]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
13 | ||
174cd4b1 | 14 | #include <linux/sched/signal.h> |
2667f50e | 15 | #include <linux/rwsem.h> |
f30c59e9 | 16 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
17 | #include <linux/migrate.h> |
18 | #include <linux/mm_inline.h> | |
19 | #include <linux/sched/mm.h> | |
1027e443 | 20 | |
33a709b2 | 21 | #include <asm/mmu_context.h> |
1027e443 | 22 | #include <asm/tlbflush.h> |
2667f50e | 23 | |
4bbd4c77 KS |
24 | #include "internal.h" |
25 | ||
df06b37f KB |
26 | struct follow_page_context { |
27 | struct dev_pagemap *pgmap; | |
28 | unsigned int page_mask; | |
29 | }; | |
30 | ||
47e29d32 JH |
31 | static void hpage_pincount_add(struct page *page, int refs) |
32 | { | |
33 | VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); | |
34 | VM_BUG_ON_PAGE(page != compound_head(page), page); | |
35 | ||
36 | atomic_add(refs, compound_pincount_ptr(page)); | |
37 | } | |
38 | ||
39 | static void hpage_pincount_sub(struct page *page, int refs) | |
40 | { | |
41 | VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); | |
42 | VM_BUG_ON_PAGE(page != compound_head(page), page); | |
43 | ||
44 | atomic_sub(refs, compound_pincount_ptr(page)); | |
45 | } | |
46 | ||
a707cdd5 JH |
47 | /* |
48 | * Return the compound head page with ref appropriately incremented, | |
49 | * or NULL if that failed. | |
50 | */ | |
51 | static inline struct page *try_get_compound_head(struct page *page, int refs) | |
52 | { | |
53 | struct page *head = compound_head(page); | |
54 | ||
55 | if (WARN_ON_ONCE(page_ref_count(head) < 0)) | |
56 | return NULL; | |
57 | if (unlikely(!page_cache_add_speculative(head, refs))) | |
58 | return NULL; | |
59 | return head; | |
60 | } | |
61 | ||
3faa52c0 JH |
62 | /* |
63 | * try_grab_compound_head() - attempt to elevate a page's refcount, by a | |
64 | * flags-dependent amount. | |
65 | * | |
66 | * "grab" names in this file mean, "look at flags to decide whether to use | |
67 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
68 | * | |
69 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | |
70 | * same time. (That's true throughout the get_user_pages*() and | |
71 | * pin_user_pages*() APIs.) Cases: | |
72 | * | |
73 | * FOLL_GET: page's refcount will be incremented by 1. | |
74 | * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. | |
75 | * | |
76 | * Return: head page (with refcount appropriately incremented) for success, or | |
77 | * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's | |
78 | * considered failure, and furthermore, a likely bug in the caller, so a warning | |
79 | * is also emitted. | |
80 | */ | |
81 | static __maybe_unused struct page *try_grab_compound_head(struct page *page, | |
82 | int refs, | |
83 | unsigned int flags) | |
84 | { | |
85 | if (flags & FOLL_GET) | |
86 | return try_get_compound_head(page, refs); | |
87 | else if (flags & FOLL_PIN) { | |
1970dc6f JH |
88 | int orig_refs = refs; |
89 | ||
df3a0a21 PL |
90 | /* |
91 | * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast | |
92 | * path, so fail and let the caller fall back to the slow path. | |
93 | */ | |
94 | if (unlikely(flags & FOLL_LONGTERM) && | |
95 | is_migrate_cma_page(page)) | |
96 | return NULL; | |
97 | ||
47e29d32 JH |
98 | /* |
99 | * When pinning a compound page of order > 1 (which is what | |
100 | * hpage_pincount_available() checks for), use an exact count to | |
101 | * track it, via hpage_pincount_add/_sub(). | |
102 | * | |
103 | * However, be sure to *also* increment the normal page refcount | |
104 | * field at least once, so that the page really is pinned. | |
105 | */ | |
106 | if (!hpage_pincount_available(page)) | |
107 | refs *= GUP_PIN_COUNTING_BIAS; | |
108 | ||
109 | page = try_get_compound_head(page, refs); | |
110 | if (!page) | |
111 | return NULL; | |
112 | ||
113 | if (hpage_pincount_available(page)) | |
114 | hpage_pincount_add(page, refs); | |
115 | ||
1970dc6f JH |
116 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, |
117 | orig_refs); | |
118 | ||
47e29d32 | 119 | return page; |
3faa52c0 JH |
120 | } |
121 | ||
122 | WARN_ON_ONCE(1); | |
123 | return NULL; | |
124 | } | |
125 | ||
126 | /** | |
127 | * try_grab_page() - elevate a page's refcount by a flag-dependent amount | |
128 | * | |
129 | * This might not do anything at all, depending on the flags argument. | |
130 | * | |
131 | * "grab" names in this file mean, "look at flags to decide whether to use | |
132 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
133 | * | |
134 | * @page: pointer to page to be grabbed | |
135 | * @flags: gup flags: these are the FOLL_* flag values. | |
136 | * | |
137 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same | |
138 | * time. Cases: | |
139 | * | |
140 | * FOLL_GET: page's refcount will be incremented by 1. | |
141 | * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. | |
142 | * | |
143 | * Return: true for success, or if no action was required (if neither FOLL_PIN | |
144 | * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or | |
145 | * FOLL_PIN was set, but the page could not be grabbed. | |
146 | */ | |
147 | bool __must_check try_grab_page(struct page *page, unsigned int flags) | |
148 | { | |
149 | WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); | |
150 | ||
151 | if (flags & FOLL_GET) | |
152 | return try_get_page(page); | |
153 | else if (flags & FOLL_PIN) { | |
47e29d32 JH |
154 | int refs = 1; |
155 | ||
3faa52c0 JH |
156 | page = compound_head(page); |
157 | ||
158 | if (WARN_ON_ONCE(page_ref_count(page) <= 0)) | |
159 | return false; | |
160 | ||
47e29d32 JH |
161 | if (hpage_pincount_available(page)) |
162 | hpage_pincount_add(page, 1); | |
163 | else | |
164 | refs = GUP_PIN_COUNTING_BIAS; | |
165 | ||
166 | /* | |
167 | * Similar to try_grab_compound_head(): even if using the | |
168 | * hpage_pincount_add/_sub() routines, be sure to | |
169 | * *also* increment the normal page refcount field at least | |
170 | * once, so that the page really is pinned. | |
171 | */ | |
172 | page_ref_add(page, refs); | |
1970dc6f JH |
173 | |
174 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); | |
3faa52c0 JH |
175 | } |
176 | ||
177 | return true; | |
178 | } | |
179 | ||
180 | #ifdef CONFIG_DEV_PAGEMAP_OPS | |
181 | static bool __unpin_devmap_managed_user_page(struct page *page) | |
182 | { | |
47e29d32 | 183 | int count, refs = 1; |
3faa52c0 JH |
184 | |
185 | if (!page_is_devmap_managed(page)) | |
186 | return false; | |
187 | ||
47e29d32 JH |
188 | if (hpage_pincount_available(page)) |
189 | hpage_pincount_sub(page, 1); | |
190 | else | |
191 | refs = GUP_PIN_COUNTING_BIAS; | |
192 | ||
193 | count = page_ref_sub_return(page, refs); | |
3faa52c0 | 194 | |
1970dc6f | 195 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); |
3faa52c0 JH |
196 | /* |
197 | * devmap page refcounts are 1-based, rather than 0-based: if | |
198 | * refcount is 1, then the page is free and the refcount is | |
199 | * stable because nobody holds a reference on the page. | |
200 | */ | |
201 | if (count == 1) | |
202 | free_devmap_managed_page(page); | |
203 | else if (!count) | |
204 | __put_page(page); | |
205 | ||
206 | return true; | |
207 | } | |
208 | #else | |
209 | static bool __unpin_devmap_managed_user_page(struct page *page) | |
210 | { | |
211 | return false; | |
212 | } | |
213 | #endif /* CONFIG_DEV_PAGEMAP_OPS */ | |
214 | ||
215 | /** | |
216 | * unpin_user_page() - release a dma-pinned page | |
217 | * @page: pointer to page to be released | |
218 | * | |
219 | * Pages that were pinned via pin_user_pages*() must be released via either | |
220 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | |
221 | * that such pages can be separately tracked and uniquely handled. In | |
222 | * particular, interactions with RDMA and filesystems need special handling. | |
223 | */ | |
224 | void unpin_user_page(struct page *page) | |
225 | { | |
47e29d32 JH |
226 | int refs = 1; |
227 | ||
3faa52c0 JH |
228 | page = compound_head(page); |
229 | ||
230 | /* | |
231 | * For devmap managed pages we need to catch refcount transition from | |
232 | * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the | |
233 | * page is free and we need to inform the device driver through | |
234 | * callback. See include/linux/memremap.h and HMM for details. | |
235 | */ | |
236 | if (__unpin_devmap_managed_user_page(page)) | |
237 | return; | |
238 | ||
47e29d32 JH |
239 | if (hpage_pincount_available(page)) |
240 | hpage_pincount_sub(page, 1); | |
241 | else | |
242 | refs = GUP_PIN_COUNTING_BIAS; | |
243 | ||
244 | if (page_ref_sub_and_test(page, refs)) | |
3faa52c0 | 245 | __put_page(page); |
1970dc6f JH |
246 | |
247 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); | |
3faa52c0 JH |
248 | } |
249 | EXPORT_SYMBOL(unpin_user_page); | |
250 | ||
fc1d8e7c | 251 | /** |
f1f6a7dd | 252 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
2d15eb31 | 253 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
fc1d8e7c | 254 | * @npages: number of pages in the @pages array. |
2d15eb31 | 255 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
256 | * |
257 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
258 | * variants called on that page. | |
259 | * | |
260 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 | 261 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
f1f6a7dd JH |
262 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
263 | * possibly via unpin_user_pages(), for the non-dirty case. | |
fc1d8e7c | 264 | * |
f1f6a7dd | 265 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 266 | * |
2d15eb31 AM |
267 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
268 | * required, then the caller should a) verify that this is really correct, | |
269 | * because _lock() is usually required, and b) hand code it: | |
f1f6a7dd | 270 | * set_page_dirty_lock(), unpin_user_page(). |
fc1d8e7c JH |
271 | * |
272 | */ | |
f1f6a7dd JH |
273 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
274 | bool make_dirty) | |
fc1d8e7c | 275 | { |
2d15eb31 | 276 | unsigned long index; |
fc1d8e7c | 277 | |
2d15eb31 AM |
278 | /* |
279 | * TODO: this can be optimized for huge pages: if a series of pages is | |
280 | * physically contiguous and part of the same compound page, then a | |
281 | * single operation to the head page should suffice. | |
282 | */ | |
283 | ||
284 | if (!make_dirty) { | |
f1f6a7dd | 285 | unpin_user_pages(pages, npages); |
2d15eb31 AM |
286 | return; |
287 | } | |
288 | ||
289 | for (index = 0; index < npages; index++) { | |
290 | struct page *page = compound_head(pages[index]); | |
291 | /* | |
292 | * Checking PageDirty at this point may race with | |
293 | * clear_page_dirty_for_io(), but that's OK. Two key | |
294 | * cases: | |
295 | * | |
296 | * 1) This code sees the page as already dirty, so it | |
297 | * skips the call to set_page_dirty(). That could happen | |
298 | * because clear_page_dirty_for_io() called | |
299 | * page_mkclean(), followed by set_page_dirty(). | |
300 | * However, now the page is going to get written back, | |
301 | * which meets the original intention of setting it | |
302 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
303 | * on to call TestClearPageDirty(), and write the page | |
304 | * back. | |
305 | * | |
306 | * 2) This code sees the page as clean, so it calls | |
307 | * set_page_dirty(). The page stays dirty, despite being | |
308 | * written back, so it gets written back again in the | |
309 | * next writeback cycle. This is harmless. | |
310 | */ | |
311 | if (!PageDirty(page)) | |
312 | set_page_dirty_lock(page); | |
f1f6a7dd | 313 | unpin_user_page(page); |
2d15eb31 | 314 | } |
fc1d8e7c | 315 | } |
f1f6a7dd | 316 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
fc1d8e7c JH |
317 | |
318 | /** | |
f1f6a7dd | 319 | * unpin_user_pages() - release an array of gup-pinned pages. |
fc1d8e7c JH |
320 | * @pages: array of pages to be marked dirty and released. |
321 | * @npages: number of pages in the @pages array. | |
322 | * | |
f1f6a7dd | 323 | * For each page in the @pages array, release the page using unpin_user_page(). |
fc1d8e7c | 324 | * |
f1f6a7dd | 325 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 326 | */ |
f1f6a7dd | 327 | void unpin_user_pages(struct page **pages, unsigned long npages) |
fc1d8e7c JH |
328 | { |
329 | unsigned long index; | |
330 | ||
146608bb JH |
331 | /* |
332 | * If this WARN_ON() fires, then the system *might* be leaking pages (by | |
333 | * leaving them pinned), but probably not. More likely, gup/pup returned | |
334 | * a hard -ERRNO error to the caller, who erroneously passed it here. | |
335 | */ | |
336 | if (WARN_ON(IS_ERR_VALUE(npages))) | |
337 | return; | |
fc1d8e7c JH |
338 | /* |
339 | * TODO: this can be optimized for huge pages: if a series of pages is | |
340 | * physically contiguous and part of the same compound page, then a | |
341 | * single operation to the head page should suffice. | |
342 | */ | |
343 | for (index = 0; index < npages; index++) | |
f1f6a7dd | 344 | unpin_user_page(pages[index]); |
fc1d8e7c | 345 | } |
f1f6a7dd | 346 | EXPORT_SYMBOL(unpin_user_pages); |
fc1d8e7c | 347 | |
050a9adc | 348 | #ifdef CONFIG_MMU |
69e68b4f KS |
349 | static struct page *no_page_table(struct vm_area_struct *vma, |
350 | unsigned int flags) | |
4bbd4c77 | 351 | { |
69e68b4f KS |
352 | /* |
353 | * When core dumping an enormous anonymous area that nobody | |
354 | * has touched so far, we don't want to allocate unnecessary pages or | |
355 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
356 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
357 | * But we can only make this optimization where a hole would surely | |
358 | * be zero-filled if handle_mm_fault() actually did handle it. | |
359 | */ | |
a0137f16 AK |
360 | if ((flags & FOLL_DUMP) && |
361 | (vma_is_anonymous(vma) || !vma->vm_ops->fault)) | |
69e68b4f KS |
362 | return ERR_PTR(-EFAULT); |
363 | return NULL; | |
364 | } | |
4bbd4c77 | 365 | |
1027e443 KS |
366 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
367 | pte_t *pte, unsigned int flags) | |
368 | { | |
369 | /* No page to get reference */ | |
370 | if (flags & FOLL_GET) | |
371 | return -EFAULT; | |
372 | ||
373 | if (flags & FOLL_TOUCH) { | |
374 | pte_t entry = *pte; | |
375 | ||
376 | if (flags & FOLL_WRITE) | |
377 | entry = pte_mkdirty(entry); | |
378 | entry = pte_mkyoung(entry); | |
379 | ||
380 | if (!pte_same(*pte, entry)) { | |
381 | set_pte_at(vma->vm_mm, address, pte, entry); | |
382 | update_mmu_cache(vma, address, pte); | |
383 | } | |
384 | } | |
385 | ||
386 | /* Proper page table entry exists, but no corresponding struct page */ | |
387 | return -EEXIST; | |
388 | } | |
389 | ||
19be0eaf | 390 | /* |
a308c71b PX |
391 | * FOLL_FORCE can write to even unwritable pte's, but only |
392 | * after we've gone through a COW cycle and they are dirty. | |
19be0eaf LT |
393 | */ |
394 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | |
395 | { | |
a308c71b PX |
396 | return pte_write(pte) || |
397 | ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); | |
19be0eaf LT |
398 | } |
399 | ||
69e68b4f | 400 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
401 | unsigned long address, pmd_t *pmd, unsigned int flags, |
402 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
403 | { |
404 | struct mm_struct *mm = vma->vm_mm; | |
405 | struct page *page; | |
406 | spinlock_t *ptl; | |
407 | pte_t *ptep, pte; | |
f28d4363 | 408 | int ret; |
4bbd4c77 | 409 | |
eddb1c22 JH |
410 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
411 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | |
412 | (FOLL_PIN | FOLL_GET))) | |
413 | return ERR_PTR(-EINVAL); | |
69e68b4f | 414 | retry: |
4bbd4c77 | 415 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 416 | return no_page_table(vma, flags); |
4bbd4c77 KS |
417 | |
418 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
419 | pte = *ptep; |
420 | if (!pte_present(pte)) { | |
421 | swp_entry_t entry; | |
422 | /* | |
423 | * KSM's break_ksm() relies upon recognizing a ksm page | |
424 | * even while it is being migrated, so for that case we | |
425 | * need migration_entry_wait(). | |
426 | */ | |
427 | if (likely(!(flags & FOLL_MIGRATION))) | |
428 | goto no_page; | |
0661a336 | 429 | if (pte_none(pte)) |
4bbd4c77 KS |
430 | goto no_page; |
431 | entry = pte_to_swp_entry(pte); | |
432 | if (!is_migration_entry(entry)) | |
433 | goto no_page; | |
434 | pte_unmap_unlock(ptep, ptl); | |
435 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 436 | goto retry; |
4bbd4c77 | 437 | } |
8a0516ed | 438 | if ((flags & FOLL_NUMA) && pte_protnone(pte)) |
4bbd4c77 | 439 | goto no_page; |
19be0eaf | 440 | if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { |
69e68b4f KS |
441 | pte_unmap_unlock(ptep, ptl); |
442 | return NULL; | |
443 | } | |
4bbd4c77 KS |
444 | |
445 | page = vm_normal_page(vma, address, pte); | |
3faa52c0 | 446 | if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { |
3565fce3 | 447 | /* |
3faa52c0 JH |
448 | * Only return device mapping pages in the FOLL_GET or FOLL_PIN |
449 | * case since they are only valid while holding the pgmap | |
450 | * reference. | |
3565fce3 | 451 | */ |
df06b37f KB |
452 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
453 | if (*pgmap) | |
3565fce3 DW |
454 | page = pte_page(pte); |
455 | else | |
456 | goto no_page; | |
457 | } else if (unlikely(!page)) { | |
1027e443 KS |
458 | if (flags & FOLL_DUMP) { |
459 | /* Avoid special (like zero) pages in core dumps */ | |
460 | page = ERR_PTR(-EFAULT); | |
461 | goto out; | |
462 | } | |
463 | ||
464 | if (is_zero_pfn(pte_pfn(pte))) { | |
465 | page = pte_page(pte); | |
466 | } else { | |
1027e443 KS |
467 | ret = follow_pfn_pte(vma, address, ptep, flags); |
468 | page = ERR_PTR(ret); | |
469 | goto out; | |
470 | } | |
4bbd4c77 KS |
471 | } |
472 | ||
6742d293 | 473 | if (flags & FOLL_SPLIT && PageTransCompound(page)) { |
6742d293 KS |
474 | get_page(page); |
475 | pte_unmap_unlock(ptep, ptl); | |
476 | lock_page(page); | |
477 | ret = split_huge_page(page); | |
478 | unlock_page(page); | |
479 | put_page(page); | |
480 | if (ret) | |
481 | return ERR_PTR(ret); | |
482 | goto retry; | |
483 | } | |
484 | ||
3faa52c0 JH |
485 | /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
486 | if (unlikely(!try_grab_page(page, flags))) { | |
487 | page = ERR_PTR(-ENOMEM); | |
488 | goto out; | |
8fde12ca | 489 | } |
f28d4363 CI |
490 | /* |
491 | * We need to make the page accessible if and only if we are going | |
492 | * to access its content (the FOLL_PIN case). Please see | |
493 | * Documentation/core-api/pin_user_pages.rst for details. | |
494 | */ | |
495 | if (flags & FOLL_PIN) { | |
496 | ret = arch_make_page_accessible(page); | |
497 | if (ret) { | |
498 | unpin_user_page(page); | |
499 | page = ERR_PTR(ret); | |
500 | goto out; | |
501 | } | |
502 | } | |
4bbd4c77 KS |
503 | if (flags & FOLL_TOUCH) { |
504 | if ((flags & FOLL_WRITE) && | |
505 | !pte_dirty(pte) && !PageDirty(page)) | |
506 | set_page_dirty(page); | |
507 | /* | |
508 | * pte_mkyoung() would be more correct here, but atomic care | |
509 | * is needed to avoid losing the dirty bit: it is easier to use | |
510 | * mark_page_accessed(). | |
511 | */ | |
512 | mark_page_accessed(page); | |
513 | } | |
de60f5f1 | 514 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
e90309c9 KS |
515 | /* Do not mlock pte-mapped THP */ |
516 | if (PageTransCompound(page)) | |
517 | goto out; | |
518 | ||
4bbd4c77 KS |
519 | /* |
520 | * The preliminary mapping check is mainly to avoid the | |
521 | * pointless overhead of lock_page on the ZERO_PAGE | |
522 | * which might bounce very badly if there is contention. | |
523 | * | |
524 | * If the page is already locked, we don't need to | |
525 | * handle it now - vmscan will handle it later if and | |
526 | * when it attempts to reclaim the page. | |
527 | */ | |
528 | if (page->mapping && trylock_page(page)) { | |
529 | lru_add_drain(); /* push cached pages to LRU */ | |
530 | /* | |
531 | * Because we lock page here, and migration is | |
532 | * blocked by the pte's page reference, and we | |
533 | * know the page is still mapped, we don't even | |
534 | * need to check for file-cache page truncation. | |
535 | */ | |
536 | mlock_vma_page(page); | |
537 | unlock_page(page); | |
538 | } | |
539 | } | |
1027e443 | 540 | out: |
4bbd4c77 | 541 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 542 | return page; |
4bbd4c77 KS |
543 | no_page: |
544 | pte_unmap_unlock(ptep, ptl); | |
545 | if (!pte_none(pte)) | |
69e68b4f KS |
546 | return NULL; |
547 | return no_page_table(vma, flags); | |
548 | } | |
549 | ||
080dbb61 AK |
550 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
551 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
552 | unsigned int flags, |
553 | struct follow_page_context *ctx) | |
69e68b4f | 554 | { |
68827280 | 555 | pmd_t *pmd, pmdval; |
69e68b4f KS |
556 | spinlock_t *ptl; |
557 | struct page *page; | |
558 | struct mm_struct *mm = vma->vm_mm; | |
559 | ||
080dbb61 | 560 | pmd = pmd_offset(pudp, address); |
68827280 YH |
561 | /* |
562 | * The READ_ONCE() will stabilize the pmdval in a register or | |
563 | * on the stack so that it will stop changing under the code. | |
564 | */ | |
565 | pmdval = READ_ONCE(*pmd); | |
566 | if (pmd_none(pmdval)) | |
69e68b4f | 567 | return no_page_table(vma, flags); |
be9d3045 | 568 | if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { |
e66f17ff NH |
569 | page = follow_huge_pmd(mm, address, pmd, flags); |
570 | if (page) | |
571 | return page; | |
572 | return no_page_table(vma, flags); | |
69e68b4f | 573 | } |
68827280 | 574 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 575 | page = follow_huge_pd(vma, address, |
68827280 | 576 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
577 | PMD_SHIFT); |
578 | if (page) | |
579 | return page; | |
580 | return no_page_table(vma, flags); | |
581 | } | |
84c3fc4e | 582 | retry: |
68827280 | 583 | if (!pmd_present(pmdval)) { |
84c3fc4e ZY |
584 | if (likely(!(flags & FOLL_MIGRATION))) |
585 | return no_page_table(vma, flags); | |
586 | VM_BUG_ON(thp_migration_supported() && | |
68827280 YH |
587 | !is_pmd_migration_entry(pmdval)); |
588 | if (is_pmd_migration_entry(pmdval)) | |
84c3fc4e | 589 | pmd_migration_entry_wait(mm, pmd); |
68827280 YH |
590 | pmdval = READ_ONCE(*pmd); |
591 | /* | |
592 | * MADV_DONTNEED may convert the pmd to null because | |
c1e8d7c6 | 593 | * mmap_lock is held in read mode |
68827280 YH |
594 | */ |
595 | if (pmd_none(pmdval)) | |
596 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
597 | goto retry; |
598 | } | |
68827280 | 599 | if (pmd_devmap(pmdval)) { |
3565fce3 | 600 | ptl = pmd_lock(mm, pmd); |
df06b37f | 601 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
602 | spin_unlock(ptl); |
603 | if (page) | |
604 | return page; | |
605 | } | |
68827280 | 606 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 607 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 608 | |
68827280 | 609 | if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) |
db08f203 AK |
610 | return no_page_table(vma, flags); |
611 | ||
84c3fc4e | 612 | retry_locked: |
6742d293 | 613 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
614 | if (unlikely(pmd_none(*pmd))) { |
615 | spin_unlock(ptl); | |
616 | return no_page_table(vma, flags); | |
617 | } | |
84c3fc4e ZY |
618 | if (unlikely(!pmd_present(*pmd))) { |
619 | spin_unlock(ptl); | |
620 | if (likely(!(flags & FOLL_MIGRATION))) | |
621 | return no_page_table(vma, flags); | |
622 | pmd_migration_entry_wait(mm, pmd); | |
623 | goto retry_locked; | |
624 | } | |
6742d293 KS |
625 | if (unlikely(!pmd_trans_huge(*pmd))) { |
626 | spin_unlock(ptl); | |
df06b37f | 627 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 628 | } |
bfe7b00d | 629 | if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { |
6742d293 KS |
630 | int ret; |
631 | page = pmd_page(*pmd); | |
632 | if (is_huge_zero_page(page)) { | |
633 | spin_unlock(ptl); | |
634 | ret = 0; | |
78ddc534 | 635 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
636 | if (pmd_trans_unstable(pmd)) |
637 | ret = -EBUSY; | |
bfe7b00d | 638 | } else if (flags & FOLL_SPLIT) { |
8fde12ca LT |
639 | if (unlikely(!try_get_page(page))) { |
640 | spin_unlock(ptl); | |
641 | return ERR_PTR(-ENOMEM); | |
642 | } | |
69e68b4f | 643 | spin_unlock(ptl); |
6742d293 KS |
644 | lock_page(page); |
645 | ret = split_huge_page(page); | |
646 | unlock_page(page); | |
647 | put_page(page); | |
baa355fd KS |
648 | if (pmd_none(*pmd)) |
649 | return no_page_table(vma, flags); | |
bfe7b00d SL |
650 | } else { /* flags & FOLL_SPLIT_PMD */ |
651 | spin_unlock(ptl); | |
652 | split_huge_pmd(vma, pmd, address); | |
653 | ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | |
6742d293 KS |
654 | } |
655 | ||
656 | return ret ? ERR_PTR(ret) : | |
df06b37f | 657 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 658 | } |
6742d293 KS |
659 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
660 | spin_unlock(ptl); | |
df06b37f | 661 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 662 | return page; |
4bbd4c77 KS |
663 | } |
664 | ||
080dbb61 AK |
665 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
666 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
667 | unsigned int flags, |
668 | struct follow_page_context *ctx) | |
080dbb61 AK |
669 | { |
670 | pud_t *pud; | |
671 | spinlock_t *ptl; | |
672 | struct page *page; | |
673 | struct mm_struct *mm = vma->vm_mm; | |
674 | ||
675 | pud = pud_offset(p4dp, address); | |
676 | if (pud_none(*pud)) | |
677 | return no_page_table(vma, flags); | |
be9d3045 | 678 | if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { |
080dbb61 AK |
679 | page = follow_huge_pud(mm, address, pud, flags); |
680 | if (page) | |
681 | return page; | |
682 | return no_page_table(vma, flags); | |
683 | } | |
4dc71451 AK |
684 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
685 | page = follow_huge_pd(vma, address, | |
686 | __hugepd(pud_val(*pud)), flags, | |
687 | PUD_SHIFT); | |
688 | if (page) | |
689 | return page; | |
690 | return no_page_table(vma, flags); | |
691 | } | |
080dbb61 AK |
692 | if (pud_devmap(*pud)) { |
693 | ptl = pud_lock(mm, pud); | |
df06b37f | 694 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
695 | spin_unlock(ptl); |
696 | if (page) | |
697 | return page; | |
698 | } | |
699 | if (unlikely(pud_bad(*pud))) | |
700 | return no_page_table(vma, flags); | |
701 | ||
df06b37f | 702 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
703 | } |
704 | ||
080dbb61 AK |
705 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
706 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
707 | unsigned int flags, |
708 | struct follow_page_context *ctx) | |
080dbb61 AK |
709 | { |
710 | p4d_t *p4d; | |
4dc71451 | 711 | struct page *page; |
080dbb61 AK |
712 | |
713 | p4d = p4d_offset(pgdp, address); | |
714 | if (p4d_none(*p4d)) | |
715 | return no_page_table(vma, flags); | |
716 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
717 | if (unlikely(p4d_bad(*p4d))) | |
718 | return no_page_table(vma, flags); | |
719 | ||
4dc71451 AK |
720 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
721 | page = follow_huge_pd(vma, address, | |
722 | __hugepd(p4d_val(*p4d)), flags, | |
723 | P4D_SHIFT); | |
724 | if (page) | |
725 | return page; | |
726 | return no_page_table(vma, flags); | |
727 | } | |
df06b37f | 728 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
729 | } |
730 | ||
731 | /** | |
732 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
733 | * @vma: vm_area_struct mapping @address | |
734 | * @address: virtual address to look up | |
735 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
736 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
737 | * pointer to output page_mask | |
080dbb61 AK |
738 | * |
739 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
740 | * | |
78179556 MR |
741 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
742 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
743 | * | |
744 | * On output, the @ctx->page_mask is set according to the size of the page. | |
745 | * | |
746 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
747 | * an error pointer if there is a mapping to something not represented |
748 | * by a page descriptor (see also vm_normal_page()). | |
749 | */ | |
a7030aea | 750 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 751 | unsigned long address, unsigned int flags, |
df06b37f | 752 | struct follow_page_context *ctx) |
080dbb61 AK |
753 | { |
754 | pgd_t *pgd; | |
755 | struct page *page; | |
756 | struct mm_struct *mm = vma->vm_mm; | |
757 | ||
df06b37f | 758 | ctx->page_mask = 0; |
080dbb61 AK |
759 | |
760 | /* make this handle hugepd */ | |
761 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
762 | if (!IS_ERR(page)) { | |
3faa52c0 | 763 | WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); |
080dbb61 AK |
764 | return page; |
765 | } | |
766 | ||
767 | pgd = pgd_offset(mm, address); | |
768 | ||
769 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
770 | return no_page_table(vma, flags); | |
771 | ||
faaa5b62 AK |
772 | if (pgd_huge(*pgd)) { |
773 | page = follow_huge_pgd(mm, address, pgd, flags); | |
774 | if (page) | |
775 | return page; | |
776 | return no_page_table(vma, flags); | |
777 | } | |
4dc71451 AK |
778 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
779 | page = follow_huge_pd(vma, address, | |
780 | __hugepd(pgd_val(*pgd)), flags, | |
781 | PGDIR_SHIFT); | |
782 | if (page) | |
783 | return page; | |
784 | return no_page_table(vma, flags); | |
785 | } | |
faaa5b62 | 786 | |
df06b37f KB |
787 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
788 | } | |
789 | ||
790 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
791 | unsigned int foll_flags) | |
792 | { | |
793 | struct follow_page_context ctx = { NULL }; | |
794 | struct page *page; | |
795 | ||
796 | page = follow_page_mask(vma, address, foll_flags, &ctx); | |
797 | if (ctx.pgmap) | |
798 | put_dev_pagemap(ctx.pgmap); | |
799 | return page; | |
080dbb61 AK |
800 | } |
801 | ||
f2b495ca KS |
802 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
803 | unsigned int gup_flags, struct vm_area_struct **vma, | |
804 | struct page **page) | |
805 | { | |
806 | pgd_t *pgd; | |
c2febafc | 807 | p4d_t *p4d; |
f2b495ca KS |
808 | pud_t *pud; |
809 | pmd_t *pmd; | |
810 | pte_t *pte; | |
811 | int ret = -EFAULT; | |
812 | ||
813 | /* user gate pages are read-only */ | |
814 | if (gup_flags & FOLL_WRITE) | |
815 | return -EFAULT; | |
816 | if (address > TASK_SIZE) | |
817 | pgd = pgd_offset_k(address); | |
818 | else | |
819 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
820 | if (pgd_none(*pgd)) |
821 | return -EFAULT; | |
c2febafc | 822 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
823 | if (p4d_none(*p4d)) |
824 | return -EFAULT; | |
c2febafc | 825 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
826 | if (pud_none(*pud)) |
827 | return -EFAULT; | |
f2b495ca | 828 | pmd = pmd_offset(pud, address); |
84c3fc4e | 829 | if (!pmd_present(*pmd)) |
f2b495ca KS |
830 | return -EFAULT; |
831 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
832 | pte = pte_offset_map(pmd, address); | |
833 | if (pte_none(*pte)) | |
834 | goto unmap; | |
835 | *vma = get_gate_vma(mm); | |
836 | if (!page) | |
837 | goto out; | |
838 | *page = vm_normal_page(*vma, address, *pte); | |
839 | if (!*page) { | |
840 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
841 | goto unmap; | |
842 | *page = pte_page(*pte); | |
843 | } | |
9fa2dd94 | 844 | if (unlikely(!try_grab_page(*page, gup_flags))) { |
8fde12ca LT |
845 | ret = -ENOMEM; |
846 | goto unmap; | |
847 | } | |
f2b495ca KS |
848 | out: |
849 | ret = 0; | |
850 | unmap: | |
851 | pte_unmap(pte); | |
852 | return ret; | |
853 | } | |
854 | ||
9a95f3cf | 855 | /* |
c1e8d7c6 ML |
856 | * mmap_lock must be held on entry. If @locked != NULL and *@flags |
857 | * does not include FOLL_NOWAIT, the mmap_lock may be released. If it | |
4f6da934 | 858 | * is, *@locked will be set to 0 and -EBUSY returned. |
9a95f3cf | 859 | */ |
64019a2e | 860 | static int faultin_page(struct vm_area_struct *vma, |
4f6da934 | 861 | unsigned long address, unsigned int *flags, int *locked) |
16744483 | 862 | { |
16744483 | 863 | unsigned int fault_flags = 0; |
2b740303 | 864 | vm_fault_t ret; |
16744483 | 865 | |
de60f5f1 EM |
866 | /* mlock all present pages, but do not fault in new pages */ |
867 | if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | |
868 | return -ENOENT; | |
16744483 KS |
869 | if (*flags & FOLL_WRITE) |
870 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
871 | if (*flags & FOLL_REMOTE) |
872 | fault_flags |= FAULT_FLAG_REMOTE; | |
4f6da934 | 873 | if (locked) |
71335f37 | 874 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
16744483 KS |
875 | if (*flags & FOLL_NOWAIT) |
876 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b | 877 | if (*flags & FOLL_TRIED) { |
4426e945 PX |
878 | /* |
879 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | |
880 | * can co-exist | |
881 | */ | |
234b239b ALC |
882 | fault_flags |= FAULT_FLAG_TRIED; |
883 | } | |
16744483 | 884 | |
bce617ed | 885 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
16744483 | 886 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
887 | int err = vm_fault_to_errno(ret, *flags); |
888 | ||
889 | if (err) | |
890 | return err; | |
16744483 KS |
891 | BUG(); |
892 | } | |
893 | ||
16744483 | 894 | if (ret & VM_FAULT_RETRY) { |
4f6da934 PX |
895 | if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
896 | *locked = 0; | |
16744483 KS |
897 | return -EBUSY; |
898 | } | |
899 | ||
900 | /* | |
901 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | |
902 | * necessary, even if maybe_mkwrite decided not to set pte_write. We | |
903 | * can thus safely do subsequent page lookups as if they were reads. | |
904 | * But only do so when looping for pte_write is futile: in some cases | |
905 | * userspace may also be wanting to write to the gotten user page, | |
906 | * which a read fault here might prevent (a readonly page might get | |
907 | * reCOWed by userspace write). | |
908 | */ | |
909 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | |
2923117b | 910 | *flags |= FOLL_COW; |
16744483 KS |
911 | return 0; |
912 | } | |
913 | ||
fa5bb209 KS |
914 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
915 | { | |
916 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
917 | int write = (gup_flags & FOLL_WRITE); |
918 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
919 | |
920 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
921 | return -EFAULT; | |
922 | ||
7f7ccc2c WT |
923 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
924 | return -EFAULT; | |
925 | ||
1b2ee126 | 926 | if (write) { |
fa5bb209 KS |
927 | if (!(vm_flags & VM_WRITE)) { |
928 | if (!(gup_flags & FOLL_FORCE)) | |
929 | return -EFAULT; | |
930 | /* | |
931 | * We used to let the write,force case do COW in a | |
932 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
933 | * set a breakpoint in a read-only mapping of an | |
934 | * executable, without corrupting the file (yet only | |
935 | * when that file had been opened for writing!). | |
936 | * Anon pages in shared mappings are surprising: now | |
937 | * just reject it. | |
938 | */ | |
46435364 | 939 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 940 | return -EFAULT; |
fa5bb209 KS |
941 | } |
942 | } else if (!(vm_flags & VM_READ)) { | |
943 | if (!(gup_flags & FOLL_FORCE)) | |
944 | return -EFAULT; | |
945 | /* | |
946 | * Is there actually any vma we can reach here which does not | |
947 | * have VM_MAYREAD set? | |
948 | */ | |
949 | if (!(vm_flags & VM_MAYREAD)) | |
950 | return -EFAULT; | |
951 | } | |
d61172b4 DH |
952 | /* |
953 | * gups are always data accesses, not instruction | |
954 | * fetches, so execute=false here | |
955 | */ | |
956 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 957 | return -EFAULT; |
fa5bb209 KS |
958 | return 0; |
959 | } | |
960 | ||
4bbd4c77 KS |
961 | /** |
962 | * __get_user_pages() - pin user pages in memory | |
4bbd4c77 KS |
963 | * @mm: mm_struct of target mm |
964 | * @start: starting user address | |
965 | * @nr_pages: number of pages from start to pin | |
966 | * @gup_flags: flags modifying pin behaviour | |
967 | * @pages: array that receives pointers to the pages pinned. | |
968 | * Should be at least nr_pages long. Or NULL, if caller | |
969 | * only intends to ensure the pages are faulted in. | |
970 | * @vmas: array of pointers to vmas corresponding to each page. | |
971 | * Or NULL if the caller does not require them. | |
c1e8d7c6 | 972 | * @locked: whether we're still with the mmap_lock held |
4bbd4c77 | 973 | * |
d2dfbe47 LX |
974 | * Returns either number of pages pinned (which may be less than the |
975 | * number requested), or an error. Details about the return value: | |
976 | * | |
977 | * -- If nr_pages is 0, returns 0. | |
978 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
979 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
980 | * pages pinned. Again, this may be less than nr_pages. | |
2d3a36a4 | 981 | * -- 0 return value is possible when the fault would need to be retried. |
d2dfbe47 LX |
982 | * |
983 | * The caller is responsible for releasing returned @pages, via put_page(). | |
984 | * | |
c1e8d7c6 | 985 | * @vmas are valid only as long as mmap_lock is held. |
4bbd4c77 | 986 | * |
c1e8d7c6 | 987 | * Must be called with mmap_lock held. It may be released. See below. |
4bbd4c77 KS |
988 | * |
989 | * __get_user_pages walks a process's page tables and takes a reference to | |
990 | * each struct page that each user address corresponds to at a given | |
991 | * instant. That is, it takes the page that would be accessed if a user | |
992 | * thread accesses the given user virtual address at that instant. | |
993 | * | |
994 | * This does not guarantee that the page exists in the user mappings when | |
995 | * __get_user_pages returns, and there may even be a completely different | |
996 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
997 | * and subsequently re faulted). However it does guarantee that the page | |
998 | * won't be freed completely. And mostly callers simply care that the page | |
999 | * contains data that was valid *at some point in time*. Typically, an IO | |
1000 | * or similar operation cannot guarantee anything stronger anyway because | |
1001 | * locks can't be held over the syscall boundary. | |
1002 | * | |
1003 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
1004 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
1005 | * appropriate) must be called after the page is finished with, and | |
1006 | * before put_page is called. | |
1007 | * | |
c1e8d7c6 | 1008 | * If @locked != NULL, *@locked will be set to 0 when mmap_lock is |
4f6da934 PX |
1009 | * released by an up_read(). That can happen if @gup_flags does not |
1010 | * have FOLL_NOWAIT. | |
9a95f3cf | 1011 | * |
4f6da934 | 1012 | * A caller using such a combination of @locked and @gup_flags |
c1e8d7c6 | 1013 | * must therefore hold the mmap_lock for reading only, and recognize |
9a95f3cf PC |
1014 | * when it's been released. Otherwise, it must be held for either |
1015 | * reading or writing and will not be released. | |
4bbd4c77 KS |
1016 | * |
1017 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
1018 | * instead of __get_user_pages. __get_user_pages should be used only if | |
1019 | * you need some special @gup_flags. | |
1020 | */ | |
64019a2e | 1021 | static long __get_user_pages(struct mm_struct *mm, |
4bbd4c77 KS |
1022 | unsigned long start, unsigned long nr_pages, |
1023 | unsigned int gup_flags, struct page **pages, | |
4f6da934 | 1024 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1025 | { |
df06b37f | 1026 | long ret = 0, i = 0; |
fa5bb209 | 1027 | struct vm_area_struct *vma = NULL; |
df06b37f | 1028 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
1029 | |
1030 | if (!nr_pages) | |
1031 | return 0; | |
1032 | ||
f9652594 AK |
1033 | start = untagged_addr(start); |
1034 | ||
eddb1c22 | 1035 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
4bbd4c77 KS |
1036 | |
1037 | /* | |
1038 | * If FOLL_FORCE is set then do not force a full fault as the hinting | |
1039 | * fault information is unrelated to the reference behaviour of a task | |
1040 | * using the address space | |
1041 | */ | |
1042 | if (!(gup_flags & FOLL_FORCE)) | |
1043 | gup_flags |= FOLL_NUMA; | |
1044 | ||
4bbd4c77 | 1045 | do { |
fa5bb209 KS |
1046 | struct page *page; |
1047 | unsigned int foll_flags = gup_flags; | |
1048 | unsigned int page_increm; | |
1049 | ||
1050 | /* first iteration or cross vma bound */ | |
1051 | if (!vma || start >= vma->vm_end) { | |
1052 | vma = find_extend_vma(mm, start); | |
1053 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
1054 | ret = get_gate_page(mm, start & PAGE_MASK, |
1055 | gup_flags, &vma, | |
1056 | pages ? &pages[i] : NULL); | |
1057 | if (ret) | |
08be37b7 | 1058 | goto out; |
df06b37f | 1059 | ctx.page_mask = 0; |
fa5bb209 KS |
1060 | goto next_page; |
1061 | } | |
4bbd4c77 | 1062 | |
df06b37f KB |
1063 | if (!vma || check_vma_flags(vma, gup_flags)) { |
1064 | ret = -EFAULT; | |
1065 | goto out; | |
1066 | } | |
fa5bb209 KS |
1067 | if (is_vm_hugetlb_page(vma)) { |
1068 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
1069 | &start, &nr_pages, i, | |
a308c71b | 1070 | gup_flags, locked); |
ad415db8 PX |
1071 | if (locked && *locked == 0) { |
1072 | /* | |
1073 | * We've got a VM_FAULT_RETRY | |
c1e8d7c6 | 1074 | * and we've lost mmap_lock. |
ad415db8 PX |
1075 | * We must stop here. |
1076 | */ | |
1077 | BUG_ON(gup_flags & FOLL_NOWAIT); | |
1078 | BUG_ON(ret != 0); | |
1079 | goto out; | |
1080 | } | |
fa5bb209 | 1081 | continue; |
4bbd4c77 | 1082 | } |
fa5bb209 KS |
1083 | } |
1084 | retry: | |
1085 | /* | |
1086 | * If we have a pending SIGKILL, don't keep faulting pages and | |
1087 | * potentially allocating memory. | |
1088 | */ | |
fa45f116 | 1089 | if (fatal_signal_pending(current)) { |
d180870d | 1090 | ret = -EINTR; |
df06b37f KB |
1091 | goto out; |
1092 | } | |
fa5bb209 | 1093 | cond_resched(); |
df06b37f KB |
1094 | |
1095 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
fa5bb209 | 1096 | if (!page) { |
64019a2e | 1097 | ret = faultin_page(vma, start, &foll_flags, locked); |
fa5bb209 KS |
1098 | switch (ret) { |
1099 | case 0: | |
1100 | goto retry; | |
df06b37f KB |
1101 | case -EBUSY: |
1102 | ret = 0; | |
e4a9bc58 | 1103 | fallthrough; |
fa5bb209 KS |
1104 | case -EFAULT: |
1105 | case -ENOMEM: | |
1106 | case -EHWPOISON: | |
df06b37f | 1107 | goto out; |
fa5bb209 KS |
1108 | case -ENOENT: |
1109 | goto next_page; | |
4bbd4c77 | 1110 | } |
fa5bb209 | 1111 | BUG(); |
1027e443 KS |
1112 | } else if (PTR_ERR(page) == -EEXIST) { |
1113 | /* | |
1114 | * Proper page table entry exists, but no corresponding | |
1115 | * struct page. | |
1116 | */ | |
1117 | goto next_page; | |
1118 | } else if (IS_ERR(page)) { | |
df06b37f KB |
1119 | ret = PTR_ERR(page); |
1120 | goto out; | |
1027e443 | 1121 | } |
fa5bb209 KS |
1122 | if (pages) { |
1123 | pages[i] = page; | |
1124 | flush_anon_page(vma, page, start); | |
1125 | flush_dcache_page(page); | |
df06b37f | 1126 | ctx.page_mask = 0; |
4bbd4c77 | 1127 | } |
4bbd4c77 | 1128 | next_page: |
fa5bb209 KS |
1129 | if (vmas) { |
1130 | vmas[i] = vma; | |
df06b37f | 1131 | ctx.page_mask = 0; |
fa5bb209 | 1132 | } |
df06b37f | 1133 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
1134 | if (page_increm > nr_pages) |
1135 | page_increm = nr_pages; | |
1136 | i += page_increm; | |
1137 | start += page_increm * PAGE_SIZE; | |
1138 | nr_pages -= page_increm; | |
4bbd4c77 | 1139 | } while (nr_pages); |
df06b37f KB |
1140 | out: |
1141 | if (ctx.pgmap) | |
1142 | put_dev_pagemap(ctx.pgmap); | |
1143 | return i ? i : ret; | |
4bbd4c77 | 1144 | } |
4bbd4c77 | 1145 | |
771ab430 TK |
1146 | static bool vma_permits_fault(struct vm_area_struct *vma, |
1147 | unsigned int fault_flags) | |
d4925e00 | 1148 | { |
1b2ee126 DH |
1149 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
1150 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 1151 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
1152 | |
1153 | if (!(vm_flags & vma->vm_flags)) | |
1154 | return false; | |
1155 | ||
33a709b2 DH |
1156 | /* |
1157 | * The architecture might have a hardware protection | |
1b2ee126 | 1158 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
1159 | * |
1160 | * gup always represents data access, not instruction | |
1161 | * fetches, so execute=false here: | |
33a709b2 | 1162 | */ |
d61172b4 | 1163 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
1164 | return false; |
1165 | ||
d4925e00 DH |
1166 | return true; |
1167 | } | |
1168 | ||
adc8cb40 | 1169 | /** |
4bbd4c77 | 1170 | * fixup_user_fault() - manually resolve a user page fault |
4bbd4c77 KS |
1171 | * @mm: mm_struct of target mm |
1172 | * @address: user address | |
1173 | * @fault_flags:flags to pass down to handle_mm_fault() | |
c1e8d7c6 | 1174 | * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller |
548b6a1e MC |
1175 | * does not allow retry. If NULL, the caller must guarantee |
1176 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | |
4bbd4c77 KS |
1177 | * |
1178 | * This is meant to be called in the specific scenario where for locking reasons | |
1179 | * we try to access user memory in atomic context (within a pagefault_disable() | |
1180 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
1181 | * trying again. | |
1182 | * | |
1183 | * Typically this is meant to be used by the futex code. | |
1184 | * | |
1185 | * The main difference with get_user_pages() is that this function will | |
1186 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
1187 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 1188 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
1189 | * |
1190 | * This is important for some architectures where those bits also gate the | |
1191 | * access permission to the page because they are maintained in software. On | |
1192 | * such architectures, gup() will not be enough to make a subsequent access | |
1193 | * succeed. | |
1194 | * | |
c1e8d7c6 ML |
1195 | * This function will not return with an unlocked mmap_lock. So it has not the |
1196 | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). | |
4bbd4c77 | 1197 | */ |
64019a2e | 1198 | int fixup_user_fault(struct mm_struct *mm, |
4a9e1cda DD |
1199 | unsigned long address, unsigned int fault_flags, |
1200 | bool *unlocked) | |
4bbd4c77 KS |
1201 | { |
1202 | struct vm_area_struct *vma; | |
2b740303 | 1203 | vm_fault_t ret, major = 0; |
4a9e1cda | 1204 | |
f9652594 AK |
1205 | address = untagged_addr(address); |
1206 | ||
4a9e1cda | 1207 | if (unlocked) |
71335f37 | 1208 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
4bbd4c77 | 1209 | |
4a9e1cda | 1210 | retry: |
4bbd4c77 KS |
1211 | vma = find_extend_vma(mm, address); |
1212 | if (!vma || address < vma->vm_start) | |
1213 | return -EFAULT; | |
1214 | ||
d4925e00 | 1215 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
1216 | return -EFAULT; |
1217 | ||
475f4dfc PX |
1218 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
1219 | fatal_signal_pending(current)) | |
1220 | return -EINTR; | |
1221 | ||
bce617ed | 1222 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
4a9e1cda | 1223 | major |= ret & VM_FAULT_MAJOR; |
4bbd4c77 | 1224 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1225 | int err = vm_fault_to_errno(ret, 0); |
1226 | ||
1227 | if (err) | |
1228 | return err; | |
4bbd4c77 KS |
1229 | BUG(); |
1230 | } | |
4a9e1cda DD |
1231 | |
1232 | if (ret & VM_FAULT_RETRY) { | |
d8ed45c5 | 1233 | mmap_read_lock(mm); |
475f4dfc PX |
1234 | *unlocked = true; |
1235 | fault_flags |= FAULT_FLAG_TRIED; | |
1236 | goto retry; | |
4a9e1cda DD |
1237 | } |
1238 | ||
4bbd4c77 KS |
1239 | return 0; |
1240 | } | |
add6a0cd | 1241 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1242 | |
2d3a36a4 MH |
1243 | /* |
1244 | * Please note that this function, unlike __get_user_pages will not | |
1245 | * return 0 for nr_pages > 0 without FOLL_NOWAIT | |
1246 | */ | |
64019a2e | 1247 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, |
f0818f47 AA |
1248 | unsigned long start, |
1249 | unsigned long nr_pages, | |
f0818f47 AA |
1250 | struct page **pages, |
1251 | struct vm_area_struct **vmas, | |
e716712f | 1252 | int *locked, |
0fd71a56 | 1253 | unsigned int flags) |
f0818f47 | 1254 | { |
f0818f47 AA |
1255 | long ret, pages_done; |
1256 | bool lock_dropped; | |
1257 | ||
1258 | if (locked) { | |
1259 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1260 | BUG_ON(vmas); | |
1261 | /* check caller initialized locked */ | |
1262 | BUG_ON(*locked != 1); | |
1263 | } | |
1264 | ||
008cfe44 | 1265 | if (flags & FOLL_PIN) |
a4d63c37 | 1266 | atomic_set(&mm->has_pinned, 1); |
008cfe44 | 1267 | |
eddb1c22 JH |
1268 | /* |
1269 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | |
1270 | * is to set FOLL_GET if the caller wants pages[] filled in (but has | |
1271 | * carelessly failed to specify FOLL_GET), so keep doing that, but only | |
1272 | * for FOLL_GET, not for the newer FOLL_PIN. | |
1273 | * | |
1274 | * FOLL_PIN always expects pages to be non-null, but no need to assert | |
1275 | * that here, as any failures will be obvious enough. | |
1276 | */ | |
1277 | if (pages && !(flags & FOLL_PIN)) | |
f0818f47 | 1278 | flags |= FOLL_GET; |
f0818f47 AA |
1279 | |
1280 | pages_done = 0; | |
1281 | lock_dropped = false; | |
1282 | for (;;) { | |
64019a2e | 1283 | ret = __get_user_pages(mm, start, nr_pages, flags, pages, |
f0818f47 AA |
1284 | vmas, locked); |
1285 | if (!locked) | |
1286 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1287 | return ret; | |
1288 | ||
1289 | /* VM_FAULT_RETRY cannot return errors */ | |
1290 | if (!*locked) { | |
1291 | BUG_ON(ret < 0); | |
1292 | BUG_ON(ret >= nr_pages); | |
1293 | } | |
1294 | ||
f0818f47 AA |
1295 | if (ret > 0) { |
1296 | nr_pages -= ret; | |
1297 | pages_done += ret; | |
1298 | if (!nr_pages) | |
1299 | break; | |
1300 | } | |
1301 | if (*locked) { | |
96312e61 AA |
1302 | /* |
1303 | * VM_FAULT_RETRY didn't trigger or it was a | |
1304 | * FOLL_NOWAIT. | |
1305 | */ | |
f0818f47 AA |
1306 | if (!pages_done) |
1307 | pages_done = ret; | |
1308 | break; | |
1309 | } | |
df17277b MR |
1310 | /* |
1311 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1312 | * For the prefault case (!pages) we only update counts. | |
1313 | */ | |
1314 | if (likely(pages)) | |
1315 | pages += ret; | |
f0818f47 | 1316 | start += ret << PAGE_SHIFT; |
4426e945 | 1317 | lock_dropped = true; |
f0818f47 | 1318 | |
4426e945 | 1319 | retry: |
f0818f47 AA |
1320 | /* |
1321 | * Repeat on the address that fired VM_FAULT_RETRY | |
4426e945 PX |
1322 | * with both FAULT_FLAG_ALLOW_RETRY and |
1323 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted | |
1324 | * by fatal signals, so we need to check it before we | |
1325 | * start trying again otherwise it can loop forever. | |
f0818f47 | 1326 | */ |
4426e945 | 1327 | |
ae46d2aa HD |
1328 | if (fatal_signal_pending(current)) { |
1329 | if (!pages_done) | |
1330 | pages_done = -EINTR; | |
4426e945 | 1331 | break; |
ae46d2aa | 1332 | } |
4426e945 | 1333 | |
d8ed45c5 | 1334 | ret = mmap_read_lock_killable(mm); |
71335f37 PX |
1335 | if (ret) { |
1336 | BUG_ON(ret > 0); | |
1337 | if (!pages_done) | |
1338 | pages_done = ret; | |
1339 | break; | |
1340 | } | |
4426e945 | 1341 | |
c7b6a566 | 1342 | *locked = 1; |
64019a2e | 1343 | ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, |
4426e945 PX |
1344 | pages, NULL, locked); |
1345 | if (!*locked) { | |
1346 | /* Continue to retry until we succeeded */ | |
1347 | BUG_ON(ret != 0); | |
1348 | goto retry; | |
1349 | } | |
f0818f47 AA |
1350 | if (ret != 1) { |
1351 | BUG_ON(ret > 1); | |
1352 | if (!pages_done) | |
1353 | pages_done = ret; | |
1354 | break; | |
1355 | } | |
1356 | nr_pages--; | |
1357 | pages_done++; | |
1358 | if (!nr_pages) | |
1359 | break; | |
df17277b MR |
1360 | if (likely(pages)) |
1361 | pages++; | |
f0818f47 AA |
1362 | start += PAGE_SIZE; |
1363 | } | |
e716712f | 1364 | if (lock_dropped && *locked) { |
f0818f47 AA |
1365 | /* |
1366 | * We must let the caller know we temporarily dropped the lock | |
1367 | * and so the critical section protected by it was lost. | |
1368 | */ | |
d8ed45c5 | 1369 | mmap_read_unlock(mm); |
f0818f47 AA |
1370 | *locked = 0; |
1371 | } | |
1372 | return pages_done; | |
1373 | } | |
1374 | ||
d3649f68 CH |
1375 | /** |
1376 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1377 | * @vma: target vma | |
1378 | * @start: start address | |
1379 | * @end: end address | |
c1e8d7c6 | 1380 | * @locked: whether the mmap_lock is still held |
d3649f68 CH |
1381 | * |
1382 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1383 | * | |
0a36f7f8 TY |
1384 | * Return either number of pages pinned in the vma, or a negative error |
1385 | * code on error. | |
d3649f68 | 1386 | * |
c1e8d7c6 | 1387 | * vma->vm_mm->mmap_lock must be held. |
d3649f68 | 1388 | * |
4f6da934 | 1389 | * If @locked is NULL, it may be held for read or write and will |
d3649f68 CH |
1390 | * be unperturbed. |
1391 | * | |
4f6da934 PX |
1392 | * If @locked is non-NULL, it must held for read only and may be |
1393 | * released. If it's released, *@locked will be set to 0. | |
d3649f68 CH |
1394 | */ |
1395 | long populate_vma_page_range(struct vm_area_struct *vma, | |
4f6da934 | 1396 | unsigned long start, unsigned long end, int *locked) |
d3649f68 CH |
1397 | { |
1398 | struct mm_struct *mm = vma->vm_mm; | |
1399 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1400 | int gup_flags; | |
1401 | ||
1402 | VM_BUG_ON(start & ~PAGE_MASK); | |
1403 | VM_BUG_ON(end & ~PAGE_MASK); | |
1404 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1405 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
42fc5414 | 1406 | mmap_assert_locked(mm); |
d3649f68 CH |
1407 | |
1408 | gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | |
1409 | if (vma->vm_flags & VM_LOCKONFAULT) | |
1410 | gup_flags &= ~FOLL_POPULATE; | |
1411 | /* | |
1412 | * We want to touch writable mappings with a write fault in order | |
1413 | * to break COW, except for shared mappings because these don't COW | |
1414 | * and we would not want to dirty them for nothing. | |
1415 | */ | |
1416 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1417 | gup_flags |= FOLL_WRITE; | |
1418 | ||
1419 | /* | |
1420 | * We want mlock to succeed for regions that have any permissions | |
1421 | * other than PROT_NONE. | |
1422 | */ | |
3122e80e | 1423 | if (vma_is_accessible(vma)) |
d3649f68 CH |
1424 | gup_flags |= FOLL_FORCE; |
1425 | ||
1426 | /* | |
1427 | * We made sure addr is within a VMA, so the following will | |
1428 | * not result in a stack expansion that recurses back here. | |
1429 | */ | |
64019a2e | 1430 | return __get_user_pages(mm, start, nr_pages, gup_flags, |
4f6da934 | 1431 | NULL, NULL, locked); |
d3649f68 CH |
1432 | } |
1433 | ||
1434 | /* | |
1435 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1436 | * | |
1437 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1438 | * flags. VMAs must be already marked with the desired vm_flags, and | |
c1e8d7c6 | 1439 | * mmap_lock must not be held. |
d3649f68 CH |
1440 | */ |
1441 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1442 | { | |
1443 | struct mm_struct *mm = current->mm; | |
1444 | unsigned long end, nstart, nend; | |
1445 | struct vm_area_struct *vma = NULL; | |
1446 | int locked = 0; | |
1447 | long ret = 0; | |
1448 | ||
1449 | end = start + len; | |
1450 | ||
1451 | for (nstart = start; nstart < end; nstart = nend) { | |
1452 | /* | |
1453 | * We want to fault in pages for [nstart; end) address range. | |
1454 | * Find first corresponding VMA. | |
1455 | */ | |
1456 | if (!locked) { | |
1457 | locked = 1; | |
d8ed45c5 | 1458 | mmap_read_lock(mm); |
d3649f68 CH |
1459 | vma = find_vma(mm, nstart); |
1460 | } else if (nstart >= vma->vm_end) | |
1461 | vma = vma->vm_next; | |
1462 | if (!vma || vma->vm_start >= end) | |
1463 | break; | |
1464 | /* | |
1465 | * Set [nstart; nend) to intersection of desired address | |
1466 | * range with the first VMA. Also, skip undesirable VMA types. | |
1467 | */ | |
1468 | nend = min(end, vma->vm_end); | |
1469 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1470 | continue; | |
1471 | if (nstart < vma->vm_start) | |
1472 | nstart = vma->vm_start; | |
1473 | /* | |
1474 | * Now fault in a range of pages. populate_vma_page_range() | |
1475 | * double checks the vma flags, so that it won't mlock pages | |
1476 | * if the vma was already munlocked. | |
1477 | */ | |
1478 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1479 | if (ret < 0) { | |
1480 | if (ignore_errors) { | |
1481 | ret = 0; | |
1482 | continue; /* continue at next VMA */ | |
1483 | } | |
1484 | break; | |
1485 | } | |
1486 | nend = nstart + ret * PAGE_SIZE; | |
1487 | ret = 0; | |
1488 | } | |
1489 | if (locked) | |
d8ed45c5 | 1490 | mmap_read_unlock(mm); |
d3649f68 CH |
1491 | return ret; /* 0 or negative error code */ |
1492 | } | |
050a9adc | 1493 | #else /* CONFIG_MMU */ |
64019a2e | 1494 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, |
050a9adc CH |
1495 | unsigned long nr_pages, struct page **pages, |
1496 | struct vm_area_struct **vmas, int *locked, | |
1497 | unsigned int foll_flags) | |
1498 | { | |
1499 | struct vm_area_struct *vma; | |
1500 | unsigned long vm_flags; | |
1501 | int i; | |
1502 | ||
1503 | /* calculate required read or write permissions. | |
1504 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1505 | */ | |
1506 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1507 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1508 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1509 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1510 | ||
1511 | for (i = 0; i < nr_pages; i++) { | |
1512 | vma = find_vma(mm, start); | |
1513 | if (!vma) | |
1514 | goto finish_or_fault; | |
1515 | ||
1516 | /* protect what we can, including chardevs */ | |
1517 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1518 | !(vm_flags & vma->vm_flags)) | |
1519 | goto finish_or_fault; | |
1520 | ||
1521 | if (pages) { | |
1522 | pages[i] = virt_to_page(start); | |
1523 | if (pages[i]) | |
1524 | get_page(pages[i]); | |
1525 | } | |
1526 | if (vmas) | |
1527 | vmas[i] = vma; | |
1528 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1529 | } | |
1530 | ||
1531 | return i; | |
1532 | ||
1533 | finish_or_fault: | |
1534 | return i ? : -EFAULT; | |
1535 | } | |
1536 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1537 | |
8f942eea JH |
1538 | /** |
1539 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1540 | * @addr: user address | |
1541 | * | |
1542 | * Returns struct page pointer of user page pinned for dump, | |
1543 | * to be freed afterwards by put_page(). | |
1544 | * | |
1545 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1546 | * the corefile, to preserve alignment with its headers; and also returns | |
1547 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
1548 | * allowing a hole to be left in the corefile to save diskspace. | |
1549 | * | |
7f3bfab5 | 1550 | * Called without mmap_lock (takes and releases the mmap_lock by itself). |
8f942eea JH |
1551 | */ |
1552 | #ifdef CONFIG_ELF_CORE | |
1553 | struct page *get_dump_page(unsigned long addr) | |
1554 | { | |
7f3bfab5 | 1555 | struct mm_struct *mm = current->mm; |
8f942eea | 1556 | struct page *page; |
7f3bfab5 JH |
1557 | int locked = 1; |
1558 | int ret; | |
8f942eea | 1559 | |
7f3bfab5 | 1560 | if (mmap_read_lock_killable(mm)) |
8f942eea | 1561 | return NULL; |
7f3bfab5 JH |
1562 | ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, |
1563 | FOLL_FORCE | FOLL_DUMP | FOLL_GET); | |
1564 | if (locked) | |
1565 | mmap_read_unlock(mm); | |
1566 | return (ret == 1) ? page : NULL; | |
8f942eea JH |
1567 | } |
1568 | #endif /* CONFIG_ELF_CORE */ | |
1569 | ||
9a4e9f3b | 1570 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) |
9a4e9f3b AK |
1571 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) |
1572 | { | |
1573 | long i; | |
1574 | struct vm_area_struct *vma_prev = NULL; | |
1575 | ||
1576 | for (i = 0; i < nr_pages; i++) { | |
1577 | struct vm_area_struct *vma = vmas[i]; | |
1578 | ||
1579 | if (vma == vma_prev) | |
1580 | continue; | |
1581 | ||
1582 | vma_prev = vma; | |
1583 | ||
1584 | if (vma_is_fsdax(vma)) | |
1585 | return true; | |
1586 | } | |
1587 | return false; | |
1588 | } | |
9a4e9f3b AK |
1589 | |
1590 | #ifdef CONFIG_CMA | |
64019a2e | 1591 | static long check_and_migrate_cma_pages(struct mm_struct *mm, |
932f4a63 IW |
1592 | unsigned long start, |
1593 | unsigned long nr_pages, | |
9a4e9f3b | 1594 | struct page **pages, |
932f4a63 IW |
1595 | struct vm_area_struct **vmas, |
1596 | unsigned int gup_flags) | |
9a4e9f3b | 1597 | { |
aa712399 PL |
1598 | unsigned long i; |
1599 | unsigned long step; | |
9a4e9f3b AK |
1600 | bool drain_allow = true; |
1601 | bool migrate_allow = true; | |
1602 | LIST_HEAD(cma_page_list); | |
b96cc655 | 1603 | long ret = nr_pages; |
ed03d924 JK |
1604 | struct migration_target_control mtc = { |
1605 | .nid = NUMA_NO_NODE, | |
1606 | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, | |
1607 | }; | |
9a4e9f3b AK |
1608 | |
1609 | check_again: | |
aa712399 PL |
1610 | for (i = 0; i < nr_pages;) { |
1611 | ||
1612 | struct page *head = compound_head(pages[i]); | |
1613 | ||
1614 | /* | |
1615 | * gup may start from a tail page. Advance step by the left | |
1616 | * part. | |
1617 | */ | |
d8c6546b | 1618 | step = compound_nr(head) - (pages[i] - head); |
9a4e9f3b AK |
1619 | /* |
1620 | * If we get a page from the CMA zone, since we are going to | |
1621 | * be pinning these entries, we might as well move them out | |
1622 | * of the CMA zone if possible. | |
1623 | */ | |
aa712399 PL |
1624 | if (is_migrate_cma_page(head)) { |
1625 | if (PageHuge(head)) | |
9a4e9f3b | 1626 | isolate_huge_page(head, &cma_page_list); |
aa712399 | 1627 | else { |
9a4e9f3b AK |
1628 | if (!PageLRU(head) && drain_allow) { |
1629 | lru_add_drain_all(); | |
1630 | drain_allow = false; | |
1631 | } | |
1632 | ||
1633 | if (!isolate_lru_page(head)) { | |
1634 | list_add_tail(&head->lru, &cma_page_list); | |
1635 | mod_node_page_state(page_pgdat(head), | |
1636 | NR_ISOLATED_ANON + | |
9de4f22a | 1637 | page_is_file_lru(head), |
6c357848 | 1638 | thp_nr_pages(head)); |
9a4e9f3b AK |
1639 | } |
1640 | } | |
1641 | } | |
aa712399 PL |
1642 | |
1643 | i += step; | |
9a4e9f3b AK |
1644 | } |
1645 | ||
1646 | if (!list_empty(&cma_page_list)) { | |
1647 | /* | |
1648 | * drop the above get_user_pages reference. | |
1649 | */ | |
96e1fac1 JG |
1650 | if (gup_flags & FOLL_PIN) |
1651 | unpin_user_pages(pages, nr_pages); | |
1652 | else | |
1653 | for (i = 0; i < nr_pages; i++) | |
1654 | put_page(pages[i]); | |
9a4e9f3b | 1655 | |
ed03d924 JK |
1656 | if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, |
1657 | (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | |
9a4e9f3b AK |
1658 | /* |
1659 | * some of the pages failed migration. Do get_user_pages | |
1660 | * without migration. | |
1661 | */ | |
1662 | migrate_allow = false; | |
1663 | ||
1664 | if (!list_empty(&cma_page_list)) | |
1665 | putback_movable_pages(&cma_page_list); | |
1666 | } | |
1667 | /* | |
932f4a63 IW |
1668 | * We did migrate all the pages, Try to get the page references |
1669 | * again migrating any new CMA pages which we failed to isolate | |
1670 | * earlier. | |
9a4e9f3b | 1671 | */ |
64019a2e | 1672 | ret = __get_user_pages_locked(mm, start, nr_pages, |
932f4a63 IW |
1673 | pages, vmas, NULL, |
1674 | gup_flags); | |
1675 | ||
b96cc655 | 1676 | if ((ret > 0) && migrate_allow) { |
1677 | nr_pages = ret; | |
9a4e9f3b AK |
1678 | drain_allow = true; |
1679 | goto check_again; | |
1680 | } | |
1681 | } | |
1682 | ||
b96cc655 | 1683 | return ret; |
9a4e9f3b AK |
1684 | } |
1685 | #else | |
64019a2e | 1686 | static long check_and_migrate_cma_pages(struct mm_struct *mm, |
932f4a63 IW |
1687 | unsigned long start, |
1688 | unsigned long nr_pages, | |
1689 | struct page **pages, | |
1690 | struct vm_area_struct **vmas, | |
1691 | unsigned int gup_flags) | |
9a4e9f3b AK |
1692 | { |
1693 | return nr_pages; | |
1694 | } | |
050a9adc | 1695 | #endif /* CONFIG_CMA */ |
9a4e9f3b | 1696 | |
2bb6d283 | 1697 | /* |
932f4a63 IW |
1698 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
1699 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 1700 | */ |
64019a2e | 1701 | static long __gup_longterm_locked(struct mm_struct *mm, |
932f4a63 IW |
1702 | unsigned long start, |
1703 | unsigned long nr_pages, | |
1704 | struct page **pages, | |
1705 | struct vm_area_struct **vmas, | |
1706 | unsigned int gup_flags) | |
2bb6d283 | 1707 | { |
932f4a63 IW |
1708 | struct vm_area_struct **vmas_tmp = vmas; |
1709 | unsigned long flags = 0; | |
2bb6d283 DW |
1710 | long rc, i; |
1711 | ||
932f4a63 IW |
1712 | if (gup_flags & FOLL_LONGTERM) { |
1713 | if (!pages) | |
1714 | return -EINVAL; | |
1715 | ||
1716 | if (!vmas_tmp) { | |
1717 | vmas_tmp = kcalloc(nr_pages, | |
1718 | sizeof(struct vm_area_struct *), | |
1719 | GFP_KERNEL); | |
1720 | if (!vmas_tmp) | |
1721 | return -ENOMEM; | |
1722 | } | |
1723 | flags = memalloc_nocma_save(); | |
2bb6d283 DW |
1724 | } |
1725 | ||
64019a2e | 1726 | rc = __get_user_pages_locked(mm, start, nr_pages, pages, |
932f4a63 | 1727 | vmas_tmp, NULL, gup_flags); |
2bb6d283 | 1728 | |
932f4a63 | 1729 | if (gup_flags & FOLL_LONGTERM) { |
932f4a63 IW |
1730 | if (rc < 0) |
1731 | goto out; | |
1732 | ||
1733 | if (check_dax_vmas(vmas_tmp, rc)) { | |
96e1fac1 JG |
1734 | if (gup_flags & FOLL_PIN) |
1735 | unpin_user_pages(pages, rc); | |
1736 | else | |
1737 | for (i = 0; i < rc; i++) | |
1738 | put_page(pages[i]); | |
932f4a63 IW |
1739 | rc = -EOPNOTSUPP; |
1740 | goto out; | |
1741 | } | |
1742 | ||
64019a2e | 1743 | rc = check_and_migrate_cma_pages(mm, start, rc, pages, |
932f4a63 | 1744 | vmas_tmp, gup_flags); |
41b4dc14 JK |
1745 | out: |
1746 | memalloc_nocma_restore(flags); | |
9a4e9f3b | 1747 | } |
2bb6d283 | 1748 | |
932f4a63 IW |
1749 | if (vmas_tmp != vmas) |
1750 | kfree(vmas_tmp); | |
2bb6d283 DW |
1751 | return rc; |
1752 | } | |
932f4a63 | 1753 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ |
64019a2e | 1754 | static __always_inline long __gup_longterm_locked(struct mm_struct *mm, |
932f4a63 IW |
1755 | unsigned long start, |
1756 | unsigned long nr_pages, | |
1757 | struct page **pages, | |
1758 | struct vm_area_struct **vmas, | |
1759 | unsigned int flags) | |
1760 | { | |
64019a2e | 1761 | return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, |
932f4a63 IW |
1762 | NULL, flags); |
1763 | } | |
1764 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | |
1765 | ||
447f3e45 BS |
1766 | static bool is_valid_gup_flags(unsigned int gup_flags) |
1767 | { | |
1768 | /* | |
1769 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1770 | * never directly by the caller, so enforce that with an assertion: | |
1771 | */ | |
1772 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1773 | return false; | |
1774 | /* | |
1775 | * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying | |
1776 | * that is, FOLL_LONGTERM is a specific case, more restrictive case of | |
1777 | * FOLL_PIN. | |
1778 | */ | |
1779 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
1780 | return false; | |
1781 | ||
1782 | return true; | |
1783 | } | |
1784 | ||
22bf29b6 | 1785 | #ifdef CONFIG_MMU |
64019a2e | 1786 | static long __get_user_pages_remote(struct mm_struct *mm, |
22bf29b6 JH |
1787 | unsigned long start, unsigned long nr_pages, |
1788 | unsigned int gup_flags, struct page **pages, | |
1789 | struct vm_area_struct **vmas, int *locked) | |
1790 | { | |
1791 | /* | |
1792 | * Parts of FOLL_LONGTERM behavior are incompatible with | |
1793 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1794 | * vmas. However, this only comes up if locked is set, and there are | |
1795 | * callers that do request FOLL_LONGTERM, but do not set locked. So, | |
1796 | * allow what we can. | |
1797 | */ | |
1798 | if (gup_flags & FOLL_LONGTERM) { | |
1799 | if (WARN_ON_ONCE(locked)) | |
1800 | return -EINVAL; | |
1801 | /* | |
1802 | * This will check the vmas (even if our vmas arg is NULL) | |
1803 | * and return -ENOTSUPP if DAX isn't allowed in this case: | |
1804 | */ | |
64019a2e | 1805 | return __gup_longterm_locked(mm, start, nr_pages, pages, |
22bf29b6 JH |
1806 | vmas, gup_flags | FOLL_TOUCH | |
1807 | FOLL_REMOTE); | |
1808 | } | |
1809 | ||
64019a2e | 1810 | return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, |
22bf29b6 JH |
1811 | locked, |
1812 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); | |
1813 | } | |
1814 | ||
adc8cb40 | 1815 | /** |
c4237f8b | 1816 | * get_user_pages_remote() - pin user pages in memory |
c4237f8b JH |
1817 | * @mm: mm_struct of target mm |
1818 | * @start: starting user address | |
1819 | * @nr_pages: number of pages from start to pin | |
1820 | * @gup_flags: flags modifying lookup behaviour | |
1821 | * @pages: array that receives pointers to the pages pinned. | |
1822 | * Should be at least nr_pages long. Or NULL, if caller | |
1823 | * only intends to ensure the pages are faulted in. | |
1824 | * @vmas: array of pointers to vmas corresponding to each page. | |
1825 | * Or NULL if the caller does not require them. | |
1826 | * @locked: pointer to lock flag indicating whether lock is held and | |
1827 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1828 | * utilised. Lock must initially be held. | |
1829 | * | |
1830 | * Returns either number of pages pinned (which may be less than the | |
1831 | * number requested), or an error. Details about the return value: | |
1832 | * | |
1833 | * -- If nr_pages is 0, returns 0. | |
1834 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
1835 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
1836 | * pages pinned. Again, this may be less than nr_pages. | |
1837 | * | |
1838 | * The caller is responsible for releasing returned @pages, via put_page(). | |
1839 | * | |
c1e8d7c6 | 1840 | * @vmas are valid only as long as mmap_lock is held. |
c4237f8b | 1841 | * |
c1e8d7c6 | 1842 | * Must be called with mmap_lock held for read or write. |
c4237f8b | 1843 | * |
adc8cb40 SJ |
1844 | * get_user_pages_remote walks a process's page tables and takes a reference |
1845 | * to each struct page that each user address corresponds to at a given | |
c4237f8b JH |
1846 | * instant. That is, it takes the page that would be accessed if a user |
1847 | * thread accesses the given user virtual address at that instant. | |
1848 | * | |
1849 | * This does not guarantee that the page exists in the user mappings when | |
adc8cb40 | 1850 | * get_user_pages_remote returns, and there may even be a completely different |
c4237f8b JH |
1851 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
1852 | * and subsequently re faulted). However it does guarantee that the page | |
1853 | * won't be freed completely. And mostly callers simply care that the page | |
1854 | * contains data that was valid *at some point in time*. Typically, an IO | |
1855 | * or similar operation cannot guarantee anything stronger anyway because | |
1856 | * locks can't be held over the syscall boundary. | |
1857 | * | |
1858 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | |
1859 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
1860 | * be called after the page is finished with, and before put_page is called. | |
1861 | * | |
adc8cb40 SJ |
1862 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
1863 | * to get a handle on the memory by some means other than accesses | |
1864 | * via the user virtual addresses. The pages may be submitted for | |
1865 | * DMA to devices or accessed via their kernel linear mapping (via the | |
1866 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. | |
c4237f8b JH |
1867 | * |
1868 | * See also get_user_pages_fast, for performance critical applications. | |
1869 | * | |
adc8cb40 | 1870 | * get_user_pages_remote should be phased out in favor of |
c4237f8b | 1871 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
adc8cb40 | 1872 | * should use get_user_pages_remote because it cannot pass |
c4237f8b JH |
1873 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
1874 | */ | |
64019a2e | 1875 | long get_user_pages_remote(struct mm_struct *mm, |
c4237f8b JH |
1876 | unsigned long start, unsigned long nr_pages, |
1877 | unsigned int gup_flags, struct page **pages, | |
1878 | struct vm_area_struct **vmas, int *locked) | |
1879 | { | |
447f3e45 | 1880 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
1881 | return -EINVAL; |
1882 | ||
64019a2e | 1883 | return __get_user_pages_remote(mm, start, nr_pages, gup_flags, |
22bf29b6 | 1884 | pages, vmas, locked); |
c4237f8b JH |
1885 | } |
1886 | EXPORT_SYMBOL(get_user_pages_remote); | |
1887 | ||
eddb1c22 | 1888 | #else /* CONFIG_MMU */ |
64019a2e | 1889 | long get_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
1890 | unsigned long start, unsigned long nr_pages, |
1891 | unsigned int gup_flags, struct page **pages, | |
1892 | struct vm_area_struct **vmas, int *locked) | |
1893 | { | |
1894 | return 0; | |
1895 | } | |
3faa52c0 | 1896 | |
64019a2e | 1897 | static long __get_user_pages_remote(struct mm_struct *mm, |
3faa52c0 JH |
1898 | unsigned long start, unsigned long nr_pages, |
1899 | unsigned int gup_flags, struct page **pages, | |
1900 | struct vm_area_struct **vmas, int *locked) | |
1901 | { | |
1902 | return 0; | |
1903 | } | |
eddb1c22 JH |
1904 | #endif /* !CONFIG_MMU */ |
1905 | ||
adc8cb40 SJ |
1906 | /** |
1907 | * get_user_pages() - pin user pages in memory | |
1908 | * @start: starting user address | |
1909 | * @nr_pages: number of pages from start to pin | |
1910 | * @gup_flags: flags modifying lookup behaviour | |
1911 | * @pages: array that receives pointers to the pages pinned. | |
1912 | * Should be at least nr_pages long. Or NULL, if caller | |
1913 | * only intends to ensure the pages are faulted in. | |
1914 | * @vmas: array of pointers to vmas corresponding to each page. | |
1915 | * Or NULL if the caller does not require them. | |
1916 | * | |
64019a2e PX |
1917 | * This is the same as get_user_pages_remote(), just with a less-flexible |
1918 | * calling convention where we assume that the mm being operated on belongs to | |
1919 | * the current task, and doesn't allow passing of a locked parameter. We also | |
1920 | * obviously don't pass FOLL_REMOTE in here. | |
932f4a63 IW |
1921 | */ |
1922 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
1923 | unsigned int gup_flags, struct page **pages, | |
1924 | struct vm_area_struct **vmas) | |
1925 | { | |
447f3e45 | 1926 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
1927 | return -EINVAL; |
1928 | ||
64019a2e | 1929 | return __gup_longterm_locked(current->mm, start, nr_pages, |
932f4a63 IW |
1930 | pages, vmas, gup_flags | FOLL_TOUCH); |
1931 | } | |
1932 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 1933 | |
adc8cb40 | 1934 | /** |
d3649f68 | 1935 | * get_user_pages_locked() is suitable to replace the form: |
acc3c8d1 | 1936 | * |
3e4e28c5 | 1937 | * mmap_read_lock(mm); |
d3649f68 | 1938 | * do_something() |
64019a2e | 1939 | * get_user_pages(mm, ..., pages, NULL); |
3e4e28c5 | 1940 | * mmap_read_unlock(mm); |
acc3c8d1 | 1941 | * |
d3649f68 | 1942 | * to: |
acc3c8d1 | 1943 | * |
d3649f68 | 1944 | * int locked = 1; |
3e4e28c5 | 1945 | * mmap_read_lock(mm); |
d3649f68 | 1946 | * do_something() |
64019a2e | 1947 | * get_user_pages_locked(mm, ..., pages, &locked); |
d3649f68 | 1948 | * if (locked) |
3e4e28c5 | 1949 | * mmap_read_unlock(mm); |
adc8cb40 SJ |
1950 | * |
1951 | * @start: starting user address | |
1952 | * @nr_pages: number of pages from start to pin | |
1953 | * @gup_flags: flags modifying lookup behaviour | |
1954 | * @pages: array that receives pointers to the pages pinned. | |
1955 | * Should be at least nr_pages long. Or NULL, if caller | |
1956 | * only intends to ensure the pages are faulted in. | |
1957 | * @locked: pointer to lock flag indicating whether lock is held and | |
1958 | * subsequently whether VM_FAULT_RETRY functionality can be | |
1959 | * utilised. Lock must initially be held. | |
1960 | * | |
1961 | * We can leverage the VM_FAULT_RETRY functionality in the page fault | |
1962 | * paths better by using either get_user_pages_locked() or | |
1963 | * get_user_pages_unlocked(). | |
1964 | * | |
acc3c8d1 | 1965 | */ |
d3649f68 CH |
1966 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, |
1967 | unsigned int gup_flags, struct page **pages, | |
1968 | int *locked) | |
acc3c8d1 | 1969 | { |
acc3c8d1 | 1970 | /* |
d3649f68 CH |
1971 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with |
1972 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
1973 | * vmas. As there are no users of this flag in this call we simply | |
1974 | * disallow this option for now. | |
acc3c8d1 | 1975 | */ |
d3649f68 CH |
1976 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) |
1977 | return -EINVAL; | |
420c2091 JH |
1978 | /* |
1979 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
1980 | * never directly by the caller, so enforce that: | |
1981 | */ | |
1982 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
1983 | return -EINVAL; | |
acc3c8d1 | 1984 | |
64019a2e | 1985 | return __get_user_pages_locked(current->mm, start, nr_pages, |
d3649f68 CH |
1986 | pages, NULL, locked, |
1987 | gup_flags | FOLL_TOUCH); | |
acc3c8d1 | 1988 | } |
d3649f68 | 1989 | EXPORT_SYMBOL(get_user_pages_locked); |
acc3c8d1 KS |
1990 | |
1991 | /* | |
d3649f68 | 1992 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 1993 | * |
3e4e28c5 | 1994 | * mmap_read_lock(mm); |
64019a2e | 1995 | * get_user_pages(mm, ..., pages, NULL); |
3e4e28c5 | 1996 | * mmap_read_unlock(mm); |
d3649f68 CH |
1997 | * |
1998 | * with: | |
1999 | * | |
64019a2e | 2000 | * get_user_pages_unlocked(mm, ..., pages); |
d3649f68 CH |
2001 | * |
2002 | * It is functionally equivalent to get_user_pages_fast so | |
2003 | * get_user_pages_fast should be used instead if specific gup_flags | |
2004 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 2005 | */ |
d3649f68 CH |
2006 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
2007 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
2008 | { |
2009 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
2010 | int locked = 1; |
2011 | long ret; | |
acc3c8d1 | 2012 | |
d3649f68 CH |
2013 | /* |
2014 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
2015 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2016 | * vmas. As there are no users of this flag in this call we simply | |
2017 | * disallow this option for now. | |
2018 | */ | |
2019 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
2020 | return -EINVAL; | |
acc3c8d1 | 2021 | |
d8ed45c5 | 2022 | mmap_read_lock(mm); |
64019a2e | 2023 | ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, |
d3649f68 | 2024 | &locked, gup_flags | FOLL_TOUCH); |
acc3c8d1 | 2025 | if (locked) |
d8ed45c5 | 2026 | mmap_read_unlock(mm); |
d3649f68 | 2027 | return ret; |
4bbd4c77 | 2028 | } |
d3649f68 | 2029 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
2030 | |
2031 | /* | |
67a929e0 | 2032 | * Fast GUP |
2667f50e SC |
2033 | * |
2034 | * get_user_pages_fast attempts to pin user pages by walking the page | |
2035 | * tables directly and avoids taking locks. Thus the walker needs to be | |
2036 | * protected from page table pages being freed from under it, and should | |
2037 | * block any THP splits. | |
2038 | * | |
2039 | * One way to achieve this is to have the walker disable interrupts, and | |
2040 | * rely on IPIs from the TLB flushing code blocking before the page table | |
2041 | * pages are freed. This is unsuitable for architectures that do not need | |
2042 | * to broadcast an IPI when invalidating TLBs. | |
2043 | * | |
2044 | * Another way to achieve this is to batch up page table containing pages | |
2045 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
2046 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
2047 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
2048 | * (which is a relatively rare event). The code below adopts this strategy. | |
2049 | * | |
2050 | * Before activating this code, please be aware that the following assumptions | |
2051 | * are currently made: | |
2052 | * | |
ff2e6d72 | 2053 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
e585513b | 2054 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2667f50e | 2055 | * |
2667f50e SC |
2056 | * *) ptes can be read atomically by the architecture. |
2057 | * | |
2058 | * *) access_ok is sufficient to validate userspace address ranges. | |
2059 | * | |
2060 | * The last two assumptions can be relaxed by the addition of helper functions. | |
2061 | * | |
2062 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
2063 | */ | |
67a929e0 | 2064 | #ifdef CONFIG_HAVE_FAST_GUP |
3faa52c0 JH |
2065 | |
2066 | static void put_compound_head(struct page *page, int refs, unsigned int flags) | |
2067 | { | |
47e29d32 | 2068 | if (flags & FOLL_PIN) { |
1970dc6f JH |
2069 | mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, |
2070 | refs); | |
2071 | ||
47e29d32 JH |
2072 | if (hpage_pincount_available(page)) |
2073 | hpage_pincount_sub(page, refs); | |
2074 | else | |
2075 | refs *= GUP_PIN_COUNTING_BIAS; | |
2076 | } | |
3faa52c0 JH |
2077 | |
2078 | VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); | |
2079 | /* | |
2080 | * Calling put_page() for each ref is unnecessarily slow. Only the last | |
2081 | * ref needs a put_page(). | |
2082 | */ | |
2083 | if (refs > 1) | |
2084 | page_ref_sub(page, refs - 1); | |
2085 | put_page(page); | |
2086 | } | |
2087 | ||
39656e83 | 2088 | #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH |
3faa52c0 | 2089 | |
39656e83 CH |
2090 | /* |
2091 | * WARNING: only to be used in the get_user_pages_fast() implementation. | |
2092 | * | |
2093 | * With get_user_pages_fast(), we walk down the pagetables without taking any | |
2094 | * locks. For this we would like to load the pointers atomically, but sometimes | |
2095 | * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What | |
2096 | * we do have is the guarantee that a PTE will only either go from not present | |
2097 | * to present, or present to not present or both -- it will not switch to a | |
2098 | * completely different present page without a TLB flush in between; something | |
2099 | * that we are blocking by holding interrupts off. | |
2100 | * | |
2101 | * Setting ptes from not present to present goes: | |
2102 | * | |
2103 | * ptep->pte_high = h; | |
2104 | * smp_wmb(); | |
2105 | * ptep->pte_low = l; | |
2106 | * | |
2107 | * And present to not present goes: | |
2108 | * | |
2109 | * ptep->pte_low = 0; | |
2110 | * smp_wmb(); | |
2111 | * ptep->pte_high = 0; | |
2112 | * | |
2113 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | |
2114 | * We load pte_high *after* loading pte_low, which ensures we don't see an older | |
2115 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't | |
2116 | * picked up a changed pte high. We might have gotten rubbish values from | |
2117 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the | |
2118 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | |
2119 | * operates on present ptes we're safe. | |
2120 | */ | |
2121 | static inline pte_t gup_get_pte(pte_t *ptep) | |
2122 | { | |
2123 | pte_t pte; | |
2667f50e | 2124 | |
39656e83 CH |
2125 | do { |
2126 | pte.pte_low = ptep->pte_low; | |
2127 | smp_rmb(); | |
2128 | pte.pte_high = ptep->pte_high; | |
2129 | smp_rmb(); | |
2130 | } while (unlikely(pte.pte_low != ptep->pte_low)); | |
2131 | ||
2132 | return pte; | |
2133 | } | |
2134 | #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | |
0005d20b | 2135 | /* |
39656e83 | 2136 | * We require that the PTE can be read atomically. |
0005d20b KS |
2137 | */ |
2138 | static inline pte_t gup_get_pte(pte_t *ptep) | |
2139 | { | |
481e980a | 2140 | return ptep_get(ptep); |
0005d20b | 2141 | } |
39656e83 | 2142 | #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ |
0005d20b | 2143 | |
790c7369 | 2144 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
3b78d834 | 2145 | unsigned int flags, |
790c7369 | 2146 | struct page **pages) |
b59f65fa KS |
2147 | { |
2148 | while ((*nr) - nr_start) { | |
2149 | struct page *page = pages[--(*nr)]; | |
2150 | ||
2151 | ClearPageReferenced(page); | |
3faa52c0 JH |
2152 | if (flags & FOLL_PIN) |
2153 | unpin_user_page(page); | |
2154 | else | |
2155 | put_page(page); | |
b59f65fa KS |
2156 | } |
2157 | } | |
2158 | ||
3010a5ea | 2159 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
2667f50e | 2160 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, |
b798bec4 | 2161 | unsigned int flags, struct page **pages, int *nr) |
2667f50e | 2162 | { |
b59f65fa KS |
2163 | struct dev_pagemap *pgmap = NULL; |
2164 | int nr_start = *nr, ret = 0; | |
2667f50e | 2165 | pte_t *ptep, *ptem; |
2667f50e SC |
2166 | |
2167 | ptem = ptep = pte_offset_map(&pmd, addr); | |
2168 | do { | |
0005d20b | 2169 | pte_t pte = gup_get_pte(ptep); |
7aef4172 | 2170 | struct page *head, *page; |
2667f50e SC |
2171 | |
2172 | /* | |
2173 | * Similar to the PMD case below, NUMA hinting must take slow | |
8a0516ed | 2174 | * path using the pte_protnone check. |
2667f50e | 2175 | */ |
e7884f8e KS |
2176 | if (pte_protnone(pte)) |
2177 | goto pte_unmap; | |
2178 | ||
b798bec4 | 2179 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
2180 | goto pte_unmap; |
2181 | ||
b59f65fa | 2182 | if (pte_devmap(pte)) { |
7af75561 IW |
2183 | if (unlikely(flags & FOLL_LONGTERM)) |
2184 | goto pte_unmap; | |
2185 | ||
b59f65fa KS |
2186 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
2187 | if (unlikely(!pgmap)) { | |
3b78d834 | 2188 | undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2189 | goto pte_unmap; |
2190 | } | |
2191 | } else if (pte_special(pte)) | |
2667f50e SC |
2192 | goto pte_unmap; |
2193 | ||
2194 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2195 | page = pte_page(pte); | |
2196 | ||
3faa52c0 | 2197 | head = try_grab_compound_head(page, 1, flags); |
8fde12ca | 2198 | if (!head) |
2667f50e SC |
2199 | goto pte_unmap; |
2200 | ||
2201 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
3faa52c0 | 2202 | put_compound_head(head, 1, flags); |
2667f50e SC |
2203 | goto pte_unmap; |
2204 | } | |
2205 | ||
7aef4172 | 2206 | VM_BUG_ON_PAGE(compound_head(page) != head, page); |
e9348053 | 2207 | |
f28d4363 CI |
2208 | /* |
2209 | * We need to make the page accessible if and only if we are | |
2210 | * going to access its content (the FOLL_PIN case). Please | |
2211 | * see Documentation/core-api/pin_user_pages.rst for | |
2212 | * details. | |
2213 | */ | |
2214 | if (flags & FOLL_PIN) { | |
2215 | ret = arch_make_page_accessible(page); | |
2216 | if (ret) { | |
2217 | unpin_user_page(page); | |
2218 | goto pte_unmap; | |
2219 | } | |
2220 | } | |
e9348053 | 2221 | SetPageReferenced(page); |
2667f50e SC |
2222 | pages[*nr] = page; |
2223 | (*nr)++; | |
2224 | ||
2225 | } while (ptep++, addr += PAGE_SIZE, addr != end); | |
2226 | ||
2227 | ret = 1; | |
2228 | ||
2229 | pte_unmap: | |
832d7aa0 CH |
2230 | if (pgmap) |
2231 | put_dev_pagemap(pgmap); | |
2667f50e SC |
2232 | pte_unmap(ptem); |
2233 | return ret; | |
2234 | } | |
2235 | #else | |
2236 | ||
2237 | /* | |
2238 | * If we can't determine whether or not a pte is special, then fail immediately | |
2239 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
2240 | * to be special. | |
2241 | * | |
2242 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
dadbb612 | 2243 | * get_user_pages_fast_only implementation that can pin pages. Thus it's still |
2667f50e SC |
2244 | * useful to have gup_huge_pmd even if we can't operate on ptes. |
2245 | */ | |
2246 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | |
b798bec4 | 2247 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2248 | { |
2249 | return 0; | |
2250 | } | |
3010a5ea | 2251 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 2252 | |
17596731 | 2253 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa | 2254 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
86dfbed4 JH |
2255 | unsigned long end, unsigned int flags, |
2256 | struct page **pages, int *nr) | |
b59f65fa KS |
2257 | { |
2258 | int nr_start = *nr; | |
2259 | struct dev_pagemap *pgmap = NULL; | |
2260 | ||
2261 | do { | |
2262 | struct page *page = pfn_to_page(pfn); | |
2263 | ||
2264 | pgmap = get_dev_pagemap(pfn, pgmap); | |
2265 | if (unlikely(!pgmap)) { | |
3b78d834 | 2266 | undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2267 | return 0; |
2268 | } | |
2269 | SetPageReferenced(page); | |
2270 | pages[*nr] = page; | |
3faa52c0 JH |
2271 | if (unlikely(!try_grab_page(page, flags))) { |
2272 | undo_dev_pagemap(nr, nr_start, flags, pages); | |
2273 | return 0; | |
2274 | } | |
b59f65fa KS |
2275 | (*nr)++; |
2276 | pfn++; | |
2277 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 CH |
2278 | |
2279 | if (pgmap) | |
2280 | put_dev_pagemap(pgmap); | |
b59f65fa KS |
2281 | return 1; |
2282 | } | |
2283 | ||
a9b6de77 | 2284 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2285 | unsigned long end, unsigned int flags, |
2286 | struct page **pages, int *nr) | |
b59f65fa KS |
2287 | { |
2288 | unsigned long fault_pfn; | |
a9b6de77 DW |
2289 | int nr_start = *nr; |
2290 | ||
2291 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2292 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2293 | return 0; |
b59f65fa | 2294 | |
a9b6de77 | 2295 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
3b78d834 | 2296 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2297 | return 0; |
2298 | } | |
2299 | return 1; | |
b59f65fa KS |
2300 | } |
2301 | ||
a9b6de77 | 2302 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2303 | unsigned long end, unsigned int flags, |
2304 | struct page **pages, int *nr) | |
b59f65fa KS |
2305 | { |
2306 | unsigned long fault_pfn; | |
a9b6de77 DW |
2307 | int nr_start = *nr; |
2308 | ||
2309 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2310 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2311 | return 0; |
b59f65fa | 2312 | |
a9b6de77 | 2313 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
3b78d834 | 2314 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2315 | return 0; |
2316 | } | |
2317 | return 1; | |
b59f65fa KS |
2318 | } |
2319 | #else | |
a9b6de77 | 2320 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2321 | unsigned long end, unsigned int flags, |
2322 | struct page **pages, int *nr) | |
b59f65fa KS |
2323 | { |
2324 | BUILD_BUG(); | |
2325 | return 0; | |
2326 | } | |
2327 | ||
a9b6de77 | 2328 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2329 | unsigned long end, unsigned int flags, |
2330 | struct page **pages, int *nr) | |
b59f65fa KS |
2331 | { |
2332 | BUILD_BUG(); | |
2333 | return 0; | |
2334 | } | |
2335 | #endif | |
2336 | ||
a43e9820 JH |
2337 | static int record_subpages(struct page *page, unsigned long addr, |
2338 | unsigned long end, struct page **pages) | |
2339 | { | |
2340 | int nr; | |
2341 | ||
2342 | for (nr = 0; addr != end; addr += PAGE_SIZE) | |
2343 | pages[nr++] = page++; | |
2344 | ||
2345 | return nr; | |
2346 | } | |
2347 | ||
cbd34da7 CH |
2348 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
2349 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
2350 | unsigned long sz) | |
2351 | { | |
2352 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
2353 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
2354 | } | |
2355 | ||
2356 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
0cd22afd JH |
2357 | unsigned long end, unsigned int flags, |
2358 | struct page **pages, int *nr) | |
cbd34da7 CH |
2359 | { |
2360 | unsigned long pte_end; | |
2361 | struct page *head, *page; | |
2362 | pte_t pte; | |
2363 | int refs; | |
2364 | ||
2365 | pte_end = (addr + sz) & ~(sz-1); | |
2366 | if (pte_end < end) | |
2367 | end = pte_end; | |
2368 | ||
55ca2263 | 2369 | pte = huge_ptep_get(ptep); |
cbd34da7 | 2370 | |
0cd22afd | 2371 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
cbd34da7 CH |
2372 | return 0; |
2373 | ||
2374 | /* hugepages are never "special" */ | |
2375 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2376 | ||
cbd34da7 | 2377 | head = pte_page(pte); |
cbd34da7 | 2378 | page = head + ((addr & (sz-1)) >> PAGE_SHIFT); |
a43e9820 | 2379 | refs = record_subpages(page, addr, end, pages + *nr); |
cbd34da7 | 2380 | |
3faa52c0 | 2381 | head = try_grab_compound_head(head, refs, flags); |
a43e9820 | 2382 | if (!head) |
cbd34da7 | 2383 | return 0; |
cbd34da7 CH |
2384 | |
2385 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
3b78d834 | 2386 | put_compound_head(head, refs, flags); |
cbd34da7 CH |
2387 | return 0; |
2388 | } | |
2389 | ||
a43e9820 | 2390 | *nr += refs; |
520b4a44 | 2391 | SetPageReferenced(head); |
cbd34da7 CH |
2392 | return 1; |
2393 | } | |
2394 | ||
2395 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2396 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2397 | struct page **pages, int *nr) |
2398 | { | |
2399 | pte_t *ptep; | |
2400 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2401 | unsigned long next; | |
2402 | ||
2403 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2404 | do { | |
2405 | next = hugepte_addr_end(addr, end, sz); | |
0cd22afd | 2406 | if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) |
cbd34da7 CH |
2407 | return 0; |
2408 | } while (ptep++, addr = next, addr != end); | |
2409 | ||
2410 | return 1; | |
2411 | } | |
2412 | #else | |
2413 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2414 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2415 | struct page **pages, int *nr) |
2416 | { | |
2417 | return 0; | |
2418 | } | |
2419 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2420 | ||
2667f50e | 2421 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
0cd22afd JH |
2422 | unsigned long end, unsigned int flags, |
2423 | struct page **pages, int *nr) | |
2667f50e | 2424 | { |
ddc58f27 | 2425 | struct page *head, *page; |
2667f50e SC |
2426 | int refs; |
2427 | ||
b798bec4 | 2428 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2429 | return 0; |
2430 | ||
7af75561 IW |
2431 | if (pmd_devmap(orig)) { |
2432 | if (unlikely(flags & FOLL_LONGTERM)) | |
2433 | return 0; | |
86dfbed4 JH |
2434 | return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, |
2435 | pages, nr); | |
7af75561 | 2436 | } |
b59f65fa | 2437 | |
d63206ee | 2438 | page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2439 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2440 | |
3faa52c0 | 2441 | head = try_grab_compound_head(pmd_page(orig), refs, flags); |
a43e9820 | 2442 | if (!head) |
2667f50e | 2443 | return 0; |
2667f50e SC |
2444 | |
2445 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
3b78d834 | 2446 | put_compound_head(head, refs, flags); |
2667f50e SC |
2447 | return 0; |
2448 | } | |
2449 | ||
a43e9820 | 2450 | *nr += refs; |
e9348053 | 2451 | SetPageReferenced(head); |
2667f50e SC |
2452 | return 1; |
2453 | } | |
2454 | ||
2455 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
86dfbed4 JH |
2456 | unsigned long end, unsigned int flags, |
2457 | struct page **pages, int *nr) | |
2667f50e | 2458 | { |
ddc58f27 | 2459 | struct page *head, *page; |
2667f50e SC |
2460 | int refs; |
2461 | ||
b798bec4 | 2462 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2463 | return 0; |
2464 | ||
7af75561 IW |
2465 | if (pud_devmap(orig)) { |
2466 | if (unlikely(flags & FOLL_LONGTERM)) | |
2467 | return 0; | |
86dfbed4 JH |
2468 | return __gup_device_huge_pud(orig, pudp, addr, end, flags, |
2469 | pages, nr); | |
7af75561 | 2470 | } |
b59f65fa | 2471 | |
d63206ee | 2472 | page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2473 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2474 | |
3faa52c0 | 2475 | head = try_grab_compound_head(pud_page(orig), refs, flags); |
a43e9820 | 2476 | if (!head) |
2667f50e | 2477 | return 0; |
2667f50e SC |
2478 | |
2479 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
3b78d834 | 2480 | put_compound_head(head, refs, flags); |
2667f50e SC |
2481 | return 0; |
2482 | } | |
2483 | ||
a43e9820 | 2484 | *nr += refs; |
e9348053 | 2485 | SetPageReferenced(head); |
2667f50e SC |
2486 | return 1; |
2487 | } | |
2488 | ||
f30c59e9 | 2489 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2490 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2491 | struct page **pages, int *nr) |
2492 | { | |
2493 | int refs; | |
ddc58f27 | 2494 | struct page *head, *page; |
f30c59e9 | 2495 | |
b798bec4 | 2496 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2497 | return 0; |
2498 | ||
b59f65fa | 2499 | BUILD_BUG_ON(pgd_devmap(orig)); |
a43e9820 | 2500 | |
d63206ee | 2501 | page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
a43e9820 | 2502 | refs = record_subpages(page, addr, end, pages + *nr); |
f30c59e9 | 2503 | |
3faa52c0 | 2504 | head = try_grab_compound_head(pgd_page(orig), refs, flags); |
a43e9820 | 2505 | if (!head) |
f30c59e9 | 2506 | return 0; |
f30c59e9 AK |
2507 | |
2508 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
3b78d834 | 2509 | put_compound_head(head, refs, flags); |
f30c59e9 AK |
2510 | return 0; |
2511 | } | |
2512 | ||
a43e9820 | 2513 | *nr += refs; |
e9348053 | 2514 | SetPageReferenced(head); |
f30c59e9 AK |
2515 | return 1; |
2516 | } | |
2517 | ||
d3f7b1bb | 2518 | static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2519 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2520 | { |
2521 | unsigned long next; | |
2522 | pmd_t *pmdp; | |
2523 | ||
d3f7b1bb | 2524 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
2667f50e | 2525 | do { |
38c5ce93 | 2526 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2527 | |
2528 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2529 | if (!pmd_present(pmd)) |
2667f50e SC |
2530 | return 0; |
2531 | ||
414fd080 YZ |
2532 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2533 | pmd_devmap(pmd))) { | |
2667f50e SC |
2534 | /* |
2535 | * NUMA hinting faults need to be handled in the GUP | |
2536 | * slowpath for accounting purposes and so that they | |
2537 | * can be serialised against THP migration. | |
2538 | */ | |
8a0516ed | 2539 | if (pmd_protnone(pmd)) |
2667f50e SC |
2540 | return 0; |
2541 | ||
b798bec4 | 2542 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2543 | pages, nr)) |
2544 | return 0; | |
2545 | ||
f30c59e9 AK |
2546 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2547 | /* | |
2548 | * architecture have different format for hugetlbfs | |
2549 | * pmd format and THP pmd format | |
2550 | */ | |
2551 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2552 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2553 | return 0; |
b798bec4 | 2554 | } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) |
2923117b | 2555 | return 0; |
2667f50e SC |
2556 | } while (pmdp++, addr = next, addr != end); |
2557 | ||
2558 | return 1; | |
2559 | } | |
2560 | ||
d3f7b1bb | 2561 | static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2562 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2563 | { |
2564 | unsigned long next; | |
2565 | pud_t *pudp; | |
2566 | ||
d3f7b1bb | 2567 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
2667f50e | 2568 | do { |
e37c6982 | 2569 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2570 | |
2571 | next = pud_addr_end(addr, end); | |
15494520 | 2572 | if (unlikely(!pud_present(pud))) |
2667f50e | 2573 | return 0; |
f30c59e9 | 2574 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2575 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2576 | pages, nr)) |
2577 | return 0; | |
2578 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2579 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2580 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2581 | return 0; |
d3f7b1bb | 2582 | } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2583 | return 0; |
2584 | } while (pudp++, addr = next, addr != end); | |
2585 | ||
2586 | return 1; | |
2587 | } | |
2588 | ||
d3f7b1bb | 2589 | static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2590 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2591 | { |
2592 | unsigned long next; | |
2593 | p4d_t *p4dp; | |
2594 | ||
d3f7b1bb | 2595 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
c2febafc KS |
2596 | do { |
2597 | p4d_t p4d = READ_ONCE(*p4dp); | |
2598 | ||
2599 | next = p4d_addr_end(addr, end); | |
2600 | if (p4d_none(p4d)) | |
2601 | return 0; | |
2602 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2603 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2604 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2605 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2606 | return 0; |
d3f7b1bb | 2607 | } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2608 | return 0; |
2609 | } while (p4dp++, addr = next, addr != end); | |
2610 | ||
2611 | return 1; | |
2612 | } | |
2613 | ||
5b65c467 | 2614 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2615 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2616 | { |
2617 | unsigned long next; | |
2618 | pgd_t *pgdp; | |
2619 | ||
2620 | pgdp = pgd_offset(current->mm, addr); | |
2621 | do { | |
2622 | pgd_t pgd = READ_ONCE(*pgdp); | |
2623 | ||
2624 | next = pgd_addr_end(addr, end); | |
2625 | if (pgd_none(pgd)) | |
2626 | return; | |
2627 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2628 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2629 | pages, nr)) |
2630 | return; | |
2631 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2632 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2633 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2634 | return; |
d3f7b1bb | 2635 | } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2636 | return; |
2637 | } while (pgdp++, addr = next, addr != end); | |
2638 | } | |
050a9adc CH |
2639 | #else |
2640 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2641 | unsigned int flags, struct page **pages, int *nr) | |
2642 | { | |
2643 | } | |
2644 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2645 | |
2646 | #ifndef gup_fast_permitted | |
2647 | /* | |
dadbb612 | 2648 | * Check if it's allowed to use get_user_pages_fast_only() for the range, or |
5b65c467 KS |
2649 | * we need to fall back to the slow version: |
2650 | */ | |
26f4c328 | 2651 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2652 | { |
26f4c328 | 2653 | return true; |
5b65c467 KS |
2654 | } |
2655 | #endif | |
2656 | ||
7af75561 IW |
2657 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2658 | unsigned int gup_flags, struct page **pages) | |
2659 | { | |
2660 | int ret; | |
2661 | ||
2662 | /* | |
2663 | * FIXME: FOLL_LONGTERM does not work with | |
2664 | * get_user_pages_unlocked() (see comments in that function) | |
2665 | */ | |
2666 | if (gup_flags & FOLL_LONGTERM) { | |
d8ed45c5 | 2667 | mmap_read_lock(current->mm); |
64019a2e | 2668 | ret = __gup_longterm_locked(current->mm, |
7af75561 IW |
2669 | start, nr_pages, |
2670 | pages, NULL, gup_flags); | |
d8ed45c5 | 2671 | mmap_read_unlock(current->mm); |
7af75561 IW |
2672 | } else { |
2673 | ret = get_user_pages_unlocked(start, nr_pages, | |
2674 | pages, gup_flags); | |
2675 | } | |
2676 | ||
2677 | return ret; | |
2678 | } | |
2679 | ||
c28b1fc7 JG |
2680 | static unsigned long lockless_pages_from_mm(unsigned long start, |
2681 | unsigned long end, | |
2682 | unsigned int gup_flags, | |
2683 | struct page **pages) | |
2684 | { | |
2685 | unsigned long flags; | |
2686 | int nr_pinned = 0; | |
2687 | ||
2688 | if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || | |
2689 | !gup_fast_permitted(start, end)) | |
2690 | return 0; | |
2691 | ||
2692 | /* | |
2693 | * Disable interrupts. The nested form is used, in order to allow full, | |
2694 | * general purpose use of this routine. | |
2695 | * | |
2696 | * With interrupts disabled, we block page table pages from being freed | |
2697 | * from under us. See struct mmu_table_batch comments in | |
2698 | * include/asm-generic/tlb.h for more details. | |
2699 | * | |
2700 | * We do not adopt an rcu_read_lock() here as we also want to block IPIs | |
2701 | * that come from THPs splitting. | |
2702 | */ | |
2703 | local_irq_save(flags); | |
2704 | gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); | |
2705 | local_irq_restore(flags); | |
2706 | return nr_pinned; | |
2707 | } | |
2708 | ||
2709 | static int internal_get_user_pages_fast(unsigned long start, | |
2710 | unsigned long nr_pages, | |
eddb1c22 JH |
2711 | unsigned int gup_flags, |
2712 | struct page **pages) | |
2667f50e | 2713 | { |
c28b1fc7 JG |
2714 | unsigned long len, end; |
2715 | unsigned long nr_pinned; | |
2716 | int ret; | |
2667f50e | 2717 | |
f4000fdf | 2718 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
376a34ef JH |
2719 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
2720 | FOLL_FAST_ONLY))) | |
817be129 CH |
2721 | return -EINVAL; |
2722 | ||
008cfe44 PX |
2723 | if (gup_flags & FOLL_PIN) |
2724 | atomic_set(¤t->mm->has_pinned, 1); | |
2725 | ||
f81cd178 | 2726 | if (!(gup_flags & FOLL_FAST_ONLY)) |
da1c55f1 | 2727 | might_lock_read(¤t->mm->mmap_lock); |
f81cd178 | 2728 | |
f455c854 | 2729 | start = untagged_addr(start) & PAGE_MASK; |
c28b1fc7 JG |
2730 | len = nr_pages << PAGE_SHIFT; |
2731 | if (check_add_overflow(start, len, &end)) | |
c61611f7 | 2732 | return 0; |
96d4f267 | 2733 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 2734 | return -EFAULT; |
73e10a61 | 2735 | |
c28b1fc7 JG |
2736 | nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); |
2737 | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) | |
2738 | return nr_pinned; | |
2667f50e | 2739 | |
c28b1fc7 JG |
2740 | /* Slow path: try to get the remaining pages with get_user_pages */ |
2741 | start += nr_pinned << PAGE_SHIFT; | |
2742 | pages += nr_pinned; | |
2743 | ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, | |
2744 | pages); | |
2745 | if (ret < 0) { | |
2746 | /* | |
2747 | * The caller has to unpin the pages we already pinned so | |
2748 | * returning -errno is not an option | |
2749 | */ | |
2750 | if (nr_pinned) | |
2751 | return nr_pinned; | |
2752 | return ret; | |
2667f50e | 2753 | } |
c28b1fc7 | 2754 | return ret + nr_pinned; |
2667f50e | 2755 | } |
c28b1fc7 | 2756 | |
dadbb612 SJ |
2757 | /** |
2758 | * get_user_pages_fast_only() - pin user pages in memory | |
2759 | * @start: starting user address | |
2760 | * @nr_pages: number of pages from start to pin | |
2761 | * @gup_flags: flags modifying pin behaviour | |
2762 | * @pages: array that receives pointers to the pages pinned. | |
2763 | * Should be at least nr_pages long. | |
2764 | * | |
9e1f0580 JH |
2765 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
2766 | * the regular GUP. | |
2767 | * Note a difference with get_user_pages_fast: this always returns the | |
2768 | * number of pages pinned, 0 if no pages were pinned. | |
2769 | * | |
2770 | * If the architecture does not support this function, simply return with no | |
2771 | * pages pinned. | |
2772 | * | |
2773 | * Careful, careful! COW breaking can go either way, so a non-write | |
2774 | * access can get ambiguous page results. If you call this function without | |
2775 | * 'write' set, you'd better be sure that you're ok with that ambiguity. | |
2776 | */ | |
dadbb612 SJ |
2777 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
2778 | unsigned int gup_flags, struct page **pages) | |
9e1f0580 | 2779 | { |
376a34ef | 2780 | int nr_pinned; |
9e1f0580 JH |
2781 | /* |
2782 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | |
2783 | * because gup fast is always a "pin with a +1 page refcount" request. | |
376a34ef JH |
2784 | * |
2785 | * FOLL_FAST_ONLY is required in order to match the API description of | |
2786 | * this routine: no fall back to regular ("slow") GUP. | |
9e1f0580 | 2787 | */ |
dadbb612 | 2788 | gup_flags |= FOLL_GET | FOLL_FAST_ONLY; |
9e1f0580 | 2789 | |
376a34ef JH |
2790 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, |
2791 | pages); | |
9e1f0580 JH |
2792 | |
2793 | /* | |
376a34ef JH |
2794 | * As specified in the API description above, this routine is not |
2795 | * allowed to return negative values. However, the common core | |
2796 | * routine internal_get_user_pages_fast() *can* return -errno. | |
2797 | * Therefore, correct for that here: | |
9e1f0580 | 2798 | */ |
376a34ef JH |
2799 | if (nr_pinned < 0) |
2800 | nr_pinned = 0; | |
9e1f0580 JH |
2801 | |
2802 | return nr_pinned; | |
2803 | } | |
dadbb612 | 2804 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); |
9e1f0580 | 2805 | |
eddb1c22 JH |
2806 | /** |
2807 | * get_user_pages_fast() - pin user pages in memory | |
3faa52c0 JH |
2808 | * @start: starting user address |
2809 | * @nr_pages: number of pages from start to pin | |
2810 | * @gup_flags: flags modifying pin behaviour | |
2811 | * @pages: array that receives pointers to the pages pinned. | |
2812 | * Should be at least nr_pages long. | |
eddb1c22 | 2813 | * |
c1e8d7c6 | 2814 | * Attempt to pin user pages in memory without taking mm->mmap_lock. |
eddb1c22 JH |
2815 | * If not successful, it will fall back to taking the lock and |
2816 | * calling get_user_pages(). | |
2817 | * | |
2818 | * Returns number of pages pinned. This may be fewer than the number requested. | |
2819 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | |
2820 | * -errno. | |
2821 | */ | |
2822 | int get_user_pages_fast(unsigned long start, int nr_pages, | |
2823 | unsigned int gup_flags, struct page **pages) | |
2824 | { | |
447f3e45 | 2825 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
2826 | return -EINVAL; |
2827 | ||
94202f12 JH |
2828 | /* |
2829 | * The caller may or may not have explicitly set FOLL_GET; either way is | |
2830 | * OK. However, internally (within mm/gup.c), gup fast variants must set | |
2831 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | |
2832 | * request. | |
2833 | */ | |
2834 | gup_flags |= FOLL_GET; | |
eddb1c22 JH |
2835 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
2836 | } | |
050a9adc | 2837 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
eddb1c22 JH |
2838 | |
2839 | /** | |
2840 | * pin_user_pages_fast() - pin user pages in memory without taking locks | |
2841 | * | |
3faa52c0 JH |
2842 | * @start: starting user address |
2843 | * @nr_pages: number of pages from start to pin | |
2844 | * @gup_flags: flags modifying pin behaviour | |
2845 | * @pages: array that receives pointers to the pages pinned. | |
2846 | * Should be at least nr_pages long. | |
2847 | * | |
2848 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | |
2849 | * get_user_pages_fast() for documentation on the function arguments, because | |
2850 | * the arguments here are identical. | |
2851 | * | |
2852 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 2853 | * see Documentation/core-api/pin_user_pages.rst for further details. |
eddb1c22 JH |
2854 | */ |
2855 | int pin_user_pages_fast(unsigned long start, int nr_pages, | |
2856 | unsigned int gup_flags, struct page **pages) | |
2857 | { | |
3faa52c0 JH |
2858 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2859 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2860 | return -EINVAL; | |
2861 | ||
2862 | gup_flags |= FOLL_PIN; | |
2863 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | |
eddb1c22 JH |
2864 | } |
2865 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | |
2866 | ||
104acc32 | 2867 | /* |
dadbb612 SJ |
2868 | * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior |
2869 | * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. | |
104acc32 JH |
2870 | * |
2871 | * The API rules are the same, too: no negative values may be returned. | |
2872 | */ | |
2873 | int pin_user_pages_fast_only(unsigned long start, int nr_pages, | |
2874 | unsigned int gup_flags, struct page **pages) | |
2875 | { | |
2876 | int nr_pinned; | |
2877 | ||
2878 | /* | |
2879 | * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API | |
2880 | * rules require returning 0, rather than -errno: | |
2881 | */ | |
2882 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2883 | return 0; | |
2884 | /* | |
2885 | * FOLL_FAST_ONLY is required in order to match the API description of | |
2886 | * this routine: no fall back to regular ("slow") GUP. | |
2887 | */ | |
2888 | gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); | |
2889 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, | |
2890 | pages); | |
2891 | /* | |
2892 | * This routine is not allowed to return negative values. However, | |
2893 | * internal_get_user_pages_fast() *can* return -errno. Therefore, | |
2894 | * correct for that here: | |
2895 | */ | |
2896 | if (nr_pinned < 0) | |
2897 | nr_pinned = 0; | |
2898 | ||
2899 | return nr_pinned; | |
2900 | } | |
2901 | EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); | |
2902 | ||
eddb1c22 | 2903 | /** |
64019a2e | 2904 | * pin_user_pages_remote() - pin pages of a remote process |
eddb1c22 | 2905 | * |
3faa52c0 JH |
2906 | * @mm: mm_struct of target mm |
2907 | * @start: starting user address | |
2908 | * @nr_pages: number of pages from start to pin | |
2909 | * @gup_flags: flags modifying lookup behaviour | |
2910 | * @pages: array that receives pointers to the pages pinned. | |
2911 | * Should be at least nr_pages long. Or NULL, if caller | |
2912 | * only intends to ensure the pages are faulted in. | |
2913 | * @vmas: array of pointers to vmas corresponding to each page. | |
2914 | * Or NULL if the caller does not require them. | |
2915 | * @locked: pointer to lock flag indicating whether lock is held and | |
2916 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2917 | * utilised. Lock must initially be held. | |
2918 | * | |
2919 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | |
2920 | * get_user_pages_remote() for documentation on the function arguments, because | |
2921 | * the arguments here are identical. | |
2922 | * | |
2923 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 2924 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 | 2925 | */ |
64019a2e | 2926 | long pin_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
2927 | unsigned long start, unsigned long nr_pages, |
2928 | unsigned int gup_flags, struct page **pages, | |
2929 | struct vm_area_struct **vmas, int *locked) | |
2930 | { | |
3faa52c0 JH |
2931 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2932 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2933 | return -EINVAL; | |
2934 | ||
2935 | gup_flags |= FOLL_PIN; | |
64019a2e | 2936 | return __get_user_pages_remote(mm, start, nr_pages, gup_flags, |
3faa52c0 | 2937 | pages, vmas, locked); |
eddb1c22 JH |
2938 | } |
2939 | EXPORT_SYMBOL(pin_user_pages_remote); | |
2940 | ||
2941 | /** | |
2942 | * pin_user_pages() - pin user pages in memory for use by other devices | |
2943 | * | |
3faa52c0 JH |
2944 | * @start: starting user address |
2945 | * @nr_pages: number of pages from start to pin | |
2946 | * @gup_flags: flags modifying lookup behaviour | |
2947 | * @pages: array that receives pointers to the pages pinned. | |
2948 | * Should be at least nr_pages long. Or NULL, if caller | |
2949 | * only intends to ensure the pages are faulted in. | |
2950 | * @vmas: array of pointers to vmas corresponding to each page. | |
2951 | * Or NULL if the caller does not require them. | |
2952 | * | |
2953 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | |
2954 | * FOLL_PIN is set. | |
2955 | * | |
2956 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 2957 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 JH |
2958 | */ |
2959 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | |
2960 | unsigned int gup_flags, struct page **pages, | |
2961 | struct vm_area_struct **vmas) | |
2962 | { | |
3faa52c0 JH |
2963 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
2964 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2965 | return -EINVAL; | |
2966 | ||
2967 | gup_flags |= FOLL_PIN; | |
64019a2e | 2968 | return __gup_longterm_locked(current->mm, start, nr_pages, |
3faa52c0 | 2969 | pages, vmas, gup_flags); |
eddb1c22 JH |
2970 | } |
2971 | EXPORT_SYMBOL(pin_user_pages); | |
91429023 JH |
2972 | |
2973 | /* | |
2974 | * pin_user_pages_unlocked() is the FOLL_PIN variant of | |
2975 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets | |
2976 | * FOLL_PIN and rejects FOLL_GET. | |
2977 | */ | |
2978 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | |
2979 | struct page **pages, unsigned int gup_flags) | |
2980 | { | |
2981 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
2982 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
2983 | return -EINVAL; | |
2984 | ||
2985 | gup_flags |= FOLL_PIN; | |
2986 | return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); | |
2987 | } | |
2988 | EXPORT_SYMBOL(pin_user_pages_unlocked); | |
420c2091 JH |
2989 | |
2990 | /* | |
2991 | * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). | |
2992 | * Behavior is the same, except that this one sets FOLL_PIN and rejects | |
2993 | * FOLL_GET. | |
2994 | */ | |
2995 | long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, | |
2996 | unsigned int gup_flags, struct page **pages, | |
2997 | int *locked) | |
2998 | { | |
2999 | /* | |
3000 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
3001 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
3002 | * vmas. As there are no users of this flag in this call we simply | |
3003 | * disallow this option for now. | |
3004 | */ | |
3005 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
3006 | return -EINVAL; | |
3007 | ||
3008 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
3009 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3010 | return -EINVAL; | |
3011 | ||
3012 | gup_flags |= FOLL_PIN; | |
64019a2e | 3013 | return __get_user_pages_locked(current->mm, start, nr_pages, |
420c2091 JH |
3014 | pages, NULL, locked, |
3015 | gup_flags | FOLL_TOUCH); | |
3016 | } | |
3017 | EXPORT_SYMBOL(pin_user_pages_locked); |