]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
13 | ||
174cd4b1 | 14 | #include <linux/sched/signal.h> |
2667f50e | 15 | #include <linux/rwsem.h> |
f30c59e9 | 16 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
17 | #include <linux/migrate.h> |
18 | #include <linux/mm_inline.h> | |
19 | #include <linux/sched/mm.h> | |
1027e443 | 20 | |
33a709b2 | 21 | #include <asm/mmu_context.h> |
2667f50e | 22 | #include <asm/pgtable.h> |
1027e443 | 23 | #include <asm/tlbflush.h> |
2667f50e | 24 | |
4bbd4c77 KS |
25 | #include "internal.h" |
26 | ||
df06b37f KB |
27 | struct follow_page_context { |
28 | struct dev_pagemap *pgmap; | |
29 | unsigned int page_mask; | |
30 | }; | |
31 | ||
47e29d32 JH |
32 | static void hpage_pincount_add(struct page *page, int refs) |
33 | { | |
34 | VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); | |
35 | VM_BUG_ON_PAGE(page != compound_head(page), page); | |
36 | ||
37 | atomic_add(refs, compound_pincount_ptr(page)); | |
38 | } | |
39 | ||
40 | static void hpage_pincount_sub(struct page *page, int refs) | |
41 | { | |
42 | VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); | |
43 | VM_BUG_ON_PAGE(page != compound_head(page), page); | |
44 | ||
45 | atomic_sub(refs, compound_pincount_ptr(page)); | |
46 | } | |
47 | ||
a707cdd5 JH |
48 | /* |
49 | * Return the compound head page with ref appropriately incremented, | |
50 | * or NULL if that failed. | |
51 | */ | |
52 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
53 | { | |
54 | struct page *head = compound_head(page); | |
55 | ||
56 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
57 | return NULL; | |
58 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
59 | return NULL; | |
60 | return head; | |
61 | } | |
62 | ||
3faa52c0 JH |
63 | /* |
64 | * try_grab_compound_head() - attempt to elevate a page's refcount, by a | |
65 | * flags-dependent amount. | |
66 | * | |
67 | * "grab" names in this file mean, "look at flags to decide whether to use | |
68 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
69 | * | |
70 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | |
71 | * same time. (That's true throughout the get_user_pages*() and | |
72 | * pin_user_pages*() APIs.) Cases: | |
73 | * | |
74 | * FOLL_GET: page's refcount will be incremented by 1. | |
75 | * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. | |
76 | * | |
77 | * Return: head page (with refcount appropriately incremented) for success, or | |
78 | * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's | |
79 | * considered failure, and furthermore, a likely bug in the caller, so a warning | |
80 | * is also emitted. | |
81 | */ | |
82 | static __maybe_unused struct page *try_grab_compound_head(struct page *page, | |
83 | int refs, | |
84 | unsigned int flags) | |
85 | { | |
86 | if (flags & FOLL_GET) | |
87 | return try_get_compound_head(page, refs); | |
88 | else if (flags & FOLL_PIN) { | |
1970dc6f JH |
89 | int orig_refs = refs; |
90 | ||
df3a0a21 PL |
91 | /* |
92 | * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast | |
93 | * path, so fail and let the caller fall back to the slow path. | |
94 | */ | |
95 | if (unlikely(flags & FOLL_LONGTERM) && | |
96 | is_migrate_cma_page(page)) | |
97 | return NULL; | |
98 | ||
47e29d32 JH |
99 | /* |
100 | * When pinning a compound page of order > 1 (which is what | |
101 | * hpage_pincount_available() checks for), use an exact count to | |
102 | * track it, via hpage_pincount_add/_sub(). | |
103 | * | |
104 | * However, be sure to *also* increment the normal page refcount | |
105 | * field at least once, so that the page really is pinned. | |
106 | */ | |
107 | if (!hpage_pincount_available(page)) | |
108 | refs *= GUP_PIN_COUNTING_BIAS; | |
109 | ||
110 | page = try_get_compound_head(page, refs); | |
111 | if (!page) | |
112 | return NULL; | |
113 | ||
114 | if (hpage_pincount_available(page)) | |
115 | hpage_pincount_add(page, refs); | |
116 | ||
1970dc6f JH |
117 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, |
118 | orig_refs); | |
119 | ||
47e29d32 | 120 | return page; |
3faa52c0 JH |
121 | } |
122 | ||
123 | WARN_ON_ONCE(1); | |
124 | return NULL; | |
125 | } | |
126 | ||
127 | /** | |
128 | * try_grab_page() - elevate a page's refcount by a flag-dependent amount | |
129 | * | |
130 | * This might not do anything at all, depending on the flags argument. | |
131 | * | |
132 | * "grab" names in this file mean, "look at flags to decide whether to use | |
133 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
134 | * | |
135 | * @page: pointer to page to be grabbed | |
136 | * @flags: gup flags: these are the FOLL_* flag values. | |
137 | * | |
138 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same | |
139 | * time. Cases: | |
140 | * | |
141 | * FOLL_GET: page's refcount will be incremented by 1. | |
142 | * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. | |
143 | * | |
144 | * Return: true for success, or if no action was required (if neither FOLL_PIN | |
145 | * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or | |
146 | * FOLL_PIN was set, but the page could not be grabbed. | |
147 | */ | |
148 | bool __must_check try_grab_page(struct page *page, unsigned int flags) | |
149 | { | |
150 | WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); | |
151 | ||
152 | if (flags & FOLL_GET) | |
153 | return try_get_page(page); | |
154 | else if (flags & FOLL_PIN) { | |
47e29d32 JH |
155 | int refs = 1; |
156 | ||
3faa52c0 JH |
157 | page = compound_head(page); |
158 | ||
159 | if (WARN_ON_ONCE(page_ref_count(page) <= 0)) | |
160 | return false; | |
161 | ||
47e29d32 JH |
162 | if (hpage_pincount_available(page)) |
163 | hpage_pincount_add(page, 1); | |
164 | else | |
165 | refs = GUP_PIN_COUNTING_BIAS; | |
166 | ||
167 | /* | |
168 | * Similar to try_grab_compound_head(): even if using the | |
169 | * hpage_pincount_add/_sub() routines, be sure to | |
170 | * *also* increment the normal page refcount field at least | |
171 | * once, so that the page really is pinned. | |
172 | */ | |
173 | page_ref_add(page, refs); | |
1970dc6f JH |
174 | |
175 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); | |
3faa52c0 JH |
176 | } |
177 | ||
178 | return true; | |
179 | } | |
180 | ||
181 | #ifdef CONFIG_DEV_PAGEMAP_OPS | |
182 | static bool __unpin_devmap_managed_user_page(struct page *page) | |
183 | { | |
47e29d32 | 184 | int count, refs = 1; |
3faa52c0 JH |
185 | |
186 | if (!page_is_devmap_managed(page)) | |
187 | return false; | |
188 | ||
47e29d32 JH |
189 | if (hpage_pincount_available(page)) |
190 | hpage_pincount_sub(page, 1); | |
191 | else | |
192 | refs = GUP_PIN_COUNTING_BIAS; | |
193 | ||
194 | count = page_ref_sub_return(page, refs); | |
3faa52c0 | 195 | |
1970dc6f | 196 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); |
3faa52c0 JH |
197 | /* |
198 | * devmap page refcounts are 1-based, rather than 0-based: if | |
199 | * refcount is 1, then the page is free and the refcount is | |
200 | * stable because nobody holds a reference on the page. | |
201 | */ | |
202 | if (count == 1) | |
203 | free_devmap_managed_page(page); | |
204 | else if (!count) | |
205 | __put_page(page); | |
206 | ||
207 | return true; | |
208 | } | |
209 | #else | |
210 | static bool __unpin_devmap_managed_user_page(struct page *page) | |
211 | { | |
212 | return false; | |
213 | } | |
214 | #endif /* CONFIG_DEV_PAGEMAP_OPS */ | |
215 | ||
216 | /** | |
217 | * unpin_user_page() - release a dma-pinned page | |
218 | * @page: pointer to page to be released | |
219 | * | |
220 | * Pages that were pinned via pin_user_pages*() must be released via either | |
221 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | |
222 | * that such pages can be separately tracked and uniquely handled. In | |
223 | * particular, interactions with RDMA and filesystems need special handling. | |
224 | */ | |
225 | void unpin_user_page(struct page *page) | |
226 | { | |
47e29d32 JH |
227 | int refs = 1; |
228 | ||
3faa52c0 JH |
229 | page = compound_head(page); |
230 | ||
231 | /* | |
232 | * For devmap managed pages we need to catch refcount transition from | |
233 | * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the | |
234 | * page is free and we need to inform the device driver through | |
235 | * callback. See include/linux/memremap.h and HMM for details. | |
236 | */ | |
237 | if (__unpin_devmap_managed_user_page(page)) | |
238 | return; | |
239 | ||
47e29d32 JH |
240 | if (hpage_pincount_available(page)) |
241 | hpage_pincount_sub(page, 1); | |
242 | else | |
243 | refs = GUP_PIN_COUNTING_BIAS; | |
244 | ||
245 | if (page_ref_sub_and_test(page, refs)) | |
3faa52c0 | 246 | __put_page(page); |
1970dc6f JH |
247 | |
248 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); | |
3faa52c0 JH |
249 | } |
250 | EXPORT_SYMBOL(unpin_user_page); | |
251 | ||
fc1d8e7c | 252 | /** |
f1f6a7dd | 253 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
2d15eb31 | 254 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
fc1d8e7c | 255 | * @npages: number of pages in the @pages array. |
2d15eb31 | 256 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
257 | * |
258 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
259 | * variants called on that page. | |
260 | * | |
261 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 | 262 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
f1f6a7dd JH |
263 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
264 | * possibly via unpin_user_pages(), for the non-dirty case. | |
fc1d8e7c | 265 | * |
f1f6a7dd | 266 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 267 | * |
2d15eb31 AM |
268 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
269 | * required, then the caller should a) verify that this is really correct, | |
270 | * because _lock() is usually required, and b) hand code it: | |
f1f6a7dd | 271 | * set_page_dirty_lock(), unpin_user_page(). |
fc1d8e7c JH |
272 | * |
273 | */ | |
f1f6a7dd JH |
274 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
275 | bool make_dirty) | |
fc1d8e7c | 276 | { |
2d15eb31 | 277 | unsigned long index; |
fc1d8e7c | 278 | |
2d15eb31 AM |
279 | /* |
280 | * TODO: this can be optimized for huge pages: if a series of pages is | |
281 | * physically contiguous and part of the same compound page, then a | |
282 | * single operation to the head page should suffice. | |
283 | */ | |
284 | ||
285 | if (!make_dirty) { | |
f1f6a7dd | 286 | unpin_user_pages(pages, npages); |
2d15eb31 AM |
287 | return; |
288 | } | |
289 | ||
290 | for (index = 0; index < npages; index++) { | |
291 | struct page *page = compound_head(pages[index]); | |
292 | /* | |
293 | * Checking PageDirty at this point may race with | |
294 | * clear_page_dirty_for_io(), but that's OK. Two key | |
295 | * cases: | |
296 | * | |
297 | * 1) This code sees the page as already dirty, so it | |
298 | * skips the call to set_page_dirty(). That could happen | |
299 | * because clear_page_dirty_for_io() called | |
300 | * page_mkclean(), followed by set_page_dirty(). | |
301 | * However, now the page is going to get written back, | |
302 | * which meets the original intention of setting it | |
303 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
304 | * on to call TestClearPageDirty(), and write the page | |
305 | * back. | |
306 | * | |
307 | * 2) This code sees the page as clean, so it calls | |
308 | * set_page_dirty(). The page stays dirty, despite being | |
309 | * written back, so it gets written back again in the | |
310 | * next writeback cycle. This is harmless. | |
311 | */ | |
312 | if (!PageDirty(page)) | |
313 | set_page_dirty_lock(page); | |
f1f6a7dd | 314 | unpin_user_page(page); |
2d15eb31 | 315 | } |
fc1d8e7c | 316 | } |
f1f6a7dd | 317 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
fc1d8e7c JH |
318 | |
319 | /** | |
f1f6a7dd | 320 | * unpin_user_pages() - release an array of gup-pinned pages. |
fc1d8e7c JH |
321 | * @pages: array of pages to be marked dirty and released. |
322 | * @npages: number of pages in the @pages array. | |
323 | * | |
f1f6a7dd | 324 | * For each page in the @pages array, release the page using unpin_user_page(). |
fc1d8e7c | 325 | * |
f1f6a7dd | 326 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 327 | */ |
f1f6a7dd | 328 | void unpin_user_pages(struct page **pages, unsigned long npages) |
fc1d8e7c JH |
329 | { |
330 | unsigned long index; | |
331 | ||
332 | /* | |
333 | * TODO: this can be optimized for huge pages: if a series of pages is | |
334 | * physically contiguous and part of the same compound page, then a | |
335 | * single operation to the head page should suffice. | |
336 | */ | |
337 | for (index = 0; index < npages; index++) | |
f1f6a7dd | 338 | unpin_user_page(pages[index]); |
fc1d8e7c | 339 | } |
f1f6a7dd | 340 | EXPORT_SYMBOL(unpin_user_pages); |
fc1d8e7c | 341 | |
050a9adc | 342 | #ifdef CONFIG_MMU |
69e68b4f KS |
343 | static struct page *no_page_table(struct vm_area_struct *vma, |
344 | unsigned int flags) | |
4bbd4c77 | 345 | { |
69e68b4f KS |
346 | /* |
347 | * When core dumping an enormous anonymous area that nobody | |
348 | * has touched so far, we don't want to allocate unnecessary pages or | |
349 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
350 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
351 | * But we can only make this optimization where a hole would surely | |
352 | * be zero-filled if handle_mm_fault() actually did handle it. | |
353 | */ | |
a0137f16 AK |
354 | if ((flags & FOLL_DUMP) && |
355 | (vma_is_anonymous(vma) || !vma->vm_ops->fault)) | |
69e68b4f KS |
356 | return ERR_PTR(-EFAULT); |
357 | return NULL; | |
358 | } | |
4bbd4c77 | 359 | |
1027e443 KS |
360 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
361 | pte_t *pte, unsigned int flags) | |
362 | { | |
363 | /* No page to get reference */ | |
364 | if (flags & FOLL_GET) | |
365 | return -EFAULT; | |
366 | ||
367 | if (flags & FOLL_TOUCH) { | |
368 | pte_t entry = *pte; | |
369 | ||
370 | if (flags & FOLL_WRITE) | |
371 | entry = pte_mkdirty(entry); | |
372 | entry = pte_mkyoung(entry); | |
373 | ||
374 | if (!pte_same(*pte, entry)) { | |
375 | set_pte_at(vma->vm_mm, address, pte, entry); | |
376 | update_mmu_cache(vma, address, pte); | |
377 | } | |
378 | } | |
379 | ||
380 | /* Proper page table entry exists, but no corresponding struct page */ | |
381 | return -EEXIST; | |
382 | } | |
383 | ||
19be0eaf | 384 | /* |
17839856 LT |
385 | * FOLL_FORCE or a forced COW break can write even to unwritable pte's, |
386 | * but only after we've gone through a COW cycle and they are dirty. | |
19be0eaf LT |
387 | */ |
388 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
389 | { | |
17839856 LT |
390 | return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte)); |
391 | } | |
392 | ||
393 | /* | |
394 | * A (separate) COW fault might break the page the other way and | |
395 | * get_user_pages() would return the page from what is now the wrong | |
396 | * VM. So we need to force a COW break at GUP time even for reads. | |
397 | */ | |
398 | static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags) | |
399 | { | |
400 | return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN)); | |
19be0eaf LT |
401 | } |
402 | ||
69e68b4f | 403 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
404 | unsigned long address, pmd_t *pmd, unsigned int flags, |
405 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
406 | { |
407 | struct mm_struct *mm = vma->vm_mm; | |
408 | struct page *page; | |
409 | spinlock_t *ptl; | |
410 | pte_t *ptep, pte; | |
f28d4363 | 411 | int ret; |
4bbd4c77 | 412 | |
eddb1c22 JH |
413 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
414 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | |
415 | (FOLL_PIN | FOLL_GET))) | |
416 | return ERR_PTR(-EINVAL); | |
69e68b4f | 417 | retry: |
4bbd4c77 | 418 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 419 | return no_page_table(vma, flags); |
4bbd4c77 KS |
420 | |
421 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
422 | pte = *ptep; |
423 | if (!pte_present(pte)) { | |
424 | swp_entry_t entry; | |
425 | /* | |
426 | * KSM's break_ksm() relies upon recognizing a ksm page | |
427 | * even while it is being migrated, so for that case we | |
428 | * need migration_entry_wait(). | |
429 | */ | |
430 | if (likely(!(flags & FOLL_MIGRATION))) | |
431 | goto no_page; | |
0661a336 | 432 | if (pte_none(pte)) |
4bbd4c77 KS |
433 | goto no_page; |
434 | entry = pte_to_swp_entry(pte); | |
435 | if (!is_migration_entry(entry)) | |
436 | goto no_page; | |
437 | pte_unmap_unlock(ptep, ptl); | |
438 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 439 | goto retry; |
4bbd4c77 | 440 | } |
8a0516ed | 441 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 442 | goto no_page; |
19be0eaf | 443 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
444 | pte_unmap_unlock(ptep, ptl); |
445 | return NULL; | |
446 | } | |
4bbd4c77 KS |
447 | |
448 | page = vm_normal_page(vma, address, pte); | |
3faa52c0 | 449 | if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { |
3565fce3 | 450 | /* |
3faa52c0 JH |
451 | * Only return device mapping pages in the FOLL_GET or FOLL_PIN |
452 | * case since they are only valid while holding the pgmap | |
453 | * reference. | |
3565fce3 | 454 | */ |
df06b37f KB |
455 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
456 | if (*pgmap) | |
3565fce3 DW |
457 | page = pte_page(pte); |
458 | else | |
459 | goto no_page; | |
460 | } else if (unlikely(!page)) { | |
1027e443 KS |
461 | if (flags & FOLL_DUMP) { |
462 | /* Avoid special (like zero) pages in core dumps */ | |
463 | page = ERR_PTR(-EFAULT); | |
464 | goto out; | |
465 | } | |
466 | ||
467 | if (is_zero_pfn(pte_pfn(pte))) { | |
468 | page = pte_page(pte); | |
469 | } else { | |
1027e443 KS |
470 | ret = follow_pfn_pte(vma, address, ptep, flags); |
471 | page = ERR_PTR(ret); | |
472 | goto out; | |
473 | } | |
4bbd4c77 KS |
474 | } |
475 | ||
6742d293 | 476 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
6742d293 KS |
477 | get_page(page); |
478 | pte_unmap_unlock(ptep, ptl); | |
479 | lock_page(page); | |
480 | ret = split_huge_page(page); | |
481 | unlock_page(page); | |
482 | put_page(page); | |
483 | if (ret) | |
484 | return ERR_PTR(ret); | |
485 | goto retry; | |
486 | } | |
487 | ||
3faa52c0 JH |
488 | /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
489 | if (unlikely(!try_grab_page(page, flags))) { | |
490 | page = ERR_PTR(-ENOMEM); | |
491 | goto out; | |
8fde12ca | 492 | } |
f28d4363 CI |
493 | /* |
494 | * We need to make the page accessible if and only if we are going | |
495 | * to access its content (the FOLL_PIN case). Please see | |
496 | * Documentation/core-api/pin_user_pages.rst for details. | |
497 | */ | |
498 | if (flags & FOLL_PIN) { | |
499 | ret = arch_make_page_accessible(page); | |
500 | if (ret) { | |
501 | unpin_user_page(page); | |
502 | page = ERR_PTR(ret); | |
503 | goto out; | |
504 | } | |
505 | } | |
4bbd4c77 KS |
506 | if (flags & FOLL_TOUCH) { |
507 | if ((flags & FOLL_WRITE) && | |
508 | !pte_dirty(pte) && !PageDirty(page)) | |
509 | set_page_dirty(page); | |
510 | /* | |
511 | * pte_mkyoung() would be more correct here, but atomic care | |
512 | * is needed to avoid losing the dirty bit: it is easier to use | |
513 | * mark_page_accessed(). | |
514 | */ | |
515 | mark_page_accessed(page); | |
516 | } | |
de60f5f1 | 517 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
518 | /* Do not mlock pte-mapped THP */ |
519 | if (PageTransCompound(page)) | |
520 | goto out; | |
521 | ||
4bbd4c77 KS |
522 | /* |
523 | * The preliminary mapping check is mainly to avoid the | |
524 | * pointless overhead of lock_page on the ZERO_PAGE | |
525 | * which might bounce very badly if there is contention. | |
526 | * | |
527 | * If the page is already locked, we don't need to | |
528 | * handle it now - vmscan will handle it later if and | |
529 | * when it attempts to reclaim the page. | |
530 | */ | |
531 | if (page->mapping && trylock_page(page)) { | |
532 | lru_add_drain(); /* push cached pages to LRU */ | |
533 | /* | |
534 | * Because we lock page here, and migration is | |
535 | * blocked by the pte's page reference, and we | |
536 | * know the page is still mapped, we don't even | |
537 | * need to check for file-cache page truncation. | |
538 | */ | |
539 | mlock_vma_page(page); | |
540 | unlock_page(page); | |
541 | } | |
542 | } | |
1027e443 | 543 | out: |
4bbd4c77 | 544 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 545 | return page; |
4bbd4c77 KS |
546 | no_page: |
547 | pte_unmap_unlock(ptep, ptl); | |
548 | if (!pte_none(pte)) | |
69e68b4f KS |
549 | return NULL; |
550 | return no_page_table(vma, flags); | |
551 | } | |
552 | ||
080dbb61 AK |
553 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
554 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
555 | unsigned int flags, |
556 | struct follow_page_context *ctx) | |
69e68b4f | 557 | { |
68827280 | 558 | pmd_t *pmd, pmdval; |
69e68b4f KS |
559 | spinlock_t *ptl; |
560 | struct page *page; | |
561 | struct mm_struct *mm = vma->vm_mm; | |
562 | ||
080dbb61 | 563 | pmd = pmd_offset(pudp, address); |
68827280 YH |
564 | /* |
565 | * The READ_ONCE() will stabilize the pmdval in a register or | |
566 | * on the stack so that it will stop changing under the code. | |
567 | */ | |
568 | pmdval = READ_ONCE(*pmd); | |
569 | if (pmd_none(pmdval)) | |
69e68b4f | 570 | return no_page_table(vma, flags); |
be9d3045 | 571 | if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { |
e66f17ff NH |
572 | page = follow_huge_pmd(mm, address, pmd, flags); |
573 | if (page) | |
574 | return page; | |
575 | return no_page_table(vma, flags); | |
69e68b4f | 576 | } |
68827280 | 577 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 578 | page = follow_huge_pd(vma, address, |
68827280 | 579 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
580 | PMD_SHIFT); |
581 | if (page) | |
582 | return page; | |
583 | return no_page_table(vma, flags); | |
584 | } | |
84c3fc4e | 585 | retry: |
68827280 | 586 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
587 | if (likely(!(flags & FOLL_MIGRATION))) |
588 | return no_page_table(vma, flags); | |
589 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
590 | !is_pmd_migration_entry(pmdval)); |
591 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 592 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
593 | pmdval = READ_ONCE(*pmd); |
594 | /* | |
595 | * MADV_DONTNEED may convert the pmd to null because | |
596 | * mmap_sem is held in read mode | |
597 | */ | |
598 | if (pmd_none(pmdval)) | |
599 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
600 | goto retry; |
601 | } | |
68827280 | 602 | if (pmd_devmap(pmdval)) { |
3565fce3 | 603 | ptl = pmd_lock(mm, pmd); |
df06b37f | 604 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
605 | spin_unlock(ptl); |
606 | if (page) | |
607 | return page; | |
608 | } | |
68827280 | 609 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 610 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 611 | |
68827280 | 612 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
613 | return no_page_table(vma, flags); |
614 | ||
84c3fc4e | 615 | retry_locked: |
6742d293 | 616 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
617 | if (unlikely(pmd_none(*pmd))) { |
618 | spin_unlock(ptl); | |
619 | return no_page_table(vma, flags); | |
620 | } | |
84c3fc4e ZY |
621 | if (unlikely(!pmd_present(*pmd))) { |
622 | spin_unlock(ptl); | |
623 | if (likely(!(flags & FOLL_MIGRATION))) | |
624 | return no_page_table(vma, flags); | |
625 | pmd_migration_entry_wait(mm, pmd); | |
626 | goto retry_locked; | |
627 | } | |
6742d293 KS |
628 | if (unlikely(!pmd_trans_huge(*pmd))) { |
629 | spin_unlock(ptl); | |
df06b37f | 630 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 631 | } |
bfe7b00d | 632 | if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { |
6742d293 KS |
633 | int ret; |
634 | page = pmd_page(*pmd); | |
635 | if (is_huge_zero_page(page)) { | |
636 | spin_unlock(ptl); | |
637 | ret = 0; | |
78ddc534 | 638 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
639 | if (pmd_trans_unstable(pmd)) |
640 | ret = -EBUSY; | |
bfe7b00d | 641 | } else if (flags & FOLL_SPLIT) { |
8fde12ca LT |
642 | if (unlikely(!try_get_page(page))) { |
643 | spin_unlock(ptl); | |
644 | return ERR_PTR(-ENOMEM); | |
645 | } | |
69e68b4f | 646 | spin_unlock(ptl); |
6742d293 KS |
647 | lock_page(page); |
648 | ret = split_huge_page(page); | |
649 | unlock_page(page); | |
650 | put_page(page); | |
baa355fd KS |
651 | if (pmd_none(*pmd)) |
652 | return no_page_table(vma, flags); | |
bfe7b00d SL |
653 | } else { /* flags & FOLL_SPLIT_PMD */ |
654 | spin_unlock(ptl); | |
655 | split_huge_pmd(vma, pmd, address); | |
656 | ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | |
6742d293 KS |
657 | } |
658 | ||
659 | return ret ? ERR_PTR(ret) : | |
df06b37f | 660 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 661 | } |
6742d293 KS |
662 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
663 | spin_unlock(ptl); | |
df06b37f | 664 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 665 | return page; |
4bbd4c77 KS |
666 | } |
667 | ||
080dbb61 AK |
668 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
669 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
670 | unsigned int flags, |
671 | struct follow_page_context *ctx) | |
080dbb61 AK |
672 | { |
673 | pud_t *pud; | |
674 | spinlock_t *ptl; | |
675 | struct page *page; | |
676 | struct mm_struct *mm = vma->vm_mm; | |
677 | ||
678 | pud = pud_offset(p4dp, address); | |
679 | if (pud_none(*pud)) | |
680 | return no_page_table(vma, flags); | |
be9d3045 | 681 | if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { |
080dbb61 AK |
682 | page = follow_huge_pud(mm, address, pud, flags); |
683 | if (page) | |
684 | return page; | |
685 | return no_page_table(vma, flags); | |
686 | } | |
4dc71451 AK |
687 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
688 | page = follow_huge_pd(vma, address, | |
689 | __hugepd(pud_val(*pud)), flags, | |
690 | PUD_SHIFT); | |
691 | if (page) | |
692 | return page; | |
693 | return no_page_table(vma, flags); | |
694 | } | |
080dbb61 AK |
695 | if (pud_devmap(*pud)) { |
696 | ptl = pud_lock(mm, pud); | |
df06b37f | 697 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
698 | spin_unlock(ptl); |
699 | if (page) | |
700 | return page; | |
701 | } | |
702 | if (unlikely(pud_bad(*pud))) | |
703 | return no_page_table(vma, flags); | |
704 | ||
df06b37f | 705 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
706 | } |
707 | ||
080dbb61 AK |
708 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
709 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
710 | unsigned int flags, |
711 | struct follow_page_context *ctx) | |
080dbb61 AK |
712 | { |
713 | p4d_t *p4d; | |
4dc71451 | 714 | struct page *page; |
080dbb61 AK |
715 | |
716 | p4d = p4d_offset(pgdp, address); | |
717 | if (p4d_none(*p4d)) | |
718 | return no_page_table(vma, flags); | |
719 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
720 | if (unlikely(p4d_bad(*p4d))) | |
721 | return no_page_table(vma, flags); | |
722 | ||
4dc71451 AK |
723 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
724 | page = follow_huge_pd(vma, address, | |
725 | __hugepd(p4d_val(*p4d)), flags, | |
726 | P4D_SHIFT); | |
727 | if (page) | |
728 | return page; | |
729 | return no_page_table(vma, flags); | |
730 | } | |
df06b37f | 731 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
732 | } |
733 | ||
734 | /** | |
735 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
736 | * @vma: vm_area_struct mapping @address | |
737 | * @address: virtual address to look up | |
738 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
739 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
740 | * pointer to output page_mask | |
080dbb61 AK |
741 | * |
742 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
743 | * | |
78179556 MR |
744 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
745 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
746 | * | |
747 | * On output, the @ctx->page_mask is set according to the size of the page. | |
748 | * | |
749 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
750 | * an error pointer if there is a mapping to something not represented |
751 | * by a page descriptor (see also vm_normal_page()). | |
752 | */ | |
a7030aea | 753 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 754 | unsigned long address, unsigned int flags, |
df06b37f | 755 | struct follow_page_context *ctx) |
080dbb61 AK |
756 | { |
757 | pgd_t *pgd; | |
758 | struct page *page; | |
759 | struct mm_struct *mm = vma->vm_mm; | |
760 | ||
df06b37f | 761 | ctx->page_mask = 0; |
080dbb61 AK |
762 | |
763 | /* make this handle hugepd */ | |
764 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
765 | if (!IS_ERR(page)) { | |
3faa52c0 | 766 | WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); |
080dbb61 AK |
767 | return page; |
768 | } | |
769 | ||
770 | pgd = pgd_offset(mm, address); | |
771 | ||
772 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
773 | return no_page_table(vma, flags); | |
774 | ||
faaa5b62 AK |
775 | if (pgd_huge(*pgd)) { |
776 | page = follow_huge_pgd(mm, address, pgd, flags); | |
777 | if (page) | |
778 | return page; | |
779 | return no_page_table(vma, flags); | |
780 | } | |
4dc71451 AK |
781 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
782 | page = follow_huge_pd(vma, address, | |
783 | __hugepd(pgd_val(*pgd)), flags, | |
784 | PGDIR_SHIFT); | |
785 | if (page) | |
786 | return page; | |
787 | return no_page_table(vma, flags); | |
788 | } | |
faaa5b62 | 789 | |
df06b37f KB |
790 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
791 | } | |
792 | ||
793 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
794 | unsigned int foll_flags) | |
795 | { | |
796 | struct follow_page_context ctx = { NULL }; | |
797 | struct page *page; | |
798 | ||
799 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
800 | if (ctx.pgmap) | |
801 | put_dev_pagemap(ctx.pgmap); | |
802 | return page; | |
080dbb61 AK |
803 | } |
804 | ||
f2b495ca KS |
805 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
806 | unsigned int gup_flags, struct vm_area_struct **vma, | |
807 | struct page **page) | |
808 | { | |
809 | pgd_t *pgd; | |
c2febafc | 810 | p4d_t *p4d; |
f2b495ca KS |
811 | pud_t *pud; |
812 | pmd_t *pmd; | |
813 | pte_t *pte; | |
814 | int ret = -EFAULT; | |
815 | ||
816 | /* user gate pages are read-only */ | |
817 | if (gup_flags & FOLL_WRITE) | |
818 | return -EFAULT; | |
819 | if (address > TASK_SIZE) | |
820 | pgd = pgd_offset_k(address); | |
821 | else | |
822 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
823 | if (pgd_none(*pgd)) |
824 | return -EFAULT; | |
c2febafc | 825 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
826 | if (p4d_none(*p4d)) |
827 | return -EFAULT; | |
c2febafc | 828 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
829 | if (pud_none(*pud)) |
830 | return -EFAULT; | |
f2b495ca | 831 | pmd = pmd_offset(pud, address); |
84c3fc4e | 832 | if (!pmd_present(*pmd)) |
f2b495ca KS |
833 | return -EFAULT; |
834 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
835 | pte = pte_offset_map(pmd, address); | |
836 | if (pte_none(*pte)) | |
837 | goto unmap; | |
838 | *vma = get_gate_vma(mm); | |
839 | if (!page) | |
840 | goto out; | |
841 | *page = vm_normal_page(*vma, address, *pte); | |
842 | if (!*page) { | |
843 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
844 | goto unmap; | |
845 | *page = pte_page(*pte); | |
846 | } | |
8fde12ca LT |
847 | if (unlikely(!try_get_page(*page))) { |
848 | ret = -ENOMEM; | |
849 | goto unmap; | |
850 | } | |
f2b495ca KS |
851 | out: |
852 | ret = 0; | |
853 | unmap: | |
854 | pte_unmap(pte); | |
855 | return ret; | |
856 | } | |
857 | ||
9a95f3cf | 858 | /* |
4f6da934 PX |
859 | * mmap_sem must be held on entry. If @locked != NULL and *@flags |
860 | * does not include FOLL_NOWAIT, the mmap_sem may be released. If it | |
861 | * is, *@locked will be set to 0 and -EBUSY returned. | |
9a95f3cf | 862 | */ |
16744483 | 863 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
4f6da934 | 864 | unsigned long address, unsigned int *flags, int *locked) |
16744483 | 865 | { |
16744483 | 866 | unsigned int fault_flags = 0; |
2b740303 | 867 | vm_fault_t ret; |
16744483 | 868 | |
de60f5f1 EM |
869 | /* mlock all present pages, but do not fault in new pages */ |
870 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
871 | return -ENOENT; | |
16744483 KS |
872 | if (*flags & FOLL_WRITE) |
873 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
874 | if (*flags & FOLL_REMOTE) |
875 | fault_flags |= FAULT_FLAG_REMOTE; | |
4f6da934 | 876 | if (locked) |
71335f37 | 877 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
16744483 KS |
878 | if (*flags & FOLL_NOWAIT) |
879 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b | 880 | if (*flags & FOLL_TRIED) { |
4426e945 PX |
881 | /* |
882 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | |
883 | * can co-exist | |
884 | */ | |
234b239b ALC |
885 | fault_flags |= FAULT_FLAG_TRIED; |
886 | } | |
16744483 | 887 | |
dcddffd4 | 888 | ret = handle_mm_fault(vma, address, fault_flags); |
16744483 | 889 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
890 | int err = vm_fault_to_errno(ret, *flags); |
891 | ||
892 | if (err) | |
893 | return err; | |
16744483 KS |
894 | BUG(); |
895 | } | |
896 | ||
897 | if (tsk) { | |
898 | if (ret & VM_FAULT_MAJOR) | |
899 | tsk->maj_flt++; | |
900 | else | |
901 | tsk->min_flt++; | |
902 | } | |
903 | ||
904 | if (ret & VM_FAULT_RETRY) { | |
4f6da934 PX |
905 | if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
906 | *locked = 0; | |
16744483 KS |
907 | return -EBUSY; |
908 | } | |
909 | ||
910 | /* | |
911 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
912 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
913 | * can thus safely do subsequent page lookups as if they were reads. | |
914 | * But only do so when looping for pte_write is futile: in some cases | |
915 | * userspace may also be wanting to write to the gotten user page, | |
916 | * which a read fault here might prevent (a readonly page might get | |
917 | * reCOWed by userspace write). | |
918 | */ | |
919 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 920 | *flags |= FOLL_COW; |
16744483 KS |
921 | return 0; |
922 | } | |
923 | ||
fa5bb209 KS |
924 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
925 | { | |
926 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
927 | int write = (gup_flags & FOLL_WRITE); |
928 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
929 | |
930 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
931 | return -EFAULT; | |
932 | ||
7f7ccc2c WT |
933 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
934 | return -EFAULT; | |
935 | ||
1b2ee126 | 936 | if (write) { |
fa5bb209 KS |
937 | if (!(vm_flags & VM_WRITE)) { |
938 | if (!(gup_flags & FOLL_FORCE)) | |
939 | return -EFAULT; | |
940 | /* | |
941 | * We used to let the write,force case do COW in a | |
942 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
943 | * set a breakpoint in a read-only mapping of an | |
944 | * executable, without corrupting the file (yet only | |
945 | * when that file had been opened for writing!). | |
946 | * Anon pages in shared mappings are surprising: now | |
947 | * just reject it. | |
948 | */ | |
46435364 | 949 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 950 | return -EFAULT; |
fa5bb209 KS |
951 | } |
952 | } else if (!(vm_flags & VM_READ)) { | |
953 | if (!(gup_flags & FOLL_FORCE)) | |
954 | return -EFAULT; | |
955 | /* | |
956 | * Is there actually any vma we can reach here which does not | |
957 | * have VM_MAYREAD set? | |
958 | */ | |
959 | if (!(vm_flags & VM_MAYREAD)) | |
960 | return -EFAULT; | |
961 | } | |
d61172b4 DH |
962 | /* |
963 | * gups are always data accesses, not instruction | |
964 | * fetches, so execute=false here | |
965 | */ | |
966 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 967 | return -EFAULT; |
fa5bb209 KS |
968 | return 0; |
969 | } | |
970 | ||
4bbd4c77 KS |
971 | /** |
972 | * __get_user_pages() - pin user pages in memory | |
973 | * @tsk: task_struct of target task | |
974 | * @mm: mm_struct of target mm | |
975 | * @start: starting user address | |
976 | * @nr_pages: number of pages from start to pin | |
977 | * @gup_flags: flags modifying pin behaviour | |
978 | * @pages: array that receives pointers to the pages pinned. | |
979 | * Should be at least nr_pages long. Or NULL, if caller | |
980 | * only intends to ensure the pages are faulted in. | |
981 | * @vmas: array of pointers to vmas corresponding to each page. | |
982 | * Or NULL if the caller does not require them. | |
4f6da934 | 983 | * @locked: whether we're still with the mmap_sem held |
4bbd4c77 | 984 | * |
d2dfbe47 LX |
985 | * Returns either number of pages pinned (which may be less than the |
986 | * number requested), or an error. Details about the return value: | |
987 | * | |
988 | * -- If nr_pages is 0, returns 0. | |
989 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
990 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
991 | * pages pinned. Again, this may be less than nr_pages. | |
992 | * | |
993 | * The caller is responsible for releasing returned @pages, via put_page(). | |
994 | * | |
995 | * @vmas are valid only as long as mmap_sem is held. | |
4bbd4c77 | 996 | * |
9a95f3cf | 997 | * Must be called with mmap_sem held. It may be released. See below. |
4bbd4c77 KS |
998 | * |
999 | * __get_user_pages walks a process's page tables and takes a reference to | |
1000 | * each struct page that each user address corresponds to at a given | |
1001 | * instant. That is, it takes the page that would be accessed if a user | |
1002 | * thread accesses the given user virtual address at that instant. | |
1003 | * | |
1004 | * This does not guarantee that the page exists in the user mappings when | |
1005 | * __get_user_pages returns, and there may even be a completely different | |
1006 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1007 | * and subsequently re faulted). However it does guarantee that the page | |
1008 | * won't be freed completely. And mostly callers simply care that the page | |
1009 | * contains data that was valid *at some point in time*. Typically, an IO | |
1010 | * or similar operation cannot guarantee anything stronger anyway because | |
1011 | * locks can't be held over the syscall boundary. | |
1012 | * | |
1013 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
1014 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
1015 | * appropriate) must be called after the page is finished with, and | |
1016 | * before put_page is called. | |
1017 | * | |
4f6da934 PX |
1018 | * If @locked != NULL, *@locked will be set to 0 when mmap_sem is |
1019 | * released by an up_read(). That can happen if @gup_flags does not | |
1020 | * have FOLL_NOWAIT. | |
9a95f3cf | 1021 | * |
4f6da934 | 1022 | * A caller using such a combination of @locked and @gup_flags |
9a95f3cf PC |
1023 | * must therefore hold the mmap_sem for reading only, and recognize |
1024 | * when it's been released. Otherwise, it must be held for either | |
1025 | * reading or writing and will not be released. | |
4bbd4c77 KS |
1026 | * |
1027 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
1028 | * instead of __get_user_pages. __get_user_pages should be used only if | |
1029 | * you need some special @gup_flags. | |
1030 | */ | |
0d731759 | 1031 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
4bbd4c77 KS |
1032 | unsigned long start, unsigned long nr_pages, |
1033 | unsigned int gup_flags, struct page **pages, | |
4f6da934 | 1034 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1035 | { |
df06b37f | 1036 | long ret = 0, i = 0; |
fa5bb209 | 1037 | struct vm_area_struct *vma = NULL; |
df06b37f | 1038 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
1039 | |
1040 | if (!nr_pages) | |
1041 | return 0; | |
1042 | ||
f9652594 AK |
1043 | start = untagged_addr(start); |
1044 | ||
eddb1c22 | 1045 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
4bbd4c77 KS |
1046 | |
1047 | /* | |
1048 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
1049 | * fault information is unrelated to the reference behaviour of a task | |
1050 | * using the address space | |
1051 | */ | |
1052 | if (!(gup_flags & FOLL_FORCE)) | |
1053 | gup_flags |= FOLL_NUMA; | |
1054 | ||
4bbd4c77 | 1055 | do { |
fa5bb209 KS |
1056 | struct page *page; |
1057 | unsigned int foll_flags = gup_flags; | |
1058 | unsigned int page_increm; | |
1059 | ||
1060 | /* first iteration or cross vma bound */ | |
1061 | if (!vma || start >= vma->vm_end) { | |
1062 | vma = find_extend_vma(mm, start); | |
1063 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
1064 | ret = get_gate_page(mm, start & PAGE_MASK, |
1065 | gup_flags, &vma, | |
1066 | pages ? &pages[i] : NULL); | |
1067 | if (ret) | |
08be37b7 | 1068 | goto out; |
df06b37f | 1069 | ctx.page_mask = 0; |
fa5bb209 KS |
1070 | goto next_page; |
1071 | } | |
4bbd4c77 | 1072 | |
df06b37f KB |
1073 | if (!vma || check_vma_flags(vma, gup_flags)) { |
1074 | ret = -EFAULT; | |
1075 | goto out; | |
1076 | } | |
fa5bb209 | 1077 | if (is_vm_hugetlb_page(vma)) { |
17839856 LT |
1078 | if (should_force_cow_break(vma, foll_flags)) |
1079 | foll_flags |= FOLL_WRITE; | |
fa5bb209 KS |
1080 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
1081 | &start, &nr_pages, i, | |
17839856 | 1082 | foll_flags, locked); |
ad415db8 PX |
1083 | if (locked && *locked == 0) { |
1084 | /* | |
1085 | * We've got a VM_FAULT_RETRY | |
1086 | * and we've lost mmap_sem. | |
1087 | * We must stop here. | |
1088 | */ | |
1089 | BUG_ON(gup_flags & FOLL_NOWAIT); | |
1090 | BUG_ON(ret != 0); | |
1091 | goto out; | |
1092 | } | |
fa5bb209 | 1093 | continue; |
4bbd4c77 | 1094 | } |
fa5bb209 | 1095 | } |
17839856 LT |
1096 | |
1097 | if (should_force_cow_break(vma, foll_flags)) | |
1098 | foll_flags |= FOLL_WRITE; | |
1099 | ||
fa5bb209 KS |
1100 | retry: |
1101 | /* | |
1102 | * If we have a pending SIGKILL, don't keep faulting pages and | |
1103 | * potentially allocating memory. | |
1104 | */ | |
fa45f116 | 1105 | if (fatal_signal_pending(current)) { |
d180870d | 1106 | ret = -EINTR; |
df06b37f KB |
1107 | goto out; |
1108 | } | |
fa5bb209 | 1109 | cond_resched(); |
df06b37f KB |
1110 | |
1111 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 1112 | if (!page) { |
fa5bb209 | 1113 | ret = faultin_page(tsk, vma, start, &foll_flags, |
4f6da934 | 1114 | locked); |
fa5bb209 KS |
1115 | switch (ret) { |
1116 | case 0: | |
1117 | goto retry; | |
df06b37f KB |
1118 | case -EBUSY: |
1119 | ret = 0; | |
e4a9bc58 | 1120 | fallthrough; |
fa5bb209 KS |
1121 | case -EFAULT: |
1122 | case -ENOMEM: | |
1123 | case -EHWPOISON: | |
df06b37f | 1124 | goto out; |
fa5bb209 KS |
1125 | case -ENOENT: |
1126 | goto next_page; | |
4bbd4c77 | 1127 | } |
fa5bb209 | 1128 | BUG(); |
1027e443 KS |
1129 | } else if (PTR_ERR(page) == -EEXIST) { |
1130 | /* | |
1131 | * Proper page table entry exists, but no corresponding | |
1132 | * struct page. | |
1133 | */ | |
1134 | goto next_page; | |
1135 | } else if (IS_ERR(page)) { | |
df06b37f KB |
1136 | ret = PTR_ERR(page); |
1137 | goto out; | |
1027e443 | 1138 | } |
fa5bb209 KS |
1139 | if (pages) { |
1140 | pages[i] = page; | |
1141 | flush_anon_page(vma, page, start); | |
1142 | flush_dcache_page(page); | |
df06b37f | 1143 | ctx.page_mask = 0; |
4bbd4c77 | 1144 | } |
4bbd4c77 | 1145 | next_page: |
fa5bb209 KS |
1146 | if (vmas) { |
1147 | vmas[i] = vma; | |
df06b37f | 1148 | ctx.page_mask = 0; |
fa5bb209 | 1149 | } |
df06b37f | 1150 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
1151 | if (page_increm > nr_pages) |
1152 | page_increm = nr_pages; | |
1153 | i += page_increm; | |
1154 | start += page_increm * PAGE_SIZE; | |
1155 | nr_pages -= page_increm; | |
4bbd4c77 | 1156 | } while (nr_pages); |
df06b37f KB |
1157 | out: |
1158 | if (ctx.pgmap) | |
1159 | put_dev_pagemap(ctx.pgmap); | |
1160 | return i ? i : ret; | |
4bbd4c77 | 1161 | } |
4bbd4c77 | 1162 | |
771ab430 TK |
1163 | static bool vma_permits_fault(struct vm_area_struct *vma, |
1164 | unsigned int fault_flags) | |
d4925e00 | 1165 | { |
1b2ee126 DH |
1166 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
1167 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 1168 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
1169 | |
1170 | if (!(vm_flags & vma->vm_flags)) | |
1171 | return false; | |
1172 | ||
33a709b2 DH |
1173 | /* |
1174 | * The architecture might have a hardware protection | |
1b2ee126 | 1175 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
1176 | * |
1177 | * gup always represents data access, not instruction | |
1178 | * fetches, so execute=false here: | |
33a709b2 | 1179 | */ |
d61172b4 | 1180 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
1181 | return false; |
1182 | ||
d4925e00 DH |
1183 | return true; |
1184 | } | |
1185 | ||
adc8cb40 | 1186 | /** |
4bbd4c77 KS |
1187 | * fixup_user_fault() - manually resolve a user page fault |
1188 | * @tsk: the task_struct to use for page fault accounting, or | |
1189 | * NULL if faults are not to be recorded. | |
1190 | * @mm: mm_struct of target mm | |
1191 | * @address: user address | |
1192 | * @fault_flags:flags to pass down to handle_mm_fault() | |
4a9e1cda | 1193 | * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller |
548b6a1e MC |
1194 | * does not allow retry. If NULL, the caller must guarantee |
1195 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | |
4bbd4c77 KS |
1196 | * |
1197 | * This is meant to be called in the specific scenario where for locking reasons | |
1198 | * we try to access user memory in atomic context (within a pagefault_disable() | |
1199 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
1200 | * trying again. | |
1201 | * | |
1202 | * Typically this is meant to be used by the futex code. | |
1203 | * | |
1204 | * The main difference with get_user_pages() is that this function will | |
1205 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
1206 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 1207 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
1208 | * |
1209 | * This is important for some architectures where those bits also gate the | |
1210 | * access permission to the page because they are maintained in software. On | |
1211 | * such architectures, gup() will not be enough to make a subsequent access | |
1212 | * succeed. | |
1213 | * | |
4a9e1cda DD |
1214 | * This function will not return with an unlocked mmap_sem. So it has not the |
1215 | * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | |
4bbd4c77 KS |
1216 | */ |
1217 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | |
4a9e1cda DD |
1218 | unsigned long address, unsigned int fault_flags, |
1219 | bool *unlocked) | |
4bbd4c77 KS |
1220 | { |
1221 | struct vm_area_struct *vma; | |
2b740303 | 1222 | vm_fault_t ret, major = 0; |
4a9e1cda | 1223 | |
f9652594 AK |
1224 | address = untagged_addr(address); |
1225 | ||
4a9e1cda | 1226 | if (unlocked) |
71335f37 | 1227 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
4bbd4c77 | 1228 | |
4a9e1cda | 1229 | retry: |
4bbd4c77 KS |
1230 | vma = find_extend_vma(mm, address); |
1231 | if (!vma || address < vma->vm_start) | |
1232 | return -EFAULT; | |
1233 | ||
d4925e00 | 1234 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
1235 | return -EFAULT; |
1236 | ||
475f4dfc PX |
1237 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
1238 | fatal_signal_pending(current)) | |
1239 | return -EINTR; | |
1240 | ||
dcddffd4 | 1241 | ret = handle_mm_fault(vma, address, fault_flags); |
4a9e1cda | 1242 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 1243 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1244 | int err = vm_fault_to_errno(ret, 0); |
1245 | ||
1246 | if (err) | |
1247 | return err; | |
4bbd4c77 KS |
1248 | BUG(); |
1249 | } | |
4a9e1cda DD |
1250 | |
1251 | if (ret & VM_FAULT_RETRY) { | |
1252 | down_read(&mm->mmap_sem); | |
475f4dfc PX |
1253 | *unlocked = true; |
1254 | fault_flags |= FAULT_FLAG_TRIED; | |
1255 | goto retry; | |
4a9e1cda DD |
1256 | } |
1257 | ||
4bbd4c77 | 1258 | if (tsk) { |
4a9e1cda | 1259 | if (major) |
4bbd4c77 KS |
1260 | tsk->maj_flt++; |
1261 | else | |
1262 | tsk->min_flt++; | |
1263 | } | |
1264 | return 0; | |
1265 | } | |
add6a0cd | 1266 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1267 | |
f0818f47 AA |
1268 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, |
1269 | struct mm_struct *mm, | |
1270 | unsigned long start, | |
1271 | unsigned long nr_pages, | |
f0818f47 AA |
1272 | struct page **pages, |
1273 | struct vm_area_struct **vmas, | |
e716712f | 1274 | int *locked, |
0fd71a56 | 1275 | unsigned int flags) |
f0818f47 | 1276 | { |
f0818f47 AA |
1277 | long ret, pages_done; |
1278 | bool lock_dropped; | |
1279 | ||
1280 | if (locked) { | |
1281 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1282 | BUG_ON(vmas); | |
1283 | /* check caller initialized locked */ | |
1284 | BUG_ON(*locked != 1); | |
1285 | } | |
1286 | ||
eddb1c22 JH |
1287 | /* |
1288 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | |
1289 | * is to set FOLL_GET if the caller wants pages[] filled in (but has | |
1290 | * carelessly failed to specify FOLL_GET), so keep doing that, but only | |
1291 | * for FOLL_GET, not for the newer FOLL_PIN. | |
1292 | * | |
1293 | * FOLL_PIN always expects pages to be non-null, but no need to assert | |
1294 | * that here, as any failures will be obvious enough. | |
1295 | */ | |
1296 | if (pages && !(flags & FOLL_PIN)) | |
f0818f47 | 1297 | flags |= FOLL_GET; |
f0818f47 AA |
1298 | |
1299 | pages_done = 0; | |
1300 | lock_dropped = false; | |
1301 | for (;;) { | |
1302 | ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | |
1303 | vmas, locked); | |
1304 | if (!locked) | |
1305 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1306 | return ret; | |
1307 | ||
1308 | /* VM_FAULT_RETRY cannot return errors */ | |
1309 | if (!*locked) { | |
1310 | BUG_ON(ret < 0); | |
1311 | BUG_ON(ret >= nr_pages); | |
1312 | } | |
1313 | ||
f0818f47 AA |
1314 | if (ret > 0) { |
1315 | nr_pages -= ret; | |
1316 | pages_done += ret; | |
1317 | if (!nr_pages) | |
1318 | break; | |
1319 | } | |
1320 | if (*locked) { | |
96312e61 AA |
1321 | /* |
1322 | * VM_FAULT_RETRY didn't trigger or it was a | |
1323 | * FOLL_NOWAIT. | |
1324 | */ | |
f0818f47 AA |
1325 | if (!pages_done) |
1326 | pages_done = ret; | |
1327 | break; | |
1328 | } | |
df17277b MR |
1329 | /* |
1330 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1331 | * For the prefault case (!pages) we only update counts. | |
1332 | */ | |
1333 | if (likely(pages)) | |
1334 | pages += ret; | |
f0818f47 | 1335 | start += ret << PAGE_SHIFT; |
4426e945 | 1336 | lock_dropped = true; |
f0818f47 | 1337 | |
4426e945 | 1338 | retry: |
f0818f47 AA |
1339 | /* |
1340 | * Repeat on the address that fired VM_FAULT_RETRY | |
4426e945 PX |
1341 | * with both FAULT_FLAG_ALLOW_RETRY and |
1342 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted | |
1343 | * by fatal signals, so we need to check it before we | |
1344 | * start trying again otherwise it can loop forever. | |
f0818f47 | 1345 | */ |
4426e945 | 1346 | |
ae46d2aa HD |
1347 | if (fatal_signal_pending(current)) { |
1348 | if (!pages_done) | |
1349 | pages_done = -EINTR; | |
4426e945 | 1350 | break; |
ae46d2aa | 1351 | } |
4426e945 | 1352 | |
71335f37 PX |
1353 | ret = down_read_killable(&mm->mmap_sem); |
1354 | if (ret) { | |
1355 | BUG_ON(ret > 0); | |
1356 | if (!pages_done) | |
1357 | pages_done = ret; | |
1358 | break; | |
1359 | } | |
4426e945 | 1360 | |
c7b6a566 | 1361 | *locked = 1; |
f0818f47 | 1362 | ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, |
4426e945 PX |
1363 | pages, NULL, locked); |
1364 | if (!*locked) { | |
1365 | /* Continue to retry until we succeeded */ | |
1366 | BUG_ON(ret != 0); | |
1367 | goto retry; | |
1368 | } | |
f0818f47 AA |
1369 | if (ret != 1) { |
1370 | BUG_ON(ret > 1); | |
1371 | if (!pages_done) | |
1372 | pages_done = ret; | |
1373 | break; | |
1374 | } | |
1375 | nr_pages--; | |
1376 | pages_done++; | |
1377 | if (!nr_pages) | |
1378 | break; | |
df17277b MR |
1379 | if (likely(pages)) |
1380 | pages++; | |
f0818f47 AA |
1381 | start += PAGE_SIZE; |
1382 | } | |
e716712f | 1383 | if (lock_dropped && *locked) { |
f0818f47 AA |
1384 | /* |
1385 | * We must let the caller know we temporarily dropped the lock | |
1386 | * and so the critical section protected by it was lost. | |
1387 | */ | |
1388 | up_read(&mm->mmap_sem); | |
1389 | *locked = 0; | |
1390 | } | |
1391 | return pages_done; | |
1392 | } | |
1393 | ||
d3649f68 CH |
1394 | /** |
1395 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1396 | * @vma: target vma | |
1397 | * @start: start address | |
1398 | * @end: end address | |
4f6da934 | 1399 | * @locked: whether the mmap_sem is still held |
d3649f68 CH |
1400 | * |
1401 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1402 | * | |
1403 | * return 0 on success, negative error code on error. | |
1404 | * | |
1405 | * vma->vm_mm->mmap_sem must be held. | |
1406 | * | |
4f6da934 | 1407 | * If @locked is NULL, it may be held for read or write and will |
d3649f68 CH |
1408 | * be unperturbed. |
1409 | * | |
4f6da934 PX |
1410 | * If @locked is non-NULL, it must held for read only and may be |
1411 | * released. If it's released, *@locked will be set to 0. | |
d3649f68 CH |
1412 | */ |
1413 | long populate_vma_page_range(struct vm_area_struct *vma, | |
4f6da934 | 1414 | unsigned long start, unsigned long end, int *locked) |
d3649f68 CH |
1415 | { |
1416 | struct mm_struct *mm = vma->vm_mm; | |
1417 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1418 | int gup_flags; | |
1419 | ||
1420 | VM_BUG_ON(start & ~PAGE_MASK); | |
1421 | VM_BUG_ON(end & ~PAGE_MASK); | |
1422 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1423 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1424 | VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | |
1425 | ||
1426 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | |
1427 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1428 | gup_flags &= ~FOLL_POPULATE; | |
1429 | /* | |
1430 | * We want to touch writable mappings with a write fault in order | |
1431 | * to break COW, except for shared mappings because these don't COW | |
1432 | * and we would not want to dirty them for nothing. | |
1433 | */ | |
1434 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1435 | gup_flags |= FOLL_WRITE; | |
1436 | ||
1437 | /* | |
1438 | * We want mlock to succeed for regions that have any permissions | |
1439 | * other than PROT_NONE. | |
1440 | */ | |
3122e80e | 1441 | if (vma_is_accessible(vma)) |
d3649f68 CH |
1442 | gup_flags |= FOLL_FORCE; |
1443 | ||
1444 | /* | |
1445 | * We made sure addr is within a VMA, so the following will | |
1446 | * not result in a stack expansion that recurses back here. | |
1447 | */ | |
1448 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, | |
4f6da934 | 1449 | NULL, NULL, locked); |
d3649f68 CH |
1450 | } |
1451 | ||
1452 | /* | |
1453 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1454 | * | |
1455 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1456 | * flags. VMAs must be already marked with the desired vm_flags, and | |
1457 | * mmap_sem must not be held. | |
1458 | */ | |
1459 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1460 | { | |
1461 | struct mm_struct *mm = current->mm; | |
1462 | unsigned long end, nstart, nend; | |
1463 | struct vm_area_struct *vma = NULL; | |
1464 | int locked = 0; | |
1465 | long ret = 0; | |
1466 | ||
1467 | end = start + len; | |
1468 | ||
1469 | for (nstart = start; nstart < end; nstart = nend) { | |
1470 | /* | |
1471 | * We want to fault in pages for [nstart; end) address range. | |
1472 | * Find first corresponding VMA. | |
1473 | */ | |
1474 | if (!locked) { | |
1475 | locked = 1; | |
1476 | down_read(&mm->mmap_sem); | |
1477 | vma = find_vma(mm, nstart); | |
1478 | } else if (nstart >= vma->vm_end) | |
1479 | vma = vma->vm_next; | |
1480 | if (!vma || vma->vm_start >= end) | |
1481 | break; | |
1482 | /* | |
1483 | * Set [nstart; nend) to intersection of desired address | |
1484 | * range with the first VMA. Also, skip undesirable VMA types. | |
1485 | */ | |
1486 | nend = min(end, vma->vm_end); | |
1487 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1488 | continue; | |
1489 | if (nstart < vma->vm_start) | |
1490 | nstart = vma->vm_start; | |
1491 | /* | |
1492 | * Now fault in a range of pages. populate_vma_page_range() | |
1493 | * double checks the vma flags, so that it won't mlock pages | |
1494 | * if the vma was already munlocked. | |
1495 | */ | |
1496 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1497 | if (ret < 0) { | |
1498 | if (ignore_errors) { | |
1499 | ret = 0; | |
1500 | continue; /* continue at next VMA */ | |
1501 | } | |
1502 | break; | |
1503 | } | |
1504 | nend = nstart + ret * PAGE_SIZE; | |
1505 | ret = 0; | |
1506 | } | |
1507 | if (locked) | |
1508 | up_read(&mm->mmap_sem); | |
1509 | return ret; /* 0 or negative error code */ | |
1510 | } | |
1511 | ||
1512 | /** | |
1513 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1514 | * @addr: user address | |
1515 | * | |
1516 | * Returns struct page pointer of user page pinned for dump, | |
1517 | * to be freed afterwards by put_page(). | |
1518 | * | |
1519 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1520 | * the corefile, to preserve alignment with its headers; and also returns | |
1521 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1522 | * allowing a hole to be left in the corefile to save diskspace. | |
1523 | * | |
1524 | * Called without mmap_sem, but after all other threads have been killed. | |
1525 | */ | |
1526 | #ifdef CONFIG_ELF_CORE | |
1527 | struct page *get_dump_page(unsigned long addr) | |
1528 | { | |
1529 | struct vm_area_struct *vma; | |
1530 | struct page *page; | |
1531 | ||
1532 | if (__get_user_pages(current, current->mm, addr, 1, | |
1533 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | |
1534 | NULL) < 1) | |
1535 | return NULL; | |
1536 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1537 | return page; | |
1538 | } | |
1539 | #endif /* CONFIG_ELF_CORE */ | |
050a9adc CH |
1540 | #else /* CONFIG_MMU */ |
1541 | static long __get_user_pages_locked(struct task_struct *tsk, | |
1542 | struct mm_struct *mm, unsigned long start, | |
1543 | unsigned long nr_pages, struct page **pages, | |
1544 | struct vm_area_struct **vmas, int *locked, | |
1545 | unsigned int foll_flags) | |
1546 | { | |
1547 | struct vm_area_struct *vma; | |
1548 | unsigned long vm_flags; | |
1549 | int i; | |
1550 | ||
1551 | /* calculate required read or write permissions. | |
1552 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1553 | */ | |
1554 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1555 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1556 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1557 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1558 | ||
1559 | for (i = 0; i < nr_pages; i++) { | |
1560 | vma = find_vma(mm, start); | |
1561 | if (!vma) | |
1562 | goto finish_or_fault; | |
1563 | ||
1564 | /* protect what we can, including chardevs */ | |
1565 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1566 | !(vm_flags & vma->vm_flags)) | |
1567 | goto finish_or_fault; | |
1568 | ||
1569 | if (pages) { | |
1570 | pages[i] = virt_to_page(start); | |
1571 | if (pages[i]) | |
1572 | get_page(pages[i]); | |
1573 | } | |
1574 | if (vmas) | |
1575 | vmas[i] = vma; | |
1576 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1577 | } | |
1578 | ||
1579 | return i; | |
1580 | ||
1581 | finish_or_fault: | |
1582 | return i ? : -EFAULT; | |
1583 | } | |
1584 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1585 | |
9a4e9f3b | 1586 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
9a4e9f3b AK |
1587 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1588 | { | |
1589 | long i; | |
1590 | struct vm_area_struct *vma_prev = NULL; | |
1591 | ||
1592 | for (i = 0; i < nr_pages; i++) { | |
1593 | struct vm_area_struct *vma = vmas[i]; | |
1594 | ||
1595 | if (vma == vma_prev) | |
1596 | continue; | |
1597 | ||
1598 | vma_prev = vma; | |
1599 | ||
1600 | if (vma_is_fsdax(vma)) | |
1601 | return true; | |
1602 | } | |
1603 | return false; | |
1604 | } | |
9a4e9f3b AK |
1605 | |
1606 | #ifdef CONFIG_CMA | |
1607 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | |
1608 | { | |
1609 | /* | |
1610 | * We want to make sure we allocate the new page from the same node | |
1611 | * as the source page. | |
1612 | */ | |
1613 | int nid = page_to_nid(page); | |
1614 | /* | |
1615 | * Trying to allocate a page for migration. Ignore allocation | |
1616 | * failure warnings. We don't force __GFP_THISNODE here because | |
1617 | * this node here is the node where we have CMA reservation and | |
1618 | * in some case these nodes will have really less non movable | |
1619 | * allocation memory. | |
1620 | */ | |
1621 | gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | |
1622 | ||
1623 | if (PageHighMem(page)) | |
1624 | gfp_mask |= __GFP_HIGHMEM; | |
1625 | ||
1626 | #ifdef CONFIG_HUGETLB_PAGE | |
1627 | if (PageHuge(page)) { | |
1628 | struct hstate *h = page_hstate(page); | |
1629 | /* | |
1630 | * We don't want to dequeue from the pool because pool pages will | |
1631 | * mostly be from the CMA region. | |
1632 | */ | |
1633 | return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | |
1634 | } | |
1635 | #endif | |
1636 | if (PageTransHuge(page)) { | |
1637 | struct page *thp; | |
1638 | /* | |
1639 | * ignore allocation failure warnings | |
1640 | */ | |
1641 | gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | |
1642 | ||
1643 | /* | |
1644 | * Remove the movable mask so that we don't allocate from | |
1645 | * CMA area again. | |
1646 | */ | |
1647 | thp_gfpmask &= ~__GFP_MOVABLE; | |
1648 | thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | |
1649 | if (!thp) | |
1650 | return NULL; | |
1651 | prep_transhuge_page(thp); | |
1652 | return thp; | |
1653 | } | |
1654 | ||
1655 | return __alloc_pages_node(nid, gfp_mask, 0); | |
1656 | } | |
1657 | ||
932f4a63 IW |
1658 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1659 | struct mm_struct *mm, | |
1660 | unsigned long start, | |
1661 | unsigned long nr_pages, | |
9a4e9f3b | 1662 | struct page **pages, |
932f4a63 IW |
1663 | struct vm_area_struct **vmas, |
1664 | unsigned int gup_flags) | |
9a4e9f3b | 1665 | { |
aa712399 PL |
1666 | unsigned long i; |
1667 | unsigned long step; | |
9a4e9f3b AK |
1668 | bool drain_allow = true; |
1669 | bool migrate_allow = true; | |
1670 | LIST_HEAD(cma_page_list); | |
b96cc655 | 1671 | long ret = nr_pages; |
9a4e9f3b AK |
1672 | |
1673 | check_again: | |
aa712399 PL |
1674 | for (i = 0; i < nr_pages;) { |
1675 | ||
1676 | struct page *head = compound_head(pages[i]); | |
1677 | ||
1678 | /* | |
1679 | * gup may start from a tail page. Advance step by the left | |
1680 | * part. | |
1681 | */ | |
d8c6546b | 1682 | step = compound_nr(head) - (pages[i] - head); |
9a4e9f3b AK |
1683 | /* |
1684 | * If we get a page from the CMA zone, since we are going to | |
1685 | * be pinning these entries, we might as well move them out | |
1686 | * of the CMA zone if possible. | |
1687 | */ | |
aa712399 PL |
1688 | if (is_migrate_cma_page(head)) { |
1689 | if (PageHuge(head)) | |
9a4e9f3b | 1690 | isolate_huge_page(head, &cma_page_list); |
aa712399 | 1691 | else { |
9a4e9f3b AK |
1692 | if (!PageLRU(head) && drain_allow) { |
1693 | lru_add_drain_all(); | |
1694 | drain_allow = false; | |
1695 | } | |
1696 | ||
1697 | if (!isolate_lru_page(head)) { | |
1698 | list_add_tail(&head->lru, &cma_page_list); | |
1699 | mod_node_page_state(page_pgdat(head), | |
1700 | NR_ISOLATED_ANON + | |
9de4f22a | 1701 | page_is_file_lru(head), |
9a4e9f3b AK |
1702 | hpage_nr_pages(head)); |
1703 | } | |
1704 | } | |
1705 | } | |
aa712399 PL |
1706 | |
1707 | i += step; | |
9a4e9f3b AK |
1708 | } |
1709 | ||
1710 | if (!list_empty(&cma_page_list)) { | |
1711 | /* | |
1712 | * drop the above get_user_pages reference. | |
1713 | */ | |
1714 | for (i = 0; i < nr_pages; i++) | |
1715 | put_page(pages[i]); | |
1716 | ||
1717 | if (migrate_pages(&cma_page_list, new_non_cma_page, | |
1718 | NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
1719 | /* | |
1720 | * some of the pages failed migration. Do get_user_pages | |
1721 | * without migration. | |
1722 | */ | |
1723 | migrate_allow = false; | |
1724 | ||
1725 | if (!list_empty(&cma_page_list)) | |
1726 | putback_movable_pages(&cma_page_list); | |
1727 | } | |
1728 | /* | |
932f4a63 IW |
1729 | * We did migrate all the pages, Try to get the page references |
1730 | * again migrating any new CMA pages which we failed to isolate | |
1731 | * earlier. | |
9a4e9f3b | 1732 | */ |
b96cc655 | 1733 | ret = __get_user_pages_locked(tsk, mm, start, nr_pages, |
932f4a63 IW |
1734 | pages, vmas, NULL, |
1735 | gup_flags); | |
1736 | ||
b96cc655 | 1737 | if ((ret > 0) && migrate_allow) { |
1738 | nr_pages = ret; | |
9a4e9f3b AK |
1739 | drain_allow = true; |
1740 | goto check_again; | |
1741 | } | |
1742 | } | |
1743 | ||
b96cc655 | 1744 | return ret; |
9a4e9f3b AK |
1745 | } |
1746 | #else | |
932f4a63 IW |
1747 | static long check_and_migrate_cma_pages(struct task_struct *tsk, |
1748 | struct mm_struct *mm, | |
1749 | unsigned long start, | |
1750 | unsigned long nr_pages, | |
1751 | struct page **pages, | |
1752 | struct vm_area_struct **vmas, | |
1753 | unsigned int gup_flags) | |
9a4e9f3b AK |
1754 | { |
1755 | return nr_pages; | |
1756 | } | |
050a9adc | 1757 | #endif /* CONFIG_CMA */ |
9a4e9f3b | 1758 | |
2bb6d283 | 1759 | /* |
932f4a63 IW |
1760 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1761 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1762 | */ |
932f4a63 IW |
1763 | static long __gup_longterm_locked(struct task_struct *tsk, |
1764 | struct mm_struct *mm, | |
1765 | unsigned long start, | |
1766 | unsigned long nr_pages, | |
1767 | struct page **pages, | |
1768 | struct vm_area_struct **vmas, | |
1769 | unsigned int gup_flags) | |
2bb6d283 | 1770 | { |
932f4a63 IW |
1771 | struct vm_area_struct **vmas_tmp = vmas; |
1772 | unsigned long flags = 0; | |
2bb6d283 DW |
1773 | long rc, i; |
1774 | ||
932f4a63 IW |
1775 | if (gup_flags & FOLL_LONGTERM) { |
1776 | if (!pages) | |
1777 | return -EINVAL; | |
1778 | ||
1779 | if (!vmas_tmp) { | |
1780 | vmas_tmp = kcalloc(nr_pages, | |
1781 | sizeof(struct vm_area_struct *), | |
1782 | GFP_KERNEL); | |
1783 | if (!vmas_tmp) | |
1784 | return -ENOMEM; | |
1785 | } | |
1786 | flags = memalloc_nocma_save(); | |
2bb6d283 DW |
1787 | } |
1788 | ||
932f4a63 IW |
1789 | rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, |
1790 | vmas_tmp, NULL, gup_flags); | |
2bb6d283 | 1791 | |
932f4a63 IW |
1792 | if (gup_flags & FOLL_LONGTERM) { |
1793 | memalloc_nocma_restore(flags); | |
1794 | if (rc < 0) | |
1795 | goto out; | |
1796 | ||
1797 | if (check_dax_vmas(vmas_tmp, rc)) { | |
1798 | for (i = 0; i < rc; i++) | |
1799 | put_page(pages[i]); | |
1800 | rc = -EOPNOTSUPP; | |
1801 | goto out; | |
1802 | } | |
1803 | ||
1804 | rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, | |
1805 | vmas_tmp, gup_flags); | |
9a4e9f3b | 1806 | } |
2bb6d283 | 1807 | |
2bb6d283 | 1808 | out: |
932f4a63 IW |
1809 | if (vmas_tmp != vmas) |
1810 | kfree(vmas_tmp); | |
2bb6d283 DW |
1811 | return rc; |
1812 | } | |
932f4a63 IW |
1813 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ |
1814 | static __always_inline long __gup_longterm_locked(struct task_struct *tsk, | |
1815 | struct mm_struct *mm, | |
1816 | unsigned long start, | |
1817 | unsigned long nr_pages, | |
1818 | struct page **pages, | |
1819 | struct vm_area_struct **vmas, | |
1820 | unsigned int flags) | |
1821 | { | |
1822 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1823 | NULL, flags); | |
1824 | } | |
1825 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | |
1826 | ||
22bf29b6 JH |
1827 | #ifdef CONFIG_MMU |
1828 | static long __get_user_pages_remote(struct task_struct *tsk, | |
1829 | struct mm_struct *mm, | |
1830 | unsigned long start, unsigned long nr_pages, | |
1831 | unsigned int gup_flags, struct page **pages, | |
1832 | struct vm_area_struct **vmas, int *locked) | |
1833 | { | |
1834 | /* | |
1835 | * Parts of FOLL_LONGTERM behavior are incompatible with | |
1836 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1837 | * vmas. However, this only comes up if locked is set, and there are | |
1838 | * callers that do request FOLL_LONGTERM, but do not set locked. So, | |
1839 | * allow what we can. | |
1840 | */ | |
1841 | if (gup_flags & FOLL_LONGTERM) { | |
1842 | if (WARN_ON_ONCE(locked)) | |
1843 | return -EINVAL; | |
1844 | /* | |
1845 | * This will check the vmas (even if our vmas arg is NULL) | |
1846 | * and return -ENOTSUPP if DAX isn't allowed in this case: | |
1847 | */ | |
1848 | return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, | |
1849 | vmas, gup_flags | FOLL_TOUCH | | |
1850 | FOLL_REMOTE); | |
1851 | } | |
1852 | ||
1853 | return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | |
1854 | locked, | |
1855 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); | |
1856 | } | |
1857 | ||
adc8cb40 | 1858 | /** |
c4237f8b JH |
1859 | * get_user_pages_remote() - pin user pages in memory |
1860 | * @tsk: the task_struct to use for page fault accounting, or | |
1861 | * NULL if faults are not to be recorded. | |
1862 | * @mm: mm_struct of target mm | |
1863 | * @start: starting user address | |
1864 | * @nr_pages: number of pages from start to pin | |
1865 | * @gup_flags: flags modifying lookup behaviour | |
1866 | * @pages: array that receives pointers to the pages pinned. | |
1867 | * Should be at least nr_pages long. Or NULL, if caller | |
1868 | * only intends to ensure the pages are faulted in. | |
1869 | * @vmas: array of pointers to vmas corresponding to each page. | |
1870 | * Or NULL if the caller does not require them. | |
1871 | * @locked: pointer to lock flag indicating whether lock is held and | |
1872 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1873 | * utilised. Lock must initially be held. | |
1874 | * | |
1875 | * Returns either number of pages pinned (which may be less than the | |
1876 | * number requested), or an error. Details about the return value: | |
1877 | * | |
1878 | * -- If nr_pages is 0, returns 0. | |
1879 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
1880 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
1881 | * pages pinned. Again, this may be less than nr_pages. | |
1882 | * | |
1883 | * The caller is responsible for releasing returned @pages, via put_page(). | |
1884 | * | |
1885 | * @vmas are valid only as long as mmap_sem is held. | |
1886 | * | |
1887 | * Must be called with mmap_sem held for read or write. | |
1888 | * | |
adc8cb40 SJ |
1889 | * get_user_pages_remote walks a process's page tables and takes a reference |
1890 | * to each struct page that each user address corresponds to at a given | |
c4237f8b JH |
1891 | * instant. That is, it takes the page that would be accessed if a user |
1892 | * thread accesses the given user virtual address at that instant. | |
1893 | * | |
1894 | * This does not guarantee that the page exists in the user mappings when | |
adc8cb40 | 1895 | * get_user_pages_remote returns, and there may even be a completely different |
c4237f8b JH |
1896 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
1897 | * and subsequently re faulted). However it does guarantee that the page | |
1898 | * won't be freed completely. And mostly callers simply care that the page | |
1899 | * contains data that was valid *at some point in time*. Typically, an IO | |
1900 | * or similar operation cannot guarantee anything stronger anyway because | |
1901 | * locks can't be held over the syscall boundary. | |
1902 | * | |
1903 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | |
1904 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1905 | * be called after the page is finished with, and before put_page is called. | |
1906 | * | |
adc8cb40 SJ |
1907 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
1908 | * to get a handle on the memory by some means other than accesses | |
1909 | * via the user virtual addresses. The pages may be submitted for | |
1910 | * DMA to devices or accessed via their kernel linear mapping (via the | |
1911 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. | |
c4237f8b JH |
1912 | * |
1913 | * See also get_user_pages_fast, for performance critical applications. | |
1914 | * | |
adc8cb40 | 1915 | * get_user_pages_remote should be phased out in favor of |
c4237f8b | 1916 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
adc8cb40 | 1917 | * should use get_user_pages_remote because it cannot pass |
c4237f8b JH |
1918 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
1919 | */ | |
1920 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | |
1921 | unsigned long start, unsigned long nr_pages, | |
1922 | unsigned int gup_flags, struct page **pages, | |
1923 | struct vm_area_struct **vmas, int *locked) | |
1924 | { | |
eddb1c22 JH |
1925 | /* |
1926 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1927 | * never directly by the caller, so enforce that with an assertion: | |
1928 | */ | |
1929 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1930 | return -EINVAL; | |
1931 | ||
22bf29b6 JH |
1932 | return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, |
1933 | pages, vmas, locked); | |
c4237f8b JH |
1934 | } |
1935 | EXPORT_SYMBOL(get_user_pages_remote); | |
1936 | ||
eddb1c22 JH |
1937 | #else /* CONFIG_MMU */ |
1938 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | |
1939 | unsigned long start, unsigned long nr_pages, | |
1940 | unsigned int gup_flags, struct page **pages, | |
1941 | struct vm_area_struct **vmas, int *locked) | |
1942 | { | |
1943 | return 0; | |
1944 | } | |
3faa52c0 JH |
1945 | |
1946 | static long __get_user_pages_remote(struct task_struct *tsk, | |
1947 | struct mm_struct *mm, | |
1948 | unsigned long start, unsigned long nr_pages, | |
1949 | unsigned int gup_flags, struct page **pages, | |
1950 | struct vm_area_struct **vmas, int *locked) | |
1951 | { | |
1952 | return 0; | |
1953 | } | |
eddb1c22 JH |
1954 | #endif /* !CONFIG_MMU */ |
1955 | ||
adc8cb40 SJ |
1956 | /** |
1957 | * get_user_pages() - pin user pages in memory | |
1958 | * @start: starting user address | |
1959 | * @nr_pages: number of pages from start to pin | |
1960 | * @gup_flags: flags modifying lookup behaviour | |
1961 | * @pages: array that receives pointers to the pages pinned. | |
1962 | * Should be at least nr_pages long. Or NULL, if caller | |
1963 | * only intends to ensure the pages are faulted in. | |
1964 | * @vmas: array of pointers to vmas corresponding to each page. | |
1965 | * Or NULL if the caller does not require them. | |
1966 | * | |
932f4a63 IW |
1967 | * This is the same as get_user_pages_remote(), just with a |
1968 | * less-flexible calling convention where we assume that the task | |
1969 | * and mm being operated on are the current task's and don't allow | |
1970 | * passing of a locked parameter. We also obviously don't pass | |
1971 | * FOLL_REMOTE in here. | |
1972 | */ | |
1973 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
1974 | unsigned int gup_flags, struct page **pages, | |
1975 | struct vm_area_struct **vmas) | |
1976 | { | |
eddb1c22 JH |
1977 | /* |
1978 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1979 | * never directly by the caller, so enforce that with an assertion: | |
1980 | */ | |
1981 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1982 | return -EINVAL; | |
1983 | ||
932f4a63 IW |
1984 | return __gup_longterm_locked(current, current->mm, start, nr_pages, |
1985 | pages, vmas, gup_flags | FOLL_TOUCH); | |
1986 | } | |
1987 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 1988 | |
adc8cb40 | 1989 | /** |
d3649f68 | 1990 | * get_user_pages_locked() is suitable to replace the form: |
acc3c8d1 | 1991 | * |
d3649f68 CH |
1992 | * down_read(&mm->mmap_sem); |
1993 | * do_something() | |
1994 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
1995 | * up_read(&mm->mmap_sem); | |
acc3c8d1 | 1996 | * |
d3649f68 | 1997 | * to: |
acc3c8d1 | 1998 | * |
d3649f68 CH |
1999 | * int locked = 1; |
2000 | * down_read(&mm->mmap_sem); | |
2001 | * do_something() | |
2002 | * get_user_pages_locked(tsk, mm, ..., pages, &locked); | |
2003 | * if (locked) | |
2004 | * up_read(&mm->mmap_sem); | |
adc8cb40 SJ |
2005 | * |
2006 | * @start: starting user address | |
2007 | * @nr_pages: number of pages from start to pin | |
2008 | * @gup_flags: flags modifying lookup behaviour | |
2009 | * @pages: array that receives pointers to the pages pinned. | |
2010 | * Should be at least nr_pages long. Or NULL, if caller | |
2011 | * only intends to ensure the pages are faulted in. | |
2012 | * @locked: pointer to lock flag indicating whether lock is held and | |
2013 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2014 | * utilised. Lock must initially be held. | |
2015 | * | |
2016 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
2017 | * paths better by using either get_user_pages_locked() or | |
2018 | * get_user_pages_unlocked(). | |
2019 | * | |
acc3c8d1 | 2020 | */ |
d3649f68 CH |
2021 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
2022 | unsigned int gup_flags, struct page **pages, | |
2023 | int *locked) | |
acc3c8d1 | 2024 | { |
acc3c8d1 | 2025 | /* |
d3649f68 CH |
2026 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with |
2027 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2028 | * vmas. As there are no users of this flag in this call we simply | |
2029 | * disallow this option for now. | |
acc3c8d1 | 2030 | */ |
d3649f68 CH |
2031 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) |
2032 | return -EINVAL; | |
acc3c8d1 | 2033 | |
d3649f68 CH |
2034 | return __get_user_pages_locked(current, current->mm, start, nr_pages, |
2035 | pages, NULL, locked, | |
2036 | gup_flags | FOLL_TOUCH); | |
acc3c8d1 | 2037 | } |
d3649f68 | 2038 | EXPORT_SYMBOL(get_user_pages_locked); |
acc3c8d1 KS |
2039 | |
2040 | /* | |
d3649f68 | 2041 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 2042 | * |
d3649f68 CH |
2043 | * down_read(&mm->mmap_sem); |
2044 | * get_user_pages(tsk, mm, ..., pages, NULL); | |
2045 | * up_read(&mm->mmap_sem); | |
2046 | * | |
2047 | * with: | |
2048 | * | |
2049 | * get_user_pages_unlocked(tsk, mm, ..., pages); | |
2050 | * | |
2051 | * It is functionally equivalent to get_user_pages_fast so | |
2052 | * get_user_pages_fast should be used instead if specific gup_flags | |
2053 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 2054 | */ |
d3649f68 CH |
2055 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
2056 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
2057 | { |
2058 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
2059 | int locked = 1; |
2060 | long ret; | |
acc3c8d1 | 2061 | |
d3649f68 CH |
2062 | /* |
2063 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
2064 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2065 | * vmas. As there are no users of this flag in this call we simply | |
2066 | * disallow this option for now. | |
2067 | */ | |
2068 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
2069 | return -EINVAL; | |
acc3c8d1 | 2070 | |
d3649f68 CH |
2071 | down_read(&mm->mmap_sem); |
2072 | ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | |
2073 | &locked, gup_flags | FOLL_TOUCH); | |
acc3c8d1 KS |
2074 | if (locked) |
2075 | up_read(&mm->mmap_sem); | |
d3649f68 | 2076 | return ret; |
4bbd4c77 | 2077 | } |
d3649f68 | 2078 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
2079 | |
2080 | /* | |
67a929e0 | 2081 | * Fast GUP |
2667f50e SC |
2082 | * |
2083 | * get_user_pages_fast attempts to pin user pages by walking the page | |
2084 | * tables directly and avoids taking locks. Thus the walker needs to be | |
2085 | * protected from page table pages being freed from under it, and should | |
2086 | * block any THP splits. | |
2087 | * | |
2088 | * One way to achieve this is to have the walker disable interrupts, and | |
2089 | * rely on IPIs from the TLB flushing code blocking before the page table | |
2090 | * pages are freed. This is unsuitable for architectures that do not need | |
2091 | * to broadcast an IPI when invalidating TLBs. | |
2092 | * | |
2093 | * Another way to achieve this is to batch up page table containing pages | |
2094 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
2095 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
2096 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
2097 | * (which is a relatively rare event). The code below adopts this strategy. | |
2098 | * | |
2099 | * Before activating this code, please be aware that the following assumptions | |
2100 | * are currently made: | |
2101 | * | |
ff2e6d72 | 2102 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
e585513b | 2103 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2667f50e | 2104 | * |
2667f50e SC |
2105 | * *) ptes can be read atomically by the architecture. |
2106 | * | |
2107 | * *) access_ok is sufficient to validate userspace address ranges. | |
2108 | * | |
2109 | * The last two assumptions can be relaxed by the addition of helper functions. | |
2110 | * | |
2111 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
2112 | */ | |
67a929e0 | 2113 | #ifdef CONFIG_HAVE_FAST_GUP |
3faa52c0 JH |
2114 | |
2115 | static void put_compound_head(struct page *page, int refs, unsigned int flags) | |
2116 | { | |
47e29d32 | 2117 | if (flags & FOLL_PIN) { |
1970dc6f JH |
2118 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, |
2119 | refs); | |
2120 | ||
47e29d32 JH |
2121 | if (hpage_pincount_available(page)) |
2122 | hpage_pincount_sub(page, refs); | |
2123 | else | |
2124 | refs *= GUP_PIN_COUNTING_BIAS; | |
2125 | } | |
3faa52c0 JH |
2126 | |
2127 | VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); | |
2128 | /* | |
2129 | * Calling put_page() for each ref is unnecessarily slow. Only the last | |
2130 | * ref needs a put_page(). | |
2131 | */ | |
2132 | if (refs > 1) | |
2133 | page_ref_sub(page, refs - 1); | |
2134 | put_page(page); | |
2135 | } | |
2136 | ||
39656e83 | 2137 | #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH |
3faa52c0 | 2138 | |
39656e83 CH |
2139 | /* |
2140 | * WARNING: only to be used in the get_user_pages_fast() implementation. | |
2141 | * | |
2142 | * With get_user_pages_fast(), we walk down the pagetables without taking any | |
2143 | * locks. For this we would like to load the pointers atomically, but sometimes | |
2144 | * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What | |
2145 | * we do have is the guarantee that a PTE will only either go from not present | |
2146 | * to present, or present to not present or both -- it will not switch to a | |
2147 | * completely different present page without a TLB flush in between; something | |
2148 | * that we are blocking by holding interrupts off. | |
2149 | * | |
2150 | * Setting ptes from not present to present goes: | |
2151 | * | |
2152 | * ptep->pte_high = h; | |
2153 | * smp_wmb(); | |
2154 | * ptep->pte_low = l; | |
2155 | * | |
2156 | * And present to not present goes: | |
2157 | * | |
2158 | * ptep->pte_low = 0; | |
2159 | * smp_wmb(); | |
2160 | * ptep->pte_high = 0; | |
2161 | * | |
2162 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | |
2163 | * We load pte_high *after* loading pte_low, which ensures we don't see an older | |
2164 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't | |
2165 | * picked up a changed pte high. We might have gotten rubbish values from | |
2166 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the | |
2167 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | |
2168 | * operates on present ptes we're safe. | |
2169 | */ | |
2170 | static inline pte_t gup_get_pte(pte_t *ptep) | |
2171 | { | |
2172 | pte_t pte; | |
2667f50e | 2173 | |
39656e83 CH |
2174 | do { |
2175 | pte.pte_low = ptep->pte_low; | |
2176 | smp_rmb(); | |
2177 | pte.pte_high = ptep->pte_high; | |
2178 | smp_rmb(); | |
2179 | } while (unlikely(pte.pte_low != ptep->pte_low)); | |
2180 | ||
2181 | return pte; | |
2182 | } | |
2183 | #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | |
0005d20b | 2184 | /* |
39656e83 | 2185 | * We require that the PTE can be read atomically. |
0005d20b KS |
2186 | */ |
2187 | static inline pte_t gup_get_pte(pte_t *ptep) | |
2188 | { | |
2189 | return READ_ONCE(*ptep); | |
2190 | } | |
39656e83 | 2191 | #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ |
0005d20b | 2192 | |
790c7369 | 2193 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
3b78d834 | 2194 | unsigned int flags, |
790c7369 | 2195 | struct page **pages) |
b59f65fa KS |
2196 | { |
2197 | while ((*nr) - nr_start) { | |
2198 | struct page *page = pages[--(*nr)]; | |
2199 | ||
2200 | ClearPageReferenced(page); | |
3faa52c0 JH |
2201 | if (flags & FOLL_PIN) |
2202 | unpin_user_page(page); | |
2203 | else | |
2204 | put_page(page); | |
b59f65fa KS |
2205 | } |
2206 | } | |
2207 | ||
3010a5ea | 2208 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 2209 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 2210 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2211 | { |
b59f65fa KS |
2212 | struct dev_pagemap *pgmap = NULL; |
2213 | int nr_start = *nr, ret = 0; | |
2667f50e | 2214 | pte_t *ptep, *ptem; |
2667f50e SC |
2215 | |
2216 | ptem = ptep = pte_offset_map(&pmd, addr); | |
2217 | do { | |
0005d20b | 2218 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 2219 | struct page *head, *page; |
2667f50e SC |
2220 | |
2221 | /* | |
2222 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 2223 | * path using the pte_protnone check. |
2667f50e | 2224 | */ |
e7884f8e KS |
2225 | if (pte_protnone(pte)) |
2226 | goto pte_unmap; | |
2227 | ||
b798bec4 | 2228 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
2229 | goto pte_unmap; |
2230 | ||
b59f65fa | 2231 | if (pte_devmap(pte)) { |
7af75561 IW |
2232 | if (unlikely(flags & FOLL_LONGTERM)) |
2233 | goto pte_unmap; | |
2234 | ||
b59f65fa KS |
2235 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
2236 | if (unlikely(!pgmap)) { | |
3b78d834 | 2237 | undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2238 | goto pte_unmap; |
2239 | } | |
2240 | } else if (pte_special(pte)) | |
2667f50e SC |
2241 | goto pte_unmap; |
2242 | ||
2243 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2244 | page = pte_page(pte); | |
2245 | ||
3faa52c0 | 2246 | head = try_grab_compound_head(page, 1, flags); |
8fde12ca | 2247 | if (!head) |
2667f50e SC |
2248 | goto pte_unmap; |
2249 | ||
2250 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
3faa52c0 | 2251 | put_compound_head(head, 1, flags); |
2667f50e SC |
2252 | goto pte_unmap; |
2253 | } | |
2254 | ||
7aef4172 | 2255 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 | 2256 | |
f28d4363 CI |
2257 | /* |
2258 | * We need to make the page accessible if and only if we are | |
2259 | * going to access its content (the FOLL_PIN case). Please | |
2260 | * see Documentation/core-api/pin_user_pages.rst for | |
2261 | * details. | |
2262 | */ | |
2263 | if (flags & FOLL_PIN) { | |
2264 | ret = arch_make_page_accessible(page); | |
2265 | if (ret) { | |
2266 | unpin_user_page(page); | |
2267 | goto pte_unmap; | |
2268 | } | |
2269 | } | |
e9348053 | 2270 | SetPageReferenced(page); |
2667f50e SC |
2271 | pages[*nr] = page; |
2272 | (*nr)++; | |
2273 | ||
2274 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
2275 | ||
2276 | ret = 1; | |
2277 | ||
2278 | pte_unmap: | |
832d7aa0 CH |
2279 | if (pgmap) |
2280 | put_dev_pagemap(pgmap); | |
2667f50e SC |
2281 | pte_unmap(ptem); |
2282 | return ret; | |
2283 | } | |
2284 | #else | |
2285 | ||
2286 | /* | |
2287 | * If we can't determine whether or not a pte is special, then fail immediately | |
2288 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
2289 | * to be special. | |
2290 | * | |
2291 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
2292 | * __get_user_pages_fast implementation that can pin pages. Thus it's still | |
2293 | * useful to have gup_huge_pmd even if we can't operate on ptes. | |
2294 | */ | |
2295 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 2296 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2297 | { |
2298 | return 0; | |
2299 | } | |
3010a5ea | 2300 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 2301 | |
17596731 | 2302 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa | 2303 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
86dfbed4 JH |
2304 | unsigned long end, unsigned int flags, |
2305 | struct page **pages, int *nr) | |
b59f65fa KS |
2306 | { |
2307 | int nr_start = *nr; | |
2308 | struct dev_pagemap *pgmap = NULL; | |
2309 | ||
2310 | do { | |
2311 | struct page *page = pfn_to_page(pfn); | |
2312 | ||
2313 | pgmap = get_dev_pagemap(pfn, pgmap); | |
2314 | if (unlikely(!pgmap)) { | |
3b78d834 | 2315 | undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2316 | return 0; |
2317 | } | |
2318 | SetPageReferenced(page); | |
2319 | pages[*nr] = page; | |
3faa52c0 JH |
2320 | if (unlikely(!try_grab_page(page, flags))) { |
2321 | undo_dev_pagemap(nr, nr_start, flags, pages); | |
2322 | return 0; | |
2323 | } | |
b59f65fa KS |
2324 | (*nr)++; |
2325 | pfn++; | |
2326 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
2327 | |
2328 | if (pgmap) | |
2329 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
2330 | return 1; |
2331 | } | |
2332 | ||
a9b6de77 | 2333 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2334 | unsigned long end, unsigned int flags, |
2335 | struct page **pages, int *nr) | |
b59f65fa KS |
2336 | { |
2337 | unsigned long fault_pfn; | |
a9b6de77 DW |
2338 | int nr_start = *nr; |
2339 | ||
2340 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2341 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2342 | return 0; |
b59f65fa | 2343 | |
a9b6de77 | 2344 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
3b78d834 | 2345 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2346 | return 0; |
2347 | } | |
2348 | return 1; | |
b59f65fa KS |
2349 | } |
2350 | ||
a9b6de77 | 2351 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2352 | unsigned long end, unsigned int flags, |
2353 | struct page **pages, int *nr) | |
b59f65fa KS |
2354 | { |
2355 | unsigned long fault_pfn; | |
a9b6de77 DW |
2356 | int nr_start = *nr; |
2357 | ||
2358 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2359 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2360 | return 0; |
b59f65fa | 2361 | |
a9b6de77 | 2362 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
3b78d834 | 2363 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2364 | return 0; |
2365 | } | |
2366 | return 1; | |
b59f65fa KS |
2367 | } |
2368 | #else | |
a9b6de77 | 2369 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2370 | unsigned long end, unsigned int flags, |
2371 | struct page **pages, int *nr) | |
b59f65fa KS |
2372 | { |
2373 | BUILD_BUG(); | |
2374 | return 0; | |
2375 | } | |
2376 | ||
a9b6de77 | 2377 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2378 | unsigned long end, unsigned int flags, |
2379 | struct page **pages, int *nr) | |
b59f65fa KS |
2380 | { |
2381 | BUILD_BUG(); | |
2382 | return 0; | |
2383 | } | |
2384 | #endif | |
2385 | ||
a43e9820 JH |
2386 | static int record_subpages(struct page *page, unsigned long addr, |
2387 | unsigned long end, struct page **pages) | |
2388 | { | |
2389 | int nr; | |
2390 | ||
2391 | for (nr = 0; addr != end; addr += PAGE_SIZE) | |
2392 | pages[nr++] = page++; | |
2393 | ||
2394 | return nr; | |
2395 | } | |
2396 | ||
cbd34da7 CH |
2397 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
2398 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
2399 | unsigned long sz) | |
2400 | { | |
2401 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
2402 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
2403 | } | |
2404 | ||
2405 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
0cd22afd JH |
2406 | unsigned long end, unsigned int flags, |
2407 | struct page **pages, int *nr) | |
cbd34da7 CH |
2408 | { |
2409 | unsigned long pte_end; | |
2410 | struct page *head, *page; | |
2411 | pte_t pte; | |
2412 | int refs; | |
2413 | ||
2414 | pte_end = (addr + sz) & ~(sz-1); | |
2415 | if (pte_end < end) | |
2416 | end = pte_end; | |
2417 | ||
2418 | pte = READ_ONCE(*ptep); | |
2419 | ||
0cd22afd | 2420 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
cbd34da7 CH |
2421 | return 0; |
2422 | ||
2423 | /* hugepages are never "special" */ | |
2424 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2425 | ||
cbd34da7 | 2426 | head = pte_page(pte); |
cbd34da7 | 2427 | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); |
a43e9820 | 2428 | refs = record_subpages(page, addr, end, pages + *nr); |
cbd34da7 | 2429 | |
3faa52c0 | 2430 | head = try_grab_compound_head(head, refs, flags); |
a43e9820 | 2431 | if (!head) |
cbd34da7 | 2432 | return 0; |
cbd34da7 CH |
2433 | |
2434 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
3b78d834 | 2435 | put_compound_head(head, refs, flags); |
cbd34da7 CH |
2436 | return 0; |
2437 | } | |
2438 | ||
a43e9820 | 2439 | *nr += refs; |
520b4a44 | 2440 | SetPageReferenced(head); |
cbd34da7 CH |
2441 | return 1; |
2442 | } | |
2443 | ||
2444 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2445 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2446 | struct page **pages, int *nr) |
2447 | { | |
2448 | pte_t *ptep; | |
2449 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2450 | unsigned long next; | |
2451 | ||
2452 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2453 | do { | |
2454 | next = hugepte_addr_end(addr, end, sz); | |
0cd22afd | 2455 | if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) |
cbd34da7 CH |
2456 | return 0; |
2457 | } while (ptep++, addr = next, addr != end); | |
2458 | ||
2459 | return 1; | |
2460 | } | |
2461 | #else | |
2462 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2463 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2464 | struct page **pages, int *nr) |
2465 | { | |
2466 | return 0; | |
2467 | } | |
2468 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2469 | ||
2667f50e | 2470 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
0cd22afd JH |
2471 | unsigned long end, unsigned int flags, |
2472 | struct page **pages, int *nr) | |
2667f50e | 2473 | { |
ddc58f27 | 2474 | struct page *head, *page; |
2667f50e SC |
2475 | int refs; |
2476 | ||
b798bec4 | 2477 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2478 | return 0; |
2479 | ||
7af75561 IW |
2480 | if (pmd_devmap(orig)) { |
2481 | if (unlikely(flags & FOLL_LONGTERM)) | |
2482 | return 0; | |
86dfbed4 JH |
2483 | return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, |
2484 | pages, nr); | |
7af75561 | 2485 | } |
b59f65fa | 2486 | |
d63206ee | 2487 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2488 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2489 | |
3faa52c0 | 2490 | head = try_grab_compound_head(pmd_page(orig), refs, flags); |
a43e9820 | 2491 | if (!head) |
2667f50e | 2492 | return 0; |
2667f50e SC |
2493 | |
2494 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
3b78d834 | 2495 | put_compound_head(head, refs, flags); |
2667f50e SC |
2496 | return 0; |
2497 | } | |
2498 | ||
a43e9820 | 2499 | *nr += refs; |
e9348053 | 2500 | SetPageReferenced(head); |
2667f50e SC |
2501 | return 1; |
2502 | } | |
2503 | ||
2504 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
86dfbed4 JH |
2505 | unsigned long end, unsigned int flags, |
2506 | struct page **pages, int *nr) | |
2667f50e | 2507 | { |
ddc58f27 | 2508 | struct page *head, *page; |
2667f50e SC |
2509 | int refs; |
2510 | ||
b798bec4 | 2511 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2512 | return 0; |
2513 | ||
7af75561 IW |
2514 | if (pud_devmap(orig)) { |
2515 | if (unlikely(flags & FOLL_LONGTERM)) | |
2516 | return 0; | |
86dfbed4 JH |
2517 | return __gup_device_huge_pud(orig, pudp, addr, end, flags, |
2518 | pages, nr); | |
7af75561 | 2519 | } |
b59f65fa | 2520 | |
d63206ee | 2521 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2522 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2523 | |
3faa52c0 | 2524 | head = try_grab_compound_head(pud_page(orig), refs, flags); |
a43e9820 | 2525 | if (!head) |
2667f50e | 2526 | return 0; |
2667f50e SC |
2527 | |
2528 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
3b78d834 | 2529 | put_compound_head(head, refs, flags); |
2667f50e SC |
2530 | return 0; |
2531 | } | |
2532 | ||
a43e9820 | 2533 | *nr += refs; |
e9348053 | 2534 | SetPageReferenced(head); |
2667f50e SC |
2535 | return 1; |
2536 | } | |
2537 | ||
f30c59e9 | 2538 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2539 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2540 | struct page **pages, int *nr) |
2541 | { | |
2542 | int refs; | |
ddc58f27 | 2543 | struct page *head, *page; |
f30c59e9 | 2544 | |
b798bec4 | 2545 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2546 | return 0; |
2547 | ||
b59f65fa | 2548 | BUILD_BUG_ON(pgd_devmap(orig)); |
a43e9820 | 2549 | |
d63206ee | 2550 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
a43e9820 | 2551 | refs = record_subpages(page, addr, end, pages + *nr); |
f30c59e9 | 2552 | |
3faa52c0 | 2553 | head = try_grab_compound_head(pgd_page(orig), refs, flags); |
a43e9820 | 2554 | if (!head) |
f30c59e9 | 2555 | return 0; |
f30c59e9 AK |
2556 | |
2557 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
3b78d834 | 2558 | put_compound_head(head, refs, flags); |
f30c59e9 AK |
2559 | return 0; |
2560 | } | |
2561 | ||
a43e9820 | 2562 | *nr += refs; |
e9348053 | 2563 | SetPageReferenced(head); |
f30c59e9 AK |
2564 | return 1; |
2565 | } | |
2566 | ||
2667f50e | 2567 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2568 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2569 | { |
2570 | unsigned long next; | |
2571 | pmd_t *pmdp; | |
2572 | ||
2573 | pmdp = pmd_offset(&pud, addr); | |
2574 | do { | |
38c5ce93 | 2575 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2576 | |
2577 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2578 | if (!pmd_present(pmd)) |
2667f50e SC |
2579 | return 0; |
2580 | ||
414fd080 YZ |
2581 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2582 | pmd_devmap(pmd))) { | |
2667f50e SC |
2583 | /* |
2584 | * NUMA hinting faults need to be handled in the GUP | |
2585 | * slowpath for accounting purposes and so that they | |
2586 | * can be serialised against THP migration. | |
2587 | */ | |
8a0516ed | 2588 | if (pmd_protnone(pmd)) |
2667f50e SC |
2589 | return 0; |
2590 | ||
b798bec4 | 2591 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2592 | pages, nr)) |
2593 | return 0; | |
2594 | ||
f30c59e9 AK |
2595 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2596 | /* | |
2597 | * architecture have different format for hugetlbfs | |
2598 | * pmd format and THP pmd format | |
2599 | */ | |
2600 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2601 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2602 | return 0; |
b798bec4 | 2603 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2604 | return 0; |
2667f50e SC |
2605 | } while (pmdp++, addr = next, addr != end); |
2606 | ||
2607 | return 1; | |
2608 | } | |
2609 | ||
c2febafc | 2610 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2611 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2612 | { |
2613 | unsigned long next; | |
2614 | pud_t *pudp; | |
2615 | ||
c2febafc | 2616 | pudp = pud_offset(&p4d, addr); |
2667f50e | 2617 | do { |
e37c6982 | 2618 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2619 | |
2620 | next = pud_addr_end(addr, end); | |
15494520 | 2621 | if (unlikely(!pud_present(pud))) |
2667f50e | 2622 | return 0; |
f30c59e9 | 2623 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2624 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2625 | pages, nr)) |
2626 | return 0; | |
2627 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2628 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2629 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2630 | return 0; |
b798bec4 | 2631 | } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2632 | return 0; |
2633 | } while (pudp++, addr = next, addr != end); | |
2634 | ||
2635 | return 1; | |
2636 | } | |
2637 | ||
c2febafc | 2638 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2639 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2640 | { |
2641 | unsigned long next; | |
2642 | p4d_t *p4dp; | |
2643 | ||
2644 | p4dp = p4d_offset(&pgd, addr); | |
2645 | do { | |
2646 | p4d_t p4d = READ_ONCE(*p4dp); | |
2647 | ||
2648 | next = p4d_addr_end(addr, end); | |
2649 | if (p4d_none(p4d)) | |
2650 | return 0; | |
2651 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2652 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2653 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2654 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2655 | return 0; |
b798bec4 | 2656 | } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2657 | return 0; |
2658 | } while (p4dp++, addr = next, addr != end); | |
2659 | ||
2660 | return 1; | |
2661 | } | |
2662 | ||
5b65c467 | 2663 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2664 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2665 | { |
2666 | unsigned long next; | |
2667 | pgd_t *pgdp; | |
2668 | ||
2669 | pgdp = pgd_offset(current->mm, addr); | |
2670 | do { | |
2671 | pgd_t pgd = READ_ONCE(*pgdp); | |
2672 | ||
2673 | next = pgd_addr_end(addr, end); | |
2674 | if (pgd_none(pgd)) | |
2675 | return; | |
2676 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2677 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2678 | pages, nr)) |
2679 | return; | |
2680 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2681 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2682 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2683 | return; |
b798bec4 | 2684 | } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2685 | return; |
2686 | } while (pgdp++, addr = next, addr != end); | |
2687 | } | |
050a9adc CH |
2688 | #else |
2689 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2690 | unsigned int flags, struct page **pages, int *nr) | |
2691 | { | |
2692 | } | |
2693 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2694 | |
2695 | #ifndef gup_fast_permitted | |
2696 | /* | |
2697 | * Check if it's allowed to use __get_user_pages_fast() for the range, or | |
2698 | * we need to fall back to the slow version: | |
2699 | */ | |
26f4c328 | 2700 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2701 | { |
26f4c328 | 2702 | return true; |
5b65c467 KS |
2703 | } |
2704 | #endif | |
2705 | ||
7af75561 IW |
2706 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2707 | unsigned int gup_flags, struct page **pages) | |
2708 | { | |
2709 | int ret; | |
2710 | ||
2711 | /* | |
2712 | * FIXME: FOLL_LONGTERM does not work with | |
2713 | * get_user_pages_unlocked() (see comments in that function) | |
2714 | */ | |
2715 | if (gup_flags & FOLL_LONGTERM) { | |
2716 | down_read(¤t->mm->mmap_sem); | |
2717 | ret = __gup_longterm_locked(current, current->mm, | |
2718 | start, nr_pages, | |
2719 | pages, NULL, gup_flags); | |
2720 | up_read(¤t->mm->mmap_sem); | |
2721 | } else { | |
2722 | ret = get_user_pages_unlocked(start, nr_pages, | |
2723 | pages, gup_flags); | |
2724 | } | |
2725 | ||
2726 | return ret; | |
2727 | } | |
2728 | ||
eddb1c22 JH |
2729 | static int internal_get_user_pages_fast(unsigned long start, int nr_pages, |
2730 | unsigned int gup_flags, | |
2731 | struct page **pages) | |
2667f50e | 2732 | { |
5b65c467 | 2733 | unsigned long addr, len, end; |
376a34ef | 2734 | unsigned long flags; |
4628b063 | 2735 | int nr_pinned = 0, ret = 0; |
2667f50e | 2736 | |
f4000fdf | 2737 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
376a34ef JH |
2738 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
2739 | FOLL_FAST_ONLY))) | |
817be129 CH |
2740 | return -EINVAL; |
2741 | ||
f455c854 | 2742 | start = untagged_addr(start) & PAGE_MASK; |
5b65c467 KS |
2743 | addr = start; |
2744 | len = (unsigned long) nr_pages << PAGE_SHIFT; | |
2745 | end = start + len; | |
2746 | ||
26f4c328 | 2747 | if (end <= start) |
c61611f7 | 2748 | return 0; |
96d4f267 | 2749 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2750 | return -EFAULT; |
73e10a61 | 2751 | |
17839856 LT |
2752 | /* |
2753 | * The FAST_GUP case requires FOLL_WRITE even for pure reads, | |
2754 | * because get_user_pages() may need to cause an early COW in | |
2755 | * order to avoid confusing the normal COW routines. So only | |
2756 | * targets that are already writable are safe to do by just | |
2757 | * looking at the page tables. | |
376a34ef JH |
2758 | * |
2759 | * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here, | |
2760 | * because there is no slow path to fall back on. But you'd | |
2761 | * better be careful about possible COW pages - you'll get _a_ | |
2762 | * COW page, but not necessarily the one you intended to get | |
2763 | * depending on what COW event happens after this. COW may break | |
2764 | * the page copy in a random direction. | |
2765 | * | |
2766 | * Disable interrupts. The nested form is used, in order to allow | |
2767 | * full, general purpose use of this routine. | |
2768 | * | |
2769 | * With interrupts disabled, we block page table pages from being | |
2770 | * freed from under us. See struct mmu_table_batch comments in | |
2771 | * include/asm-generic/tlb.h for more details. | |
2772 | * | |
2773 | * We do not adopt an rcu_read_lock(.) here as we also want to | |
2774 | * block IPIs that come from THPs splitting. | |
17839856 | 2775 | */ |
376a34ef JH |
2776 | if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { |
2777 | unsigned long fast_flags = gup_flags; | |
2778 | if (!(gup_flags & FOLL_FAST_ONLY)) | |
2779 | fast_flags |= FOLL_WRITE; | |
2780 | ||
2781 | local_irq_save(flags); | |
2782 | gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); | |
2783 | local_irq_restore(flags); | |
4628b063 | 2784 | ret = nr_pinned; |
73e10a61 | 2785 | } |
2667f50e | 2786 | |
376a34ef | 2787 | if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { |
2667f50e | 2788 | /* Try to get the remaining pages with get_user_pages */ |
4628b063 PL |
2789 | start += nr_pinned << PAGE_SHIFT; |
2790 | pages += nr_pinned; | |
2667f50e | 2791 | |
4628b063 | 2792 | ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, |
7af75561 | 2793 | gup_flags, pages); |
2667f50e SC |
2794 | |
2795 | /* Have to be a bit careful with return values */ | |
4628b063 | 2796 | if (nr_pinned > 0) { |
2667f50e | 2797 | if (ret < 0) |
4628b063 | 2798 | ret = nr_pinned; |
2667f50e | 2799 | else |
4628b063 | 2800 | ret += nr_pinned; |
2667f50e SC |
2801 | } |
2802 | } | |
2803 | ||
2804 | return ret; | |
2805 | } | |
eddb1c22 | 2806 | |
9e1f0580 JH |
2807 | /* |
2808 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | |
2809 | * the regular GUP. | |
2810 | * Note a difference with get_user_pages_fast: this always returns the | |
2811 | * number of pages pinned, 0 if no pages were pinned. | |
2812 | * | |
2813 | * If the architecture does not support this function, simply return with no | |
2814 | * pages pinned. | |
2815 | * | |
2816 | * Careful, careful! COW breaking can go either way, so a non-write | |
2817 | * access can get ambiguous page results. If you call this function without | |
2818 | * 'write' set, you'd better be sure that you're ok with that ambiguity. | |
2819 | */ | |
2820 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | |
2821 | struct page **pages) | |
2822 | { | |
376a34ef | 2823 | int nr_pinned; |
9e1f0580 JH |
2824 | /* |
2825 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | |
2826 | * because gup fast is always a "pin with a +1 page refcount" request. | |
376a34ef JH |
2827 | * |
2828 | * FOLL_FAST_ONLY is required in order to match the API description of | |
2829 | * this routine: no fall back to regular ("slow") GUP. | |
9e1f0580 | 2830 | */ |
376a34ef | 2831 | unsigned int gup_flags = FOLL_GET | FOLL_FAST_ONLY; |
9e1f0580 JH |
2832 | |
2833 | if (write) | |
2834 | gup_flags |= FOLL_WRITE; | |
2835 | ||
376a34ef JH |
2836 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, |
2837 | pages); | |
9e1f0580 JH |
2838 | |
2839 | /* | |
376a34ef JH |
2840 | * As specified in the API description above, this routine is not |
2841 | * allowed to return negative values. However, the common core | |
2842 | * routine internal_get_user_pages_fast() *can* return -errno. | |
2843 | * Therefore, correct for that here: | |
9e1f0580 | 2844 | */ |
376a34ef JH |
2845 | if (nr_pinned < 0) |
2846 | nr_pinned = 0; | |
9e1f0580 JH |
2847 | |
2848 | return nr_pinned; | |
2849 | } | |
2850 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | |
2851 | ||
eddb1c22 JH |
2852 | /** |
2853 | * get_user_pages_fast() - pin user pages in memory | |
3faa52c0 JH |
2854 | * @start: starting user address |
2855 | * @nr_pages: number of pages from start to pin | |
2856 | * @gup_flags: flags modifying pin behaviour | |
2857 | * @pages: array that receives pointers to the pages pinned. | |
2858 | * Should be at least nr_pages long. | |
eddb1c22 JH |
2859 | * |
2860 | * Attempt to pin user pages in memory without taking mm->mmap_sem. | |
2861 | * If not successful, it will fall back to taking the lock and | |
2862 | * calling get_user_pages(). | |
2863 | * | |
2864 | * Returns number of pages pinned. This may be fewer than the number requested. | |
2865 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | |
2866 | * -errno. | |
2867 | */ | |
2868 | int get_user_pages_fast(unsigned long start, int nr_pages, | |
2869 | unsigned int gup_flags, struct page **pages) | |
2870 | { | |
2871 | /* | |
2872 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
2873 | * never directly by the caller, so enforce that: | |
2874 | */ | |
2875 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
2876 | return -EINVAL; | |
2877 | ||
94202f12 JH |
2878 | /* |
2879 | * The caller may or may not have explicitly set FOLL_GET; either way is | |
2880 | * OK. However, internally (within mm/gup.c), gup fast variants must set | |
2881 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | |
2882 | * request. | |
2883 | */ | |
2884 | gup_flags |= FOLL_GET; | |
eddb1c22 JH |
2885 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
2886 | } | |
050a9adc | 2887 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
eddb1c22 JH |
2888 | |
2889 | /** | |
2890 | * pin_user_pages_fast() - pin user pages in memory without taking locks | |
2891 | * | |
3faa52c0 JH |
2892 | * @start: starting user address |
2893 | * @nr_pages: number of pages from start to pin | |
2894 | * @gup_flags: flags modifying pin behaviour | |
2895 | * @pages: array that receives pointers to the pages pinned. | |
2896 | * Should be at least nr_pages long. | |
2897 | * | |
2898 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | |
2899 | * get_user_pages_fast() for documentation on the function arguments, because | |
2900 | * the arguments here are identical. | |
2901 | * | |
2902 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 2903 | * see Documentation/core-api/pin_user_pages.rst for further details. |
eddb1c22 | 2904 | * |
72ef5e52 | 2905 | * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It |
eddb1c22 JH |
2906 | * is NOT intended for Case 2 (RDMA: long-term pins). |
2907 | */ | |
2908 | int pin_user_pages_fast(unsigned long start, int nr_pages, | |
2909 | unsigned int gup_flags, struct page **pages) | |
2910 | { | |
3faa52c0 JH |
2911 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2912 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2913 | return -EINVAL; | |
2914 | ||
2915 | gup_flags |= FOLL_PIN; | |
2916 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | |
eddb1c22 JH |
2917 | } |
2918 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | |
2919 | ||
104acc32 JH |
2920 | /* |
2921 | * This is the FOLL_PIN equivalent of __get_user_pages_fast(). Behavior is the | |
2922 | * same, except that this one sets FOLL_PIN instead of FOLL_GET. | |
2923 | * | |
2924 | * The API rules are the same, too: no negative values may be returned. | |
2925 | */ | |
2926 | int pin_user_pages_fast_only(unsigned long start, int nr_pages, | |
2927 | unsigned int gup_flags, struct page **pages) | |
2928 | { | |
2929 | int nr_pinned; | |
2930 | ||
2931 | /* | |
2932 | * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API | |
2933 | * rules require returning 0, rather than -errno: | |
2934 | */ | |
2935 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2936 | return 0; | |
2937 | /* | |
2938 | * FOLL_FAST_ONLY is required in order to match the API description of | |
2939 | * this routine: no fall back to regular ("slow") GUP. | |
2940 | */ | |
2941 | gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); | |
2942 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, | |
2943 | pages); | |
2944 | /* | |
2945 | * This routine is not allowed to return negative values. However, | |
2946 | * internal_get_user_pages_fast() *can* return -errno. Therefore, | |
2947 | * correct for that here: | |
2948 | */ | |
2949 | if (nr_pinned < 0) | |
2950 | nr_pinned = 0; | |
2951 | ||
2952 | return nr_pinned; | |
2953 | } | |
2954 | EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); | |
2955 | ||
eddb1c22 JH |
2956 | /** |
2957 | * pin_user_pages_remote() - pin pages of a remote process (task != current) | |
2958 | * | |
3faa52c0 JH |
2959 | * @tsk: the task_struct to use for page fault accounting, or |
2960 | * NULL if faults are not to be recorded. | |
2961 | * @mm: mm_struct of target mm | |
2962 | * @start: starting user address | |
2963 | * @nr_pages: number of pages from start to pin | |
2964 | * @gup_flags: flags modifying lookup behaviour | |
2965 | * @pages: array that receives pointers to the pages pinned. | |
2966 | * Should be at least nr_pages long. Or NULL, if caller | |
2967 | * only intends to ensure the pages are faulted in. | |
2968 | * @vmas: array of pointers to vmas corresponding to each page. | |
2969 | * Or NULL if the caller does not require them. | |
2970 | * @locked: pointer to lock flag indicating whether lock is held and | |
2971 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2972 | * utilised. Lock must initially be held. | |
2973 | * | |
2974 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | |
2975 | * get_user_pages_remote() for documentation on the function arguments, because | |
2976 | * the arguments here are identical. | |
2977 | * | |
2978 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 2979 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 | 2980 | * |
72ef5e52 | 2981 | * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It |
eddb1c22 JH |
2982 | * is NOT intended for Case 2 (RDMA: long-term pins). |
2983 | */ | |
2984 | long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | |
2985 | unsigned long start, unsigned long nr_pages, | |
2986 | unsigned int gup_flags, struct page **pages, | |
2987 | struct vm_area_struct **vmas, int *locked) | |
2988 | { | |
3faa52c0 JH |
2989 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2990 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2991 | return -EINVAL; | |
2992 | ||
2993 | gup_flags |= FOLL_PIN; | |
2994 | return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, | |
2995 | pages, vmas, locked); | |
eddb1c22 JH |
2996 | } |
2997 | EXPORT_SYMBOL(pin_user_pages_remote); | |
2998 | ||
2999 | /** | |
3000 | * pin_user_pages() - pin user pages in memory for use by other devices | |
3001 | * | |
3faa52c0 JH |
3002 | * @start: starting user address |
3003 | * @nr_pages: number of pages from start to pin | |
3004 | * @gup_flags: flags modifying lookup behaviour | |
3005 | * @pages: array that receives pointers to the pages pinned. | |
3006 | * Should be at least nr_pages long. Or NULL, if caller | |
3007 | * only intends to ensure the pages are faulted in. | |
3008 | * @vmas: array of pointers to vmas corresponding to each page. | |
3009 | * Or NULL if the caller does not require them. | |
3010 | * | |
3011 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | |
3012 | * FOLL_PIN is set. | |
3013 | * | |
3014 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3015 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 | 3016 | * |
72ef5e52 | 3017 | * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It |
eddb1c22 JH |
3018 | * is NOT intended for Case 2 (RDMA: long-term pins). |
3019 | */ | |
3020 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | |
3021 | unsigned int gup_flags, struct page **pages, | |
3022 | struct vm_area_struct **vmas) | |
3023 | { | |
3faa52c0 JH |
3024 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
3025 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3026 | return -EINVAL; | |
3027 | ||
3028 | gup_flags |= FOLL_PIN; | |
3029 | return __gup_longterm_locked(current, current->mm, start, nr_pages, | |
3030 | pages, vmas, gup_flags); | |
eddb1c22 JH |
3031 | } |
3032 | EXPORT_SYMBOL(pin_user_pages); | |
91429023 JH |
3033 | |
3034 | /* | |
3035 | * pin_user_pages_unlocked() is the FOLL_PIN variant of | |
3036 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets | |
3037 | * FOLL_PIN and rejects FOLL_GET. | |
3038 | */ | |
3039 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | |
3040 | struct page **pages, unsigned int gup_flags) | |
3041 | { | |
3042 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
3043 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3044 | return -EINVAL; | |
3045 | ||
3046 | gup_flags |= FOLL_PIN; | |
3047 | return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); | |
3048 | } | |
3049 | EXPORT_SYMBOL(pin_user_pages_unlocked); |