]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
1507f512 | 13 | #include <linux/secretmem.h> |
4bbd4c77 | 14 | |
174cd4b1 | 15 | #include <linux/sched/signal.h> |
2667f50e | 16 | #include <linux/rwsem.h> |
f30c59e9 | 17 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
18 | #include <linux/migrate.h> |
19 | #include <linux/mm_inline.h> | |
20 | #include <linux/sched/mm.h> | |
1027e443 | 21 | |
33a709b2 | 22 | #include <asm/mmu_context.h> |
1027e443 | 23 | #include <asm/tlbflush.h> |
2667f50e | 24 | |
4bbd4c77 KS |
25 | #include "internal.h" |
26 | ||
df06b37f KB |
27 | struct follow_page_context { |
28 | struct dev_pagemap *pgmap; | |
29 | unsigned int page_mask; | |
30 | }; | |
31 | ||
b6a2619c DH |
32 | static inline void sanity_check_pinned_pages(struct page **pages, |
33 | unsigned long npages) | |
34 | { | |
35 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) | |
36 | return; | |
37 | ||
38 | /* | |
39 | * We only pin anonymous pages if they are exclusive. Once pinned, we | |
40 | * can no longer turn them possibly shared and PageAnonExclusive() will | |
41 | * stick around until the page is freed. | |
42 | * | |
43 | * We'd like to verify that our pinned anonymous pages are still mapped | |
44 | * exclusively. The issue with anon THP is that we don't know how | |
45 | * they are/were mapped when pinning them. However, for anon | |
46 | * THP we can assume that either the given page (PTE-mapped THP) or | |
47 | * the head page (PMD-mapped THP) should be PageAnonExclusive(). If | |
48 | * neither is the case, there is certainly something wrong. | |
49 | */ | |
50 | for (; npages; npages--, pages++) { | |
51 | struct page *page = *pages; | |
52 | struct folio *folio = page_folio(page); | |
53 | ||
54 | if (!folio_test_anon(folio)) | |
55 | continue; | |
56 | if (!folio_test_large(folio) || folio_test_hugetlb(folio)) | |
57 | VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); | |
58 | else | |
59 | /* Either a PTE-mapped or a PMD-mapped THP. */ | |
60 | VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && | |
61 | !PageAnonExclusive(page), page); | |
62 | } | |
63 | } | |
64 | ||
cd1adf1b | 65 | /* |
ece1ed7b | 66 | * Return the folio with ref appropriately incremented, |
cd1adf1b | 67 | * or NULL if that failed. |
a707cdd5 | 68 | */ |
ece1ed7b | 69 | static inline struct folio *try_get_folio(struct page *page, int refs) |
a707cdd5 | 70 | { |
ece1ed7b | 71 | struct folio *folio; |
a707cdd5 | 72 | |
59409373 | 73 | retry: |
ece1ed7b MWO |
74 | folio = page_folio(page); |
75 | if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) | |
a707cdd5 | 76 | return NULL; |
ece1ed7b | 77 | if (unlikely(!folio_ref_try_add_rcu(folio, refs))) |
a707cdd5 | 78 | return NULL; |
c24d3732 JH |
79 | |
80 | /* | |
ece1ed7b MWO |
81 | * At this point we have a stable reference to the folio; but it |
82 | * could be that between calling page_folio() and the refcount | |
83 | * increment, the folio was split, in which case we'd end up | |
84 | * holding a reference on a folio that has nothing to do with the page | |
c24d3732 | 85 | * we were given anymore. |
ece1ed7b MWO |
86 | * So now that the folio is stable, recheck that the page still |
87 | * belongs to this folio. | |
c24d3732 | 88 | */ |
ece1ed7b | 89 | if (unlikely(page_folio(page) != folio)) { |
f4f451a1 MS |
90 | if (!put_devmap_managed_page_refs(&folio->page, refs)) |
91 | folio_put_refs(folio, refs); | |
59409373 | 92 | goto retry; |
c24d3732 JH |
93 | } |
94 | ||
ece1ed7b | 95 | return folio; |
a707cdd5 JH |
96 | } |
97 | ||
3967db22 | 98 | /** |
ece1ed7b | 99 | * try_grab_folio() - Attempt to get or pin a folio. |
3967db22 | 100 | * @page: pointer to page to be grabbed |
ece1ed7b | 101 | * @refs: the value to (effectively) add to the folio's refcount |
3967db22 JH |
102 | * @flags: gup flags: these are the FOLL_* flag values. |
103 | * | |
3faa52c0 | 104 | * "grab" names in this file mean, "look at flags to decide whether to use |
ece1ed7b | 105 | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. |
3faa52c0 JH |
106 | * |
107 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | |
108 | * same time. (That's true throughout the get_user_pages*() and | |
109 | * pin_user_pages*() APIs.) Cases: | |
110 | * | |
ece1ed7b | 111 | * FOLL_GET: folio's refcount will be incremented by @refs. |
3967db22 | 112 | * |
ece1ed7b MWO |
113 | * FOLL_PIN on large folios: folio's refcount will be incremented by |
114 | * @refs, and its compound_pincount will be incremented by @refs. | |
3967db22 | 115 | * |
ece1ed7b | 116 | * FOLL_PIN on single-page folios: folio's refcount will be incremented by |
5232c63f | 117 | * @refs * GUP_PIN_COUNTING_BIAS. |
3faa52c0 | 118 | * |
ece1ed7b MWO |
119 | * Return: The folio containing @page (with refcount appropriately |
120 | * incremented) for success, or NULL upon failure. If neither FOLL_GET | |
121 | * nor FOLL_PIN was set, that's considered failure, and furthermore, | |
122 | * a likely bug in the caller, so a warning is also emitted. | |
3faa52c0 | 123 | */ |
ece1ed7b | 124 | struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) |
3faa52c0 JH |
125 | { |
126 | if (flags & FOLL_GET) | |
ece1ed7b | 127 | return try_get_folio(page, refs); |
3faa52c0 | 128 | else if (flags & FOLL_PIN) { |
ece1ed7b MWO |
129 | struct folio *folio; |
130 | ||
df3a0a21 | 131 | /* |
d1e153fe PT |
132 | * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a |
133 | * right zone, so fail and let the caller fall back to the slow | |
134 | * path. | |
df3a0a21 | 135 | */ |
d1e153fe | 136 | if (unlikely((flags & FOLL_LONGTERM) && |
6077c943 | 137 | !is_longterm_pinnable_page(page))) |
df3a0a21 PL |
138 | return NULL; |
139 | ||
c24d3732 JH |
140 | /* |
141 | * CAUTION: Don't use compound_head() on the page before this | |
142 | * point, the result won't be stable. | |
143 | */ | |
ece1ed7b MWO |
144 | folio = try_get_folio(page, refs); |
145 | if (!folio) | |
c24d3732 JH |
146 | return NULL; |
147 | ||
47e29d32 | 148 | /* |
ece1ed7b | 149 | * When pinning a large folio, use an exact count to track it. |
47e29d32 | 150 | * |
ece1ed7b MWO |
151 | * However, be sure to *also* increment the normal folio |
152 | * refcount field at least once, so that the folio really | |
78d9d6ce | 153 | * is pinned. That's why the refcount from the earlier |
ece1ed7b | 154 | * try_get_folio() is left intact. |
47e29d32 | 155 | */ |
ece1ed7b MWO |
156 | if (folio_test_large(folio)) |
157 | atomic_add(refs, folio_pincount_ptr(folio)); | |
c24d3732 | 158 | else |
ece1ed7b MWO |
159 | folio_ref_add(folio, |
160 | refs * (GUP_PIN_COUNTING_BIAS - 1)); | |
088b8aa5 DH |
161 | /* |
162 | * Adjust the pincount before re-checking the PTE for changes. | |
163 | * This is essentially a smp_mb() and is paired with a memory | |
164 | * barrier in page_try_share_anon_rmap(). | |
165 | */ | |
166 | smp_mb__after_atomic(); | |
167 | ||
ece1ed7b | 168 | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); |
47e29d32 | 169 | |
ece1ed7b | 170 | return folio; |
3faa52c0 JH |
171 | } |
172 | ||
173 | WARN_ON_ONCE(1); | |
174 | return NULL; | |
175 | } | |
176 | ||
d8ddc099 | 177 | static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) |
4509b42c JG |
178 | { |
179 | if (flags & FOLL_PIN) { | |
d8ddc099 MWO |
180 | node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); |
181 | if (folio_test_large(folio)) | |
182 | atomic_sub(refs, folio_pincount_ptr(folio)); | |
4509b42c JG |
183 | else |
184 | refs *= GUP_PIN_COUNTING_BIAS; | |
185 | } | |
186 | ||
f4f451a1 MS |
187 | if (!put_devmap_managed_page_refs(&folio->page, refs)) |
188 | folio_put_refs(folio, refs); | |
4509b42c JG |
189 | } |
190 | ||
3faa52c0 JH |
191 | /** |
192 | * try_grab_page() - elevate a page's refcount by a flag-dependent amount | |
5fec0719 MWO |
193 | * @page: pointer to page to be grabbed |
194 | * @flags: gup flags: these are the FOLL_* flag values. | |
3faa52c0 JH |
195 | * |
196 | * This might not do anything at all, depending on the flags argument. | |
197 | * | |
198 | * "grab" names in this file mean, "look at flags to decide whether to use | |
199 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
200 | * | |
3faa52c0 | 201 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same |
ece1ed7b | 202 | * time. Cases: please see the try_grab_folio() documentation, with |
3967db22 | 203 | * "refs=1". |
3faa52c0 JH |
204 | * |
205 | * Return: true for success, or if no action was required (if neither FOLL_PIN | |
206 | * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or | |
207 | * FOLL_PIN was set, but the page could not be grabbed. | |
208 | */ | |
209 | bool __must_check try_grab_page(struct page *page, unsigned int flags) | |
210 | { | |
5fec0719 MWO |
211 | struct folio *folio = page_folio(page); |
212 | ||
c36c04c2 | 213 | WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); |
5fec0719 MWO |
214 | if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) |
215 | return false; | |
3faa52c0 | 216 | |
c36c04c2 | 217 | if (flags & FOLL_GET) |
5fec0719 | 218 | folio_ref_inc(folio); |
c36c04c2 | 219 | else if (flags & FOLL_PIN) { |
c36c04c2 | 220 | /* |
5fec0719 | 221 | * Similar to try_grab_folio(): be sure to *also* |
78d9d6ce MWO |
222 | * increment the normal page refcount field at least once, |
223 | * so that the page really is pinned. | |
c36c04c2 | 224 | */ |
5fec0719 MWO |
225 | if (folio_test_large(folio)) { |
226 | folio_ref_add(folio, 1); | |
227 | atomic_add(1, folio_pincount_ptr(folio)); | |
8ea2979c | 228 | } else { |
5fec0719 | 229 | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); |
8ea2979c | 230 | } |
c36c04c2 | 231 | |
5fec0719 | 232 | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); |
c36c04c2 JH |
233 | } |
234 | ||
235 | return true; | |
3faa52c0 JH |
236 | } |
237 | ||
3faa52c0 JH |
238 | /** |
239 | * unpin_user_page() - release a dma-pinned page | |
240 | * @page: pointer to page to be released | |
241 | * | |
242 | * Pages that were pinned via pin_user_pages*() must be released via either | |
243 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | |
244 | * that such pages can be separately tracked and uniquely handled. In | |
245 | * particular, interactions with RDMA and filesystems need special handling. | |
246 | */ | |
247 | void unpin_user_page(struct page *page) | |
248 | { | |
b6a2619c | 249 | sanity_check_pinned_pages(&page, 1); |
d8ddc099 | 250 | gup_put_folio(page_folio(page), 1, FOLL_PIN); |
3faa52c0 JH |
251 | } |
252 | EXPORT_SYMBOL(unpin_user_page); | |
253 | ||
659508f9 | 254 | static inline struct folio *gup_folio_range_next(struct page *start, |
8f39f5fc | 255 | unsigned long npages, unsigned long i, unsigned int *ntails) |
458a4f78 | 256 | { |
659508f9 MWO |
257 | struct page *next = nth_page(start, i); |
258 | struct folio *folio = page_folio(next); | |
458a4f78 JM |
259 | unsigned int nr = 1; |
260 | ||
659508f9 | 261 | if (folio_test_large(folio)) |
4c654229 | 262 | nr = min_t(unsigned int, npages - i, |
659508f9 | 263 | folio_nr_pages(folio) - folio_page_idx(folio, next)); |
458a4f78 | 264 | |
458a4f78 | 265 | *ntails = nr; |
659508f9 | 266 | return folio; |
458a4f78 JM |
267 | } |
268 | ||
12521c76 | 269 | static inline struct folio *gup_folio_next(struct page **list, |
28297dbc | 270 | unsigned long npages, unsigned long i, unsigned int *ntails) |
8745d7f6 | 271 | { |
12521c76 | 272 | struct folio *folio = page_folio(list[i]); |
8745d7f6 JM |
273 | unsigned int nr; |
274 | ||
8745d7f6 | 275 | for (nr = i + 1; nr < npages; nr++) { |
12521c76 | 276 | if (page_folio(list[nr]) != folio) |
8745d7f6 JM |
277 | break; |
278 | } | |
279 | ||
8745d7f6 | 280 | *ntails = nr - i; |
12521c76 | 281 | return folio; |
8745d7f6 JM |
282 | } |
283 | ||
fc1d8e7c | 284 | /** |
f1f6a7dd | 285 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
2d15eb31 | 286 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
fc1d8e7c | 287 | * @npages: number of pages in the @pages array. |
2d15eb31 | 288 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
289 | * |
290 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
291 | * variants called on that page. | |
292 | * | |
293 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 | 294 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
f1f6a7dd JH |
295 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
296 | * possibly via unpin_user_pages(), for the non-dirty case. | |
fc1d8e7c | 297 | * |
f1f6a7dd | 298 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 299 | * |
2d15eb31 AM |
300 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
301 | * required, then the caller should a) verify that this is really correct, | |
302 | * because _lock() is usually required, and b) hand code it: | |
f1f6a7dd | 303 | * set_page_dirty_lock(), unpin_user_page(). |
fc1d8e7c JH |
304 | * |
305 | */ | |
f1f6a7dd JH |
306 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
307 | bool make_dirty) | |
fc1d8e7c | 308 | { |
12521c76 MWO |
309 | unsigned long i; |
310 | struct folio *folio; | |
311 | unsigned int nr; | |
2d15eb31 AM |
312 | |
313 | if (!make_dirty) { | |
f1f6a7dd | 314 | unpin_user_pages(pages, npages); |
2d15eb31 AM |
315 | return; |
316 | } | |
317 | ||
b6a2619c | 318 | sanity_check_pinned_pages(pages, npages); |
12521c76 MWO |
319 | for (i = 0; i < npages; i += nr) { |
320 | folio = gup_folio_next(pages, npages, i, &nr); | |
2d15eb31 AM |
321 | /* |
322 | * Checking PageDirty at this point may race with | |
323 | * clear_page_dirty_for_io(), but that's OK. Two key | |
324 | * cases: | |
325 | * | |
326 | * 1) This code sees the page as already dirty, so it | |
327 | * skips the call to set_page_dirty(). That could happen | |
328 | * because clear_page_dirty_for_io() called | |
329 | * page_mkclean(), followed by set_page_dirty(). | |
330 | * However, now the page is going to get written back, | |
331 | * which meets the original intention of setting it | |
332 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
333 | * on to call TestClearPageDirty(), and write the page | |
334 | * back. | |
335 | * | |
336 | * 2) This code sees the page as clean, so it calls | |
337 | * set_page_dirty(). The page stays dirty, despite being | |
338 | * written back, so it gets written back again in the | |
339 | * next writeback cycle. This is harmless. | |
340 | */ | |
12521c76 MWO |
341 | if (!folio_test_dirty(folio)) { |
342 | folio_lock(folio); | |
343 | folio_mark_dirty(folio); | |
344 | folio_unlock(folio); | |
345 | } | |
346 | gup_put_folio(folio, nr, FOLL_PIN); | |
2d15eb31 | 347 | } |
fc1d8e7c | 348 | } |
f1f6a7dd | 349 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
fc1d8e7c | 350 | |
458a4f78 JM |
351 | /** |
352 | * unpin_user_page_range_dirty_lock() - release and optionally dirty | |
353 | * gup-pinned page range | |
354 | * | |
355 | * @page: the starting page of a range maybe marked dirty, and definitely released. | |
356 | * @npages: number of consecutive pages to release. | |
357 | * @make_dirty: whether to mark the pages dirty | |
358 | * | |
359 | * "gup-pinned page range" refers to a range of pages that has had one of the | |
360 | * pin_user_pages() variants called on that page. | |
361 | * | |
362 | * For the page ranges defined by [page .. page+npages], make that range (or | |
363 | * its head pages, if a compound page) dirty, if @make_dirty is true, and if the | |
364 | * page range was previously listed as clean. | |
365 | * | |
366 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | |
367 | * required, then the caller should a) verify that this is really correct, | |
368 | * because _lock() is usually required, and b) hand code it: | |
369 | * set_page_dirty_lock(), unpin_user_page(). | |
370 | * | |
371 | */ | |
372 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, | |
373 | bool make_dirty) | |
374 | { | |
659508f9 MWO |
375 | unsigned long i; |
376 | struct folio *folio; | |
377 | unsigned int nr; | |
378 | ||
379 | for (i = 0; i < npages; i += nr) { | |
380 | folio = gup_folio_range_next(page, npages, i, &nr); | |
381 | if (make_dirty && !folio_test_dirty(folio)) { | |
382 | folio_lock(folio); | |
383 | folio_mark_dirty(folio); | |
384 | folio_unlock(folio); | |
385 | } | |
386 | gup_put_folio(folio, nr, FOLL_PIN); | |
458a4f78 JM |
387 | } |
388 | } | |
389 | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); | |
390 | ||
b6a2619c DH |
391 | static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) |
392 | { | |
393 | unsigned long i; | |
394 | struct folio *folio; | |
395 | unsigned int nr; | |
396 | ||
397 | /* | |
398 | * Don't perform any sanity checks because we might have raced with | |
399 | * fork() and some anonymous pages might now actually be shared -- | |
400 | * which is why we're unpinning after all. | |
401 | */ | |
402 | for (i = 0; i < npages; i += nr) { | |
403 | folio = gup_folio_next(pages, npages, i, &nr); | |
404 | gup_put_folio(folio, nr, FOLL_PIN); | |
405 | } | |
406 | } | |
407 | ||
fc1d8e7c | 408 | /** |
f1f6a7dd | 409 | * unpin_user_pages() - release an array of gup-pinned pages. |
fc1d8e7c JH |
410 | * @pages: array of pages to be marked dirty and released. |
411 | * @npages: number of pages in the @pages array. | |
412 | * | |
f1f6a7dd | 413 | * For each page in the @pages array, release the page using unpin_user_page(). |
fc1d8e7c | 414 | * |
f1f6a7dd | 415 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 416 | */ |
f1f6a7dd | 417 | void unpin_user_pages(struct page **pages, unsigned long npages) |
fc1d8e7c | 418 | { |
12521c76 MWO |
419 | unsigned long i; |
420 | struct folio *folio; | |
421 | unsigned int nr; | |
fc1d8e7c | 422 | |
146608bb JH |
423 | /* |
424 | * If this WARN_ON() fires, then the system *might* be leaking pages (by | |
425 | * leaving them pinned), but probably not. More likely, gup/pup returned | |
426 | * a hard -ERRNO error to the caller, who erroneously passed it here. | |
427 | */ | |
428 | if (WARN_ON(IS_ERR_VALUE(npages))) | |
429 | return; | |
31b912de | 430 | |
b6a2619c | 431 | sanity_check_pinned_pages(pages, npages); |
12521c76 MWO |
432 | for (i = 0; i < npages; i += nr) { |
433 | folio = gup_folio_next(pages, npages, i, &nr); | |
434 | gup_put_folio(folio, nr, FOLL_PIN); | |
e7602748 | 435 | } |
fc1d8e7c | 436 | } |
f1f6a7dd | 437 | EXPORT_SYMBOL(unpin_user_pages); |
fc1d8e7c | 438 | |
a458b76a AA |
439 | /* |
440 | * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's | |
441 | * lifecycle. Avoid setting the bit unless necessary, or it might cause write | |
442 | * cache bouncing on large SMP machines for concurrent pinned gups. | |
443 | */ | |
444 | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) | |
445 | { | |
446 | if (!test_bit(MMF_HAS_PINNED, mm_flags)) | |
447 | set_bit(MMF_HAS_PINNED, mm_flags); | |
448 | } | |
449 | ||
050a9adc | 450 | #ifdef CONFIG_MMU |
69e68b4f KS |
451 | static struct page *no_page_table(struct vm_area_struct *vma, |
452 | unsigned int flags) | |
4bbd4c77 | 453 | { |
69e68b4f KS |
454 | /* |
455 | * When core dumping an enormous anonymous area that nobody | |
456 | * has touched so far, we don't want to allocate unnecessary pages or | |
457 | * page tables. Return error instead of NULL to skip handle_mm_fault, | |
458 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
459 | * But we can only make this optimization where a hole would surely | |
460 | * be zero-filled if handle_mm_fault() actually did handle it. | |
461 | */ | |
a0137f16 AK |
462 | if ((flags & FOLL_DUMP) && |
463 | (vma_is_anonymous(vma) || !vma->vm_ops->fault)) | |
69e68b4f KS |
464 | return ERR_PTR(-EFAULT); |
465 | return NULL; | |
466 | } | |
4bbd4c77 | 467 | |
1027e443 KS |
468 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
469 | pte_t *pte, unsigned int flags) | |
470 | { | |
1027e443 KS |
471 | if (flags & FOLL_TOUCH) { |
472 | pte_t entry = *pte; | |
473 | ||
474 | if (flags & FOLL_WRITE) | |
475 | entry = pte_mkdirty(entry); | |
476 | entry = pte_mkyoung(entry); | |
477 | ||
478 | if (!pte_same(*pte, entry)) { | |
479 | set_pte_at(vma->vm_mm, address, pte, entry); | |
480 | update_mmu_cache(vma, address, pte); | |
481 | } | |
482 | } | |
483 | ||
484 | /* Proper page table entry exists, but no corresponding struct page */ | |
485 | return -EEXIST; | |
486 | } | |
487 | ||
5535be30 DH |
488 | /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ |
489 | static inline bool can_follow_write_pte(pte_t pte, struct page *page, | |
490 | struct vm_area_struct *vma, | |
491 | unsigned int flags) | |
19be0eaf | 492 | { |
5535be30 DH |
493 | /* If the pte is writable, we can write to the page. */ |
494 | if (pte_write(pte)) | |
495 | return true; | |
496 | ||
497 | /* Maybe FOLL_FORCE is set to override it? */ | |
498 | if (!(flags & FOLL_FORCE)) | |
499 | return false; | |
500 | ||
501 | /* But FOLL_FORCE has no effect on shared mappings */ | |
502 | if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) | |
503 | return false; | |
504 | ||
505 | /* ... or read-only private ones */ | |
506 | if (!(vma->vm_flags & VM_MAYWRITE)) | |
507 | return false; | |
508 | ||
509 | /* ... or already writable ones that just need to take a write fault */ | |
510 | if (vma->vm_flags & VM_WRITE) | |
511 | return false; | |
512 | ||
513 | /* | |
514 | * See can_change_pte_writable(): we broke COW and could map the page | |
515 | * writable if we have an exclusive anonymous page ... | |
516 | */ | |
517 | if (!page || !PageAnon(page) || !PageAnonExclusive(page)) | |
518 | return false; | |
519 | ||
520 | /* ... and a write-fault isn't required for other reasons. */ | |
521 | if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) | |
522 | return false; | |
523 | return !userfaultfd_pte_wp(vma, pte); | |
19be0eaf LT |
524 | } |
525 | ||
69e68b4f | 526 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
527 | unsigned long address, pmd_t *pmd, unsigned int flags, |
528 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
529 | { |
530 | struct mm_struct *mm = vma->vm_mm; | |
531 | struct page *page; | |
532 | spinlock_t *ptl; | |
533 | pte_t *ptep, pte; | |
f28d4363 | 534 | int ret; |
4bbd4c77 | 535 | |
eddb1c22 JH |
536 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
537 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | |
538 | (FOLL_PIN | FOLL_GET))) | |
539 | return ERR_PTR(-EINVAL); | |
fac35ba7 BW |
540 | |
541 | /* | |
542 | * Considering PTE level hugetlb, like continuous-PTE hugetlb on | |
543 | * ARM64 architecture. | |
544 | */ | |
545 | if (is_vm_hugetlb_page(vma)) { | |
546 | page = follow_huge_pmd_pte(vma, address, flags); | |
547 | if (page) | |
548 | return page; | |
549 | return no_page_table(vma, flags); | |
550 | } | |
551 | ||
69e68b4f | 552 | retry: |
4bbd4c77 | 553 | if (unlikely(pmd_bad(*pmd))) |
69e68b4f | 554 | return no_page_table(vma, flags); |
4bbd4c77 KS |
555 | |
556 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
4bbd4c77 KS |
557 | pte = *ptep; |
558 | if (!pte_present(pte)) { | |
559 | swp_entry_t entry; | |
560 | /* | |
561 | * KSM's break_ksm() relies upon recognizing a ksm page | |
562 | * even while it is being migrated, so for that case we | |
563 | * need migration_entry_wait(). | |
564 | */ | |
565 | if (likely(!(flags & FOLL_MIGRATION))) | |
566 | goto no_page; | |
0661a336 | 567 | if (pte_none(pte)) |
4bbd4c77 KS |
568 | goto no_page; |
569 | entry = pte_to_swp_entry(pte); | |
570 | if (!is_migration_entry(entry)) | |
571 | goto no_page; | |
572 | pte_unmap_unlock(ptep, ptl); | |
573 | migration_entry_wait(mm, pmd, address); | |
69e68b4f | 574 | goto retry; |
4bbd4c77 | 575 | } |
474098ed | 576 | if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) |
4bbd4c77 | 577 | goto no_page; |
4bbd4c77 KS |
578 | |
579 | page = vm_normal_page(vma, address, pte); | |
5535be30 DH |
580 | |
581 | /* | |
582 | * We only care about anon pages in can_follow_write_pte() and don't | |
583 | * have to worry about pte_devmap() because they are never anon. | |
584 | */ | |
585 | if ((flags & FOLL_WRITE) && | |
586 | !can_follow_write_pte(pte, page, vma, flags)) { | |
587 | page = NULL; | |
588 | goto out; | |
589 | } | |
590 | ||
3faa52c0 | 591 | if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { |
3565fce3 | 592 | /* |
3faa52c0 JH |
593 | * Only return device mapping pages in the FOLL_GET or FOLL_PIN |
594 | * case since they are only valid while holding the pgmap | |
595 | * reference. | |
3565fce3 | 596 | */ |
df06b37f KB |
597 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
598 | if (*pgmap) | |
3565fce3 DW |
599 | page = pte_page(pte); |
600 | else | |
601 | goto no_page; | |
602 | } else if (unlikely(!page)) { | |
1027e443 KS |
603 | if (flags & FOLL_DUMP) { |
604 | /* Avoid special (like zero) pages in core dumps */ | |
605 | page = ERR_PTR(-EFAULT); | |
606 | goto out; | |
607 | } | |
608 | ||
609 | if (is_zero_pfn(pte_pfn(pte))) { | |
610 | page = pte_page(pte); | |
611 | } else { | |
1027e443 KS |
612 | ret = follow_pfn_pte(vma, address, ptep, flags); |
613 | page = ERR_PTR(ret); | |
614 | goto out; | |
615 | } | |
4bbd4c77 KS |
616 | } |
617 | ||
a7f22660 DH |
618 | if (!pte_write(pte) && gup_must_unshare(flags, page)) { |
619 | page = ERR_PTR(-EMLINK); | |
620 | goto out; | |
621 | } | |
b6a2619c DH |
622 | |
623 | VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && | |
624 | !PageAnonExclusive(page), page); | |
625 | ||
3faa52c0 JH |
626 | /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
627 | if (unlikely(!try_grab_page(page, flags))) { | |
628 | page = ERR_PTR(-ENOMEM); | |
629 | goto out; | |
8fde12ca | 630 | } |
f28d4363 CI |
631 | /* |
632 | * We need to make the page accessible if and only if we are going | |
633 | * to access its content (the FOLL_PIN case). Please see | |
634 | * Documentation/core-api/pin_user_pages.rst for details. | |
635 | */ | |
636 | if (flags & FOLL_PIN) { | |
637 | ret = arch_make_page_accessible(page); | |
638 | if (ret) { | |
639 | unpin_user_page(page); | |
640 | page = ERR_PTR(ret); | |
641 | goto out; | |
642 | } | |
643 | } | |
4bbd4c77 KS |
644 | if (flags & FOLL_TOUCH) { |
645 | if ((flags & FOLL_WRITE) && | |
646 | !pte_dirty(pte) && !PageDirty(page)) | |
647 | set_page_dirty(page); | |
648 | /* | |
649 | * pte_mkyoung() would be more correct here, but atomic care | |
650 | * is needed to avoid losing the dirty bit: it is easier to use | |
651 | * mark_page_accessed(). | |
652 | */ | |
653 | mark_page_accessed(page); | |
654 | } | |
1027e443 | 655 | out: |
4bbd4c77 | 656 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 657 | return page; |
4bbd4c77 KS |
658 | no_page: |
659 | pte_unmap_unlock(ptep, ptl); | |
660 | if (!pte_none(pte)) | |
69e68b4f KS |
661 | return NULL; |
662 | return no_page_table(vma, flags); | |
663 | } | |
664 | ||
080dbb61 AK |
665 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
666 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
667 | unsigned int flags, |
668 | struct follow_page_context *ctx) | |
69e68b4f | 669 | { |
68827280 | 670 | pmd_t *pmd, pmdval; |
69e68b4f KS |
671 | spinlock_t *ptl; |
672 | struct page *page; | |
673 | struct mm_struct *mm = vma->vm_mm; | |
674 | ||
080dbb61 | 675 | pmd = pmd_offset(pudp, address); |
68827280 YH |
676 | /* |
677 | * The READ_ONCE() will stabilize the pmdval in a register or | |
678 | * on the stack so that it will stop changing under the code. | |
679 | */ | |
680 | pmdval = READ_ONCE(*pmd); | |
681 | if (pmd_none(pmdval)) | |
69e68b4f | 682 | return no_page_table(vma, flags); |
be9d3045 | 683 | if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { |
fac35ba7 | 684 | page = follow_huge_pmd_pte(vma, address, flags); |
e66f17ff NH |
685 | if (page) |
686 | return page; | |
687 | return no_page_table(vma, flags); | |
69e68b4f | 688 | } |
68827280 | 689 | if (is_hugepd(__hugepd(pmd_val(pmdval)))) { |
4dc71451 | 690 | page = follow_huge_pd(vma, address, |
68827280 | 691 | __hugepd(pmd_val(pmdval)), flags, |
4dc71451 AK |
692 | PMD_SHIFT); |
693 | if (page) | |
694 | return page; | |
695 | return no_page_table(vma, flags); | |
696 | } | |
84c3fc4e | 697 | retry: |
68827280 | 698 | if (!pmd_present(pmdval)) { |
28b0ee3f LX |
699 | /* |
700 | * Should never reach here, if thp migration is not supported; | |
701 | * Otherwise, it must be a thp migration entry. | |
702 | */ | |
703 | VM_BUG_ON(!thp_migration_supported() || | |
704 | !is_pmd_migration_entry(pmdval)); | |
705 | ||
84c3fc4e ZY |
706 | if (likely(!(flags & FOLL_MIGRATION))) |
707 | return no_page_table(vma, flags); | |
28b0ee3f LX |
708 | |
709 | pmd_migration_entry_wait(mm, pmd); | |
68827280 YH |
710 | pmdval = READ_ONCE(*pmd); |
711 | /* | |
712 | * MADV_DONTNEED may convert the pmd to null because | |
c1e8d7c6 | 713 | * mmap_lock is held in read mode |
68827280 YH |
714 | */ |
715 | if (pmd_none(pmdval)) | |
716 | return no_page_table(vma, flags); | |
84c3fc4e ZY |
717 | goto retry; |
718 | } | |
68827280 | 719 | if (pmd_devmap(pmdval)) { |
3565fce3 | 720 | ptl = pmd_lock(mm, pmd); |
df06b37f | 721 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
722 | spin_unlock(ptl); |
723 | if (page) | |
724 | return page; | |
725 | } | |
68827280 | 726 | if (likely(!pmd_trans_huge(pmdval))) |
df06b37f | 727 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 728 | |
474098ed | 729 | if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) |
db08f203 AK |
730 | return no_page_table(vma, flags); |
731 | ||
84c3fc4e | 732 | retry_locked: |
6742d293 | 733 | ptl = pmd_lock(mm, pmd); |
68827280 YH |
734 | if (unlikely(pmd_none(*pmd))) { |
735 | spin_unlock(ptl); | |
736 | return no_page_table(vma, flags); | |
737 | } | |
84c3fc4e ZY |
738 | if (unlikely(!pmd_present(*pmd))) { |
739 | spin_unlock(ptl); | |
740 | if (likely(!(flags & FOLL_MIGRATION))) | |
741 | return no_page_table(vma, flags); | |
742 | pmd_migration_entry_wait(mm, pmd); | |
743 | goto retry_locked; | |
744 | } | |
6742d293 KS |
745 | if (unlikely(!pmd_trans_huge(*pmd))) { |
746 | spin_unlock(ptl); | |
df06b37f | 747 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 748 | } |
4066c119 | 749 | if (flags & FOLL_SPLIT_PMD) { |
6742d293 KS |
750 | int ret; |
751 | page = pmd_page(*pmd); | |
752 | if (is_huge_zero_page(page)) { | |
753 | spin_unlock(ptl); | |
754 | ret = 0; | |
78ddc534 | 755 | split_huge_pmd(vma, pmd, address); |
337d9abf NH |
756 | if (pmd_trans_unstable(pmd)) |
757 | ret = -EBUSY; | |
4066c119 | 758 | } else { |
bfe7b00d SL |
759 | spin_unlock(ptl); |
760 | split_huge_pmd(vma, pmd, address); | |
761 | ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | |
6742d293 KS |
762 | } |
763 | ||
764 | return ret ? ERR_PTR(ret) : | |
df06b37f | 765 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 766 | } |
6742d293 KS |
767 | page = follow_trans_huge_pmd(vma, address, pmd, flags); |
768 | spin_unlock(ptl); | |
df06b37f | 769 | ctx->page_mask = HPAGE_PMD_NR - 1; |
6742d293 | 770 | return page; |
4bbd4c77 KS |
771 | } |
772 | ||
080dbb61 AK |
773 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
774 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
775 | unsigned int flags, |
776 | struct follow_page_context *ctx) | |
080dbb61 AK |
777 | { |
778 | pud_t *pud; | |
779 | spinlock_t *ptl; | |
780 | struct page *page; | |
781 | struct mm_struct *mm = vma->vm_mm; | |
782 | ||
783 | pud = pud_offset(p4dp, address); | |
784 | if (pud_none(*pud)) | |
785 | return no_page_table(vma, flags); | |
be9d3045 | 786 | if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { |
080dbb61 AK |
787 | page = follow_huge_pud(mm, address, pud, flags); |
788 | if (page) | |
789 | return page; | |
790 | return no_page_table(vma, flags); | |
791 | } | |
4dc71451 AK |
792 | if (is_hugepd(__hugepd(pud_val(*pud)))) { |
793 | page = follow_huge_pd(vma, address, | |
794 | __hugepd(pud_val(*pud)), flags, | |
795 | PUD_SHIFT); | |
796 | if (page) | |
797 | return page; | |
798 | return no_page_table(vma, flags); | |
799 | } | |
080dbb61 AK |
800 | if (pud_devmap(*pud)) { |
801 | ptl = pud_lock(mm, pud); | |
df06b37f | 802 | page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); |
080dbb61 AK |
803 | spin_unlock(ptl); |
804 | if (page) | |
805 | return page; | |
806 | } | |
807 | if (unlikely(pud_bad(*pud))) | |
808 | return no_page_table(vma, flags); | |
809 | ||
df06b37f | 810 | return follow_pmd_mask(vma, address, pud, flags, ctx); |
080dbb61 AK |
811 | } |
812 | ||
080dbb61 AK |
813 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
814 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
815 | unsigned int flags, |
816 | struct follow_page_context *ctx) | |
080dbb61 AK |
817 | { |
818 | p4d_t *p4d; | |
4dc71451 | 819 | struct page *page; |
080dbb61 AK |
820 | |
821 | p4d = p4d_offset(pgdp, address); | |
822 | if (p4d_none(*p4d)) | |
823 | return no_page_table(vma, flags); | |
824 | BUILD_BUG_ON(p4d_huge(*p4d)); | |
825 | if (unlikely(p4d_bad(*p4d))) | |
826 | return no_page_table(vma, flags); | |
827 | ||
4dc71451 AK |
828 | if (is_hugepd(__hugepd(p4d_val(*p4d)))) { |
829 | page = follow_huge_pd(vma, address, | |
830 | __hugepd(p4d_val(*p4d)), flags, | |
831 | P4D_SHIFT); | |
832 | if (page) | |
833 | return page; | |
834 | return no_page_table(vma, flags); | |
835 | } | |
df06b37f | 836 | return follow_pud_mask(vma, address, p4d, flags, ctx); |
080dbb61 AK |
837 | } |
838 | ||
839 | /** | |
840 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
841 | * @vma: vm_area_struct mapping @address | |
842 | * @address: virtual address to look up | |
843 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
844 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
845 | * pointer to output page_mask | |
080dbb61 AK |
846 | * |
847 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
848 | * | |
78179556 MR |
849 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
850 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
851 | * | |
a7f22660 DH |
852 | * When getting an anonymous page and the caller has to trigger unsharing |
853 | * of a shared anonymous page first, -EMLINK is returned. The caller should | |
854 | * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only | |
855 | * relevant with FOLL_PIN and !FOLL_WRITE. | |
856 | * | |
78179556 MR |
857 | * On output, the @ctx->page_mask is set according to the size of the page. |
858 | * | |
859 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
860 | * an error pointer if there is a mapping to something not represented |
861 | * by a page descriptor (see also vm_normal_page()). | |
862 | */ | |
a7030aea | 863 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 864 | unsigned long address, unsigned int flags, |
df06b37f | 865 | struct follow_page_context *ctx) |
080dbb61 AK |
866 | { |
867 | pgd_t *pgd; | |
868 | struct page *page; | |
869 | struct mm_struct *mm = vma->vm_mm; | |
870 | ||
df06b37f | 871 | ctx->page_mask = 0; |
080dbb61 AK |
872 | |
873 | /* make this handle hugepd */ | |
874 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | |
875 | if (!IS_ERR(page)) { | |
3faa52c0 | 876 | WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); |
080dbb61 AK |
877 | return page; |
878 | } | |
879 | ||
880 | pgd = pgd_offset(mm, address); | |
881 | ||
882 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
883 | return no_page_table(vma, flags); | |
884 | ||
faaa5b62 AK |
885 | if (pgd_huge(*pgd)) { |
886 | page = follow_huge_pgd(mm, address, pgd, flags); | |
887 | if (page) | |
888 | return page; | |
889 | return no_page_table(vma, flags); | |
890 | } | |
4dc71451 AK |
891 | if (is_hugepd(__hugepd(pgd_val(*pgd)))) { |
892 | page = follow_huge_pd(vma, address, | |
893 | __hugepd(pgd_val(*pgd)), flags, | |
894 | PGDIR_SHIFT); | |
895 | if (page) | |
896 | return page; | |
897 | return no_page_table(vma, flags); | |
898 | } | |
faaa5b62 | 899 | |
df06b37f KB |
900 | return follow_p4d_mask(vma, address, pgd, flags, ctx); |
901 | } | |
902 | ||
903 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
904 | unsigned int foll_flags) | |
905 | { | |
906 | struct follow_page_context ctx = { NULL }; | |
907 | struct page *page; | |
908 | ||
1507f512 MR |
909 | if (vma_is_secretmem(vma)) |
910 | return NULL; | |
911 | ||
8909691b DH |
912 | if (foll_flags & FOLL_PIN) |
913 | return NULL; | |
914 | ||
df06b37f KB |
915 | page = follow_page_mask(vma, address, foll_flags, &ctx); |
916 | if (ctx.pgmap) | |
917 | put_dev_pagemap(ctx.pgmap); | |
918 | return page; | |
080dbb61 AK |
919 | } |
920 | ||
f2b495ca KS |
921 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
922 | unsigned int gup_flags, struct vm_area_struct **vma, | |
923 | struct page **page) | |
924 | { | |
925 | pgd_t *pgd; | |
c2febafc | 926 | p4d_t *p4d; |
f2b495ca KS |
927 | pud_t *pud; |
928 | pmd_t *pmd; | |
929 | pte_t *pte; | |
930 | int ret = -EFAULT; | |
931 | ||
932 | /* user gate pages are read-only */ | |
933 | if (gup_flags & FOLL_WRITE) | |
934 | return -EFAULT; | |
935 | if (address > TASK_SIZE) | |
936 | pgd = pgd_offset_k(address); | |
937 | else | |
938 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
939 | if (pgd_none(*pgd)) |
940 | return -EFAULT; | |
c2febafc | 941 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
942 | if (p4d_none(*p4d)) |
943 | return -EFAULT; | |
c2febafc | 944 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
945 | if (pud_none(*pud)) |
946 | return -EFAULT; | |
f2b495ca | 947 | pmd = pmd_offset(pud, address); |
84c3fc4e | 948 | if (!pmd_present(*pmd)) |
f2b495ca KS |
949 | return -EFAULT; |
950 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
951 | pte = pte_offset_map(pmd, address); | |
952 | if (pte_none(*pte)) | |
953 | goto unmap; | |
954 | *vma = get_gate_vma(mm); | |
955 | if (!page) | |
956 | goto out; | |
957 | *page = vm_normal_page(*vma, address, *pte); | |
958 | if (!*page) { | |
959 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | |
960 | goto unmap; | |
961 | *page = pte_page(*pte); | |
962 | } | |
9fa2dd94 | 963 | if (unlikely(!try_grab_page(*page, gup_flags))) { |
8fde12ca LT |
964 | ret = -ENOMEM; |
965 | goto unmap; | |
966 | } | |
f2b495ca KS |
967 | out: |
968 | ret = 0; | |
969 | unmap: | |
970 | pte_unmap(pte); | |
971 | return ret; | |
972 | } | |
973 | ||
9a95f3cf | 974 | /* |
c1e8d7c6 ML |
975 | * mmap_lock must be held on entry. If @locked != NULL and *@flags |
976 | * does not include FOLL_NOWAIT, the mmap_lock may be released. If it | |
4f6da934 | 977 | * is, *@locked will be set to 0 and -EBUSY returned. |
9a95f3cf | 978 | */ |
64019a2e | 979 | static int faultin_page(struct vm_area_struct *vma, |
a7f22660 DH |
980 | unsigned long address, unsigned int *flags, bool unshare, |
981 | int *locked) | |
16744483 | 982 | { |
16744483 | 983 | unsigned int fault_flags = 0; |
2b740303 | 984 | vm_fault_t ret; |
16744483 | 985 | |
55b8fe70 AG |
986 | if (*flags & FOLL_NOFAULT) |
987 | return -EFAULT; | |
16744483 KS |
988 | if (*flags & FOLL_WRITE) |
989 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
990 | if (*flags & FOLL_REMOTE) |
991 | fault_flags |= FAULT_FLAG_REMOTE; | |
4f6da934 | 992 | if (locked) |
71335f37 | 993 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
16744483 KS |
994 | if (*flags & FOLL_NOWAIT) |
995 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b | 996 | if (*flags & FOLL_TRIED) { |
4426e945 PX |
997 | /* |
998 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | |
999 | * can co-exist | |
1000 | */ | |
234b239b ALC |
1001 | fault_flags |= FAULT_FLAG_TRIED; |
1002 | } | |
a7f22660 DH |
1003 | if (unshare) { |
1004 | fault_flags |= FAULT_FLAG_UNSHARE; | |
1005 | /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ | |
1006 | VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); | |
1007 | } | |
16744483 | 1008 | |
bce617ed | 1009 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
d9272525 PX |
1010 | |
1011 | if (ret & VM_FAULT_COMPLETED) { | |
1012 | /* | |
1013 | * With FAULT_FLAG_RETRY_NOWAIT we'll never release the | |
1014 | * mmap lock in the page fault handler. Sanity check this. | |
1015 | */ | |
1016 | WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); | |
1017 | if (locked) | |
1018 | *locked = 0; | |
1019 | /* | |
1020 | * We should do the same as VM_FAULT_RETRY, but let's not | |
1021 | * return -EBUSY since that's not reflecting the reality of | |
1022 | * what has happened - we've just fully completed a page | |
1023 | * fault, with the mmap lock released. Use -EAGAIN to show | |
1024 | * that we want to take the mmap lock _again_. | |
1025 | */ | |
1026 | return -EAGAIN; | |
1027 | } | |
1028 | ||
16744483 | 1029 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1030 | int err = vm_fault_to_errno(ret, *flags); |
1031 | ||
1032 | if (err) | |
1033 | return err; | |
16744483 KS |
1034 | BUG(); |
1035 | } | |
1036 | ||
16744483 | 1037 | if (ret & VM_FAULT_RETRY) { |
4f6da934 PX |
1038 | if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
1039 | *locked = 0; | |
16744483 KS |
1040 | return -EBUSY; |
1041 | } | |
1042 | ||
16744483 KS |
1043 | return 0; |
1044 | } | |
1045 | ||
fa5bb209 KS |
1046 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
1047 | { | |
1048 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
1049 | int write = (gup_flags & FOLL_WRITE); |
1050 | int foreign = (gup_flags & FOLL_REMOTE); | |
fa5bb209 KS |
1051 | |
1052 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
1053 | return -EFAULT; | |
1054 | ||
7f7ccc2c WT |
1055 | if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) |
1056 | return -EFAULT; | |
1057 | ||
52650c8b JG |
1058 | if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) |
1059 | return -EOPNOTSUPP; | |
1060 | ||
1507f512 MR |
1061 | if (vma_is_secretmem(vma)) |
1062 | return -EFAULT; | |
1063 | ||
1b2ee126 | 1064 | if (write) { |
fa5bb209 KS |
1065 | if (!(vm_flags & VM_WRITE)) { |
1066 | if (!(gup_flags & FOLL_FORCE)) | |
1067 | return -EFAULT; | |
1068 | /* | |
1069 | * We used to let the write,force case do COW in a | |
1070 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
1071 | * set a breakpoint in a read-only mapping of an | |
1072 | * executable, without corrupting the file (yet only | |
1073 | * when that file had been opened for writing!). | |
1074 | * Anon pages in shared mappings are surprising: now | |
1075 | * just reject it. | |
1076 | */ | |
46435364 | 1077 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 1078 | return -EFAULT; |
fa5bb209 KS |
1079 | } |
1080 | } else if (!(vm_flags & VM_READ)) { | |
1081 | if (!(gup_flags & FOLL_FORCE)) | |
1082 | return -EFAULT; | |
1083 | /* | |
1084 | * Is there actually any vma we can reach here which does not | |
1085 | * have VM_MAYREAD set? | |
1086 | */ | |
1087 | if (!(vm_flags & VM_MAYREAD)) | |
1088 | return -EFAULT; | |
1089 | } | |
d61172b4 DH |
1090 | /* |
1091 | * gups are always data accesses, not instruction | |
1092 | * fetches, so execute=false here | |
1093 | */ | |
1094 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 1095 | return -EFAULT; |
fa5bb209 KS |
1096 | return 0; |
1097 | } | |
1098 | ||
4bbd4c77 KS |
1099 | /** |
1100 | * __get_user_pages() - pin user pages in memory | |
4bbd4c77 KS |
1101 | * @mm: mm_struct of target mm |
1102 | * @start: starting user address | |
1103 | * @nr_pages: number of pages from start to pin | |
1104 | * @gup_flags: flags modifying pin behaviour | |
1105 | * @pages: array that receives pointers to the pages pinned. | |
1106 | * Should be at least nr_pages long. Or NULL, if caller | |
1107 | * only intends to ensure the pages are faulted in. | |
1108 | * @vmas: array of pointers to vmas corresponding to each page. | |
1109 | * Or NULL if the caller does not require them. | |
c1e8d7c6 | 1110 | * @locked: whether we're still with the mmap_lock held |
4bbd4c77 | 1111 | * |
d2dfbe47 LX |
1112 | * Returns either number of pages pinned (which may be less than the |
1113 | * number requested), or an error. Details about the return value: | |
1114 | * | |
1115 | * -- If nr_pages is 0, returns 0. | |
1116 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
1117 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
1118 | * pages pinned. Again, this may be less than nr_pages. | |
2d3a36a4 | 1119 | * -- 0 return value is possible when the fault would need to be retried. |
d2dfbe47 LX |
1120 | * |
1121 | * The caller is responsible for releasing returned @pages, via put_page(). | |
1122 | * | |
c1e8d7c6 | 1123 | * @vmas are valid only as long as mmap_lock is held. |
4bbd4c77 | 1124 | * |
c1e8d7c6 | 1125 | * Must be called with mmap_lock held. It may be released. See below. |
4bbd4c77 KS |
1126 | * |
1127 | * __get_user_pages walks a process's page tables and takes a reference to | |
1128 | * each struct page that each user address corresponds to at a given | |
1129 | * instant. That is, it takes the page that would be accessed if a user | |
1130 | * thread accesses the given user virtual address at that instant. | |
1131 | * | |
1132 | * This does not guarantee that the page exists in the user mappings when | |
1133 | * __get_user_pages returns, and there may even be a completely different | |
1134 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1135 | * and subsequently re faulted). However it does guarantee that the page | |
1136 | * won't be freed completely. And mostly callers simply care that the page | |
1137 | * contains data that was valid *at some point in time*. Typically, an IO | |
1138 | * or similar operation cannot guarantee anything stronger anyway because | |
1139 | * locks can't be held over the syscall boundary. | |
1140 | * | |
1141 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
1142 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
1143 | * appropriate) must be called after the page is finished with, and | |
1144 | * before put_page is called. | |
1145 | * | |
c1e8d7c6 | 1146 | * If @locked != NULL, *@locked will be set to 0 when mmap_lock is |
4f6da934 PX |
1147 | * released by an up_read(). That can happen if @gup_flags does not |
1148 | * have FOLL_NOWAIT. | |
9a95f3cf | 1149 | * |
4f6da934 | 1150 | * A caller using such a combination of @locked and @gup_flags |
c1e8d7c6 | 1151 | * must therefore hold the mmap_lock for reading only, and recognize |
9a95f3cf PC |
1152 | * when it's been released. Otherwise, it must be held for either |
1153 | * reading or writing and will not be released. | |
4bbd4c77 KS |
1154 | * |
1155 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
1156 | * instead of __get_user_pages. __get_user_pages should be used only if | |
1157 | * you need some special @gup_flags. | |
1158 | */ | |
64019a2e | 1159 | static long __get_user_pages(struct mm_struct *mm, |
4bbd4c77 KS |
1160 | unsigned long start, unsigned long nr_pages, |
1161 | unsigned int gup_flags, struct page **pages, | |
4f6da934 | 1162 | struct vm_area_struct **vmas, int *locked) |
4bbd4c77 | 1163 | { |
df06b37f | 1164 | long ret = 0, i = 0; |
fa5bb209 | 1165 | struct vm_area_struct *vma = NULL; |
df06b37f | 1166 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
1167 | |
1168 | if (!nr_pages) | |
1169 | return 0; | |
1170 | ||
f9652594 AK |
1171 | start = untagged_addr(start); |
1172 | ||
eddb1c22 | 1173 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
4bbd4c77 | 1174 | |
4bbd4c77 | 1175 | do { |
fa5bb209 KS |
1176 | struct page *page; |
1177 | unsigned int foll_flags = gup_flags; | |
1178 | unsigned int page_increm; | |
1179 | ||
1180 | /* first iteration or cross vma bound */ | |
1181 | if (!vma || start >= vma->vm_end) { | |
1182 | vma = find_extend_vma(mm, start); | |
1183 | if (!vma && in_gate_area(mm, start)) { | |
fa5bb209 KS |
1184 | ret = get_gate_page(mm, start & PAGE_MASK, |
1185 | gup_flags, &vma, | |
1186 | pages ? &pages[i] : NULL); | |
1187 | if (ret) | |
08be37b7 | 1188 | goto out; |
df06b37f | 1189 | ctx.page_mask = 0; |
fa5bb209 KS |
1190 | goto next_page; |
1191 | } | |
4bbd4c77 | 1192 | |
52650c8b | 1193 | if (!vma) { |
df06b37f KB |
1194 | ret = -EFAULT; |
1195 | goto out; | |
1196 | } | |
52650c8b JG |
1197 | ret = check_vma_flags(vma, gup_flags); |
1198 | if (ret) | |
1199 | goto out; | |
1200 | ||
fa5bb209 KS |
1201 | if (is_vm_hugetlb_page(vma)) { |
1202 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
1203 | &start, &nr_pages, i, | |
a308c71b | 1204 | gup_flags, locked); |
ad415db8 PX |
1205 | if (locked && *locked == 0) { |
1206 | /* | |
1207 | * We've got a VM_FAULT_RETRY | |
c1e8d7c6 | 1208 | * and we've lost mmap_lock. |
ad415db8 PX |
1209 | * We must stop here. |
1210 | */ | |
1211 | BUG_ON(gup_flags & FOLL_NOWAIT); | |
ad415db8 PX |
1212 | goto out; |
1213 | } | |
fa5bb209 | 1214 | continue; |
4bbd4c77 | 1215 | } |
fa5bb209 KS |
1216 | } |
1217 | retry: | |
1218 | /* | |
1219 | * If we have a pending SIGKILL, don't keep faulting pages and | |
1220 | * potentially allocating memory. | |
1221 | */ | |
fa45f116 | 1222 | if (fatal_signal_pending(current)) { |
d180870d | 1223 | ret = -EINTR; |
df06b37f KB |
1224 | goto out; |
1225 | } | |
fa5bb209 | 1226 | cond_resched(); |
df06b37f KB |
1227 | |
1228 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
a7f22660 DH |
1229 | if (!page || PTR_ERR(page) == -EMLINK) { |
1230 | ret = faultin_page(vma, start, &foll_flags, | |
1231 | PTR_ERR(page) == -EMLINK, locked); | |
fa5bb209 KS |
1232 | switch (ret) { |
1233 | case 0: | |
1234 | goto retry; | |
df06b37f | 1235 | case -EBUSY: |
d9272525 | 1236 | case -EAGAIN: |
df06b37f | 1237 | ret = 0; |
e4a9bc58 | 1238 | fallthrough; |
fa5bb209 KS |
1239 | case -EFAULT: |
1240 | case -ENOMEM: | |
1241 | case -EHWPOISON: | |
df06b37f | 1242 | goto out; |
4bbd4c77 | 1243 | } |
fa5bb209 | 1244 | BUG(); |
1027e443 KS |
1245 | } else if (PTR_ERR(page) == -EEXIST) { |
1246 | /* | |
1247 | * Proper page table entry exists, but no corresponding | |
65462462 JH |
1248 | * struct page. If the caller expects **pages to be |
1249 | * filled in, bail out now, because that can't be done | |
1250 | * for this page. | |
1027e443 | 1251 | */ |
65462462 JH |
1252 | if (pages) { |
1253 | ret = PTR_ERR(page); | |
1254 | goto out; | |
1255 | } | |
1256 | ||
1027e443 KS |
1257 | goto next_page; |
1258 | } else if (IS_ERR(page)) { | |
df06b37f KB |
1259 | ret = PTR_ERR(page); |
1260 | goto out; | |
1027e443 | 1261 | } |
fa5bb209 KS |
1262 | if (pages) { |
1263 | pages[i] = page; | |
1264 | flush_anon_page(vma, page, start); | |
1265 | flush_dcache_page(page); | |
df06b37f | 1266 | ctx.page_mask = 0; |
4bbd4c77 | 1267 | } |
4bbd4c77 | 1268 | next_page: |
fa5bb209 KS |
1269 | if (vmas) { |
1270 | vmas[i] = vma; | |
df06b37f | 1271 | ctx.page_mask = 0; |
fa5bb209 | 1272 | } |
df06b37f | 1273 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
1274 | if (page_increm > nr_pages) |
1275 | page_increm = nr_pages; | |
1276 | i += page_increm; | |
1277 | start += page_increm * PAGE_SIZE; | |
1278 | nr_pages -= page_increm; | |
4bbd4c77 | 1279 | } while (nr_pages); |
df06b37f KB |
1280 | out: |
1281 | if (ctx.pgmap) | |
1282 | put_dev_pagemap(ctx.pgmap); | |
1283 | return i ? i : ret; | |
4bbd4c77 | 1284 | } |
4bbd4c77 | 1285 | |
771ab430 TK |
1286 | static bool vma_permits_fault(struct vm_area_struct *vma, |
1287 | unsigned int fault_flags) | |
d4925e00 | 1288 | { |
1b2ee126 DH |
1289 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
1290 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 1291 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
1292 | |
1293 | if (!(vm_flags & vma->vm_flags)) | |
1294 | return false; | |
1295 | ||
33a709b2 DH |
1296 | /* |
1297 | * The architecture might have a hardware protection | |
1b2ee126 | 1298 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
1299 | * |
1300 | * gup always represents data access, not instruction | |
1301 | * fetches, so execute=false here: | |
33a709b2 | 1302 | */ |
d61172b4 | 1303 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
1304 | return false; |
1305 | ||
d4925e00 DH |
1306 | return true; |
1307 | } | |
1308 | ||
adc8cb40 | 1309 | /** |
4bbd4c77 | 1310 | * fixup_user_fault() - manually resolve a user page fault |
4bbd4c77 KS |
1311 | * @mm: mm_struct of target mm |
1312 | * @address: user address | |
1313 | * @fault_flags:flags to pass down to handle_mm_fault() | |
c1e8d7c6 | 1314 | * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller |
548b6a1e MC |
1315 | * does not allow retry. If NULL, the caller must guarantee |
1316 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | |
4bbd4c77 KS |
1317 | * |
1318 | * This is meant to be called in the specific scenario where for locking reasons | |
1319 | * we try to access user memory in atomic context (within a pagefault_disable() | |
1320 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
1321 | * trying again. | |
1322 | * | |
1323 | * Typically this is meant to be used by the futex code. | |
1324 | * | |
1325 | * The main difference with get_user_pages() is that this function will | |
1326 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
1327 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 1328 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
1329 | * |
1330 | * This is important for some architectures where those bits also gate the | |
1331 | * access permission to the page because they are maintained in software. On | |
1332 | * such architectures, gup() will not be enough to make a subsequent access | |
1333 | * succeed. | |
1334 | * | |
c1e8d7c6 ML |
1335 | * This function will not return with an unlocked mmap_lock. So it has not the |
1336 | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). | |
4bbd4c77 | 1337 | */ |
64019a2e | 1338 | int fixup_user_fault(struct mm_struct *mm, |
4a9e1cda DD |
1339 | unsigned long address, unsigned int fault_flags, |
1340 | bool *unlocked) | |
4bbd4c77 KS |
1341 | { |
1342 | struct vm_area_struct *vma; | |
8fed2f3c | 1343 | vm_fault_t ret; |
4a9e1cda | 1344 | |
f9652594 AK |
1345 | address = untagged_addr(address); |
1346 | ||
4a9e1cda | 1347 | if (unlocked) |
71335f37 | 1348 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
4bbd4c77 | 1349 | |
4a9e1cda | 1350 | retry: |
4bbd4c77 KS |
1351 | vma = find_extend_vma(mm, address); |
1352 | if (!vma || address < vma->vm_start) | |
1353 | return -EFAULT; | |
1354 | ||
d4925e00 | 1355 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
1356 | return -EFAULT; |
1357 | ||
475f4dfc PX |
1358 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
1359 | fatal_signal_pending(current)) | |
1360 | return -EINTR; | |
1361 | ||
bce617ed | 1362 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
d9272525 PX |
1363 | |
1364 | if (ret & VM_FAULT_COMPLETED) { | |
1365 | /* | |
1366 | * NOTE: it's a pity that we need to retake the lock here | |
1367 | * to pair with the unlock() in the callers. Ideally we | |
1368 | * could tell the callers so they do not need to unlock. | |
1369 | */ | |
1370 | mmap_read_lock(mm); | |
1371 | *unlocked = true; | |
1372 | return 0; | |
1373 | } | |
1374 | ||
4bbd4c77 | 1375 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1376 | int err = vm_fault_to_errno(ret, 0); |
1377 | ||
1378 | if (err) | |
1379 | return err; | |
4bbd4c77 KS |
1380 | BUG(); |
1381 | } | |
4a9e1cda DD |
1382 | |
1383 | if (ret & VM_FAULT_RETRY) { | |
d8ed45c5 | 1384 | mmap_read_lock(mm); |
475f4dfc PX |
1385 | *unlocked = true; |
1386 | fault_flags |= FAULT_FLAG_TRIED; | |
1387 | goto retry; | |
4a9e1cda DD |
1388 | } |
1389 | ||
4bbd4c77 KS |
1390 | return 0; |
1391 | } | |
add6a0cd | 1392 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1393 | |
2d3a36a4 MH |
1394 | /* |
1395 | * Please note that this function, unlike __get_user_pages will not | |
1396 | * return 0 for nr_pages > 0 without FOLL_NOWAIT | |
1397 | */ | |
64019a2e | 1398 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, |
f0818f47 AA |
1399 | unsigned long start, |
1400 | unsigned long nr_pages, | |
f0818f47 AA |
1401 | struct page **pages, |
1402 | struct vm_area_struct **vmas, | |
e716712f | 1403 | int *locked, |
0fd71a56 | 1404 | unsigned int flags) |
f0818f47 | 1405 | { |
f0818f47 AA |
1406 | long ret, pages_done; |
1407 | bool lock_dropped; | |
1408 | ||
1409 | if (locked) { | |
1410 | /* if VM_FAULT_RETRY can be returned, vmas become invalid */ | |
1411 | BUG_ON(vmas); | |
1412 | /* check caller initialized locked */ | |
1413 | BUG_ON(*locked != 1); | |
1414 | } | |
1415 | ||
a458b76a AA |
1416 | if (flags & FOLL_PIN) |
1417 | mm_set_has_pinned_flag(&mm->flags); | |
008cfe44 | 1418 | |
eddb1c22 JH |
1419 | /* |
1420 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | |
1421 | * is to set FOLL_GET if the caller wants pages[] filled in (but has | |
1422 | * carelessly failed to specify FOLL_GET), so keep doing that, but only | |
1423 | * for FOLL_GET, not for the newer FOLL_PIN. | |
1424 | * | |
1425 | * FOLL_PIN always expects pages to be non-null, but no need to assert | |
1426 | * that here, as any failures will be obvious enough. | |
1427 | */ | |
1428 | if (pages && !(flags & FOLL_PIN)) | |
f0818f47 | 1429 | flags |= FOLL_GET; |
f0818f47 AA |
1430 | |
1431 | pages_done = 0; | |
1432 | lock_dropped = false; | |
1433 | for (;;) { | |
64019a2e | 1434 | ret = __get_user_pages(mm, start, nr_pages, flags, pages, |
f0818f47 AA |
1435 | vmas, locked); |
1436 | if (!locked) | |
1437 | /* VM_FAULT_RETRY couldn't trigger, bypass */ | |
1438 | return ret; | |
1439 | ||
d9272525 | 1440 | /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ |
f0818f47 AA |
1441 | if (!*locked) { |
1442 | BUG_ON(ret < 0); | |
1443 | BUG_ON(ret >= nr_pages); | |
1444 | } | |
1445 | ||
f0818f47 AA |
1446 | if (ret > 0) { |
1447 | nr_pages -= ret; | |
1448 | pages_done += ret; | |
1449 | if (!nr_pages) | |
1450 | break; | |
1451 | } | |
1452 | if (*locked) { | |
96312e61 AA |
1453 | /* |
1454 | * VM_FAULT_RETRY didn't trigger or it was a | |
1455 | * FOLL_NOWAIT. | |
1456 | */ | |
f0818f47 AA |
1457 | if (!pages_done) |
1458 | pages_done = ret; | |
1459 | break; | |
1460 | } | |
df17277b MR |
1461 | /* |
1462 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1463 | * For the prefault case (!pages) we only update counts. | |
1464 | */ | |
1465 | if (likely(pages)) | |
1466 | pages += ret; | |
f0818f47 | 1467 | start += ret << PAGE_SHIFT; |
4426e945 | 1468 | lock_dropped = true; |
f0818f47 | 1469 | |
4426e945 | 1470 | retry: |
f0818f47 AA |
1471 | /* |
1472 | * Repeat on the address that fired VM_FAULT_RETRY | |
4426e945 PX |
1473 | * with both FAULT_FLAG_ALLOW_RETRY and |
1474 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted | |
1475 | * by fatal signals, so we need to check it before we | |
1476 | * start trying again otherwise it can loop forever. | |
f0818f47 | 1477 | */ |
4426e945 | 1478 | |
ae46d2aa HD |
1479 | if (fatal_signal_pending(current)) { |
1480 | if (!pages_done) | |
1481 | pages_done = -EINTR; | |
4426e945 | 1482 | break; |
ae46d2aa | 1483 | } |
4426e945 | 1484 | |
d8ed45c5 | 1485 | ret = mmap_read_lock_killable(mm); |
71335f37 PX |
1486 | if (ret) { |
1487 | BUG_ON(ret > 0); | |
1488 | if (!pages_done) | |
1489 | pages_done = ret; | |
1490 | break; | |
1491 | } | |
4426e945 | 1492 | |
c7b6a566 | 1493 | *locked = 1; |
64019a2e | 1494 | ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, |
4426e945 PX |
1495 | pages, NULL, locked); |
1496 | if (!*locked) { | |
1497 | /* Continue to retry until we succeeded */ | |
1498 | BUG_ON(ret != 0); | |
1499 | goto retry; | |
1500 | } | |
f0818f47 AA |
1501 | if (ret != 1) { |
1502 | BUG_ON(ret > 1); | |
1503 | if (!pages_done) | |
1504 | pages_done = ret; | |
1505 | break; | |
1506 | } | |
1507 | nr_pages--; | |
1508 | pages_done++; | |
1509 | if (!nr_pages) | |
1510 | break; | |
df17277b MR |
1511 | if (likely(pages)) |
1512 | pages++; | |
f0818f47 AA |
1513 | start += PAGE_SIZE; |
1514 | } | |
e716712f | 1515 | if (lock_dropped && *locked) { |
f0818f47 AA |
1516 | /* |
1517 | * We must let the caller know we temporarily dropped the lock | |
1518 | * and so the critical section protected by it was lost. | |
1519 | */ | |
d8ed45c5 | 1520 | mmap_read_unlock(mm); |
f0818f47 AA |
1521 | *locked = 0; |
1522 | } | |
1523 | return pages_done; | |
1524 | } | |
1525 | ||
d3649f68 CH |
1526 | /** |
1527 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1528 | * @vma: target vma | |
1529 | * @start: start address | |
1530 | * @end: end address | |
c1e8d7c6 | 1531 | * @locked: whether the mmap_lock is still held |
d3649f68 CH |
1532 | * |
1533 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1534 | * | |
0a36f7f8 TY |
1535 | * Return either number of pages pinned in the vma, or a negative error |
1536 | * code on error. | |
d3649f68 | 1537 | * |
c1e8d7c6 | 1538 | * vma->vm_mm->mmap_lock must be held. |
d3649f68 | 1539 | * |
4f6da934 | 1540 | * If @locked is NULL, it may be held for read or write and will |
d3649f68 CH |
1541 | * be unperturbed. |
1542 | * | |
4f6da934 PX |
1543 | * If @locked is non-NULL, it must held for read only and may be |
1544 | * released. If it's released, *@locked will be set to 0. | |
d3649f68 CH |
1545 | */ |
1546 | long populate_vma_page_range(struct vm_area_struct *vma, | |
4f6da934 | 1547 | unsigned long start, unsigned long end, int *locked) |
d3649f68 CH |
1548 | { |
1549 | struct mm_struct *mm = vma->vm_mm; | |
1550 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1551 | int gup_flags; | |
ece369c7 | 1552 | long ret; |
d3649f68 | 1553 | |
be51eb18 ML |
1554 | VM_BUG_ON(!PAGE_ALIGNED(start)); |
1555 | VM_BUG_ON(!PAGE_ALIGNED(end)); | |
d3649f68 CH |
1556 | VM_BUG_ON_VMA(start < vma->vm_start, vma); |
1557 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
42fc5414 | 1558 | mmap_assert_locked(mm); |
d3649f68 | 1559 | |
b67bf49c HD |
1560 | /* |
1561 | * Rightly or wrongly, the VM_LOCKONFAULT case has never used | |
1562 | * faultin_page() to break COW, so it has no work to do here. | |
1563 | */ | |
d3649f68 | 1564 | if (vma->vm_flags & VM_LOCKONFAULT) |
b67bf49c HD |
1565 | return nr_pages; |
1566 | ||
1567 | gup_flags = FOLL_TOUCH; | |
d3649f68 CH |
1568 | /* |
1569 | * We want to touch writable mappings with a write fault in order | |
1570 | * to break COW, except for shared mappings because these don't COW | |
1571 | * and we would not want to dirty them for nothing. | |
1572 | */ | |
1573 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
1574 | gup_flags |= FOLL_WRITE; | |
1575 | ||
1576 | /* | |
1577 | * We want mlock to succeed for regions that have any permissions | |
1578 | * other than PROT_NONE. | |
1579 | */ | |
3122e80e | 1580 | if (vma_is_accessible(vma)) |
d3649f68 CH |
1581 | gup_flags |= FOLL_FORCE; |
1582 | ||
1583 | /* | |
1584 | * We made sure addr is within a VMA, so the following will | |
1585 | * not result in a stack expansion that recurses back here. | |
1586 | */ | |
ece369c7 | 1587 | ret = __get_user_pages(mm, start, nr_pages, gup_flags, |
4f6da934 | 1588 | NULL, NULL, locked); |
ece369c7 HD |
1589 | lru_add_drain(); |
1590 | return ret; | |
d3649f68 CH |
1591 | } |
1592 | ||
4ca9b385 DH |
1593 | /* |
1594 | * faultin_vma_page_range() - populate (prefault) page tables inside the | |
1595 | * given VMA range readable/writable | |
1596 | * | |
1597 | * This takes care of mlocking the pages, too, if VM_LOCKED is set. | |
1598 | * | |
1599 | * @vma: target vma | |
1600 | * @start: start address | |
1601 | * @end: end address | |
1602 | * @write: whether to prefault readable or writable | |
1603 | * @locked: whether the mmap_lock is still held | |
1604 | * | |
1605 | * Returns either number of processed pages in the vma, or a negative error | |
1606 | * code on error (see __get_user_pages()). | |
1607 | * | |
1608 | * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and | |
1609 | * covered by the VMA. | |
1610 | * | |
1611 | * If @locked is NULL, it may be held for read or write and will be unperturbed. | |
1612 | * | |
1613 | * If @locked is non-NULL, it must held for read only and may be released. If | |
1614 | * it's released, *@locked will be set to 0. | |
1615 | */ | |
1616 | long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, | |
1617 | unsigned long end, bool write, int *locked) | |
1618 | { | |
1619 | struct mm_struct *mm = vma->vm_mm; | |
1620 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
1621 | int gup_flags; | |
ece369c7 | 1622 | long ret; |
4ca9b385 DH |
1623 | |
1624 | VM_BUG_ON(!PAGE_ALIGNED(start)); | |
1625 | VM_BUG_ON(!PAGE_ALIGNED(end)); | |
1626 | VM_BUG_ON_VMA(start < vma->vm_start, vma); | |
1627 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
1628 | mmap_assert_locked(mm); | |
1629 | ||
1630 | /* | |
1631 | * FOLL_TOUCH: Mark page accessed and thereby young; will also mark | |
1632 | * the page dirty with FOLL_WRITE -- which doesn't make a | |
1633 | * difference with !FOLL_FORCE, because the page is writable | |
1634 | * in the page table. | |
1635 | * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit | |
1636 | * a poisoned page. | |
4ca9b385 DH |
1637 | * !FOLL_FORCE: Require proper access permissions. |
1638 | */ | |
b67bf49c | 1639 | gup_flags = FOLL_TOUCH | FOLL_HWPOISON; |
4ca9b385 DH |
1640 | if (write) |
1641 | gup_flags |= FOLL_WRITE; | |
1642 | ||
1643 | /* | |
eb2faa51 DH |
1644 | * We want to report -EINVAL instead of -EFAULT for any permission |
1645 | * problems or incompatible mappings. | |
4ca9b385 | 1646 | */ |
eb2faa51 DH |
1647 | if (check_vma_flags(vma, gup_flags)) |
1648 | return -EINVAL; | |
1649 | ||
ece369c7 | 1650 | ret = __get_user_pages(mm, start, nr_pages, gup_flags, |
4ca9b385 | 1651 | NULL, NULL, locked); |
ece369c7 HD |
1652 | lru_add_drain(); |
1653 | return ret; | |
4ca9b385 DH |
1654 | } |
1655 | ||
d3649f68 CH |
1656 | /* |
1657 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
1658 | * | |
1659 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
1660 | * flags. VMAs must be already marked with the desired vm_flags, and | |
c1e8d7c6 | 1661 | * mmap_lock must not be held. |
d3649f68 CH |
1662 | */ |
1663 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
1664 | { | |
1665 | struct mm_struct *mm = current->mm; | |
1666 | unsigned long end, nstart, nend; | |
1667 | struct vm_area_struct *vma = NULL; | |
1668 | int locked = 0; | |
1669 | long ret = 0; | |
1670 | ||
1671 | end = start + len; | |
1672 | ||
1673 | for (nstart = start; nstart < end; nstart = nend) { | |
1674 | /* | |
1675 | * We want to fault in pages for [nstart; end) address range. | |
1676 | * Find first corresponding VMA. | |
1677 | */ | |
1678 | if (!locked) { | |
1679 | locked = 1; | |
d8ed45c5 | 1680 | mmap_read_lock(mm); |
c4d1a92d | 1681 | vma = find_vma_intersection(mm, nstart, end); |
d3649f68 | 1682 | } else if (nstart >= vma->vm_end) |
c4d1a92d LH |
1683 | vma = find_vma_intersection(mm, vma->vm_end, end); |
1684 | ||
1685 | if (!vma) | |
d3649f68 CH |
1686 | break; |
1687 | /* | |
1688 | * Set [nstart; nend) to intersection of desired address | |
1689 | * range with the first VMA. Also, skip undesirable VMA types. | |
1690 | */ | |
1691 | nend = min(end, vma->vm_end); | |
1692 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
1693 | continue; | |
1694 | if (nstart < vma->vm_start) | |
1695 | nstart = vma->vm_start; | |
1696 | /* | |
1697 | * Now fault in a range of pages. populate_vma_page_range() | |
1698 | * double checks the vma flags, so that it won't mlock pages | |
1699 | * if the vma was already munlocked. | |
1700 | */ | |
1701 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
1702 | if (ret < 0) { | |
1703 | if (ignore_errors) { | |
1704 | ret = 0; | |
1705 | continue; /* continue at next VMA */ | |
1706 | } | |
1707 | break; | |
1708 | } | |
1709 | nend = nstart + ret * PAGE_SIZE; | |
1710 | ret = 0; | |
1711 | } | |
1712 | if (locked) | |
d8ed45c5 | 1713 | mmap_read_unlock(mm); |
d3649f68 CH |
1714 | return ret; /* 0 or negative error code */ |
1715 | } | |
050a9adc | 1716 | #else /* CONFIG_MMU */ |
64019a2e | 1717 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, |
050a9adc CH |
1718 | unsigned long nr_pages, struct page **pages, |
1719 | struct vm_area_struct **vmas, int *locked, | |
1720 | unsigned int foll_flags) | |
1721 | { | |
1722 | struct vm_area_struct *vma; | |
1723 | unsigned long vm_flags; | |
24dc20c7 | 1724 | long i; |
050a9adc CH |
1725 | |
1726 | /* calculate required read or write permissions. | |
1727 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
1728 | */ | |
1729 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
1730 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
1731 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
1732 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1733 | ||
1734 | for (i = 0; i < nr_pages; i++) { | |
1735 | vma = find_vma(mm, start); | |
1736 | if (!vma) | |
1737 | goto finish_or_fault; | |
1738 | ||
1739 | /* protect what we can, including chardevs */ | |
1740 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1741 | !(vm_flags & vma->vm_flags)) | |
1742 | goto finish_or_fault; | |
1743 | ||
1744 | if (pages) { | |
396a400b | 1745 | pages[i] = virt_to_page((void *)start); |
050a9adc CH |
1746 | if (pages[i]) |
1747 | get_page(pages[i]); | |
1748 | } | |
1749 | if (vmas) | |
1750 | vmas[i] = vma; | |
1751 | start = (start + PAGE_SIZE) & PAGE_MASK; | |
1752 | } | |
1753 | ||
1754 | return i; | |
1755 | ||
1756 | finish_or_fault: | |
1757 | return i ? : -EFAULT; | |
1758 | } | |
1759 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 1760 | |
bb523b40 AG |
1761 | /** |
1762 | * fault_in_writeable - fault in userspace address range for writing | |
1763 | * @uaddr: start of address range | |
1764 | * @size: size of address range | |
1765 | * | |
1766 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
1767 | * copy_from_user()). | |
1768 | */ | |
1769 | size_t fault_in_writeable(char __user *uaddr, size_t size) | |
1770 | { | |
1771 | char __user *start = uaddr, *end; | |
1772 | ||
1773 | if (unlikely(size == 0)) | |
1774 | return 0; | |
677b2a8c CL |
1775 | if (!user_write_access_begin(uaddr, size)) |
1776 | return size; | |
bb523b40 | 1777 | if (!PAGE_ALIGNED(uaddr)) { |
677b2a8c | 1778 | unsafe_put_user(0, uaddr, out); |
bb523b40 AG |
1779 | uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); |
1780 | } | |
1781 | end = (char __user *)PAGE_ALIGN((unsigned long)start + size); | |
1782 | if (unlikely(end < start)) | |
1783 | end = NULL; | |
1784 | while (uaddr != end) { | |
677b2a8c | 1785 | unsafe_put_user(0, uaddr, out); |
bb523b40 AG |
1786 | uaddr += PAGE_SIZE; |
1787 | } | |
1788 | ||
1789 | out: | |
677b2a8c | 1790 | user_write_access_end(); |
bb523b40 AG |
1791 | if (size > uaddr - start) |
1792 | return size - (uaddr - start); | |
1793 | return 0; | |
1794 | } | |
1795 | EXPORT_SYMBOL(fault_in_writeable); | |
1796 | ||
da32b581 CM |
1797 | /** |
1798 | * fault_in_subpage_writeable - fault in an address range for writing | |
1799 | * @uaddr: start of address range | |
1800 | * @size: size of address range | |
1801 | * | |
1802 | * Fault in a user address range for writing while checking for permissions at | |
1803 | * sub-page granularity (e.g. arm64 MTE). This function should be used when | |
1804 | * the caller cannot guarantee forward progress of a copy_to_user() loop. | |
1805 | * | |
1806 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
1807 | * copy_from_user()). | |
1808 | */ | |
1809 | size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) | |
1810 | { | |
1811 | size_t faulted_in; | |
1812 | ||
1813 | /* | |
1814 | * Attempt faulting in at page granularity first for page table | |
1815 | * permission checking. The arch-specific probe_subpage_writeable() | |
1816 | * functions may not check for this. | |
1817 | */ | |
1818 | faulted_in = size - fault_in_writeable(uaddr, size); | |
1819 | if (faulted_in) | |
1820 | faulted_in -= probe_subpage_writeable(uaddr, faulted_in); | |
1821 | ||
1822 | return size - faulted_in; | |
1823 | } | |
1824 | EXPORT_SYMBOL(fault_in_subpage_writeable); | |
1825 | ||
cdd591fc AG |
1826 | /* |
1827 | * fault_in_safe_writeable - fault in an address range for writing | |
1828 | * @uaddr: start of address range | |
1829 | * @size: length of address range | |
1830 | * | |
fe673d3f LT |
1831 | * Faults in an address range for writing. This is primarily useful when we |
1832 | * already know that some or all of the pages in the address range aren't in | |
1833 | * memory. | |
cdd591fc | 1834 | * |
fe673d3f | 1835 | * Unlike fault_in_writeable(), this function is non-destructive. |
cdd591fc AG |
1836 | * |
1837 | * Note that we don't pin or otherwise hold the pages referenced that we fault | |
1838 | * in. There's no guarantee that they'll stay in memory for any duration of | |
1839 | * time. | |
1840 | * | |
1841 | * Returns the number of bytes not faulted in, like copy_to_user() and | |
1842 | * copy_from_user(). | |
1843 | */ | |
1844 | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) | |
1845 | { | |
fe673d3f | 1846 | unsigned long start = (unsigned long)uaddr, end; |
cdd591fc | 1847 | struct mm_struct *mm = current->mm; |
fe673d3f | 1848 | bool unlocked = false; |
cdd591fc | 1849 | |
fe673d3f LT |
1850 | if (unlikely(size == 0)) |
1851 | return 0; | |
cdd591fc | 1852 | end = PAGE_ALIGN(start + size); |
fe673d3f | 1853 | if (end < start) |
cdd591fc | 1854 | end = 0; |
cdd591fc | 1855 | |
fe673d3f LT |
1856 | mmap_read_lock(mm); |
1857 | do { | |
1858 | if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) | |
cdd591fc | 1859 | break; |
fe673d3f LT |
1860 | start = (start + PAGE_SIZE) & PAGE_MASK; |
1861 | } while (start != end); | |
1862 | mmap_read_unlock(mm); | |
1863 | ||
1864 | if (size > (unsigned long)uaddr - start) | |
1865 | return size - ((unsigned long)uaddr - start); | |
1866 | return 0; | |
cdd591fc AG |
1867 | } |
1868 | EXPORT_SYMBOL(fault_in_safe_writeable); | |
1869 | ||
bb523b40 AG |
1870 | /** |
1871 | * fault_in_readable - fault in userspace address range for reading | |
1872 | * @uaddr: start of user address range | |
1873 | * @size: size of user address range | |
1874 | * | |
1875 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
1876 | * copy_from_user()). | |
1877 | */ | |
1878 | size_t fault_in_readable(const char __user *uaddr, size_t size) | |
1879 | { | |
1880 | const char __user *start = uaddr, *end; | |
1881 | volatile char c; | |
1882 | ||
1883 | if (unlikely(size == 0)) | |
1884 | return 0; | |
677b2a8c CL |
1885 | if (!user_read_access_begin(uaddr, size)) |
1886 | return size; | |
bb523b40 | 1887 | if (!PAGE_ALIGNED(uaddr)) { |
677b2a8c | 1888 | unsafe_get_user(c, uaddr, out); |
bb523b40 AG |
1889 | uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); |
1890 | } | |
1891 | end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); | |
1892 | if (unlikely(end < start)) | |
1893 | end = NULL; | |
1894 | while (uaddr != end) { | |
677b2a8c | 1895 | unsafe_get_user(c, uaddr, out); |
bb523b40 AG |
1896 | uaddr += PAGE_SIZE; |
1897 | } | |
1898 | ||
1899 | out: | |
677b2a8c | 1900 | user_read_access_end(); |
bb523b40 AG |
1901 | (void)c; |
1902 | if (size > uaddr - start) | |
1903 | return size - (uaddr - start); | |
1904 | return 0; | |
1905 | } | |
1906 | EXPORT_SYMBOL(fault_in_readable); | |
1907 | ||
8f942eea JH |
1908 | /** |
1909 | * get_dump_page() - pin user page in memory while writing it to core dump | |
1910 | * @addr: user address | |
1911 | * | |
1912 | * Returns struct page pointer of user page pinned for dump, | |
1913 | * to be freed afterwards by put_page(). | |
1914 | * | |
1915 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
1916 | * the corefile, to preserve alignment with its headers; and also returns | |
1917 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
f0953a1b | 1918 | * allowing a hole to be left in the corefile to save disk space. |
8f942eea | 1919 | * |
7f3bfab5 | 1920 | * Called without mmap_lock (takes and releases the mmap_lock by itself). |
8f942eea JH |
1921 | */ |
1922 | #ifdef CONFIG_ELF_CORE | |
1923 | struct page *get_dump_page(unsigned long addr) | |
1924 | { | |
7f3bfab5 | 1925 | struct mm_struct *mm = current->mm; |
8f942eea | 1926 | struct page *page; |
7f3bfab5 JH |
1927 | int locked = 1; |
1928 | int ret; | |
8f942eea | 1929 | |
7f3bfab5 | 1930 | if (mmap_read_lock_killable(mm)) |
8f942eea | 1931 | return NULL; |
7f3bfab5 JH |
1932 | ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, |
1933 | FOLL_FORCE | FOLL_DUMP | FOLL_GET); | |
1934 | if (locked) | |
1935 | mmap_read_unlock(mm); | |
1936 | return (ret == 1) ? page : NULL; | |
8f942eea JH |
1937 | } |
1938 | #endif /* CONFIG_ELF_CORE */ | |
1939 | ||
d1e153fe | 1940 | #ifdef CONFIG_MIGRATION |
f68749ec | 1941 | /* |
67e139b0 | 1942 | * Returns the number of collected pages. Return value is always >= 0. |
f68749ec | 1943 | */ |
67e139b0 AP |
1944 | static unsigned long collect_longterm_unpinnable_pages( |
1945 | struct list_head *movable_page_list, | |
1946 | unsigned long nr_pages, | |
1947 | struct page **pages) | |
9a4e9f3b | 1948 | { |
67e139b0 | 1949 | unsigned long i, collected = 0; |
1b7f7e58 | 1950 | struct folio *prev_folio = NULL; |
67e139b0 | 1951 | bool drain_allow = true; |
9a4e9f3b | 1952 | |
83c02c23 | 1953 | for (i = 0; i < nr_pages; i++) { |
1b7f7e58 | 1954 | struct folio *folio = page_folio(pages[i]); |
f9f38f78 | 1955 | |
1b7f7e58 | 1956 | if (folio == prev_folio) |
83c02c23 | 1957 | continue; |
1b7f7e58 | 1958 | prev_folio = folio; |
f9f38f78 | 1959 | |
67e139b0 AP |
1960 | if (folio_is_longterm_pinnable(folio)) |
1961 | continue; | |
b05a79d4 | 1962 | |
67e139b0 | 1963 | collected++; |
b05a79d4 | 1964 | |
67e139b0 | 1965 | if (folio_is_device_coherent(folio)) |
f9f38f78 CH |
1966 | continue; |
1967 | ||
1b7f7e58 | 1968 | if (folio_test_hugetlb(folio)) { |
67e139b0 | 1969 | isolate_hugetlb(&folio->page, movable_page_list); |
f9f38f78 CH |
1970 | continue; |
1971 | } | |
9a4e9f3b | 1972 | |
1b7f7e58 | 1973 | if (!folio_test_lru(folio) && drain_allow) { |
f9f38f78 CH |
1974 | lru_add_drain_all(); |
1975 | drain_allow = false; | |
1976 | } | |
1977 | ||
67e139b0 | 1978 | if (!folio_isolate_lru(folio)) |
f9f38f78 | 1979 | continue; |
67e139b0 AP |
1980 | |
1981 | list_add_tail(&folio->lru, movable_page_list); | |
1b7f7e58 MWO |
1982 | node_stat_mod_folio(folio, |
1983 | NR_ISOLATED_ANON + folio_is_file_lru(folio), | |
1984 | folio_nr_pages(folio)); | |
9a4e9f3b AK |
1985 | } |
1986 | ||
67e139b0 AP |
1987 | return collected; |
1988 | } | |
1989 | ||
1990 | /* | |
1991 | * Unpins all pages and migrates device coherent pages and movable_page_list. | |
1992 | * Returns -EAGAIN if all pages were successfully migrated or -errno for failure | |
1993 | * (or partial success). | |
1994 | */ | |
1995 | static int migrate_longterm_unpinnable_pages( | |
1996 | struct list_head *movable_page_list, | |
1997 | unsigned long nr_pages, | |
1998 | struct page **pages) | |
1999 | { | |
2000 | int ret; | |
2001 | unsigned long i; | |
6e7f34eb | 2002 | |
b05a79d4 | 2003 | for (i = 0; i < nr_pages; i++) { |
67e139b0 AP |
2004 | struct folio *folio = page_folio(pages[i]); |
2005 | ||
2006 | if (folio_is_device_coherent(folio)) { | |
2007 | /* | |
2008 | * Migration will fail if the page is pinned, so convert | |
2009 | * the pin on the source page to a normal reference. | |
2010 | */ | |
2011 | pages[i] = NULL; | |
2012 | folio_get(folio); | |
2013 | gup_put_folio(folio, 1, FOLL_PIN); | |
2014 | ||
2015 | if (migrate_device_coherent_page(&folio->page)) { | |
2016 | ret = -EBUSY; | |
2017 | goto err; | |
2018 | } | |
2019 | ||
b05a79d4 | 2020 | continue; |
67e139b0 | 2021 | } |
b05a79d4 | 2022 | |
67e139b0 AP |
2023 | /* |
2024 | * We can't migrate pages with unexpected references, so drop | |
2025 | * the reference obtained by __get_user_pages_locked(). | |
2026 | * Migrating pages have been added to movable_page_list after | |
2027 | * calling folio_isolate_lru() which takes a reference so the | |
2028 | * page won't be freed if it's migrating. | |
2029 | */ | |
f6d299ec | 2030 | unpin_user_page(pages[i]); |
67e139b0 | 2031 | pages[i] = NULL; |
f68749ec | 2032 | } |
f9f38f78 | 2033 | |
67e139b0 | 2034 | if (!list_empty(movable_page_list)) { |
f9f38f78 CH |
2035 | struct migration_target_control mtc = { |
2036 | .nid = NUMA_NO_NODE, | |
2037 | .gfp_mask = GFP_USER | __GFP_NOWARN, | |
2038 | }; | |
2039 | ||
67e139b0 AP |
2040 | if (migrate_pages(movable_page_list, alloc_migration_target, |
2041 | NULL, (unsigned long)&mtc, MIGRATE_SYNC, | |
2042 | MR_LONGTERM_PIN, NULL)) { | |
f9f38f78 | 2043 | ret = -ENOMEM; |
67e139b0 AP |
2044 | goto err; |
2045 | } | |
9a4e9f3b AK |
2046 | } |
2047 | ||
67e139b0 AP |
2048 | putback_movable_pages(movable_page_list); |
2049 | ||
2050 | return -EAGAIN; | |
2051 | ||
2052 | err: | |
2053 | for (i = 0; i < nr_pages; i++) | |
2054 | if (pages[i]) | |
2055 | unpin_user_page(pages[i]); | |
2056 | putback_movable_pages(movable_page_list); | |
24a95998 | 2057 | |
67e139b0 AP |
2058 | return ret; |
2059 | } | |
2060 | ||
2061 | /* | |
2062 | * Check whether all pages are *allowed* to be pinned. Rather confusingly, all | |
2063 | * pages in the range are required to be pinned via FOLL_PIN, before calling | |
2064 | * this routine. | |
2065 | * | |
2066 | * If any pages in the range are not allowed to be pinned, then this routine | |
2067 | * will migrate those pages away, unpin all the pages in the range and return | |
2068 | * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then | |
2069 | * call this routine again. | |
2070 | * | |
2071 | * If an error other than -EAGAIN occurs, this indicates a migration failure. | |
2072 | * The caller should give up, and propagate the error back up the call stack. | |
2073 | * | |
2074 | * If everything is OK and all pages in the range are allowed to be pinned, then | |
2075 | * this routine leaves all pages pinned and returns zero for success. | |
2076 | */ | |
2077 | static long check_and_migrate_movable_pages(unsigned long nr_pages, | |
2078 | struct page **pages) | |
2079 | { | |
2080 | unsigned long collected; | |
2081 | LIST_HEAD(movable_page_list); | |
2082 | ||
2083 | collected = collect_longterm_unpinnable_pages(&movable_page_list, | |
2084 | nr_pages, pages); | |
2085 | if (!collected) | |
2086 | return 0; | |
2087 | ||
2088 | return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, | |
2089 | pages); | |
9a4e9f3b AK |
2090 | } |
2091 | #else | |
f68749ec | 2092 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
f6d299ec | 2093 | struct page **pages) |
9a4e9f3b | 2094 | { |
24a95998 | 2095 | return 0; |
9a4e9f3b | 2096 | } |
d1e153fe | 2097 | #endif /* CONFIG_MIGRATION */ |
9a4e9f3b | 2098 | |
2bb6d283 | 2099 | /* |
932f4a63 IW |
2100 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
2101 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 2102 | */ |
64019a2e | 2103 | static long __gup_longterm_locked(struct mm_struct *mm, |
932f4a63 IW |
2104 | unsigned long start, |
2105 | unsigned long nr_pages, | |
2106 | struct page **pages, | |
2107 | struct vm_area_struct **vmas, | |
2108 | unsigned int gup_flags) | |
2bb6d283 | 2109 | { |
f68749ec | 2110 | unsigned int flags; |
24a95998 | 2111 | long rc, nr_pinned_pages; |
2bb6d283 | 2112 | |
f68749ec PT |
2113 | if (!(gup_flags & FOLL_LONGTERM)) |
2114 | return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, | |
2115 | NULL, gup_flags); | |
67e139b0 AP |
2116 | |
2117 | /* | |
2118 | * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM | |
2119 | * implies FOLL_PIN (although the reverse is not true). Therefore it is | |
2120 | * correct to unconditionally call check_and_migrate_movable_pages() | |
2121 | * which assumes pages have been pinned via FOLL_PIN. | |
2122 | * | |
2123 | * Enforce the above reasoning by asserting that FOLL_PIN is set. | |
2124 | */ | |
f6d299ec AP |
2125 | if (WARN_ON(!(gup_flags & FOLL_PIN))) |
2126 | return -EINVAL; | |
f68749ec PT |
2127 | flags = memalloc_pin_save(); |
2128 | do { | |
24a95998 AP |
2129 | nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, |
2130 | pages, vmas, NULL, | |
2131 | gup_flags); | |
2132 | if (nr_pinned_pages <= 0) { | |
2133 | rc = nr_pinned_pages; | |
f68749ec | 2134 | break; |
24a95998 | 2135 | } |
f6d299ec | 2136 | rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); |
24a95998 | 2137 | } while (rc == -EAGAIN); |
f68749ec | 2138 | memalloc_pin_restore(flags); |
2bb6d283 | 2139 | |
24a95998 | 2140 | return rc ? rc : nr_pinned_pages; |
2bb6d283 | 2141 | } |
932f4a63 | 2142 | |
447f3e45 BS |
2143 | static bool is_valid_gup_flags(unsigned int gup_flags) |
2144 | { | |
2145 | /* | |
2146 | * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | |
2147 | * never directly by the caller, so enforce that with an assertion: | |
2148 | */ | |
2149 | if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | |
2150 | return false; | |
2151 | /* | |
2152 | * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying | |
2153 | * that is, FOLL_LONGTERM is a specific case, more restrictive case of | |
2154 | * FOLL_PIN. | |
2155 | */ | |
2156 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
2157 | return false; | |
2158 | ||
2159 | return true; | |
2160 | } | |
2161 | ||
22bf29b6 | 2162 | #ifdef CONFIG_MMU |
64019a2e | 2163 | static long __get_user_pages_remote(struct mm_struct *mm, |
22bf29b6 JH |
2164 | unsigned long start, unsigned long nr_pages, |
2165 | unsigned int gup_flags, struct page **pages, | |
2166 | struct vm_area_struct **vmas, int *locked) | |
2167 | { | |
2168 | /* | |
2169 | * Parts of FOLL_LONGTERM behavior are incompatible with | |
2170 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2171 | * vmas. However, this only comes up if locked is set, and there are | |
2172 | * callers that do request FOLL_LONGTERM, but do not set locked. So, | |
2173 | * allow what we can. | |
2174 | */ | |
2175 | if (gup_flags & FOLL_LONGTERM) { | |
2176 | if (WARN_ON_ONCE(locked)) | |
2177 | return -EINVAL; | |
2178 | /* | |
2179 | * This will check the vmas (even if our vmas arg is NULL) | |
2180 | * and return -ENOTSUPP if DAX isn't allowed in this case: | |
2181 | */ | |
64019a2e | 2182 | return __gup_longterm_locked(mm, start, nr_pages, pages, |
22bf29b6 JH |
2183 | vmas, gup_flags | FOLL_TOUCH | |
2184 | FOLL_REMOTE); | |
2185 | } | |
2186 | ||
64019a2e | 2187 | return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, |
22bf29b6 JH |
2188 | locked, |
2189 | gup_flags | FOLL_TOUCH | FOLL_REMOTE); | |
2190 | } | |
2191 | ||
adc8cb40 | 2192 | /** |
c4237f8b | 2193 | * get_user_pages_remote() - pin user pages in memory |
c4237f8b JH |
2194 | * @mm: mm_struct of target mm |
2195 | * @start: starting user address | |
2196 | * @nr_pages: number of pages from start to pin | |
2197 | * @gup_flags: flags modifying lookup behaviour | |
2198 | * @pages: array that receives pointers to the pages pinned. | |
2199 | * Should be at least nr_pages long. Or NULL, if caller | |
2200 | * only intends to ensure the pages are faulted in. | |
2201 | * @vmas: array of pointers to vmas corresponding to each page. | |
2202 | * Or NULL if the caller does not require them. | |
2203 | * @locked: pointer to lock flag indicating whether lock is held and | |
2204 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2205 | * utilised. Lock must initially be held. | |
2206 | * | |
2207 | * Returns either number of pages pinned (which may be less than the | |
2208 | * number requested), or an error. Details about the return value: | |
2209 | * | |
2210 | * -- If nr_pages is 0, returns 0. | |
2211 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
2212 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
2213 | * pages pinned. Again, this may be less than nr_pages. | |
2214 | * | |
2215 | * The caller is responsible for releasing returned @pages, via put_page(). | |
2216 | * | |
c1e8d7c6 | 2217 | * @vmas are valid only as long as mmap_lock is held. |
c4237f8b | 2218 | * |
c1e8d7c6 | 2219 | * Must be called with mmap_lock held for read or write. |
c4237f8b | 2220 | * |
adc8cb40 SJ |
2221 | * get_user_pages_remote walks a process's page tables and takes a reference |
2222 | * to each struct page that each user address corresponds to at a given | |
c4237f8b JH |
2223 | * instant. That is, it takes the page that would be accessed if a user |
2224 | * thread accesses the given user virtual address at that instant. | |
2225 | * | |
2226 | * This does not guarantee that the page exists in the user mappings when | |
adc8cb40 | 2227 | * get_user_pages_remote returns, and there may even be a completely different |
c4237f8b JH |
2228 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
2229 | * and subsequently re faulted). However it does guarantee that the page | |
2230 | * won't be freed completely. And mostly callers simply care that the page | |
2231 | * contains data that was valid *at some point in time*. Typically, an IO | |
2232 | * or similar operation cannot guarantee anything stronger anyway because | |
2233 | * locks can't be held over the syscall boundary. | |
2234 | * | |
2235 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | |
2236 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
2237 | * be called after the page is finished with, and before put_page is called. | |
2238 | * | |
adc8cb40 SJ |
2239 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
2240 | * to get a handle on the memory by some means other than accesses | |
2241 | * via the user virtual addresses. The pages may be submitted for | |
2242 | * DMA to devices or accessed via their kernel linear mapping (via the | |
2243 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. | |
c4237f8b JH |
2244 | * |
2245 | * See also get_user_pages_fast, for performance critical applications. | |
2246 | * | |
adc8cb40 | 2247 | * get_user_pages_remote should be phased out in favor of |
c4237f8b | 2248 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
adc8cb40 | 2249 | * should use get_user_pages_remote because it cannot pass |
c4237f8b JH |
2250 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
2251 | */ | |
64019a2e | 2252 | long get_user_pages_remote(struct mm_struct *mm, |
c4237f8b JH |
2253 | unsigned long start, unsigned long nr_pages, |
2254 | unsigned int gup_flags, struct page **pages, | |
2255 | struct vm_area_struct **vmas, int *locked) | |
2256 | { | |
447f3e45 | 2257 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
2258 | return -EINVAL; |
2259 | ||
64019a2e | 2260 | return __get_user_pages_remote(mm, start, nr_pages, gup_flags, |
22bf29b6 | 2261 | pages, vmas, locked); |
c4237f8b JH |
2262 | } |
2263 | EXPORT_SYMBOL(get_user_pages_remote); | |
2264 | ||
eddb1c22 | 2265 | #else /* CONFIG_MMU */ |
64019a2e | 2266 | long get_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
2267 | unsigned long start, unsigned long nr_pages, |
2268 | unsigned int gup_flags, struct page **pages, | |
2269 | struct vm_area_struct **vmas, int *locked) | |
2270 | { | |
2271 | return 0; | |
2272 | } | |
3faa52c0 | 2273 | |
64019a2e | 2274 | static long __get_user_pages_remote(struct mm_struct *mm, |
3faa52c0 JH |
2275 | unsigned long start, unsigned long nr_pages, |
2276 | unsigned int gup_flags, struct page **pages, | |
2277 | struct vm_area_struct **vmas, int *locked) | |
2278 | { | |
2279 | return 0; | |
2280 | } | |
eddb1c22 JH |
2281 | #endif /* !CONFIG_MMU */ |
2282 | ||
adc8cb40 SJ |
2283 | /** |
2284 | * get_user_pages() - pin user pages in memory | |
2285 | * @start: starting user address | |
2286 | * @nr_pages: number of pages from start to pin | |
2287 | * @gup_flags: flags modifying lookup behaviour | |
2288 | * @pages: array that receives pointers to the pages pinned. | |
2289 | * Should be at least nr_pages long. Or NULL, if caller | |
2290 | * only intends to ensure the pages are faulted in. | |
2291 | * @vmas: array of pointers to vmas corresponding to each page. | |
2292 | * Or NULL if the caller does not require them. | |
2293 | * | |
64019a2e PX |
2294 | * This is the same as get_user_pages_remote(), just with a less-flexible |
2295 | * calling convention where we assume that the mm being operated on belongs to | |
2296 | * the current task, and doesn't allow passing of a locked parameter. We also | |
2297 | * obviously don't pass FOLL_REMOTE in here. | |
932f4a63 IW |
2298 | */ |
2299 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
2300 | unsigned int gup_flags, struct page **pages, | |
2301 | struct vm_area_struct **vmas) | |
2302 | { | |
447f3e45 | 2303 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
2304 | return -EINVAL; |
2305 | ||
64019a2e | 2306 | return __gup_longterm_locked(current->mm, start, nr_pages, |
932f4a63 IW |
2307 | pages, vmas, gup_flags | FOLL_TOUCH); |
2308 | } | |
2309 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 2310 | |
acc3c8d1 | 2311 | /* |
d3649f68 | 2312 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 2313 | * |
3e4e28c5 | 2314 | * mmap_read_lock(mm); |
64019a2e | 2315 | * get_user_pages(mm, ..., pages, NULL); |
3e4e28c5 | 2316 | * mmap_read_unlock(mm); |
d3649f68 CH |
2317 | * |
2318 | * with: | |
2319 | * | |
64019a2e | 2320 | * get_user_pages_unlocked(mm, ..., pages); |
d3649f68 CH |
2321 | * |
2322 | * It is functionally equivalent to get_user_pages_fast so | |
2323 | * get_user_pages_fast should be used instead if specific gup_flags | |
2324 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 2325 | */ |
d3649f68 CH |
2326 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
2327 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 KS |
2328 | { |
2329 | struct mm_struct *mm = current->mm; | |
d3649f68 CH |
2330 | int locked = 1; |
2331 | long ret; | |
acc3c8d1 | 2332 | |
d3649f68 CH |
2333 | /* |
2334 | * FIXME: Current FOLL_LONGTERM behavior is incompatible with | |
2335 | * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | |
2336 | * vmas. As there are no users of this flag in this call we simply | |
2337 | * disallow this option for now. | |
2338 | */ | |
2339 | if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | |
2340 | return -EINVAL; | |
acc3c8d1 | 2341 | |
d8ed45c5 | 2342 | mmap_read_lock(mm); |
64019a2e | 2343 | ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, |
d3649f68 | 2344 | &locked, gup_flags | FOLL_TOUCH); |
acc3c8d1 | 2345 | if (locked) |
d8ed45c5 | 2346 | mmap_read_unlock(mm); |
d3649f68 | 2347 | return ret; |
4bbd4c77 | 2348 | } |
d3649f68 | 2349 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
2350 | |
2351 | /* | |
67a929e0 | 2352 | * Fast GUP |
2667f50e SC |
2353 | * |
2354 | * get_user_pages_fast attempts to pin user pages by walking the page | |
2355 | * tables directly and avoids taking locks. Thus the walker needs to be | |
2356 | * protected from page table pages being freed from under it, and should | |
2357 | * block any THP splits. | |
2358 | * | |
2359 | * One way to achieve this is to have the walker disable interrupts, and | |
2360 | * rely on IPIs from the TLB flushing code blocking before the page table | |
2361 | * pages are freed. This is unsuitable for architectures that do not need | |
2362 | * to broadcast an IPI when invalidating TLBs. | |
2363 | * | |
2364 | * Another way to achieve this is to batch up page table containing pages | |
2365 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
2366 | * pages. Disabling interrupts will allow the fast_gup walker to both block | |
2367 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | |
2368 | * (which is a relatively rare event). The code below adopts this strategy. | |
2369 | * | |
2370 | * Before activating this code, please be aware that the following assumptions | |
2371 | * are currently made: | |
2372 | * | |
ff2e6d72 | 2373 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
e585513b | 2374 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2667f50e | 2375 | * |
2667f50e SC |
2376 | * *) ptes can be read atomically by the architecture. |
2377 | * | |
2378 | * *) access_ok is sufficient to validate userspace address ranges. | |
2379 | * | |
2380 | * The last two assumptions can be relaxed by the addition of helper functions. | |
2381 | * | |
2382 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
2383 | */ | |
67a929e0 | 2384 | #ifdef CONFIG_HAVE_FAST_GUP |
3faa52c0 | 2385 | |
790c7369 | 2386 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, |
3b78d834 | 2387 | unsigned int flags, |
790c7369 | 2388 | struct page **pages) |
b59f65fa KS |
2389 | { |
2390 | while ((*nr) - nr_start) { | |
2391 | struct page *page = pages[--(*nr)]; | |
2392 | ||
2393 | ClearPageReferenced(page); | |
3faa52c0 JH |
2394 | if (flags & FOLL_PIN) |
2395 | unpin_user_page(page); | |
2396 | else | |
2397 | put_page(page); | |
b59f65fa KS |
2398 | } |
2399 | } | |
2400 | ||
3010a5ea | 2401 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
70cbc3cc YS |
2402 | /* |
2403 | * Fast-gup relies on pte change detection to avoid concurrent pgtable | |
2404 | * operations. | |
2405 | * | |
2406 | * To pin the page, fast-gup needs to do below in order: | |
2407 | * (1) pin the page (by prefetching pte), then (2) check pte not changed. | |
2408 | * | |
2409 | * For the rest of pgtable operations where pgtable updates can be racy | |
2410 | * with fast-gup, we need to do (1) clear pte, then (2) check whether page | |
2411 | * is pinned. | |
2412 | * | |
2413 | * Above will work for all pte-level operations, including THP split. | |
2414 | * | |
2415 | * For THP collapse, it's a bit more complicated because fast-gup may be | |
2416 | * walking a pgtable page that is being freed (pte is still valid but pmd | |
2417 | * can be cleared already). To avoid race in such condition, we need to | |
2418 | * also check pmd here to make sure pmd doesn't change (corresponds to | |
2419 | * pmdp_collapse_flush() in the THP collapse code path). | |
2420 | */ | |
2421 | static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, | |
2422 | unsigned long end, unsigned int flags, | |
2423 | struct page **pages, int *nr) | |
2667f50e | 2424 | { |
b59f65fa KS |
2425 | struct dev_pagemap *pgmap = NULL; |
2426 | int nr_start = *nr, ret = 0; | |
2667f50e | 2427 | pte_t *ptep, *ptem; |
2667f50e SC |
2428 | |
2429 | ptem = ptep = pte_offset_map(&pmd, addr); | |
2430 | do { | |
2a4a06da | 2431 | pte_t pte = ptep_get_lockless(ptep); |
b0496fe4 MWO |
2432 | struct page *page; |
2433 | struct folio *folio; | |
2667f50e | 2434 | |
0cf45986 | 2435 | if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) |
e7884f8e KS |
2436 | goto pte_unmap; |
2437 | ||
b798bec4 | 2438 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
2439 | goto pte_unmap; |
2440 | ||
b59f65fa | 2441 | if (pte_devmap(pte)) { |
7af75561 IW |
2442 | if (unlikely(flags & FOLL_LONGTERM)) |
2443 | goto pte_unmap; | |
2444 | ||
b59f65fa KS |
2445 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
2446 | if (unlikely(!pgmap)) { | |
3b78d834 | 2447 | undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2448 | goto pte_unmap; |
2449 | } | |
2450 | } else if (pte_special(pte)) | |
2667f50e SC |
2451 | goto pte_unmap; |
2452 | ||
2453 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2454 | page = pte_page(pte); | |
2455 | ||
b0496fe4 MWO |
2456 | folio = try_grab_folio(page, 1, flags); |
2457 | if (!folio) | |
2667f50e SC |
2458 | goto pte_unmap; |
2459 | ||
1507f512 | 2460 | if (unlikely(page_is_secretmem(page))) { |
b0496fe4 | 2461 | gup_put_folio(folio, 1, flags); |
1507f512 MR |
2462 | goto pte_unmap; |
2463 | } | |
2464 | ||
70cbc3cc YS |
2465 | if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || |
2466 | unlikely(pte_val(pte) != pte_val(*ptep))) { | |
b0496fe4 | 2467 | gup_put_folio(folio, 1, flags); |
2667f50e SC |
2468 | goto pte_unmap; |
2469 | } | |
2470 | ||
a7f22660 DH |
2471 | if (!pte_write(pte) && gup_must_unshare(flags, page)) { |
2472 | gup_put_folio(folio, 1, flags); | |
2473 | goto pte_unmap; | |
2474 | } | |
2475 | ||
f28d4363 CI |
2476 | /* |
2477 | * We need to make the page accessible if and only if we are | |
2478 | * going to access its content (the FOLL_PIN case). Please | |
2479 | * see Documentation/core-api/pin_user_pages.rst for | |
2480 | * details. | |
2481 | */ | |
2482 | if (flags & FOLL_PIN) { | |
2483 | ret = arch_make_page_accessible(page); | |
2484 | if (ret) { | |
b0496fe4 | 2485 | gup_put_folio(folio, 1, flags); |
f28d4363 CI |
2486 | goto pte_unmap; |
2487 | } | |
2488 | } | |
b0496fe4 | 2489 | folio_set_referenced(folio); |
2667f50e SC |
2490 | pages[*nr] = page; |
2491 | (*nr)++; | |
2667f50e SC |
2492 | } while (ptep++, addr += PAGE_SIZE, addr != end); |
2493 | ||
2494 | ret = 1; | |
2495 | ||
2496 | pte_unmap: | |
832d7aa0 CH |
2497 | if (pgmap) |
2498 | put_dev_pagemap(pgmap); | |
2667f50e SC |
2499 | pte_unmap(ptem); |
2500 | return ret; | |
2501 | } | |
2502 | #else | |
2503 | ||
2504 | /* | |
2505 | * If we can't determine whether or not a pte is special, then fail immediately | |
2506 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
2507 | * to be special. | |
2508 | * | |
2509 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
dadbb612 | 2510 | * get_user_pages_fast_only implementation that can pin pages. Thus it's still |
2667f50e SC |
2511 | * useful to have gup_huge_pmd even if we can't operate on ptes. |
2512 | */ | |
70cbc3cc YS |
2513 | static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
2514 | unsigned long end, unsigned int flags, | |
2515 | struct page **pages, int *nr) | |
2667f50e SC |
2516 | { |
2517 | return 0; | |
2518 | } | |
3010a5ea | 2519 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 2520 | |
17596731 | 2521 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
b59f65fa | 2522 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, |
86dfbed4 JH |
2523 | unsigned long end, unsigned int flags, |
2524 | struct page **pages, int *nr) | |
b59f65fa KS |
2525 | { |
2526 | int nr_start = *nr; | |
2527 | struct dev_pagemap *pgmap = NULL; | |
2528 | ||
2529 | do { | |
2530 | struct page *page = pfn_to_page(pfn); | |
2531 | ||
2532 | pgmap = get_dev_pagemap(pfn, pgmap); | |
2533 | if (unlikely(!pgmap)) { | |
3b78d834 | 2534 | undo_dev_pagemap(nr, nr_start, flags, pages); |
6401c4eb | 2535 | break; |
b59f65fa KS |
2536 | } |
2537 | SetPageReferenced(page); | |
2538 | pages[*nr] = page; | |
3faa52c0 JH |
2539 | if (unlikely(!try_grab_page(page, flags))) { |
2540 | undo_dev_pagemap(nr, nr_start, flags, pages); | |
6401c4eb | 2541 | break; |
3faa52c0 | 2542 | } |
b59f65fa KS |
2543 | (*nr)++; |
2544 | pfn++; | |
2545 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 | 2546 | |
6401c4eb | 2547 | put_dev_pagemap(pgmap); |
20b7fee7 | 2548 | return addr == end; |
b59f65fa KS |
2549 | } |
2550 | ||
a9b6de77 | 2551 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2552 | unsigned long end, unsigned int flags, |
2553 | struct page **pages, int *nr) | |
b59f65fa KS |
2554 | { |
2555 | unsigned long fault_pfn; | |
a9b6de77 DW |
2556 | int nr_start = *nr; |
2557 | ||
2558 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2559 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2560 | return 0; |
b59f65fa | 2561 | |
a9b6de77 | 2562 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
3b78d834 | 2563 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2564 | return 0; |
2565 | } | |
2566 | return 1; | |
b59f65fa KS |
2567 | } |
2568 | ||
a9b6de77 | 2569 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2570 | unsigned long end, unsigned int flags, |
2571 | struct page **pages, int *nr) | |
b59f65fa KS |
2572 | { |
2573 | unsigned long fault_pfn; | |
a9b6de77 DW |
2574 | int nr_start = *nr; |
2575 | ||
2576 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
86dfbed4 | 2577 | if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 2578 | return 0; |
b59f65fa | 2579 | |
a9b6de77 | 2580 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
3b78d834 | 2581 | undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
2582 | return 0; |
2583 | } | |
2584 | return 1; | |
b59f65fa KS |
2585 | } |
2586 | #else | |
a9b6de77 | 2587 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
86dfbed4 JH |
2588 | unsigned long end, unsigned int flags, |
2589 | struct page **pages, int *nr) | |
b59f65fa KS |
2590 | { |
2591 | BUILD_BUG(); | |
2592 | return 0; | |
2593 | } | |
2594 | ||
a9b6de77 | 2595 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, |
86dfbed4 JH |
2596 | unsigned long end, unsigned int flags, |
2597 | struct page **pages, int *nr) | |
b59f65fa KS |
2598 | { |
2599 | BUILD_BUG(); | |
2600 | return 0; | |
2601 | } | |
2602 | #endif | |
2603 | ||
a43e9820 JH |
2604 | static int record_subpages(struct page *page, unsigned long addr, |
2605 | unsigned long end, struct page **pages) | |
2606 | { | |
2607 | int nr; | |
2608 | ||
c228afb1 MWO |
2609 | for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) |
2610 | pages[nr] = nth_page(page, nr); | |
a43e9820 JH |
2611 | |
2612 | return nr; | |
2613 | } | |
2614 | ||
cbd34da7 CH |
2615 | #ifdef CONFIG_ARCH_HAS_HUGEPD |
2616 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
2617 | unsigned long sz) | |
2618 | { | |
2619 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
2620 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
2621 | } | |
2622 | ||
2623 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | |
0cd22afd JH |
2624 | unsigned long end, unsigned int flags, |
2625 | struct page **pages, int *nr) | |
cbd34da7 CH |
2626 | { |
2627 | unsigned long pte_end; | |
09a1626e MWO |
2628 | struct page *page; |
2629 | struct folio *folio; | |
cbd34da7 CH |
2630 | pte_t pte; |
2631 | int refs; | |
2632 | ||
2633 | pte_end = (addr + sz) & ~(sz-1); | |
2634 | if (pte_end < end) | |
2635 | end = pte_end; | |
2636 | ||
55ca2263 | 2637 | pte = huge_ptep_get(ptep); |
cbd34da7 | 2638 | |
0cd22afd | 2639 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
cbd34da7 CH |
2640 | return 0; |
2641 | ||
2642 | /* hugepages are never "special" */ | |
2643 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2644 | ||
09a1626e | 2645 | page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); |
a43e9820 | 2646 | refs = record_subpages(page, addr, end, pages + *nr); |
cbd34da7 | 2647 | |
09a1626e MWO |
2648 | folio = try_grab_folio(page, refs, flags); |
2649 | if (!folio) | |
cbd34da7 | 2650 | return 0; |
cbd34da7 CH |
2651 | |
2652 | if (unlikely(pte_val(pte) != pte_val(*ptep))) { | |
09a1626e | 2653 | gup_put_folio(folio, refs, flags); |
cbd34da7 CH |
2654 | return 0; |
2655 | } | |
2656 | ||
a7f22660 DH |
2657 | if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { |
2658 | gup_put_folio(folio, refs, flags); | |
2659 | return 0; | |
2660 | } | |
2661 | ||
a43e9820 | 2662 | *nr += refs; |
09a1626e | 2663 | folio_set_referenced(folio); |
cbd34da7 CH |
2664 | return 1; |
2665 | } | |
2666 | ||
2667 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2668 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2669 | struct page **pages, int *nr) |
2670 | { | |
2671 | pte_t *ptep; | |
2672 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
2673 | unsigned long next; | |
2674 | ||
2675 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
2676 | do { | |
2677 | next = hugepte_addr_end(addr, end, sz); | |
0cd22afd | 2678 | if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) |
cbd34da7 CH |
2679 | return 0; |
2680 | } while (ptep++, addr = next, addr != end); | |
2681 | ||
2682 | return 1; | |
2683 | } | |
2684 | #else | |
2685 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | |
0cd22afd | 2686 | unsigned int pdshift, unsigned long end, unsigned int flags, |
cbd34da7 CH |
2687 | struct page **pages, int *nr) |
2688 | { | |
2689 | return 0; | |
2690 | } | |
2691 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
2692 | ||
2667f50e | 2693 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
0cd22afd JH |
2694 | unsigned long end, unsigned int flags, |
2695 | struct page **pages, int *nr) | |
2667f50e | 2696 | { |
667ed1f7 MWO |
2697 | struct page *page; |
2698 | struct folio *folio; | |
2667f50e SC |
2699 | int refs; |
2700 | ||
b798bec4 | 2701 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2702 | return 0; |
2703 | ||
7af75561 IW |
2704 | if (pmd_devmap(orig)) { |
2705 | if (unlikely(flags & FOLL_LONGTERM)) | |
2706 | return 0; | |
86dfbed4 JH |
2707 | return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, |
2708 | pages, nr); | |
7af75561 | 2709 | } |
b59f65fa | 2710 | |
c228afb1 | 2711 | page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2712 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2713 | |
667ed1f7 MWO |
2714 | folio = try_grab_folio(page, refs, flags); |
2715 | if (!folio) | |
2667f50e | 2716 | return 0; |
2667f50e SC |
2717 | |
2718 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
667ed1f7 | 2719 | gup_put_folio(folio, refs, flags); |
2667f50e SC |
2720 | return 0; |
2721 | } | |
2722 | ||
a7f22660 DH |
2723 | if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { |
2724 | gup_put_folio(folio, refs, flags); | |
2725 | return 0; | |
2726 | } | |
2727 | ||
a43e9820 | 2728 | *nr += refs; |
667ed1f7 | 2729 | folio_set_referenced(folio); |
2667f50e SC |
2730 | return 1; |
2731 | } | |
2732 | ||
2733 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | |
86dfbed4 JH |
2734 | unsigned long end, unsigned int flags, |
2735 | struct page **pages, int *nr) | |
2667f50e | 2736 | { |
83afb52e MWO |
2737 | struct page *page; |
2738 | struct folio *folio; | |
2667f50e SC |
2739 | int refs; |
2740 | ||
b798bec4 | 2741 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
2742 | return 0; |
2743 | ||
7af75561 IW |
2744 | if (pud_devmap(orig)) { |
2745 | if (unlikely(flags & FOLL_LONGTERM)) | |
2746 | return 0; | |
86dfbed4 JH |
2747 | return __gup_device_huge_pud(orig, pudp, addr, end, flags, |
2748 | pages, nr); | |
7af75561 | 2749 | } |
b59f65fa | 2750 | |
c228afb1 | 2751 | page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); |
a43e9820 | 2752 | refs = record_subpages(page, addr, end, pages + *nr); |
2667f50e | 2753 | |
83afb52e MWO |
2754 | folio = try_grab_folio(page, refs, flags); |
2755 | if (!folio) | |
2667f50e | 2756 | return 0; |
2667f50e SC |
2757 | |
2758 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
83afb52e | 2759 | gup_put_folio(folio, refs, flags); |
2667f50e SC |
2760 | return 0; |
2761 | } | |
2762 | ||
a7f22660 DH |
2763 | if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { |
2764 | gup_put_folio(folio, refs, flags); | |
2765 | return 0; | |
2766 | } | |
2767 | ||
a43e9820 | 2768 | *nr += refs; |
83afb52e | 2769 | folio_set_referenced(folio); |
2667f50e SC |
2770 | return 1; |
2771 | } | |
2772 | ||
f30c59e9 | 2773 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
b798bec4 | 2774 | unsigned long end, unsigned int flags, |
f30c59e9 AK |
2775 | struct page **pages, int *nr) |
2776 | { | |
2777 | int refs; | |
2d7919a2 MWO |
2778 | struct page *page; |
2779 | struct folio *folio; | |
f30c59e9 | 2780 | |
b798bec4 | 2781 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
2782 | return 0; |
2783 | ||
b59f65fa | 2784 | BUILD_BUG_ON(pgd_devmap(orig)); |
a43e9820 | 2785 | |
c228afb1 | 2786 | page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); |
a43e9820 | 2787 | refs = record_subpages(page, addr, end, pages + *nr); |
f30c59e9 | 2788 | |
2d7919a2 MWO |
2789 | folio = try_grab_folio(page, refs, flags); |
2790 | if (!folio) | |
f30c59e9 | 2791 | return 0; |
f30c59e9 AK |
2792 | |
2793 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
2d7919a2 | 2794 | gup_put_folio(folio, refs, flags); |
f30c59e9 AK |
2795 | return 0; |
2796 | } | |
2797 | ||
a43e9820 | 2798 | *nr += refs; |
2d7919a2 | 2799 | folio_set_referenced(folio); |
f30c59e9 AK |
2800 | return 1; |
2801 | } | |
2802 | ||
d3f7b1bb | 2803 | static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, |
b798bec4 | 2804 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2805 | { |
2806 | unsigned long next; | |
2807 | pmd_t *pmdp; | |
2808 | ||
d3f7b1bb | 2809 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
2667f50e | 2810 | do { |
38c5ce93 | 2811 | pmd_t pmd = READ_ONCE(*pmdp); |
2667f50e SC |
2812 | |
2813 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 2814 | if (!pmd_present(pmd)) |
2667f50e SC |
2815 | return 0; |
2816 | ||
414fd080 YZ |
2817 | if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || |
2818 | pmd_devmap(pmd))) { | |
0cf45986 DH |
2819 | if (pmd_protnone(pmd) && |
2820 | !gup_can_follow_protnone(flags)) | |
2667f50e SC |
2821 | return 0; |
2822 | ||
b798bec4 | 2823 | if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, |
2667f50e SC |
2824 | pages, nr)) |
2825 | return 0; | |
2826 | ||
f30c59e9 AK |
2827 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
2828 | /* | |
2829 | * architecture have different format for hugetlbfs | |
2830 | * pmd format and THP pmd format | |
2831 | */ | |
2832 | if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | |
b798bec4 | 2833 | PMD_SHIFT, next, flags, pages, nr)) |
f30c59e9 | 2834 | return 0; |
70cbc3cc | 2835 | } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) |
2923117b | 2836 | return 0; |
2667f50e SC |
2837 | } while (pmdp++, addr = next, addr != end); |
2838 | ||
2839 | return 1; | |
2840 | } | |
2841 | ||
d3f7b1bb | 2842 | static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, |
b798bec4 | 2843 | unsigned int flags, struct page **pages, int *nr) |
2667f50e SC |
2844 | { |
2845 | unsigned long next; | |
2846 | pud_t *pudp; | |
2847 | ||
d3f7b1bb | 2848 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
2667f50e | 2849 | do { |
e37c6982 | 2850 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
2851 | |
2852 | next = pud_addr_end(addr, end); | |
15494520 | 2853 | if (unlikely(!pud_present(pud))) |
2667f50e | 2854 | return 0; |
f30c59e9 | 2855 | if (unlikely(pud_huge(pud))) { |
b798bec4 | 2856 | if (!gup_huge_pud(pud, pudp, addr, next, flags, |
f30c59e9 AK |
2857 | pages, nr)) |
2858 | return 0; | |
2859 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
2860 | if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | |
b798bec4 | 2861 | PUD_SHIFT, next, flags, pages, nr)) |
2667f50e | 2862 | return 0; |
d3f7b1bb | 2863 | } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) |
2667f50e SC |
2864 | return 0; |
2865 | } while (pudp++, addr = next, addr != end); | |
2866 | ||
2867 | return 1; | |
2868 | } | |
2869 | ||
d3f7b1bb | 2870 | static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, |
b798bec4 | 2871 | unsigned int flags, struct page **pages, int *nr) |
c2febafc KS |
2872 | { |
2873 | unsigned long next; | |
2874 | p4d_t *p4dp; | |
2875 | ||
d3f7b1bb | 2876 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
c2febafc KS |
2877 | do { |
2878 | p4d_t p4d = READ_ONCE(*p4dp); | |
2879 | ||
2880 | next = p4d_addr_end(addr, end); | |
2881 | if (p4d_none(p4d)) | |
2882 | return 0; | |
2883 | BUILD_BUG_ON(p4d_huge(p4d)); | |
2884 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | |
2885 | if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | |
b798bec4 | 2886 | P4D_SHIFT, next, flags, pages, nr)) |
c2febafc | 2887 | return 0; |
d3f7b1bb | 2888 | } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) |
c2febafc KS |
2889 | return 0; |
2890 | } while (p4dp++, addr = next, addr != end); | |
2891 | ||
2892 | return 1; | |
2893 | } | |
2894 | ||
5b65c467 | 2895 | static void gup_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 2896 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
2897 | { |
2898 | unsigned long next; | |
2899 | pgd_t *pgdp; | |
2900 | ||
2901 | pgdp = pgd_offset(current->mm, addr); | |
2902 | do { | |
2903 | pgd_t pgd = READ_ONCE(*pgdp); | |
2904 | ||
2905 | next = pgd_addr_end(addr, end); | |
2906 | if (pgd_none(pgd)) | |
2907 | return; | |
2908 | if (unlikely(pgd_huge(pgd))) { | |
b798bec4 | 2909 | if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, |
5b65c467 KS |
2910 | pages, nr)) |
2911 | return; | |
2912 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
2913 | if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | |
b798bec4 | 2914 | PGDIR_SHIFT, next, flags, pages, nr)) |
5b65c467 | 2915 | return; |
d3f7b1bb | 2916 | } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) |
5b65c467 KS |
2917 | return; |
2918 | } while (pgdp++, addr = next, addr != end); | |
2919 | } | |
050a9adc CH |
2920 | #else |
2921 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | |
2922 | unsigned int flags, struct page **pages, int *nr) | |
2923 | { | |
2924 | } | |
2925 | #endif /* CONFIG_HAVE_FAST_GUP */ | |
5b65c467 KS |
2926 | |
2927 | #ifndef gup_fast_permitted | |
2928 | /* | |
dadbb612 | 2929 | * Check if it's allowed to use get_user_pages_fast_only() for the range, or |
5b65c467 KS |
2930 | * we need to fall back to the slow version: |
2931 | */ | |
26f4c328 | 2932 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 2933 | { |
26f4c328 | 2934 | return true; |
5b65c467 KS |
2935 | } |
2936 | #endif | |
2937 | ||
7af75561 IW |
2938 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, |
2939 | unsigned int gup_flags, struct page **pages) | |
2940 | { | |
2941 | int ret; | |
2942 | ||
2943 | /* | |
2944 | * FIXME: FOLL_LONGTERM does not work with | |
2945 | * get_user_pages_unlocked() (see comments in that function) | |
2946 | */ | |
2947 | if (gup_flags & FOLL_LONGTERM) { | |
d8ed45c5 | 2948 | mmap_read_lock(current->mm); |
64019a2e | 2949 | ret = __gup_longterm_locked(current->mm, |
7af75561 IW |
2950 | start, nr_pages, |
2951 | pages, NULL, gup_flags); | |
d8ed45c5 | 2952 | mmap_read_unlock(current->mm); |
7af75561 IW |
2953 | } else { |
2954 | ret = get_user_pages_unlocked(start, nr_pages, | |
2955 | pages, gup_flags); | |
2956 | } | |
2957 | ||
2958 | return ret; | |
2959 | } | |
2960 | ||
c28b1fc7 JG |
2961 | static unsigned long lockless_pages_from_mm(unsigned long start, |
2962 | unsigned long end, | |
2963 | unsigned int gup_flags, | |
2964 | struct page **pages) | |
2965 | { | |
2966 | unsigned long flags; | |
2967 | int nr_pinned = 0; | |
57efa1fe | 2968 | unsigned seq; |
c28b1fc7 JG |
2969 | |
2970 | if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || | |
2971 | !gup_fast_permitted(start, end)) | |
2972 | return 0; | |
2973 | ||
57efa1fe JG |
2974 | if (gup_flags & FOLL_PIN) { |
2975 | seq = raw_read_seqcount(¤t->mm->write_protect_seq); | |
2976 | if (seq & 1) | |
2977 | return 0; | |
2978 | } | |
2979 | ||
c28b1fc7 JG |
2980 | /* |
2981 | * Disable interrupts. The nested form is used, in order to allow full, | |
2982 | * general purpose use of this routine. | |
2983 | * | |
2984 | * With interrupts disabled, we block page table pages from being freed | |
2985 | * from under us. See struct mmu_table_batch comments in | |
2986 | * include/asm-generic/tlb.h for more details. | |
2987 | * | |
2988 | * We do not adopt an rcu_read_lock() here as we also want to block IPIs | |
2989 | * that come from THPs splitting. | |
2990 | */ | |
2991 | local_irq_save(flags); | |
2992 | gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); | |
2993 | local_irq_restore(flags); | |
57efa1fe JG |
2994 | |
2995 | /* | |
2996 | * When pinning pages for DMA there could be a concurrent write protect | |
2997 | * from fork() via copy_page_range(), in this case always fail fast GUP. | |
2998 | */ | |
2999 | if (gup_flags & FOLL_PIN) { | |
3000 | if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { | |
b6a2619c | 3001 | unpin_user_pages_lockless(pages, nr_pinned); |
57efa1fe | 3002 | return 0; |
b6a2619c DH |
3003 | } else { |
3004 | sanity_check_pinned_pages(pages, nr_pinned); | |
57efa1fe JG |
3005 | } |
3006 | } | |
c28b1fc7 JG |
3007 | return nr_pinned; |
3008 | } | |
3009 | ||
3010 | static int internal_get_user_pages_fast(unsigned long start, | |
3011 | unsigned long nr_pages, | |
eddb1c22 JH |
3012 | unsigned int gup_flags, |
3013 | struct page **pages) | |
2667f50e | 3014 | { |
c28b1fc7 JG |
3015 | unsigned long len, end; |
3016 | unsigned long nr_pinned; | |
3017 | int ret; | |
2667f50e | 3018 | |
f4000fdf | 3019 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
376a34ef | 3020 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
55b8fe70 | 3021 | FOLL_FAST_ONLY | FOLL_NOFAULT))) |
817be129 CH |
3022 | return -EINVAL; |
3023 | ||
a458b76a AA |
3024 | if (gup_flags & FOLL_PIN) |
3025 | mm_set_has_pinned_flag(¤t->mm->flags); | |
008cfe44 | 3026 | |
f81cd178 | 3027 | if (!(gup_flags & FOLL_FAST_ONLY)) |
da1c55f1 | 3028 | might_lock_read(¤t->mm->mmap_lock); |
f81cd178 | 3029 | |
f455c854 | 3030 | start = untagged_addr(start) & PAGE_MASK; |
c28b1fc7 JG |
3031 | len = nr_pages << PAGE_SHIFT; |
3032 | if (check_add_overflow(start, len, &end)) | |
c61611f7 | 3033 | return 0; |
96d4f267 | 3034 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 3035 | return -EFAULT; |
73e10a61 | 3036 | |
c28b1fc7 JG |
3037 | nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); |
3038 | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) | |
3039 | return nr_pinned; | |
2667f50e | 3040 | |
c28b1fc7 JG |
3041 | /* Slow path: try to get the remaining pages with get_user_pages */ |
3042 | start += nr_pinned << PAGE_SHIFT; | |
3043 | pages += nr_pinned; | |
3044 | ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, | |
3045 | pages); | |
3046 | if (ret < 0) { | |
3047 | /* | |
3048 | * The caller has to unpin the pages we already pinned so | |
3049 | * returning -errno is not an option | |
3050 | */ | |
3051 | if (nr_pinned) | |
3052 | return nr_pinned; | |
3053 | return ret; | |
2667f50e | 3054 | } |
c28b1fc7 | 3055 | return ret + nr_pinned; |
2667f50e | 3056 | } |
c28b1fc7 | 3057 | |
dadbb612 SJ |
3058 | /** |
3059 | * get_user_pages_fast_only() - pin user pages in memory | |
3060 | * @start: starting user address | |
3061 | * @nr_pages: number of pages from start to pin | |
3062 | * @gup_flags: flags modifying pin behaviour | |
3063 | * @pages: array that receives pointers to the pages pinned. | |
3064 | * Should be at least nr_pages long. | |
3065 | * | |
9e1f0580 JH |
3066 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
3067 | * the regular GUP. | |
3068 | * Note a difference with get_user_pages_fast: this always returns the | |
3069 | * number of pages pinned, 0 if no pages were pinned. | |
3070 | * | |
3071 | * If the architecture does not support this function, simply return with no | |
3072 | * pages pinned. | |
3073 | * | |
3074 | * Careful, careful! COW breaking can go either way, so a non-write | |
3075 | * access can get ambiguous page results. If you call this function without | |
3076 | * 'write' set, you'd better be sure that you're ok with that ambiguity. | |
3077 | */ | |
dadbb612 SJ |
3078 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
3079 | unsigned int gup_flags, struct page **pages) | |
9e1f0580 | 3080 | { |
376a34ef | 3081 | int nr_pinned; |
9e1f0580 JH |
3082 | /* |
3083 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | |
3084 | * because gup fast is always a "pin with a +1 page refcount" request. | |
376a34ef JH |
3085 | * |
3086 | * FOLL_FAST_ONLY is required in order to match the API description of | |
3087 | * this routine: no fall back to regular ("slow") GUP. | |
9e1f0580 | 3088 | */ |
dadbb612 | 3089 | gup_flags |= FOLL_GET | FOLL_FAST_ONLY; |
9e1f0580 | 3090 | |
376a34ef JH |
3091 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, |
3092 | pages); | |
9e1f0580 JH |
3093 | |
3094 | /* | |
376a34ef JH |
3095 | * As specified in the API description above, this routine is not |
3096 | * allowed to return negative values. However, the common core | |
3097 | * routine internal_get_user_pages_fast() *can* return -errno. | |
3098 | * Therefore, correct for that here: | |
9e1f0580 | 3099 | */ |
376a34ef JH |
3100 | if (nr_pinned < 0) |
3101 | nr_pinned = 0; | |
9e1f0580 JH |
3102 | |
3103 | return nr_pinned; | |
3104 | } | |
dadbb612 | 3105 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); |
9e1f0580 | 3106 | |
eddb1c22 JH |
3107 | /** |
3108 | * get_user_pages_fast() - pin user pages in memory | |
3faa52c0 JH |
3109 | * @start: starting user address |
3110 | * @nr_pages: number of pages from start to pin | |
3111 | * @gup_flags: flags modifying pin behaviour | |
3112 | * @pages: array that receives pointers to the pages pinned. | |
3113 | * Should be at least nr_pages long. | |
eddb1c22 | 3114 | * |
c1e8d7c6 | 3115 | * Attempt to pin user pages in memory without taking mm->mmap_lock. |
eddb1c22 JH |
3116 | * If not successful, it will fall back to taking the lock and |
3117 | * calling get_user_pages(). | |
3118 | * | |
3119 | * Returns number of pages pinned. This may be fewer than the number requested. | |
3120 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | |
3121 | * -errno. | |
3122 | */ | |
3123 | int get_user_pages_fast(unsigned long start, int nr_pages, | |
3124 | unsigned int gup_flags, struct page **pages) | |
3125 | { | |
447f3e45 | 3126 | if (!is_valid_gup_flags(gup_flags)) |
eddb1c22 JH |
3127 | return -EINVAL; |
3128 | ||
94202f12 JH |
3129 | /* |
3130 | * The caller may or may not have explicitly set FOLL_GET; either way is | |
3131 | * OK. However, internally (within mm/gup.c), gup fast variants must set | |
3132 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | |
3133 | * request. | |
3134 | */ | |
3135 | gup_flags |= FOLL_GET; | |
eddb1c22 JH |
3136 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); |
3137 | } | |
050a9adc | 3138 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
eddb1c22 JH |
3139 | |
3140 | /** | |
3141 | * pin_user_pages_fast() - pin user pages in memory without taking locks | |
3142 | * | |
3faa52c0 JH |
3143 | * @start: starting user address |
3144 | * @nr_pages: number of pages from start to pin | |
3145 | * @gup_flags: flags modifying pin behaviour | |
3146 | * @pages: array that receives pointers to the pages pinned. | |
3147 | * Should be at least nr_pages long. | |
3148 | * | |
3149 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | |
3150 | * get_user_pages_fast() for documentation on the function arguments, because | |
3151 | * the arguments here are identical. | |
3152 | * | |
3153 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3154 | * see Documentation/core-api/pin_user_pages.rst for further details. |
eddb1c22 JH |
3155 | */ |
3156 | int pin_user_pages_fast(unsigned long start, int nr_pages, | |
3157 | unsigned int gup_flags, struct page **pages) | |
3158 | { | |
3faa52c0 JH |
3159 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
3160 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3161 | return -EINVAL; | |
3162 | ||
0768c8de YN |
3163 | if (WARN_ON_ONCE(!pages)) |
3164 | return -EINVAL; | |
3165 | ||
3faa52c0 JH |
3166 | gup_flags |= FOLL_PIN; |
3167 | return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | |
eddb1c22 JH |
3168 | } |
3169 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | |
3170 | ||
104acc32 | 3171 | /* |
dadbb612 SJ |
3172 | * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior |
3173 | * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. | |
104acc32 JH |
3174 | * |
3175 | * The API rules are the same, too: no negative values may be returned. | |
3176 | */ | |
3177 | int pin_user_pages_fast_only(unsigned long start, int nr_pages, | |
3178 | unsigned int gup_flags, struct page **pages) | |
3179 | { | |
3180 | int nr_pinned; | |
3181 | ||
3182 | /* | |
3183 | * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API | |
3184 | * rules require returning 0, rather than -errno: | |
3185 | */ | |
3186 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3187 | return 0; | |
0768c8de YN |
3188 | |
3189 | if (WARN_ON_ONCE(!pages)) | |
3190 | return 0; | |
104acc32 JH |
3191 | /* |
3192 | * FOLL_FAST_ONLY is required in order to match the API description of | |
3193 | * this routine: no fall back to regular ("slow") GUP. | |
3194 | */ | |
3195 | gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); | |
3196 | nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, | |
3197 | pages); | |
3198 | /* | |
3199 | * This routine is not allowed to return negative values. However, | |
3200 | * internal_get_user_pages_fast() *can* return -errno. Therefore, | |
3201 | * correct for that here: | |
3202 | */ | |
3203 | if (nr_pinned < 0) | |
3204 | nr_pinned = 0; | |
3205 | ||
3206 | return nr_pinned; | |
3207 | } | |
3208 | EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); | |
3209 | ||
eddb1c22 | 3210 | /** |
64019a2e | 3211 | * pin_user_pages_remote() - pin pages of a remote process |
eddb1c22 | 3212 | * |
3faa52c0 JH |
3213 | * @mm: mm_struct of target mm |
3214 | * @start: starting user address | |
3215 | * @nr_pages: number of pages from start to pin | |
3216 | * @gup_flags: flags modifying lookup behaviour | |
3217 | * @pages: array that receives pointers to the pages pinned. | |
0768c8de | 3218 | * Should be at least nr_pages long. |
3faa52c0 JH |
3219 | * @vmas: array of pointers to vmas corresponding to each page. |
3220 | * Or NULL if the caller does not require them. | |
3221 | * @locked: pointer to lock flag indicating whether lock is held and | |
3222 | * subsequently whether VM_FAULT_RETRY functionality can be | |
3223 | * utilised. Lock must initially be held. | |
3224 | * | |
3225 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | |
3226 | * get_user_pages_remote() for documentation on the function arguments, because | |
3227 | * the arguments here are identical. | |
3228 | * | |
3229 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3230 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 | 3231 | */ |
64019a2e | 3232 | long pin_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
3233 | unsigned long start, unsigned long nr_pages, |
3234 | unsigned int gup_flags, struct page **pages, | |
3235 | struct vm_area_struct **vmas, int *locked) | |
3236 | { | |
3faa52c0 JH |
3237 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
3238 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3239 | return -EINVAL; | |
3240 | ||
0768c8de YN |
3241 | if (WARN_ON_ONCE(!pages)) |
3242 | return -EINVAL; | |
3243 | ||
3faa52c0 | 3244 | gup_flags |= FOLL_PIN; |
64019a2e | 3245 | return __get_user_pages_remote(mm, start, nr_pages, gup_flags, |
3faa52c0 | 3246 | pages, vmas, locked); |
eddb1c22 JH |
3247 | } |
3248 | EXPORT_SYMBOL(pin_user_pages_remote); | |
3249 | ||
3250 | /** | |
3251 | * pin_user_pages() - pin user pages in memory for use by other devices | |
3252 | * | |
3faa52c0 JH |
3253 | * @start: starting user address |
3254 | * @nr_pages: number of pages from start to pin | |
3255 | * @gup_flags: flags modifying lookup behaviour | |
3256 | * @pages: array that receives pointers to the pages pinned. | |
0768c8de | 3257 | * Should be at least nr_pages long. |
3faa52c0 JH |
3258 | * @vmas: array of pointers to vmas corresponding to each page. |
3259 | * Or NULL if the caller does not require them. | |
3260 | * | |
3261 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | |
3262 | * FOLL_PIN is set. | |
3263 | * | |
3264 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3265 | * see Documentation/core-api/pin_user_pages.rst for details. |
eddb1c22 JH |
3266 | */ |
3267 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | |
3268 | unsigned int gup_flags, struct page **pages, | |
3269 | struct vm_area_struct **vmas) | |
3270 | { | |
3faa52c0 JH |
3271 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
3272 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3273 | return -EINVAL; | |
3274 | ||
0768c8de YN |
3275 | if (WARN_ON_ONCE(!pages)) |
3276 | return -EINVAL; | |
3277 | ||
3faa52c0 | 3278 | gup_flags |= FOLL_PIN; |
64019a2e | 3279 | return __gup_longterm_locked(current->mm, start, nr_pages, |
3faa52c0 | 3280 | pages, vmas, gup_flags); |
eddb1c22 JH |
3281 | } |
3282 | EXPORT_SYMBOL(pin_user_pages); | |
91429023 JH |
3283 | |
3284 | /* | |
3285 | * pin_user_pages_unlocked() is the FOLL_PIN variant of | |
3286 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets | |
3287 | * FOLL_PIN and rejects FOLL_GET. | |
3288 | */ | |
3289 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | |
3290 | struct page **pages, unsigned int gup_flags) | |
3291 | { | |
3292 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
3293 | if (WARN_ON_ONCE(gup_flags & FOLL_GET)) | |
3294 | return -EINVAL; | |
3295 | ||
0768c8de YN |
3296 | if (WARN_ON_ONCE(!pages)) |
3297 | return -EINVAL; | |
3298 | ||
91429023 JH |
3299 | gup_flags |= FOLL_PIN; |
3300 | return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); | |
3301 | } | |
3302 | EXPORT_SYMBOL(pin_user_pages_unlocked); |