(ptl);
6742d293
KS
690 lock_page(page);
691 ret = split_huge_page(page);
692 unlock_page(page);
693 put_page(page);
baa355fd
KS
694 if (pmd_none(*pmd))
695 return no_page_table(vma, flags);
bfe7b00d
SL
696 } else { /* flags & FOLL_SPLIT_PMD */
697 spin_unlock(ptl);
698 split_huge_pmd(vma, pmd, address);
699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
700 }
701
702 return ret ? ERR_PTR(ret) :
df06b37f 703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 704 }
6742d293
KS
705 page = follow_trans_huge_pmd(vma, address, pmd, flags);
706 spin_unlock(ptl);
df06b37f 707 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 708 return page;
4bbd4c77
KS
709}
710
080dbb61
AK
711static struct page *follow_pud_mask(struct vm_area_struct *vma,
712 unsigned long address, p4d_t *p4dp,
df06b37f
KB
713 unsigned int flags,
714 struct follow_page_context *ctx)
080dbb61
AK
715{
716 pud_t *pud;
717 spinlock_t *ptl;
718 struct page *page;
719 struct mm_struct *mm = vma->vm_mm;
720
721 pud = pud_offset(p4dp, address);
722 if (pud_none(*pud))
723 return no_page_table(vma, flags);
be9d3045 724 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
725 page = follow_huge_pud(mm, address, pud, flags);
726 if (page)
727 return page;
728 return no_page_table(vma, flags);
729 }
4dc71451
AK
730 if (is_hugepd(__hugepd(pud_val(*pud)))) {
731 page = follow_huge_pd(vma, address,
732 __hugepd(pud_val(*pud)), flags,
733 PUD_SHIFT);
734 if (page)
735 return page;
736 return no_page_table(vma, flags);
737 }
080dbb61
AK
738 if (pud_devmap(*pud)) {
739 ptl = pud_lock(mm, pud);
df06b37f 740 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
741 spin_unlock(ptl);
742 if (page)
743 return page;
744 }
745 if (unlikely(pud_bad(*pud)))
746 return no_page_table(vma, flags);
747
df06b37f 748 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
749}
750
080dbb61
AK
751static struct page *follow_p4d_mask(struct vm_area_struct *vma,
752 unsigned long address, pgd_t *pgdp,
df06b37f
KB
753 unsigned int flags,
754 struct follow_page_context *ctx)
080dbb61
AK
755{
756 p4d_t *p4d;
4dc71451 757 struct page *page;
080dbb61
AK
758
759 p4d = p4d_offset(pgdp, address);
760 if (p4d_none(*p4d))
761 return no_page_table(vma, flags);
762 BUILD_BUG_ON(p4d_huge(*p4d));
763 if (unlikely(p4d_bad(*p4d)))
764 return no_page_table(vma, flags);
765
4dc71451
AK
766 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
767 page = follow_huge_pd(vma, address,
768 __hugepd(p4d_val(*p4d)), flags,
769 P4D_SHIFT);
770 if (page)
771 return page;
772 return no_page_table(vma, flags);
773 }
df06b37f 774 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
775}
776
777/**
778 * follow_page_mask - look up a page descriptor from a user-virtual address
779 * @vma: vm_area_struct mapping @address
780 * @address: virtual address to look up
781 * @flags: flags modifying lookup behaviour
78179556
MR
782 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
783 * pointer to output page_mask
080dbb61
AK
784 *
785 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
786 *
78179556
MR
787 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
788 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
789 *
790 * On output, the @ctx->page_mask is set according to the size of the page.
791 *
792 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
793 * an error pointer if there is a mapping to something not represented
794 * by a page descriptor (see also vm_normal_page()).
795 */
a7030aea 796static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 797 unsigned long address, unsigned int flags,
df06b37f 798 struct follow_page_context *ctx)
080dbb61
AK
799{
800 pgd_t *pgd;
801 struct page *page;
802 struct mm_struct *mm = vma->vm_mm;
803
df06b37f 804 ctx->page_mask = 0;
080dbb61
AK
805
806 /* make this handle hugepd */
807 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
808 if (!IS_ERR(page)) {
3faa52c0 809 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
810 return page;
811 }
812
813 pgd = pgd_offset(mm, address);
814
815 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
816 return no_page_table(vma, flags);
817
faaa5b62
AK
818 if (pgd_huge(*pgd)) {
819 page = follow_huge_pgd(mm, address, pgd, flags);
820 if (page)
821 return page;
822 return no_page_table(vma, flags);
823 }
4dc71451
AK
824 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
825 page = follow_huge_pd(vma, address,
826 __hugepd(pgd_val(*pgd)), flags,
827 PGDIR_SHIFT);
828 if (page)
829 return page;
830 return no_page_table(vma, flags);
831 }
faaa5b62 832
df06b37f
KB
833 return follow_p4d_mask(vma, address, pgd, flags, ctx);
834}
835
836struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
837 unsigned int foll_flags)
838{
839 struct follow_page_context ctx = { NULL };
840 struct page *page;
841
842 page = follow_page_mask(vma, address, foll_flags, &ctx);
843 if (ctx.pgmap)
844 put_dev_pagemap(ctx.pgmap);
845 return page;
080dbb61
AK
846}
847
f2b495ca
KS
848static int get_gate_page(struct mm_struct *mm, unsigned long address,
849 unsigned int gup_flags, struct vm_area_struct **vma,
850 struct page **page)
851{
852 pgd_t *pgd;
c2febafc 853 p4d_t *p4d;
f2b495ca
KS
854 pud_t *pud;
855 pmd_t *pmd;
856 pte_t *pte;
857 int ret = -EFAULT;
858
859 /* user gate pages are read-only */
860 if (gup_flags & FOLL_WRITE)
861 return -EFAULT;
862 if (address > TASK_SIZE)
863 pgd = pgd_offset_k(address);
864 else
865 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
866 if (pgd_none(*pgd))
867 return -EFAULT;
c2febafc 868 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
869 if (p4d_none(*p4d))
870 return -EFAULT;
c2febafc 871 pud = pud_offset(p4d, address);
b5d1c39f
AL
872 if (pud_none(*pud))
873 return -EFAULT;
f2b495ca 874 pmd = pmd_offset(pud, address);
84c3fc4e 875 if (!pmd_present(*pmd))
f2b495ca
KS
876 return -EFAULT;
877 VM_BUG_ON(pmd_trans_huge(*pmd));
878 pte = pte_offset_map(pmd, address);
879 if (pte_none(*pte))
880 goto unmap;
881 *vma = get_gate_vma(mm);
882 if (!page)
883 goto out;
884 *page = vm_normal_page(*vma, address, *pte);
885 if (!*page) {
886 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
887 goto unmap;
888 *page = pte_page(*pte);
889 }
9fa2dd94 890 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
891 ret = -ENOMEM;
892 goto unmap;
893 }
f2b495ca
KS
894out:
895 ret = 0;
896unmap:
897 pte_unmap(pte);
898 return ret;
899}
900
9a95f3cf 901/*
c1e8d7c6
ML
902 * mmap_lock must be held on entry. If @locked != NULL and *@flags
903 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 904 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 905 */
64019a2e 906static int faultin_page(struct vm_area_struct *vma,
4f6da934 907 unsigned long address, unsigned int *flags, int *locked)
16744483 908{
16744483 909 unsigned int fault_flags = 0;
2b740303 910 vm_fault_t ret;
16744483 911
de60f5f1
EM
912 /* mlock all present pages, but do not fault in new pages */
913 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
914 return -ENOENT;
16744483
KS
915 if (*flags & FOLL_WRITE)
916 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
917 if (*flags & FOLL_REMOTE)
918 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 919 if (locked)
71335f37 920 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
921 if (*flags & FOLL_NOWAIT)
922 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 923 if (*flags & FOLL_TRIED) {
4426e945
PX
924 /*
925 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
926 * can co-exist
927 */
234b239b
ALC
928 fault_flags |= FAULT_FLAG_TRIED;
929 }
16744483 930
bce617ed 931 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 932 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
933 int err = vm_fault_to_errno(ret, *flags);
934
935 if (err)
936 return err;
16744483
KS
937 BUG();
938 }
939
16744483 940 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
941 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
942 *locked = 0;
16744483
KS
943 return -EBUSY;
944 }
945
946 /*
947 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
948 * necessary, even if maybe_mkwrite decided not to set pte_write. We
949 * can thus safely do subsequent page lookups as if they were reads.
950 * But only do so when looping for pte_write is futile: in some cases
951 * userspace may also be wanting to write to the gotten user page,
952 * which a read fault here might prevent (a readonly page might get
953 * reCOWed by userspace write).
954 */
955 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 956 *flags |= FOLL_COW;
16744483
KS
957 return 0;
958}
959
fa5bb209
KS
960static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
961{
962 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
963 int write = (gup_flags & FOLL_WRITE);
964 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
965
966 if (vm_flags & (VM_IO | VM_PFNMAP))
967 return -EFAULT;
968
7f7ccc2c
WT
969 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
970 return -EFAULT;
971
52650c8b
JG
972 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
973 return -EOPNOTSUPP;
974
1b2ee126 975 if (write) {
fa5bb209
KS
976 if (!(vm_flags & VM_WRITE)) {
977 if (!(gup_flags & FOLL_FORCE))
978 return -EFAULT;
979 /*
980 * We used to let the write,force case do COW in a
981 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
982 * set a breakpoint in a read-only mapping of an
983 * executable, without corrupting the file (yet only
984 * when that file had been opened for writing!).
985 * Anon pages in shared mappings are surprising: now
986 * just reject it.
987 */
46435364 988 if (!is_cow_mapping(vm_flags))
fa5bb209 989 return -EFAULT;
fa5bb209
KS
990 }
991 } else if (!(vm_flags & VM_READ)) {
992 if (!(gup_flags & FOLL_FORCE))
993 return -EFAULT;
994 /*
995 * Is there actually any vma we can reach here which does not
996 * have VM_MAYREAD set?
997 */
998 if (!(vm_flags & VM_MAYREAD))
999 return -EFAULT;
1000 }
d61172b4
DH
1001 /*
1002 * gups are always data accesses, not instruction
1003 * fetches, so execute=false here
1004 */
1005 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1006 return -EFAULT;
fa5bb209
KS
1007 return 0;
1008}
1009
4bbd4c77
KS
1010/**
1011 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1012 * @mm: mm_struct of target mm
1013 * @start: starting user address
1014 * @nr_pages: number of pages from start to pin
1015 * @gup_flags: flags modifying pin behaviour
1016 * @pages: array that receives pointers to the pages pinned.
1017 * Should be at least nr_pages long. Or NULL, if caller
1018 * only intends to ensure the pages are faulted in.
1019 * @vmas: array of pointers to vmas corresponding to each page.
1020 * Or NULL if the caller does not require them.
c1e8d7c6 1021 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1022 *
d2dfbe47
LX
1023 * Returns either number of pages pinned (which may be less than the
1024 * number requested), or an error. Details about the return value:
1025 *
1026 * -- If nr_pages is 0, returns 0.
1027 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1028 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1029 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1030 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1031 *
1032 * The caller is responsible for releasing returned @pages, via put_page().
1033 *
c1e8d7c6 1034 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1035 *
c1e8d7c6 1036 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1037 *
1038 * __get_user_pages walks a process's page tables and takes a reference to
1039 * each struct page that each user address corresponds to at a given
1040 * instant. That is, it takes the page that would be accessed if a user
1041 * thread accesses the given user virtual address at that instant.
1042 *
1043 * This does not guarantee that the page exists in the user mappings when
1044 * __get_user_pages returns, and there may even be a completely different
1045 * page there in some cases (eg. if mmapped pagecache has been invalidated
1046 * and subsequently re faulted). However it does guarantee that the page
1047 * won't be freed completely. And mostly callers simply care that the page
1048 * contains data that was valid *at some point in time*. Typically, an IO
1049 * or similar operation cannot guarantee anything stronger anyway because
1050 * locks can't be held over the syscall boundary.
1051 *
1052 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1053 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1054 * appropriate) must be called after the page is finished with, and
1055 * before put_page is called.
1056 *
c1e8d7c6 1057 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1058 * released by an up_read(). That can happen if @gup_flags does not
1059 * have FOLL_NOWAIT.
9a95f3cf 1060 *
4f6da934 1061 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1062 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1063 * when it's been released. Otherwise, it must be held for either
1064 * reading or writing and will not be released.
4bbd4c77
KS
1065 *
1066 * In most cases, get_user_pages or get_user_pages_fast should be used
1067 * instead of __get_user_pages. __get_user_pages should be used only if
1068 * you need some special @gup_flags.
1069 */
64019a2e 1070static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1071 unsigned long start, unsigned long nr_pages,
1072 unsigned int gup_flags, struct page **pages,
4f6da934 1073 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1074{
df06b37f 1075 long ret = 0, i = 0;
fa5bb209 1076 struct vm_area_struct *vma = NULL;
df06b37f 1077 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1078
1079 if (!nr_pages)
1080 return 0;
1081
f9652594
AK
1082 start = untagged_addr(start);
1083
eddb1c22 1084 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1085
1086 /*
1087 * If FOLL_FORCE is set then do not force a full fault as the hinting
1088 * fault information is unrelated to the reference behaviour of a task
1089 * using the address space
1090 */
1091 if (!(gup_flags & FOLL_FORCE))
1092 gup_flags |= FOLL_NUMA;
1093
4bbd4c77 1094 do {
fa5bb209
KS
1095 struct page *page;
1096 unsigned int foll_flags = gup_flags;
1097 unsigned int page_increm;
1098
1099 /* first iteration or cross vma bound */
1100 if (!vma || start >= vma->vm_end) {
1101 vma = find_extend_vma(mm, start);
1102 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1103 ret = get_gate_page(mm, start & PAGE_MASK,
1104 gup_flags, &vma,
1105 pages ? &pages[i] : NULL);
1106 if (ret)
08be37b7 1107 goto out;
df06b37f 1108 ctx.page_mask = 0;
fa5bb209
KS
1109 goto next_page;
1110 }
4bbd4c77 1111
52650c8b 1112 if (!vma) {
df06b37f
KB
1113 ret = -EFAULT;
1114 goto out;
1115 }
52650c8b
JG
1116 ret = check_vma_flags(vma, gup_flags);
1117 if (ret)
1118 goto out;
1119
fa5bb209
KS
1120 if (is_vm_hugetlb_page(vma)) {
1121 i = follow_hugetlb_page(mm, vma, pages, vmas,
1122 &start, &nr_pages, i,
a308c71b 1123 gup_flags, locked);
ad415db8
PX
1124 if (locked && *locked == 0) {
1125 /*
1126 * We've got a VM_FAULT_RETRY
c1e8d7c6 1127 * and we've lost mmap_lock.
ad415db8
PX
1128 * We must stop here.
1129 */
1130 BUG_ON(gup_flags & FOLL_NOWAIT);
1131 BUG_ON(ret != 0);
1132 goto out;
1133 }
fa5bb209 1134 continue;
4bbd4c77 1135 }
fa5bb209
KS
1136 }
1137retry:
1138 /*
1139 * If we have a pending SIGKILL, don't keep faulting pages and
1140 * potentially allocating memory.
1141 */
fa45f116 1142 if (fatal_signal_pending(current)) {
d180870d 1143 ret = -EINTR;
df06b37f
KB
1144 goto out;
1145 }
fa5bb209 1146 cond_resched();
df06b37f
KB
1147
1148 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1149 if (!page) {
64019a2e 1150 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1151 switch (ret) {
1152 case 0:
1153 goto retry;
df06b37f
KB
1154 case -EBUSY:
1155 ret = 0;
e4a9bc58 1156 fallthrough;
fa5bb209
KS
1157 case -EFAULT:
1158 case -ENOMEM:
1159 case -EHWPOISON:
df06b37f 1160 goto out;
fa5bb209
KS
1161 case -ENOENT:
1162 goto next_page;
4bbd4c77 1163 }
fa5bb209 1164 BUG();
1027e443
KS
1165 } else if (PTR_ERR(page) == -EEXIST) {
1166 /*
1167 * Proper page table entry exists, but no corresponding
1168 * struct page.
1169 */
1170 goto next_page;
1171 } else if (IS_ERR(page)) {
df06b37f
KB
1172 ret = PTR_ERR(page);
1173 goto out;
1027e443 1174 }
fa5bb209
KS
1175 if (pages) {
1176 pages[i] = page;
1177 flush_anon_page(vma, page, start);
1178 flush_dcache_page(page);
df06b37f 1179 ctx.page_mask = 0;
4bbd4c77 1180 }
4bbd4c77 1181next_page:
fa5bb209
KS
1182 if (vmas) {
1183 vmas[i] = vma;
df06b37f 1184 ctx.page_mask = 0;
fa5bb209 1185 }
df06b37f 1186 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1187 if (page_increm > nr_pages)
1188 page_increm = nr_pages;
1189 i += page_increm;
1190 start += page_increm * PAGE_SIZE;
1191 nr_pages -= page_increm;
4bbd4c77 1192 } while (nr_pages);
df06b37f
KB
1193out:
1194 if (ctx.pgmap)
1195 put_dev_pagemap(ctx.pgmap);
1196 return i ? i : ret;
4bbd4c77 1197}
4bbd4c77 1198
771ab430
TK
1199static bool vma_permits_fault(struct vm_area_struct *vma,
1200 unsigned int fault_flags)
d4925e00 1201{
1b2ee126
DH
1202 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1203 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1204 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1205
1206 if (!(vm_flags & vma->vm_flags))
1207 return false;
1208
33a709b2
DH
1209 /*
1210 * The architecture might have a hardware protection
1b2ee126 1211 * mechanism other than read/write that can deny access.
d61172b4
DH
1212 *
1213 * gup always represents data access, not instruction
1214 * fetches, so execute=false here:
33a709b2 1215 */
d61172b4 1216 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1217 return false;
1218
d4925e00
DH
1219 return true;
1220}
1221
adc8cb40 1222/**
4bbd4c77 1223 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1224 * @mm: mm_struct of target mm
1225 * @address: user address
1226 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1227 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1228 * does not allow retry. If NULL, the caller must guarantee
1229 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1230 *
1231 * This is meant to be called in the specific scenario where for locking reasons
1232 * we try to access user memory in atomic context (within a pagefault_disable()
1233 * section), this returns -EFAULT, and we want to resolve the user fault before
1234 * trying again.
1235 *
1236 * Typically this is meant to be used by the futex code.
1237 *
1238 * The main difference with get_user_pages() is that this function will
1239 * unconditionally call handle_mm_fault() which will in turn perform all the
1240 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1241 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1242 *
1243 * This is important for some architectures where those bits also gate the
1244 * access permission to the page because they are maintained in software. On
1245 * such architectures, gup() will not be enough to make a subsequent access
1246 * succeed.
1247 *
c1e8d7c6
ML
1248 * This function will not return with an unlocked mmap_lock. So it has not the
1249 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1250 */
64019a2e 1251int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1252 unsigned long address, unsigned int fault_flags,
1253 bool *unlocked)
4bbd4c77
KS
1254{
1255 struct vm_area_struct *vma;
2b740303 1256 vm_fault_t ret, major = 0;
4a9e1cda 1257
f9652594
AK
1258 address = untagged_addr(address);
1259
4a9e1cda 1260 if (unlocked)
71335f37 1261 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1262
4a9e1cda 1263retry:
4bbd4c77
KS
1264 vma = find_extend_vma(mm, address);
1265 if (!vma || address < vma->vm_start)
1266 return -EFAULT;
1267
d4925e00 1268 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1269 return -EFAULT;
1270
475f4dfc
PX
1271 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1272 fatal_signal_pending(current))
1273 return -EINTR;
1274
bce617ed 1275 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1276 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1277 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1278 int err = vm_fault_to_errno(ret, 0);
1279
1280 if (err)
1281 return err;
4bbd4c77
KS
1282 BUG();
1283 }
4a9e1cda
DD
1284
1285 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1286 mmap_read_lock(mm);
475f4dfc
PX
1287 *unlocked = true;
1288 fault_flags |= FAULT_FLAG_TRIED;
1289 goto retry;
4a9e1cda
DD
1290 }
1291
4bbd4c77
KS
1292 return 0;
1293}
add6a0cd 1294EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1295
2d3a36a4
MH
1296/*
1297 * Please note that this function, unlike __get_user_pages will not
1298 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1299 */
64019a2e 1300static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1301 unsigned long start,
1302 unsigned long nr_pages,
f0818f47
AA
1303 struct page **pages,
1304 struct vm_area_struct **vmas,
e716712f 1305 int *locked,
0fd71a56 1306 unsigned int flags)
f0818f47 1307{
f0818f47
AA
1308 long ret, pages_done;
1309 bool lock_dropped;
1310
1311 if (locked) {
1312 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1313 BUG_ON(vmas);
1314 /* check caller initialized locked */
1315 BUG_ON(*locked != 1);
1316 }
1317
008cfe44 1318 if (flags & FOLL_PIN)
a4d63c37 1319 atomic_set(&mm->has_pinned, 1);
008cfe44 1320
eddb1c22
JH
1321 /*
1322 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1323 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1324 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1325 * for FOLL_GET, not for the newer FOLL_PIN.
1326 *
1327 * FOLL_PIN always expects pages to be non-null, but no need to assert
1328 * that here, as any failures will be obvious enough.
1329 */
1330 if (pages && !(flags & FOLL_PIN))
f0818f47 1331 flags |= FOLL_GET;
f0818f47
AA
1332
1333 pages_done = 0;
1334 lock_dropped = false;
1335 for (;;) {
64019a2e 1336 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1337 vmas, locked);
1338 if (!locked)
1339 /* VM_FAULT_RETRY couldn't trigger, bypass */
1340 return ret;
1341
1342 /* VM_FAULT_RETRY cannot return errors */
1343 if (!*locked) {
1344 BUG_ON(ret < 0);
1345 BUG_ON(ret >= nr_pages);
1346 }
1347
f0818f47
AA
1348 if (ret > 0) {
1349 nr_pages -= ret;
1350 pages_done += ret;
1351 if (!nr_pages)
1352 break;
1353 }
1354 if (*locked) {
96312e61
AA
1355 /*
1356 * VM_FAULT_RETRY didn't trigger or it was a
1357 * FOLL_NOWAIT.
1358 */
f0818f47
AA
1359 if (!pages_done)
1360 pages_done = ret;
1361 break;
1362 }
df17277b
MR
1363 /*
1364 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1365 * For the prefault case (!pages) we only update counts.
1366 */
1367 if (likely(pages))
1368 pages += ret;
f0818f47 1369 start += ret << PAGE_SHIFT;
4426e945 1370 lock_dropped = true;
f0818f47 1371
4426e945 1372retry:
f0818f47
AA
1373 /*
1374 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1375 * with both FAULT_FLAG_ALLOW_RETRY and
1376 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1377 * by fatal signals, so we need to check it before we
1378 * start trying again otherwise it can loop forever.
f0818f47 1379 */
4426e945 1380
ae46d2aa
HD
1381 if (fatal_signal_pending(current)) {
1382 if (!pages_done)
1383 pages_done = -EINTR;
4426e945 1384 break;
ae46d2aa 1385 }
4426e945 1386
d8ed45c5 1387 ret = mmap_read_lock_killable(mm);
71335f37
PX
1388 if (ret) {
1389 BUG_ON(ret > 0);
1390 if (!pages_done)
1391 pages_done = ret;
1392 break;
1393 }
4426e945 1394
c7b6a566 1395 *locked = 1;
64019a2e 1396 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1397 pages, NULL, locked);
1398 if (!*locked) {
1399 /* Continue to retry until we succeeded */
1400 BUG_ON(ret != 0);
1401 goto retry;
1402 }
f0818f47
AA
1403 if (ret != 1) {
1404 BUG_ON(ret > 1);
1405 if (!pages_done)
1406 pages_done = ret;
1407 break;
1408 }
1409 nr_pages--;
1410 pages_done++;
1411 if (!nr_pages)
1412 break;
df17277b
MR
1413 if (likely(pages))
1414 pages++;
f0818f47
AA
1415 start += PAGE_SIZE;
1416 }
e716712f 1417 if (lock_dropped && *locked) {
f0818f47
AA
1418 /*
1419 * We must let the caller know we temporarily dropped the lock
1420 * and so the critical section protected by it was lost.
1421 */
d8ed45c5 1422 mmap_read_unlock(mm);
f0818f47
AA
1423 *locked = 0;
1424 }
1425 return pages_done;
1426}
1427
d3649f68
CH
1428/**
1429 * populate_vma_page_range() - populate a range of pages in the vma.
1430 * @vma: target vma
1431 * @start: start address
1432 * @end: end address
c1e8d7c6 1433 * @locked: whether the mmap_lock is still held
d3649f68
CH
1434 *
1435 * This takes care of mlocking the pages too if VM_LOCKED is set.
1436 *
0a36f7f8
TY
1437 * Return either number of pages pinned in the vma, or a negative error
1438 * code on error.
d3649f68 1439 *
c1e8d7c6 1440 * vma->vm_mm->mmap_lock must be held.
d3649f68 1441 *
4f6da934 1442 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1443 * be unperturbed.
1444 *
4f6da934
PX
1445 * If @locked is non-NULL, it must held for read only and may be
1446 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1447 */
1448long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1449 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1450{
1451 struct mm_struct *mm = vma->vm_mm;
1452 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1453 int gup_flags;
1454
1455 VM_BUG_ON(start & ~PAGE_MASK);
1456 VM_BUG_ON(end & ~PAGE_MASK);
1457 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1458 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1459 mmap_assert_locked(mm);
d3649f68
CH
1460
1461 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1462 if (vma->vm_flags & VM_LOCKONFAULT)
1463 gup_flags &= ~FOLL_POPULATE;
1464 /*
1465 * We want to touch writable mappings with a write fault in order
1466 * to break COW, except for shared mappings because these don't COW
1467 * and we would not want to dirty them for nothing.
1468 */
1469 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1470 gup_flags |= FOLL_WRITE;
1471
1472 /*
1473 * We want mlock to succeed for regions that have any permissions
1474 * other than PROT_NONE.
1475 */
3122e80e 1476 if (vma_is_accessible(vma))
d3649f68
CH
1477 gup_flags |= FOLL_FORCE;
1478
1479 /*
1480 * We made sure addr is within a VMA, so the following will
1481 * not result in a stack expansion that recurses back here.
1482 */
64019a2e 1483 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1484 NULL, NULL, locked);
d3649f68
CH
1485}
1486
1487/*
1488 * __mm_populate - populate and/or mlock pages within a range of address space.
1489 *
1490 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1491 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1492 * mmap_lock must not be held.
d3649f68
CH
1493 */
1494int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1495{
1496 struct mm_struct *mm = current->mm;
1497 unsigned long end, nstart, nend;
1498 struct vm_area_struct *vma = NULL;
1499 int locked = 0;
1500 long ret = 0;
1501
1502 end = start + len;
1503
1504 for (nstart = start; nstart < end; nstart = nend) {
1505 /*
1506 * We want to fault in pages for [nstart; end) address range.
1507 * Find first corresponding VMA.
1508 */
1509 if (!locked) {
1510 locked = 1;
d8ed45c5 1511 mmap_read_lock(mm);
d3649f68
CH
1512 vma = find_vma(mm, nstart);
1513 } else if (nstart >= vma->vm_end)
1514 vma = vma->vm_next;
1515 if (!vma || vma->vm_start >= end)
1516 break;
1517 /*
1518 * Set [nstart; nend) to intersection of desired address
1519 * range with the first VMA. Also, skip undesirable VMA types.
1520 */
1521 nend = min(end, vma->vm_end);
1522 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1523 continue;
1524 if (nstart < vma->vm_start)
1525 nstart = vma->vm_start;
1526 /*
1527 * Now fault in a range of pages. populate_vma_page_range()
1528 * double checks the vma flags, so that it won't mlock pages
1529 * if the vma was already munlocked.
1530 */
1531 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1532 if (ret < 0) {
1533 if (ignore_errors) {
1534 ret = 0;
1535 continue; /* continue at next VMA */
1536 }
1537 break;
1538 }
1539 nend = nstart + ret * PAGE_SIZE;
1540 ret = 0;
1541 }
1542 if (locked)
d8ed45c5 1543 mmap_read_unlock(mm);
d3649f68
CH
1544 return ret; /* 0 or negative error code */
1545}
050a9adc 1546#else /* CONFIG_MMU */
64019a2e 1547static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1548 unsigned long nr_pages, struct page **pages,
1549 struct vm_area_struct **vmas, int *locked,
1550 unsigned int foll_flags)
1551{
1552 struct vm_area_struct *vma;
1553 unsigned long vm_flags;
1554 int i;
1555
1556 /* calculate required read or write permissions.
1557 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 */
1559 vm_flags = (foll_flags & FOLL_WRITE) ?
1560 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1561 vm_flags &= (foll_flags & FOLL_FORCE) ?
1562 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1563
1564 for (i = 0; i < nr_pages; i++) {
1565 vma = find_vma(mm, start);
1566 if (!vma)
1567 goto finish_or_fault;
1568
1569 /* protect what we can, including chardevs */
1570 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1571 !(vm_flags & vma->vm_flags))
1572 goto finish_or_fault;
1573
1574 if (pages) {
1575 pages[i] = virt_to_page(start);
1576 if (pages[i])
1577 get_page(pages[i]);
1578 }
1579 if (vmas)
1580 vmas[i] = vma;
1581 start = (start + PAGE_SIZE) & PAGE_MASK;
1582 }
1583
1584 return i;
1585
1586finish_or_fault:
1587 return i ? : -EFAULT;
1588}
1589#endif /* !CONFIG_MMU */
d3649f68 1590
8f942eea
JH
1591/**
1592 * get_dump_page() - pin user page in memory while writing it to core dump
1593 * @addr: user address
1594 *
1595 * Returns struct page pointer of user page pinned for dump,
1596 * to be freed afterwards by put_page().
1597 *
1598 * Returns NULL on any kind of failure - a hole must then be inserted into
1599 * the corefile, to preserve alignment with its headers; and also returns
1600 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1601 * allowing a hole to be left in the corefile to save diskspace.
1602 *
7f3bfab5 1603 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1604 */
1605#ifdef CONFIG_ELF_CORE
1606struct page *get_dump_page(unsigned long addr)
1607{
7f3bfab5 1608 struct mm_struct *mm = current->mm;
8f942eea 1609 struct page *page;
7f3bfab5
JH
1610 int locked = 1;
1611 int ret;
8f942eea 1612
7f3bfab5 1613 if (mmap_read_lock_killable(mm))
8f942eea 1614 return NULL;
7f3bfab5
JH
1615 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1616 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1617 if (locked)
1618 mmap_read_unlock(mm);
d3378e86
AY
1619
1620 if (ret == 1 && is_page_poisoned(page))
1621 return NULL;
1622
7f3bfab5 1623 return (ret == 1) ? page : NULL;
8f942eea
JH
1624}
1625#endif /* CONFIG_ELF_CORE */
1626
9a4e9f3b 1627#ifdef CONFIG_CMA
64019a2e 1628static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1629 unsigned long start,
1630 unsigned long nr_pages,
9a4e9f3b 1631 struct page **pages,
932f4a63
IW
1632 struct vm_area_struct **vmas,
1633 unsigned int gup_flags)
9a4e9f3b 1634{
aa712399
PL
1635 unsigned long i;
1636 unsigned long step;
9a4e9f3b
AK
1637 bool drain_allow = true;
1638 bool migrate_allow = true;
1639 LIST_HEAD(cma_page_list);
b96cc655 1640 long ret = nr_pages;
ed03d924
JK
1641 struct migration_target_control mtc = {
1642 .nid = NUMA_NO_NODE,
1643 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1644 };
9a4e9f3b
AK
1645
1646check_again:
aa712399
PL
1647 for (i = 0; i < nr_pages;) {
1648
1649 struct page *head = compound_head(pages[i]);
1650
1651 /*
1652 * gup may start from a tail page. Advance step by the left
1653 * part.
1654 */
d8c6546b 1655 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1656 /*
1657 * If we get a page from the CMA zone, since we are going to
1658 * be pinning these entries, we might as well move them out
1659 * of the CMA zone if possible.
1660 */
aa712399
PL
1661 if (is_migrate_cma_page(head)) {
1662 if (PageHuge(head))
9a4e9f3b 1663 isolate_huge_page(head, &cma_page_list);
aa712399 1664 else {
9a4e9f3b
AK
1665 if (!PageLRU(head) && drain_allow) {
1666 lru_add_drain_all();
1667 drain_allow = false;
1668 }
1669
1670 if (!isolate_lru_page(head)) {
1671 list_add_tail(&head->lru, &cma_page_list);
1672 mod_node_page_state(page_pgdat(head),
1673 NR_ISOLATED_ANON +
9de4f22a 1674 page_is_file_lru(head),
6c357848 1675 thp_nr_pages(head));
9a4e9f3b
AK
1676 }
1677 }
1678 }
aa712399
PL
1679
1680 i += step;
9a4e9f3b
AK
1681 }
1682
1683 if (!list_empty(&cma_page_list)) {
1684 /*
1685 * drop the above get_user_pages reference.
1686 */
96e1fac1
JG
1687 if (gup_flags & FOLL_PIN)
1688 unpin_user_pages(pages, nr_pages);
1689 else
1690 for (i = 0; i < nr_pages; i++)
1691 put_page(pages[i]);
9a4e9f3b 1692
ed03d924
JK
1693 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1694 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
9a4e9f3b
AK
1695 /*
1696 * some of the pages failed migration. Do get_user_pages
1697 * without migration.
1698 */
1699 migrate_allow = false;
1700
1701 if (!list_empty(&cma_page_list))
1702 putback_movable_pages(&cma_page_list);
1703 }
1704 /*
932f4a63
IW
1705 * We did migrate all the pages, Try to get the page references
1706 * again migrating any new CMA pages which we failed to isolate
1707 * earlier.
9a4e9f3b 1708 */
64019a2e 1709 ret = __get_user_pages_locked(mm, start, nr_pages,
932f4a63
IW
1710 pages, vmas, NULL,
1711 gup_flags);
1712
b96cc655 1713 if ((ret > 0) && migrate_allow) {
1714 nr_pages = ret;
9a4e9f3b
AK
1715 drain_allow = true;
1716 goto check_again;
1717 }
1718 }
1719
b96cc655 1720 return ret;
9a4e9f3b
AK
1721}
1722#else
64019a2e 1723static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1724 unsigned long start,
1725 unsigned long nr_pages,
1726 struct page **pages,
1727 struct vm_area_struct **vmas,
1728 unsigned int gup_flags)
9a4e9f3b
AK
1729{
1730 return nr_pages;
1731}
050a9adc 1732#endif /* CONFIG_CMA */
9a4e9f3b 1733
2bb6d283 1734/*
932f4a63
IW
1735 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1736 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1737 */
64019a2e 1738static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1739 unsigned long start,
1740 unsigned long nr_pages,
1741 struct page **pages,
1742 struct vm_area_struct **vmas,
1743 unsigned int gup_flags)
2bb6d283 1744{
932f4a63 1745 unsigned long flags = 0;
52650c8b 1746 long rc;
2bb6d283 1747
52650c8b 1748 if (gup_flags & FOLL_LONGTERM)
932f4a63 1749 flags = memalloc_nocma_save();
2bb6d283 1750
52650c8b
JG
1751 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1752 gup_flags);
2bb6d283 1753
932f4a63 1754 if (gup_flags & FOLL_LONGTERM) {
52650c8b
JG
1755 if (rc > 0)
1756 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1757 vmas, gup_flags);
41b4dc14 1758 memalloc_nocma_restore(flags);
9a4e9f3b 1759 }
2bb6d283
DW
1760 return rc;
1761}
932f4a63 1762
447f3e45
BS
1763static bool is_valid_gup_flags(unsigned int gup_flags)
1764{
1765 /*
1766 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1767 * never directly by the caller, so enforce that with an assertion:
1768 */
1769 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1770 return false;
1771 /*
1772 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1773 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1774 * FOLL_PIN.
1775 */
1776 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1777 return false;
1778
1779 return true;
1780}
1781
22bf29b6 1782#ifdef CONFIG_MMU
64019a2e 1783static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1784 unsigned long start, unsigned long nr_pages,
1785 unsigned int gup_flags, struct page **pages,
1786 struct vm_area_struct **vmas, int *locked)
1787{
1788 /*
1789 * Parts of FOLL_LONGTERM behavior are incompatible with
1790 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1791 * vmas. However, this only comes up if locked is set, and there are
1792 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1793 * allow what we can.
1794 */
1795 if (gup_flags & FOLL_LONGTERM) {
1796 if (WARN_ON_ONCE(locked))
1797 return -EINVAL;
1798 /*
1799 * This will check the vmas (even if our vmas arg is NULL)
1800 * and return -ENOTSUPP if DAX isn't allowed in this case:
1801 */
64019a2e 1802 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1803 vmas, gup_flags | FOLL_TOUCH |
1804 FOLL_REMOTE);
1805 }
1806
64019a2e 1807 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1808 locked,
1809 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1810}
1811
adc8cb40 1812/**
c4237f8b 1813 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1814 * @mm: mm_struct of target mm
1815 * @start: starting user address
1816 * @nr_pages: number of pages from start to pin
1817 * @gup_flags: flags modifying lookup behaviour
1818 * @pages: array that receives pointers to the pages pinned.
1819 * Should be at least nr_pages long. Or NULL, if caller
1820 * only intends to ensure the pages are faulted in.
1821 * @vmas: array of pointers to vmas corresponding to each page.
1822 * Or NULL if the caller does not require them.
1823 * @locked: pointer to lock flag indicating whether lock is held and
1824 * subsequently whether VM_FAULT_RETRY functionality can be
1825 * utilised. Lock must initially be held.
1826 *
1827 * Returns either number of pages pinned (which may be less than the
1828 * number requested), or an error. Details about the return value:
1829 *
1830 * -- If nr_pages is 0, returns 0.
1831 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1832 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1833 * pages pinned. Again, this may be less than nr_pages.
1834 *
1835 * The caller is responsible for releasing returned @pages, via put_page().
1836 *
c1e8d7c6 1837 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1838 *
c1e8d7c6 1839 * Must be called with mmap_lock held for read or write.
c4237f8b 1840 *
adc8cb40
SJ
1841 * get_user_pages_remote walks a process's page tables and takes a reference
1842 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1843 * instant. That is, it takes the page that would be accessed if a user
1844 * thread accesses the given user virtual address at that instant.
1845 *
1846 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1847 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1848 * page there in some cases (eg. if mmapped pagecache has been invalidated
1849 * and subsequently re faulted). However it does guarantee that the page
1850 * won't be freed completely. And mostly callers simply care that the page
1851 * contains data that was valid *at some point in time*. Typically, an IO
1852 * or similar operation cannot guarantee anything stronger anyway because
1853 * locks can't be held over the syscall boundary.
1854 *
1855 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1856 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1857 * be called after the page is finished with, and before put_page is called.
1858 *
adc8cb40
SJ
1859 * get_user_pages_remote is typically used for fewer-copy IO operations,
1860 * to get a handle on the memory by some means other than accesses
1861 * via the user virtual addresses. The pages may be submitted for
1862 * DMA to devices or accessed via their kernel linear mapping (via the
1863 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1864 *
1865 * See also get_user_pages_fast, for performance critical applications.
1866 *
adc8cb40 1867 * get_user_pages_remote should be phased out in favor of
c4237f8b 1868 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1869 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1870 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1871 */
64019a2e 1872long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1873 unsigned long start, unsigned long nr_pages,
1874 unsigned int gup_flags, struct page **pages,
1875 struct vm_area_struct **vmas, int *locked)
1876{
447f3e45 1877 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1878 return -EINVAL;
1879
64019a2e 1880 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1881 pages, vmas, locked);
c4237f8b
JH
1882}
1883EXPORT_SYMBOL(get_user_pages_remote);
1884
eddb1c22 1885#else /* CONFIG_MMU */
64019a2e 1886long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1887 unsigned long start, unsigned long nr_pages,
1888 unsigned int gup_flags, struct page **pages,
1889 struct vm_area_struct **vmas, int *locked)
1890{
1891 return 0;
1892}
3faa52c0 1893
64019a2e 1894static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1895 unsigned long start, unsigned long nr_pages,
1896 unsigned int gup_flags, struct page **pages,
1897 struct vm_area_struct **vmas, int *locked)
1898{
1899 return 0;
1900}
eddb1c22
JH
1901#endif /* !CONFIG_MMU */
1902
adc8cb40
SJ
1903/**
1904 * get_user_pages() - pin user pages in memory
1905 * @start: starting user address
1906 * @nr_pages: number of pages from start to pin
1907 * @gup_flags: flags modifying lookup behaviour
1908 * @pages: array that receives pointers to the pages pinned.
1909 * Should be at least nr_pages long. Or NULL, if caller
1910 * only intends to ensure the pages are faulted in.
1911 * @vmas: array of pointers to vmas corresponding to each page.
1912 * Or NULL if the caller does not require them.
1913 *
64019a2e
PX
1914 * This is the same as get_user_pages_remote(), just with a less-flexible
1915 * calling convention where we assume that the mm being operated on belongs to
1916 * the current task, and doesn't allow passing of a locked parameter. We also
1917 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1918 */
1919long get_user_pages(unsigned long start, unsigned long nr_pages,
1920 unsigned int gup_flags, struct page **pages,
1921 struct vm_area_struct **vmas)
1922{
447f3e45 1923 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1924 return -EINVAL;
1925
64019a2e 1926 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1927 pages, vmas, gup_flags | FOLL_TOUCH);
1928}
1929EXPORT_SYMBOL(get_user_pages);
2bb6d283 1930
adc8cb40 1931/**
a00cda3f
MCC
1932 * get_user_pages_locked() - variant of get_user_pages()
1933 *
1934 * @start: starting user address
1935 * @nr_pages: number of pages from start to pin
1936 * @gup_flags: flags modifying lookup behaviour
1937 * @pages: array that receives pointers to the pages pinned.
1938 * Should be at least nr_pages long. Or NULL, if caller
1939 * only intends to ensure the pages are faulted in.
1940 * @locked: pointer to lock flag indicating whether lock is held and
1941 * subsequently whether VM_FAULT_RETRY functionality can be
1942 * utilised. Lock must initially be held.
1943 *
1944 * It is suitable to replace the form:
acc3c8d1 1945 *
3e4e28c5 1946 * mmap_read_lock(mm);
d3649f68 1947 * do_something()
64019a2e 1948 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1949 * mmap_read_unlock(mm);
acc3c8d1 1950 *
d3649f68 1951 * to:
acc3c8d1 1952 *
d3649f68 1953 * int locked = 1;
3e4e28c5 1954 * mmap_read_lock(mm);
d3649f68 1955 * do_something()
64019a2e 1956 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 1957 * if (locked)
3e4e28c5 1958 * mmap_read_unlock(mm);
adc8cb40 1959 *
adc8cb40
SJ
1960 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1961 * paths better by using either get_user_pages_locked() or
1962 * get_user_pages_unlocked().
1963 *
acc3c8d1 1964 */
d3649f68
CH
1965long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1966 unsigned int gup_flags, struct page **pages,
1967 int *locked)
acc3c8d1 1968{
acc3c8d1 1969 /*
d3649f68
CH
1970 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1971 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1972 * vmas. As there are no users of this flag in this call we simply
1973 * disallow this option for now.
acc3c8d1 1974 */
d3649f68
CH
1975 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1976 return -EINVAL;
420c2091
JH
1977 /*
1978 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1979 * never directly by the caller, so enforce that:
1980 */
1981 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1982 return -EINVAL;
acc3c8d1 1983
64019a2e 1984 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
1985 pages, NULL, locked,
1986 gup_flags | FOLL_TOUCH);
acc3c8d1 1987}
d3649f68 1988EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1989
1990/*
d3649f68 1991 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1992 *
3e4e28c5 1993 * mmap_read_lock(mm);
64019a2e 1994 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1995 * mmap_read_unlock(mm);
d3649f68
CH
1996 *
1997 * with:
1998 *
64019a2e 1999 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2000 *
2001 * It is functionally equivalent to get_user_pages_fast so
2002 * get_user_pages_fast should be used instead if specific gup_flags
2003 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2004 */
d3649f68
CH
2005long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2006 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2007{
2008 struct mm_struct *mm = current->mm;
d3649f68
CH
2009 int locked = 1;
2010 long ret;
acc3c8d1 2011
d3649f68
CH
2012 /*
2013 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2014 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2015 * vmas. As there are no users of this flag in this call we simply
2016 * disallow this option for now.
2017 */
2018 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2019 return -EINVAL;
acc3c8d1 2020
d8ed45c5 2021 mmap_read_lock(mm);
64019a2e 2022 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2023 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2024 if (locked)
d8ed45c5 2025 mmap_read_unlock(mm);
d3649f68 2026 return ret;
4bbd4c77 2027}
d3649f68 2028EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2029
2030/*
67a929e0 2031 * Fast GUP
2667f50e
SC
2032 *
2033 * get_user_pages_fast attempts to pin user pages by walking the page
2034 * tables directly and avoids taking locks. Thus the walker needs to be
2035 * protected from page table pages being freed from under it, and should
2036 * block any THP splits.
2037 *
2038 * One way to achieve this is to have the walker disable interrupts, and
2039 * rely on IPIs from the TLB flushing code blocking before the page table
2040 * pages are freed. This is unsuitable for architectures that do not need
2041 * to broadcast an IPI when invalidating TLBs.
2042 *
2043 * Another way to achieve this is to batch up page table containing pages
2044 * belonging to more than one mm_user, then rcu_sched a callback to free those
2045 * pages. Disabling interrupts will allow the fast_gup walker to both block
2046 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2047 * (which is a relatively rare event). The code below adopts this strategy.
2048 *
2049 * Before activating this code, please be aware that the following assumptions
2050 * are currently made:
2051 *
ff2e6d72 2052 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2053 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2054 *
2667f50e
SC
2055 * *) ptes can be read atomically by the architecture.
2056 *
2057 * *) access_ok is sufficient to validate userspace address ranges.
2058 *
2059 * The last two assumptions can be relaxed by the addition of helper functions.
2060 *
2061 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2062 */
67a929e0 2063#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2064
790c7369 2065static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2066 unsigned int flags,
790c7369 2067 struct page **pages)
b59f65fa
KS
2068{
2069 while ((*nr) - nr_start) {
2070 struct page *page = pages[--(*nr)];
2071
2072 ClearPageReferenced(page);
3faa52c0
JH
2073 if (flags & FOLL_PIN)
2074 unpin_user_page(page);
2075 else
2076 put_page(page);
b59f65fa
KS
2077 }
2078}
2079
3010a5ea 2080#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2081static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2082 unsigned int flags, struct page **pages, int *nr)
2667f50e 2083{
b59f65fa
KS
2084 struct dev_pagemap *pgmap = NULL;
2085 int nr_start = *nr, ret = 0;
2667f50e 2086 pte_t *ptep, *ptem;
2667f50e
SC
2087
2088 ptem = ptep = pte_offset_map(&pmd, addr);
2089 do {
2a4a06da 2090 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2091 struct page *head, *page;
2667f50e
SC
2092
2093 /*
2094 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2095 * path using the pte_protnone check.
2667f50e 2096 */
e7884f8e
KS
2097 if (pte_protnone(pte))
2098 goto pte_unmap;
2099
b798bec4 2100 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2101 goto pte_unmap;
2102
b59f65fa 2103 if (pte_devmap(pte)) {
7af75561
IW
2104 if (unlikely(flags & FOLL_LONGTERM))
2105 goto pte_unmap;
2106
b59f65fa
KS
2107 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2108 if (unlikely(!pgmap)) {
3b78d834 2109 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2110 goto pte_unmap;
2111 }
2112 } else if (pte_special(pte))
2667f50e
SC
2113 goto pte_unmap;
2114
2115 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2116 page = pte_page(pte);
2117
3faa52c0 2118 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2119 if (!head)
2667f50e
SC
2120 goto pte_unmap;
2121
2122 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2123 put_compound_head(head, 1, flags);
2667f50e
SC
2124 goto pte_unmap;
2125 }
2126
7aef4172 2127 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2128
f28d4363
CI
2129 /*
2130 * We need to make the page accessible if and only if we are
2131 * going to access its content (the FOLL_PIN case). Please
2132 * see Documentation/core-api/pin_user_pages.rst for
2133 * details.
2134 */
2135 if (flags & FOLL_PIN) {
2136 ret = arch_make_page_accessible(page);
2137 if (ret) {
2138 unpin_user_page(page);
2139 goto pte_unmap;
2140 }
2141 }
e9348053 2142 SetPageReferenced(page);
2667f50e
SC
2143 pages[*nr] = page;
2144 (*nr)++;
2145
2146 } while (ptep++, addr += PAGE_SIZE, addr != end);
2147
2148 ret = 1;
2149
2150pte_unmap:
832d7aa0
CH
2151 if (pgmap)
2152 put_dev_pagemap(pgmap);
2667f50e
SC
2153 pte_unmap(ptem);
2154 return ret;
2155}
2156#else
2157
2158/*
2159 * If we can't determine whether or not a pte is special, then fail immediately
2160 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2161 * to be special.
2162 *
2163 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2164 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2165 * useful to have gup_huge_pmd even if we can't operate on ptes.
2166 */
2167static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2168 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2169{
2170 return 0;
2171}
3010a5ea 2172#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2173
17596731 2174#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2175static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2176 unsigned long end, unsigned int flags,
2177 struct page **pages, int *nr)
b59f65fa
KS
2178{
2179 int nr_start = *nr;
2180 struct dev_pagemap *pgmap = NULL;
2181
2182 do {
2183 struct page *page = pfn_to_page(pfn);
2184
2185 pgmap = get_dev_pagemap(pfn, pgmap);
2186 if (unlikely(!pgmap)) {
3b78d834 2187 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2188 return 0;
2189 }
2190 SetPageReferenced(page);
2191 pages[*nr] = page;
3faa52c0
JH
2192 if (unlikely(!try_grab_page(page, flags))) {
2193 undo_dev_pagemap(nr, nr_start, flags, pages);
2194 return 0;
2195 }
b59f65fa
KS
2196 (*nr)++;
2197 pfn++;
2198 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2199
2200 if (pgmap)
2201 put_dev_pagemap(pgmap);
b59f65fa
KS
2202 return 1;
2203}
2204
a9b6de77 2205static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2206 unsigned long end, unsigned int flags,
2207 struct page **pages, int *nr)
b59f65fa
KS
2208{
2209 unsigned long fault_pfn;
a9b6de77
DW
2210 int nr_start = *nr;
2211
2212 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2213 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2214 return 0;
b59f65fa 2215
a9b6de77 2216 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2217 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2218 return 0;
2219 }
2220 return 1;
b59f65fa
KS
2221}
2222
a9b6de77 2223static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2224 unsigned long end, unsigned int flags,
2225 struct page **pages, int *nr)
b59f65fa
KS
2226{
2227 unsigned long fault_pfn;
a9b6de77
DW
2228 int nr_start = *nr;
2229
2230 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2231 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2232 return 0;
b59f65fa 2233
a9b6de77 2234 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2235 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2236 return 0;
2237 }
2238 return 1;
b59f65fa
KS
2239}
2240#else
a9b6de77 2241static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2242 unsigned long end, unsigned int flags,
2243 struct page **pages, int *nr)
b59f65fa
KS
2244{
2245 BUILD_BUG();
2246 return 0;
2247}
2248
a9b6de77 2249static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2250 unsigned long end, unsigned int flags,
2251 struct page **pages, int *nr)
b59f65fa
KS
2252{
2253 BUILD_BUG();
2254 return 0;
2255}
2256#endif
2257
a43e9820
JH
2258static int record_subpages(struct page *page, unsigned long addr,
2259 unsigned long end, struct page **pages)
2260{
2261 int nr;
2262
2263 for (nr = 0; addr != end; addr += PAGE_SIZE)
2264 pages[nr++] = page++;
2265
2266 return nr;
2267}
2268
cbd34da7
CH
2269#ifdef CONFIG_ARCH_HAS_HUGEPD
2270static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2271 unsigned long sz)
2272{
2273 unsigned long __boundary = (addr + sz) & ~(sz-1);
2274 return (__boundary - 1 < end - 1) ? __boundary : end;
2275}
2276
2277static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2278 unsigned long end, unsigned int flags,
2279 struct page **pages, int *nr)
cbd34da7
CH
2280{
2281 unsigned long pte_end;
2282 struct page *head, *page;
2283 pte_t pte;
2284 int refs;
2285
2286 pte_end = (addr + sz) & ~(sz-1);
2287 if (pte_end < end)
2288 end = pte_end;
2289
55ca2263 2290 pte = huge_ptep_get(ptep);
cbd34da7 2291
0cd22afd 2292 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2293 return 0;
2294
2295 /* hugepages are never "special" */
2296 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2297
cbd34da7 2298 head = pte_page(pte);
cbd34da7 2299 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2300 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2301
3faa52c0 2302 head = try_grab_compound_head(head, refs, flags);
a43e9820 2303 if (!head)
cbd34da7 2304 return 0;
cbd34da7
CH
2305
2306 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2307 put_compound_head(head, refs, flags);
cbd34da7
CH
2308 return 0;
2309 }
2310
a43e9820 2311 *nr += refs;
520b4a44 2312 SetPageReferenced(head);
cbd34da7
CH
2313 return 1;
2314}
2315
2316static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2317 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2318 struct page **pages, int *nr)
2319{
2320 pte_t *ptep;
2321 unsigned long sz = 1UL << hugepd_shift(hugepd);
2322 unsigned long next;
2323
2324 ptep = hugepte_offset(hugepd, addr, pdshift);
2325 do {
2326 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2327 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2328 return 0;
2329 } while (ptep++, addr = next, addr != end);
2330
2331 return 1;
2332}
2333#else
2334static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2335 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2336 struct page **pages, int *nr)
2337{
2338 return 0;
2339}
2340#endif /* CONFIG_ARCH_HAS_HUGEPD */
2341
2667f50e 2342static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2343 unsigned long end, unsigned int flags,
2344 struct page **pages, int *nr)
2667f50e 2345{
ddc58f27 2346 struct page *head, *page;
2667f50e
SC
2347 int refs;
2348
b798bec4 2349 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2350 return 0;
2351
7af75561
IW
2352 if (pmd_devmap(orig)) {
2353 if (unlikely(flags & FOLL_LONGTERM))
2354 return 0;
86dfbed4
JH
2355 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2356 pages, nr);
7af75561 2357 }
b59f65fa 2358
d63206ee 2359 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2360 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2361
3faa52c0 2362 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2363 if (!head)
2667f50e 2364 return 0;
2667f50e
SC
2365
2366 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2367 put_compound_head(head, refs, flags);
2667f50e
SC
2368 return 0;
2369 }
2370
a43e9820 2371 *nr += refs;
e9348053 2372 SetPageReferenced(head);
2667f50e
SC
2373 return 1;
2374}
2375
2376static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2377 unsigned long end, unsigned int flags,
2378 struct page **pages, int *nr)
2667f50e 2379{
ddc58f27 2380 struct page *head, *page;
2667f50e
SC
2381 int refs;
2382
b798bec4 2383 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2384 return 0;
2385
7af75561
IW
2386 if (pud_devmap(orig)) {
2387 if (unlikely(flags & FOLL_LONGTERM))
2388 return 0;
86dfbed4
JH
2389 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2390 pages, nr);
7af75561 2391 }
b59f65fa 2392
d63206ee 2393 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2394 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2395
3faa52c0 2396 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2397 if (!head)
2667f50e 2398 return 0;
2667f50e
SC
2399
2400 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2401 put_compound_head(head, refs, flags);
2667f50e
SC
2402 return 0;
2403 }
2404
a43e9820 2405 *nr += refs;
e9348053 2406 SetPageReferenced(head);
2667f50e
SC
2407 return 1;
2408}
2409
f30c59e9 2410static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2411 unsigned long end, unsigned int flags,
f30c59e9
AK
2412 struct page **pages, int *nr)
2413{
2414 int refs;
ddc58f27 2415 struct page *head, *page;
f30c59e9 2416
b798bec4 2417 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2418 return 0;
2419
b59f65fa 2420 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2421
d63206ee 2422 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2423 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2424
3faa52c0 2425 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2426 if (!head)
f30c59e9 2427 return 0;
f30c59e9
AK
2428
2429 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2430 put_compound_head(head, refs, flags);
f30c59e9
AK
2431 return 0;
2432 }
2433
a43e9820 2434 *nr += refs;
e9348053 2435 SetPageReferenced(head);
f30c59e9
AK
2436 return 1;
2437}
2438
d3f7b1bb 2439static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2440 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2441{
2442 unsigned long next;
2443 pmd_t *pmdp;
2444
d3f7b1bb 2445 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2446 do {
38c5ce93 2447 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2448
2449 next = pmd_addr_end(addr, end);
84c3fc4e 2450 if (!pmd_present(pmd))
2667f50e
SC
2451 return 0;
2452
414fd080
YZ
2453 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2454 pmd_devmap(pmd))) {
2667f50e
SC
2455 /*
2456 * NUMA hinting faults need to be handled in the GUP
2457 * slowpath for accounting purposes and so that they
2458 * can be serialised against THP migration.
2459 */
8a0516ed 2460 if (pmd_protnone(pmd))
2667f50e
SC
2461 return 0;
2462
b798bec4 2463 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2464 pages, nr))
2465 return 0;
2466
f30c59e9
AK
2467 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2468 /*
2469 * architecture have different format for hugetlbfs
2470 * pmd format and THP pmd format
2471 */
2472 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2473 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2474 return 0;
b798bec4 2475 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2476 return 0;
2667f50e
SC
2477 } while (pmdp++, addr = next, addr != end);
2478
2479 return 1;
2480}
2481
d3f7b1bb 2482static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2483 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2484{
2485 unsigned long next;
2486 pud_t *pudp;
2487
d3f7b1bb 2488 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2489 do {
e37c6982 2490 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2491
2492 next = pud_addr_end(addr, end);
15494520 2493 if (unlikely(!pud_present(pud)))
2667f50e 2494 return 0;
f30c59e9 2495 if (unlikely(pud_huge(pud))) {
b798bec4 2496 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2497 pages, nr))
2498 return 0;
2499 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2500 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2501 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2502 return 0;
d3f7b1bb 2503 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2504 return 0;
2505 } while (pudp++, addr = next, addr != end);
2506
2507 return 1;
2508}
2509
d3f7b1bb 2510static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2511 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2512{
2513 unsigned long next;
2514 p4d_t *p4dp;
2515
d3f7b1bb 2516 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2517 do {
2518 p4d_t p4d = READ_ONCE(*p4dp);
2519
2520 next = p4d_addr_end(addr, end);
2521 if (p4d_none(p4d))
2522 return 0;
2523 BUILD_BUG_ON(p4d_huge(p4d));
2524 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2525 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2526 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2527 return 0;
d3f7b1bb 2528 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2529 return 0;
2530 } while (p4dp++, addr = next, addr != end);
2531
2532 return 1;
2533}
2534
5b65c467 2535static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2536 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2537{
2538 unsigned long next;
2539 pgd_t *pgdp;
2540
2541 pgdp = pgd_offset(current->mm, addr);
2542 do {
2543 pgd_t pgd = READ_ONCE(*pgdp);
2544
2545 next = pgd_addr_end(addr, end);
2546 if (pgd_none(pgd))
2547 return;
2548 if (unlikely(pgd_huge(pgd))) {
b798bec4 2549 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2550 pages, nr))
2551 return;
2552 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2553 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2554 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2555 return;
d3f7b1bb 2556 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2557 return;
2558 } while (pgdp++, addr = next, addr != end);
2559}
050a9adc
CH
2560#else
2561static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2562 unsigned int flags, struct page **pages, int *nr)
2563{
2564}
2565#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2566
2567#ifndef gup_fast_permitted
2568/*
dadbb612 2569 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2570 * we need to fall back to the slow version:
2571 */
26f4c328 2572static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2573{
26f4c328 2574 return true;
5b65c467
KS
2575}
2576#endif
2577
7af75561
IW
2578static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2579 unsigned int gup_flags, struct page **pages)
2580{
2581 int ret;
2582
2583 /*
2584 * FIXME: FOLL_LONGTERM does not work with
2585 * get_user_pages_unlocked() (see comments in that function)
2586 */
2587 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2588 mmap_read_lock(current->mm);
64019a2e 2589 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2590 start, nr_pages,
2591 pages, NULL, gup_flags);
d8ed45c5 2592 mmap_read_unlock(current->mm);
7af75561
IW
2593 } else {
2594 ret = get_user_pages_unlocked(start, nr_pages,
2595 pages, gup_flags);
2596 }
2597
2598 return ret;
2599}
2600
c28b1fc7
JG
2601static unsigned long lockless_pages_from_mm(unsigned long start,
2602 unsigned long end,
2603 unsigned int gup_flags,
2604 struct page **pages)
2605{
2606 unsigned long flags;
2607 int nr_pinned = 0;
57efa1fe 2608 unsigned seq;
c28b1fc7
JG
2609
2610 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2611 !gup_fast_permitted(start, end))
2612 return 0;
2613
57efa1fe
JG
2614 if (gup_flags & FOLL_PIN) {
2615 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2616 if (seq & 1)
2617 return 0;
2618 }
2619
c28b1fc7
JG
2620 /*
2621 * Disable interrupts. The nested form is used, in order to allow full,
2622 * general purpose use of this routine.
2623 *
2624 * With interrupts disabled, we block page table pages from being freed
2625 * from under us. See struct mmu_table_batch comments in
2626 * include/asm-generic/tlb.h for more details.
2627 *
2628 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2629 * that come from THPs splitting.
2630 */
2631 local_irq_save(flags);
2632 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2633 local_irq_restore(flags);
57efa1fe
JG
2634
2635 /*
2636 * When pinning pages for DMA there could be a concurrent write protect
2637 * from fork() via copy_page_range(), in this case always fail fast GUP.
2638 */
2639 if (gup_flags & FOLL_PIN) {
2640 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2641 unpin_user_pages(pages, nr_pinned);
2642 return 0;
2643 }
2644 }
c28b1fc7
JG
2645 return nr_pinned;
2646}
2647
2648static int internal_get_user_pages_fast(unsigned long start,
2649 unsigned long nr_pages,
eddb1c22
JH
2650 unsigned int gup_flags,
2651 struct page **pages)
2667f50e 2652{
c28b1fc7
JG
2653 unsigned long len, end;
2654 unsigned long nr_pinned;
2655 int ret;
2667f50e 2656
f4000fdf 2657 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2658 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2659 FOLL_FAST_ONLY)))
817be129
CH
2660 return -EINVAL;
2661
008cfe44
PX
2662 if (gup_flags & FOLL_PIN)
2663 atomic_set(&current->mm->has_pinned, 1);
2664
f81cd178 2665 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2666 might_lock_read(&current->mm->mmap_lock);
f81cd178 2667
f455c854 2668 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2669 len = nr_pages << PAGE_SHIFT;
2670 if (check_add_overflow(start, len, &end))
c61611f7 2671 return 0;
96d4f267 2672 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2673 return -EFAULT;
73e10a61 2674
c28b1fc7
JG
2675 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2676 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2677 return nr_pinned;
2667f50e 2678
c28b1fc7
JG
2679 /* Slow path: try to get the remaining pages with get_user_pages */
2680 start += nr_pinned << PAGE_SHIFT;
2681 pages += nr_pinned;
2682 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2683 pages);
2684 if (ret < 0) {
2685 /*
2686 * The caller has to unpin the pages we already pinned so
2687 * returning -errno is not an option
2688 */
2689 if (nr_pinned)
2690 return nr_pinned;
2691 return ret;
2667f50e 2692 }
c28b1fc7 2693 return ret + nr_pinned;
2667f50e 2694}
c28b1fc7 2695
dadbb612
SJ
2696/**
2697 * get_user_pages_fast_only() - pin user pages in memory
2698 * @start: starting user address
2699 * @nr_pages: number of pages from start to pin
2700 * @gup_flags: flags modifying pin behaviour
2701 * @pages: array that receives pointers to the pages pinned.
2702 * Should be at least nr_pages long.
2703 *
9e1f0580
JH
2704 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2705 * the regular GUP.
2706 * Note a difference with get_user_pages_fast: this always returns the
2707 * number of pages pinned, 0 if no pages were pinned.
2708 *
2709 * If the architecture does not support this function, simply return with no
2710 * pages pinned.
2711 *
2712 * Careful, careful! COW breaking can go either way, so a non-write
2713 * access can get ambiguous page results. If you call this function without
2714 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2715 */
dadbb612
SJ
2716int get_user_pages_fast_only(unsigned long start, int nr_pages,
2717 unsigned int gup_flags, struct page **pages)
9e1f0580 2718{
376a34ef 2719 int nr_pinned;
9e1f0580
JH
2720 /*
2721 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2722 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2723 *
2724 * FOLL_FAST_ONLY is required in order to match the API description of
2725 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2726 */
dadbb612 2727 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2728
376a34ef
JH
2729 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2730 pages);
9e1f0580
JH
2731
2732 /*
376a34ef
JH
2733 * As specified in the API description above, this routine is not
2734 * allowed to return negative values. However, the common core
2735 * routine internal_get_user_pages_fast() *can* return -errno.
2736 * Therefore, correct for that here:
9e1f0580 2737 */
376a34ef
JH
2738 if (nr_pinned < 0)
2739 nr_pinned = 0;
9e1f0580
JH
2740
2741 return nr_pinned;
2742}
dadbb612 2743EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2744
eddb1c22
JH
2745/**
2746 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2747 * @start: starting user address
2748 * @nr_pages: number of pages from start to pin
2749 * @gup_flags: flags modifying pin behaviour
2750 * @pages: array that receives pointers to the pages pinned.
2751 * Should be at least nr_pages long.
eddb1c22 2752 *
c1e8d7c6 2753 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2754 * If not successful, it will fall back to taking the lock and
2755 * calling get_user_pages().
2756 *
2757 * Returns number of pages pinned. This may be fewer than the number requested.
2758 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2759 * -errno.
2760 */
2761int get_user_pages_fast(unsigned long start, int nr_pages,
2762 unsigned int gup_flags, struct page **pages)
2763{
447f3e45 2764 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2765 return -EINVAL;
2766
94202f12
JH
2767 /*
2768 * The caller may or may not have explicitly set FOLL_GET; either way is
2769 * OK. However, internally (within mm/gup.c), gup fast variants must set
2770 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2771 * request.
2772 */
2773 gup_flags |= FOLL_GET;
eddb1c22
JH
2774 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2775}
050a9adc 2776EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2777
2778/**
2779 * pin_user_pages_fast() - pin user pages in memory without taking locks
2780 *
3faa52c0
JH
2781 * @start: starting user address
2782 * @nr_pages: number of pages from start to pin
2783 * @gup_flags: flags modifying pin behaviour
2784 * @pages: array that receives pointers to the pages pinned.
2785 * Should be at least nr_pages long.
2786 *
2787 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2788 * get_user_pages_fast() for documentation on the function arguments, because
2789 * the arguments here are identical.
2790 *
2791 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2792 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2793 */
2794int pin_user_pages_fast(unsigned long start, int nr_pages,
2795 unsigned int gup_flags, struct page **pages)
2796{
3faa52c0
JH
2797 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2798 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2799 return -EINVAL;
2800
2801 gup_flags |= FOLL_PIN;
2802 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2803}
2804EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2805
104acc32 2806/*
dadbb612
SJ
2807 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2808 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2809 *
2810 * The API rules are the same, too: no negative values may be returned.
2811 */
2812int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2813 unsigned int gup_flags, struct page **pages)
2814{
2815 int nr_pinned;
2816
2817 /*
2818 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2819 * rules require returning 0, rather than -errno:
2820 */
2821 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2822 return 0;
2823 /*
2824 * FOLL_FAST_ONLY is required in order to match the API description of
2825 * this routine: no fall back to regular ("slow") GUP.
2826 */
2827 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2828 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2829 pages);
2830 /*
2831 * This routine is not allowed to return negative values. However,
2832 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2833 * correct for that here:
2834 */
2835 if (nr_pinned < 0)
2836 nr_pinned = 0;
2837
2838 return nr_pinned;
2839}
2840EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2841
eddb1c22 2842/**
64019a2e 2843 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2844 *
3faa52c0
JH
2845 * @mm: mm_struct of target mm
2846 * @start: starting user address
2847 * @nr_pages: number of pages from start to pin
2848 * @gup_flags: flags modifying lookup behaviour
2849 * @pages: array that receives pointers to the pages pinned.
2850 * Should be at least nr_pages long. Or NULL, if caller
2851 * only intends to ensure the pages are faulted in.
2852 * @vmas: array of pointers to vmas corresponding to each page.
2853 * Or NULL if the caller does not require them.
2854 * @locked: pointer to lock flag indicating whether lock is held and
2855 * subsequently whether VM_FAULT_RETRY functionality can be
2856 * utilised. Lock must initially be held.
2857 *
2858 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2859 * get_user_pages_remote() for documentation on the function arguments, because
2860 * the arguments here are identical.
2861 *
2862 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2863 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2864 */
64019a2e 2865long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2866 unsigned long start, unsigned long nr_pages,
2867 unsigned int gup_flags, struct page **pages,
2868 struct vm_area_struct **vmas, int *locked)
2869{
3faa52c0
JH
2870 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2871 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2872 return -EINVAL;
2873
2874 gup_flags |= FOLL_PIN;
64019a2e 2875 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2876 pages, vmas, locked);
eddb1c22
JH
2877}
2878EXPORT_SYMBOL(pin_user_pages_remote);
2879
2880/**
2881 * pin_user_pages() - pin user pages in memory for use by other devices
2882 *
3faa52c0
JH
2883 * @start: starting user address
2884 * @nr_pages: number of pages from start to pin
2885 * @gup_flags: flags modifying lookup behaviour
2886 * @pages: array that receives pointers to the pages pinned.
2887 * Should be at least nr_pages long. Or NULL, if caller
2888 * only intends to ensure the pages are faulted in.
2889 * @vmas: array of pointers to vmas corresponding to each page.
2890 * Or NULL if the caller does not require them.
2891 *
2892 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2893 * FOLL_PIN is set.
2894 *
2895 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2896 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2897 */
2898long pin_user_pages(unsigned long start, unsigned long nr_pages,
2899 unsigned int gup_flags, struct page **pages,
2900 struct vm_area_struct **vmas)
2901{
3faa52c0
JH
2902 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2903 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2904 return -EINVAL;
2905
2906 gup_flags |= FOLL_PIN;
64019a2e 2907 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2908 pages, vmas, gup_flags);
eddb1c22
JH
2909}
2910EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2911
2912/*
2913 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2914 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2915 * FOLL_PIN and rejects FOLL_GET.
2916 */
2917long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2918 struct page **pages, unsigned int gup_flags)
2919{
2920 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2921 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2922 return -EINVAL;
2923
2924 gup_flags |= FOLL_PIN;
2925 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2926}
2927EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2928
2929/*
2930 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2931 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2932 * FOLL_GET.
2933 */
2934long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2935 unsigned int gup_flags, struct page **pages,
2936 int *locked)
2937{
2938 /*
2939 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2940 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2941 * vmas. As there are no users of this flag in this call we simply
2942 * disallow this option for now.
2943 */
2944 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2945 return -EINVAL;
2946
2947 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2948 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2949 return -EINVAL;
2950
2951 gup_flags |= FOLL_PIN;
64019a2e 2952 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
2953 pages, NULL, locked,
2954 gup_flags | FOLL_TOUCH);
2955}
2956EXPORT_SYMBOL(pin_user_pages_locked);
This page took 1.060765 seconds and 4 git commands to generate.